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Modularity of the concave
composition generating function

George E. Andrews, Robert C. Rhoades and Sander P. Zwegers

A composition of an integer constrained to have decreasing then increasing parts
is called concave. We prove that the generating function for the number of
concave compositions, denoted v(g), is a mixed mock modular form in a more
general sense than is typically used.

We relate v(gq) to generating functions studied in connection with “Moonshine
of the Mathieu group” and the smallest parts of a partition. We demonstrate this
connection in four different ways. We use the elliptic and modular properties of
Appell sums as well as g-series manipulations and holomorphic projection.

As an application of the modularity results, we give an asymptotic expansion
for the number of concave compositions of n. For comparison, we give an
asymptotic expansion for the number of concave compositions of n with strictly
decreasing and increasing parts, the generating function of which is related to a
false theta function rather than a mock theta function.

1. Introduction

A composition of an integer # is a sum of positive integers adding to n, in which order
matters. The study of compositions has a long history dating back to MacMahon
[1893]. The book of Heubach and Mansour [2010] contains more on the history
of compositions. It is natural to impose restrictions on the ascents or descents of
consecutive parts of a composition. For instance, compositions with no ascents
correspond to integer partitions.

A concave composition of # is a sum of integers of the form

L R
Zai-’rc-i-Zbi:n

i=1 i=1
where ay > --- > ay > c < by <--- < bg, where ¢ > 0 is the central part of
the composition. Let V(n) be the number of concave compositions of n. For
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modular form.
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example, V' (3) = 13 since {0, 3}, {3,0}, {0, 1,2}, {2,1,0}, {0, 1, 1,1}, {1,1,1,0},
{1,2}, {2,1}, {1,0,2}, {2,0,1}, {1,0,1,1}, {1,1,0, 1}, and {3} are all concave
sequences. In [Andrews 2011] it was shown that the generating function for concave
compositions with further restrictions is related to statistics for spiral self-avoiding
random walks as well as other partition problems.

Standard techniques show that the generating function for the sequence {V(n)}52

is given by
oo

o n
q
— n_ _
vig) = Z Vimq" = Z ("1, 9)2
n=0 n=0 1700
where (xX), = (x:¢)n = [[jZo(1 —x¢7) and (x)oo = (x: @)oo := [152¢(1 —xg7);
see [Andrews 2013]. We establish the modularity properties of v(g) as a mixed
mock modular form.

Theorem 1.1. Let ¢ = ¢*>™'% and v € H. Define f(t) = q(q)3,v(q) and

~ : ioco 3 00
J():= f(f)—%n(f)3/ Ldz—i-ﬁn(r) ) Lﬁ
-7 (—i(z41))2

- dz
% (—i(z+1)2 27

where the Dedekind n-function is given by n(t) = ¢'/**(¢)oo. The function fA
transforms as a modular form of weight 2 for SL,(Z).

Remark. Theorem 1.1 was used by Bryson, Ono, Pitman and the second author
[Bryson et al. 2012] to show that the modular form f()/(¢)c0 = ¢(¢)%,v(q) pro-
duces a quantum modular form. The ¢-hypergeometric series defining ¢(¢)2,v(q)
was shown to be dual to Kontsevich’s strange function

F(@) =Y (q:q)n.

n=0
which is defined only when ¢ is a root of unity and was studied by Zagier [2001].

Following Zagier [2009], a mock theta function of weight k € {%, %} is a g-series
H(q) =Y peoanq" such that there exists a rational number A and a unary theta
function of weight 2 —k, g(v) = ), cq+ bnq", where ¢ = e2miT = 2mi(x+iy)
such that () = ¢g* H(q) + g*(7) is a nonholomorphic modular form of weight
where

g ) =@/* 1 > nk b, T (- k. 4wny)g™" (1-1)
neQt

and I'(k,t) = too uk=1e= dy is the incomplete gamma function. Such a nonholo-
morphic modular form is called a harmonic weak Maass form (see Section 2 for
a definition and Ono’s surveys [2008; 2009] for history). The theta function g is
called the shadow of the mock theta function H.
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In [Andrews 2013] the following identity is established, which is crucial in
establishing Theorem 1.1. We have

v(g) = ¢~ (v1(9) +v2(9) + v3(q)) (1-2)

where
i) = (; - 1)’:1_ 32?;1)/2 - 32 ﬁ + 1‘—2) (1-3)
1200) =55 (; - l)anqn(nH)/z -4 —22 #), (1-4)
n@)= g (i “;qn<(1+lq")2 * ) (-

Theorem 1.1 may be recast in the following terms.
Theorem 1.2. With ¢ = ¢*™? and z € H we have:

€)) q_1/24 (q)govl (q) is a mock theta function of weight % with shadow propor-
tional to n(z). Consequentially, v{(q) is a mixed mock modular form.

2) q_l/ 8v2(q) is a mock theta function of weight % with shadow proportional to
n(z).
(3) ¢~ Y8v5(q) is a modular form of weight %

Remark. Theorem 4.1 gives the level and shadow for each of the corresponding
harmonic weak Maass form.

The mock theta function v,(¢g) has appeared in a number of interesting places.
For example, it arises in the work of Eguchi, Ooguri, and Tachikawa [Eguchi et al.
2011] and Cheng [2010] concerned with the character table of the Mathieu group
M3 4 and “Moonshine of the Mathieu group”. It also appears in [Malmendier and
Ono 2012], which deals with Donaldson invariants of CP2. In that work v,(g)
arises in a different form, which is equivalent to the following identity. Moreover,
the claim for v,(g) in Theorem 1.2 follows from the next theorem and the results
in [Zwegers 2002].

Theorem 1.3. For |q| < 1 we have

1 qn(n+1)/2

Doo(—1% o 1+4"

n Nty n(n+1)/2
(b C
(@50 = (+g™) "

n#0 I—q

F(q):=
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We give three different ways of obtaining this identity. Each proof relies on
different symmetries of Appell sums. The first uses an elliptic transformation
property and Taylor expansions of the Jacobi theta function. The second proof uses
the modular properties of the Appell sums. The third is via g-series manipulations.
Finally, we sketch a connection with the holomorphic projection construction for
mock modular forms.

Remark. Theorem 11.1 gives an analogous result for the Appell sum in the defini-
tion of vy (q). Moreover, it relates v (g) to the smallest parts generating function
studied in [Andrews 2008].

There is a convenient graphical representation of a composition, where each part
is represented by a vertical column of boxes; for example,

represents a concave composition of 47. Considering each composition of #,
possibly from a restricted subset, it is natural to ask about the average limiting
behavior of the graphical representation as n — co. For example, there is a great
deal of literature about the limiting shape of integer partitions; see, for instance,
[Fristedt 1993; Pittel 1997; Vershik 1995].

Properties of the typical representation are often studied via probabilistic models.
However, when the generating functions are modular forms, very strong theorems
can be proved for the statistics of interest. For instance, the modularity of the
generating function for the number of partitions and the circle method yield the
following asymptotic expansion for the number of partitions of 7, denoted p(n):

_ 23 T 6 1
p(n)—mexp(E 24n_1)(1_m+0(n7))

for any T > 0.

As an application of the modular properties of v(g) we give an asymptotic
expansion for V(n). Since the generating function is a mixed mock modular form,
the circle method may be applied to obtain asymptotics for V(n). Care must be
taken to deal with contributions from the holomorphic Fourier series as well as the
nonholomorphic period integrals. We use methods of Bringmann and Mahlburg
[2011; 2013] for dealing with these difficulties.

Theorem 1.4. Forany T > 1 as n — oo, we have the asymptotic expansion
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_ 26 (7 | 21
o= (12n+2L)3/4 eXp(:z . 2)

T
Qt—1)13 1 ( 1
% (Z 227t (12n43)1/2 +0 n(T+1)/2)

=1

where o; are defined by

o0
Z apx? = exp(V1—2x2—1+x?)x
k=1

sinh(222)

cosh(mrx)

In particular, oy = 27/ 3.

Remark. It is possible to obtain an asymptotic with a polynomial error term; see
[Bringmann and Mahlburg 2011; 2013; Rhoades 2012].

Remark. A concave composition corresponds to a triple (A, i, ¢) where A and
are partitions, and ¢ > 0 is an integer strictly smaller than the smallest parts in A
and pu, such that n = |A| 4 || 4 c¢. Fristedt’s results [1993] imply that partitions
of size n have a part of size 1 with probability roughly equal to 1 — (7/ V6n). We
expect at least one of the partitions p or A to have size not much smaller than n/2.
That partition will almost surely contain a part of size 1. Thus we expect ¢ = 0 for
most triples. Therefore, we expect that V' (n) will agree to leading order with the
asymptotic for the number of pairs of partitions (1, A) with ||+ |A| = n. Standard
circle method calculations show this number is

NG b4 1
an—1)574 exp(§v12n—l) 1+0 7))
As expected this agrees with the leading order asymptotic of V' (n).

For comparison we introduce the notion of strongly concave compositions. A
strongly concave composition of # is a sum of integers of the form

L R
zizai%-c4-j£:bi::n

i=1 i=1

where ay > -+ >ay > c¢ < b; <--- < bp and where ¢ > 0. Let V;(n) be the
number of strongly concave compositions of n. We have

va(@) =Y Vamq" =Y ¢"(=¢" Noo(—¢" oo
n=0

n=0

oo
=12 2_
= = Y D" )2 Y (55) g o)

n
n=0 n=0
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where the second equality follows from standard techniques and the third equality
is established in [Andrews 2013] and (=) is the Kronecker symbol. The function
Y onso(—12/ n)q(”z_l)/ 24 is called a partial theta function. The asymptotic behavior
of the partial theta function is discussed in Section 10 and used to derive the
following theorem for V;(n).

Theorem 1.5. Forany T > 0 as n — oo, we have
___ V3 T i3
T
oy (yaro7)
§ ( 2 22mm| (24n+2)m/2 ym+ 0\ ) )

m=0

where

=Y ()L (Z) p.a)

a+b=m

with p(b.a) = [17—o(4(a—1)*— j?) and

L =-2Y

m(BrJrl (2)— Br41(2)).

where B (x) is the r-th Bernoulli polynomial.

Remark. Let sm(A) be the smallest part in the partition A. Strongly concave
compositions are characterized by a pair of partitions into distinct parts (A, ) with
sm(A) # sm(u). Let #7(n) be the number of pairs of partitions into distinct parts
with sizes summing to n. Therefore, we expect the asymptotic of

Va(n) ~ (1 —Prob{sm(A) = sm(u) : |A[ + || = n}) u(n).
We have

3 3
Vai(n) ~ %(2471% exp(%\/24n) and u(n) ~ ﬁ exp(%v24n).

It follows from Fristedt [1993, Theorem 9.1] that the smallest part of a partition
into distinct parts has size j with probability roughly equal to 1/2/. Therefore, a
pair of partitions into distinct parts will have the same smallest part with probability
roughly equal to %, which agrees with the prediction.

It would be of interest to address some of the following questions as n — oo:

(1) What is the distribution of the center part of a (strongly) concave composition?

(2) How many parts does a typical (strongly) concave composition of n have?
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(3) What is the distribution of the number of parts to the left of the center part
minus the number of parts to the right of the center part?

(4) What is the distribution of the perimeter of the (strongly) concave composition
of n?

Some of these questions can be answered by modeling a concave composition
as the convolution of two random partitions (discussed above), while others can
be treated via modular techniques of Bringmann, Mahlburg and the second author
[Bringmann et al. 2012].

It is convenient to introduce a two-variable generating function. Let R— L be the
rank of the concave composition. This quantity measures the position of the central
part. Let V(m,n) and V;(m,n) be the numbers of concave compositions and
strongly concave compositions, respectively, of n with rank equal to m. Standard
techniques give

S n
q
v(x,q):= ) V(mmx"q" = - R

% D N =

meZz

oo
va(x,q) = Z Vag(m,n)x"q" = Z 7" (=x¢" T oo (—x T ¢ @)oo

me

The following identities are deduced in a similar manner to Theorem 1 of
[Andrews 2013].

Theorem 1.6. In the notation above,

s n(n+1) ad n—1 n2—
v q) = —x 31T T 4 el oo Y0 ()T 4"
n=0 n=0
I U - S
quix.q) = (x)oo(x_l)oo ng;) (X(I)n(x_IQ)n
(l—x) (_l)nq(n2+n)/2x—n
(@) 00 (X) oo (X oo ’% 1 —xg"

One should compare these generating functions to the rank of a partition studied
in [Bringmann et al. 2012]. As is the case in [Bringmann et al. 2012] the moments
of this rank statistic can be calculated precisely. We expect this statistic to be
asymptotically asymptotically distributed; see [Diaconis et al. 2013] for a similar
result in the case of the partition rank.

In Section 2 we recall some basic facts about holomorphic and nonholomorphic
modular forms. In Section 3 we prove Theorem 1.1. In Section 4 we prove
Theorem 1.2. In Section 5 we give the first proof of Theorem 1.3, which proceeds
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via elliptic properties of Appell sums. In Section 6 we use g-series manipulations
to prove Theorem 1.3. In Section 7 we prove Theorem 1.3 via “modular methods”.
Section 8 contains a calculation of the holomorphic projection operation which
relates to Theorem 1.3. In Sections 9 and 10 we prove Theorems 1.4 and 1.5. Both
use the circle method, modular properties of the generating functions of interest, and
asymptotic analysis. Finally, in Section 11 we discuss the analog of Theorem 1.3
for the function vy (g).

Throughout the remainder of the text we let ¢ := e , with t = x 41y for
x,yeRand y>0. Weletze R", i,k €Ny, 0 <h <k with (h, k) = 1. Moreover,
we denote by [¢], the inverse of ¢ modulo b.

2wit

2. Holomorphic modular forms and harmonic weak Maass forms

In this section we define and give some basic properties of harmonic weak Maass
forms. Before turning to nonholomorphic modular forms we describe the classic
holomorphic modular forms of half integral weight.

We follow Shimura [1973], see also [Ono 2004], by setting

ay_ (4L
(E) _’7(|b )
where n = —1ifa,b,<0and n=1if a > 0 or b > 0. For an odd integer m, we put

em=1ifm =3 (mod4) and €, =i if m =3 (mod 4). Forally:(“Z)eF0(4),

C
let

jly,t) = (2) egl(cr—i—d)l/z. -1

The Dedekind n-function is defined by 7(t) := ¢'/24 [T~ (1 —¢™) and define
Xx(h, [—h]g, k) to be the multiplier so that

n(%(h+i2))=\/gx(h,[—h]k,k)n(%([—h] +1). e

By [Ono 2004, Theorem 1.60], for instance,

N0 = Y (1) @n + DTS (St 03

n

nez n=1

The next result follows from Theorem 1.44 of [Ono 2004].
Lemma 2.1. n(87)3 isa weight—% modular form on I'y(64) with trivial Nebentypus.

Before discussing harmonic weak Maass forms we introduce the quasimodular
form

Ex(1):=1-24) o1(n)q". (2-4)

n=1
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where 01 (n) := de d. In particular it satisfies E,(t + 1) = E»(7) and

—2p (- l) _ 6 i
Eb(t) =1 Ez( 2)-—. (2-5)
Therefore, the completed form of £, defined by
~ 3
E =F - 2-
2(7) 2(0) — =~ 5 (2-6)

transforms as a modular form of weight 2 for SL,(Z).

We turn to harmonic weak Maass forms. Define the weight-k hyperbolic Lapla-
cian by

2 2
(B Py (L i) _
Ag = y(8x2+8y2 +iky(ge +igy) 2-7)

Definition 2.2. Suppose that k& € %Z, N is a positive integer, and that ¢ is a
Dirichlet character with modulus 4N . A harmonic weak Maass form of weight k
on ['g(4N) with Nebentypus character ¥ is a smooth function f : H — C satisfying
the following:

(1) Forall 4 = (‘c’ 3) € I'g(4N) and all T € H, we have

f(AT) = ¥ (d) j (A, D) f(2).
(2) We have Ay f = 0.

(3) The function f has at most linear exponential growth at all the cusps of
H/To(N).

In [Zwegers 2002] a general class of harmonic weak Maass forms was constructed
by “completing” certain Appell sums. The Appell sum is defined for u,v € C\
(Z + Z7) by

e”i” (_1)n62m’nvqn(n+l)/2
;T) = - 2-
nez

where
iy2 i 1
19(1);‘17) — Z P t+27wiv(v+53)
ve%—i—Z
is the Jacobi theta function. The Jacobi theta function satisfies the triple product
identity
[e.°]
P(it)=—ig" ¢ =g =t¢" H(1 =g (29)
n=1

with ¢ = 27V, and the transformation
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vz Y oiain) =3 - Lomkzvyg (L g 1 ]
19( zvz,k(h+lz))—x h [ h]k,k)\/;e ﬁ(v,k([ h]k+z)). (2-10)
The nonholomorphic correction term of the Appell sum requires the definition
RN -1 _ Im(u) —2mivu ,—mwivit
R(u;7):= Zl( 1) 2{sgn(v) E((U+Im(r))\/2lm(f))}e e ,
U€Z+§

with £ (x) defined by
E(x):=2 /x e du = sgn(x)(1— B(x2)), @2-11)
0

where for positive real x we let 8(x) := [ ;o u=1/2e=7 gy We have the following
useful properties of R.

Proposition 2.3 [Zwegers 2002, Propositions 1.9 and 1.10]. Ifu € C and Im(t) > 0,
then

(1) Ru+1;t) = R(—u;t) = —R(u; 1),
() R(u;t+1)=e "/4R(u: 1),

(3) Ru;t) =— l;e"’”‘z/t(R(z;—l) —H(z;—l)),

T T Tt
where the Mordell integral is defined by

( ) Sy em'zxz—anu J
H(u;z) = / ¢  dx.
—oo Cosh(mx)

Moreover, we need the following “dissection” property of R.

Proposition 2.4 [Bringmann and Folsom 2013, Proposition 2.3]. Forn € N, we
have

w(e)

n—1
= q—ﬁ“—%)ze‘z”’“—%)(”%)R(nu +(e- %)z + %; nz).
=0

The completion of p is defined by
wu, v, 1) = M(u,v;t)—i—%R(u—v;r). (2-12)

This function satisfies the following elliptic and modular transformation laws.

Theorem 2.5 [Zwegers 2002, Theorem 1.11]. Assume all of the notation and
hypotheses from above. If k,£,m,n € Z, then we have

Autko+0, vEmo+n; 1) = (= )k Htmtngmivt=—m)?+2mitk—m)u=) g : 7
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and
~(_: i Chtizy 3 _ \/Z—nkz(u—v)zA( l(_ l_))
u( iz, —ivz; )—x (h.[=hlx. k) Le (v (hl+2)).

Finally, we have a result that is useful in determining the shadow of a mock theta
function.

Theorem 2.6 [Zwegers 2002, Theorem 1.16]. Fora € (—3, 3) and b € R we have

ioo ga-i—%,b-l—%(z)
-z +J—i(t+2)

wiviz42mwivh

dz = _e—niazr+2ﬂia(b+%)R(a_L, —b:1)

where g4 5(2) 1=, cqrzVe

3. Proof of Theorem 1.1

In this section we use the Jacobi properties of the Appell sums

A(u,v;7) 1= e™¥ Z (=D

neZninvq(n2+n)/2

~ 1 _eZm'uqn ’
(3-1
2
. (_l)nq(3n +n)/2
. . ,Tlu
A3(u’f) =e Z 1 — e2wiugn
nez q

to deduce Theorem 1.1. The function A3 (u; ) was studied by Bringmann [2008].
Direct computation gives

( 1)n+1 3n(112+1) ]
o — q _ 1 0  —miu _ 1
fZ(T)'_X;e;) (1—g")? = (g€ s 1—e2m'u>) u=0’

n

n(n+1)
o~ D" .

i) = ; T =55 u=v=oA(u’ v; 7).

n

Thus the modular properties of the Appell sums will dictate the modular properties
of our functions v (g) and v,(g). In analogy to (2-12) the completed forms of these
sums are

/T(u, v;7):=A(u,v;t) + %ﬁ(v; T)R(u—v; 1),
As(u;7) = A3 (us7) + %n(r)q_%(ez’””RBu—t; 37) —e 2T R(3u + 1; 37)).

Using the transformation properties of i found in Chapter 1 of [Zwegers 2002],
we have the following modular properties of 4. For A3 we will use Theorem 3.1
of [Bringmann 2008].
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Proposition 3.1. For all (2’ 3) € SL,(Z) we have

~ u v at+b wi —5—Quv—v?) ~
A(cr—i—d’ ct+d’ cr+d) (ct+d)e ¢t A(u,v; 7).

We then have the following theorem which together with the transformation

properties of E» () and (1-2) yields Theorem 1.1.

Theorem 3.2. Witht =x +iy forx,y € Rand y > 0 we let

~ 00 Z3
7@ = A== [T

T (—i(z+1))2
N 3 V3 )
fz(f)—fz(f)—ﬁJrgn o n(r) . (—i(ZT))%dZ'

Both ﬁ and fz transform as a weight 2 modular form for all of SL,(Z) with
trivial Nebentypus.

Proof. We establish the claim for f; first. We have

1 0

27i ov uzvzoff(u, v;1)=—f1(0) + iﬁ’(O)R(o; 7)

= /@) + Tn@? f_oo ﬁdz

~ 1
=/ 427
where we have used Theorem 2.6 in the second equality and the fact that ¢ (0) = 0.

Additionally, from Proposition 3.1 we have (by taking (1/2mi)d/ av} on
both sides)

1 at+b 1 1
(Cr—i—d)( fl(cr—i—d) - EM)

=(cr+d)( fl(f)—%y)—i—c lim wue 7l rgq Guomw? A(u V;T)

u=v=0

u,v—>0
Using
. ~ I LA S B (V)
uh_r)r})uA(u,v,r)— 57 OF JE)I})A(M,U,‘C)— i )
we find that

i€ uv—u?) ~
lim ue™ crra uvH )A(u, V;T) = —L_.
u,v—>0 2mi
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Additionally, since

(ar—l—b) ¥
Im = ,
ct+d let + d|?

we have

at+b\ 1 1 ct+d ¢
(ct+d) fi(r) - (Hd)f(”+d)—cf+d4ﬂm(mig) dry 2ni

_ ct+d ct+d ¢

4y 4wy  2mi =0,
which gives the result for ﬁ
We define
~ e 1
A3(u; ‘L') =e ””‘A3(u, 'L') — m
By Theorem 3.1 of [Bringmann 2008] we have
~ 1 ] 3ﬂru2 —miu—7H i 3mu®_ . mu ~ (i 1
A3(u,f)= py=r _te 5 +l—€ T T 3(ﬂ,——>
1 —e=smiu r(l—e‘¥) T T T

:i:%i:Fnitx

N 1 3mitx? e
— (= 2n(—— . d 3-2
(=i7) 77( T)/ (; l_ezm-ue:l:”;:funitx) x (32

Remark. This may also be derived by using

37nu/2 Z

nez

( l)n 3n(n+1)/2 2winv

e27nuq

2
= Z 2Ty (v + kt + 1;30)wBu, v+ kT + 1;37)

and the results of Chapter 1 of [Zwegers 2002].

Lemma 4.2 of [Bringmann 2008] gives

:I:”—i:Fnirx
3mitx? Z e 6
u u=0/e i :I:’T—iZFZnirx dx
R _e2miup®"3

13
9 + 1
_ V3(=iv)? /°° nGw) o
o (

1
2mwi
2 —i(iw—i7))2
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Using the transformation n(—1/t) = «/—itn(r) and applying (1/27i)d/du ‘u=0
to (3-2), we have

Sf2(7)
. 2 . .
__1 0 12 . +e3ﬂéu_”’2”_,nrm+lew‘”"”_5u ”3(2,_l>
2mi du \ 1—e27iu T(l_e—y) T LA u=0
Iw
0 (—i(fw—irt))2
3riu? U
1 0 1 —wiu—%" _ 1
= 2 (‘)_ 2mwiu +e - 2miu +7 2f2(__)
widul\l—e t(1—e= %) Jlu=0 T
+7T T](‘E)—/ r](lw) dw
l(lw—lt))z
(a1 3 ) -2 _l)
_(24 24t2+4nit T f2< T
+1 n(r)‘/_ T gy 33
(—i(iw—ir))2
where we have used
3n2+n
Z (=D"q 2 =0
1—g" )
n#0
Next define '
_ 3 T nw)

-t (—i(w+1)?
Then the modular transformation of n(7) implies that

2«/_ niw)

Toniw g,
2 (—i(iw—it1))? v

S(r) = szf’(—%)

Combining this with (3-3) gives fz(f) = t_zﬁ(—l/r). Using f;(t +1)= ];;(‘E),
we obtain the result. O

Proof of Theorem 1.1. By (1-2) and

S n

q _
Z (1 n)2 -

we have ¢(¢)3.v(g) = fi(x) + fo(x) + ﬁ(Ez(f) —1). The result now follows
from Theorem 3.2 and (2-5). O

=Y amg =120 gy

n=1 n>1
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4. Proof of Theorem 1.2
In this section we give the following more precise version of Theorem 1.2.

Theorem 4.1. With g = ¢2™'T we have

. ioco
1, 24, 24\2 24 i n(24z)
e+ = [ e
* 42r )z (i +2))3

is a harmonic weak Maass form of welght 2 on I'g(576) with Nebentypus ( ) Also,

oo 3
@t —iva [ 18D g

T /—i(z+71)

is a harmonic weak Maass form of weight % on I'g(64) with trivial Nebentypus.
Finally, let

ESY(z):=1424 Z( > d) q" =2E,(271) — E»(2).

n>0 " d|n
dodd
Then
dd
¢ osighy = 22 O
6n(87)3

isa weight—% weakly holomorphic modular form on T'y(64) with trivial Nebentypus.

The modular properties of v{(g) and v3(g) are straightforward or follow from
known results. Similar to (3-4) we have

Y = S S = (e
(1+q ) n=1 q" n>1 “d|n
Hence
= 1 1 ES¥(1) -
L (gt o) =" 2

The claim for v,(g) follows from Lemma 2.1 and the fact that £°%(z) is a holo-
morphic modular form of weight 2 on T'y(4). The proof of the claims about v;(g)
follows from (3-4) and the following theorem of Bringmann [2008].

Theorem 4.2 [Bringmann 2008, Theorem 1.1]. Let g = e2™iT and

36n(n+1)

( 1)n+1
R(z) 1= 24 72 Z 7242
(q )oo "o )
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Then

i f“’" n4z) 1 E5(247)
427 )3 (—i(r—l—z))% 24n(247)  8n(241)

is a harmonic weak Maass form of weight % on T'o(576) with Nebentypus (12).

M(t) = R(7) —

The modularity of v, (gq) follows easily from the identity of Theorem 1.3 and the
results of Chapter 1 of [Zwegers 2002], namely, the following theorem.

Theorem 4.3. With g = e>™'* we have ﬁ(q) = —2iq1/8u(%, %; 1) is a mock theta
function with shadow proportional to n*(z). More precisely,

ioco 77(82)3
-z /—i(z+71)

is a harmonic weak Maass form of weight % on I'y(64) with trivial Nebentypus.

g 'F(¢® +2iv2 dz

Proof. Since this function is written in terms of w the result follows from Chapter 1
of [Zwegers 2002]. In particular, to compute the shadow we use Theorem 2.6
and Lemma 2.1. For additional details, see [Eguchi and Hikami 2009; Rhoades
2012]. d

We have used Theorem 1.3 to establish the modularity of v,(g). In the next
three sections we will give different proofs of this theorem. Each proof uses
different techniques and highlights different aspects of the Appell sums appearing
in Theorem 1.3.

5. Elliptic proof of Theorem 1.3

In this section we prove the identity of Theorem 1.3 via a transformation property
of u(u, v; ) with respect to the elliptic variables u and v.

Proposition 5.1 [Zwegers 2002, Proposition 1.4(7)]. Foru,v,u+z,v+z¢Zt+7,
we have

1 (0 (utv+2)0(2)
27 O (u)d(v)d(u+z)d(v+z)’

pu+z,v+z;t)—p(u,v;t) =

where we write O (1) = ¥ (u; ) when t is understood.
Let
o0 o0
Fo() =Y Y (=D?d*71g" and ®y(r):=) Y d*7g". (5-1)
n=1d|n n=1d|n

We will need the following lemma of [Rhoades 2013].
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Lemma 5.2. With Z = 2riu we have

O (u; 1) = =2 sin(wu)n’ () exp(—2 Z %—f@g(‘[)),

L even
£>0

( >4 Fm))

£>0
£ even

U(u + %; ) = —2cos(mu) )777

With this lemma we turn to the proof of Theorem 1.3 using Proposition 5.1.

2miu

“Elliptic” proof of Theorem 1.3. Throughout this proof let x = e . From
Proposition 5.1 and using 9’(0) = —27n(7)3, we have
in?(v)d(L)?
YW (—w)pu+3, —u+1: )= ) H—u)u(u, —u;t) = M . (5-2)
19(1/! + 5)2

Taylor expanding each of the three terms in this identity around # = 0 by applying
Lemma 5.2, we have

6 n%+n
9 () () + 5.~ + 3:7) = —4m2(?9((t%)) 2 : +2q )u2 + O0®u*),
nez
(5-3)
. 3 l
% = i) +4in (2R + 0w (54
2

The remaining term is more interesting. From the definition of u(u, —u; 1), we
have

n..—n,(n%+n)/2
Y)Y (—u)pu(u, —u; ) = _i0@) (s .[)emuz( tx—ngn+

2 _
sin(wu) oy 1 —xq"
Since
( l)nq(n2+n)/2
X =0
n#0 N
we have

24n)/2

o g
1 —xg"

n#0
= 2mu(z

n#0
Again applying Lemma 5.2 we have

(— 1)n+1 q(n2+n)/2
1—g"

(_l)nq(n2+n)/2
(1—g")?

2

) + O(u?).
n#0
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=0 W)V (—u)puu, —u; 7)
=in’(r)—4in’n’(v)
( 1)nnq(n2+n)/2 (_1)nq(n2+n)/2
(g;) —q" (1—¢")?

Using (5-2), (5-3), (5-4), and (5-5) to compare the u? coefficient of the Taylor
expansion around u = 0 of both sides of (5-2), we have

- q>1(r))u2 LOWY). (55)
n#0

2-‘1-71 2 2

¢ g " (g
27 (Z 7 +Zﬁ+q’(f))

ﬁ( e i) l—¢q !

= 1 —_—
n’(2)
The identity follows from 19(%) = —2q1/8(q)oo(—q)§o, ni(r) = ql/s(q)go,

24n)/2

(— 1)”q(” - q"
% —(I)z(‘L'), and r; m = —Fz(‘[). O

6. g-Series proof of Theorem 1.3

In this section we will give a g-series proof of the identity in Theorem 1.3. We will
divide the proof into several lemmas.

For negative values of n we define (x),; = (X)oo/(X¢")0o. For simplicity we
write (a,b,c,d;q)n = (@;@)n(b; @)n(c: @)n(d; q)n. We will use the equations

9q:= D (~1)"g" = (@)oo : (6-1)

nez (_Q)oo
which is [Andrews 1998, (2.2.12)], and

©n(/In(2)"

nez
3 2
G B2 ST 5 (1—ag®)(c.d,e, [1)n(Zer)"q" 62
(aq?a Q» gg Z?' q)OO nez ( a)(aq aq? aeq9 af“l’ )I’l '

which can be found in [Bailey 1950] or page 135 of [Gasper and Rahman 2004].

Lemma 6.1.

+1
QZq(n ) (1+i(8q2n2+n B 161’16]2"2(1—61”)))
9, I\ (1 +q")? L+4q"

nez
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Proof. In (6-2) sete = ¢ =—1,a =1, and let d, f — oo to obtain

n(n+1)/2
2 —ql .
nez Tq
(1—ag®n) (=Dy 3 o2
192 a—>1Z l—a (—aq),%a "
=i(1_§:i ((l_ann)( 1)2a3n 2n2
07 —t dala=1 (—aq)?
LG —aq—Z")(—l)ina*”qz"z))
(_aq)z—n
[o’e) 2
1 2n ( (_l)n ) 3n 2n?
= — 1—— l1—a ——— ] a
f( ‘ X_;( ) (—aq)n 1
_ a+Da+q) - (a+q""H\* _
da a= 12(1 2”)(( : (q—)q)z( : )) ¢ 3”q2”2+2”)
n

where we use (6-1) and L’Hopital’s rule in the second displayed equation. Continu-
ing, we have

n(n+1)/2

q
14g"

nez
4q2n2+2n 00

1 n
:0—(1+Z g~ DA W)ZH F(ng™"

4
Z( 12nq +i 4q2”
et T L gy
_ 212 1 omamtian 120
. |—g—2n 2n%+2n n 4 1—g—2myg2n’+2n
g( 7 ()i o 1+4 Z( T (1+4")?

1 s q2n2+2n
=—|1+4 5 +8 -
92 ; (1+ Z( (1+q”)2 Z I+q/

ng*" (1-¢") 9"
_12,; W“ {ivq ")2+ Z( ) (1+q")221+qf

(=¢"ng*""
122 (1447 )
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Noting that
n—1 n

1
Z Zl+q1=n+liqn_%’

we see that the right hand side equals

1 (1+¢%"g*" n(1—g"g*"
ﬁ(”“EW‘“ZW

n=1

(1— n)q2n2 q" _l))
- Z (1+4") (1+q" ?

which gives the result. O

Lemma 6.2.

n(n+1)/2 ©  2n24n

(D™ lnq g (g q
Z n Z(l_qn)Z 22 n +}; (1_qn)2

n=1 n=1 l_q

Proof. Recall from the proof of (1.2) in [Andrews 2013] that

lim —(Sl(a,b;q)—

@)
ab—1 (1-a)(1-b) (ab: @)oo

| 0 (=) lnqn(n+1)/2
:m( Z(l— n)2+ Z ) (6-3)

where

(@ 4:0)00 g~ (1= 0D gt

Si(@b:q) = (b9.9:9)0 1 —ag"

nez

We now apply (6-2) with f,d — oo and setting a equal to ab. Then letting e — a
we obtain

(4, %'q)oo (1—abq®") (a.b;q)n (ab) g

Si(a,b;
e big) = (abq. 2. q:q)oo (1—ab) (aq,bq;q)n
nez
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Now

1 ( (a b 19 oo 1 )
ab—>1 (1-a)(1-b) \(abq. & ¢: oo (@bG)co
o 1 1 @n®)n(Gp)" 1
= b T—a) (1) ((abq)oo 2 @3 (abq>oo)

_ 1 > (aCI)n—l(bQ)n—l(%)n 1 > q"
_“l’gl (@bq)oo 2 @)z ~ (@oo r; (1—g")? &4

where we use Corollary 2.3 of [Andrews 1998] in the second equality.
Next we have

(a 3 4o Z (1—abg®") (a.b;q)n

1 2n2(ab)2n
ab1 (1—a) (1 —b)(abq, & q: @)oo 2= (1—ab) (bg,aq:q)n

n#0
Z 1 _aban)q2n2(ab)2n
(q)oo b ¢ (1—ab)(1—aq")(1—bq")

1 . 0 (1— bq2n)b2ann2 (1— bq—Zn)b—anan )
SR
@ b ;((1 —B) (1 g (I —bg") " (1 =6)(1—q )1 ~bg)

1 4! _bq2n)b2nq2n2 (q2n B b)b—an2n2
- db ‘b 1( )

(q)oo = (I-b0)A—=g")(A—=bg") (1—-b)1A—g")(b—q")
. 4 o0 n(l + qn)anZ ) o0 q2n2+n
T @ ’; 1—q" @Doo = 14" ©>

Comparing (6-3), (6-4), and (6-5) and multiplying by (¢)eo/2 We obtain the result.
O

Lemma 6.3.
o0

" oo - 00
’;m Z(an)z— Z TSvETE

_i an(L+g™g™ S P
- — g2 _ 42m)2
n=1 I 9" n=1 (1 q n)
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Proof. The first equality is immediate and follows by combining the initial two
sums term by term. Finally,

00 qzn o0 o0 m 0
— 2nm __ 2nm
>t o= (L2 )
n=1 n.m=1 m=1 "n=1 m+1
00 2m2+2m
2nmn mq
= m —+
> 3w 3 M
n=1m=n m=1
i i ) Z q2m2+2m
— (m+n)q n(m+n) 4 —2m
n=1m=0 m=1 q
B i q2n2+2n i nq2n Z mqu +2m
- _ 42n)2 _ 42n _
n=1 (1 q ) n—l1 1 =1 I q
_ inq2”2(1+q2”) o q2n2+2n -
= 1_q2n oy (1 _q2n)2

We are now ready to prove the main result.

q-Series proof of Theorem 1.3. Comparing the statement of Theorem 1.3 with the
assertion of Lemma 1, we see that the theorem is equivalent to the following:

( l)nnqn(n-i-l)/Z

:g 1+q")2+Z g 9

Now in (6-6) we replace the final sum on the right-hand side by the negative of
the right-hand side of the identity given by Lemma 6.2. Hence Theorem 1.3 is
equivalent to the assertion that

i q2n2+n _, i nq2n2(1 _qn)
2
n=1 (1+qn) n=1 T+4q"
_ i qn i q s Z nq (1 +qn) N i 2n2+n
L (g =g T g (1—g")?

We now combine the first sum on the left-hand side with the final sum on the
right-hand side and apply Lemma 6.3 to the first two sums on the right-hand side.
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Hence Theorem 1.3 is equivalent to the assertion that

n n

— " = g
Z (1 +qn)2 Z (1 _qn)z’

o q2n2+2n _ o annz(l _qn) B
_ 42n)2 n -
= (=¢°") - l+gq

which is merely a restatement of Lemma 6.3. O

7. Modular proof of Theorem 1.3

In this section we establish Theorem 1.3 by computing the modular transformations
of the right hand side and demonstrate that they match those of the left hand side.
Finally checking that enough of the Fourier coefficients are equal yields the result.

“Modular” proof of Theorem 1.3. We use Theorem 2.6 together with (2-12) to find

i ;i 811(2)
A t) = puuw 1) + 3 RO:0) = plu i) = 5 22 4z

7 A/ —i(z+7)
ioco 3
:M(u,u;r)—i—% n() dz.

7 A/ —i(z+7)

Combining this with the definition of fl in Theorem 3.2 and the definition of E 2
in (2-6), we see that if we define

M(u;7) = fi(v) +in() n(u,u;v) — 5 E2 (1),

then this also equals fl (0)+in(r)*i(u, u;t)— %Ez (). Now using the transfor-
mation properties of fl from Theorem 3.2, i from Theorem 2.5, and E 2, We get
that M transforms as

u at+b\ _ 2 .
M(Ct—i—d’ cr—l—d) = (e +d)"M(u;7)

forall (¢ ) € SL,(Z). Further, by the first part of Theorem 2.5 we have the elliptic
transformation property M (u +kt +1/;t) = M (u; 1), for all k,/ € Z. Using these
we easily see that
M(:7)
m(t) 1= M(t/2;7)
M((t+1)/2;7)

transforms as a vector-valued modular form of weight 2 on SL;(Z):

100 | 010
m(t+1)=]100 1]|m(r) and m(—;) =72[10 0 |m().
010 001

From this we see that M (%; 7) transforms as a modular form of weight 2 on 'y (2).
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On the other hand,
Ea(t) —2E2(27) E (1) —2E»(27)
g@=| E-3E@/2 |=| E@-3EG/2)
Ex(v) = LEy((r+1)/2) Ey(1)—1E ((t +1)/2)

satisfies the same modular transformation properties as m. Further we get directly
from the definitions

—14 0(q) ++0(@9)
g =|1+0@»| and m@)=|-%+0@?) |,
4+ 0G7) —15 +0(@?)
and so
O(q)
m(r) + 1g(x) = 0@?
O(q2)

If we take the product of the three components of m + % g, then we get a holomorphic
cusp form on SL;(Z) of weight 6, and hence this equals zero. This then implies
that all three components are zero and so we get m + % g=0.

The first component equals

%(—1 —24 Z a;’dd(n)q”) — 11—2E2(‘L')
n>0
(_1)n+lnqn(n+l)/2 (q)go qn(n+1)/2
+ Z n +2 2 n
ot I—q % I+¢q

nez

where we have used

1
9(3:7) = =248 (Q)oo(—9)% and o{¥m) = > d.
d|n
d odd
Using (4-1), (4-2), and (3-4) to rewrite the Eisenstein series terms gives the result.
O

Remark. The calculations above show that M (u; t) is a multiple of the Weierstrass
go-function. Thus the conclusion follows from known facts about g at half periods.
We have included the details for completeness.
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8. Holomorphic projection

In this section we demonstrate that the function

()32

( l)nnqn(n-i-l)/z

arises from the holomorphic projection of 1*(t)(3(r))*. The holomorphic pro-
jection operator is the unique linear map myo = 7y, Mapping the space of
nonholomorphic modular forms of weight &k to the space of cusp forms of weight
k and level N satisfying (4, ®) = (h, w(®)) for all cusp forms / of weight & and
level N and (-,-) is the Petersson inner product.

If ®(7):=),czan(¥)q" is a modular form of weight k, not necessarily holo-
morphic, on SL;(Z) such that for T — i oo there exists an € > 0 with

(@ |k Y)(x) = 0(y™°), (8-1)
then 7mpot (@) (1) := Y o | cn(P)g" with

(4nn) .

—4mny k-2 _

cn(®) 1=
See for instance [Sturm 1980] or Proposition 5.1 of [Gross and Zagier 1986].
Proposition 6.2 of [Gross and Zagier 1986] (see also Proposition 11 of [Coates
1986]) suggests that (1/n3)mne1(n3(73)*) is, after the addition of an Eisenstein
series, the holomorphic part of a harmonic weak Maass form (see [Ono 2008] for
discussion of holomorphic parts of harmonic weak Maass forms). Precisely, we
have the following result.

Proposition 8.1. With the notation from above,

(—1)”nq”(”+1)/2

Thot (1 (1)) (1) = >

_gh
n#0 I—q

Proof. For simplicity let g(z) = n3(z). From (2-3) we have

g0 = 3 (FH)ng .

n=1

Thus
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so that

-3 —4 nn? 2_,2
g@g @ =72 3 m(o)r(3: Y )g s,
n,m>0

With £ = m? —n? we need to compute
o0 _nty

JrE e

0

2 2
0o oo ity 00 oo .
- / 2 eTlthe 2 ﬁdy =/ / e (wn2+z)721y(yw)% d—wdy

o JEF t o Ji w

:nﬁ/“wéd_w/‘” 0%y 3 dy
2 )y w Jo Y

n

(NW‘)

_ (1_ I )= 2
Jrl\n 2440 Jam(m+n)’

where we use fooo e~ y2dy/y = a73/2 /7 /2 in the third equality.
Inserting this into (8-2) gives

Thot(g8*)(T) = > (%)(m—n)q(mz—nz)/s.

m>n>0

:L/ S S
VT I wi(wn240)3

Now (—4/n)(—4/m) = 0 unless both n and m are odd, in which case we have
n=2a+1and m=2b+ 1. Thus (—4/nm) = (—1)?T? and we have

W2 ta—b2—
o2 (@ =2 Y ()P a—b)g* T
a>b>0
(—l)hhqh(h+1)/2
=2 Z (— l)hhq +bh Z ;
_qh
b>0.4>0 =0 q
which yields the result. O

9. Proof of Theorem 1.4

In this section we compute an asymptotic expansion for V' (n). We follow a circle
method argument used by Bringmann and Mahlburg [2011] (see also [Bringmann
and Mahlburg 2013]) to calculate an asymptotic for coefficients of mixed modular
forms. It is convenient to work with the two variable rank generating function
for concave compositions given in (1-7) and (1-8). We begin with the proof
of Theorem 1.6.
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Proof of Theorem 1.6. The identity for vy (x, ¢) follows from an application of (3.6)
of [Andrews 1981] and then (13.3) and (6.1) of [Fine 1988]. The second identity is
a corollary of Theorem 4 of [Choi 2011]. O

9A. Circle method and the proof of Theorem 1.4. By Cauchy’s theorem we have

qu(q)

Vin—1)=— 27” Srrs

’

where C is an arbitrary path inside the unit circle that loops around O in the
counterclockwise direction. We choose the circle with radius r = e~™/N? with
N :=|n'/2], and use the parametrization g = e 2/N2 2wt with 0 <t < 1. As
usual in the circle method, we define

/ . 1 1 . 1
ﬁh,k = m and ﬁh,k = m,
where hy/ki < h/k < hy/k, are adjacent Farey fractions in the Farey sequence of
order N := [n'/2]. So 1/(k+kj)<1/(N +1) for j =1,2. Next, decompose
the path of integration into paths along the Farey arcs 19,/1 PR 19,/1/ x> Where @
is defined by z = (k/N?) — ki ® with 19 hk S <d< ﬁ//,k and 0 <h <k < N with
(h,k) = 1. Hence,

_2nih 04 k 2mi . 2mi

CEDED DI BT el N S S L R
1<k<N ﬂ;tk
(h,k)=1

For computing the asymptotic nature of v(e 27/ K)(h+iz)y a5 7 5 0, the useful
form of Theorem 1.6 is

= n(7) 1
12 R ) - 8 s ; ) 9_2
quix.g) = 2sin(wu)d (u; v) (. ) —ig¥pulu, —u;7) ©-2)
where we have set ¢ = e27iT x = 27U apnd
o0 qnz
R(u,7) = _—
,; (@) (x~'q)n

is the Rank generating function; see [Ono 2008]. The idea is to compute the
asymptotics as z — 07 of the two variable version of the generating function and
then set # = 0. We are interested in exponential growth and will freely ignore terms
once they are determined to have smaller growth.

The proof of Proposition 3.5 of [Bringmann et al. 2012] gives the following
asymptotic evaluation for R(u, t). Let he {—1,0, 1} defined by h=h (mod 3).
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Moreover, if 0 < £ < k, then we write

aE k)= L (il (K_k_—l))’ g:{3k i3}k,

2 k/3 if3|k.
HEu, h,l,k:z)
Rz 3k B.k)iu k hi i
P k 3 - _ -
: ie3z&((3,k)’(3,k))H( e B. k)):Fk ;’g) ©-3)
where
h—h 2
Eo(h k) = (=) T1e™ zih Ee+1)2F 2L (hzhy et 1)+ 22 ' (9-4)

Proposition 9.1. For t = (1/k)(h +iz) with 0 < h < k with (h, k) = 1 set
g = @i/ +i2) ypg g = Qi R)(=h+C/2) With this notation, we have

2 .
3knu” sin(mu)

3 1
R(u,t)y=—i2y l(h,[—h]k, )(qq 1)242 2e smh(%)

. G0
I h_ 3nku? ~
+ E ay (Z)(Zmu) lsir/l(iu)e_lnﬁc_ﬁlk + E E HE(u,h, €, k;z)
kz =

with ag(z) <y |z| ~te=(237/(12k)) Re(1/2)

Additionally, we have

1

ql;lzn‘(r):qllzx—Z(h’[ ] k)ekn’u /z 77(1'/) =qi2 124(1+0(q1))eknu /Z'

(u:7) P ) h,[=hlie. k)9 (7))
Thus

q12n(x)
Zsin(nu)ﬁ(u;f)R(u’T)
1 4Amku®
— i3y [ kg ——— +0(e‘%Re(%))

2 sinh(%)ﬁ(ﬂ' /)

T

gt T g3 (1 + 0(q))

20 (1% 7)

—ix 2 (h, [=hlk, k

k
[N
x> > HEu.h.L.k:z) (9-5)
+ £=0

for some & > 0 independent of k£ as z — 0 and u — 0.
Turning to the other term we have the following proposition.
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Proposition 9.2. Let 7 = %(h +iz)and v = (1/k)(—hlk + (i/z)) then

1 _1 amku? ] j
M(u,—u;f)=i2X_3(h,[_h]k,k)Z 2e ﬂzu M(ﬂa_ﬂyt/)

VA z
k—1 .
UM o S gl (2L k=)
+ 2 ¢ 7 (;)e H z k ¢ 2 )’kz'

Proof. Theorem 2.5 implies that
N -3 _ i drku? (z_u Ciu, ,)
pu,—u;t) = x> (] h]k,k)\/;e Top(oo-Tr

. ) . .
—3(h,[—h]k,k)\@e4 b R(QZTL[;I')—%R(M;I). (9-6)

Propositions 2.3 and 2.4 yield

k—1
RQu;t)=— e
£=0

— 7L (htiz) (U= K5 —amin(- k) —ri-A5L)-zikh

(2uk+(£—k%1)iz)2

Vkz
2iu k—1Y\. i 2iu k—1Y\. i
x (R(T_k (5_ 2 ) kz)_H(7_k (-7 2 ) kz))'
The nonholomorphic R-functions above will exactly cancel with the other term of

(9-6); this can be shown as in [Bringmann and Mahlburg 2013; Bringmann et al.
2012]. Simplifying the factors and multiplying the H -functions gives the result. [J

(= 1)(4——>(h+1>ekz

We will evaluate the asymptotic nature of the two terms on the right hand side
of Proposition 9.2. First consider the terms with the H-function. We have

H(H () = o[ ) =o(viRe(1) )

o0

as u — 0 and z — 0. Next turning to the other term, we have

_Tnu
z

M(ﬂ _i_u--(,)= 1 + e Z(_l)nql 2 e
2z’ 2sinh(T)9(=Fit) (T 2Ry

The summation is O(uq;), since it is 0 when u = 0 by symmetry. Consequently,
using Lemma 5.2 we have 9 (—iu/z; ')~ = 0((z/u)q1_1/8), and we see that the
term with the summation is 0(417/8) = O(e~77/(4k2)) after setting u = 0. So it is
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of exponential decay and will not contribute to the asymptotic expansion of our
generating function. Hence

—iq® e, —u; 1)
= —i ) g g =Rt 2 (T ) 4 0 (1)

_ i3qE T ([l k=R A

2sinh(Z4) 3 (4 /) + (Z q1 )+ k(1) 9-7)

as u — 0 when z is chosen as in the circle method calculations.
Using (9-2), (9-5), and (9-7) we see that as u — 0 and z — 0 we have the
following asymptotic evaluation for v(g) with ¢ = e@7#/0)(h+iz),

qu(q) ~ —i x> (h.[=hlx. k)

-1

gize TR g2 (14 0(g1) o O
X 1 ! Z Z Hi(u,h,ﬁ,k;z).
2Vhkzo(%:7) T =0

It is evident that the largest growth comes from the case when k = 1 and thus the
largest contribution to (9-1) will come from the case k£ = 1. In this case we set

. B iu_1. 1
ZH (4,0,0,1:2) = H( + 5 3)+H(z 3’32)

00 —wx2/(3z) '
T /_oo ecoshwe_zmxu/z(e_z’fx/3 — e27x/3) gy

h(2
— 9 /00 o~ 7x2/(32) Sin(2nxu) sinh(<5*
0 z / cosh(mx)

27”1 * xe—nxz/(3z) Sinh(znTx)

= —2i dx + O(u?
Z Jwo cosh(mx) x+ 007
Therefore, with ¢ = e=2"Z we have
(@)~ lim — Fe Tz L
v(g) ~ lim —e 4 ¢
70 u—0 2/3z0 (1 25 T)

4uiu [ _=x? Sinh(znTx)
x| — / xe 3z ———dx
z Joxo cosh(mrx)
)
z) /‘00 _n;;z sinh(<5%) i
V3z —c0 cos(mx)
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Therefore, we have

xe 3z —— 3 " dxdd
-9, 3z —00 cosh(mrx)

1 [ sinh(Z”Tx) b

_% _ooxcosh(nx) _1

B4y ( +(12n—§)z) o0 2 ¢inh 2nx
Vin—1) ~ _/ e6 2 _mx? (%%%)

3o B2 1 +120-3)2) g gy

where z = (1/N?) —i ® and we symmetrize the integral by using

/‘ () 1 /‘ % / _19(/).1 / ﬁ

_% _% (/)/.1
and ~ represents the asymptotic expansion with respect to n. The final two sums
contribute a polynomially bounded error with respect to N. We handle the resulting
integral with respect to ® exactly as in Proposition 3.2 of [Bringmann and Mahlburg

2011] (see Lemma 4.2 of [Rhoades 2012] for an analogous calculation). This results
in

Z-

/‘ S e%«12x% +(Hn—fk)d¢

:—2n(112 21‘_)‘1‘ %( \/(12n——)(1—2x2))

= —2V6(12n—3)" zsmh( \/(12n— )(1—2x2))

2}

Therefore,

V1)~ 2—«/5 oo xslnh(27rx) ( \/(12 __)(1_2x2))

(12n _%)% —oo  cosh(mx)

h(2Zx
(1zif)% f %Smh(%\/mn—%)(l—zﬂ)) dx
_3 _%

242 f sinh(3ZX) -
Tt Y 20(5 Y 021- D01 -267)

(9-8)
where the second equality follows because

sinh(%\/(IZn——)(l—sz)) o) for |x| >

§|~
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We have the following lemma which gives the asymptotic expansion of the
remaining integral.

Lemma 9.3. Let o, for k > 1 be defined by

sinh(2ZX)
= 1—2x2— Hx —2—.
Z ax K = exp( x2—1+x%)x cosh(r)
As y — oo we have
1 :
/JE fem_zxzxsmh(z”%ﬂ Z @t 1
0 cosh(mrx) 22t t ’

From (9-8) and Lemma 9.3 we have

V6 Q=3 _
Vo~ o eo(T 1) 3 -

which gives Theorem 1.4.
Note we have

oo
2k _2m 2 23 3 4 4860m—16817°
D = Tt 14580

183708071 +25754377 —7824607°
5511240

x8+...

10. Proof of Theorem 1.5

In this section we compute an asymptotic for Vy(n). We follow the standard circle
method set-up as in Section 9. As above, we have

hk . .
Vam= 3 e—anhn/k/ vg (TR 27nz/ K g (10-1)

1<k<N 191/1 k
(h,k)=1

Lemma 10.1. Let ¢j 4 (n) := (—12/n)e@ih/12n> They if h = O then Chi(n) is
24k periodic and has mean value 0.

Applying this lemma with the proposition in Section 3 of [Lawrence and Zagier
1999], we have the following.

Lemma 10.2. Let g = e@7i/0G+i2) Tpep

ad 12 2 i ror
(5 )~ D pen o ()
r=0

n=0
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where

24k
Lior k)=~ Zchk(n)Br+1(24k)

where B, (x) denotes the r-th Bernoulli polynomial and cy, is defined in Lemma 10.1.
If h = 0 we have

L(=r):=L(=r.0,1) =— (Br+1( )= Bri1(3))-

r+1
By (2-2) we have
_mih kh _
) = LRG3 T k(1 + 0( ) if2 4k,
>~ o) 2],

so that we have the following results.

Proposition 10.3. Ler g = ¢ 7/ +i2) \ish 0 < h < k and (h, k) = 1. If2 | k,
then vg(q) + ) ,>0(— 1)tgn+Hn+2)/2 O(e_”/(6kz)) When 2 } k, we have
(n+1)(n+2)

va(q)+ Y _(=D)"q

n=0

~

N[ =

r!

. . o0
b (l+2z)_ 1—-k _n1h+nlkh (h) (—ﬂ)’zr
12k 'z 2 4k A E — Ty =
e i wp ke T 0L( 2r, k) 2k
r=

Using these asymptotics with (10-1) and the integral evaluation

Yk x 1 . J_3
[ oDz o = iy (TA) Lo Th  102)
4

(see [Lehner 1964] for details), we have

Va(n) ~ (=1)"*18(n)

iy &ik(”)ZL( 2r, k)( )—(24n+2) S 1(6km)

2tk<N
(h,k)=1

where
1—k wih (1 44 2mihn
.Szik(n)z Z iT(%)wh’ke 7T4 (k +k) N]én’
(h,k)=1
§(m) = 1 ifm=(m+1)(n+2)/2 for some n,
0 else.
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The main term comes from k = 1 and so we have

Va(n) ~ (=1)"*18(n)

n \/g %«/m e r(—=1)"

XZ( (n) P24 +2) 7

\/geg J24n+2 ® (_l)m
(4n+2)3 = 22mm) 24n42)3

~ (=1)"18(n) + y (m).

11. The ¢-series v1(q)

We have used a variety of different methods to establish the modular properties of
the g-series defined by v,(g) or

(_1)n+lnq(n2+n)/2

1—g"

n#0

On the other hand, we quoted the results of Bringmann [2008] for the modularity
of v1(q). But this g-series is susceptible to similar methods of the ones discussed
here. Analogous to Theorem 1.3 and Proposition 8.1 we have the following result
for the Appell sum appearing in the definition in v;(g) and the Appell-like sum
arising from the holomorphic projection operation.

Theorem 11.1. In the notation above,

n(n+1)/6

nhol(nn )= Z( l)n( — )nql_qn
n#0

)n 3n(n+1)/2 00

(-1 (4 Dn—19"
_Z (1— n)2 +Z(1_ n)2 nX: (1—g") )

Remark. It follows that

n(n+1)/6

n( =3 \1q
Zspt(}’l)q ) hol(n n = (q) Z(_ ) ( ) 1

_ql’l
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where spt(n) is the smallest parts function and is equal to the sum of the number
of smallest parts in the partitions of n. See [Andrews 2008] for more on the
spt-function.

Sketch of proof of Theorem 11.1. The first equality is given in Zagier’s Bourbaki
lecture [2009], while the second equality can be proved via “modular” methods
discussed above. It would be interesting to establish a g-series proof of the second
equality.

Finally, the last equality is derived in [Andrews 2008]. It may also be derived
from the recent results of the first author, Garvan, and Liang [Andrews et al. 2012].
Namely, letting z = 1 in [ibid., Theorem 2.4] gives

)n 1 n(n+1)/2 —lqn(3n+1)/2

(Dn—19" (-1 (="
Z _qn) Z _qn)z ’; (1 _qn)z

n>1

The result follows from the well known identity

( l)n—l n(n+1)/2 o0
Z (1 _ n)z (1 _ n)2 O
n#0 n=1
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