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We prove new inequalities concerning Brauer’s k(B)-conjecture and Olsson’s
conjecture by generalizing old results. After that, we obtain the invariants for
2-blocks of finite groups with certain bicyclic defect groups. Here, a bicyclic
group is a product of two cyclic subgroups. This provides an application for
the classification of the corresponding fusion systems in a previous paper. To
some extent, this generalizes previously known cases with defect groups of
types D2n × C2m , Q2n × C2m and D2n ∗ C2m . As a consequence, we prove
Alperin’s weight conjecture and other conjectures for several new infinite families
of nonnilpotent blocks. We also prove Brauer’s k(B)-conjecture and Olsson’s
conjecture for the 2-blocks of defect at most 5. This completes results from a
previous paper. The k(B)-conjecture is also verified for defect groups with a
cyclic subgroup of index at most 4. Finally, we consider Olsson’s conjecture for
certain 3-blocks.

1. Introduction

Let B be a p-block of a finite group G. One aim of this paper is to establish new
inequalities on the number of irreducible characters of B in terms of subsections.
We outline the idea behind these things.

Olsson [1981] proved the following:

l(B)≤ 2 =⇒ k(B)≤ pd ,

where d is the defect of B. In particular, this gives an example for Brauer’s k(B)-
conjecture. However, in practice this implication is not so useful because usually
the knowledge of l(B) already implies the exact value of k(B). Since the proofs
in [Olsson 1981] only rely on computations with the contributions of the trivial
subsection (1, B), it seems likely that one can extend this result to major subsections.
Then we would be able to apply induction on d (see Theorem 4.9). Hence, let
(z, bz) be a major subsection such that l(bz) ≤ 2. In case l(bz) = 1, we have
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≤ pd by [Robinson 1991, Theorem 3.4] (a stronger bound can be
found in [Héthelyi et al. 2013]).

In Section 2, we show

l(bz)≤ 2 =⇒ k(B)≤ pd .

In contrast to Olsson’s paper, we use methods from [Robinson 1991] and [Sambale
2011b]. For p = 2, Olsson proved the stronger statement l(B)≤ 3=⇒ k(B)≤ pd .
Using his ideas, we generalize this to major subsections as well. The underlying
properties of the contribution matrices were first discovered by Brauer [1968], but
we will refer to [Feit 1982] for a more accessible account. Using Galois theory, we
overcome the difficulty that the contributions are not necessarily integers in this
general setting.

More generally, we consider arbitrary subsections for the prime 2 in order to
give bounds on the number of characters of height 0. Here it is known by [Broué
1980] (more recent accounts can be found in [Robinson 1992; Murai 2000]) that
the corresponding contributions for characters of height 0 do not vanish. Using
exactly the same method, we show that k0(B)≤ 2q if there is a subsection (u, bu)

such that bu has defect q and l(bu)≤ 3.
In Section 3, we present new infinite families of defect groups for which the block

invariants can be calculated. These defect groups are examples of bicyclic 2-groups
(i.e., D = 〈x〉〈y〉 for some x, y ∈ D). The proofs make use of the classification
of the corresponding fusion systems in [Sambale 2012b]. However, we cannot
handle all bicyclic 2-groups. We also remark that these defect groups are in a
sense noncommutative versions of the groups D2n ×C2m , Q2n ×C2m and D2n ∗C2m

covered in [Sambale 2012a; 2013b; 2013a]. As a consequence, we verify numerous
conjectures including Alperin’s weight conjecture for these blocks.

In Section 4, we collect some more or less related examples for block invariants.
In particular, we discuss some defect groups of order 32. One of the main results
here is the verification of Brauer’s k(B)-conjecture for the 2-blocks of defect at
most 5. This completes [Sambale 2011c, Theorem 3]. The new ingredient here is
in fact an old result of Brauer that uses the inverse of the Cartan matrix of a major
subsection.

In Section 5, we obtain new cases for Olsson’s conjecture. In particular, we
handle the 2-blocks of defect at most 5 and some 3-blocks with defect group of
3-rank 2 that were left over in [Héthelyi et al. 2013].

2. New inequalities

Let B be a p-block of a finite group G with defect group D. We define the
height h(χ) of a character χ ∈ Irr(B) by χ(1)p = ph(χ)

|G : D|p. Moreover,
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Irri (B) := {χ ∈ Irr(B) : h(χ)= i}, k(B) := |Irr(B)| and ki (B) := |Irri (B)| for i ≥ 0.
As usual, we denote the set of irreducible Brauer characters of B by IBr(B) and its
cardinality by l(B) := |IBr(B)|.

In the following, we choose an element z ∈ Z(D). Then there exists a Brauer
correspondent bz of B in CG(z). The pair (z, bz) is called a major subsection.

Theorem 2.1. Let B be a p-block of a finite group with defect d , and let (z, bz) be
a major subsection such that l(bz)≤ 2. Then one of the following holds:

(1)
∞∑

i=0

ki (B)p2i
≤ pd .

(2) k(B)≤
{
((p+ 3)/2)pd−1 if p > 2,
2
3 2d if p = 2.

In particular, Brauer’s k(B)-conjecture holds for B.

Proof. In case l(bz)= 1, equation (1) holds. Hence, let l(bz)= 2, and let Cz = (ci j )

be the Cartan matrix of bz up to basic sets. We consider the number

q(bz) :=min{xpdC−1
z xT

: 0 6= x ∈ Zl(bz)} ∈ N.

If q(bz)= 1, equation (1) follows from [Robinson 1991, Theorem 3.4.1]. Therefore,
we may assume q(bz)≥ 2. Then Brauer’s k(B)-conjecture already holds by [Feit
1982, Theorem V.9.17], but we want to obtain the stronger bound (2). Since pd

is always an elementary divisor of Cz , we see that Cz is not a diagonal matrix.
This allows us to apply [Héthelyi et al. 2013, Theorem 2.4]. All entries of Cz

are divisible by the smallest elementary divisor γ := p−d det Cz . Hence, we may
consider the integral matrix C̃z = (c̃i j ) := γ

−1Cz . After changing the basic set, we
may assume that 0< 2c̃12 ≤ c̃11 ≤ c̃22. Then

c̃11c̃22−
c̃2

11

4
≤ c̃11c̃22− c̃2

12 = det C̃z =
pd

γ

and

c̃11+ c̃22 ≤
5
4 c̃11+

det C̃z

c̃11
=: f (c̃11).

A discussion of the convex function f (c̃11) as in [Sambale 2011b, Theorem 1]
shows that c̃11+ c̃22 ≤ f (2). Now [Héthelyi et al. 2013, Theorem 2.4] leads to

k(B)≤ γ (c̃11+ c̃22− c̃12)≤ γ ( f (2)− 1)≤
pd
+ 3γ
2

.

Since γ ≤ pd−1, we get (2) for p odd. In order to deduce the k(B)-conjecture, we
need to consider the case p = 2. If c̃11 = 2, we must have c̃12 = 1. Hence, under
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these circumstances p > 2 since otherwise det C̃z is not a p-power. Now assume
c̃11 ≥ 3 and p = 2. Since

pdC−1
z =

pd

γ
C̃−1

z =

(
c̃22 −c̃12

−c̃12 c̃11

)
,

we have q(bz)≥ 3. Now [Feit 1982, Theorem V.9.17] implies (2). We will derive
another estimation for p = 2 in Theorem 2.2 below. �

It is conjectured that the matrix Cz for l(bz) ≥ 2 in the proof of Theorem 2.1
cannot have diagonal shape (this holds for p-solvable groups by [Sambale 2011b,
Lemma 1]). Hence, for l(bz) = 2 Theorem 2.1(2) might always apply. Then
k(B) < pd unless p = 3.

In order to improve Theorem 2.1 for p = 2, we need more notation. Suppose
as before that (z, bz) is a major subsection. We denote the corresponding part of
the generalized decomposition matrix by Dz := (d z

χϕ : χ ∈ Irr(B), ϕ ∈ IBr(bz)).
Then the Cartan matrix of bz is given by Cz := DT

z Dz . Moreover, the contribution
matrix of bz is defined as

Mz := (mz
χψ)χ,ψ∈Irr(B) = |D|DzC−1

z Dz
T.

In case |〈z〉| ≤ 2, it can be seen easily that Mz is an integral matrix. Then most
proofs of [Olsson 1981] remain true without any changes. This was more or less
done in [Robinson 2008] (compare also Corollary 3.5 in [Robinson 1991]). In the
general case, we have to put a bit more effort into the proof.

Theorem 2.2. Let B be a 2-block of a finite group with defect d, and let (z, bz) be
a major B-subsection such that l(bz)≤ 3. Then

k(B)≤ k0(B)+
2
3

∞∑
i=1

2i ki (B)≤ 2d .

In particular, Brauer’s k(B)-conjecture is satisfied for B.

Proof. Observe that by construction mz
χχ is a positive real number for every

χ ∈ Irr(B) since Cz is positive definite. Since all elementary divisors of Cz are
divisors of 2d , the matrix 2dC−1

z is integral. In particular, the numbers mz
χψ are

also algebraic integers. Let χ ∈ Irr(B) be a character of height 0. Let |〈z〉| = 2n . In
case n ≤ 1, the proof is much easier. For this reason, we assume n ≥ 2. We write

mz
χχ =

2n−1
−1∑

j=0

a j (χ)ζ
j

with ζ := e2π i/2n
and a j (χ) ∈ Z for j = 0, . . . , 2n−1

− 1. As usual, the Galois
group G of the 2n-th cyclotomic field acts on Irr(B), on the rows of Dz and thus
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also on Mz in an obvious manner. Let 0 be the orbit of χ under G. Set m := |0|.
Then we have

ma0(χ)=
∑
ψ∈0

mz
ψψ > 0.

Assume first that a0(χ)= 1. Since M2
z =Mz Mz

T
= 2d Mz (see [Feit 1982, Theorem

V.9.4]), it follows that

m2d
=

∑
ψ∈0

τ∈Irr(B)

|mz
ψτ |

2.

Applying Galois theory gives ∏
ψ∈0

τ∈Irri (B)

|mz
ψτ |

2
∈Q

for all i ≥ 0. By [Feit 1982, Theorem V.9.4], we also know ν(mz
ψτ )= h(τ ), where ν

is the 2-adic valuation and ψ ∈0. Hence, also the numbers mz
ψτ2−h(τ ) are algebraic

integers. This implies

Z 3
∏
ψ∈0

τ∈Irri (B)

p−2i
|mz

ψτ |
2
≥ 1.

Now using the inequality of arithmetic and geometric means, we obtain∑
ψ∈0

τ∈Irri (B)

|mz
ψτ |

2
≥ m22i ki (B)

for all i ≥ 0. Summing over i gives

m2d
=

∑
ψ∈0

τ∈Irr(B)

|mz
ψτ |

2
≥ m

∞∑
i=0

22i ki (B),

which is even more than we wanted to prove.
Hence, we can assume that a0(χ) ≥ 2 for all χ ∈ Irr(B) such that h(χ) = 0.

It is well-known that the ring of integers of Q(ζ ) ∩ R has basis {1, ζ j
+ ζ− j

=

ζ j
− ζ 2n−1

− j
: j = 1, . . . , 2n−2

− 1}. In particular, the numbers a j (χ) for j ≥ 1
come in pairs modulo 2. Since ν(mz

χχ ) = 0, we even have a0(χ) ≥ 3. For an
arbitrary character ψ ∈ Irr(B) of positive height, we already know that mz

ψψ2−h(ψ)

is a positive algebraic integer. Hence, 2h(ψ)
| a j (ψ) for all j ≥ 0. By [Feit 1982,

Theorem V.9.4], we have ν(mz
ψψ) > h(ψ). Thus, we even have 2h(ψ)+1

| a0(ψ). As
above, we also have a0(ψ)> 0. This implies

∑
ψ∈Irri (B) mz

ψψ ≥ 2i+1ki (B) for i ≥ 1
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via Galois theory. Using tr Mz = 2dl(bz), it follows that

3 · 2d
≥

∑
ψ∈Irr(B)

mz
ψψ ≥ 3k0(B)+

∞∑
i=1

2i+1ki (B).

This proves the claim. �

We remark that Theorem 6(ii) in [Olsson 1981] should read l(B) ≤ p2
− 1

(compare with Theorem 6*(ii)).
It is easy to see that the proof of Theorem 2.2 can be generalized to the following:

Proposition 2.3. Let B be a 2-block of a finite group with defect d, and let (z, bz)

be a major B-subsection. Then for every odd number α one of the following holds:

(1)
∞∑

i=0

22i ki (B)≤ 2dα.

(2) (α+ 2)k0(B)+
∞∑

i=1

2i+1ki (B)≤ 2dl(bz).

Proof. As in Theorem 2.2, let χ ∈ Irr0(B) and define a0(χ) similarly. In case
a0(χ)≤ α, the first inequality applies. Otherwise, the second inequality applies. �

Observe that Proposition 2.3 also covers (a generalization of) [Olsson 1981,
Theorem 8] for p = 2.

Going over to arbitrary subsections (i.e., the element does not necessarily belong
to Z(D)), we can prove the following result concerning Olsson’s conjecture. This
improves [Robinson 1992, Theorem 3.1] for p = 2.

Theorem 2.4. Let B be a 2-block of a finite group, and let (u, bu) be a B-subsection
such that bu has defect q. Set α := b

√
l(bu)c if b

√
l(bu)c is odd and α :=

l(bu)/(b
√

l(bu)c+ 1) otherwise. Then k0(B) ≤ α2q . In particular, k0(B) ≤ 2q if
l(bu)≤ 3.

Proof. The contributions for (u, bu) are defined by

Mu := (mu
χψ)χ,ψ∈Irr(B) = pq DuC−1

u Du
T.

By [Murai 2000, Corollary 1.15], we still have mu
χψ 6= 0 as long as h(χ)= h(ψ)= 0.

However, in all other cases it is possible that mu
χψ = 0. So we can copy the proof of

Theorem 2.2 by leaving out the characters of positive height. This gives k0(B)≤α2q

or k0(B)≤ 2ql(bu)/(α+2) for every odd number α. If b
√

l(bu)c is odd, we choose
α := b

√
l(bu)c. Otherwise, we take α := b

√
l(bu)c− 1. The result follows. �

Finally, we generalize the “dual” inequalities in [Olsson 1981]. For this, let
M ′z := (m

′

χψ)= 2d1k(B)−Mz .
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Proposition 2.5. Let B be a 2-block of a finite group with defect d, and let (z, bz)

be a major B-subsection. Then for every odd number α one of the following holds:

(1)
∞∑

i=0

22i ki (B)≤ 2dα.

(2) (α+ 2)k0(B)+
∞∑

i=1

2i+1ki (B)≤ 2d(k(B)− l(bz)).

In particular, Brauer’s k(B)-conjecture holds if k(B)− l(bz)≤ 3.

Proof. By [Feit 1982, Lemma V.9.3], the numbers m′χχ for χ ∈ Irr(B) are still real,
positive algebraic integers. As in Theorem 2.2, we may assume |〈z〉| = 2n

≥ 4. Let
us write

m′χχ =
2n−1
−1∑

j=0

a j (χ)ζ
j

with χ ∈ Irr0(B), ζ := e2π i/2n
and a j (χ) ∈ Z for j = 0, . . . , 2n−1

− 1. The Galois
group still acts on M ′z . Also the equation (M ′z)

2
= M ′z M ′z

T
= 2d M ′z remains true.

For τ ∈ Irr(B), we have ν(m′χτ )= ν(2
d
−mz

χτ )= ν(m
z
χτ )= h(τ ). Hence, in case

a0(χ)≤ α we can carry over the arguments in Theorem 2.2.
Now assume that a0(χ) > α for all characters χ ∈ Irr0(B). Here too the proof

works much as in Theorem 2.2. In fact, for a character ψ ∈ Irr(B) of positive height
we have ν(m′ψψ) = ν(2

d
−mz

ψψ) ≥ min{ν(2d), ν(mz
ψψ)} > h(ψ) by [Feit 1982,

Theorem V.9.4]. Moreover, tr M ′z = 2d(k(B)− l(B)). The claim follows. �

It should be pointed out that usually k(B)− l(B)= k(B)− l(b1)≤ k(B)− l(bz)

for a major subsection (z, bz) (this holds for example if z lies in the center of the
fusion system of B; see [Külshammer and Okuyama ∼ 2000]). However, this
is not true in general as we see in [Külshammer and Sambale 2013, Proposition
2.1(vii)]. Another problem is that k(B)− l(bz) for z 6= 1 is not locally determined
(in contrast to k(B)− l(B)). By combining with Proposition 2.3, we can replace
Proposition 2.5(2) by

(α+ 2)k0(B)+
∞∑

i=1

2i+1ki (B)≤ 2d min{l(bz), k(B)− l(bz)}.

3. Bicyclic defect groups

As mentioned in the introduction, we consider in this section blocks with defect
groups coming from [Sambale 2012b, Theorem 4.19]. A key feature of the groups
in the next three theorems is that all their irreducible characters have degree 1 or 2.
We also remark that Olsson’s conjecture was verified for all blocks with bicyclic
defect groups in [Sambale 2012b].
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Theorem 3.1. Let B be a nonnilpotent 2-block of a finite group with defect group

D ∼= 〈v, x, a | v2n
= x2
= a2m

= 1, xv = av = v−1, ax = vx〉 ∼= D2n+1 oC2m

for some n,m≥2. Then k(B)=2m−1(2n
+3), k0(B)=2m+1, k1(B)=2m−1(2n

− 1)
and l(B)= 2. In particular, Brauer’s k(B)-conjecture and Alperin’s weight conjec-
ture are satisfied.

Proof. Let F be the fusion system of B, and let z := v2n−1
. Then by [Sambale

2012b, Theorem 4.19], Q := 〈z, x, a2
〉 is the only F-essential subgroup up to con-

jugation. In order to calculate k(B), we use Brauer’s formula [Nagao and Tsushima
1989, Theorem 5.9.4]. We will see that it is not necessary to obtain a complete
set of representatives for the F-conjugacy classes. Since 〈v, ax〉 is an abelian
maximal subgroup of D, all characters in Irr(D) have degree 1 or 2. In particular,
k(D) := |Irr(D)| = |D/D′| + (|D| − |D/D′|)/4 = 2m−1(2n

+ 3). Now we have
to count how many conjugacy classes of D are fused under AutF(Q). According
to [Sambale 2012b, Theorem 4.19], there are two possibilities CQ(AutF(Q)) =
Z(F) ∈ {〈a2

〉, 〈a2z〉}. In the first case, the elements of the form xa2 j are conjugate
to corresponding elements za2 j under AutF(Q). In the second case, a similar
statement is true for a2 j . Observe that the elements xa2 j

and xza2 j are already
conjugate in D. Since 〈a2, z〉⊆Z(D), no more fusion can occur. Hence, the number
of F-conjugacy classes is 2m−1(2n

+ 3)− 2m−1
= 2m(2n−1

+ 1).
Now we have to determine at least some of the numbers l(bu) where u ∈ D. The

groups D1 := D/〈a2
〉 and D2 := D/〈a2z〉 have commutator subgroups D′〈a2

〉/〈a2
〉

and D′〈a2z〉/〈a2z〉 of index 4, respectively. Hence, D1 and D2 have maximal class.
The blocks ba2 and ba2z dominate blocks ba2 and ba2z , respectively, with defect
group D1. Let F1 and F2 be the fusion systems of ba2 and ba2z , respectively. Then
in case Z(F) = 〈a2

〉 or Z(F) = 〈a2z〉, Q is the only F1-essential or F2-essential
subgroup of D1 or D2, respectively, up to conjugation. Thus, [Brauer 1974; Olsson
1975] imply l(ba2)= l(ba2)= 2 and l(ba2z)= l(ba2z)= 2. The same holds for all
odd powers of a2 and a2z. Next we consider the elements u := a2 j

for 2≤ j ≤m−1.
It can be seen that the isomorphism type of D/〈u〉 is the same as for D except
that we have to replace m by j . Also the essential subgroup Q carries over to the
block bu . Hence, induction on m gives l(bu)= 2 as well. For all other nontrivial
subsections (u, bu), we only know l(bu)≥ 1. Finally, l(B)≥ 2 since B is centrally
controlled, by Theorem 1.1 in [Külshammer and Okuyama ∼ 2000]. Applying
Brauer’s formula gives

k(B)≥ 2m
+ 2m(2n−1

+ 1)− 2m−1
= 2m−1(2n

+ 3)= k(D).

We already know from [Sambale 2012b, Theorem 5.3] that Olsson’s conjecture holds
for B, i.e., k0(B)≤ |D : D′| = 2m+1. Now we apply [Robinson 1991, Theorem 3.4]
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to the subsection (z, bz), which gives

|D| = 2m+1
+ 2m+1(2n

− 1)≤ k0(B)+ 4(k(B)− k0(B))≤
∞∑

i=0

22i ki (B)≤ |D|.

This implies k(B)= k(D)= 2m−1(2n
+ 3), k0(B)= 2m+1, k1(B)= 2m−1(2n

− 1)
and l(B) = 2. Brauer’s k(B)-conjecture follows immediately. In order to prove
Alerin’s weight conjecture (see [Kessar 2007, Proposition 5.4]), it suffices to show
that Q and D are the only F-radical, F-centric subgroups of D. Thus, assume by
way of contradiction that Q1 is another F-radical, F-centric subgroup. Since Q1 is
F-centric, it cannot lie inside Q. Moreover, OutF(Q1) must provide a morphism of
odd order because Q1 < D. However, by Alperin’s fusion theorem F is generated
by AutF(Q) and AutF(D). This gives the desired contradiction. �

We add some remarks. First, the direct products of similar type D2n+1×C2m were
already handled in [Sambale 2012a]. Also if n=1, we obtain the minimal nonabelian
group C2

2 oC2m for which the block invariants are also known by [Sambale 2011a].
Moreover, it is an easy exercise to check that various other conjectures (for example
[Eaton and Moretó 2013; Eaton 2003; Malle and Navarro 2006]) are also true in
the situation of Theorem 3.1. We will not go into the details here.

The next theorem concerns defect groups that have a similar structure as the
central products Q2n+1 ∗ C2m discussed in [Sambale 2013a]. Also, this result is
needed for the induction step in the theorem after that.

Theorem 3.2. Let B be a nonnilpotent 2-block of a finite group with defect group

D ∼= 〈v, x, a | v2n
= 1, a2m

= x2
= v2n−1

, xv = av = v−1, ax = vx〉
∼= Q2n+1 .C2m ∼= D2n+1 .C2m

for some n,m ≥ 2 and m 6= n. Then k(B) = 2m+1(2n−2
+ 1), k0(B) = 2m+1,

k1(B) = 2m−1(2n
− 1), kn(B) = 2m−1 and l(B) = 2. In particular, Brauer’s

k(B)-conjecture and Alperin’s weight conjecture are satisfied.

Proof. First observe that the proof of [Sambale 2012b, Theorem 4.20] shows that
in fact

D ∼= 〈v, x, a | v2n
= x2
= 1, a2m

= v2n−1
, xv = av = v−1, ax = vx〉 ∼= D2n+1 .C2m .

Let F be the fusion system of B, and let y := v2n−2
and z := x2. Then by [Sambale

2012b, Theorem 4.19], Q := 〈x, y, a2
〉 ∼= Q8∗C2m is the only F-essential subgroup

up to conjugation (since n 6=m, D is not a wreath product). Again we use Brauer’s
formula [Nagao and Tsushima 1989, Theorem 5.9.4] to get a lower bound for
k(B). The same argumentation as in Theorem 3.1 shows that D has 2m−1(2n

+ 3)
conjugacy classes, and we need to know which of them are fused in Q. It is easy to
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see that xa2 j is conjugate to ya2 j under AutF(Q) for j ∈ Z. Observe that xa2 j is
already conjugate to xya2 j

and x−1a2 j
= xa2 j+2m

in D. Since Z(F) = 〈a2
〉, this

is the only fusion that occurs. Hence, the number of F-conjugacy classes is again
2m(2n−1

+ 1).
Again D/〈a2

〉 has maximal class and l(ba2)= 2 by [Brauer 1974; Olsson 1975].
The same is true for the odd powers of a2. Now let u := a2 j

for some 2≤ j ≤ m.
Then it turns out that D/〈u〉 is isomorphic to the group D2n oC2 j as in Theorem 3.1.
So we obtain l(bu)= 2 as well. For the other nontrivial subsections (u, bu), we have
at least l(bu)≥ 1. Finally, l(B)≥ 2 since B is centrally controlled (see [Külshammer
and Okuyama ∼ 2000, Theorem 1.1]). Therefore,

k(B)≥ 2m+1
+ 2m(2n−1

+ 1)− 2m
= 2m+1(2n−2

+ 1). (1)

Also, k0(B)≤ 2m+1 by [Sambale 2012b, Theorem 5.3]. However, in this situation
we cannot apply [Robinson 1991]. So we use [Héthelyi et al. 2013, Theorem 2.4]
for the major subsection (a2, ba2). Let us determine the isomorphism type of
D := D/〈a2

〉 precisely. Since (ax)2= axax = vx2a2
≡ v (mod 〈a2

〉), ax generates
a cyclic maximal subgroup D. Since a(ax)= avx = axv−1

≡ (ax)−1 (mod 〈a2
〉),

D ∼= D2n+1 . Hence, the Cartan matrix of ba2 is given by

2m
(

2n−1
+1 2

2 4

)
up to basic sets (see [Erdmann 1990]). This gives k(B)≤ 2m(2n−1

+ 3), which is
not quite what we wanted. However, the restriction on k0(B) will show that this
maximal value for k(B) cannot be reached. For this, we use the same method as in
[Sambale 2013a]; i.e., we analyze the generalized decomposition numbers du

χϕi
for

u := a2 and IBr(bu)= {ϕ1, ϕ2}. Since the argument is quite similar except that n
has a slightly different meaning, we only present some key observations here. As
in [Sambale 2013a], we write

du
χϕi
=

2m−1
−1∑

j=0

ai
j (χ)ζ

j ,

where ζ := e2π i/2m
. It follows that

(a1
i , a1

j )= (2
n
+ 2)δi j , (a1

i , a2
j )= 4δi j and (a2

i , a2
j )= 8δi j .

Moreover, h(χ) = 0 if and only if
∑2m−1

−1
j=0 a2

j (χ) ≡ 1 (mod 2). This gives three
essentially different possibilities for a1

j and a2
j as in [Sambale 2013a]. Let the
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numbers α, β, γ and δ be defined as there. Then

γ = 2m−1
−α−β,

k(B)≤ (2n
+ 6)α+ (2n

+ 4)β + (2n
+ 2)γ − δ/2

= 2m+n−1
+ 6α+ 4β + 2γ − δ/2

= 2m+n−1
+ 2m

+ 4α+ 2β − δ/2,

8α+ 4β − δ ≤ k0(B)≤ 2m+1.

This shows k(B) ≤ 2m+n−1
+ 2m+1

= 2m+1(2n−2
+ 1). Together with (1), we

have k(B) = 2m+1(2n−2
+ 1) and l(B) = 2. The inequalities above also show

k0(B)= 2m+1. Now we can carry over the further discussion in [Sambale 2013a]
word by word. In particular, we get δ = 0,

k1(B)= (2n
− 2)α+ (2n

− 1)β + 2nγ = 2n+m−1
− 2α−β

= 2n+m−1
− 2m−1

= 2m−1(2n
− 1)

and finally kn(B)= 2m−1. The conjectures follow as usual. �

Now we can also handle defect groups of type Q2n+1 oC2m . It is interesting to see
that we get the same number of characters although the groups are nonisomorphic
as shown in [Sambale 2012b].

Theorem 3.3. Let B be a nonnilpotent 2-block of a finite group with defect group

D ∼= 〈v, x, a | v2n
= a2m

= 1, x2
= v2n−1

, xv = av = v−1, ax = vx〉 ∼= Q2n+1 oC2m

for some n,m ≥ 2. Then k(B) = 2m+1(2n−2
+ 1), k0(B) = 2m+1, k1(B) =

2m−1(2n
− 1), kn(B)= 2m−1 and l(B)= 2. In particular, Brauer’s k(B)-conjecture

and Alperin’s weight conjecture are satisfied.

Proof. Let F be the fusion system of B, and let y := v2n−2
and z := x2. Then

by [Sambale 2012b, Theorem 4.19], Q := 〈x, y, a2
〉 ∼= Q2n+1 ×C2m−1 is the only

F-essential subgroup up to conjugation. Again we use Brauer’s formula [Nagao
and Tsushima 1989, Theorem 5.9.4] to get a lower bound for k(B).

The same argument as in Theorem 3.1 shows that D has 2m−1(2n
+3) conjugacy

classes and we need to know which of them are fused in Q. It is easy to see that
xa2 j is conjugate to ya2 j under AutF(Q) for j ∈ Z. Since Z(F)= 〈z, a2

〉, this is
the only fusion that occurs. Hence, the number of F-conjugacy classes is again
2m(2n−1

+ 1). In case n = 2, the group D/〈z〉 ∼= C2
2 oC2m is minimal nonabelian,

and we get l(bz)= 2 from [Sambale 2011a]. Otherwise, D/〈z〉 is isomorphic to one
of the groups in Theorem 3.1. Hence, again l(bz)= 2. As usual, the groups D/〈a2

〉

and D/〈a2z〉 have maximal class and it follows that l(ba2) = l(ba2z) = 2. The
same holds for all odd powers of a2 and a2z. For 2≤ j ≤ m− 1, the group D/〈u〉
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with u := a2 j
has the same isomorphism type as D where m has to be replaced

by j . So induction on m shows l(bu)= 2. It remains to deal with u := a2 j
z. Here

D/〈u〉 ∼= Q2n+1 .C2 j is exactly the group from Theorem 3.2. Thus, for j 6= n we
have again l(bu)= 2. In case j = n, D/〈u〉 ∼= C2n oC2. Then [Külshammer 1980,
(7.G)] gives l(bu)= 2 as well. Now Brauer’s formula reveals

k(B)≥ 2m+1
+ 2m(2n−1

+ 1)− 2m
= 2m+1(2n−2

+ 1).

For the opposite inequality, we apply [Héthelyi et al. 2013, Theorem 2.4] to the
major subsection (u, bu) where u := a2z. A similar calculation as in Theorem 3.2
shows that D/〈u〉 ∼= Q2n+2 . Hence, the Cartan matrix of bu is given by

2m
(

2n−1
+ 1 2

2 4

)
up to basic sets (see [Erdmann 1990]). This is the same matrix as in Theorem 3.2,
but the following discussion is slightly different because a2 has only order 2m−1

here. So we copy the proof of the main theorem in [Sambale 2013b]. In fact, we
just have to replace m with m+ 1 and n with n− 2 in order to use this proof word
for word. The claim follows. �

We describe the structure of these group extensions in a more generic way.

Proposition 3.4. Let D be an extension of the cyclic group 〈a〉 ∼= C2n by a group
M that has maximal class or is the four-group. Suppose that the corresponding
coupling ω : 〈a〉 → Out(M) satisfies the following: if ω 6= 0, then the coset ω(a)
of Inn(M) contains an involution that acts nontrivially on M/8(M). Moreover,
assume that D 6∼= C2m oC2 for all m ≥ 3. Then the invariants for every block of a
finite group with defect group D are known.

Proof. Assume first that M ∼= C2
2 . Then in case ω = 0, we get the groups C2n ×C2

2
and C2n+1 ×C2 for which the block invariants can be calculated by [Usami 1988;
Kessar et al. 2012]. So let ω 6= 0. If D is nonsplit, it must contain a cyclic maximal
subgroup. In particular, D is metacyclic and the block invariants are known. If the
extension splits, we obtain the minimal nonabelian group C2

2 oC2n . Here the block
invariants are known by [Sambale 2011a].

Hence, let M be a 2-group of maximal class. Then |Z(M)|=2. Thus, forω=0 we
obtain precisely two extensions for every group M . All these cases were handled in
[Sambale 2012a; 2013b; 2013a]. Let us now consider the case ω 6=0. Since the three
maximal subgroups of a semidihedral group are pairwise nonisomorphic, M must be
a dihedral or quaternion group. Write M =〈v, x | v2m

= 1, x2
∈ 〈v2m−1

〉, xv= v−1
〉.

Let α ∈ Aut(M) be an involution that acts nontrivially on M/8(M). Then there
is an odd integer i such that αx = vi x . Since α2

= 1, it follows that αv = v−1.
Hence, the coset α Inn(M) ∈ Out(M) is determined uniquely. Hence, ω is unique.
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So we get four group extensions for every pair (n,m). Two of them are isomorphic,
and all cases are covered in Theorems 3.1, 3.2 and 3.3 (and [Külshammer 1980]
for C4 oC2). �

4. More examples

Since almost all block invariants for 2-blocks of defect 4 are known (see [Külsham-
mer and Sambale 2013]), it is natural to look at 2-blocks of defect 5. Here for
the abelian defect group C4×C3

2 , the invariants are not known so far. We handle
more general abelian defect groups in the next theorem. This result relies on the
classification of the finite simple groups. We denote the inertial index of B by e(B).

Theorem 4.1. Let B be a block of a finite group G with defect group C2n ×C3
2 for

some n ≥ 2. Then we have k(B) = k0(B) = |D| = 2n+3 and one of the following
holds:

(i) e(B)= l(B)= 1.

(ii) e(B)= l(B)= 3.

(iii) e(B)= l(B)= 7.

(iv) e(B)= 21 and l(B)= 5.

Proof. Let D = C2n ×C3
2 . Since Aut(D) acts faithfully on �(D)/8(D)∼= C3

2 , we
have e(B) ∈ {1, 3, 7, 21}. In case e(B)= 1, the block is nilpotent and the result is
clear. Now we consider the remaining cases.

Case 1: e(B) = 3. Then there are 2n+2 subsections (u, bu) up to conjugation
and 2n+1 of them satisfy l(bu) = 1. For the other 2n+1 subsections, [Watanabe
1991, Theorem 1] implies l(bu)= 3. This gives k(B)= 2n+3

= |D|. The height-0
conjecture follows from [Kessar and Malle 2013, Theorem 1.1].

Case 2: e(B)= 7. Here we have 2n+1 subsections (u, bu) up to conjugation, where
2n of them satisfy l(bu) = 1. For the other 2n subsections, we use [Watanabe
1991, Theorem 1] in connection with [Kessar et al. 2012, Theorem 1.1] (instead of
[Kessar et al. 2012], we could also use [Kessar and Malle 2013], which we need
anyway). This gives l(bu)= 7 for these subsections. It follows that k(B)= |D| and
k(B)= k0(B) by [Kessar and Malle 2013, Theorem 1.1].

Case 3: e(B)= 21. Here we have again 2n+1 subsections (u, bu) up to conjugation.
But this time 2n subsections satisfy l(bu)= 3 and the other 2n subsections satisfy
l(bu)= 5 by [Watanabe 1991; Kessar et al. 2012]. The result follows as before. �

Next we study another group of order 32 with an easy structure. For this, let
MNA(r, s) be the minimal nonabelian group given by

〈x, y | x2r
= y2s

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉



2254 Benjamin Sambale

for some r ≥ s ≥ 1 (see [Rédei 1947]). For the notion of a constrained fusion
system, we refer to [Oliver and Ventura 2009, Definition 2.3].

Proposition 4.2. Let B be a nonnilpotent block of a finite group with defect group
D ∼=MNA(2, 1)×C2. Then k(B)= 20, k0(B)= 16, k1(B)= 4 and l(B)= 2. In
particular, Olsson’s conjecture and Alperin’s weight conjecture hold for B.

Proof. Let F be the fusion system of B. Since |D :Z(D)|= 4, every F-essential sub-
group is maximal, and there are three candidates for these groups. Let Z(D)<M<D
such that M ∼= C4 ×C2

2 . Then AutF(M) must act nontrivially on �(M)/8(M).
However, it can be seen that ND(M) acts trivially on�(M)/8(M). In particular, M
is not F-radical. Hence, there is only one F-essential subgroup Q ∼= C4

2 (up to con-
jugation). Since QED, F is constrained and thus uniquely determined by OutF(Q)
(see [Linckelmann 2007, Theorem 4.6]). By [Sambale 2012b, Lemma 3.11], we
have some possibilities for OutF(Q). However, a GAP calculation shows that
only OutF(Q) ∼= S3 is realizable. Then F is the fusion system on the group
SmallGroup(96, 194) ∼= (A4 o C4)× C2. In particular, there are exactly 16 F-
conjugacy classes on D. Moreover, Z(F) ∼= C2

2 , and for 1 6= z ∈ Z(F), we have
D/〈z〉 ∈ {MNA(2, 1), D8×C2}. Hence, we get l(bz) = 2 as usual. For all other
nontrivial subsections (u, bu), we have l(bu)≥ 1. Since B is centrally controlled,
[Külshammer and Okuyama ∼ 2000, Theorem 1.1] implies l(B) ≥ 2. Brauer’s
formula for k(B) gives k(B)≥ 20. If x ∈ D has order 4, then CD(x)/〈x〉 has order 4.
Hence, Olsson’s conjecture follows from [Héthelyi et al. 2013, Theorem 2.5]; i.e.,
k0(B)≤ |D : D′| = 16. For an element z ∈ Z(D) \Z(F), the block bz is nilpotent.
Thus, [Robinson 1991, Theorem 3.4] implies

|D| = 32≤ k0(B)+ 4(k(B)− k0(B))≤
∞∑

i=0

22i ki (B)≤ |D|.

The claim follows as usual. �

In the classification of the simple groups of 2-rank 2, the sole exception PSU(3, 4)
shows up (see [Alperin et al. 1973]). This group has a Suzuki Sylow 2-subgroup P
of order 64 (see [Craven and Glesser 2012, Definition 1.4]). The group P also
occurs in the classification of the center-free fusion systems on 2-groups of 2-rank 2
(see [Craven and Glesser 2012]). It can also be described as the smallest 2-group
with exactly three involutions and an automorphism of order 5. This answers a
question raised in [Berkovich and Janko 2008, Exercise 82.3]. In fact, P admits an
automorphism of order 15. Moreover, Z(P)=8(P)= P ′ =�(P)∼= C2

2 , so P is
special (see [Gorenstein 1968, p. 183]).

Using this as a motivation, it seems worthwhile to obtain the invariants of blocks
with defect group P (this will be done in an upcoming diploma thesis). Doing so,
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we need to handle the extraspecial group P/〈z〉 ∼= D8 ∗ Q8 for 1 6= z ∈ Z(P) for
the induction step.

Proposition 4.3. Let B be a block of a finite group G with defect group D8∗Q8 and
inertial index 5. Then l(B)= 5, k(B)= 13, k0(B)= 8 and k2(B)= 5. Moreover,
the Cartan matrix of B is given by

2


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 4


up to basic sets.

Proof. Let D = D8 ∗ Q8, and let F be the fusion system of B. By [Stancu 2006,
Theorem 5.3], F is controlled by AutF(D). Let Z(D)= 〈z〉. As usual, we denote
the subsections by (u, bu). Then bz covers a block bz with elementary abelian defect
group of order 16. It follows from [Külshammer and Sambale 2013, Proposition 2.1]
that 5= e(B)= e(bz)= e(bz)= l(bz)= l(bz). Moreover, B is centrally controlled;
in particular, [Külshammer and Okuyama ∼ 2000, Theorem 1.1] implies l(B)≥ 5.

There are three nonmajor subsections (u1, b1), (u2, b2) and (u3, b3). Since
|D′| = 2, every conjugacy class in D has at most two elements. In particular,
|CD(ui )| = 16 for i = 1, 2, 3. By [Héthelyi et al. 2013, Proposition 5.1], we have
l(bi ) = 1 for i = 1, 2, 3. Now let us look at the major subsection (z, bz). By the
proof of [Sambale 2011c, Proposition 1], the Cartan matrix of bz is given by

2


4 3 3 3 3
3 4 3 3 3
3 3 4 3 3
3 3 3 4 3
3 3 3 3 4


up to basic sets. If we change the basic set, we get the following matrix with smaller
entries:

Cz := 2


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 4

 .
Now we consider the matrix Dz := (d z

i j ). Since z has order 2, Dz is an integral
matrix such that DT

z Dz =C . Since all columns of Dz are orthogonal to the columns
of ordinary decomposition numbers, we see that the first four columns consist of
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exactly four entries ±1 each. By way of contradiction, assume that the first two
columns of Dz have the form(

1 1 1 1 . · · · .

1 1 1 –1 . · · · .

)T

.

Then there is at least one column of ordinary decomposition numbers that is not
orthogonal to the difference of these two columns of Dz . This contradiction shows
that Dz has the form

Dz =


1 1 1 1 . . . . . . . · · · .

1 1 . . 1 1 . . . . . · · · .

1 1 . . . . 1 1 . . . · · · .

1 1 . . . . . . 1 1 . · · · .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · · ∗


T

up to signs and permutations. It holds that k(B)= l(B)+ l(bz)+ l(b1)+ l(b2)+

l(b3) ≥ 13. Hence, for the last column of Dz we have essentially the following
possibilities: (

1 1 . . . . . . . . 1 1 1 1 1 1
)T
,(

1 . 1 . 1 . 1 . 1 . 1 1 1
)T
,(

1 1 1 −1 . . . . . . 1 1 1 1
)T
,(

2 . . . . . . . . . 1 1 1 1
)T
,(

1 1 . . . . . . . . 2 1 1
)T
.

This already implies k(B) ∈ {13, 14, 16}. In order to investigate the heights of
the irreducible characters, we consider the matrix M z

= (mz
i j )= 32DzC−1

z DT
z of

contributions. We have

32C−1
z =


13 –3 –3 –3 –1
–3 13 –3 –3 –1
–3 –3 13 –3 –1
–3 –3 –3 13 –1
–1 –1 –1 –1 5

 .
By [Brauer 1968, (5G) and (5H)], we have

h(χ)= 0 ⇐⇒ mz
χχ ≡ 1 (mod 2) ⇐⇒

∑
ϕ∈IBr(bz)

d z
χϕ ≡ 1 (mod 2).

This gives k0(B) ∈ {8, 12, 16} according to the last column of Dz . By [Broué 1980,
Proposition 1], we also have h(χ)= 0 ⇐⇒ dui

χϕi
≡ 1 (mod 2) for i = 1, 2, 3 where

IBr(bui ) = {ϕi }. Since the norm of these nonmajor columns is 16, we have the



Further evidence for conjectures in block theory 2257

following possibilities for the nonvanishing entries according to k0(B): sixteen ±1;
twelve ±1 and one ±2; eight ±1 and two ±2; or seven ±1 and one ±3.

Taking this together, we can enumerate all the possibilities for the decomposition
numbers of nontrivial subsections with GAP. Then the ordinary decomposition
matrix (up to multiplication with an invertible matrix) can be determined as the
orthogonal space. Finally the square of the ordinary decomposition matrix is
the Cartan matrix C of B. Now we determine the elementary divisors of C by
considering the lower defect groups.

By [Brauer 1969, (7G)], the multiplicity m(d) of the elementary divisor d ∈ N

of C is given by

m(d)=
∑
R∈R

m(1)
B (R)

where R is a set of representatives for the G-conjugacy classes of subgroups of G of
order d . After combining this with [Broué and Olsson 1986, Formula (2S)], we get

m(d)=
∑

(R,bR)∈R′

m(1)
B (R, bR)

where R′ is a set of representatives for the G-conjugacy classes of B-subpairs
(R, bR) such that R has order d. We have to emphasize that in contrast to other
papers we regard bR as a block of CG(R) instead of R CG(R). Let bD be a Brauer
correspondent of B in CG(D). Then after changing the representatives if necessary,
we may assume (R, bR) ≤ (D, bD) for (R, bR) ∈ R′. Then it is well-known that
bR is uniquely determined by R. Since the fusion of these subpairs is controlled by
NG(D, bD), we get

m(d)=
∑

R∈R′′

m(1)
B (R, bR)

where R′′ is a set of representatives for the AutF(D)-conjugacy classes of subgroups
of D of order d.

It is well-known that we have m(32)= 1. Now we discuss smaller values for d .
We begin with the case d=2. For this, let m(1)

B (Q, bQ)>0 for some Q with |Q|=2.
Then (Q, bQ) is in fact a subsection and 2 is also an elementary divisor of the
Cartan matrix of bQ . In particular, l(bQ) > 1. This shows that Q = Z(D). One can
show that 2 occurs as elementary divisor of Cz exactly four times. If we apply the
same arguments to the block bz instead of B, we see that m(2)= m(1)

B (Q, bQ)= 4.
Now let 2< d < 32 and Q ≤ D such that |Q| = d . Then by [Broué and Olsson

1986, (2Q)], we have m(1)
BQ
(Q) > 0 where BQ := bNG(Q,bQ)

Q . Since Q is fully F-
normalized, [Linckelmann 2006, Theorem 2.4] implies that CD(Q) is a defect
group of bQ and ND(Q) is a defect group of BQ . By [An 2011, Proposition 2.1],
also the block bQ is controlled. If we follow the proof of this proposition more
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closely, it turns out that (CD(Q), bQ CD(Q)) is a Sylow bQ-subpair. So the inertial
quotient of bQ is

NCG(Q)(CD(Q), bQ CD(Q))/CD(Q)CCG(Q)(CD(Q))

≤ NG(Q CD(Q), bQ CD(Q))∩CG(Q)/CD(Q)CG(Q CD(Q)).

All odd-order automorphisms of

AutF(Q CD(Q))= NG(Q CD(Q), bQ CD(Q))/CG(Q CD(Q))

come from restrictions of AutF(D). However, the automorphism of order 5 in
AutF(D) cannot centralize Q since 2< d . Hence, the inertial index of bQ is 1 and
l(bQ)= 1. Finally, [Olsson 1980, Theorem 5.11] and the remark following it show

1= l(bQ)≥ m(1)
BQ
(Q)+m(1)

BQ
(ND(Q))= m(1)

BQ
(Q)+ 1

and m(1)
BQ
(Q)= 0. Taking these arguments together, we proved that the elementary

divisors of C are 32, 2, 2, 2, 2, 1, . . . , 1 (including the possibility of no 1 at all).
Using this, our GAP program reveals that the only possibility for the generalized

decomposition numbers is

1 1 1 1 . . . . . . . . .

1 1 . . 1 1 . . . . . . .

1 1 . . . . 1 1 . . . . .

1 1 . . . . . . 1 1 . . .

1 . 1 . 1 . 1 . 1 . 1 1 1
–1 . . 1 . 1 . 1 . 1 3 –1 –1
–1 . . 1 . 1 . 1 . 1 –1 3 –1
–1 . . 1 . 1 . 1 . 1 –1 –1 3



T

(up to permutations and choosing signs as described earlier). In particular, k(B)=13,
k0(B) = 8 and l(B) = 5. Moreover, C is uniquely determined up to basic sets.
Hence, C =Cz up to basic sets because in case z ∈ Z(G), B and bz would coincide.
It remains to determine ki (B) for i > 0. For this, let ψ ∈ Irr(B) be the fourth
character in the numbering above. In particular, ψ has height 0. Then for a
character χ ∈ Irr(B) with h(χ) > 0, we can see that mz

χψ is divisible by 4 but not
by 8. Thus, [Brauer 1968, (5H)] implies k2(B)= 5. �

For the defect group in Proposition 4.3, the inertial index could also be 3. How-
ever, in this case the computational effort is too big.

In [Sambale 2011c], we verified Brauer’s k(B)-conjecture for defect groups of
order at most 32 but not isomorphic to the extraspecial group D8 ∗ D8. We are
finally able to handle this remaining group as well.
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Theorem 4.4. Brauer’s k(B)-conjecture holds for defect groups with a central
cyclic subgroup of index at most 16. In particular, the k(B)-conjecture holds for
the 2-blocks of defect at most 5.

Proof. Let B be a p-block with defect group D of the stated form. By [Sambale
2011c, Theorems 1 and 3], we may assume that there is a major B-subsection (z, bz)

such that D/〈z〉 ∼= C4
2 (in particular, p = 2) and B has inertial index 9. We apply

[Feit 1982, Theorem V.9.17]. For this, it suffices to determine the Cartan matrix
of bz (only up to basic sets). Thus, we may consider a 2-block B with elementary
abelian defect group D of order 16 and inertial index 9. As in [Külshammer
and Sambale 2013, Lemma 2.2], we obtain a list of possible Cartan matrices of B.
However, since we are considering 9×9 matrices it is very hard to see if two of these
candidates only differ by basic sets. In order to reduce the set of possible Cartan
matrices further, we apply various ad hoc matrix manipulations as permutations of
rows and columns and elementary row/column operations. After this procedure, we
end up with a list of only ten possible Cartan matrices of B that might be all equal
up to basic sets. For the purpose of illustrating, we display one of these matrices:

4 –1 1 . 1 1 2 . .

1 4 . 1 –1 1 . 1 1
1 . 4 1 –1 1 2 –1 –1
. 1 1 4 . . . 2 .

1 –1 –1 . 4 . 1 1 1
1 1 1 . . 4 1 1 1
2 . 2 . 1 1 4 . –2
. 1 –1 2 1 1 . 4 .

. 1 –1 . 1 1 –2 . 4


.

It can be seen that all diagonal entries are 4 (for every one of these ten matrices). In
order to apply [Feit 1982, Theorem V.9.17], let C be one of these ten matrices. Then
we have a positive definite integral quadratic form q corresponding to the matrix
16C−1. We need to find the minimal nonzero value of q among all integral vectors.
More precisely, we have to check if a value strictly smaller than 9 is assumed by q .
By [Liebeck 1971, Theorem 1], it suffices to consider only vectors with entries in
{0,±1} (observe that the notation of a quadratic form given by a matrix is the same
in [Feit 1982] and [Liebeck 1971]). Hence, there are only 39 values to consider.
An easy computer computation shows that in fact the minimum of q is at least 9.
So Brauer’s k(B)-conjecture follows from [Feit 1982, Theorem V.9.17]. �

We like to point out that we do not know a single Cartan matrix such that Brauer’s
k(B)-conjecture would not follow from [Héthelyi et al. 2013, Theorem 2.4] or from
[Feit 1982, Theorem V.9.17]. Since these two results are somehow related, it seems
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interesting to investigate the following problem: Let C = (ci j ) ∈ Zl×l be the Cartan
matrix of a p-block with defect d. Assume that for all integral, positive definite
quadratic forms q(x1, . . . , xl(bu))=

∑
1≤i≤ j≤l qi j xi x j we have∑

1≤i≤ j≤l

qi j ci j > pd .

Then prove that xpdC−1xT
≥ l for all 0 6= x ∈ Zl . If this can be done, the k(B)-

conjecture would follow in full generality. A diagonal matrix shows that this
argument fails for arbitrary positive definite, symmetric matrices C .

In the next proposition, we take a closer look at the defect group D8 ∗ D8.

Proposition 4.5. Let B be a block of a finite group G with defect group D∼=D8∗D8.
Suppose that the inertial quotient OutF(D) has order 3 and acts freely on D/8(D).
Then k(B) = 11, k0(B) = 8 and l(B) = 3. Moreover, the Cartan matrix of B is
given by

2

2 1 1
1 2 1
1 1 6


up to basic sets. For the numbers ki (B) (i ≥ 1), we have the following cases:
(k1(B), k2(B)) ∈ {(0, 3), (2, 1)}.

Proof. Let F be the fusion system of B. By [Stancu 2006, Theorem 5.3], F is
controlled by AutF(D). By hypothesis, OutF(D) ∼= C3 acts freely on D/8(D).
Hence, there are two major and five nonmajor subsections. The Cartan matrix of
the nontrivial major subsection (z, bz) is given by

2

2 1 1
1 2 1
1 1 6


up to basic sets. In particular, k(B) ≤ 16. The nonmajor subsections (u, bu) all
satisfy l(bu)= 1. Since B is centrally controlled, we have k(B)≥ 11. The first two
columns of the bz decomposition numbers have the form(

1 1 1 1 . . . . . . . · · · .

1 1 . . 1 1 . . . . . · · · .

)T

up to signs and permutations (compare with the proof of Proposition 4.3). For the
third column, we have essentially 17 possibilities, which we do not list explicitly
here. As in Proposition 4.3, we get k0(B) ∈ {8, 12, 16} and also the positions of the
characters of height 0 depending on the third column of Dz . Since every element of
order 4 in D is conjugate to its inverse, all generalized decomposition numbers are
integers. For each of the 17 cases, we proceed by enumerating the five columns of
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nonmajor subsections with the help of a computer. Entirely similar to the proof of
Proposition 4.3, we see that the elementary divisors of the Cartan matrix of B are
32, 2, 2, 1, . . . , 1. Now the computations reveal k(B) = 11, k0(B) = 8, l(B) = 3
and the Cartan matrix of B up to basic sets. However, the value of k1(B) does
not follow immediately from these calculations. Instead we obtain the two cases
(k1(B), k2(B)) ∈ {(0, 3), (2, 1)}. �

It is easy to construct examples for Proposition 4.5 such that k1(B) = 0. In
contrast, k1(B)= 2 would contradict the ordinary weight conjecture (see [Robinson
2004]).

The next proposition concerns the Sylow 2-subgroup of PSU(3, 4) as mentioned
above. This will result will be used in an upcoming diploma thesis.

Proposition 4.6. Let B be a block of a finite group G with inertial index 15 and
defect group D ∈ Syl2(PSU(3, 4)). Then the elementary divisors of the Cartan
matrix of B lie in {1, 4, 64}, where 4 occurs with multiplicity at most 4.

Proof. Since D is a Suzuki 2-group, [Craven and Glesser 2012, Theorem 4.4] tells
us that the fusion system F of B is controlled. So as in the proof of Proposition 4.3,
the multiplicity of d as an elementary divisor of the Cartan matrix C of B is given by

m(d)=
∑

R∈R′′

m(1)
B (R, bR),

where R′′ is a set of representatives for the AutF(D)-conjugacy classes of subgroups
of D of order d . Assume first d= 2 and m(1)

B (Q, bQ)> 0 for |Q|= 2. Then (Q, bQ)

is a subsection and Q ⊆ Z(D). One can show that bQ has defect group D and
inertial index 5. Moreover, bQ covers a block bQ of CG(Q)/Q with defect group
D/Q ∼= D8 ∗ Q8. Hence, Proposition 4.3 implies that all elementary divisors of the
Cartan matrix of bQ are divisible by 4. This contradiction shows that m(2) = 0.
Now suppose that 2< d < 64. Again we assume m(1)

B (Q, bQ)> 0 such that |Q| = d .
We argue as in the proof of Proposition 4.3. The inertial quotient of bQ is given by

NCG(Q)(CD(Q), bQ CD(Q))/CD(Q)CCG(Q)(CD(Q))

≤ NG(Q CD(Q), bQ CD(Q))∩CG(Q)/CD(Q)CG(Q CD(Q)).

Every odd order automorphism in

NG(Q CD(Q), bQ CD(Q))/CG(Q CD(Q))= AutF(Q CD(Q))

comes from a restriction of AutF(D). Moreover, OutF(D) acts freely on D/8(D).
So in case d > 4, we see that these odd order automorphisms cannot lie in CG(Q).
Hence, in this case l(bQ) = 1 and m(d) = 0 (compare with Proposition 4.3). It
remains to deal with the case Q = Z(D)=8(D). Then we have bQ = bCG(Z(D))

D .
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Moreover, bQ has defect group D and inertial index 5. Looking at the covered
block of CG(Q)/Q, we see that l(bQ)= 5. Hence,

5= l(bQ)≥ m(1)
BQ
(Q)+m(1)

BQ
(ND(Q))= m(1)

BQ
(Q)+ 1

by [Olsson 1980, Theorem 5.11] and the remark following it. This gives m(4)=
m(1)

BQ
(Q)≤ 4, and the proof is complete. �

Our next result handles rather unknown groups of order 32. The key observation
here is that the fusion system is constrained and thus quite easy to understand.

Proposition 4.7. Let B be a nonnilpotent block of a finite group G with defect
group D ∼= SmallGroup(32, q) for q ∈ {28, 29}. Then k(B) = 14, k0(B) = 8,
k1(B)= 6 and l(B)= 2.

Proof. Let F be the fusion system of B. Using GAP, one can show that Aut(D) is a 2-
group. In particular, OutF(D)= 1. Moreover, one can show using general results in
[Sambale 2012b] that D contains only one F-essential subgroup Q. Here C2

2×C4∼=

QED. In particular, F is constrained. Another GAP calculation shows that F is the
fusion system of the groups SmallGroup(96, 187) or SmallGroup(96, 185) for
q ∈ {28, 29}, respectively. We have ten B-subsections up to conjugation. The center
of D is a four-group and 8(Q)⊆ Z(D). Hence, an odd order automorphism of Q
cannot act on Z(D). It follows that we have four major subsections (1, B), (z, bz),
(v, bv) and (w, bw) up to conjugation. Here we may assume that l(bv)= l(bw)= 1.
On the other hand, bz dominates a nonnilpotent block with defect group D/〈z〉 ∼=
D8×C2. Thus, by [Sambale 2011c, Proposition 3] we have l(bz)= 2. Also we find
an element u ∈ Q such that bu is nonnilpotent with defect group Q. Here [Sambale
2011c, Proposition 2] implies l(bu)= 3. The remaining nonmajor subsections split
in one subsection (u1, b1) of defect 16 and four subsections (ui , bi ) (i = 2, 3, 4, 5)
of defect 8. Here l(bi ) = 1 for i = 1, . . . , 5. In particular, Olsson’s conjecture
k0(B)≤ 8= |D : D′| follows at once. Since B is centrally controlled, we also obtain
l(B)≥ 2 and k(B)≥ 14. So the generalized decomposition numbers dvi j consist of
eight entries ±1 and six entries ±2. Hence, k(B)= 14, k0(B)= 8, k1(B)= 6 and
l(B)= 2. �

Also in the next proposition, the corresponding fusion system is easy to under-
stand since it is controlled. Another advantage here is that k(B) is relatively small
so that the computational effort is small as well.

Proposition 4.8. Let D be a central cyclic extension of SmallGroup(32, q) for
q∈{33,34}. Then Brauer’s k(B)-conjecture holds for all blocks with defect group D.

Proof. It suffices to consider a block B with defect group D ∼= SmallGroup(32, q)
for q ∈ {33, 34} as usual. GAP shows that B is a controlled block with inertial
index 3. Hence, the fusion system of B is the same as the fusion system of the
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group D oC3. It follows that there are only six B-subsections up to conjugation;
two of them are major. For 1 6= z ∈ Z(D), we have l(bz) = 1. Let us denote the
four nonmajor subsections by (ui , bi ) for i = 1, . . . , 4. We may assume that b1 has
defect group C3

2 . It is easy to see that AutF(D) restricts to the inertial group of b1.
In particular, l(b1)= e(b1)= 3. Moreover, the Cartan matrix of b1 is given by

2

2 1 1
1 2 1
1 1 2


up to basic sets (see [Sambale 2011b, Theorem 3]). Moreover, b2 has defect 3 and
b3 and b4 have defect 4. Here, l(b2) = l(b3) = l(b4) = 1. In particular, Olsson’s
conjecture k0(B) ≤ 8= |D : D′| follows. Looking at d z

i j , we get k(B) ≤ 14. The
numbers du1

i j can certainly be arranged in the form1 1 1 1 . . . . . · · · .

1 1 . . 1 1 . . . · · · .

1 1 . . . . 1 1 . · · · .

T

.

Using the contributions, it follows that k0(B)= 8. We can easily add the column
for (u2, b2) as(

1 1 −1 · · · −1 0 · · · 0
)T

or
(
1 −1 1 −1 1 −1 1 −1 0 · · · 0

)T
.

We investigate next the elementary divisors of the Cartan matrix of B. For this,
we consider the multiplicity of 〈u1〉 as a lower defect group. The multiplicity of 2
as an elementary divisor of the Cartan matrix of b1 is certainly 2. Since 〈u1〉 is
the only lower defect group of order 2 of b1, we have m(2) = m(1)

B (〈u1〉, b1) =

m(1)
b1
(〈u1〉, b1)= 2. This shows l(B)≥ 3 and k(B)≥ 10. Every automorphism of

order 3 of D fixes only two elements in D. Thus, it follows as in Proposition 4.3 that
m(d)= 0 for 2< d < 32. We have essentially four possibilities for the numbers d z

i j :

• eight entries ±1 and six entries ±2,

• eight entries ±1, two entries ±2 and one entry ±4,

• seven entries ±1, four entries ±2 and one entry ±3 or

• six entries ±1, two entries ±2 and two entries ±3.

In particular, k(B) determines ki (B) for i ≥ 1 uniquely. It remains to add the
generalized decomposition numbers corresponding to (u3, b3) and (u4, b4). Here
the situation is distinguished by q ∈ {33, 34}. Assume first that q = 34. Then u−1

3
and u−1

4 are conjugate to u3 and u4, respectively. Hence, the numbers du3
i j and du4

i j
are integers. It is easy to see that such a column must consist of the following
(nonzero) entries:
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• eight entries ±1 and two entries ±2 and

• seven entries ±1 and one entry ±3.

In contrast, for q = 33 the elements u−1
3 and u4 are conjugate. So we may assume

u4 := u−1
3 , and it suffices to consider the column du3

i j whose entries are Gaussian
integers. Let us write du3

χϕ3
:= a(χ)+ b(χ)i , where IBr(b3) = {ϕ3}, a, b ∈ Zk(B)

and i :=
√
−1. Then (a, a)= (b, b)= 8 and (a, b)= 0. Since we have only one

pair of algebraically conjugate subsections, there is only one pair of 2-conjugate
characters (see [Feit 1982, Lemma IV.6.10]). This shows that b consists of two
entries ±2. Now k0(B)= 8 implies that a has eight entries ±1.

As usual, we enumerate all these configurations of the generalized decomposition
matrix and obtain the Cartan matrix of B as orthogonal space. However, we get two
possibilities l(B) ∈ {3, 4}. We are not able to exclude the case l(B)= 4 despite its
contradiction of Alperin’s weight conjecture. Anyway in both cases l(B) ∈ {3, 4},
all candidates for the Cartan matrix satisfy [Héthelyi et al. 2013, Theorem 2.4]. The
claim follows. �

We add a short discussion about the defect group

D := SmallGroup(32, 27)
∼= 〈a, b, c | a2

= b2
= c2
= [a, b] = [a, ca] = [ca, b] = [b, cb] = 1〉 ∼= C4

2 oC2.

Let F be a nonnilpotent fusion system on D. One can show Q := 〈a, b, ca, cb〉 ∼= C4
2

is the only possible F-essential subgroup. In particular, F is controlled or con-
strained (note that controlled is a strong form of constrained). In the controlled
case, we have F=FD(DoC3)=FD(SmallGroup(96, 70)). In the noncontrolled
case, we have various possibilities for F according to OutF(Q)∈ {S3, D10, S3×C3,

SmallGroup(18, 4), D10×C3} (see [Sambale 2012b, Lemma 3.11]). These possi-
bilities are represented by the following groups:

SmallGroup(96, 195), SmallGroup(288, 1025),

SmallGroup(96, 227), SmallGroup(288, 1026),

SmallGroup(160, 234), SmallGroup(480, 1188).

Here observe that in case OutF(Q)= S3 there are essentially two different actions of
OutF(Q) on Q. The cases OutF(Q)∈ {S3×C3, SmallGroup(18, 4)} also differ by
OutF(D) ∈ {C3, 1}, respectively. Additionally, for OutF(Q)= SmallGroup(18, 4)
there exists a nontrivial 2-cocycle on OutF(Q) (on the other hand, the Künneth
formula implies H2(S3×C3, F×)= 0 for an algebraically closed field F of char-
acteristic 2). This gives even more examples for blocks with defect group D. For
example, a nonprincipal 2-block of SmallGroup(864, 3996) has defect group D
and only one irreducible Brauer character. In all these examples, l(B) assumes the
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values 1, 2, 3, 5, 6, 9. We will not consider the block invariants in full generality
although it might be possible. We also end the discussion about the remaining
groups of order 32. In most cases (especially when 9×9 Cartan matrices show up),
the computational effort to compute the corresponding block invariants is too big.

In the following table, we enumerate all groups of order 32 by using the small
groups library and give information about blocks with corresponding defect groups.
In many cases, it can be shown with GAP that there are no nontrivial fusion systems.
These cases were also determined in [van der Waall 1991], but with the enumeration
of [Hall and Senior 1964]. Using a conversion between both enumerations provided
by Eamonn O’Brien, we confirm the results in [van der Waall 1991]. We denote
the modular group of order 2n

≥ 16 by M2n , i.e., the unique group of class 2 with a
cyclic maximal subgroup.

small group # description invariants comments reference

1 C32 known nilpotent
2 MNA(2, 2) known controlled [Sambale 2011a;

Eaton et al. 2012]
3 C8×C4 known nilpotent
4 C8 oC4 known nilpotent [Sambale 2012c]
5 MNA(3, 1) known [Sambale 2011a]
6 MNA(2, 1)oC2 known nilpotent GAP
7 M16 oC2 known nilpotent GAP
8 C2.MNA(2, 1) known nilpotent GAP
9 D8 oC4 known bicyclic Theorem 3.1

10 Q8 oC4 known bicyclic Theorem 3.3
11 C4 oC2 known [Külshammer 1980]
12 C4 oC8 known nilpotent [Sambale 2012c]
13 C8 oC4 known nilpotent [Sambale 2012c]
14 C8 oC4 known nilpotent [Sambale 2012c]
15 C8.C4 known nilpotent [Sambale 2012c]
16 C16×C2 known nilpotent
17 M32 known nilpotent [Sambale 2012c]
18 D32 known maximal class [Brauer 1974]
19 SD32 known maximal class [Olsson 1975]
20 Q32 known maximal class [Olsson 1975]
21 C2

4 ×C2 known controlled [Usami 1988]
22 MNA(2, 1)×C2 known constrained Proposition 4.2
23 (C4 oC4)×C2 known nilpotent GAP
24 C2

4 oC2 known nilpotent GAP
25 D8×C4 known [Sambale 2012a]
26 Q8×C4 known [Sambale 2013b]
27 C4

2 oC2



2266 Benjamin Sambale

small group # description invariants comments reference

28 (C4×C2
2)oC2 known constrained Proposition 4.7

29 (Q8×C2)oC2 known constrained Proposition 4.7
30 (C4×C2

2)oC2 known nilpotent GAP
31 (C4×C4)oC2 known nilpotent GAP
32 C2

2 .C
3
2 known nilpotent GAP

33 (C4×C4)oC2 controlled
34 (C4×C4)oC2 controlled
35 C4 o Q8 known nilpotent GAP
36 C8×C2

2 known controlled [Usami 1988]
37 M16×C2 known nilpotent GAP
38 D8 ∗C8 known [Sambale 2013a]
39 D16×C2 known [Sambale 2012a]
40 SD16×C2 known [Sambale 2013b]
41 Q16×C2 known [Sambale 2013b]
42 D16 ∗C4 known [Sambale 2013a]
43 (D8×C2)oC2

44 (Q8×C2)oC2

45 C4×C3
2 known controlled Theorem 4.1

46 D8×C2
2

47 Q8×C2
2 controlled

48 (D8 ∗C4)×C2 controlled
49 D8 ∗ D8 controlled
50 D8 ∗ Q8 controlled
51 C5

2 controlled

We apply these results to Theorem 2.2.

Theorem 4.9. Let D be a cyclic central extension of one of the following groups:

(i) a metacyclic group,

(ii) a minimal nonabelian group,

(iii) a group of order at most 16,

(iv)
∏n

i=1 C2mi where |{mi : i = 1, . . . , n}| ≥ n− 1,

(v) M ×C where M has maximal class and C is cyclic,

(vi) M ∗C where M has maximal class and C is cyclic,

(vii) D2n oC2m , Q2n oC2m and D2n .C2m as in Theorems 3.1, 3.3 and 3.2,

(viii) SmallGroup(32, q) for q ∈ {11, 22, 28, 29, 33, 34}, or

(ix) a group that admits only the nilpotent fusion system.

Then Brauer’s k(B)-conjecture holds for every 2-block with defect group D.
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Proof. The case (iii) follows from Theorem 4.4. In case (viii), the result follows
from Propositions 4.2, 4.7 and 4.8 and [Külshammer 1980]. In all other cases,
it suffices to show l(B) ≤ 3 for every block B with defect group given in the
remaining list of the statement. For the abelian defect group

∏n
i=1 C2mi where

|{mi : i = 1, . . . , n}| ≥ n−1, it is easy to see that the inertial index e(B) is at most 3.
Thus, results of Puig and Usami [Usami 1988] imply Alperin’s weight conjecture
in this case. Now l(B)≤ 3 follows easily. For the remaining cases, the claim was
shown in [Sambale 2012c; Eaton et al. 2012; Sambale 2011c; 2012a; 2013b; 2013a]
and the present paper. �

One can show with GAP that Theorem 4.9 suffices to verify Brauer’s k(B)-
conjecture for 244 of the 267 defect groups of order 64. Here we also use the
following elementary observation: Let z ∈ Z(D) such that every fusion system
on D/〈z〉 is controlled. If CAut(D)(z) is a 2-group, then Brauer’s k(B)-conjecture
holds for every block with defect group D.

For the group D∼= SmallGroup(64, 265), we can argue even more subtly. Every
block B with defect group D fulfills e(B) ∈ {1, 3, 5}. In case e(B) = 3, we find
an element z ∈ Z(D) such that D/〈z〉 is elementary abelian. Then [Usami 1988]
implies k(B)≤ 64. On the other hand if e(B)= 5, we choose z ∈ Z(D) such that
D/〈z〉 ∼= D8 ∗ Q8. Here the k(B)-conjecture follows from Proposition 4.3.

For the purpose of further research, we state all indices q such that Brauer’s
k(B)-conjecture for the defect group SmallGroup(64, q) is not known so far:

134, 135, 136, 137, 138, 139, 202, 224, 229, 230, 231,

238, 239, 242, 254, 255, 257, 258, 259, 261, 262, 264, 267.

This implies the following corollary:

Corollary 4.10. Let B be a 2-block with defect group D of order at most 64. If D
is generated by two elements, then Brauer’s k(B)-conjecture holds for B.

One can also formulate a version of Theorem 4.9 for k0(B) using Theorem 2.4.
Compare also with [Héthelyi et al. 2013, Theorem 2.5].

Corollary 4.11. Let D be a 2-group containing a cyclic subgroup of index at most 4.
Then Brauer’s k(B)-conjecture holds for every block with defect group D.

Proof. We may assume that D is not metacyclic. In particular, |D|/ exp D = 4.
If D is abelian, the result follows from [Sambale 2011c, Corollary 2]. Hence, let
us assume that D is nonabelian. Then D is one of the groups given in [Ninomiya
1994, Theorem 2]. We will consider this list of groups case by case and apply
Theorem 4.9. We remark that the terms “quasidihedral” and “semidihedral” have
different meanings in [Ninomiya 1994].

The group G1 is metacyclic.
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For the groups G2 and G3, we even know the block invariants precisely.
Now consider G4. Here the element a lies in the center. In particular, the group

is a cyclic central extension of a group of order 4. The k(B)-conjecture follows.
For the group G5, the element b lies in the center. Moreover, G5/〈b〉 is abelian

and has a cyclic subgroup of index 2. Again the claim holds.
The groups G6, G7, G8 and G9 are metacyclic.
The groups G10 and G11 are cyclic central extensions of metacyclic groups.
In G12, the subgroup 〈a〉 is normal; in particular, a2m−3

∈ Z(G12). Moreover, b
is central in G12/〈a2m−3

〉 and G12/〈a2m−3
〉 ∼= D2m−2 ×C2. The claim follows.

In G13 and G14, we see that b is central and the corresponding quotient is
certainly metacyclic.

Next, a2m−3
∈Z(G15) and G15/〈a2m−3

〉∼= D2m−2×C2. Exactly the same argument
applies to G16.

For G17, we have c−1a2c = abab = a2+2m−3
and a4

∈ Z(G17). Since G17/〈a4
〉

has order 16, the claim follows.
The group G18 is slightly more complicated. In general, the core of 〈a〉 has index

at most 8. Thus, a2m−3
is always central (in all of these groups). Adjusting notation

slightly gives

G18/〈a2m−3
〉 ∼= 〈a, b, c | a2m−3

= b2
= c2
= [a, b] = 1, cac = a−1b〉.

We define new elements in this quotient by ṽ := a2b, x̃ := bc and ã := ac. Then
ṽ2m−4

= 1, ã2
= b and ã4

= 1. Moreover, cbc = c(acac)c = b. It follows that
x̃2
= 1 and x̃ ṽ x̃ = ṽ−1. Hence, 〈ṽ, x̃〉 ∼= D2m−3 . Now ãṽã−1

= ca2bc= a−2b= ṽ−1

and finally ã x̃ ã−1
= a2c = ṽ x̃ . Since G18/〈a2m−3

〉 = 〈ṽ, x̃, ã〉, we see that this is
precisely the group from Theorem 3.1. The claim follows.

The groups G19, G20 and G21 are metacyclic.
In G22, the element a4 is central and G22/〈a4

〉 has order 16.
Let us consider G23. As above, we have

G23/〈a2m−3
〉 ∼= 〈a, b, c | a2m−3

= b2
= c2
= [a, b] = 1, cac = a−1+2m−4

b〉

(observe that the relation [b, c] ≡ 1 (mod 〈a2m−3
〉) follows from b ≡ a1+2m−4

cac).
Here we define ṽ := a2+2m−4

b, x̃ := bc and ã := ac. Then again 〈ṽ, x̃〉 ∼= D2m−3 .
Moreover, ã2

= a2m−4
b, ã4

= 1 and ã x̃ ã−1
= bca−1cac = a2+2m−4

c = ṽ x̃ . So
G23/〈a2m−3

〉 is the group from Theorem 3.1.
Now it is easy to see that G24/〈a2m−3

〉 ∼= G25/〈a2m−3
〉 ∼= G23/〈a2m−3

〉.
Finally the group G26 has order 32, so also here the k(B)-conjecture holds. This

completes the proof. �

For every integer n ≥ 6, there are exactly 33 groups of order 2n satisfying the
hypothesis of Corollary 4.11.
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5. Olsson’s conjecture

We have seen in [Héthelyi et al. 2013] that Olsson’s conjecture holds for all con-
trolled 2-blocks of defect at most 5. Using the table above, we remove the controlled
condition.

Theorem 5.1. Olsson’s conjecture holds for all 2-blocks of defect at most 5.

Proof. By the remark above it, suffices to consider only the defect groups D :=
SmallGroup(32,m) where m ∈ {27, 43, 44, 46}. Let B be a block with defect
group D and fusion system F. Then we can find (with GAP) an element u ∈ D
such that |CD(u)| = |D : D′|. Moreover, we can choose u such that every element
v ∈ D of the same order also satisfies |CD(u)| = |D : D′|. Hence, the subgroup 〈u〉
is fully F-centralized. In particular, CD(u) is a defect group of the block bu . Now
the claim follows from [Héthelyi et al. 2013, Proposition 2.5(ii)]. �

In [Héthelyi et al. 2013], we also verified Olsson’s conjecture for defect groups
of p-rank 2 provided p > 3. We use the opportunity to explore the case p = 3 in
more detail.

Theorem 5.2. Let B be a 3-block of a finite group G with defect group D. Assume
that D has 3-rank 2 but not maximal class. Then Olsson’s conjecture holds for B.

Proof. By [Héthelyi et al. 2013, Theorem 5.6], we may assume that the fusion
system F of B is not controlled. Then |D| ≥ 34 since D does not have maximal
class. By [Díaz et al. 2007, Theorems 4.1 and 4.2], it remains to handle the groups
D = G(3, r; ε) of order 3r where r ≥ 5 and ε ∈ {±1} as in [Díaz et al. 2007,
Theorem 4.7] (by [Díaz et al. 2007, Remark A.3], G(3, 4; ε) has maximal class).
Assume that D is given by generators and relations as in Theorem A.1 of the same
paper. Consider the element x := ac. By [Díaz et al. 2007, Lemma A.8], x is not
contained in the unique F-essential (F-Alperin) subgroup C(3, r − 1)= 〈a, b, c3

〉.
In particular, 〈x〉 is fully F-centralized, and the block bx of the subsection (x, bx)

has defect group CD(x). It is easy to see that D′ = 〈b, c3r−3
〉 ∼= C p × C p. It

follows that x3r−4
≡ c3r−4

6≡ 1 (mod D′) and |〈x〉| ≥ 3r−3. As usual, we have
|CD(x)| ≥ |D : D′| = 3r−2. In case |CD(x)| ≥ 3r−1, we get the contradiction
b ∈ D′ ⊆ CD(x). Hence, |CD(x)| = |D : D′| and CD(x)/〈x〉 is cyclic. Now
Olsson’s conjecture for B follows from [Héthelyi et al. 2013, Proposition 2.5]. �

Theorem 5.3. Let B be a 3-block of a finite group with defect group D of order at
least 34. Assume that D has maximal class but is not isomorphic to the group

B(3, r; 0, 0, 0)=
〈
s, s1, . . . , sr−1

∣∣ s3
= s3

r−2 = s3
r−1 = [s1, s2] = · · · = [s1, sr−1]

= s3
1s3

2s3 = · · · = s3
r−3s3

r−2sr−1 = 1, si = [si−1, s] for i = 2, . . . , r − 1
〉

of order 3r . Then Olsson’s conjecture holds for B.
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Proof. By [Héthelyi et al. 2013, Theorem 5.6], we may assume that the fusion
system F of B is not controlled. Then F is given as in [Díaz et al. 2007, Theorem
5.10]. In particular, D = B(3, r; 0, γ, 0) is given by generators and relations as in
[Díaz et al. 2007, Theorem A.2] where γ ∈ {1, 2}. Let D1 be as in [Huppert 1967,
Definition III.14.3]. Observe that in the notation of [Díaz et al. 2007; Blackburn
1958] we have D1 = γ1(D). From [Díaz et al. 2007, Proposition A.9] we see that
x := ss1 /∈ D1. Moreover, we have x3

6= 1 also by the same proposition. Then by
[Díaz et al. 2007, Lemma A.15], x does not lie in one of the centric subgroups D1,
Ei or Vi for i ∈ {−1, 0, 1}. This shows that x is not F-conjugate to an element in D1.
By [Huppert 1967, Satz III.14.17], D is not an exceptional group. In particular,
[Huppert 1967, Hilfssatz III.14.13] implies |CD(y)|= 9=|D : D′| for all y ∈ D\D1.
Hence, 〈x〉 is fully F-centralized. Thus, the block bx of the subsection (x, bx) has
defect group CD(x). Now Olsson’s conjecture follows from [Héthelyi et al. 2013,
Proposition 2.5]. �

We remark that the method in Theorem 5.3 does not work for the groups
B(3, r; 0, 0, 0). For example, every block of a subsection of the principal 3-block
of 3 D4(2) has defect at least 3 (here r = 4). However, |D : D′| = 32 for every
3-group of maximal class.
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