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Abramovich, Corti and Vistoli have studied modular compactifications of stacks
of curves equipped with abelian level structures arising as substacks of the stack
of twisted stable maps into the classifying stack of a finite group, provided the
order of the group is invertible on the base scheme. Recently Abramovich, Olsson
and Vistoli extended the notion of twisted stable maps to allow arbitrary base
schemes, where the target is a tame stack, not necessarily Deligne–Mumford.
We use this to extend the results of Abramovich, Corti and Vistoli to the case
of elliptic curves with level structures over arbitrary base schemes; we prove
that we recover the compactified Katz–Mazur regular models, with a natural
moduli interpretation in terms of level structures on Picard schemes of twisted
curves. Additionally, we study the interactions of the different such moduli stacks
contained in a stack of twisted stable maps in characteristics dividing the level.
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1. Introduction

Abramovich and Vistoli [2002] introduced the stack Kg,n(X) of n-pointed genus-g
twisted stable maps into X, where X is a proper tame Deligne–Mumford stack over
a base scheme S with a projective coarse moduli space X/S. They proved that
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Kg,n(X) is an algebraic stack, proper over the Kontsevich stack Mg,n(X) of stable
maps into X , giving an appropriate analogue of the usual Kontsevich stack of stable
maps when the target is allowed to be a tame stack instead of merely a scheme
or algebraic space. In particular, taking X = BG for a finite group G naturally
yields a modular compactification of the stack of n-pointed genus-g curves with
certain level structure, where the level structure on a curve corresponds to giving
a G-torsor over the curve; this is studied extensively in [Abramovich et al. 2003].
This of course differs from the approach in [Abramovich and Romagny 2012],
where the coverings of curves are assumed themselves to be stable curves; here the
coverings are generally not stable curves. In [Petersen 2012] it is shown that in good
characteristics we recover the usual compactification of Y(N ) in K1,1(B(Z/(N ))2).

However, the algebraic stack BG is not tame in characteristics dividing |G|,
so a priori the results of [Abramovich et al. 2003] only hold over Z[1/|G|]. The
notion of a tame stack is generalized in [Abramovich et al. 2008b] to algebraic
stacks that are not necessarily Deligne–Mumford, and in [Abramovich et al. 2011]
the stack Kg,n(X) of twisted stable maps into certain proper tame algebraic stacks
is introduced and shown to be a proper algebraic stack. This naturally leads us to
attempt replacing the finite group G with a group scheme G, agreeing with G over
Z[1/|G|] but such that BG is a tame algebraic stack over Spec(Z); see, for example,
[Abramovich 2012]. In particular, the group scheme µN is (noncanonically) isomor-
phic to Z/(N ) over Z[1/N , ζN ], and the classifying stack BµN (unlike B(Z/(N )))
is a tame stack over Spec(Z).

The purpose of this paper is to record how the results of [Abramovich et al. 2003]
extend to moduli of elliptic curves with level structure over arbitrary base schemes,
using the group scheme µN in place of Z/(N ). For example, the moduli stack
Y1(N ) arises as an open substack in the rigidification K1,1(BµN ) (defined below) of
K1,1(BµN ). Explicitly, given an elliptic curve E/S and a [01(N )]-structure P on E ,
via the canonical group scheme isomorphism E ∼= Pic0

E/S over S, we may view P as
a “point of exact order N” on Pic0

E/S , determining a group scheme homomorphism
φ : Z/(N )→ Pic0

E/S . The stack K1,1(BµN ) will be seen to classify certain pairs
(C, φ) where C/S is a 1-marked genus-1 twisted stable curve and φ : Z/(N )→
Pic0

C/S is a group scheme homomorphism, so this construction defines the immersion
Y1(N )→ K1,1(BµN ). We will define the notion of a [01(N )]-structure on a 1-
marked genus-1 twisted stable curve, and write Xtw

1 (N ) for the stack classifying
such structures. Our first main result is:

Theorem 1.1. Let S be a scheme and let Xtw
1 (N ) be the stack over S classifying

[01(N )]-structures on 1-marked genus-1 twisted stable curves with nonstacky mark-
ing. Then Xtw

1 (N ) is a closed substack of K1,1(BµN ), which contains Y1(N ) as an
open dense substack.
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This will be proved as Theorem 4.6. The main point is to verify the valuative
criterion for properness. We accomplish this by using properness of X1(N ) and the
eN -pairing on generalized elliptic curves. To complete a family of twisted curves
with level structure when the generic fiber is smooth, we first complete it to a family
of generalized elliptic curves with level structure. Then we use a quotient construc-
tion involving the eN -pairing to produce a completed family of twisted curves with
level structure, modifying our strategy in characteristics dividing N by exploiting
the relationship between cyclotomic torsors and line bundles (Lemma 3.19). The
same techniques immediately give a corresponding result for Y(N ), which is an
open substack of K1,1(Bµ

2
N ); its closure Xtw(N ) classifies [0(N )]-structures on

1-marked genus-1 twisted stable curves, as we show in Theorem 5.3.
Unsurprisingly, it turns out that these closures are isomorphic as algebraic stacks

to the stacks X1(N ) and X(N ) classifying [01(N )]-structures and [0(N )]-structures
on generalized elliptic curves, as studied in [Conrad 2007]:

Theorem 1.2. Over the base S = Spec(Z), there is a canonical isomorphism of
algebraic stacks Xtw

1 (N ) ∼= X1(N ) extending the identity map on Y1(N ), and a
canonical isomorphism of algebraic stacks Xtw(N )∼= X(N ) extending the identity
map on Y(N ).

We will prove this as Theorem 6.1. We first verify that Xtw
1 (N ) and Xtw(N )

are finite over M1,1. Some commutative algebra then tells us they are Cohen–
Macaulay over Spec(Z), at which point we may proceed as in [Conrad 2007,
§4.1] to identify these stacks with the normalizations of M1,1 in X1(N )|Z[1/N ] and
X(N )|Z[1/N ]. These isomorphisms have a natural moduli interpretation, as discussed
in Corollaries 6.9 and 6.10.

The techniques of this paper also yield new moduli interpretations of various
moduli stacks of elliptic curves that are not (apparently) contained in a stack of
twisted stable maps. These results may be known to experts, but are not recorded
in the literature; for completeness we include a careful proof of the modular inter-
pretation of the closure of Y1(N ) in K1,1(BµN ). We also study how the different
moduli stacks of elliptic curves contained in K1,1(BµN ) and K1,1(Bµ

2
N ) interact in

characteristics dividing N ; this easily generalizes an example in [Abramovich et al.
2011] but otherwise does not appear in the literature.

In the Appendix we recall an example of [Chai and Norman 1990] which implies
that the techniques of this paper do not generalize nicely to curves of higher genus:
using the Katz–Mazur notion of a “full set of sections” we can define a stack over
Spec(Z) classifying genus-g curves with full level-N structures on their Jacobians,
but this stack is not even flat over Spec(Z). The corresponding stack over Z[1/N ]
is well-behaved, and arises as an open substack of Kg,0(Bµ

2g
N ), but no moduli

interpretation for its closure in characteristics dividing N appears to be known.
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2. Review of moduli of generalized elliptic curves

Drinfeld level structures on generalized elliptic curves. For the convenience of
the reader, we recall the definitions and results from the theory of generalized
elliptic curves that we require in this paper.

Definition 2.1. A Deligne–Rapoport (DR) semistable curve of genus 1 over a
scheme S is a proper, flat, separated, finitely presented morphism of schemes
f : C → S, all of whose geometric fibers are nonempty, connected semistable
curves with trivial dualizing sheaves.

By [Deligne and Rapoport 1973, §II.1], an equivalent definition for f : C→ S
to be a DR semistable curve of genus 1 is that f is a proper flat morphism of finite
presentation and relative dimension 1, such that every geometric fiber is either a
smooth connected genus-1 curve or a Néron polygon. Recall [loc. cit.] that over a
base scheme S, the standard Néron N-gon CN/S (for any N ≥ 1) is obtained from
C̃N := P1

S ×Z/(N ) by “gluing” the section 0 in the i-th copy of P1
S to the section

∞ in the (i + 1)-th copy of P1
S:

Standard Néron N-gon Standard Néron 1-gon

The natural multiplication action of Gm on P1
S , together with the action of Z/(N )

on itself via the group law, determines an action of the group scheme Gm ×Z/(N )
on P1

S ×Z/(N ), descending uniquely to an action of Gm ×Z/(N ) = C sm
N on CN

[Deligne and Rapoport 1973, II.1.9].

Definition 2.2. A generalized elliptic curve over a scheme S is a DR semistable
curve E/S of genus 1, equipped with a morphism E sm

× E → E and a section
0E ∈ E sm(S) such that the restriction E sm

×E sm
→ E sm makes E sm a commutative

group scheme over S with identity 0E , and such that on any singular geometric fiber
Es̄ , the translation action by a rational point on E sm

s̄ acts by a rotation on the graph
0(Es̄) [Deligne and Rapoport 1973, I.3.5] of the irreducible components of Es̄ .

By [Deligne and Rapoport 1973, II.1.15], over an algebraically closed field a
generalized elliptic curve is either a smooth elliptic curve or a Néron N-gon (for
some N ≥ 1) with the action described above. In fact this result says more: for any
generalized elliptic curve E/S, there is a locally finite family (SN )N≥1 of closed
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subschemes of S such that
⋃

SN is the nonsmooth locus in S of E → S, and
E ×S SN is fppf locally on SN isomorphic to the standard Néron N-gon over SN .

Recall that for an S-scheme X , a relative effective Cartier divisor in X over S is
an effective Cartier divisor in X which is flat over S.

Definition 2.3. Let E/S be a generalized elliptic curve. A [01(N )]-structure on E
is a section P ∈ E sm(S) such that:

• N · P = 0E .

• The relative effective Cartier divisor

D :=
∑

a∈Z/(N )

[a · P]

in E sm is a subgroup scheme.

• For any geometric point p̄→ S, D p̄ meets every irreducible component of E p̄.

We write X1(N ) for the stack over Spec(Z) associating to a scheme S the groupoid of
pairs (E, P), where E/S is a generalized elliptic curve and P is a [01(N )]-structure
on E . We write Y1(N ) for the substack classifying such pairs, where E/S is a
smooth elliptic curve.

Definition 2.4. Let E/S be a generalized elliptic curve. A [0(N )]-structure on E
is an ordered pair (P, Q) of sections in E sm

[N ](S) such that:

• The relative effective Cartier divisor

D :=
∑

a,b∈Z/(N )

[a · P + b · Q]

in E sm is an N-torsion subgroup scheme, hence D = E sm
[N ].

• For any geometric point p̄→ S, D p̄ meets every irreducible component of E p̄.

We write X(N ) for the stack over Spec(Z) associating to a scheme S the groupoid
of tuples (E, (P, Q)), where E/S is a generalized elliptic curve and (P, Q) is a
[0(N )]-structure on E . We write Y(N ) for the substack classifying such tuples,
where E/S is a smooth elliptic curve.

Definition 2.5. Let E/S be a generalized elliptic curve, and let G be a 2-generated
finite abelian group, say G ∼= Z/(n1)×Z/(n2), with n2 |n1. A G-structure on E is
a homomorphism φ : G→ E sm of group schemes over S such that:

• The relative effective Cartier divisor

D :=
∑
a∈G

[φ(a)]

in E sm is an n1-torsion subgroup scheme.
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• For every geometric point p̄ → S, D p̄ meets every irreducible component
of E p̄.

Theorem 2.6 [Conrad 2007, 3.1.7, 3.2.7, 3.3.1, 4.1.1]. X1(N ) and X(N ) are
regular Deligne–Mumford stacks, proper and flat over Spec(Z) of pure relative
dimension 1.

In particular, it follows (see [Conrad 2007, 4.1.5]) that X1(N ) (resp. X(N ))
is canonically identified with the normalization of M1,1 in the normal Deligne–
Mumford stack X1(N )|Z[1/N ] (resp. X(N )|Z[1/N ]), as in [Deligne and Rapoport
1973, §VII.2; Katz and Mazur 1985, §8.6].

Reductions mod p of the moduli stacks. It will be useful for us to have a descrip-
tion of the “reduction mod p” of the stacks X1(N ) and X(N ) for primes p dividing
N . These reductions are described using Katz and Mazur’s “crossings theorem”,
which we now recall.

We work over a fixed field k. Let Y/k be a smooth curve, and let X→ Y be finite
and flat. Suppose there is a nonempty finite set of k-rational points of Y (which we
will call the supersingular points of Y ) such that for each supersingular point y0,
X y0 is a single k-rational point, and ÔX,x0

∼= k[[x, y]]/( f ) for some f (depending
on y0).

Also suppose we have a finite collection of closed immersions {Zi ↪→ X}ni=1,
where each Zi is finite and flat over Y , with Z red

i a smooth curve over k, such that
the morphism tZi → X is an isomorphism over the nonsupersingular locus of Y ,
and such that for each i and each supersingular point y0 ∈ Y , (Zi )y0 is a single
k-rational point.

Theorem 2.7 (crossings theorem, [Katz and Mazur 1985, 13.1.3]). Under the above
assumptions, let y0 ∈ Y be a supersingular point and x0 = X y0 . Then

ÔX,x0
∼= k[[x, y]]

/ m∏
i=1

f ei
i ,

where each fi is irreducible in k[[x, y]], each fi and f j (i 6= j) are distinct in
k[[x, y]] modulo multiplication by units, and for zi,0 := (Zi )y0 we have

ÔZi ,zi,0
∼= k[[x, y]]/( f ei

i ).

If Y is (geometrically) connected then each Zi is (geometrically) connected, in
which case {Zi }

n
i=1 is the set of irreducible components of X.

Definition 2.8. Under the above assumptions, we say that X is the disjoint union
with crossings at the supersingular points of the closed subschemes {Zi }

n
i=1.

If X→Y is a finite (hence representable) flat morphism of algebraic stacks over
k, with Y Deligne–Mumford (hence X also Deligne–Mumford), and {Zi ↪→ X}ni=1
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is a finite collection of closed immersions of algebraic stacks, such that for some
étale surjection Y ′→ Y with Y ′ a scheme, the algebraic spaces Y ′, X×Y Y ′, and
{Zi ×Y Y ′} are schemes satisfying the assumptions of the crossings theorem, we
say that X is the disjoint union with crossings at the supersingular points of the
closed substacks {Zi }.

Remark 2.9. We will solely be applying the above theorem in the case Y=M1,1,
with X an algebraic stack known to be quasifinite and proper over M1,1. M1,1 is a
Deligne–Mumford stack with separated diagonal, so once we know that X→M1,1

is representable, it follows from [Knutson 1971, II.6.16] that the algebraic spaces
X×M1,1

Y ′ and {Zi ×M1,1
Y ′} are schemes.

Definition 2.10. Let S ∈ Sch /Fp. Let E/S be an elliptic curve, with relative
Frobenius F : E→ E (p). Let G ⊂ E be a finite, locally free S-subgroup scheme
of rank pn , n ≥ 1. For integers a, b ≥ 0 with a + b = n, we say that G is an
(a, b)-subgroup if ker(Fa)⊂ G, and if in the resulting factorization of E→ E/G
as

E
Fa

→ E (p
a) π
→ E/G

we have ker(π̂)=ker(Fb
E/G) (where π̂ denotes the dual isogeny and FE/G : E/G→

(E/G)(p) is the relative Frobenius). In particular note that E (p
a) ∼= (E/G)(p

b).
We say that G is an (a, b)-cyclic subgroup if it is an (a, b)-subgroup, and either

a = 0, b = 0, or there exists a closed subscheme Z ⊂ S defined by a sheaf of
ideals I⊂ OS , with Ip−1

= 0, such that the isomorphism E (p
a)
|Z ∼= (E/G)(p

b)
|Z

is induced by an isomorphism E (p
a−1)
|Z ∼= (E/G)(p

b−1)
|Z .

Finally, a [01(pn)]-(a, b)-cyclic structure on E is a [01(pn)]-structure P ∈
E[pn
](S) such that the S-subgroup scheme

D :=
∑

m∈Z/(pn)

[m · P]

in E is an (a, b)-cyclic subgroup of E . We write Y1(pn)
(a,b)
S for the substack of

Y1(pn)S associating to a scheme T/S the groupoid of pairs (E, P), where E/T is
an elliptic curve and P is a [01(pn)]-(a, b)-cyclic structure on E .

If E is an ordinary elliptic curve over a scheme S of characteristic p, it is
considerably easier to describe what is meant by a [01(pn)]-(a, b)-cyclic structure
on E . Namely, it is just a [01(pn)]-structure P on E such that the relative effective
Cartier divisor

Db :=

pb∑
m=1

[m · P]

is a subgroup scheme of E which is étale over S. Note that for an arbitrary
[01(pn)]-structure P on E , Db will not generally be a subgroup scheme of E if
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b < n, and even if it is a subgroup scheme it might not be étale over S. Being a
[01(pn)]-(a, b)-cyclic structure on E (for E ordinary) means that for any geometric
fiber Es̄ (so Es̄[pn

] ∼=µpn×Z/(pn) over k(s̄)) Ps̄ has exact order pb as an element
of the group Es̄[pn

](k(s̄))∼= Z/(pn).
The following elementary result will be required when we study the interactions

in characteristic p of different moduli stacks of elliptic curves contained in a moduli
stack of twisted stable maps. We include a proof for lack of a suitable reference.

Lemma 2.11. Let E/S/Fp be an elliptic curve, and let P be a [01(pn)]-(a, b)-cyclic
structure on E. Then P is a [01(pn+1)]-structure on E and is [01(pn+1)]-(a+1, b)-
cyclic.

Proof. Consider the relative effective Cartier divisor

G :=
∑

m∈Z/(pn)

[m · P]

in E . This is an S-subgroup scheme containing ker(Fa), and in the resulting
factorization of the quotient map E→ E/G as

E
Fa

→ E (p
a) π
→ E/G

we have ker(π̂)= ker(Fb
E/G). Consider also the relative effective Cartier divisor

G ′ :=
∑

m∈Z/(pn+1)

[m · P]

in E . G is a subgroup of G ′, and the image of G ′ in E/G is the relative effective
Cartier divisor ∑

m∈Z/(p)

[m · 0E/G].

This is simply the kernel of FE/G : E/G→ (E/G)(p), so we may identify E/G ′

with (E/G)(p) and the quotient map E/G → E/G ′ with the relative Frobenius
FE/G : E/G→ (E/G)(p). In particular, the quotient map E→ E/G ′ is a cyclic
pn+1-isogeny of elliptic curves with kernel generated by P , so we may already
conclude that P is a [01(pn+1)]-structure on E .

Now, since G ′ = p ·G as Cartier divisors, if ker(Fa)⊂ G then ker(Fa+1)⊂ G ′.
Factor the quotient map E→ E/G ′ = (E/G)(p) as

E
Fa+1

→ E (p
a+1) π

′

→ (E/G)(p).
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We have a diagram

E Fa
//

Fa+1 $$

E (p
a) π //

F
��

E/G
FE/G // (E/G)(p),

E (p
a+1)

π ′

44

where the composite of the top arrows E→ (E/G)(p) is the natural quotient map
E → E/G ′. The outer arrows and the left-hand triangle commute, hence the
right-hand triangle commutes as well. Now consider the following diagram:

E (p
a)

F
��

π // E/G

��

π̂ // E (p
a)

F
��

E (p
a+1)

π ′
// (E/G)(p)

π̂ ′
// E (p

a+1).

The outer rectangle commutes since the horizontal composites are the isogenies
[deg(π)] and [deg(π ′)] (and deg(π)= deg(π ′)), and we have shown that the left-
hand square commutes, so the right-hand square commutes as well. Since ker(π̂)=
ker(Fb

E/G), we conclude that ker(π̂ ′)= ker(Fb
(E/G)(p)).

Finally, suppose a, b ≥ 1. Since E (p
a) ∼= (E/G)(p

b) we also have

E (p
a+1) ∼= (E/G)(p

b+1)
= ((E/G)(p))(p

b),

and this is already induced by the isomorphism

E (p
a) ∼= (E/G)(p

b)
= ((E/G)(p))(p

b−1).

Therefore P is a [01(pn+1)]-(a+ 1, b)-cyclic structure on E . �

Remark 2.12. The reason the above argument fails when p is invertible on the
base scheme S is that, preserving the notation of the above proof, the image of
the relative Cartier divisor G ′ in E/G is not a subgroup of E/G unless S is an
Fp-scheme. Indeed, the image of G ′ in E/G is the relative effective Cartier divisor
p · [0E/G], which is finite flat of rank p over S. If p is invertible on S, any
finite flat commutative group scheme of rank p over S is étale (see [Shatz 1986,
Corollary 4.3]), but p · [0E/G] is obviously not étale.

It is straightforward to extend the definition of a [01(pn)]-(a, b)-cyclic structure,
and the result of the above lemma, to the case of generalized elliptic curves. Let
E/S/Fp be a generalized elliptic curve; let S1 ⊂ S be the open locus where the
morphism E→ S is smooth, and let S2 ⊂ S be the complement of the closed locus
in S where the geometric fibers are supersingular elliptic curves. We say that a
[01(pn)]-structure P on E/S is a [01(pn)]-(a, b)-cyclic structure if:
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• P|S1 is a [01(pn)]-(a, b)-cyclic structure on the elliptic curve ES1/S1 and

• the relative effective Cartier divisor

Db :=

pb∑
m=1

[m · P|S2]

in E sm
|S2 is a subgroup scheme of E sm

|S2 which is étale over S2.

We write X1(pn)
(a,b)
S for the substack of X1(pn)S associating to a scheme T/S the

groupoid of pairs (E, P), where E/T is a generalized elliptic curve and P is a
[01(pn)]-(a, b)-cyclic structure on E .

Theorem 2.13 [Katz and Mazur 1985, 13.5.4]. Let k be a perfect field of char-
acteristic p. Y1(pn)k (resp. X1(pn)k) is the disjoint union, with crossings at the
supersingular points, of the n+ 1 substacks Y1(pn)

(a,n−a)
k (resp. X1(pn)

(a,n−a)
k ) for

0≤ a ≤ n.

It can be helpful to visualize X1(pn)k as follows:

X1(pn)
(0,n)
k

X1(pn)
(1,n−1)
k

...

X1(pn)
(n,0)
k

X1(pn) over a perfect field k of characteristic p

Definition 2.14. Let S ∈ Sch /Fp, and let H ≤ (Z/(pn))2 such that H ∼= Z/(pn)

(hence also (Z/(pn))2/H ∼= Z/(pn)). Let E/S be a generalized elliptic curve.
Let (P, Q) be a [0(pn)]-structure on E , corresponding to a group homomorphism
φ : (Z/(pn))2→ E[pn

], (1, 0) 7→ P , (0, 1) 7→Q. We say that (P, Q) has component
label H if

• φ(H)⊆ ker(Fn), where F : E→ E (p) is the relative Frobenius, and

• the resulting group scheme homomorphism Z/(pn)∼= (Z/(pn))2/H→ E (p
n)
=

E/ ker(Fn) is a [01(pn)]-structure on E (p
n). (This is independent of the choice

of isomorphism (Z/(pn))2/H ∼= Z/(pn), although the [01(pn)]-structure ob-
tained depends on this choice.)

We define Y(pn)H
S (resp. X(pn)H

S ) to be the substack of Y(pn)S (resp. X(pn)S)
associating to a scheme T/S the groupoid of tuples (E, (P, Q)), where E/T is an
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elliptic curve (resp. generalized elliptic curve) and (P, Q) is a [0(pn)]-structure
on E of component label H .

Theorem 2.15 [Katz and Mazur 1985, 13.7.6]. Let k be a perfect field of char-
acteristic p. Y(pn)k (resp. X(pn)k) is the disjoint union, with crossings at the
supersingular points, of the substacks Y(pn)H

k (resp. X(pn)H
k ) for H ≤ (Z/(pn))2

with H ∼= Z/(pn).

The proof of the above theorem immediately generalizes to a slightly more
general setting which we will find useful when studying compactified stacks of
[0(N )]-structures below. Let K ≤ (Z/(pn))2, and write G K = (Z/(pn))2/K . Then
there exist integers m ≥ l ≥ 0 with G K ∼= Z/(pm)×Z/(pl). Suppose that l ≥ 1, so
G K ∼= Z/(pm)×Z/(pl) with m ≥ l ≥ 1. Given a G K -structure φ on an ordinary
elliptic curve E/T/Fp (in the sense of Definition 2.5), étale locally on T we can
consider the composite

G K = Z/(pm)×Z/(pl)
φ
→ E[pn

] ∼= Z/(pn)×µpn
π1
→ Z/(pn).

Since φ is a G K -structure, the kernel and image of this composite are necessarily
cyclic. The same argument used in [Katz and Mazur 1985, 13.7.6] to prove the
above theorem shows that in characteristic p, YK breaks up into a union of substacks
indexed in this way by the possible kernels of group homomorphisms G K→Z/(pn),
subject to the condition on the image just described. So we can describe YK as a
union of closed substacks indexed by the set

L K := {H ≤ G K | H and G/H are both cyclic}.

Since G K ∼= Z/(pm)×Z/(pl) with m ≥ l ≥ 1, we have that H ∈ L K if and only if
H ∼= Z/(pm) or H ∼= Z/(pl).

The rigorous definition, accounting for elliptic curves that might not be ordinary
and for the case where G K is cyclic, is as follows:

Definition 2.16. Let K ≤(Z/(N ))2 with corresponding quotient G K =(Z/(N ))2/K .
We write YK (resp. XK ) for the algebraic stack over Spec(Z) associating to a scheme
S the groupoid of pairs (E, φ), where E/S is an elliptic curve (resp. generalized
elliptic curve) and φ is a G K -structure on E .

If S is an Fp-scheme, N = pn and G K ∼= Z/(pm)×Z/(pl) with m ≥ l ≥ 1, then
for any H ∈ L K , we define YH

K ,S ⊂ YK ,S (resp. XH
K ,S ⊂ XK ,S) to be the substack

associating to a scheme T/S the groupoid of pairs (E, φ), where E/T is an elliptic
curve (resp. generalized elliptic curve) and φ : G K → E[pm

] is a G K -structure
such that:
• φ(H)⊂ker(Fm), where Fm

:E→E (p
m) is the m-fold relative Frobenius on E .

• The resulting group scheme homomorphism G K /H→ E/ ker(Fm)∼= E (p
m)

is a G K /H-structure on E (p
m) in the sense of [Katz and Mazur 1985, §1.5].
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In this case we say that the G K -structure φ has component label H .
If G K ∼= Z/(pm) (that is, l = 0), the stack YK (resp. XK ) is isomorphic to

Y1(pm) (resp. X1(pm)), and for H ∼=Z/(pa)∈ L K and S ∈ Sch /Fp we define YH
K ,S

(resp. XH
K ,S) to be the substack Y1(pm)

(a,m−a)
S ⊂ Y1(pm)S (resp. X1(pm)(a,m−a)

S ⊂

X1(pm)S), as in Definition 2.10. We still say YH
K ,S and XH

K ,S classify G K -structures
of component label H .

The result is:

Theorem 2.17. Let k be a perfect field of characteristic p. YK ,k (resp. XK ,k) is the
disjoint union, with crossings at the supersingular points, of the closed substacks
YH

K ,k (resp. XH
K ,k) for H ∈ L K .

We also note that an analogue of Lemma 2.11 holds in this case, which we record
for future use. It is clear that if K ′ ≤ K ≤ (Z/(pn))2, giving a canonical quotient
map π :G K ′→G K , and if φ :G K→ E sm is a G K -structure on a generalized elliptic
curve E/S/Fp, then a necessary condition for the composite φ ◦π : G K ′→ E sm to
be a G K ′-structure is that ker(π) is cyclic. In fact, unwinding the definitions we
immediately deduce:

Lemma 2.18. Let E/S/Fp be a generalized elliptic curve with no supersingular
fibers. Let K ′ ≤ K ≤ (Z/(pn))2 such that the canonical quotient π : G K ′ → G K

has cyclic kernel. Let H ∈ L K and suppose that φ :G K → E is a G K -structure with
component label H. Then φ◦π is a G K ′ structure on E if and only if π−1(H)⊆G K ′

is cyclic, in which case φ ◦π has component label π−1(H) ∈ L K ′ .

3. Generalities/review of twisted stable maps

Twisted stable maps. We will be studying moduli stacks of elliptic curves embed-
ded in moduli stacks of twisted stable maps to tame stacks. We now recall the
relevant definitions and results relating to twisted stable maps.

Definition 3.1 [Abramovich et al. 2008b, 2.2]. Let G be a group scheme over
a scheme S. Write QCohG(S) for the category of G-equivariant quasicoherent
sheaves on S; writing BG for the classifying stack of G over S, this is equivalent
to QCoh(BG) [Abramovich et al. 2008b, §2.1]. We say that G is linearly reductive
if the functor QCohG(S)→ QCoh(S), F 7→ FG is exact, or equivalently if the
pushforward QCoh(BG)→ QCoh(S) is exact.

Linearly reductive group schemes are classified in [Abramovich et al. 2008b,
§2.3]. The examples in which we are most interested for this paper are the finite
flat commutative linearly reductive group schemes µN and µ2

N over S.

Definition 3.2 [Abramovich et al. 2008b, 3.1]. Let X be a locally finitely presented
algebraic stack over a scheme S, with finite inertia. By [Keel and Mori 1997], X
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has a coarse moduli space ρ : X→ X , with ρ proper. We say that X/S is tame if
ρ∗ : QCoh(X)→ QCoh(X) is exact.

As observed in [Abramovich et al. 2008b, §3], for any finite flat group scheme
G over a scheme S, the classifying stack BG over S is tame if and only if G is
linearly reductive. So in particular the classifying stacks BµN and Bµ2

N are always
tame.

Definition 3.3 [Abramovich et al. 2011, §2]. An n-marked twisted curve over a
scheme S is a proper tame stack C over S, with connected dimension-1 geometric
fibers, and coarse space f : C→ S a nodal curve over S; together with n closed
substacks

{6i ⊂ C}ni=1

which are fppf gerbes over S mapping to n markings {pi ∈ C sm(S)}, such that:

• the preimage in C of the complement C ′ ⊂ C of the markings and singular
locus of C/S maps isomorphically onto C ′,

• if p̄→C is a geometric point mapping to the image in C of a marking 6i ⊂ C,
then

Spec(OC, p̄)×C C' [Dsh/µr ]

for some r ≥ 1, where Dsh is the strict Henselization at (mS, f ( p̄), z) of

D = Spec(OS, f ( p̄)[z])

and ζ ∈ µr acts by z 7→ ζ · z, and

• if p̄→ C is a geometric point mapping to a node of C , then

Spec(OC, p̄)×C C' [Dsh/µr ]

for some r ≥ 1, where Dsh is the strict Henselization at (mS, f ( p̄), x, y) of

D = Spec(OS, f ( p̄)[x, y]/(xy− t))

for some t ∈mS, f ( p̄), and ζ ∈ µr acts by x 7→ ζ · x and y 7→ ζ−1
· y.

We say a twisted curve C/S has genus g if the geometric fibers of its coarse space
C/S have arithmetic genus g, and we say an n-marked genus-g twisted curve C/S
is stable if the genus-g curve C/S with the markings {pi } is an n-marked genus-g
stable curve over S.

Example 3.4. Over any base scheme S, consider a Néron 1-gon C/S as in Section 2.
We have C sm ∼= Gm , and C admits the structure of a generalized elliptic curve with
an action C sm

× C → C extending the group scheme structure of Gm . For any
positive integer N , the inclusion µN ⊂ Gm determines an action of µN on C , and
the stack quotient C := [C/µN ] is a twisted stable curve over S, with coarse space
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f :C ′→ S again a Néron 1-gon. If p̄→C ′ is a geometric point mapping to a node
of C ′, then

Spec(OC ′, p̄)×C ′ C' [Dsh/µN ],

where Dsh denotes the strict Henselization of

D := Spec(OS, f ( p̄)[x, y]/(xy))

at the point (mS, f ( p̄), x, y) and ζ ∈ µN acts by x 7→ ζ · x and y 7→ ζ−1
· y. We will

refer to this twisted curve as the standard µN -stacky Néron 1-gon over S.

µN

Standard µN -stacky Néron 1-gon

Definition 3.5 [Abramovich et al. 2011, §4]. Let X be a finitely presented algebraic
stack, proper over a scheme S and with finite inertia. A twisted stable map to X

from an n-marked twisted curve (C/S, {6i }) over S with coarse space (C/S, {pi })

is a morphism C→ X of stacks over S such that.

• C→ X is a representable morphism.

• The induced map C→ X is a stable map from (C, {pi }) to X .

Over any base scheme S, we write Kg,n(X) for the stack over S associating to a
scheme T/S the groupoid of pairs (C, α), where C/T is an n-marked twisted curve
whose coarse space C/T is a genus-g nodal curve, and α :C→X×S T is a twisted
stable map.

Proposition 3.6 [Abramovich et al. 2011, 4.2]. For X as above, Kg,n(X) is a locally
finitely presented algebraic stack over S.

There is a natural morphism of stacks Kg,n(X)→Mg,n(X) (where Mg,n(X) is the
usual Kontsevich stack of stable maps into X ) defined by passing to coarse spaces.
In particular, note that since a twisted stable map is required to be representable, if
X is representable then this map is an equality.

Theorem 3.7 [Abramovich et al. 2011, 4.3]. Let X be as above, and also assume
that X is tame. Then Kg,n(X) is proper and quasifinite over Mg,n(X).

A word of caution: the twisted stable maps of [Abramovich et al. 2011] are a gen-
eralization of what are referred to as balanced twisted stable maps in [Abramovich
and Vistoli 2002; Abramovich et al. 2003]; we are only interested in balanced maps
for this paper, so hopefully our notation Kg,n(X) will not cause any confusion.
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Let (C/S, {6i }) be an n-marked twisted curve with coarse space C/S. If
p̄ → C is a geometric point mapping to the image in C of the gerbe 6i , such
that Spec(OC, p̄)×C C' [Dsh/µr ] as in Definition 3.3, then the integer r is uniquely
determined by p̄, and we call r the local index of C at p̄. In fact one verifies
immediately (see [Abramovich and Vistoli 2002, 8.5.1]) that the local index only
depends on i and on the image of p̄ in S, and that the function εi : S→Z>0 sending
s = f ( p̄) ∈ S to the local index r is locally constant.

Notation 3.8. Let e = (e1, . . . , en) ∈ Zn
>0. We say an n-marked twisted curve

(C/S, {6i }) has global index e if εi is constant of value ei for all i = 1, . . . , n.
If X/S is a finitely presented algebraic stack, proper over S and with finite inertia,

we write Ke
g,n(X) for the substack of Kg,n(X) associating to a scheme T/S the

groupoid of pairs (C, α), where C/T is an n-marked genus-g twisted curve of
global index e, and α : C→ X×S T is a twisted stable map. Since the functions
εi : S → Z>0 are locally constant, we see that Ke

g,n(X) is an open and closed
substack of Kg,n(X), and

Kg,n(X)=
∐

e∈Zn
>0

Ke
g,n(X).

In this paper we will generally only be interested in the case e = (1, . . . , 1), in
which case Ke

g,n(X) classifies twisted stable maps to X from twisted curves whose
markings are honest sections. We will write K′g,n(X) for K(1,...,1)

g,n (X).

Notation 3.9. We write K◦g,n(X) for the open substack of K′g,n(X) associating to
T/S the groupoid of pairs (C, α), where C/T is a smooth n-marked genus-g curve
(with no stacky structure) and α : C→ X×S T is a twisted stable map.

Twisted covers and Picard schemes of twisted curves. If G/S is a linearly reduc-
tive finite flat group scheme, then we have already observed that BG is tame. So
in this case we can consider the algebraic stack Kg,n(BG), which is proper and
quasifinite over the Deligne–Mumford stack Mg,n by Theorem 3.7, since the coarse
space of BG is S.

Theorem 3.10 [Abramovich et al. 2011, 5.1]. Let G/S be a linearly reductive finite
flat group scheme. Then Kg,n(BG) is flat over S, with local complete intersection
fibers.

Definition 3.11. Since a map C→ BG is equivalent to a G-torsor P → C, it is
often convenient to view Kg,n(BG) as classifying such torsors. A G-torsor P→C

is a twisted G-cover of C if it arises in this way.

Note that since the coarse space of BG is S, the condition that the map C→BG is
stable just says that C/S is stable in the usual sense. So for G as above, Kg,n(BG)
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can and will be viewed as the stack classifying twisted G-covers of n-marked
genus-g twisted stable curves.

Still writing G for a finite flat linearly reductive group scheme over S, suppose
in addition that G is commutative. Then every object of Kg,n(BG) canonically
contains G in the center of its automorphism group scheme (determining a unique
subgroup stack H in the center of the inertia stack of Kg,n(BG) such that for
any object ξ ∈ Kg,n(BG)(T ) the pullback of H to T is G). We can therefore
apply the rigidification procedure described in [Abramovich et al. 2003, §5.1] and
generalized in [Abramovich et al. 2008b, Appendix A], thereby “removing” G from
the automorphism group of each object:

Definition 3.12. Kg,n(BG) is the rigidification of Kg,n(BG) with respect to the
copy of G naturally contained in the center of its inertia stack. We refer to the
objects of Kg,n(BG) as rigidified twisted stable maps into BG, or rigidified twisted
G-covers of n-marked genus-g twisted stable curves. We write K◦g,n(BG) for
the open substack corresponding to smooth curves and K

′

g,n(BG) for the open
and closed substack corresponding to twisted stable curves whose markings are
representable.

In [Abramovich et al. 2008a, §C.2] it is shown that the rigidification of an
algebraic stack with respect to a group scheme admits a natural moduli interpretation.
In this paper we are only interested in the case where G is diagonalizable, in which
case Kg,n(BG) can be given a more concrete moduli interpretation which we will
now describe.

Given a twisted curve C over a scheme S, let PicC/S denote the stack associating
to T/S the groupoid of line bundles on C×S T .

Proposition 3.13 [Abramovich et al. 2011, 2.7]. PicC/S is a smooth locally finitely
presented algebraic stack over S, and for any L ∈ PicC/S(T ) the group scheme
AutT (L) is canonically isomorphic to Gm,T .

Write PicC/S for the rigidification of this stack with respect to Gm ; PicC/S is
none other than the relative Picard functor of C/S. From the analysis of PicC/S in
[Abramovich et al. 2011, §2] we have:

Proposition 3.14. PicC/S is a smooth group scheme over S, and if π :C→C is the
coarse space of C/S, then there is a short exact sequence of group schemes over S

0→ PicC/S
π∗

→ PicC/S→W → 0,

with W quasifinite and étale over S.



Moduli of elliptic curves via twisted stable maps 2157

In fact, since π∗Gm =Gm we can deduce from the exact sequence of low-degree
terms of the fppf Leray spectral sequence

E p,q
2 = H p(C, Rqπ∗Gm)⇒ H p+q(C,Gm)

that W is the sheaf associated to the presheaf T 7→ H 0(CT , R1π∗Gm) (where we
still write π :CT →CT for the morphism induced by base change from π :C→C).

For any integer N annihilating W , we get a natural morphism

×N : PicC/S→ PicC/S .

Definition 3.15 [Abramovich et al. 2011, 2.11]. The generalized Jacobian of C is

Pic0
C/S := PicC/S ××N ,PicC/S Pic0

C/S,

where Pic0
C/S is the fiberwise connected component of the identity in the group

scheme PicC/S .

Pic0
C/S is independent of N and is viewed as classifying line bundles of fiberwise

degree 0 on C/S.

Remark 3.16. Unlike the case of Pic0
C/S for C/S a (nonstacky) genus-g curve,

the geometric fibers of Pic0
C/S need not be connected for C/S a twisted curve. In

fact, when C/S is a 1-marked genus-1 twisted stable curve, Pic0
C/S behaves like the

smooth part of a generalized elliptic curve over S. For instance, if C= [C/µN ] for
C/S a Néron 1-gon as in Example 3.4, it is easily verified that Pic0

C/S
∼=Gm×Z/(N ).

Standard µN -stacky Néron 1-gons will play an analogous role in this paper to that
of Néron polygons in [Deligne and Rapoport 1973; Conrad 2007]. In particular, we
have:

Lemma 3.17. Let k be an algebraically closed field, and C/k a 1-marked genus-
1 twisted stable curve, with no stacky structure at its marking, such that the
coarse space C/k is not smooth. Then C is a standard µN -stacky Néron 1-gon
(Example 3.4) for some (unique) positive integer N.

Proof. It follows from [Deligne and Rapoport 1973, II.1.15] that the 1-marked
genus-1 stable curve C/k is a Néron 1-gon. Write π :C→C for the map exhibiting
C as the coarse space of C. Write C̃ = P1

→ C for the normalization of C , and
write C̃ for the following fiber product:

C̃
τ //

ν
��

P1

��
C

π
// C.

We have a short exact sequence of fppf sheaves on P1

0→ O×
P1 → τ∗O

×

C̃
→ F→ 0,
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where F is the pushforward to P1 of O×Z , for Z ∼=BµN tBµN the preimage in C̃

of the (stacky) node of C. This induces an exact sequence

0→ Pic(P1)→ Pic(C̃)→ Pic(Z)→ H 2(P1,O×
P1)= 0,

inducing an isomorphism Pic0
C̃/k
∼= Pic(Z)∼= Z/(N )×Z/(N ) since Pic0

P1/k = 0.
Now consider the short exact sequence of fppf sheaves on C

0→ O×C → ν∗O
×

C̃
→ G→ 0,

where G is the pushforward to C of O×p for p ∼=BµN the (stacky) node of C. This
induces an exact sequence

0→ k×
id
→ k×

0
→ k×→ Pic(C)→ Pic(C̃)→ Pic(BµN ).

We have Pic(BµN )
∼= Z/(N ) and Pic0

C/k
∼= Z/(N )×Z/(N ), and the map

Pic0
C/k
∼= Z/(N )×Z/(N )→ Z/(N )∼= Pic(BµN )

is given by (a, b) 7→ a− b. In particular the kernel is isomorphic to Z/(N ), so we
have a short exact sequence

0→ k×→ Pic0
C/k

f
→ Z/(N )→ 0.

This sequence splits (noncanonically) since k× is divisible (as k is algebraically
closed), so Pic0

C/k
∼= Gm ×Z/(N ).

The fppf exact sequence of sheaves on C

0→ µN → Gm→ Gm→ 0

then gives us an isomorphism

H 1(C, µN )
∼= ker

(
PicC/k

×N
−→ PicC/k

)
∼= µN ×Z/(N ).

Let C ′→ C be the µN -torsor over C corresponding to the class

(1, 1) ∈ µN ×Z/(N )∼= H 1(C, µN ).

In view of [Abramovich and Hassett 2011, 2.3.10], C ′ is representable, since (1, 1)
is the class in H 1(C, µN ) of a uniformizing line bundle on C. Let

V = C sm ∼= C×C C sm ι
↪→ C,

and consider the resulting µN -torsor C ′V → V ∼= Gm . The pullback map

ι∗ : H 1(C, µN )
∼= µN ×Z/(N )→ Z/(N )∼= H 1(Gm, µN )



Moduli of elliptic curves via twisted stable maps 2159

is given by (ζ, a) 7→ a. It therefore follows that C ′V ∼=Gm , with the µN -action given
by the standard multiplication action on Gm . The quotient map Gm → [Gm/µN ]
∼= Gm is the group scheme homomorphism x 7→ x N .

Fix an étale neighborhood W of the node of C of the form

W = Spec(k[z, w]/(zw)),

such that

C×C W ∼= [D/µN ]

for D = Spec(k[x, y]/(xy)), with ζ ∈ µN acting by x 7→ ζ x and y 7→ ζ−1 y. The
composite

D→ [D/µN ] →W

is given by the ring homomorphism z 7→ x N , w 7→ yN . Since C ′ is representable
and C ′ ×C W → C×C W is a µN -torsor, it follows that C ′ ×C W ∼= D with the
above µN -action. In particular we see that C ′ is a nodal curve with one node.

Composing our original C ′ → C with the coarse space map C → C gives
us a finite morphism of nodal curves C ′ → C , which restricts to the µN -torsor
Gm → Gm ∼= C sm and which is totally ramified over the node of C . Riemann–
Hurwitz for nodal curves implies that C ′ has arithmetic genus 1, so C ′ is a Néron
1-gon with smooth locus C ′ sm

= Gm . The multiplication action of µN on Gm

extends uniquely to an action on C ′, and by assumption C= [C ′/µN ]. Thus C is a
standard µN -stacky 1-gon. �

Relationship to moduli of elliptic curves with level structure.

Notation 3.18. For any finite flat commutative group scheme G over a base scheme
S, H(G) is the stack over S associating to an S-scheme T the groupoid of pairs
(E, φ), where E/T is an elliptic curve and φ : G∗→ E[N ] is a homomorphism of
group schemes over T (for G∗ the Cartier dual of G). For the S-scheme G = µN
we write H1(N ) for H(µN ), and for the S-scheme G = µ2

N we write H(N ) for
H(µ2

N ).

As in [Abramovich et al. 2008b, §2.3], we say a finite commutative group scheme
is diagonalizable if its Cartier dual is constant, and locally diagonalizable if its
Cartier dual is étale.

Lemma 3.19 [Abramovich et al. 2011, 5.7]. Let G/S be a finite diagonalizable
commutative group scheme, so BG is tame (since G is linearly reductive) and
X :=G∗ is constant. For any twisted curve C/S there is an equivalence of categories
between the stack TORSC/S(G) classifying G-torsors on C/S and the Picard stack
PicC/S[X ] of morphisms of Picard stacks X→ PicC/S .
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The construction for the above equivalence is as follows: Let π : P→ C be a
G-torsor over C. G acts on the sheaf π∗OP , yielding a decomposition

π∗OP =
⊕
χ∈X

Lχ .

Each Lχ is invertible since P is a torsor over E , so this determines a morphism of
Picard stacks

φP : X→ PicC/S, χ 7→ [Lχ ].

Conversely, such a morphism φ : X → PicC/S naturally determines an algebra
structure on

⊕
χ∈X

φ(χ), giving a G-torsor

SpecC

(⊕
χ∈X

φ(χ)

)
→ C

with the G-action determined by the X-grading.

This defines an open immersion from Kg,n(BG) into the algebraic stack over
S associating to an S-scheme T the groupoid of pairs (C, φ), where C/T is an
n-marked genus-g twisted stable curve and φ ∈ PicC/T [X ]. Rigidifying Kg,n(BG)
and PicC/T with respect to the group schemes G and Gm , respectively, we have an
open immersion from Kg,n(BG) into the stack classifying pairs (C, φ), where C/T
is an n-marked genus-g twisted stable curve and φ : X→PicC/T is a homomorphism
of group schemes over T .

Writing f : C→ S for the structural morphism, we have PicC/S = R1 f∗Gm .
Therefore fppf-locally on T , the morphism φ corresponds to the choice of an X-
torsor P→ C, with P representable if and only if (C, φ) comes from an object of
Kg,n(BG) (refer, for example, to [Abramovich and Hassett 2011, 2.3.10] to see
that a morphism from a twisted curve C to BG is representable if and only if the
corresponding G-torsor over C is representable). This gives us:

Corollary 3.20. For a finite flat diagonalizable group scheme G/S, the above con-
struction gives an equivalence between Kg,n(BG) and the stack over S associating
to T/S the groupoid of pairs (C, φ), where C/T is an n-marked genus-g twisted
stable curve and φ : X→ PicC/T is a group scheme homomorphism such that, fppf
locally on T , the G-torsor over C corresponding to φ as above is representable.

In particular, we get an equivalence

K◦1,1(BG)'H(G),

since for an elliptic curve E/S every G-torsor over E is representable and we
canonically have E ∼= Pic0

E/S . This isomorphism sends Q ∈ E(S) to the class of
the line bundle L((Q)− (0E)), so as a special case we see that if φ : Z/(N )→ E
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is a group scheme homomorphism with φ(1) = Q, the corresponding µN -torsor
over E is of the form

P = SpecE

(N−1⊕
a=0

L((a · Q)− (0E))

)
.

Since H1(N ) naturally contains a closed substack isomorphic to the stack Y1(N )
over S classifying [01(N )]-structures on elliptic curves, we see that the algebraic
stack K1,1(BµN ) is a modular compactification of Y1(N ). Similarly, the algebraic
stack K1,1(Bµ

2
N ) is a modular compactification of the stack Y(N ) classifying (not

necessarily symplectic) full level-N structures on elliptic curves. The task in both
cases is to give a moduli interpretation of the closure of these classical moduli
stacks in K1,1(BG), and we address this in the following sections.

Lemma 3.21. K◦1,1(BµN ) is dense in K′1,1(BµN ), and K
◦

1,1(Bµ
2
N ) is dense in

K′1,1(Bµ
2
N ).

Proof. Let C0 be a standard µd-stacky 1-gon over an algebraically closed field k,
and let φ0 :Z/(N )→ Pic0

Ck
∼=Gm×Z/(d) be a group scheme homomorphism such

that (C0, φ0) ∈K′1,1(BµN )(k) (so d |N and φ0 meets every component of Pic0
C0/k).

We need to lift (C0/k, φ0) to a pair (C, φ) ∈K′1,1(BµN )(A) for a local ring A with
residue field k, such that the generic fiber of C is a smooth elliptic curve.

Let C′0/k be a standard µN -stacky 1-gon. Consider the morphism C′0→BµN
corresponding to the group scheme homomorphism

Z/(N )→ Pic0
C′0/k
∼= Gm ×Z/(N )

sending 1 to (1, N/d). This morphism is not representable; the corresponding
µN -torsor over C′0 is as follows:

µN/d

µN/d

µN/d

µN/d

µN

C′0(Stacky N/d-gon)

We may factor the morphism C′0→BµN as C′0→ C0→BµN , where C0→BµN
is the relative coarse moduli space [Abramovich et al. 2011, Theorem 3.1] of
C′0→BµN :
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µd

C0(N/d-gon)

Since this C0 is a standard µd-stacky 1-gon, we may identify it with our original
twisted curve C0. This gives us a morphism C′0→ C0, and the resulting pullback
map Pic0

C0/k→ Pic0
C′0/k is the monomorphism

Gm ×Z/(d)→ Gm ×Z/(N ), (ζ, a) 7→
(
ζ,

N
d
· a
)
.

Let E/k[[q1/N
]] be an N-gon Tate curve, so the special fiber of E is a Néron

N-gon, E⊗ k((q1/N )) is a smooth elliptic curve, and we have an isomorphism
Esm
[N ] ∼=µN ×Z/(N ) of finite flat commutative group schemes over k[[q1/N

]]. Let
Q = (1, 1) ∈ Esm

[N ]. The relative effective Cartier divisor

D :=
∑

a∈Z/(N )

[a · Q]

in Esm is a subgroup scheme, étale over k[[q1/N
]], and the quotient E := E/D is

naturally a generalized elliptic curve whose special fiber is a 1-gon. The stack
quotient C := [E/Esm

[N ]] is naturally a twisted curve, whose generic fiber is an
elliptic curve and whose special fiber is C′0. Writing π : E→ C for the natural
quotient map, we will see in Section 6 that for any line bundle L on E there is a
canonical decomposition

π∗L∼=
⊕

a∈Z/(N )

La,

where each La is a line bundle on C.
For a section R∈Esm(k[[q1/N

]]), we write R for its image in Esm(k[[q1/N
]]). Then

we have the degree-0 line bundle LR := L((R)− (0E)) on E, hence a canonical
decomposition

π∗LR ∼=
⊕

a∈Z/(N )

LR,a.

We will see in Section 6 that the map Esm
[N ] → Pic0

C/k[[q1/N ]]
[N ] sending

R = (ζ, a) ∈ µN ×Z/(N )∼= Esm
[N ]

to LR,a is an isomorphism of group schemes over k[[q1/N
]].
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Returning to our original pair (C0, φ0) ∈ K′1,1(BµN )(k), write

φ(1)= (ζ, a) ∈ µN ×Z/(d)∼= Pic0
C0/k[N ].

Via the map C′0 → C0 constructed above, this corresponds to (ζ, (N/d) · a) ∈
µN ×Z/(N )∼= Pic0

C′0/k[N ]. C′0 is the special fiber of the twisted curve C, and we
have an isomorphism over k[[q1/N

]]

Pic0
C/k[[q1/N ]]

[N ] ∼= Esm
[N ] ∼= µN ×Z/(N ).

Now (ζ, (N/d) · a) lifts to a section of Pic0
C/k[[q1/N ]]

[N ], corresponding to a group
scheme homomorphism Z/(N )→ Pic0

C/k[[q1/N ]]
, hence to a morphism C→BµN .

Writing C→BµN for the relative coarse moduli space and φ :Z/(N )→Pic0
C/k[[q1/N

]]

for the corresponding group scheme homomorphism, we see that C/k[[q1/N
]] is a

twisted curve with special fiber C0 and generic fiber an elliptic curve. As desired,
φ extends φ0 and (C, φ) ∈ K′1,1(BµN )(k[[q

1/N
]]).

A similar argument of course applies to K◦1,1(Bµ
2
N )⊂ K′1,1(Bµ

2
N ). �

We will require a concrete description of the µN -torsor corresponding to a
particular sort of [01(N )]-structure on an elliptic curve:

Lemma 3.22. Let K be a field and E/K an elliptic curve. Let Q ∈ E(K ) be a
[01(N )]-structure on E such that the relative effective Cartier divisor

D :=
N−1∑
a=0

[a · Q]

in E is étale over Spec(K ). Let P→ E be the µN -torsor corresponding to Q as in
Corollary 3.20:

P = SpecE

(N−1⊕
a=0

L((a · Q)− (0E))

)
.

Then P can be naturally identified with the quotient E/D, where D is viewed as
a subgroup scheme of E , étale of rank N over Spec(K ), with the quotient map
P→ E corresponding to the natural map E/D→ E/E[N ] ∼= E.

Proof. Consider the eN -pairing on E[N ], a nondegenerate bilinear pairing of finite
flat group schemes over Spec(K ):

eN : E[N ]× E[N ] → µN .

Under our assumptions, the composite map

E[N ]/D = {Q}× E[N ]/D ↪→ D× E[N ]/D
eN
→ µN

is an isomorphism of group schemes over Spec(K ). Then via this isomorphism,
µN acts on the quotient E/D through the natural action of the subgroup scheme
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E[N ]/D ⊂ (E/D)[N ], making E/D a µN -torsor over E/E[N ] ∼= E with quotient
map the obvious one induced from the factorization of [N ] as E → E/D →
E/E[N ] ∼= E .

By Lemma 3.19, we may express the µN -torsor E/D→ E as

E/D = SpecE

(N−1⊕
a=0

La

)
for some line bundles La ∈ Pic0

E/K [N ], with the algebra structure determined
by isomorphisms La ⊗Lb ∼= La+b mod N and the µN -action corresponding to the
grading. We have a natural isomorphism of group schemes over K

E→ Pic0
E/K

R ∈ E(K ) 7→ L((R)− (0E)),

so we conclude that L1 ∼= L((Q0)− (0E)) for some Q0 ∈ E[N ], and La ∼= L((a ·
Q0)− (0E)).

Let π̂ : E→ E/D be the isogeny dual to π : E/D→ E/E[N ] ∼= E . Identifying
E ∼= Pic0

E/K and E/D ∼= Pic0
(E/D)/K , π̂ is simply given by the pullback map

π∗ : Pic0
E/K → Pic0

(E/D)/K . For any line bundle L on E/K we have

π∗(L)=

N−1⊕
a=0

L⊗L((a · Q0)− (0E)),

viewing the direct sum of line bundles on E as a line bundle on

E/D = SpecE

(⊕
L((a · Q0)− (0E))

)
.

In particular, for our original [01(N )]-structure Q,

π∗(L((Q)− (0E)))=

N−1⊕
a=0

L((Q+ a · Q0)− (0E)).

But the dual isogeny to π : E/D→ E/E[N ] ∼= E is the natural quotient map E→
E/D, and this maps Q to 0E . Therefore the line bundle

⊕
L((Q+a ·Q0)− (0E))

on E/D is the trivial line bundle on E/D:
N−1⊕
a=0

L((Q+ a · Q0)− (0E))∼=

N−1⊕
a=0

L((a · Q0)− (0E)).

Therefore Q is contained in the subgroup scheme of E generated by Q0: Q= b ·Q0

for some b. Since Q0 ∈ E[N ] and N is the minimal positive integer with N ·Q= 0E ,
this implies that b ∈ (Z/(N ))×, and in fact by the definition of the eN -pairing we
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have b = 1, that is, Q0 = Q. Thus

SpecE

(N−1⊕
a=0

L((a · Q0)− (0E))

)
= SpecE

(N−1⊕
a=0

L((a · Q)− (0E))

)
,

that is, E/D ∼= P with the quotient map P→ E of the given µN -action becoming
identified with the natural quotient map E/D→ E/E[N ] ∼= E . �

4. Moduli of elliptic curves in K1,1(BµN)

Reduction mod p of H1(N). We first describe how the different components of
K
◦

1,1(BµN )
∼= H1(N ) interact. These results are direct corollaries of [Katz and

Mazur 1985, §13.5]. Continue working over an arbitrary base scheme S. First
consider the case where N = pn is a prime power. We get a closed immersion

ι(p
m)
: Y1(pm) ↪→H1(pn),

for each 0 ≤ m ≤ n, sending a pair (E, φ) ∈ Y1(pm)(T ), where φ : Z/(pm)→

E[pm
] is a [01(pm)]-structure on E/T , to the pair (E, φ̃) ∈ H1(pn)(T ), where

φ̃ : Z/(pn) → E[pn
] is obtained from φ by precomposing with the canonical

projection Z/(pn)→ Z/(pm). These yield a proper surjection of algebraic stacks

Y1(pn)tY1(pn−1)t · · · tY1(p)tY1(1)→H1(pn)

which is an isomorphism over S[1/p].
But this is not an isomorphism over S⊗ Fp. Recall that by Theorem 2.13, for

any perfect field k of characteristic p, Y1(pm)k is the disjoint union, with crossings
at the supersingular points, of components

Y1(pm)
(m−b,b)
k (0≤ b ≤ m),

where an object of Y1(pm)
(m−b,b)
k (T ) is a pair (E, φ) where E/T is an ellip-

tic curve and φ : Z/(pm)→ E[pm
] is a [01(pm)]-(m−b, b)-cyclic structure on

E/T (Definition 2.10). Such an object corresponds via ι(m) to the pair (E, φ̃) ∈
H1(pn)(T ) as described above.

The key observation is Lemma 2.11: if φ :Z/(pm)→ E is a [01(pm)]-(m−b, b)-
cyclic structure on an ordinary elliptic curve E/T/Fp, then

φ̃ := φ ◦π : Z/(pn)→ E

is a [01(pn)]-(n−b, b)-cyclic structure on E , where π : Z/(pn) → Z/(pm) is
the natural projection. Étale locally on T such that E[pn

] ∼= µpn × Z/(pn) and
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E[pm
] ∼= µpm ×Z/(pm), the [01(pm)]-(m−b, b)-cyclic structure φ corresponds to

a section of

µ×pm × (Z/(pb))× if b < m,

µpm × (Z/(pb))× if b = m,

and the reason that such a section also gives a [01(pn)]-structure is that in character-
istic p, unlike in characteristic 6= p, if c<n and Z/(pc)→µpc is a Z/(pc)-generator
then the composite

Z/(pn)� Z/(pc)→ µpc ↪→ µpn

is a Z/(pn)-generator. This gives us:

Proposition 4.1. Let k be a perfect field of characteristic p. H1(pn)k is the disjoint
union, with crossings at the supersingular points, of components Zb for 0≤ b ≤ n,
where

Zb =
⋃

b≤m≤n

Y1(pm)
(m−b,b)
k ,

identifying each Y1(pm)
(m−b,b)
k with a closed substack of H1(pn)k via ι(p

m). Each
Y1(pm)

(m−b,b)
k is “set-theoretically identified with Zb” in the sense that (Zb)red =

Y1(pm)
(m−b,b)
k,red as substacks of H1(pn)k,red for all b ≤ m ≤ n.

To illustrate, visualize H1(pn)k,red as follows:

Zn,red

...

Zm,red

Zm−1,red

...

Z0,red

H1(pn)k,red

The closed immersion ι(p
m) sends the following copy of Y1(pm)k to the obvious

closed substack of H1(pn)k , contributing nilpotent structure to the components
Z0, . . . , Zm :
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Y1(pm)
(0,m)
k

Y1(pm)
(1,m−1)
k

...

Y1(pm)
(m,0)
k

Y1(pm)k

The result is that H1(pn)k,red ∪Y1(pm)k ⊆H1(pn)k looks something like this:

Zn,red

...

Y1(pm)
(0,m)
k

Y1(pm)
(1,m−1)
k

...

Y1(pm)
(m,0)
k

H1(pn)k,red ∪Y1(pm)k

Each Y1(pm)k (for 0≤ m ≤ n) contributes additional nilpotent structure, giving us:

Zn

...

Zm

Zm−1

...

Z0

H1(pn)k
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More generally, for arbitrary N we get a closed immersion

ι(d) : Y1(d) ↪→H1(N )

for each d dividing N , and the resulting map⊔
d |N

Y1(d)→H1(N )

is an isomorphism over S[1/N ]. It follows immediately from [Katz and Mazur 1985,
§13.5] that if (r, p)= 1, then for a perfect field k of characteristic p, Y1(pmr)k is
the disjoint union, with crossings at the supersingular points, of m+ 1 components
Y1(pmr)(m−b,b)

k (0≤ b ≤ m), where

Y1(pmr)(m−b,b)
k := Y1(r)k ×M1,1,k

Y1(pm)
(m−b,b)
k .

Now let N = pn N ′, where (N ′, p) = 1, and for any r |N ′ let H1(N )rk ⊂H1(N )k
denote the union of the components Y1(pmr)k for 0≤ m ≤ n. In summary:

Corollary 4.2. Let k be a perfect field of characteristic p. For any r dividing
N ′, H1(N )rk is the disjoint union, with crossings at the supersingular points, of
components Z r

b for 0≤ b ≤ n, where

Z r
b =

⋃
b≤m≤n

Y1(pmr)(m−b,b)
k ,

identifying each Y1(pmr)(m−b,b)
k with a closed substack of H1(N )k via ι(p

mr). Each
Y1(pmr)(m−b,b)

k is “set-theoretically identified with Z r
b” in the sense that (Zb)red =

Y1(pmr)(m−b,b)
k,red as substacks of H1(N )k,red. H1(N )k is the disjoint union of the

closed substacks
{H1(N )rk}r |N ′ .

Closure of Y1(N) in K1,1(BµN). We now want to describe the closure of Y1(N )
in K1,1(BµN ), as a moduli stack classifying twisted curves with extra structure.
This is accomplished in [Abramovich et al. 2003, §5.2] over Z[1/N ]; let us briefly
recall how this is done.

Definition 4.3. Let G be a finite group, viewed as a finite étale group scheme over
Z[1/|G|]. Fix an isomorphism G∗ ∼= G, after adjoining the necessary roots of
unity to Z[1/|G|]. Btei

g,n(G) is defined as the substack of K1,1(BG) over Z[1/|G|]
whose objects are twisted Teichmüller G-structures on twisted curves. An object
of Kg,n(BG)(T ) is a pair (C, φ), where C/T is a 1-marked genus-1 twisted stable
curve with nonstacky marking, and φ is a group scheme homomorphism G →
Pic0

C/T . By definition, (C, φ) ∈Btei
g,n(G)(T ) if and only if, whenever P→ C is a

G-torsor corresponding to φ (fppf locally on T ), the geometric fibers of P/T are
connected.
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Btei
g,n(G) is naturally a closed substack of Kg,n(BG). Working over Z[1/N ], the

choice of a primitive N-th root of unity ζN determines an isomorphism of group
schemes G := Z/(N )∼= µN over Z[ζN , 1/N ]. Applying the resulting isomorphism
K1,1(BG) ∼= K1,1(BµN ), we may view Y1(N ) as a substack of K1,1(BG), and
the closure of Y1(N ) in K1,1(BG) over Z[ζN , 1/N ] can be shown to be Btei

1,1(G)
(indeed, this follows from Theorem 4.6). Thus:

Corollary 4.4. The closure of Y1(N ) in K1,1(BµN ) over Z[1/N ] is the stack whose
objects over a scheme T/Z[1/N ] are pairs (C, φ), where C/T is a 1-marked
genus-1 twisted stable curve with nonstacky marking, φ : Z/(N )→ Pic0

C/S is a
group scheme homomorphism, and whenever P→ C is a µN -torsor corresponding
to φ (fppf locally on T ) the geometric fibers of P/T are connected.

However, in characteristics dividing N , simply requiring the µN -torsors to have
connected geometric fibers will not give us a moduli stack isomorphic to the closure
of Y1(N ) in K1,1(BµN ). For example, the group scheme µpn is itself connected
over any field of characteristic p; so any µpn -torsor over an n-marked genus-g
twisted stable curve over a field of characteristic p will automatically be connected.
So if the above result held over a base scheme S ∈ Sch /Fp, it would say the closure
of Y1(pn) in K1,1(Bµpn ) is all of K

′

1,1(Bµpn ) (the substack of K1,1(Bµpn ) where
the marking is representable). We will see that this is not true; the closure of
Y1(pn) turns out to be finite and flat of constant rank p2n

− p2n−2 over M1,1, while
K′1,1(Bµpn ) turns out to be finite and flat of constant rank p2n over M1,1.

A µN -torsor over C/S determines a group scheme homomorphism Z/(N )→
Pic0

C/S (see Lemma 3.19), and over Z[1/N ] a µN -torsor with connected geometric
fibers corresponds to a group scheme homomorphism which is injective. We are
therefore led to consider Drinfeld structures on our twisted curves:

Definition 4.5. Let C/S be a 1-marked genus-1 twisted stable curve with no stacky
structure at its marking. A [01(N )]-structure on C is a group scheme homomor-
phism φ : Z/(N )→ Pic0

C/S such that:

• the relative effective Cartier divisor

D :=
∑

a∈Z/(N )

[φ(a)]

in Pic0
C/S is an S-subgroup scheme and

• for every geometric point p̄→ S, D p̄ meets every irreducible component of
(Pic0

C/S) p̄ = Pic0
C p̄/k( p̄).

Over any scheme S, we define Xtw
1 (N ) to be the substack of K1,1(BµN ) whose

objects over an S-scheme T are pairs (C, φ) ∈ K1,1(BµN )(T ) such that φ is a
[01(N )]-structure on C.
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Note that if C/S is a 1-marked genus-1 stable curve (nontwisted), so that every
geometric fiber of C/S is either a smooth elliptic curve or a Néron 1-gon, then this
agrees with the definition of a [01(N )]-structure on C/S as given in [Conrad 2007,
2.4.1] and in Definition 2.3 above, identifying a [01(N )]-structure P ∈ Csm(S)
with its corresponding group scheme homomorphism Z/(N )→ Csm, 1 7→ P , since
Pic0

C/S
∼= Csm in this case.

Theorem 4.6 (Restatement of Theorem 1.1). Let S be a scheme and Xtw
1 (N ) the

stack over S classifying [01(N )]-structures on 1-marked genus-1 twisted stable
curves with nonstacky marking. Then Xtw

1 (N ) is a closed substack of K1,1(BµN ),
which contains Y1(N ) as an open dense substack.

In particular Xtw
1 (N ) is flat over S with local complete intersection fibers, and is

proper and quasifinite over M1,1.

Remark 4.7. Although this gives a new modular compactification of Y1(N ), it
should be noted that the proof of the theorem relies in several places on the proof in
[Conrad 2007] that the moduli stack classifying [01(N )]-structures on generalized
elliptic curves is a proper algebraic stack over M1,1.

Proof of Theorem 4.6. The main point is to verify the valuative criterion of proper-
ness for Xtw

1 (N ), which implies Xtw
1 (N ) is a closed substack of K1,1(BµN ). It

follows from Lemma 3.21 that Y1(N ) is dense.
Let R be a discrete valuation ring with T := Spec(R) ∈ Sch /S; write η =

Spec(K ) for the generic point of T and s = Spec(k) for the closed point. Let
(Cη, φη) ∈ X

tw
1 (N )(η), so Cη/K is a 1-marked genus-1 twisted stable curve with

nonstacky marking and φη : Z/(N )→ Pic0
Cη/K is a [01(N )]-structure on Cη. Since

K1,1(BµN ) is proper over S, there is a discrete valuation ring R1 containing R as a
local subring, with corresponding morphism of spectra T1→ T over S, such that
the pair (Cη×T T1, (φη)T1) extends to a pair (CT1, φT1)∈K1,1(BµN )(T ); whenever
such an extension exists, it is unique. Therefore it suffices to show that for some
such R1 and T1, there exists a [01(N )]-structure φT1 on a 1-marked genus-1 twisted
stable curve CT1 extending the [01(N )]-structure (φη)T1 on Cη ×T T1. This is
accomplished in Lemmas 4.9–4.12.

Terminology 4.8. In the following lemmas and their proofs, “base change on R”
will refer to replacing R with a discrete valuation ring R1 as above.

By [Deligne and Rapoport 1973, IV.1.6], after a base change on R we may
assume that the minimal proper regular model of the coarse space Cη of Cη is a
generalized elliptic curve. We maintain this assumption for the rest of the proof.

Lemma 4.9. Suppose Cη/K is a smooth elliptic curve whose minimal proper
regular model over R is smooth, and φη is a [01(N )]-structure on Cη. Then after



Moduli of elliptic curves via twisted stable maps 2171

base change on R, (Cη, φη) extends to a [01(N )]-structure φ on a smooth elliptic
curve C/R.

Proof. This follows immediately from the fact that the stack X1(N ) classifying
[01(N )]-structures on generalized elliptic curves is proper [Conrad 2007, 1.2.1]. �

Lemma 4.10. Suppose (Cη, φη)∈Xtw
1 (N )(η), such that the coarse space Cη of Cη

is singular. Then after base change on R, (Cη, φη) extends to (C, φ) ∈ Xtw
1 (N )(R).

Proof. After a base change on R, we may assume that Cη/K is the standard
µd-stacky Néron 1-gon as in Example 3.4, for some d ≥ 1; since Cη admits a
[01(N )]-structure and Pic0

Cη/K
∼= Gm,K ×Z/(d), we have d |N .

µd

Standard µd -stacky Néron 1-gon

Let C/R be the standard µd -stacky Néron 1-gon over R, so C is a genus-1 twisted
curve over R extending Cη (and of course the marking of Cη extends to C). After
further base change on R we may assume µN (K )= µN (R). Let φη(1)= (ζ, a) ∈
Gm(K )×Z/(d); since φη is a [01(N )]-structure on Cη, we have ζ ∈µN (K ) and a ∈
(Z/(d))×. Since µN (K )=µN (R), this extends to a section (ζ, a)∈Gm(R)×Z/(d),
determining a group scheme homomorphism φ : Z/(N )→ Gm,R × Z/(d) with
φ(1)= (ζ, a). Since a ∈ (Z/(d))×, φ is a [01(N )]-structure on C. �

Lemma 4.11. Suppose R has pure characteristic p ≥ 0, and Cη = Eη is an elliptic
curve over K whose minimal proper regular model over R is not smooth; that is,
Eη/K is an ordinary elliptic curve with bad reduction. If φη : Z/(N )→ Pic0

Cη/K
is a [01(N )]-structure on Cη, then after base change on R, there exists a pair
(C, φ) ∈ Xtw

1 (N )(R) extending (Cη, φη).

Proof. Since for any coprime N and N ′ we obviously have

K1,1(BµN N ′)∼= K1,1(BµN )×M1,1
K1,1(BµN ′)

and
Xtw

1 (N N ′)∼= Xtw
1 (N )×M1,1

Xtw
1 (N

′),

it suffices to consider the cases where (a) N is prime to p (including the case p= 0)
and (b) N = pn .

(a) First suppose (N , p)= 1 or p = 0. After base extension on R we may assume
that the finite abelian group Eη(K )[N ] is isomorphic to (Z/(N ))2. After further
base extension on R, the map φη gives us a µN -torsor Pη→ Eη, corresponding to the
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point Qη = φη(1) ∈ Pic0
Eη/K (K )∼= Eη(K ) of “exact order N” in the sense of [Katz

and Mazur 1985, §1.4] (and since (N , p)= 1, this just says Qη has exact order N as
an element of the group Eη(K )). Let E/R be the minimal proper regular model; after
further base extension on R and replacing E with the new minimal proper regular
model of Eη, we may assume E has the structure of a generalized elliptic curve
extending that of Eη (see [Deligne and Rapoport 1973, IV.1.6], and also [Conrad
2007, proof of 3.2.6]). Since Eη(K ) = Esm(R), the finite flat R-group scheme
Esm
[N ] has rank N 2, hence is étale over Spec(R) since (N , p) = 1. Therefore

the special fiber Es is geometrically a Néron m N-gon for some m. Replacing E

with its contraction away from the subgroup scheme Esm
[N ] ⊂ Esm (see [Deligne

and Rapoport 1973, IV.1]), we get a generalized elliptic curve E/R extending Eη,
whose special fiber is geometrically a Néron N-gon, with Eη(K )[N ] ∼= Esm(R)[N ].

Eη Es̄

(N-gon)

Note that Qη extends uniquely to a section Q ∈Esm(R)[N ] of exact order N , which
Conrad calls a “possibly nonample [01(N )]-structure on E”, meaning Q satisfies
all the conditions of a [01(N )]-structure except that the relative effective Cartier
divisor

∑
a∈Z/(N )[a ·Q] might not meet every irreducible component of a geometric

closed fiber Es̄ .
Recall that by Corollary 3.20,

Pη = SpecEη

(N−1⊕
a=0

L((a · Qη)− (0Eη))

)
with the µN -action on

⊕
L((a ·Qη)− (0Eη)) induced by the Z/(N )-grading. Since

N is invertible on Spec(R), the assumptions of Lemma 3.22 are satisfied, so we
may identify Pη with Eη/〈Qη〉, with the quotient map Pη→ Eη identified with the
quotient map Eη/〈Qη〉→ Eη/Eη[N ] ∼= Eη. Then the µN -action on Pη = Eη/〈Qη〉

is determined by the group scheme isomorphism Eη[N ]/〈Qη〉
∼= µN induced by

the eN -pairing and the choice of Qη:

Eη[N ]/〈Qη〉 = {Qη}× Eη[N ]/〈Qη〉 ↪→ 〈Qη〉× Eη[N ]/〈Qη〉
eN
→ µN .

By [Conrad 2007, Theorem 4.1.1], the eN -pairing on Eη/K extends (possibly
after further base change on R) to a nondegenerate bilinear pairing of finite flat
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commutative group schemes over R

eN : E
sm
[N ]×Esm

[N ] → µN .

Therefore the isomorphism of group schemes Eη[N ]/〈Qη〉
∼= µN described above

may be extended via the same formula to an isomorphism of group schemes
Esm
[N ]/〈Q〉 ∼= µN .

This isomorphism of group schemes makes P ′ := [E/〈Q〉] a µN -torsor over the
twisted curve C′ := [E/Esm

[N ]], extending our original µN -torsor over Eη (C′ is
indeed a twisted curve: by [Abramovich et al. 2011, Proposition 2.3] we may detect
this on the geometric fibers, where it is clear, since the geometric closed fiber of
C′ is a standard µN -stacky Néron 1-gon). But P ′ is not necessarily representable.
Indeed, let d be the minimal positive integer such that d · Q s̄ lies in the identity
component of the geometric closed fiber Es̄ . Then the coarse space P ′s̄ of P ′s̄ is a
Néron N/d-gon, and for any geometric point q̄→ P ′s̄ mapping to a node of P ′s̄ ,
we have P ′s̄ ×P ′s̄

q̄ ∼= (BµN/d)k(q̄).

µN/d

µN/d

µN/d

µN/d

µN

C′s̄ = [Es̄/E
sm
s̄ [N ]]P ′s̄ = [Es̄/〈Q s̄〉]

(Stacky N/d-gon)

Let P → C be the µN -torsor corresponding to the relative coarse moduli space
[Abramovich et al. 2011, Theorem 3.1] of the map C′→ BµN coming from the
µN -torsor P ′→ C′. The generic fibers are the same as those of P ′→ C′, Ps̄ is a
nonstacky Néron N/d-gon, and Cs̄ is a standard µd -stacky Néron 1-gon, say with
coarse space π : Cs̄→ Cs̄ .

µd

Cs̄Ps̄

(N/d-gon)
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Let q̄ → Cs̄ be a geometric point mapping to the node of Cs̄ . Then Cs̄ ×Cs̄ q̄
∼= (Bµd)k(q̄) and Ps̄ ×Cs̄ q̄ = µN/d × q̄ (which as a k(q̄)-scheme is just N/d
disjoint copies of q̄ since (N , p)= 1), so the resulting µN -torsor over (Bµd)k(q̄)

corresponds to a generator of H 1(Bµd , µN )
∼= Z/(d). Therefore, with respect to

the decomposition

Pic0
Cs̄/k(s̄)

∼= Pic0
Cs̄/k(s̄)×H 0(Cs̄, R1π∗Gm)∼= Gm ×Z/(d),

the class of the µN -torsor Ps̄→ Cs̄ projects in the second factor to a generator of
Z/(d), so the map φ : Z/(N )→ Pic0

C/R induced by P is a [01(N )]-structure on the
twisted curve C/R extending the [01(N )]-structure φη on Cη.

(b) Now suppose N = pn . After base change on R, the [01(N )]-structure φη gives us
aµN -torsor Pη→ Eη corresponding to the point Qη=φη(1)∈Pic0

Eη/K (K )∼= Eη(K )
of “exact order N” (in the sense of [Katz and Mazur 1985, §1.4], but not necessarily
as an element of the group Eη(K )). Since Eη/K is ordinary, after base change on
R we have an isomorphism of group schemes over K

Eη[N ] ∼= µN ×Z/(N ),

so Eη(K )[N ]∼=µN (K )×Z/(N )={1}×Z/(N )=Z/(N ). The µN -torsor Pη→Eη is

Pη = SpecEη

(N−1⊕
a=0

L((a · Qη)− (0Eη))

)
with the µN -action on

⊕
L((Qη)− (0Eη)) induced by the Z/(N )-grading.

Choose m ≥ 0 minimal such that the image of pm
· Qη in Z/(N ) is zero. So

pm
·Qη = 0Eη is viewed as a point of “exact order pn−m” on Eη. Since L((pm

·Qη)

− (0Eη))
∼= OEη , the corresponding µpn−m -torsor over Eη is trivial. So if C/R is

a twisted curve extending Eη/K , the µpn−m -torsor corresponding to pm
· Qη will

automatically extend to the trivial µpn−m -torsor over C.
Now view Qη as a point of “exact order pm” on Eη/K . The relative effective

Cartier divisor
Dη :=

∑
a∈Z/(pm)

[a · Qη]

in Eη is a subgroup scheme which is étale over K . So by Lemma 3.22, Eη/Dη is
the underlying scheme of the µpm -torsor corresponding to Qη. The µpm -action on
Eη/Dη is given by the group scheme isomorphism

Eη[pm
]/Dη

∼= µpm

induced by the epm -pairing and the choice of Qη:

Eη[pm
]/Dη = {Qη}× Eη[pm

]/Dη ↪→ Dη× Eη[pm
]/Dη

epm
→ µpm .
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After a base change on R if necessary, let E/R be a generalized elliptic curve
extending Eη, with a [01(pm)]-structure Q on E extending Qη. The special fiber
Es/k is geometrically a Néron pm-gon, and Esm

[pm
] ∼= µpm ×Z/(pm).

Eη Es̄

(pm-gon)

By [Conrad 2007, Theorem 4.1.1], the epm -pairing on Eη/K extends (possibly
after further base change on R) to a nondegenerate bilinear pairing of finite flat
commutative group schemes over R

epm : Esm
[pm
]×Esm

[pm
] → µpm .

Therefore the isomorphism of group schemes Eη[pm
]/Dη

∼= µpm described above
may be extended via the same formula to an isomorphism of group schemes
Esm
[pm
]/D ∼= µpm , where D is the relative effective Cartier divisor

D =
∑

a∈Z/(pm)

[a · Q]

in Esm. This makes the quotient [E/D] = E/D a representable µpm -torsor over the
twisted curve C := [E/Esm

[pm
]], which extends the given µpm -torsor over Eη.

µpm

[Es̄/Ds̄] Cs̄ = [Es̄/E
sm
s̄ [p

m
]]

x 7→ x pm

The geometric special fiber Cs̄ is a standard µpm -stacky Néron 1-gon, say with
coarse space π :Cs̄→Cs̄ ; [Es̄/Ds̄] = Es̄/Ds̄ is a (nonstacky) Néron 1-gon, and the
quotient map Ps̄ :=Es̄/Ds̄→Cs̄ extends the map Psm

s̄ =Gm→Csm
s̄ =Gm, x 7→ x pm

.
In particular, if q̄ → Cs̄ is a geometric point mapping to the node of Cs̄ , then
C×C q̄ ∼= (Bµpm )k(q̄) and Ps̄×C q̄ = q̄ , so the resulting µpm -torsor over (Bµpm )k(q̄)

corresponds to a generator of H 1(Bµpm , µpm )∼= Z/(pm). Therefore, with respect
to the decomposition

Pic0
Cs̄/k(s̄)

∼= Pic0
Cs̄/k(s̄)×H 0(Cs̄, R1π∗Gm)∼= Gm ×Z/(pm),
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the class of the µpm -torsor Ps̄→ Cs̄ projects in the second factor to a generator of
Z/(pm), so the group scheme homomorphism φ : Z/(pm)→ Pic0

C/R corresponding
to P := [E/D] = E/D is a [01(pm)]-structure on the twisted curve C/R.

Finally, write

P = SpecC

( pm
−1⊕

a=0

La

)
,

with the grading determined by theµpm -action on P . Since P extends theµpm -torsor
on Eη determined by Qη, we have La|η ∼= L((Qη)− (0Eη)). Then

P ×µpn−m = SpecC

( pn
−1⊕

a=0

L(a mod pm)

)
is a µpn -torsor over C with the µpn -action determined by the grading, extending
the original µpn -torsor over Eη and representable since P is representable. Since
the group scheme homomorphism φ : Z/(pm)→ Pic0

C/R corresponding to P is a
[01(pm)]-structure on C, and the group scheme homomorphism φ′ : Z/(pn)→

Pic0
C/R corresponding to P×µpn−m is φ◦π for the canonical projection π :Z/(pn)→

Z/(pm), it follows immediately that φ′ is a [01(pn)]-structure on C. �

Lemma 4.12. Suppose R has mixed characteristic (0, p), and Cη= Eη is an elliptic
curve over K whose minimal proper regular model over R is not smooth; that is,
Eη/K is an ordinary elliptic curve with bad reduction. If φη : Z/(N )→ Pic0

Cη/K
is a [01(N )]-structure on Cη, then after base change on R, there exists a pair
(C, φ) ∈ Xtw

1 (N )(R) extending (Cη, φη).

Proof. As before, we can restrict to the two separate cases, one where (N , p)= 1
and another where N = pn .

(a) If (p, N ) = 1, the same argument as in Part (a) of the proof of Lemma 4.11
carries through.

(b) Suppose N = pn . As in the proof of Lemma 4.11, after base extension on
R we can extend Eη to a generalized elliptic curve E/R whose special fiber is
geometrically a Néron N-gon, such that Esm(R)[N ] ∼= Eη(K )[N ] ∼= (Z/(N ))2

(the latter isomorphism being a noncanonical isomorphism of abelian groups).
After further base change on R, the [01(pn)]-structure φη gives us a µN -torsor
Pη→ Eη, corresponding to Qη = φη(1)∈ Pic0

Eη/K (K )∼= Eη(K ) of “exact order N”
in the sense of [Katz and Mazur 1985, §1.4]. Qη extends to a “possibly nonample
[01(N )]-structure” on E/R. Since the special fiber Es is geometrically a Néron
N-gon, after further base change on R we may assume Esm

s [N ] ∼= µN ×Z/(N ), so

Esm
s (k(s))[N ] ∼= µN (k(s))×Z/(N )= {1}×Z/(N )∼= Z/(N ).
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Suppose d ≥ 1 is minimal such that d · Qs maps to 0 in Z/(N ). Then we can
choose Q1, Q2

∈ Esm(R)[N ] such that:

• Q = Q1
+ Q2 in Esm(R),

• Q1 has exact order d in the abelian group Esm(R)[N ], and the relative effective
Cartier divisor

d−1∑
a=0

[a · Q]

in Esm is étale over Spec(R), and

• Q2
s maps to 0 in Z/(N ) via the above isomorphism.

In the abelian group Esm(R)[N ] ∼= (Z/(N ))2, Q2 has exact order e for some e |N .
Therefore Q1

η is a [01(d)]-structure on Eη, and Q2
η is a [01(e)]-structure on Eη.

They correspond via Lemma 3.19 to the µd -torsor

P1
η := SpecEη

( d−1⊕
a=0

L((a · Q1
η)− (0Eη))

)
and the µe-torsor

P2
η := SpecEη

( e−1⊕
a=0

L((a · Q2
η)− (0Eη))

)
,

respectively, with the gradings determining the actions of µd and µe. The µN -torsor
corresponding to Qη via Lemma 3.19 is

Pη := SpecEη

(N−1⊕
a=0

L((a · Qη)− (0Eη))

)
.

The group law on Eη tells us that(
(Q1

η)− (0Eη)
)
+
(
(Q2

η)− (0Eη)
)
∼ (Q1

η+ Q2
η)− (0Eη)= (Qη)− (0Eη),

so we conclude that

Pη = SpecEη

(N−1⊕
a=0

L((a · Q1
η)− (0Eη))⊗L((a · Q2

η)− (0Eη))

)
,

with the µN -action induced by the grading.
Consider the µd -torsor P1

η → Eη. As in Lemma 4.11, factoring the isogeny [d]
on Eη as Eη→ Eη/〈Q1

η〉 → Eη, we have P1
η = Eη/〈Q1

η〉 with µd acting on P1
η

through the isomorphism with the group scheme Eη[d]/〈Q1
η〉 induced via

Eη[d]/〈Q1
η〉
∼= {Q1

η}× Eη[d]/〈Q1
η〉 ↪→ 〈Q

1
η〉× Eη[d]/〈Q1

η〉
ed
→ µd .
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Let E1/R (possibly after base change on R) be a generalized elliptic curve extending
Eη, whose closed fiber is geometrically a Néron d-gon, with Esm

1 (R)[d]∼= Eη(K )[d].

E1,η E1,s̄

(d-gon)

As in Lemma 4.11, after further base change on R we may assume that the ed -pairing
on Eη extends to a nondegenerate bilinear pairing of finite flat commutative group
schemes over R

ed : E
sm
1 [d]×Esm

1 [d] → µd .

Q1
η extends to a [01(d)]-structure Q1 on E1/R, and the relative effective Cartier

divisor

D :=
d−1∑
a=0

[a · Q1
]

in Esm
1 is étale over R, so via the same formula as above we see that the isomorphism

Eη[d]/〈Q1
η〉
∼=µd extends to a group scheme isomorphism Esm

1 [d]/〈Q
1
〉∼=µd . This

makes P1
:= [E1/〈Q1

〉]=E1/〈Q1〉 a representable µd -torsor over the twisted curve
C := [E/Esm

[d]], extending the given µd -torsor P1
η → Eη.

The special fiber Cs is geometrically a standard µd-stacky Néron 1-gon, say
with coarse space π :Cs→Cs ; [E1,s/Ds] = E1,s/Ds is geometrically a (nonstacky)
Néron 1-gon, and the quotient map P1

s := E1,s/Ds→ Cs extends the map P1,sm
s =

Gm→ Csm
s = Gm, x 7→ xd .

µd

P1
s̄ = [E1,s̄/Ds̄] Cs̄ = [E1,s̄/E

sm
1,s̄[d]]

x 7→ xd

In particular, if q̄ → Cs is a geometric point mapping to the node of Cs , then
C×C q̄ ∼= (Bµd)k(q̄) and P1

s ×C q̄ = q̄, so the resulting µd-torsor over (Bµd)k(q̄)

corresponds to a generator of H 1(Bµd , µd) ∼= Z/(d). Therefore, with respect to
the decomposition

Pic0
Cs/k(s)

∼= Pic0
Cs/k(s)×H 0(Cs, R1π∗Gm)∼= Gm ×Z/(d),
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the class of the µd -torsor P1
s → Cs projects in the second factor to a generator of

Z/(d). Therefore the group scheme homomorphism Z/(d)→ Pic0
C/R defined by

the µd-torsor P1
:= [E1/D] = E1/D over C is a [01(d)]-structure on the twisted

curve C/R.
Next consider the µe-torsor P2

η → Eη. Let π :C→C be the coarse space of the
twisted curve C/R described above. By [Deligne and Rapoport 1973, IV.1.6], after
further base change on R we may assume that C/R is a generalized elliptic curve,
with structure extending that of Eη; note that Cη = Eη and that Cs is geometrically
a Néron 1-gon.

Cη Cs̄

We may take the scheme-theoretic closure of the section Q2
η ∈ Eη(K ) to get a

unique section Q2
∈ C sm(R); necessarily e · Q2

= 0C since e · Q2
η = 0Eη . The

isomorphisms

L((a · Q2
η)− (0Eη))⊗L((b · Q2

η)− (0Eη))
∼= L(((a+ b) · Q2

η)− (0Eη))

of line bundles on Eη extend uniquely to isomorphisms

L((a · Q2)− (0C))⊗L((b · Q2)− (0C))∼= L(((a+ b) · Q2)− (0C))

of line bundles on C ; therefore the µe-torsor

P2
η = SpecEη

( e−1⊕
a=0

L((a · Q2
η)− (0Eη))

)
extends uniquely to a µe-torsor

P2
:= SpecC

( e−1⊕
a=0

L((a · Q2)− (0C))

)
over C , with the µe-action induced by the grading. Since Pic0

C/R has irreducible
geometric fibers, this is a [01(e)]-structure on the generalized elliptic curve C/R.
Pulling this back to C via the coarse moduli space map π :C→C , we get aµe-torsor
P2
→C extending P2

η → Eη, such that the corresponding map φ :Z/(N )→ Pic0
C/R

lands in the identity component of every geometric fiber.



2180 Andrew Niles

Finally, we return to the µN -torsor Pη→ Eη. Write the µd -torsor P1
→ C as

P1
= SpecC

( d−1⊕
a=0

La

)
,

so La|η = L((a · Q1
η)− (0Eη)); write the µe-torsor P2

→ C as

P2
= SpecC

( e−1⊕
a=0

L′a

)
,

so L′a|η = L((a · Q2
η)− (0Eη)). Consider the µN -torsor

P := SpecC

(N−1⊕
a=0

La mod d ⊗L′a mod e

)
over C, with the µN -action induced by the grading. Since

L((a · Q1
η)− (0Eη))⊗L((a · Q2

η)− (0Eη))
∼= L((a · Qη)− (0Eη)),

we conclude that P→ C extends the original µN -torsor Pη→ Eη. Furthermore,
with respect to the decomposition

Pic0
Cs/k(s)

∼= Pic0
Cs/k(s)×H 0(Cs, R1π∗Gm)∼= Gm ×Z/(d),

the line bundle L1|s projects to a generator of Z/(d), and the line bundle L′1|s
projects to 0 ∈ Z/(d); therefore the line bundle (L1⊗L′1)|s projects to a generator
of Z/(d), so the group scheme homomorphism Z/(N )→ Pic0

C/R corresponding
to the µN -torsor P → C is a [01(N )]-structure on C/R, extending our original
[01(N )]-structure φη : Z/(N )→ Pic0

Cη/K . �

This concludes the proof of our final lemma and thus of Theorem 4.6. �

Reduction mod p of K
′

1,1(BµN). The analysis of H1(N ) above immediately
generalizes to the compactified case. Recall from Notation 3.8 that K′1,1(BµN )

⊂ K1,1(BµN ) denotes the closed substack classifying rigidified twisted stable
µN -covers of twisted curves with nonstacky marking; K′1,1(BµN ) is the closure of
K
◦

1,1(BµN )'H1(N ) in K1,1(BµN ) by Lemma 3.21.
We have a natural closed immersion

ι(d) : Xtw
1 (d) ↪→ K′1,1(BµN )

for each d dividing N , precomposing a map Z/(d)→ Pic0
C/S with the canonical

projection Z/(N )→ Z/(d). The resulting map⊔
d |N

Xtw
1 (d)→ K′1,1(BµN )

is an isomorphism over S[1/N ].
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Definition 4.13. Let p be prime and S ∈ Sch /Fp. Let C/S be a 1-marked genus-1
twisted stable curve with no stacky structure at its marking. Let n ≥ 1 and a, b ≥ 0
with a + b = n. A [01(pn)]-(a, b)-cyclic structure on C is a [01(pn)]-structure
φ : Z/(pn)→ Pic0

C/S , such that:

• if S1 ⊂ S is the maximal Zariski open subset such that CS1 → S1 is smooth,
φS1 : Z/(p

n)→ CS1 is a [01(pn)]-(a, b)-cyclic structure in the sense of [Katz
and Mazur 1985], and

• if S2 ⊂ S is the complement of the supersingular locus of C→ S, then the
relative effective Cartier divisor

D :=
pb∑

m=1

[φ(m)]

in Pic0
CS2/S2

is a subgroup scheme of Pic0
CS2/S2

which is étale over S2.

Over the base scheme S ∈ Sch /Fp, we define Xtw
1 (p

n)(a,b) ⊂ Xtw
1 (p

n) to be the
closed substack associating to T/S the groupoid of pairs (C, φ), where C/S is
a 1-marked genus-1 twisted stable curve with nonstacky marking, and φ is a
[01(pn)]-(a, b)-cyclic structure on C.

If N = pn N ′ with (N ′, p)= 1, we define

Xtw
1 (N )

(a,b)
:= Xtw

1 (N
′)×M1,1

Xtw
1 (p

n)(a,b).

The same argument as that used to prove Lemma 2.11 immediately gives us:

Lemma 4.14. Let C/S/Fp be a 1-marked genus-1 twisted stable curve with non-
stacky marking, and let φ : Z/(pn)→ Pic0

C/S be a [01(pn)]-(a, b)-cyclic struc-
ture on C. Then for the canonical projection π : Z/(pn+1) � Z/(pn), the
composite φ ◦ π : Z/(pn+1) → Pic0

C/S is a [01(pn+1)]-structure on C, and is
[01(pn+1)]-(a+ 1, b)-cyclic.

If N = pn N ′ with (N ′, p) = 1, for any r |N ′ write K′1,1(BµN )
r
⊂ K′1,1(BµN )

for the union of the components Xtw
1 (p

mr) over 0≤ m ≤ n.

Corollary 4.15. Let k be a perfect field of characteristic p, and let N = pn N ′

where (N ′, p)= 1. For any r |N ′, K′1,1(BµN )
r
k is the disjoint union, with crossings

at the supersingular points, of components Zr
b for 0≤ b ≤ n, where

Zr
b =

⋃
b≤m≤n

Xtw
1 (p

mr)(m−b,b)
k ,

identifying each Xtw
1 (p

mr)(m−b,b)
k with a closed substack of K

′

1,1(BµN )k via ι(p
mr).

Each substack Xtw
1 (p

mr)(m−b,b)
k is “set-theoretically identified with Zr

b” in the sense
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that (Zr
b)red = X1(pmr)(m−b,b)

k,red as substacks of K
′

1,1(BµN )k,red. K′1,1(BµN )k is the
disjoint union of the open and closed substacks

{K′1,1(BµN )
r
k}r |N ′ .

Strictly speaking, to apply the crossings theorem (Theorem 2.7) to get the above
corollary, we need to know that the morphism K′1,1(BµN )→M1,1 is finite. This
follows from Corollary 6.3.

The picture in the case N = pn is essentially the same as the picture for
K◦1,1(Bµpn )k (as discussed after Proposition 4.1), except now each component
is proper:

Zn

...

Zm

Zm−1

...

Z0

K′1,1(Bµpn )k

5. Moduli of elliptic curves in K1,1(Bµ
2
N)

Reduction mod p of H(N). Next we turn our attention to K1,1(Bµ
2
N ), working

as before over an arbitrary base scheme S. Recall that by Corollary 3.20, the open
substack K◦1,1(Bµ

2
N ) classifying rigidified twisted µ2

N -covers of smooth elliptic
curves is naturally equivalent to the stack H(N ) associating to a scheme T/S the
groupoid of pairs (E, φ) where E/T is an elliptic curve and φ : (Z/(N ))2→ E[N ]
is a homomorphism of group schemes over T .

For any subgroup K ≤ (Z/(N ))2 with corresponding quotient G K = (Z/(N ))2/K
of (Z/(N ))2, recall (Definition 2.16) that YK denotes the moduli stack associating
to a scheme T/S the groupoid of pairs (E, ψ), where E/T is an elliptic curve and
ψ : G K → E is a G K -structure (in the sense of [Katz and Mazur 1985, §1.5]). So,
for example, if G K ∼= Z/(d) for some d |N , YK is isomorphic to the stack Y1(d),
and if G K ∼= (Z/(d))2 then YK is isomorphic to the stack Y(d) classifying (not
necessarily symplectic) [0(d)]-structures on elliptic curves. For every such K , we
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have a closed immersion

ιK : YK ↪→H(N ),

given by precomposing a G K -structure φ :G K→E[N ]with the canonical projection
(Z/(N ))2→ G K . Together, these give a proper surjection⊔

K≤(Z/(N ))2

YK →H(N )

which is an isomorphism over S[1/N ].
But in characteristics dividing N this is not an isomorphism. First we consider

the case where N = pn for some prime p. Any quotient G K = (Z/(pn))2/K is
isomorphic as an abelian group to Z/(pm)× Z/(pl) for some l ≤ m ≤ n. The
corresponding moduli stack YK classifies G K -structures on elliptic curves, and
we saw in Theorem 2.17 that over a perfect field k of characteristic p, YK ,k is the
disjoint union, with crossings at the supersingular points, of substacks YH

K ,k indexed
by the set

L K := {H ≤ G K |H and G K /H are both cyclic}.

The component YH
K ,k classifies G K -structures of component label H .

Now consider two subgroups K ′ ≤ K ≤ (Z/(pn))2, and write π : G K ′ → G K

for the canonical surjection. If φ : G K → E[pn
] is a G K -structure on an ordinary

elliptic curve E/T/k, then φ ◦π may or may not be a G K ′-structure on E . Indeed,
we saw in Lemma 2.18 that φ ◦π is a G K ′ structure if and only if π−1(H) ∈ L K ′ ,
that is, if and only if π−1(H)⊆ G K ′ is cyclic.

Consider the set {(K , H) | K ≤ (Z/(pn))2, H ∈ L K }. Let ∼ be the equivalence
relation on this set generated by requiring that (K , H)∼ (K ′, H ′) if K ′ ≤ K and
H and H ′ are as above, and let 3= {(K , H)}/∼.

Proposition 5.1. Let k be a perfect field of characteristic p. H(pn)k is the disjoint
union, with crossings at the supersingular points, of components H(pn)λk for λ ∈3,
where

H(pn)λk :=
⋃

[(K ,H)]=λ

YH
K ,k,

identifying each YH
K ,k with a closed substack of H(pn)λk via ιK . Each YH

K ,k is “set-
theoretically identified with H(pn)λk ” in the sense that (H(pn)λk )red = YH

K ,k,red as
substacks of H(pn)k,red for all (K , H) with [(K , H)] = λ ∈3.

If N = pn N ′ with (p, N ′) = 1, for any A ≤ (Z/(N ))2 of order prime to p, let
H(N )A

k ⊂H(N )k be the union of the substacks YK ,k for A ≤ K ≤ (Z/(N ))2 with
(K : A) a power of p. Then similarly H(N )A

k is the disjoint union, with crossings
at the supersingular points, of components H(N )A,λ

k for λ ∈3, and H(N )k is the
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disjoint union of the open and closed substacks H(N )A
k for A ≤ (Z/(N ))2 of order

prime to p.

As in the case of H1(pn), the reduction mod p of H(pn) has an appealing
geometric description. To keep our pictures from getting unreasonably large, we
restrict our attention to the case n = 1. The group K := (Z/(p))2 has p + 3
subgroups, namely the entire group K , K0 := 0, and p+1 subgroups K1, . . . , K p+1

isomorphic to Z/(p). The corresponding moduli stacks are

YK = Y(1),

YK0 = Y(p),

YKi
∼= Y1(p) for i = 1, . . . , p+ 1,

so we see that over Z[1/p], H(p) is the disjoint union of Y(1), Y(p), and p+ 1
copies of Y1(p).

By definition we have

L K = {0},

L K0 = {K1, . . . , K p+1},

L Ki = {G Ki , 0} for i = 1, . . . , p+ 1,

where as usual G Ki = (Z/(p))
2/Ki . The set of labels 3 is built by putting an

equivalence relation on the set consisting of the following pairs:

(K , 0),

(K0, Ki ) for i = 1, . . . , p+ 1,

(Ki ,G Ki ) for i = 1, . . . , p+ 1,

(Ki , 0) for i = 1, . . . , p+ 1.

By definition, working over a perfect field k of characteristic p, the pair (K , 0)
corresponds to Y(1)k ; the pair (K0, Ki ) corresponds to the component Y(p)Ki

k
of Y(p)k ; the pair (Ki ,G Ki ) corresponds to the component Y1(p)

(1,0)
k in YKi ,k

∼=

Y1(p)k ; and the pair (Ki , 0) corresponds to the component Y1(p)(0,1)k in YKi ,k
∼=

Y1(p)k . Unwinding the definition, we see that the equivalence relation defining 3
just says that (K , 0)∼ (Ki ,G Ki ) for i = 1, . . . , p+1, and that (K0, Ki )∼ (Ki , 0)
for i = 1, . . . , p+ 1. Thus the set of labels is 3= {λ0, λ1, . . . , λp+1}, where

λ0 = [(K , 0)] = [(Ki ,G Ki )] for i = 1, . . . , p+ 1,

λi = [(K0, Ki )] = [(Ki , 0)] for i = 1, . . . , p+ 1.

Visualize H(p)k,red as follows:
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H(p)λ0
k,red

H(p)λ1
k,red

...

H(p)λp
k,red

H(p)λp+1
k,red

H(p)k,red

The component H(p)λ0
k is “set-theoretically identified” with the component Y(1)k

and with the component Y1(p)
(1,0)
k in each copy of Y1(p)k ; each of these contributes

additional nilpotent structure to the component H(p)λ0
k (each Y1(p)

(1,0)
k has length

p− 1 over H(p)λ0
k,red = Y(1)k , so H(p)λ0

k has length (p+ 1)(p− 1)+ 1= p2 over
H(p)λ0

k,red = Y(1)k).

H(p)λ0
k

For i = 1, . . . , p+ 1, the component H(p)λi
k is “set-theoretically identified” with

the component Y(p)Ki
k of Y(p)k , contributing nilpotent structure to H(p)λi

k (each
Y(p)Ki

k has length p − 1 over H(p)λi
k,red). The component H(p)λi

k is also “set-
theoretically identified” with the component Y1(p)

(0,1)
k of YKi ,k

∼= Y1(p)k ; each of
these is reduced, adding 1 to the length of the component H(p)λi

k over H(p)λi
k,red.

Thus H(p)λi
k has length p over H(p)λi

k,red, which is isomorphic to Y1(p)
(0,1)
k and

hence has degree p2
− p over Y(1)k (see [Katz and Mazur 1985, 13.5.6]). The

result is that the component H(p)λi
k has length p over the underlying reduced stack

Y1(p)
(0,1)
k , which has degree p2

− p over Y(1)k :
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H(p)λ1
k

...

H(p)λp
k

H(p)λp+1
k

This gives us the following picture of H(p)k :

H(p)λ0
k

H(p)λ1
k

...

H(p)λp
k

H(p)λp+1
k

H(p)k

Note that adding up the lengths calculated in the course of the above construction,
we recover the fact that the stack H(p) has length p4 over Y(1)=M1,1.

Closure of Y(N) in K1,1(Bµ
2
N).

Definition 5.2. Let C/S be a 1-marked genus-1 twisted stable curve over a scheme
S, with no stacky structure at its marking. A [0(N )]-structure on C is a group
scheme homomorphism φ : (Z/(N ))2→ Pic0

C/S such that:

• the relative effective Cartier divisor

D :=
∑

a∈(Z/(N ))2

[φ(a)]

in Pic0
C/S is an N-torsion subgroup scheme, hence D = Pic0

C/S[N ], and

• for every geometric point p̄→ S, D p̄ meets every irreducible component of
(Pic0

C/S) p̄ = Pic0
C p̄/k( p̄).
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We write Xtw(N ) for the substack of K1,1(Bµ
2
N ) associating to T/S the groupoid of

pairs (C, φ), where C/S is a 1-marked genus-1 twisted stable curve with nonstacky
marking, and φ is a [0(N )]-structure on C.

If C/S is a twisted curve admitting a [0(N )]-structure and p̄→ S is a geometric
point such that C p̄ is singular, then necessarily

Pic0
C p̄/k( p̄)

∼= Gm ×Z/(N ),

so by Lemma 3.17 C p̄ is a standard µN -stacky Néron 1-gon over k( p̄), as in
Example 3.4.

Applying the methods of our study of Xtw
1 (N ) to the stack Xtw(N ), we have:

Theorem 5.3. Let S be a scheme and let Xtw(N ) be the stack over S classifying
[0(N )]-structures on 1-marked genus-1 twisted stable curves with nonstacky mark-
ing. Then Xtw(N ) is a closed substack of K1,1(Bµ

2
N ), which contains Y(N ) as an

open dense substack.

In particular Xtw(N ) is flat over S with local complete intersection fibers, and is
proper and quasifinite over M1,1.

Remark 5.4. In [Petersen 2012] a direct proof is given that over Z[1/N ], Xtw(N )
agrees with the stack X(N ) classifying [0(N )]-structures on generalized elliptic
curves; in this case a µ2

N -torsor over a 1-marked genus-1 twisted stable curve with
nonstacky marking is in fact a generalized elliptic curve, and it is this observation that
gives the desired equivalence. This argument does not generalize to characteristics
dividing N , because, for example, if N = pn then the Néron N-gon in characteristic
p (which is a generalized elliptic curve admitting various [0(N )]-structures) cannot
be realized as a µ2

N -torsor over a 1-marked genus-1 twisted stable curve.

Proof of Theorem 5.3. This is proved in exactly the same manner as Theorem 4.6.
An immediate consequence of Lemma 3.22 is that if E/K is an elliptic curve over
a field K in which N is invertible, and (Q1, Q2) is a [0(N )]-structure on E , then
the µ2

N -torsor

P = SpecE

( ⊕
a,b∈Z/(N )

L((a · Q1+ b · Q2)− (0E))

)
over E as in Corollary 3.20 may be identified with E itself, with the quotient map
P→ E corresponding to the isogeny [N ] : E→ E . We immediately deduce via
the methods of Theorem 4.6 that over an algebraically closed field k in which N
is invertible, the µ2

N -torsor obtained when we pass to the cusp of M1,1 is a Néron
N-gon P over a standard µN -stacky Néron 1-gon C, with the µ2

N -action on P
induced by some choice of isomorphism Psm

[N ] ∼= µ2
N :
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µN

C= [P/Psm
[N ]]P

(N-gon)

µ2
N
∼= Psm

[N ]

And in the case of N = pn , over an algebraically closed k field of characteristic p,
the µ2

pn -torsor P obtained in passing to the cusp of M1,1 may be realized as a trivial
µpn -torsor over a standard Néron 1-gon C ′, which in turn is a µpn -torsor over a
standard µpn -stacky Néron 1-gon C= [C ′/µpn ] via the choice of an isomorphism
(C ′)sm

[pn
] ∼= µpn :

µpn

C ′P = C ′×µpn

µpn µpn

x 7→ x pn

C

In both of the above cases, it is immediately verified that for each of theseµ2
N -torsors,

the corresponding group scheme homomorphism (Z/(N ))2→Pic0
C/k
∼=Gm×Z/(N )

is a [0(N )]-structure on the standard µN -stacky Néron 1-gon C in the sense of
Definition 5.2, giving the valuative criterion of properness for Xtw(N ), hence
Theorem 5.3. �

Reduction mod p of K
′

1,1(Bµ
2
N). Recall that K′1,1(Bµ

2
N ) ⊂ K1,1(Bµ

2
N ) is the

closed substack classifying rigidified twisted stable µ2
N -covers of twisted curves

with nonstacky marking; so K′1,1(Bµ
2
N ) is the closure of

K◦1,1(Bµ
2
N )'H(N )

in K1,1(Bµ
2
N ).

Definition 5.5. Let C/S be a 1-marked genus-1 twisted stable curve with nonstacky
marking, and let G be a 2-generated finite abelian group, say G ∼= Z/(n1)×Z/(n2),
n1 ≥ n2. A G-structure on C is a homomorphism φ :G→ Pic0

C/S of group schemes
over S such that:

• the relative effective Cartier divisor

D :=
∑
a∈G

[φ(a)]
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in Pic0
C/S is an n1-torsion subgroup scheme and

• for every geometric point p̄→ S, D p̄ meets every irreducible component of
(Pic0

C/S) p̄ = Pic0
C p̄/k( p̄).

For any subgroup K ≤ (Z/(N ))2 with corresponding quotient G K = (Z/(N ))2/K
of (Z/(N ))2, we write Xtw

K for the moduli stack over S associating to a scheme
T/S the groupoid of pairs (C, ψ), where C/T is a 1-marked genus-1 twisted stable
curve with nonstacky marking, and ψ : G K → Pic0

C/T is a G K -structure on Pic0
C/T .

For a twisted curve C/S/Fp, if N = pn and G K ∼= Z/(pm) × Z/(pl) with
m ≥ l ≥ 1, we set

L K := {H ≤ G K |H and G K /H are both cyclic}.

For any H ∈ L K we say a G K -structure φ : G K → Pic0
C/S has component label

H if H maps to the kernel of the n-fold relative Frobenius Fn on the group
scheme Pic0

C/S over S, and the resulting group scheme homomorphism G K /H →
Pic0

C/S[p
n
]/ ker(Fn) is a G K /H-structure in the sense of [Katz and Mazur 1985,

§1.5].
If G K ∼= Z/(pm) (that is, l = 0), then Xtw

K
∼= Xtw

1 (p
m), and for H ∼= Z/(pa) ∈

L K we define X
tw,H
K ⊂ Xtw

K to be the substack Xtw
1 (p

m)(a,m−a)
⊂ Xtw

1 (p
m) as in

Definition 4.13. We still say that Xtw,H
K classifies G K -structures of component

label H .

So, for example, if G K ∼= Z/(d) for some d |N , Xtw
K is isomorphic to the stack

Xtw
1 (d), and if G K ∼= (Z/(d))2 then Xtw

K is isomorphic to the stack Xtw(d). For
every such K , we have a closed immersion

ιK : Xtw
K ↪→ K′1,1(Bµ

2
N ),

given by precomposing a G K -structure φ : G K → Pic0
C/T with the canonical

projection (Z/(N ))2→ G K . Together, these give a proper surjection⊔
K≤(Z/(N ))2

Xtw
K → K′1,1(Bµ

2
N )

which is an isomorphism over S[1/N ].
Let k be a perfect field of characteristic p. The same argument that proves

Lemma 2.18 immediately gives us:

Corollary 5.6. If K ≤ (Z/(pn))2 such that G K := (Z/(pn))2/K ∼=Z/(pm)×Z/(pl)

with l ≤ m ≤ n, then Xtw
K ,k is the disjoint union, with crossings at the supersingular

points, of closed substacks Xtw,H
K ,k for H ∈ L K . Xtw,H

K ,k classifies G K -structures with
component label H.

As before, we let 3 denote the set {(K , H) | K ≤ (Z/(pn))2, H ∈ L K }, modulo
the equivalence relation generated by declaring (K , H)∼ (K ′, π−1(H)) whenever
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K ′ ≤ K with corresponding quotient map π : G K ′→ G K such that π−1(H) ∈ L K ′ .
We conclude:

Corollary 5.7. Let k be a perfect field of characteristic p. K′1,1(Bµ
2
pn )k is the dis-

joint union, with crossings at the supersingular points, of components K′1,1(Bµ
2
pn )λk

for λ ∈3, where

K′1,1(Bµ
2
pn )

λ
k :=

⋃
[(K ,H)]=λ

X
tw,H
K ,k ,

identifying each X
tw,H
K ,k with a closed substack of K

′

1,1(Bµ
2
pn )λk via ιK . Each X

tw,H
K ,k

is “set-theoretically identified with K′1,1(Bµ
2
pn )λk ” in the sense that

K′1,1(Bµ
2
pn )

λ
k,red = X

tw,H
K ,k,red

as substacks of K
′

1,1(Bµpn )k,red for all (K , H) with [(K , H)] = λ ∈3.
If N = pn N ′ with (p, N ′)= 1, for any A ≤ (Z/(N ))2 of order prime to p, let

K′1,1(Bµ
2
N )

A
k ⊂ K′1,1(Bµ

2
N )k

be the union of the substacks Xtw
K ,k for A≤ K ≤ (Z/(N ))2 with (K : A) a power of p.

Then similarly K′1,1(Bµ
2
N )

A
k is the disjoint union, with crossings at the supersingular

points, of components K′1,1(Bµ
2
N )

A,λ
k for λ ∈ 3, and K

′

1,1(Bµ
2
N )k is the disjoint

union of the open and closed substacks K′1,1(Bµ
2
N )

A
k for A ≤ (Z/(N ))2 of order

prime to p.

The picture in the case N= p is essentially the same as the picture for K◦1,1(Bµ
2
p)k

'H(p)k (as discussed after Proposition 5.1), except now each component is proper:

K′1,1(Bµ
2
p)
λ0
k

K′1,1(Bµ
2
p)
λ1
k

...

K′1,1(Bµ
2
p)
λp
k

K′1,1(Bµ
2
p)
λp+1
k

K′1,1(Bµ
2
p)k
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6. Comparison with the classical moduli stacks

As promised, we verify that the moduli stacks Xtw
1 (N ) and Xtw(N ) are isomorphic

to the corresponding classical moduli stacks, justifying the claim in [Abramovich
et al. 2011] that we have recovered the Katz–Mazur regular models:

Theorem 6.1 (Restatement of Theorem 1.2). Over the base S= Spec(Z), there is a
canonical isomorphism of algebraic stacks Xtw

1 (N )∼= X1(N ) extending the identity
map on Y1(N ), and a canonical isomorphism of algebraic stacks Xtw(N )∼= X(N )
extending the identity map on Y(N ).

We prove this after some preliminary results; the main point is to demonstrate
that Xtw

1 (N ) and Xtw(N ) are normal.

Proposition 6.2. The morphism π : Xtw
1 (N )→M1,1 sending (C, φ) to the coarse

space C of C is a representable morphism of stacks. In particular, Xtw
1 (N ) is

Deligne–Mumford.
Similarly the natural morphism Xtw(N )→M1,1 is representable, hence Xtw(N )

is Deligne–Mumford.

Proof. We have already seen that Xtw
1 (N ) is an algebraic stack, so it suffices to

show that for any object (C, φ) ∈ Xtw
1 (N )(k) with k an algebraically closed field,

the natural map Aut(C, φ)→ Aut(C) is a monomorphism of group schemes. Here
C/k is the coarse space of C, and automorphisms are required to preserve the
marking. It is obvious that Aut(C, φ)→Aut(C) is a monomorphism if C= C is a
smooth elliptic curve over k, so by Lemma 3.17 we reduce to the case where C/k
is a standard µd -stacky Néron 1-gon for some d |N .

µd

In this case an automorphism of C is an automorphism of the coarse space C ,
together with an automorphism of the µd -gerbe in C lying over the node of C . Thus

Aut(C)∼= Aut(C)×Aut(Bµd,k).

The only nontrivial automorphism of C preserving the marked point 1 ∈ C is the
automorphism ι : C → C induced by the inversion automorphism of Gm . We
have Aut(Bµd)∼= µd , and the automorphism of Pic0

C/k
∼= Gm ×Z/(d) induced by

(0, ζ ) ∈ Aut(C) ∼= 〈ι〉 ×µd sends (η, a) to (ζ aη, a). Since φ : Z/(N )→ Pic0
C/k

meets every component, the only automorphisms of C than can possibly preserve
φ are the automorphisms 〈ι〉× {0} ⊂ Aut(C) (see [Conrad 2007, proof of 3.1.8]).
Thus Aut(C, φ)⊂ 〈ι〉× {0} ∼= Aut(C).
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The same argument applies to Xtw(N ). �

Corollary 6.3. Xtw
1 (N ) and Xtw(N ) are finite over M1,1.

Proof. By Theorems 4.6 and 5.3, the natural maps Xtw
1 (N )→M1,1 and Xtw(N )→

M1,1 are proper and quasifinite; since they are also representable, they are finite. �

Let∞ ↪→M1,1 denote the closed substack classifying 1-marked genus-1 stable
curves whose geometric fibers are singular. Let Xtw

1 (N )
∞
= Xtw

1 (N ) ×M1,1
∞

and Xtw(N )∞ = Xtw(N )×M1,1
∞. Exactly analogously to [Conrad 2007, 2.1.12],

formation of these closed substacks is compatible with arbitrary base change.

Proposition 6.4. The proper flat morphisms Xtw
1 (N )→ Spec(Z) and Xtw(N )→

Spec(Z) are Cohen–Macaulay (of pure relative dimension 1).

Proof. Let X denote Xtw
1 (N ) or Xtw(N ). The canonical morphism X→ M1,1 is

finite (by Corollary 6.3) and flat (by Theorems 4.6 and 5.3), and the structural
morphism M1,1 → Spec(Z) is Cohen–Macaulay (see [Conrad 2007, 3.3.1]), so
by [Bourbaki 1998, 2.7.9, Corollary 3], the composite X→ Spec(Z) is Cohen–
Macaulay. �

Lemma 6.5. Xtw
1 (N )

∞ and Xtw(N )∞ are relative effective Cartier divisors over
Spec(Z) in Xtw

1 (N ) and Xtw(N ), respectively.

Proof. Here we are using the notion of a Cartier divisor on a Deligne–Mumford
stack; see [Arbarello et al. 2011, Chapter XIII]. For X= Xtw

1 (N ) or X= Xtw(N ),
the closed substack X∞ is the pullback X×M1,1

∞. We know∞⊂M1,1 is a relative
effective Cartier divisor over Spec(Z) (meaning an effective Cartier divisor which
is flat over Spec(Z)), and by Theorems 4.6 and 5.3 the morphism X→M1,1 is flat.
Cartier divisors are preserved by flat morphisms (see [Fulton 1998, §1.7]), so X∞

is an effective Cartier divisor in X. Since X→ M1,1 is flat, so is X∞→∞, so
X∞ is flat over Spec(Z), that is, X∞ is a relative effective Cartier divisor in X over
Spec(Z). �

Corollary 6.6. Xtw
1 (N ) and Xtw(N ) are normal.

Proof. This is proven in an identical manner to [Conrad 2007, 4.1.4]. The
stacks Xtw

1 (N ) and Xtw(N ) are Deligne–Mumford, and from [Abramovich et al.
2003, 3.0.2] we know Xtw

1 (N )⊗Z Z[1/N ] and Xtw(N )⊗Z Z[1/N ] are smooth
over Spec(Z[1/N ]). In particular, they are regular at any characteristic-0 points.
Furthermore, by Proposition 6.4 they are Cohen–Macaulay over Spec(Z) of pure
relative dimension 1. As in [Conrad 2007, 4.1.4], we can conclude from Serre’s
criterion for normality that it suffices to prove that these stacks are regular away
from some relative effective Cartier divisor, since such a divisor cannot contain any
codimension-1 points of positive residue characteristic. Use the divisors Xtw

1 (N )
∞

and Xtw(N )∞; their complements are Y1(N ) and Y(N ), which are regular by [Katz
and Mazur 1985, 5.1.1]. �
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Proof of Theorem 6.1. Xtw
1 (N ) and Xtw(N ) are finite, flat, and normal over M1,1, so

they are naturally identified with the normalizations (in the sense of [Deligne and
Rapoport 1973, IV.3.3]) of M1,1 in Xtw

1 (N )|M1,1 = Y1(N ) and Xtw(N )|M1,1 = Y(N ),
respectively; see [Conrad 2007, 4.1.5]. �

We now give a moduli interpretation of the equivalence X1(N )' Xtw
1 (N ). Let

S be a scheme, E/S be a generalized elliptic curve, and P ∈ E sm(S)[N ] be a
[01(N )]-structure on E . From this data we want to construct a pair (CP , φP),
where CP/S is a 1-marked genus-1 twisted stable curve with nonstacky marking,
and φP : Z/(N )→ Pic0

CP/S is a [01(N )]-structure on CP .
If E/S is a smooth elliptic curve, there is nothing to show: we simply take

(CP , φP)= (E, φP) where φP : Z/(N )→ Pic0
E/S
∼= E sends 1 7→ P . Therefore to

construct (CP , φP) in general, we may restrict to the open subscheme of S where
E/S has no supersingular geometric fibers; once we have constructed (CP , φP) in
this case, we only need to check that it agrees with our previous construction for
ordinary elliptic curves.

For the rest of the construction, assume that E/S has no supersingular geometric
fibers.

Note that by [Conrad 2007, 4.2.3], fppf locally on S there exists a generalized
elliptic curve E ′/S, whose singular geometric fibers are N-gons, together with an
open S-immersion ι : E sm ↪→ E ′ sm of group schemes over S. In particular, by
[Deligne and Rapoport 1973, II.1.20] the group scheme E ′ sm

[N ]/S is finite and
flat of constant rank N 2.

Since E ′/S has no supersingular geometric fibers and all its singular geometric
fibers are N-gons, it follows that fppf locally on S, there exists a [0(N )]-structure
(Q, R) on E ′ such that:

• the relative effective Cartier divisor

D :=
∑

a∈Z/(N )

[a · Q]

in E ′ sm is étale over S and

• R meets the identity component of every geometric fiber of E ′/S.

The choice of Q and the pairing

eN : E ′ sm
[N ]× E ′ sm

[N ] → µN

induce a canonical isomorphism E ′ sm
[N ]/D∼= E ′ sm

[N ]/D×{Q}∼=µN . Identifying
E ′ sm
[N ]/D with its image in the N-torsion of the generalized elliptic curve C :=

E ′/D (a generalized elliptic curve whose singular fibers are 1-gons), the group
law of C and the above isomorphism give us an action of µN on C , making C a
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µN -torsor over the twisted curve C := [C/µN ] = [E
′/E ′ sm

[N ]] = [E/E sm
[N ]].

Write

C = SpecC

( ⊕
a∈Z/(N )

Ga

)
π
−→ C,

where each Ga is an invertible OC-module, with the grading and algebra structure
corresponding to the structure of C as a µN -torsor over C.

The image R of R in C is a [01(N )]-structure on C , so we get a µN -torsor

T := SpecC

( ⊕
b∈Z/(N )

L((b · R)− (0C))

)
over C ; the µN -action on T corresponds to the Z/(N )-grading and the algebra
structure on ⊕

b∈Z/(N )

L((b · R)− (0C))

comes from the group law on C sm and the canonical isomorphism C sm ∼= Pic0
C/S .

Since C is a µN -torsor over C, if L ∈ Pic(C) we have a canonical decomposition

π∗L=
⊕

a∈Z/(N )

La,

where each La is an invertible sheaf on C and ζ ∈µN acts on La via multiplication
by ζ a . In particular this applies to the invertible sheaf L=L((b · R)−(0C)), giving
us a canonical decomposition

π∗L((b · R)− (0C))=
⊕

a∈Z/(N )

L(a,b).

We have L0,0 = G0 = OC, and the isomorphisms

L((b0 · R)− (0C))⊗OC L((b1 · R)− (0C))∼= L(((b0+ b1) · R)− (0C))

(coming from the algebra structure of
⊕

b L((b · R)− (0C))) induce isomorphisms

L(a0,b0)⊗OC L(a1,b1)
∼= L(a0+a1,b0+b1)

for all (a0, b0), (a1, b1) ∈ (Z/(N ))2, giving us a canonical algebra structure on the
direct sum ⊕

(a,b)∈(Z/(N ))2

L(a,b).

Identifying our original [01(N )]-structure P with its image in E ′ sm(S)[N ], there
exists some (a0, b0)∈ (Z/(N ))2 with P=a0 ·Q+b0 ·R ∈ E ′ sm

[N ]. This determines
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a µN -torsor

T := SpecC

( ⊕
c∈Z/(N )

L(ca0,cb0)

)
over C, corresponding to a morphism C→BµN . Here

⊕
L(ca0,cb0) is viewed as a

sub-OC-algebra of the algebra
⊕

L(a,b).

Definition 6.7. We define CP → BµN to be the relative coarse moduli space of
the above morphism C → BµN , and we write φP : Z/(N ) → Pic0

CP/S for the
corresponding group scheme homomorphism.

It is immediate that φP is a [01(N )]-structure on the twisted curve CP .

Lemma 6.8. (CP , φP) is independent of the choice of (a0, b0) with P=a0 ·Q+b0 ·

R, and of the choice of generalized elliptic curve E ′ and [0(N )]-structure (Q, R)
on E ′ such that D =

∑
[a · Q] is étale over S and R meets the fiberwise identity

components of E ′/S.

Proof. First of all, if E/S is an ordinary elliptic curve, then E ′= E . Our construction
defines a map E[N ]→ Pic0

E/S[N ] ∼= E[N ], which in fact is simply the identity map
(which in particular is independent of the choice of (a0, b0) and the [0(N )]-structure
(Q, R)). To see this, recall that by Lemma 3.22 we may identify the generalized
elliptic curve C = E/〈Q〉 (viewed as a µN -torsor over E ∼= [E/E[N ]] as discussed
above) with the µN -torsor

SpecE

( ⊕
a∈Z/(N )

L((a · Q)− (0E))

)
over E . So in the notation of the above construction, C = E and Ga = L(a,0) =

L((a · Q)− (0E)). We have

π∗L((R)− (0C))∼=
⊕

a∈Z/(N )

(
Ga ⊗L((R)− (0E))

)
∼=

⊕
a∈Z/(N )

L((a · Q+ R)− (0E)).

So the map defined in the above construction sends Q to L(1,0)=L((Q)−(0E)) and
R to L(0,1) = L((R)− (0E)). Composing with the usual isomorphism Pic0

E/S
∼= E

yields the identity map on E[N ].
To complete the proof in the case where E/S is not necessarily smooth, it

suffices to consider the case where S is the spectrum of an algebraically closed
field k and E/k is a Néron d-gon (for some d |N ). E ′/k is then a Néron N-gon,
and our Drinfeld basis (Q, R) was chosen so that 〈Q〉 meets every irreducible
component of E ′ and 〈R〉 lies on the identity component. We may therefore choose
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an isomorphism E ′ sm ∼= Z/(N )×µN such that Q = (1, 1) and R = (0, ζ ) for some
ζ ∈ µ×N (k).

0E ′

R

Q
E ′

Then if P = a0 ·Q+b0 ·R= a1 ·Q+b1 ·R, it follows that a0= a1 and ζ b0 = ζ b1 , the
latter of which implies that b0·R=b1·R. Thus L((b0·R)−(0C))=L((b1·R)−(0C)),
so L(a0,b0) = L(a1,b1), hence (CP , φP) is independent of the choice of (a0, b0).

Now we must check that (CP , φP) is independent of the choice of (E ′, (Q, R)).
E ′/k is a Néron N-gon, so the choice of E ′ is unique up to composition with an
automorphism of E ′ fixing E sm

⊂ E ′ sm. E ′ is the special fiber of an N-gon Tate
curve E′/k[[q1/N

]]. Let C= [E′/E′ sm
[N ]], so Ck = [E ′/E ′ sm

[N ]] = [E/E sm
[N ]].

C⊗ k((q1/N )) Ck µN

We may choose an isomorphism E′ sm
[N ]∼=Z/(N )×µN of finite flat group schemes

over k[[q1/N
]]. (Q, R) extends to a [0(N )]-structure (Q,R) on E′ with D=

∑
(a ·Q)

étale over k[[q1/N
]] (and of course R meets the identity component of every geo-

metric fiber of E′/k[[q1/N
]]). Given such a [0(N )]-structure on E′, our construction

defines a group scheme homomorphism

E′ sm
[N ] → Pic0

C/k[[q1/N ]]
[N ].

Both of these are finite flat group schemes over k[[q1/N
]] which are isomorphic to

Z/(N )×µN , and End(Z/(N )×µN ) is finite (hence proper) over k[[q1/N
]]. Since

E′ sm
[N ]⊗ k((q1/N ))→ Pic0

C/k[[q1/N ]]
[N ]⊗ k((q1/N ))

is independent of the choice of [0(N )]-structure over k((q1/N )) (as E′⊗ k((q1/N ))

is an elliptic curve), we conclude that E′ sm
[N ] → Pic0

C/k[[q1/N ]]
[N ] is independent

of the choice of (Q,R). Thus in particular E ′ sm
[N ] → Pic0

Ck/k[N ] is independent
of the choice of (Q, R) and the resulting homomorphism E sm

[N ]→ Pic0
Ck/k[N ] is

independent of the choice of E ′. �



Moduli of elliptic curves via twisted stable maps 2197

Thus by descent, (CP , φP) ∈X
tw
1 (N )(S) is well defined globally over our initial

base scheme S (even allowing supersingular fibers) and depends only on the pair
(E, P) ∈ X1(N )(S). We define our map X1(N )→ Xtw

1 (N ) by sending (E, P) to
(CP , φP).

Corollary 6.9. Over any base scheme S, the morphism X1(N )→ Xtw
1 (N ) sending

(E, P) to (CP , φP) is an isomorphism of algebraic stacks.

Similarly, given a generalized elliptic curve E/S which is equipped with a
[0(N )]-structure (P1, P2), the above procedure produces a [0(N )]-structure φ(P1,P2)

on the twisted curve CE := [E/E sm
[N ]].

Corollary 6.10. Over any base scheme S, the morphism X(N )→ Xtw(N ) sending
(E, (P1, P2)) to (CE , φ(P1,P2)) is an isomorphism of algebraic stacks.

7. Other compactified moduli stacks of elliptic curves

It is worth noting that the techniques in the proof of Theorem 4.6 are easily adapted
to prove properness of the natural analogues in our current setting of well-known
modular compactifications of other various moduli stacks of elliptic curves with
extra structure, even when these moduli stacks do not naturally lie in a moduli stack
of twisted stable maps:

Definition 7.1. Let C/S be a 1-marked genus-1 twisted stable curve with nonstacky
marking.

(i) A [00(N )]-structure on C is a finite locally free S-subgroup scheme G of Pic0
C/S

of rank N over S which is cyclic (fppf locally admits a Z/(N )-generator), such
that for every geometric point p̄→ S, G p̄ meets every irreducible component of
Pic0

C p̄/k( p̄). We write Xtw
0 (N ) for the stack over S associating to T/S the groupoid of

pairs (C,G), where C/T is a 1-marked genus-1 twisted stable curve with nonstacky
marking, and G is a [00(N )]-structure on C.

(ii) A balanced [01(N )]-structure (see [Katz and Mazur 1985, §3.3]) on C is an
fppf short exact sequence of commutative group schemes over S

0→ K → Pic0
C/S[N ] → K ′→ 0, (†)

where K and K ′ are locally free of rank N over S, together with sections P ∈ K (S)
and P ′ ∈ K ′(S) which are Z/(N )-generators of K and K ′ in the sense of [Katz and
Mazur 1985, §1.4]. We write Xbal,tw

1 (N ) for the stack over S associating to T/S the
groupoid of pairs (C, †), where C/T is a 1-marked genus-1 twisted stable curve
with nonstacky marking, and † is a balanced [01(N )]-structure on C.

(iii) An [N-Isog]-structure (see [Katz and Mazur 1985, §6.5]) on C is a finite
locally free commutative S-subgroup scheme G ⊂ Pic0

C/S[N ] of rank N over S,
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such that for every geometric point p̄→ S, G s̄ meets every irreducible component
of Pic0

C p̄/k( p̄). We write Xtw(N-Isog) for the stack over S associating to T/S the
groupoid of pairs (C,G), where C/T is a 1-marked genus-1 twisted stable curve
with nonstacky marking, and G is an [N-Isog]-structure on C.

(iv) If N and n are positive integers such that ordp(n)≤ ordp(N ) for all primes p
dividing both N and n, a [01(N ; n)]-structure (see [Conrad 2007, 2.4.3]) on C is a
pair (φ,G), where

• φ : Z/(N )→ Pic0
C/S is a Z/(N )-structure in the sense of [Katz and Mazur

1985, §1.5],

• G ⊂ Pic0
C/S is a finite locally free S-subgroup scheme which is cyclic of

order n,

• the degree-Nn relative effective Cartier divisor
N−1∑
a=0

(φ(a)+G)

in Pic0
C/S meets every irreducible component of each geometric fiber of Pic0

C/S
over S, and

• for all primes p dividing both N and n, for e = ordp(n) we have an equality
of closed subschemes of Pic0

C/S

pe
−1∑

a=0

((N/pe) ·φ(a)+G[pe
])= Pic0

C/S[p
e
].

We write Xtw
1 (N ; n) for the stack over S associating to T/S the groupoid of tuples

(C, (φ,G)), where C/T is a 1-marked genus-1 twisted stable curve with nonstacky
marking, and (φ,G) is a [01(N ; n)]-structure on C.

Corollary 7.2. The stacks Xtw
0 (N ), X

bal,tw
1 (N ), Xtw(N-Isog), and Xtw

1 (N ; n) are
algebraic stacks which are flat and locally finitely presented over S, with local
complete intersection fibers. They are proper and quasifinite over M1,1, and each is
isomorphic to the corresponding moduli stack for generalized elliptic curves.

As shown explicitly for the stacks Xtw
1 (N ) and Xtw(N ) earlier in this paper, one

may study the reductions modulo p of these moduli stacks, and one finds that over
a perfect field of characteristic p, each stack is a disjoint union with crossings at the
supersingular points of various closed substacks, which come naturally equipped
with moduli interpretations extending the definitions given in [Katz and Mazur
1985] (except for Xtw

1 (N ; n), which is not studied there).

Question 7.3. If C/S is a 1-marked genus-1 twisted stable curve with nonstacky
marking, the group scheme Pic0

C/S behaves just like the smooth part of a generalized
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elliptic curve. Over the Zariski open set of S where C→ S is smooth, it agrees with
C (which is in this case a smooth elliptic curve); if p̄→ S is a geometric point such
that C p̄ is singular, then Pic0

C p̄/k( p̄)
∼= Gm ×Z/(N ) for some N , and this is just the

smooth part of a Néron N-gon over k( p̄). Is there a natural way to exhibit Pic0
C/S as

the smooth part of a generalized elliptic curve, giving an equivalence between the
stack of generalized elliptic curves over S and the stack of 1-marked genus-1 twisted
stable curves over S with nonstacky marking? More precisely, is there a natural
way of defining compactified Jacobians of twisted curves, such that the degree-0
compactified Jacobian of a standard µd -stacky Néron 1-gon is a Néron d-gon?

Appendix: On moduli of curves of higher genus

As in the case of elliptic curves, stacks of twisted stable maps allow for natural
compactifications of stacks of genus-g curves equipped with certain extra structure.
For example,

K◦g,0(BµN ) := Kg,0(BµN )×Mg
Mg

classifies pairs (C/S, φ), where C/S is a smooth genus-g curve and φ : Z/(N )→
Pic0

C/S , which we view as an N-torsion point in Pic0
C/S = Jac(C/S). This stack

is naturally contained in the proper algebraic stack Kg,0(BµN ) as an open dense
substack. However, the situation becomes considerably more complicated when we
attempt to use this to obtain proper moduli stacks of curves with level structure, for
example, replacing “N-torsion points” with “points of exact order N”.

Over Z[1/N ], we have a stack M(N )
g of twisted curves with level-N structure,

studied in [Abramovich et al. 2003, §6]; this is a smooth proper modular com-
pactification of the stack classifying (not necessarily symplectic) Jacobi level-N
structures on smooth genus-g curves, as in [Deligne and Mumford 1969, 5.4]. One
may be tempted to proceed as follows:

Definition A.1. Let C/S be an unmarked genus-g (g > 1) twisted stable curve
over a scheme S. A full level-N structure on C is a group scheme homomorphism
φ : (Z/(N ))2g

→ Pic0
C/S such that {φ(a) | a ∈ (Z/(N ))2} is a full set of sections

for the finite flat group scheme Pic0
C/S[N ] over S in the sense of [Katz and Mazur

1985, §1.8].
We write M(N ),tw

g for the substack of Kg,0(Bµ
2g
N ) associating to T/S the groupoid

of pairs (C, φ), where C/T is an unmarked genus-g twisted stable curve and φ is a
full level-N structure on C.

Unfortunately, this is not the “right” definition. By this we mean that we would
like the stack M(N ),tw

g to be a closed substack of Kg,0(Bµ
2g
N ), flat over S; but it

follows immediately from the example [Chai and Norman 1990, Appendix] that
flatness of M(N ),tw

g fails in mixed characteristic, even over the ordinary locus of
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Mg. Of course, if N is invertible on S then this definition is the correct one. More
precisely, the choice of an isomorphism (Z/(N ))2g ∼= µ2g

N identifies M(N ),tw
g with

the stack M(N )
g of [Abramovich et al. 2003, §6], which is shown in [loc. cit.] to be

smooth over Z[1/N ] and proper over Mg. One would hope to be able to change
the above definition to get a closed substack M(N ),tw

g of Kg,0(Bµ
2g
N ), flat over S,

agreeing with M(N )
g over S[1/N ] and with a natural moduli interpretation in terms

of the maps from (Z/(N ))2g to the group schemes Pic0
C/S .

More generally we have good properties for the moduli stack Kg,0(BG)whenever
G is a finite diagonalizable or locally diagonalizable group scheme over S, so the
Cartier dual G∗ is commutative and constant or locally constant. Recall that for
a finite group G there is a stack GMg over Z[1/|G|] of Teichmüller structures
of level G on smooth curves (see [Deligne and Mumford 1969, 5.6; Pikaart and
de Jong 1995]). Now if G is a diagonalizable group scheme with |G| invertible
on the base scheme S, then after adjoining appropriate roots of unity we may
fix an isomorphism G ∼= G∗. In [Abramovich et al. 2003, 5.2.3] it is observed
that this determines an isomorphism between G∗Mg and a substack Btei

g (G)
◦ of

K
◦

g,0(BG) whose closure Btei
g (G) in Kg,0(BG) is a moduli stack whose geometric

objects correspond precisely to G-torsors P→ C which are connected (where C is
a genus-g twisted stable curve); these are called twisted Teichmüller G-structures.
One would hope that Btei

g (G) can be defined in arbitrary characteristic, with a
natural moduli interpretation, but it is not clear to the author how to proceed with
this for genus g > 1; as discussed above, it does not suffice to simply consider the
substack of Kg,0(BG) whose geometric objects correspond to G-torsors which are
connected, since µpn is connected in characteristic p, and the definition in terms
of “full sets of sections” does not give a stack flat over the base scheme in mixed
characteristic.
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