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Intermediate co-t-structures,
two-term silting objects,

τ -tilting modules, and torsion classes
Osamu Iyama, Peter Jørgensen and Dong Yang

If (A,B) and (A′,B′) are co-t-structures of a triangulated category, then (A′,B′)
is called intermediate if A⊆ A′ ⊆6A. Our main results show that intermediate
co-t-structures are in bijection with two-term silting subcategories, and also with
support τ -tilting subcategories under some assumptions. We also show that
support τ -tilting subcategories are in bijection with certain finitely generated
torsion classes. These results generalise work by Adachi, Iyama, and Reiten.

Introduction

The aim of this paper is to discuss the relationship between the following objects:

• Intermediate co-t-structures.

• Two-term silting subcategories.

• Support τ -tilting subcategories.

• Torsion classes.

The motivation is that if T is a triangulated category with suspension functor 6
and (X,Y) is a t-structure of T with heart H = X∩6Y, then there is a bijection
between “intermediate” t-structures (X′,Y′) with 6X⊆ X′ ⊆ X and torsion pairs
of H. This is due to [Beligiannis and Reiten 2007, Theorem 3.1] and [Happel et al.
1996, Proposition 2.1]; see [Woolf 2010, Proposition 2.3].

We will study a co-t-structure analogue of this which also involves silting sub-
categories, that is, full subcategories S ⊆ T with thick closure equal to T which
satisfy HomT(S, 6

iS)= 0 for i ≥ 1. Silting subcategories are a useful generalisation
of tilting subcategories.

The next theorem follows from the bijection between bounded co-t-structures
and silting subcategories in [Mendoza Hernández et al. 2013, Corollary 5.9]. See
[Pauksztello 2008] and [Aihara and Iyama 2012] for background on co-t-structures
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and silting subcategories. Note that the co-heart of a co-t-structure (A,B) is
A ∩6−1B. If F, G are full subcategories of a triangulated category, then F ∗ G

denotes the full subcategory of objects e which permit a distinguished triangle
f → e→ g with f ∈ F, g ∈ G.

Theorem 0.1 (Theorem 2.2). Let T be a triangulated category, (A,B) a bounded co-
t-structure of T with co-heart S. Then we have a bijection between the following sets:

(i) Co-t-structures (A′,B′) of T with A⊆ A′ ⊆6A.

(ii) Silting subcategories of T which are in S ∗6S.

The co-t-structures in (i) are called intermediate. The silting subcategories in
(ii) are called two-term, motivated by the existence of a distinguished triangle
s1 → s0 → s ′ with si ∈ S for each s ′ ∈ S′. The theorem reduces the study of
intermediate co-t-structures to the study of two-term silting subcategories.

Our main results on two-term silting subcategories and τ -tilting theory can be
summed up as follows. We extend the notion of support τ -tilting modules for finite-
dimensional algebras over fields given in [Adachi et al. 2014] to essentially small ad-
ditive categories; see Definitions 1.3 and 1.5. For a commutative ring k, we say that
a k-linear category is Hom-finite if each Hom-set is a finitely generated k-module.

Theorem 0.2 (Theorems 3.4 and 4.6). Let T be a triangulated category with a
silting subcategory S. Assume that each object of S ∗6S can be written as a direct
sum of indecomposable objects unique up to isomorphism. Then there is a bijection
between the following sets:

(i) Silting subcategories of T which are in S ∗6S.

(ii) Support τ -tilting pairs of mod S.

If T is Krull–Schmidt, k-linear and Hom-finite over a commutative ring k, and
S= add s for a silting object s, then there is a bijection between the following sets:

(iii) Basic silting objects of T which are in S ∗6S, modulo isomorphism.

(iv) Basic support τ -tilting modules of mod E , modulo isomorphism, where E =
EndT(s).

Note that in this case, there is a bijection between (i) and (iii) by [Aihara and Iyama
2012, Proposition 2.20, Lemma 2.22(a)].

Note that Theorem 0.2 is a much stronger version of Theorem 3.2 of [Adachi
et al. 2014], where T is assumed to be the homotopy category of bounded complexes
of finitely generated projective modules over a finite-dimensional algebra 3 over a
field, and s is assumed to be 3.
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Moreover, we give the following link between τ -tilting theory and torsion classes.
Our main result shows that support τ -tilting pairs correspond bijectively with certain
finitely generated torsion classes, which is a stronger version of [Adachi et al. 2014,
Theorem 2.7]. Note that FacM is the subcategory of ModC consisting of factor
objects of finite direct sums of objects of M, and P(T) denotes the Ext-projective
objects of T; see Definition 1.7.

Theorem 0.3 (Theorem 5.1). Let k be a commutative noetherian local ring and
C an essentially small, Krull–Schmidt, k-linear Hom-finite category. There is a
bijection M 7→ FacM from the first of the following sets to the second:

(i) Support τ -tilting pairs (M,E) of modC.

(ii) Finitely generated torsion classes T of ModC such that each finitely generated
projective C-module has a left P(T)-approximation.

1. Basic definitions

Let C be an additive category. When we say that U is a subcategory of C, we always
assume U is full and closed under finite direct sums and direct summands. For a
collection U of objects of C, we denote by addU the smallest subcategory of C
containing U.

Let C be an essentially small additive category. We write ModC for the abelian
category of contravariant additive functors from C to the category of abelian groups,
and modC for the full subcategory of finitely presented functors; see [Auslander
1974, pp. 184, 204].

The suspension functor of a triangulated category is denoted by 6.
We first recall the notions of co-t-structures and silting subcategories.

Definition 1.1. Let T be a triangulated category. A co-t-structure on T is a pair
(A,B) of full subcategories of T such that:

(i) 6−1A⊆ A and 6B⊆ B.

(ii) HomT(a, b)= 0 for a ∈ A and b ∈ B.

(iii) For each t ∈ T there is a triangle a→ t→ b→6a in T with a ∈ A and b ∈ B.

The co-heart is defined as the intersection A ∩ 6−1B. See [Pauksztello 2008;
Bondarko 2010].

Definition 1.2. Let T be a triangulated category.

(i) A subcategory U of T is called a presilting subcategory if T(u, 6≥1u′)= 0 for
any u, u′ ∈ U.

(ii) A presilting subcategory S ⊆ T is a silting subcategory if thick(S) = T; see
[Aihara and Iyama 2012, Definition 2.1(a)]. Here thick(S) denotes the smallest
thick subcategory of T containing S.
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(iii) An object u ∈ T is called a presilting object if it satisfies T(u, 6≥1u) = 0,
namely, if add(u) is a presilting subcategory. Similarly an object u ∈ T is
called a silting object if add(u) is a silting subcategory.

Next we introduce the notion of support τ -tilting subcategories.

Definition 1.3. Let C be an essentially small additive category.

(i) Let M be a subcategory of modC. A class
{

P1
πm

−→ P0→ m→ 0 | m ∈M
}

of
projective presentations in modC is said to have property (S) if

HommodC(π
m,m′) : HommodC(P0,m′)→ HommodC(P1,m′)

is surjective for any m,m′ ∈M.

(ii) A subcategory M of modC is said to be τ -rigid if there is a class of projective
presentations {P1→ P0→ m→ 0 | m ∈M} which has property (S).

(iii) A τ -rigid pair of modC is a pair (M,E), where M is a τ -rigid subcategory of
modC and E⊆ C is a subcategory with M(E)= 0, that is, m(e)= 0 for each
m ∈M and e ∈ E.

(iv) A τ -rigid pair (M,E) is support τ -tilting if E = Ker(M) and for each s ∈ C

there exists an exact sequence C(−, s)
f
−→ m0

→ m1
→ 0 with m0,m1

∈M

such that f is a left M-approximation.

It is useful to recall the notion of Krull–Schmidt categories:

Definition 1.4. An additive category C is called Krull–Schmidt if each of its objects
is the direct sum of finitely many objects with local endomorphism rings. It
follows that these finitely many objects are indecomposable and determined up to
isomorphism; see [Bass 1968, Theorem I.3.6]. It also follows that C is idempotent
complete; that is, for an object c of C and an idempotent e ∈ C(c, c), there exist
objects c1 and c2 such that c = c1⊕ c2 and e = idc1 ; see [Keller 2013, 5.1].

(i) An object c ∈ C is basic if it has no repeated indecomposable direct summands.

(ii) For an object c ∈ C, let #C(c) denote the number of pairwise nonisomorphic
indecomposable direct summands of c.

The following is a version of Definition 1.3 for rings:

Definition 1.5. Let E be a ring such that mod E is Krull–Schmidt.

(i) A module U ∈ mod E is called τ -rigid if there is a projective presentation
P1

π
−→ P0→U → 0 in mod E such that HomE(π,U ) is surjective.

(ii) A τ -rigid module U ∈mod E is called support τ -tilting if there is an idempotent
e ∈ E which satisfies Ue = 0 and #mod E(U )= #prj(E/EeE)(E/EeE).
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Remark 1.6. Part (ii) of the definition makes sense because prj(E/EeE) is Krull–
Schmidt. Namely, since mod E is Krull–Schmidt, it follows that prj E is Krull–
Schmidt with additive generator EE . The same is hence true for (prj E)/[add eE]
for each idempotent e ∈ E , and it is not hard to check that the endomorphism ring
of EE in (prj E)/[add eE] is E/EeE , so there is an equivalence of categories

(prj E)/[add eE] −→∼ prj(E/EeE).

Hence prj(E/EeE) is Krull–Schmidt.
If E is a finite-dimensional algebra over a field, then the definition coincides

with the original definition of basic support τ -tilting modules by Adachi, Iyama
and Reiten [Adachi et al. 2014, Definition 0.1(c)].

Finally we introduce the notion of torsion classes:

Definition 1.7. Let C be an essentially small additive category and T a full subcat-
egory of ModC.

(i) We say that T is a torsion class if it is closed under factor modules and
extensions.

(ii) For a subcategory M of ModC, we denote by FacM the subcategory of ModC

consisting of factor objects of objects of M.

(iii) We say that a torsion class T is finitely generated if there exists a full subcate-
gory M of modC such that T= FacM. Clearly the objects in FacM are finitely
generated C-modules, which are not necessarily finitely presented.

(iv) An object t of a torsion class T is Ext-projective if Ext1ModC(t,T) = 0. We
denote by P(T) the full subcategory of T consisting of all Ext-projective
objects of T.

2. Silting subcategories and co-t-structures

In this section, T is an essentially small, idempotent complete triangulated category.
Let (A,B) be a co-t-structure on T. It follows from the definition that

A= {t ∈ T | Hom(t, b)= 0 for all b ∈ B},

B= {t ∈ T | Hom(a, t)= 0 for all a ∈ A}.

In particular, both A and B are idempotent complete and extension closed. Hence
so is the co-heart S= A∩6−1B. Set

S ∗6S= {t ∈ T | there is a triangle s1→ s0→ t→6s1 with s0, s1 ∈ S} ⊆ T.

The following lemma will often be used without further remark:
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Lemma 2.1. There is an equality S∗6S=6A∩6−1B. As a consequence, S∗6S

is idempotent complete and extension closed.

Proof. The inclusion S ∗6S ⊆ 6A∩6−1B is clear, because both S and 6S are
contained in 6A∩6−1B, which is extension closed. Next we show the opposite
inclusion. Let t ∈ 6A ∩ 6−1B. Then by Definition 1.1(iii) there is a triangle
a→ t→ b→6a with a ∈ A and b ∈ B. Since both t and 6a are in 6A, so is b
due to the fact that A is extension closed. Thus b ∈6A∩B=6S. Similarly, one
shows that a ∈ S. Thus we obtain a triangle 6−1b→ a→ t→ b with 6−1b and a
in S, meaning that t ∈ S ∗6S. �

It is easy to see that Hom(s, 6≥1s ′)= 0 for any s, s ′ ∈ S. That is, S is a presilting
subcategory of T. The co-t-structure (A,B) is said to be bounded if⋃

n∈Z

6nB= T=
⋃
n∈Z

6nA.

Theorem 2.2 [Mendoza Hernández et al. 2013, Corollary 5.9]. There is a bijection
(A,B) 7→ A∩6−1B from the first of the following sets to the second:

(i) Bounded co-t-structures on T.

(ii) Silting subcategories of T.

This result has the following consequence:

Theorem 2.3. Let (A,B) be a bounded co-t-structure on T with co-heart S. Then
there is a bijection (A′,B′) 7→ A′ ∩6−1B′ from the first of the following sets to
the second:

(i) Bounded co-t-structures (A′,B′) on T with A⊆ A′ ⊆6A.

(ii) Silting subcategories of T which are in S ∗6S.

Proof. Let (A′,B′) be a bounded co-t-structure on T with A ⊆ A′ ⊆ 6A. Then
B⊇ B′ ⊇6B. It follows that A′∩6−1B′ ⊆6A∩6−1B= S∗6S. The last equality
is by Lemma 2.1.

Let S′ be a silting subcategory of T which is in S ∗6S. Let A′ be the smallest
extension closed subcategory of T containing 6≤0S′ and B′ the smallest extension
closed subcategory of T containing 6≥1S′. Then (A′,B′) is the bounded co-t-
structure corresponding to S′ as in Theorem 2.2; see [Mendoza Hernández et al.
2013, Corollary 5.9]. Since S′ ⊆ S ∗ 6S, it follows that A′ is contained in the
smallest extension closed subcategory of T containing 6≤1S, which is exactly
6A. Similarly, one shows that B′ is contained in B, implying that A′ contains A.
Thus, A⊆ A′ ⊆6A. �
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The co-t-structures in (i) are called intermediate with respect to (A,B). The
silting subcategories in (ii) are called 2-term with respect to S. Clearly, if (A′,B′)
is intermediate with respect to (A,B), then (A,B) is intermediate with respect to
(6−1A′, 6−1B′). The next result is a corollary of Theorems 2.2 and 2.3:

Corollary 2.4. Let S and S′ be two silting subcategories of T. If S′ is 2-term with
respect to S, then S is 2-term with respect to 6−1S′.

3. Two-term silting subcategories and support τ -tilting pairs

In this section, T is an essentially small, idempotent complete triangulated category,
and S⊆ T is a silting subcategory.

Remark 3.1. (i) There is a functor

F : T→Mod S, t 7→ T(−, t)|S,

sometimes known as the restricted Yoneda functor.

(ii) By Yoneda’s lemma, for M ∈Mod S and s ∈ S, there is a natural isomorphism

HomModS(S(−, s),M)−→∼ M(s);

see [Auslander 1974, p. 185].

(iii) By [Iyama and Yoshino 2008, Proposition 6.2(3)], the functor F from (i)
induces an equivalence

(S ∗6S)/[6S] −→∼ mod S. (1)

This follows from that proposition by setting X= S, Y=6S, and observing
that the proof works in the generality of the present paper.

Lemma 3.2. Let U be a full subcategory of S ∗6S. For u ∈ U let

su
1

σ
−−→ su

0 −→ u −→6su
1 (2)

be a distinguished triangle in T with su
0 , su

1 ∈ S. Applying the functor F gives a
projective presentation

PU
1

πu

−−→ PU
0 −→U −→ 0 (3)

in mod S, and

U is a presilting subcategory ⇐⇒ the class {πu
| u ∈ U} has property (S).
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Proof. Clearly, F applied to the distinguished triangle (2) gives the projective
presentation (3).

To get the bi-implication in the last line of the lemma, first note that for u, u′ ∈ U
we have

T(u, 6≥2u′)= 0 (4)
since u, u′ ∈ S ∗6S.

By Remark 3.1(ii), the map HommodS(π, F(u′)) is the same as

T(su
0 , u′)→ T(su

1 , u′). (5)

So the class {πu
| u ∈U} has property (S) if and only if the morphism (5) is surjective

for all u, u′ ∈ U. However, the distinguished triangle (2) induces an exact sequence

T(su
0 , u′)−→ T(su

1 , u′)−→ T(6−1u, u′)−→ T(6−1su
0 , u′),

where the last module is 0 since u′ ∈ S ∗6S. So (5) is surjective if and only if
T(6−1u, u′) ∼= T(u, 6u′) = 0. This happens for all u, u′ ∈ U if and only if U is
presilting, because of (4). �

Theorem 3.3. The functor F : T→Mod S induces a surjection

8 : U 7→ (F(U), S∩6−1U)

from the first of the following sets to the second:

(i) Presilting subcategories of T which are contained in S ∗6S.

(ii) τ -rigid pairs of mod S.

It restricts to a surjection 9 from the first of the following sets to the second:

(iii) Silting subcategories of T which are contained in S ∗6S.

(iv) Support τ -tilting pairs of mod S.

Proof. We need to prove

(a) The map 8 has values in τ -rigid pairs of mod S.

(b) The map 8 is surjective.

(c) The map 9 has values in support τ -tilting pairs of mod S.

(d) The map 9 is surjective.

(a) Let U be a presilting subcategory of T which is contained in S ∗ 6S. For
each u ∈ U, there is a distinguished triangle s1→ s0→ u→ 6s1 with s0, s1 ∈ S.
Lemma 3.2 says that F sends the set of these triangles to a set of projective
presentations (3) which has property (S), because U is presilting. It remains to show
that for u ∈ U and u′ ∈ S∩6−1U we have F(u)(u′)= 0. This is again true because
F(u)(u′)= T(u′, u) and U is presilting.
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(b) Let (M,E) be a τ -rigid pair of mod S. For each m ∈ M take a projective
presentation

P1
πm

−−→ P0 −→ m −→ 0 (6)

such that the class {πm
|m ∈M} has property (S). By Remark 3.1(ii) there is a unique

morphism fm : s1→ s0 in S such that F( fm)= π
m . Moreover, F(cone( fm))∼= m.

Since (6) has property (S), it follows from Lemma 3.2 that the category

U1 := {cone( fm) |m ∈M}

is a presilting subcategory, and the inclusion U1 ⊆ S ∗6S is clear. Let U be the
additive hull of U1 and6E in S∗6S. Now we show that U is a presilting subcategory
of T. Let e ∈ E. Clearly we have T(cone( fm)⊕6e, 62e)= 0. Applying T(e,−)
to a triangle s1

fm
−−→ s0→ cone( fm)→6s1, we have an exact sequence

T(e, s1)
fm
−−→ T(e, s0)−→ T(e, cone( fm))−→ 0,

which is isomorphic to P1(e)
πm

−−→ P0(e)→ m(e)→ 0 by Remark 3.1(ii). The
condition M(E)= 0 implies that T(e, cone( fm))= 0. Thus the assertion follows. It
is clear that 8(U)= (M,E).

(c) Let U be a silting subcategory of T which is contained in S ∗6S.
Let s ∈ S be an object of Ker F(U), i.e., T(s, u)= 0 for each u ∈ U. This implies

that U⊕ add(6s) is also a silting subcategory of T in S ∗6S. It follows from
[Aihara and Iyama 2012, Theorem 2.18] that 6s belongs to U, whence s belongs
to 6−1U and hence to S∩6−1U. This shows the inclusion Ker F(U)⊆ S∩6−1U.
The reverse inclusion was shown in (a), so Ker F(U)= S∩6−1U.

By Corollary 2.4, we have S ⊆ (6−1U) ∗U. In particular, for s ∈ S, there is a
distinguished triangle

s −→ u0
−→ u1

−→6s. (7)

Applying F , we obtain an exact sequence

F(s)
f
−−→ F(u0)−→ F(u1)−→ 0. (8)

For each u ∈ U, we have the commutative diagram

T(u0, u) //

��

T(s, u) //

��

T(u1, 6u)= 0

HommodS(F(u0), F(u))
f ∗
// HommodS(F(s), F(u))
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The right vertical map is induced from the Yoneda embedding, so it is bijective. It
follows that f ∗ is surjective, that is, f is a left F(U)-approximation. Altogether,
we have shown that 8(U) is a support τ -tilting pair of mod S.

(d) Let (M,E) be a support τ -tilting pair of mod S, and let U be the preimage of
(M,E) under the map 8 constructed in (b).

By definition, for each s ∈ S there is an exact sequence F(s)
f
−→ F(u0

s )→

F(u1
s )→ 0 such that u0

s , u1
s ∈ U and f is a left F(U)-approximation. By Yoneda’s

lemma, there is a unique morphism α : s → u0
s such that F(α) = f . Form the

distinguished triangle
s

α
−−→ u0

s −→ ts −→6s. (9)

Let Ũ be the additive closure of U and {ts | s ∈ U}. We claim that Ũ is a silting
subcategory of T contained in S ∗6S such that 8(Ũ)= (M,E).

First, ts ∈ u0
s ∗6s ⊆ S ∗6S. Therefore, Ũ⊆ S ∗6S.

Second, by applying F to the triangle (9), we see that F(ts) and F(u1
s ) are

isomorphic in mod S. For u ∈ U, consider the following commutative diagram.

T(u0
s , u) α∗ //

F(−)
��

T(s, u) //

∼=

��

T(ts, 6u) // T(u0
s , 6u)= 0

HommodS(F(u0
s ), F(u))

f ∗
// HommodS(F(s), F(u))

By Remark 3.1(iii), the map F(−) is surjective. Because f is a left F(U)-approx-
imation, f ∗ is also surjective. So α∗ is surjective too, implying that T(ts, 6u)= 0.
On the other hand, applying T(u,−) to the triangle (9), we obtain an exact sequence

T(u, 6u0
s )−→ T(u, 6ts)−→ T(u, 62s).

The two outer terms are trivial, hence so is the middle term. Moreover, if s ′ ∈ S,
then applying T(ts′,−) to the triangle (9) gives an exact sequence

T(ts′, 6u0
s )−→ T(ts′, 6ts)−→ T(ts′, 62s).

The two outer terms are trivial, hence so is the middle term. It follows that Ũ is
presilting. It is then silting because it generates S.

Thirdly, F(Ũ)= F(U) because F(ts)∼= F(u1
s ).

Finally, S ∩ 6−1Ũ = E. This is because S ∩ 6−1Ũ ⊇ S ∩ 6−1U = E and
S∩6−1Ũ⊆ Ker F(U)= E. �

Theorem 3.4. Assume that each object of S ∗6S can be written as the direct sum
of indecomposable objects which are unique up to isomorphism. Then the maps 8
and 9 defined in Theorem 3.3 are bijective.
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Proof. It suffices to show the injectivity of 8.
By Remark 3.1(iii), when we apply the functor F : S ∗6S→ mod S, we are

in effect forgetting the indecomposable direct summands which are in 6S. So if
F(u)∼= F(u′) for u, u′ ∈ S ∗6S, then there is an isomorphism u⊕6s ∼= u′⊕6s ′

for some s, s ′ ∈ S. By the assumption in the theorem, if we assume that u and u′

do not have direct summands in 6S, then u ∼= u′.
Now let U and U′ be two presilting subcategories of T contained in S ∗6S such

that8(U)=8(U′). Let U1 and U′1 be respectively the full subcategories of U and U′

consisting of objects without direct summands in 6S. Then U = U1⊕ (U∩6S)

and U′ = U′1⊕ (U
′
∩6S). Since 8(U)=8(U′), it follows that F(U1)= F(U′1) and

U∩6S= U′ ∩6S. The first equality, by the above argument, implies that U1 = U′1.
Therefore U= U′, which shows the injectivity of 8. �

4. The Hom-finite Krull–Schmidt silting object case

In this section, k is a commutative ring, T is a triangulated category which is
essentially small, Krull–Schmidt, k-linear and Hom-finite, and s ∈ T is a basic
silting object.

We write E=T(s, s) for the endomorphism ring and S=add(s) for the associated
silting subcategory.

Remark 4.1. (i) We write Mod E for the abelian category of right E-modules,
mod E for the full subcategory of finitely presented modules, and prj E for the
full subcategory of finitely generated projective modules.

(ii) Since s is an additive generator of S, there is an equivalence

G :Mod S−→∼ Mod E, M 7→ M(s),

which restricts to an equivalence

mod S−→∼ mod E, M 7→ M(s).

This permits us to move freely between the “E-picture” and the “S-picture”
which was used in the previous section.

(iii) The restricted Yoneda functor F from the S-picture corresponds to the functor

T→Mod E, t 7→ T(s, t)

in the E-picture.

(iv) By [Auslander 1974, Proposition 2.2(e)] the functor t 7→ T(s, t) from (iii)
restricts to an equivalence

Y : S−→∼ prj E .
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Since S = add(s) is closed under direct sums and summands, it is Krull–
Schmidt, and it follows that so is prj E .

(v) By Remark 3.1(iii) the functor t 7→ T(s, t) from (iii) induces an equivalence

(S ∗6S)/[6S] −→∼ mod E . (10)

Since S∗6S is obviously closed under direct sums, and under direct summands
by Lemma 2.1, it is Krull–Schmidt. Hence so is (S ∗6S)/[6S] and it follows
that so is mod E .

(vi) The additive category prj E is Krull–Schmidt by part (iv) and has additive
generator EE . The same is hence true for (prj E)/[add eE] for each idem-
potent e ∈ E . It is not hard to check that the endomorphism ring of EE in
(prj E)/[add eE] is E/EeE , so there is an equivalence of categories

(prj E)/[add eE] −→∼ prj(E/EeE).

In particular, prj(E/EeE) is Krull–Schmidt.

The following result is essentially already in [Aihara 2013, Proposition 2.16],
[Fei and Derksen 2011, start of Section 5], and [Wei 2013, Proposition 6.1], all of
which give triangulated versions of Bongartz’s classic proof:

Lemma 4.2 (Bongartz completion). Let u ∈ S ∗6S be a presilting object. Then
there exists an object u′ ∈ S ∗6S such that u⊕ u′ is a silting object.

Proof. This has essentially the same proof as classic Bongartz completion: Since T

is Hom-finite over the commutative ring k, there is a right add(u)-approximation
u0 → 6s. This gives a distinguished triangle s → u′ → u0 → 6s, and it is
straightforward to check that u′ has the desired properties. �

The following result is essentially already contained in [Fei and Derksen 2011,
Theorem 5.4]:

Proposition 4.3. Let u ∈ S ∗6S be a basic presilting object. Then

u is a silting object ⇐⇒ #T(u)= #T(s).

Proof. The implication =⇒ is immediate from [Aihara and Iyama 2012, Theorem
2.27], and⇐= is a straightforward consequence of that theorem and Lemma 4.2. �

As a consequence, we have:

Corollary 4.4. Let U be a presilting subcategory of T contained in S ∗6S. Then
there exists u ∈ U such that U= add(u).
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Proof. Suppose on the contrary that U 6= add(u) for each u ∈ U. Then U contains
infinitely many isomorphism classes of indecomposable objects. In particular, there
is a basic presilting object u ∈ U such that #T(u) = #T(s)+ 1. By Lemma 4.2,
there is an object u′ ∈ T such that u⊕ u′ is a basic silting object of T. Therefore,
#T(s)+ 1 = #T(u) ≤ #T(u ⊕ u′) = #T(s), a contradiction. Here the last equality
follows from Proposition 4.3. �

Theorem 3.3 in the current setting combined with Corollary 4.4 immediately
yields the following result. For an object u of S∗6S, let 6u1 be its maximal direct
summand in 6S.

Theorem 4.5. The assignment

u 7→ (add(F(u)), add(u1))

defines a bijection from the first of the following sets to the second:

(i) Basic presilting objects of T which are in S ∗6S, modulo isomorphism.

(ii) τ -rigid pairs of mod S.

It restricts to a bijection from the first of the following sets to the second:

(iii) Basic silting objects of T which are in S ∗6S, modulo isomorphism.

(iv) Support τ -tilting pairs of mod S.

As a consequence, if (M,E) is a τ -rigid pair of mod S, then there is an S-module M
such that M= add(M).

Next we move to the E-picture. Recall from Remark 4.1(ii) and (iv) that there
are equivalences G :Mod S−→∼ Mod E and Y : S−→∼ prj E .

Theorem 4.6. An E-module U is a support τ -tilting module if and only if the pair(
G−1(add(U )), Y−1(add(eE))

)
is a support τ -tilting pair of mod S for some idempotent e ∈ E.

Consequently, the functor T(s,−) : T→Mod E induces a bijection from the first
of the following sets to the second:

(i) Basic silting objects of T which are in S ∗6S, modulo isomorphism.

(ii) Basic support τ -tilting modules of mod E , modulo isomorphism.

Proof. We only prove the first assertion. The proof is divided into three parts. Let
u p ∈ S ∗6S be such that u p has no direct summand in 6S and F(u p)= G−1(U ).

(a) It is clear that U is a τ -rigid E-module if and only if G−1(add(U )) is a τ -rigid
subcategory of mod S.
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(b) Let e be an idempotent of E and let u1 ∈ S be such that Y (u1)= eE . We have

Ue ∼= HomE(eE,U )

= HomModS(S(−, u1), F(u p))

∼= F(u p)(u1) Remark 3.1(ii).

Therefore Ue=0 if and only if M(u′)=0 for each M ∈add(F(u p))=G−1(add(U ))
and each u′ ∈ add(u1)= Y−1(add(eE)).

(c) Suppose that (G−1(add(U )), Y−1(add(eE))) is a τ -rigid pair. Let u be the
corresponding basic presilting object of T as in Theorem 4.5. More precisely, let
u = u p⊕6u1, where u p and u1 are as above. Then(
G−1(add(U )), Y−1(add(eE))

)
is a support τ -tilting pair

⇐⇒ u is a silting object Theorem 4.5

⇐⇒ #T(u)= #T(s) Proposition 4.3

⇐⇒ #S∗6S(u)= #S(s)

⇐⇒ #S∗6S(u)= #prj E(E) Remark 4.1(iv)

⇐⇒ #(S∗6S)/[6S](u)+ #S∗6S(6u1)= #prj E(E)

⇐⇒ #mod E(U )+ #prj E(eE)= #prj E(E) Remark 4.1(iv), (v)

⇐⇒ #mod E(U )= #prj E(E)− #prj E(eE)

⇐⇒ #mod E(U )= #(prj E)/[add eE](E)

⇐⇒ #mod E(U )= #prj(E/EeE)(E/EeE) Remark 4.1(vi)

⇐⇒ U is a support τ -tilting module. �

5. Support τ -tilting pairs and torsion classes

In this section k is a commutative noetherian local ring and C is an essentially small,
Krull–Schmidt, k-linear and Hom-finite category.

The main result in this section is the following:

Theorem 5.1. There is a bijection M 7→ FacM from the first of the following sets
to the second:

(i) Support τ -tilting pairs (M,E) of modC.

(ii) Finitely generated torsion classes T of ModC such that each finitely generated
projective C-module has a left P(T)-approximation.

We start with the following observation:
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Lemma 5.2. Let M be a subcategory of modC. The following conditions are
equivalent:

(i) M is τ -rigid.

(ii) Ext1ModC(M, FacM)= 0.

(iii) Each m ∈M has a minimal projective presentation

0−→�2m
d2
−−→ P1

d1
−−→ P0 −→ m −→ 0

such that for each m′ ∈ M and each morphism f : P1 → m′, there exist
morphisms a : P0→ m′ and b : P1→�2m such that f = ad1+ f d2b.

0 // �2m
d2 // P1

d1 //

f
��

b
oo P0 //

a~~

m // 0

m′

Proof. (i)=⇒ (ii): For each m∈M, there exists a projective presentation P1
π
−→ P0→

m→ 0 such that HomModC(π,m′) is surjective for each m′ ∈M. Let n ∈ FacM be
given and pick an epimorphism p :m′→n with m′∈M. To show Ext1ModC(m, n)=0,
it is enough to show that each f ∈ HomModC(P1, n) factors through π . Since p is
an epimorphism and P1 is projective, there exists g : P1→ m′ such that f = pg.
Then there exists h : P0→ m′ such that g = hπ , by the property of π .

P1
π //

f

  
g
��

P0 //

h

~~

m // 0

m′ p
// n

Thus f = phπ , and we have the assertion.

(ii) =⇒ (iii): For each m ∈M, take a minimal projective presentation 0→�2m
d2
−−→

P1
d1
−−→ P0→ m→ 0. Let m′ ∈ M and f : P1→ m′ be given, set n := Im( f d2)

and let 0→ n
ι
−→ m′

π
−→ n′→ 0 be an exact sequence. Then π f : P1→ n′ factors

through P1→ Im d1. Since n′ ∈ FacM and Ext1ModC(m, FacM) = 0, there exists
g : P0→ n′ such that gd1 = π f .

0 // �2m
d2
//

f ′

��

P1 //

f
��

Im d1 //

��

0

0 // n
ι

// m′
π

// n′ // 0

0 // Im d1 //

��

P0 //

g��

m // 0

n′
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Since π is an epimorphism and P0 is projective, there exists a : P0→ m′ such that
g=πa. Since π( f −ad1)= 0, there exists h : P1→ n such that f = ad1+ιh. Since
f ′ is surjective (by definition of n) and P1 is projective, there exists b : P1→�2m
such that h = f ′b.

0 // �2m
d2 //

f ′

��

P1
d1 //

f

��

b
oo

h
��

P0 //

a
��

g

��

m // 0

0 // n
ι
// m′

π
// n′ // 0

Then we have f = ad1+ ι f ′b = ad1+ f d2b.

(iii) =⇒ (i): For each m ∈M, take a minimal projective presentation 0→�2m
d2
−−→

P1
d1
−→ P0 → m → 0 satisfying the assumption in (iii). We need to show that

each f : P1 → m′ with m′ ∈ M factors through d1. By our assumption, there
exist a : P0 → m′ and b : P1 → �2m such that f = ad1 + f d2b. Applying our
assumption to f d2b : P1→ m′, there exist a′ : P0→ m′ and b′ : P1→�2m such
that f d2b= a′d1+ f d2bd2b′. Thus f = (a+a′)d1+ f d2bd2b′. Repeating a similar
argument gives

HomModC(P1,m)= HomModC(P0,m)d1+HomModC(P1,m)(rad EndModC(P1))
n

for each n ≥ 1, since d2 ∈ rad HomModC(�
2m, P1). Since C is Hom-finite over k,

we have (rad EndModC(P1))
`
⊂ EndModC(P1)(rad k) for sufficiently large `. Thus

we have

HomModC(P1,m)=
⋂
n≥0

(
HomModC(P0,m)d1+HomModC(P1,m)(rad k)n

)
.

The right-hand side is equal to HomModC(P0,m)d1 itself by Krull’s intersection
theorem [Matsumura 1989]. �

Proposition 5.3. Let (M,E) be a support τ -tilting pair of modC. Then FacM is a
finitely generated torsion class with P(FacM)=M.

Proof. (i) We show that FacM is a torsion class. Clearly FacM is closed under factor
modules. We show that FacM is closed under extensions. Let 0→ x→ y f

−→ z→ 0
be an exact sequence in ModC such that x, z ∈ FacM. Take an epimorphism
p : m→ z with m ∈M. Since Ext1ModC(m, x)= 0 by Lemma 5.2(ii), we have that
p factors through f . Thus we have an epimorphism x ⊕m→ y, and y ∈ FacM

holds. Hence FacM is a torsion class.
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(ii) Since Ext1ModC(M, FacM) = 0 by Lemma 5.2(ii), each object in M is Ext-
projective in FacM. It remains to show that if n is an Ext-projective object in
FacM, then n ∈M. Let P1

f
−→ P0

e
−→ n→ 0 be a projective presentation. Since

M is support τ -tilting, there exist exact sequences Pi
gi
−−→ mi

hi
−−→ m′i → 0 with

mi ,m′i ∈M and a left M-approximation gi for i = 0, 1.
Let C := C/ annM for the annihilator ideal annM of M and Pi := Pi ⊗C C. Then

we have induced exact sequences 0→ Pi
gi
−−→ mi

hi
−−→ m′i → 0 for i = 0, 1 and

P1
f
−→ P0

e
−→ n→ 0. We have a commutative diagram

0 // P1
g1
//

f
��

m1
h1
//

a

��

m′1 //

b
��

0

0 // P0 g0

// m0
h0

// m′0 // 0

of exact sequences. Taking a mapping cone, we have an exact sequence

0−→ P1

[ g1
f

]
−−−−→ m1⊕ P0

[
h1 0
a −g0

]
−−−−−−→ m′1⊕m0

[ b−h0 ]
−−−−−→ m′0 −→ 0.

Since Ext1ModC(m
′

0, n)= 0 by Lemma 5.2(ii), we have the following commutative
diagram.

0 // P1

[ g1
f

]
// m1⊕ P0

[
h1 0
a −g0

]
//

[ 0 1 ]
��

m′1⊕m0
[ b −h0 ] //

��

m′0 // 0

0 // Ker f // P1 f
// P0 e

// n // 0

Taking a mapping cone, we have an exact sequence

0−→ P1⊕Ker f −→ m1⊕ P0⊕ P1 −→ m′1⊕m0⊕ P0 −→ m′0⊕ n −→ 0.

Cancelling a direct summand of the form P1

[
0
1

]
−−−→ P0⊕ P1

[ 1 0 ]
−−−−→ P0, we have an

exact sequence

0−→ Ker f −→ m1
c
−−→ m′1⊕m0

d
−−→ m′0⊕ n −→ 0.

Since Im c ∈ FacM and m′0⊕n is Ext-projective in FacM, the epimorphism d splits.
Thus n ∈M as desired. �

Now we are ready to prove Theorem 5.1.
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Let M be a support τ -tilting subcategory of modC. By definition, each repre-
sentable C-module has a left M-approximation. Since P(FacM)=M by Proposition
5.3, the map M 7→ FacM is well-defined from the set (i) to the set (ii), and it
is injective.

We show that the map is surjective. For T in the set described in (ii), let
E :=

⋂
m∈T Ker m and M := P(T). We will show that (M,E) is a support τ -tilting

pair of modC. Since Ext1ModC(M,T)= 0 and FacM⊂T, it follows from Lemma 5.2
that M is τ -rigid. For s ∈ C, take a left M-approximation C(−, s) f

−→ m.
It remains to show Coker f ∈ M. Since Coker f ∈ T, we only have to show

Ext1ModC(Coker f,m′) = 0 for each m′ ∈M. Let f = ιπ for π : C(−, s)→ Im f
and ι : Im f →m. Applying HomModC(−,m′) to the exact sequence 0→ Im f ι

−→

m→ Coker f → 0, we have an exact sequence

HomModC(m,m′)
ι∗

−→ HomModC(Im f,m′)

→ Ext1ModC(Coker f,m′)→ Ext1ModC(m,m′)= 0.

Let g : Im f →m′ be a morphism in ModC. Since f is a left M-approximation, there
exists h :m→m′ such that gπ = h f . Then g = hι. Thus ι∗ :HomModC(m,m′)→
HomModC(Im f,m′) is surjective, and we have Ext1ModC(Coker f,m′)= 0. Conse-
quently we have Coker f ∈ P(T)=M. Thus the assertion follows. �
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