Vol. 7, No. 9, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 12, 2133–2308
Issue 11, 1945–2131
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Moduli of elliptic curves via twisted stable maps

Andrew Niles

Vol. 7 (2013), No. 9, 2141–2202
Abstract

Abramovich, Corti and Vistoli have studied modular compactifications of stacks of curves equipped with abelian level structures arising as substacks of the stack of twisted stable maps into the classifying stack of a finite group, provided the order of the group is invertible on the base scheme. Recently Abramovich, Olsson and Vistoli extended the notion of twisted stable maps to allow arbitrary base schemes, where the target is a tame stack, not necessarily Deligne–Mumford. We use this to extend the results of Abramovich, Corti and Vistoli to the case of elliptic curves with level structures over arbitrary base schemes; we prove that we recover the compactified Katz–Mazur regular models, with a natural moduli interpretation in terms of level structures on Picard schemes of twisted curves. Additionally, we study the interactions of the different such moduli stacks contained in a stack of twisted stable maps in characteristics dividing the level.

Keywords
generalized elliptic curve, twisted curve, Drinfeld structure, moduli stack
Mathematical Subject Classification 2010
Primary: 11G18
Secondary: 14K10, 14H10, 14D23, 14H52
Milestones
Received: 1 August 2012
Revised: 4 January 2013
Accepted: 9 February 2013
Published: 18 December 2013
Authors
Andrew Niles
Department of Mathematics
University of California, Berkeley
Berkeley, CA 94720
United States
http://math.berkeley.edu/~andrew/