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Let K be a complete discrete valuation field with ring of integers OK and alge-
braically closed residue field k of characteristic p > 0. Let X/K be a smooth
proper geometrically connected curve of genus g > 0 with X (K ) 6=∅ if g = 1.
Assume that X/K does not have good reduction and that it obtains good reduction
over a Galois extension L/K of degree p. Let Y/OL be the smooth model of
X L/L . Let H := Gal(L/K ).

In this article, we provide information on the regular model of X/K obtained
by desingularizing the wild quotient singularities of the quotient Y/H . The most
precise information on the resolution of these quotient singularities is obtained
when the special fiber Yk/k is ordinary. As a corollary, we are able to produce for
each odd prime p an infinite class of wild quotient singularities having pairwise
distinct resolution graphs. The information on the regular model of X/K also
allows us to gather insight into the p-part of the component group of the Néron
model of the Jacobian of X .

1. Introduction

Let K be a complete discrete valuation field with valuation v, ring of integers OK

and residue field k of characteristic p > 0, assumed to be algebraically closed.
Let X/K be a smooth proper geometrically connected curve of genus g > 0 with
X (K ) 6=∅ if g = 1.

Assume that X/K does not have good reduction and that it obtains good reduction
over a Galois extension L/K . Let Y/OL be the smooth model of X L/L . Let
H :=Gal(L/K ), and let Z/OK denote the quotient Y/H . A regular model for X/K
can be obtained by resolving the singularities of the scheme Z . Our goal is to obtain
information on this regular model when p divides [L : K ]. Since the presence of
wild ramification renders the subject quite challenging, we will restrict our attention
in this article to the case where [L : K ] = p.
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Beyond our interest in models of curves per se, our motivation for understanding
these regular models is twofold. First, since X is obtained by desingularizing
certain quotient singularities, we hope to gain more insight in the general theory
of resolutions of wild quotient singularities by producing interesting classes of
examples where the singularities can be resolved explicitly. Second, since from
a regular model of the curve one can compute much of the Néron model of its
Jacobian, we hope to bring new insight into the structure of the rather mysterious
p-part of the component group of the Néron model of a general abelian variety
from an increased understanding of the special case of Jacobians of curves.

Let us introduce some notation needed to state our theorems. Let σ denote a
generator of H :=Gal(L/K ). Denote also by σ the automorphism of Yk induced by
the action of H on Y . The scheme Z is singular exactly at the images Q1, . . . , Qd

of the ramification points P1, . . . , Pd of the map Yk → Yk/〈σ 〉 (5.2). Consider
the regular model X → Z obtained from Z by a minimal desingularization. Let
X ′→ X denote the regular model of X/K minimal with the property that X ′k has
smooth components and normal crossings. Let f denote the composition X ′→ Z .
Let C0/k denote the strict transform in X ′ of the irreducible closed subscheme
Z red

k of Z . Let D1, . . . , Dd denote the irreducible components of X ′k that meet C0.
Let ri denote the multiplicity of Di , i = 1, . . . , d , in X ′k .

Recall that to any connected curve
⋃n
`=1 C` on a regular model X we associate

a graph G as follows: the vertices are the irreducible components C`, and in G, the
vertices Ci and C j (i 6= j ) are linked by exactly (Ci ·C j )X edges, where (Ci ·C j )X
denotes the intersection number of Ci and C j on the regular scheme X . Recall
that the degree of a vertex v of a graph is the number of edges attached to v. A
node on a graph is a vertex of degree at least 3. A vertex of degree 1 is a terminal
vertex. A chain is a subgraph of G with vertices C0,C1, . . . ,Cn , n ≥ 1, such that
Ci is linked to Ci+1 by exactly one edge in G when i = 0, . . . , n−1 and the degree
of Ci is 2 when i = 1, . . . , n− 1. If the chain contains a terminal vertex (which
can only be C0 or Cn), the chain is called a terminal chain.

Let G denote the graph associated with X ′k . We assume d ≥ 1. For each
i = 1, . . . , d, let G Qi denote the graph associated with the curve f −1(Qi ). In
particular, Di corresponds to a vertex of G Qi . We have the following configuration
on the graph G (where a positive integer next to a vertex denotes the multiplicity
of the corresponding irreducible component in X ′):

C0 p

D1 r1 Dd
rd
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Theorem 5.3. Let X/K be a curve with potentially good reduction after a wildly
ramified extension L/K of degree p, as above. Keep the above notation. Then, for
all i = 1, . . . , d, the graph G Qi contains a node of G and p divides ri .

In contrast, when H is of prime order q 6= p, then it is known that q > ri and that
the graph G Qi does not contain a node of G. In particular, when L/K is tame and
d ≥ 3, the graph G has only a single node, the component C0 (see, e.g., [Lorenzini
1990a, Theorem 2.1]).

We propose in 6.1 a combinatorial measure γQi gQi of the complexity of the
graph G Qi , which we conjecturally relate in 6.2 to the higher ramification data of
the morphism Yk→ Yk/〈σ 〉. This conjectural relationship expresses the fact that
the graph G Qi is “complicated” only if the higher ramification above Qi is “large”.
We prove this conjecture in the ordinary case (Theorem 6.4).

Recall that a smooth proper curve Y/k of genus g is called ordinary if its Jacobian
J/k is an ordinary abelian variety (that is, J (k) has exactly pg points of order
dividing p). When Yk is ordinary, the morphism Yk → Yk/〈σ 〉 has the smallest
possible ramification data at each Qi (2.2), and in this case, we can use Theorem 5.3
to describe the graph G Qi explicitly, as in the following theorem, whose statement is
slightly strengthened in the version given in Section 6. In the graph below, a bullet •
represents an irreducible component of the desingularization of Qi . A negative
number next to a vertex is the self-intersection of the component. A positive number
next to a vertex is the multiplicity of the corresponding component in X ′k .

Theorem (see Theorem 6.8). Let X/K be a curve with potentially good reduction
after a Galois extension L/K of degree p, as above. Assume that Yk ordinary. Then,
for all i = 1, . . . , d, we have ri = p and G Qi is a graph with a single node Ci of
degree 3:

p p p p p

�2 �2 �2 �2

Di Ci

p � r1.i/

r1.i/

1

1C0

The intersection matrix N (p, αi , r1(i)) of the resolution of Qi is uniquely deter-
mined as in 4.7 by the two integers αi and r1(i) with 1≤ r1(i) < p. The integer αi

denotes the number of vertices of self-intersection −2 (including the node Ci ) on
the chain in G Qi connecting the node C0 to the single node Ci of G Qi , and the
integer αi is divisible by p.

To further determine the regular model, one would need to determine explicitly
the integers αi and r1(i). We address this issue in [Lorenzini 2013b]. In all cases
where we have been able to compute αi and r1(i), we found them to be related
to the valuation of the different of L/K . More precisely, let (sL/K + 1)(p − 1)
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denote the valuation of the different of L/K . In [Lorenzini 2013b, Theorem 1.1],
we present some instances where αi = psL/K and r1(i) ≡ −s−1

L/K modulo p. We
also show in [Lorenzini 2013b, Theorem 4.1] that the singularities Qi are rational.

Remark 1.1. The same type of intersection matrix, N (p, αi , r1(i)), also occurs
in the resolution of the singularities of the model Z when X/K has genus p− 1
and Jac(X)/K has purely toric reduction after an extension of degree p [Lorenzini
2010, Theorem 2.2].

Remark 1.2. The special fiber of the model X /OK of X/K in Theorem 6.8 has
thus a graph with a central vertex to which d branches are attached, of the form
described below, where we picture the case d = 4.

1

1

1

1

1

1

1

1

C0p p p

p

ppp p p p

p p p

Fix any d > 1. We establish in Theorem 6.8 and Example 6.13 the existence of
some field K of residue characteristic p> 0 and of some smooth proper curve X/K
with a regular model whose special fiber has a graph of the above type. This is
clearly a weak existence result, but our understanding of models in the presence of
wild ramification is so limited that even this weak existence result does not follow
from the general existence results of Viehweg [1977] and Winters [1974].

An immediate but surprising corollary to Theorem 6.8 is as follows.

Corollary (see Corollary 6.10). Let X/K be a curve of genus g> 1 with potentially
good reduction after a Galois extension L/K of degree p, as above. Assume that
Yk is ordinary. Then X (K ) 6=∅.

The information on the regular model of X/K obtained in Theorem 6.8, while
incomplete to fully describe the special fiber of the model, suffices to compute
several invariants of arithmetical interest. For instance, the set of components of
multiplicity 1 on the special fiber of the model is determined, and this information
is one of the ingredients needed to apply the Chabauty–Coleman method to bound
the number of Q-rational points on a curve X/Q using the reduction at a small
prime p, as in [Lorenzini and Tucker 2002, Theorem 1.1]. Let A/K denote the
Jacobian of A/K with Néron model A/OK and component group 8A/K . The
information obtained in Theorem 6.8 suffices to compute8A/K and a new canonical
subgroup 80

A/K of 8A/K that we now define.
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1.3. Let A/K be an abelian variety with Néron model A/OK . Let L/K be any
finite extension, and let A′/OL denote the Néron model of AL/L . Denote by

η :A×OK OL →A′

the canonical map induced by the functoriality property of Néron models. The spe-
cial fiber Ak is an extension of a finite group 8A/K , called the group of components,
by the connected component of zero A0

k of Ak :

0→A0
k→Ak→8A/K → 0.

Assume that AL/L has semistable reduction, and consider the natural map
8A/K →A′k/η(A

0
k). We let

80
A/K := Ker(8A/K →A′k/η(A0

k)).

The subgroup80
A/K does not depend on the choice of such an extension L/K and is

functorial in A. Our interest in this subgroup stems from the following conjectures.
When A/K has potentially good reduction and, more generally, when the toric

rank of A0
k is trivial, we conjecture that the order of the group 8A/K is bounded by

a constant depending only on the dimension g of A/K [Lorenzini 1990b, p. 146].
This statement is true when A/K is a Jacobian [Lorenzini 1990b, Theorem 2.4] and
for the prime-to-p part of 8A/K [Lorenzini 1993, Theorem 2.15]. Since [L : K ]2

kills the group 8A/K when the toric rank of A is trivial [Liu and Lorenzini 2001,
Proposition 1.8], we find that, to prove the conjecture that 8A/K is bounded by
a constant depending only on g, it suffices to prove that the minimal number of
generators of 8A/K can be bounded by a constant depending on g only. We guess,
under the above hypotheses, that 8A/K can be generated by 2g elements.

Assume now that A/K has potentially good reduction. The p-torsion in A′k can
always be generated by at most g elements. Thus, the above conjecture is proved if
the p-part of the kernel 80

A/K can be generated by a number of elements bounded
by a constant depending on g only (possibly 2g). In the ordinary case, where the
p-torsion in A′k is minimally generated by g elements, one may wonder if80

A/K can
also be generated by g elements. Our next corollary gives some evidence that this
latter question may have a positive answer for all abelian varieties with potentially
good ordinary reduction.

Let A/K be the Jacobian of a curve X/K with X (K ) 6= ∅. We denote by
〈 · , · 〉 : 8A/K ×8A/K → Q/Z Grothendieck’s pairing, which is nondegenerate
[Bosch and Lorenzini 2002, Theorem 4.6]. We denote by (80

A/K )
⊥ the orthogonal

of 80
A/K under Grothendieck’s pairing.

Corollary (see Corollary 6.12). Let A/K be the Jacobian of a curve X/K of genus
g > 1 having potentially good ordinary reduction after a Galois extension L/K of
degree p, as above. Then 8A/K is a Z/pZ-vector space of dimension 2d − 2, and
80

A/K is a subspace of dimension d − 1. Moreover, 80
A/K = (8

0
A/K )

⊥.
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It is natural in view of Corollary 6.12 to wonder whether the same result holds
for all principally polarized abelian varieties A/K having potentially good ordinary
reduction after a Galois extension L/K of degree p. We may also wonder, for any
principally polarized abelian variety A/K with potentially good reduction, whether
the order of 80

A/K ∩ (8
0
A/K )

⊥ can be bounded by a constant depending only on the
p-rank of A′k . We hope to return to these questions in the future.

1.4. Our explicit computation of a regular model of a curve having potentially good
ordinary reduction also has an application to quotient singularities. Our current
understanding of wild Z/pZ-quotient singularities of surfaces is quite limited, and
few explicit examples are known (see, e.g., [Artin 1975], [Katsura 1978] for p = 2
and [Peskin 1983] for p = 3). In contrast to the case of a tame cyclic quotient
singularity, where the number of possible resolution graphs is finite once the order
of the group is fixed, we show below that, for any fixed odd prime p, there are
infinitely many graphs that can occur as the resolution graphs of a wild Z/pZ-
quotient singularity in both mixed characteristic and in the equicharacteristic case.
The analogous result when p = 2 is discussed in [Lorenzini 2013a, Theorem 4.1].

Corollary 6.14. Fix any odd prime p. For each integer m > 0, there exist a 2-
dimensional regular local ring B of equicharacteristic p endowed with an action of
H :=Z/pZ and a 2-dimensional regular local ring B ′ of mixed characteristic (0, p)
endowed with an action of Z/pZ such that Spec B H and Spec(B ′)H are singular
exactly at their closed point and the graphs associated with a minimal resolution
of Spec B H and Spec(B ′)H have one node and more than m vertices.

This article is organized as follows. The proof of Theorem 5.3, in Section 5, is
of a global nature and includes in particular a study of the natural map 8A/K →

A′k/η(A
0
k). The proof uses two auxiliary results of independent interest. The first

result, Proposition 2.5, is discussed in Section 2 and is a relation between torsion
points in a quotient of two Jacobians. This proposition is one place in our arguments
where the tame and wild cases can be seen to differ in an explicit way. The second
result, Proposition 3.5, is the main result of Section 3 and is a general relation
between elements in the component group 8M of an arithmetical tree.

Section 4 presents further results of a combinatorial nature on arithmetical trees
that are needed in the proof of Theorem 6.8. Section 6 contains the proof of
Theorem 6.8 and of its applications.

2. Cyclic morphisms and torsion

Let k be an algebraically closed field of characteristic p. Let f : D → C be a
ramified Galois morphism of smooth connected projective curves over k. Our main
result in this section is Proposition 2.5, which will be applied to the case of the
quotient morphism Yk→ Yk/〈σ 〉 in the course of the proof of Theorem 5.3.



Wild models of curves 337

2.1. Assume that the Galois group H of f is cyclic of degree qs with q prime.
Let P1, . . . , Pd in D(k) be the ramification points. Assume that, at each Pi , the
morphism is totally ramified, and let Qi := f (Pi ), i = 1, . . . , d, be the branch
points.

When q 6= p, the Riemann–Hurwitz formula is

2g(D)− 2= qs(2g(C)− 2)+ d(qs
− 1). (2.1.1)

Moreover, d ≥ 2. When g(C)= 0, this follows immediately from the formula; the
general case requires a separate proof.

Assume now that q = p. For P ∈ D(k), let H0(P) ⊇ H1(P) ⊇ · · · denote
the sequence of higher ramification groups. If P is a ramification point, then
|H0(P)| = |H1(P)| = ps . Set

δ(P) :=
∑

i

(|Hi (P)| − 1).

Then the Riemann–Hurwitz formula is

2g(D)− 2= ps(2g(C)− 2)+
∑

P∈D(k)

δ(P), (2.1.2)

and it may happen that d = 1.

2.2. Let γ (D) denote the p-rank of D (i.e., the p-rank of Jac(D)). The Deuring–
Shafarevich formula relates the p-ranks of C and D:

γ (D)− 1= ps(γ (C)− 1)+ d(ps
− 1). (2.2.1)

The curve D is ordinary when γ (D) = g(D). When D is ordinary, we find,
comparing the formulas (2.1.2) and (2.2.1), that |H2(P)| = 1 for all P and that C is
also ordinary. Moreover, when g(D)> 0, Equation (2.2.1) shows that p≤ g(D)+1.

When a ramification point P of a Galois morphism f : D → C is such that
H2(P)= (0), we will say that the morphism is weakly ramified at P .

2.3. We record here the following well-known fact (see [Hasse 1934, p. 42], or
[Singh 1974, Lemma 1.3], when K = k(x)). Let K be a field with char(K ) = p.
Let (A,M) be a discrete valuation ring with field of fractions K , valuation vK and
uniformizer πK . Assume that the residue field k of A is algebraically closed. Let
L/K be a cyclic ramified Galois extension of degree p with Galois group H . Let
(B,N ) denote the integral closure of A in L . Let H = H0 ⊇ H1 ⊇ · · · denote the
sequence of ramification groups. Then

∑
∞

i=0(|Hi | − 1)= (m+ 1)(p− 1) for some
integer m prime to p.
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2.4. Examples of curves with an automorphism of degree p in characteristic p can
be given in Artin–Schreier form. Consider the curve y p

− y =
∏d

i=1(x − ai )
−ni ,

where a1, . . . , as ∈ k are distinct and the ni are positive integers coprime to p.
The automorphism y 7→ y+ 1 has order p. The genus g of the smooth complete
curve defined by the above equation is given by the Riemann–Hurwitz formula
2g− 2=−2p+ (p− 1)

(∑d
i=1(ni + 1)

)
(see [Subrao 1975, p. 8]).

The following simple proposition exhibits a key difference between the tame
and wild cases:

Proposition 2.5. Let q be a prime. Let f : D→ C be a ramified cyclic morphism
of degree qs between smooth connected projective curves over k. Let P1, . . . , Pd ,
d ≥ 2, denote the ramification points, assumed to be totally ramified. For i 6= j , the
image ωi j of Pi − Pj in Jac(D)/ f ∗(Jac(C)) is of finite order qs . Let T denote the
finite subgroup Jac(D)/ f ∗(Jac(C)) generated by {ωid | i = 1, . . . , d − 1}.

(a) If q = p, then T is isomorphic to (Z/psZ)d−1 and is generated by the set
{ωid | i = 1, . . . , d − 1}.

(b) If q 6= p, then T is isomorphic to (Z/qsZ)d−2 and is generated by the set
{ωid | i = 1, . . . , d − 2}.

Proof. Let S denote the subgroup of Div0(D) with support on the set {P1, . . . , Pd}.
It is clear that {Pi − Pd | i = 1, . . . , d − 1} is a Z-basis for S. Let S→ T denote
the natural surjective map. This map factors through S/qs S since qs

(∑
i bi Pi

)
=

f ∗
(∑

i bi Qi
)

with
∑

i bi Qi ∈ Div0(C).
Let σ be a generator of Aut(D/C). Suppose that σ(divD(g)) = divD(g) for

some g ∈ k(D)∗. Then gσ = cg for some c ∈ k∗. Since σ has finite order qs , we
find that cqs

= 1.
Consider first the case where q = p. Then c = 1. Thus, gσ = g and g ∈ k(C)∗.

Suppose that the divisor
(∑

i bi Pi
)

has trivial image in T . Then it is possible to
write

(∑
i bi Pi

)
= f ∗

(∑
j R j

)
+divD(h) for some R j ∈C(k) and h ∈ k(D)∗. Then

we have σ(divD(h)) = divD(h), and we conclude that h ∈ k(C)∗. Therefore, we
have an equality of divisors of the form

(∑
i bi Pi

)
= f ∗(E) for some E ∈Div0(C).

It follows that E =
∑

i ci Qi for some ci . Hence, the map S/ps S → T is an
isomorphism, proving Part (a).

Suppose now that q 6= p. Fix a primitive qs-th root ξ of 1. Then k(D)/k(C)
is a Kummer extension, generated by the root α of yqs

− a ∈ k(C)[y] such that
ασ = ξα. It is easy to check that, for each i = 0, . . . , qs

− 1,

{β ∈ k(D) | βσ = ξ iβ} = k(C)αi .

The equality ασ = ξα implies that divD(α) can be written as( d∑
i=1

ai Pi

)
+

∑
j

c j

( qs
−1∑

i=0

σ i (S j )

)
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for some integers ai and c j , and some S j ∈ D(k) \ {P1, . . . , Pd}. It follows that qs

divides
∑d

i=1 ai since deg(divD(α))= 0. This means that the divisor∑
j

c j

( qs
−1∑

i=0
σ i (S j )

)
+

( d∑
i=1

ai

)
Pd

defines an element in f ∗(Jac(C)). Hence, the image ν of
(∑

i ai Pi
)
−
(∑

i ai
)
Pd

in T is trivial. We thus have a map

ϕ : S
/ 〈

qs S,
(∑

i
ai Pi

)
−

(∑
i

ai

)
Pd

〉
→ T .

Let us note that
(∑

i ai Pi
)
−
(∑

i ai
)
Pd /∈ qs S because, otherwise, the morphism f

given by the Kummer equation yqs
−a would not be totally ramified at P1, . . . , Pd .

Suppose that the divisor
(∑

i bi Pi
)

has trivial image in T . Then it is possible
to write

(∑
i bi Pi

)
= f ∗

(∑
j R j

)
+ divD(h) for some R j ∈ C(k) and h ∈ k(D)∗.

Thus, we have σ(divD(h))= divD(h), and we conclude that hσ = ξ j h for some j ∈
{0, . . . , qs

−1}. Therefore, there exists b∈ k(C)∗ such that h=bα j . Hence, we have
an equality of divisors of the form

(∑
i bi Pi

)
= f ∗(E)+ j

[(∑
i ai Pi

)
−
(∑

i ai
)
Pd
]

for some E ∈Div0(C). It follows that E =
∑

i ci Qi for some ci . Hence, the map ϕ
is an isomorphism, proving Part (b). �

Corollary 2.6. Assume that p 6= 2. Let D/k be a smooth projective connected
hyperelliptic curve of genus g. Denote by τ the hyperelliptic involution. Let σ be an
automorphism of order p. Then either σ has a single fixed point, fixed by τ , or it
has exactly two fixed points, permuted by τ .

Proof. The hyperelliptic involution commutes with σ , and hence, it permutes the
fixed points {P1, . . . , Pd}. If d ≥ 2 and two fixed points P1 and P2 of σ are fixed
by τ , then the divisor class P1− P2 is fixed by τ . Proposition 2.5 shows that the
class of P1 − P2 is not trivial and, since p > 2, this divisor class is not equal to
the class of −(P1− P2). This is a contradiction since τ acts as the [−1]-map on
Jac(D). Thus, τ fixes at most one point Pi .

If d ≥ 3, then we may assume that either τ(P1) = P2 and P3 is fixed or that
τ(P1)= P2 and τ(P3)= P4. In the first case, we find that τ(P1−P3)= (P2−P3)=

−(P1− P2)+ (P1− P3). Using the fact that τ acts as the [−1]-map on Jac(D), we
find the relation −(P1− P3)=−(P1− P2)+ (P1− P3) in Jac(D). Looking at this
relation in T contradicts Proposition 2.5. The other case is similar and is left to the
reader. �

Example 2.7. Assume that p 6= 2. Consider a smooth hyperelliptic curve C/k
given by an affine equation y2

= f (x), and let D be its Galois cover given by the
equation z p

−z= x . The automorphism σ : D→ D with σ(z)= z+1 has one fixed
point P with δ(P)= 3(p− 1) when deg( f ) is odd, and it has two fixed points P1

and P2 with δ(P1)= δ(P2)= 2(p− 1) when deg( f ) is even.
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3. Arithmetical trees

Our main result in this section is Proposition 3.5, which will be needed in the proof
of Theorem 5.3. This proposition pertains to arithmetical graphs, and we now recall
how one associates such an object to any regular model of a curve.

Let X/K be any smooth, proper, geometrically connected curve of genus g.
Let X /OK be a regular model of X/K . Let Xk :=

∑v
i=1 ri Ci denote the special

fiber of X , where Ci is an irreducible component and ri is its multiplicity. Let
M := ((Ci · C j ))1≤i, j≤v be the associated intersection matrix. Denote by G the
associated graph. Let tR := (r1, . . . , rv) so that M R = 0. We call the triple
(G,M, R) an arithmetical graph (in [Lorenzini 1989], the additional condition that
gcd(r1, . . . , rv)= 1 is assumed, and it is (G,−M, R) that is called an arithmetical
graph). For the purpose of simplifying the statements of some definitions, we
sometimes think of G as a metric space with the natural topology where each edge
of G with its two endpoints is homeomorphic to the closed unit interval [0, 1].

Let (G,M, R) be any arithmetical graph on v vertices. Let M : Zv→ Zv and
tR : Zv→ Z be the linear maps associated to the matrices M and R. The group of
components of (G,M, R) is defined as

8M := Ker(tR)/ Im(M)= (Zv/ Im(M))tors.

Motivated by the case of degenerations of curves, we shall denote by (C, r(C)) a
vertex of G, where r(C) is the coefficient of R corresponding to C . The integer r(C),
also denoted simply by r , is called the multiplicity of C . The matrix M is written
as M := ((Ci ·C j ))1≤i, j≤v, and we write |Ci ·Ci | := |(Ci ·Ci )|.

3.1. Denote by 〈 · , · 〉 : 8M ×8M → Q/Z the perfect pairing 〈 · , · 〉M attached
in [Bosch and Lorenzini 2002, Lemma 1.1] to the symmetric matrix M . Explicit
values of this pairing are computed as follows. Let (C, r) and (C ′, r ′) be two
distinct vertices of G. Define

E(C,C ′) :=
t(

0, . . . , 0,
r ′

gcd(r, r ′)
, 0, . . . , 0,

−r
gcd(r, r ′)

, 0, . . . , 0
)
∈ Zv,

where the first nonzero coefficient of E(C,C ′) is in the column corresponding
to the vertex C and, similarly, the second nonzero coefficient is in the column
corresponding to the vertex C ′. We say that the pair (C,C ′) is uniquely connected
if there exists a path P in G between C and C ′ such that, for each edge e on P , the
graph G \{e} is disconnected. Note that, when a pair (C,C ′) is uniquely connected,
then the path P is the unique shortest path between C and C ′. A graph is a tree if
and only if every pair of vertices of G is uniquely connected.

Let (C, r) and (C ′, r ′) be a uniquely connected pair with associated pathP . While
walking on P \ {C,C ′} from C to C ′, label each encountered vertex consecutively
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by (C1, r1), (C2, r2), . . . , (Cn, rn). Let Gi denote the connected component of Ci

in G\{edges of P}. The graph Gi is reduced to a single vertex if and only if Ci is not
a node of G. For convenience, we write (C, r)= (C0, r0) and (C ′, r ′)= (Cn+1, rn+1)

and define G0 and Gn+1 accordingly.

3.2. The following facts are proved in [Bosch and Lorenzini 2002, Proposition 5.1].
Let (G,M, R) be any arithmetical graph. Let C and C ′ be two vertices such that
(C,C ′) is a uniquely connected pair of G. Let γ denote the image of E(C,C ′)
in 8M . For (D, s) and (D′, s ′) any two distinct vertices on G, let δ denote the
image of E(D, D′) in8M . Writing P for the oriented shortest path from C to C ′ as
above, let Cα denote the vertex of P closest to D in G, and let Cβ denote the vertex
of P closest to D′. In other words, D ∈Gα and D′ ∈Gβ . Assume that α≤β. (Note
that we may have α = β, and we may have D = Cα or D′ = Cβ .) Then if α < β,

〈γ, δ〉 = − lcm(r, r ′) lcm(s, s ′)
( 1

rαrα+1
+

1
rα+1rα+2

+ · · ·+
1

rβ−1rβ

)
mod Z, (3.2.1)

and if Cα = Cβ , then 〈γ, δ〉 = 0. Moreover,

〈γ, γ 〉 = − lcm(r, r ′)2
( 1

rr1
+

1
r1r2
+ · · ·+

1
rnr ′

)
mod Z. (3.2.2)

Note that the negative signs in the expressions (3.2.1) and (3.2.2) are missing
in [Bosch and Lorenzini 2002, Proposition 5.1]. Thus, all expressions for 〈γ, δ〉
computed in Section 5 of [Bosch and Lorenzini 2002] using Proposition 5.1 are
correct only after having been multiplied by −1. Similar sign mistakes occurred
in [Lorenzini 2000]. The proof of [Bosch and Lorenzini 2002, Proposition 5.1] is
correct except that its last line produces the opposite of the stated values for 〈γ, δ〉
since we assume α ≤ β.

3.3. Let (C, r) be a vertex of G of degree d ≥ 2. Let (Di , ri ), i = 1, . . . , d , denote
the neighbors of C , that is, the vertices of G linked to C . Let τi denote the image
of E(Di , Dd) in 8M for i ∈ {1, . . . , d − 1}. We will use repeatedly the following
expressions computed using (3.2.1) and (3.2.2):

〈τi , τi 〉 = − lcm(ri , rd)
2 ri + rd

rirdr
mod Z

and, when i 6= j ,

〈τi , τ j 〉 = − lcm(ri , rd) lcm(r j , rd)
1

rdr
mod Z.

These formulas allow us to easily show that τi may not always be trivial. For
example, let p be a prime dividing r . When p - rird(ri+rd), we find that 〈τi , τi 〉 6= 0
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and, thus, τi 6= 0. Similarly, when for three distinct indices i , j and d we have
p - rir jrd , we find that 〈τi , τ j 〉 6= 0, showing that both τi and τ j are not trivial.

We claim that r kills τi . Indeed, we find, using [Lorenzini 2000, Lemma 2.2], that
the images in 8M of E(Di ,C) and E(C, Dd) have order dividing gcd(ri , r) and
gcd(r, rd), respectively. Consider the following easy relation between vectors in Zv

[Lorenzini 2000, Remark 3.5]: given any three vertices (A, a), (B, b) and (C, c),

bE(A,C)=
c

gcd(a, c)
gcd(a, b)E(A, B)+

a
gcd(a, c)

gcd(b, c)E(B,C). (3.3.1)

Using this relation, we find that rτi = 0.

Lemma 3.4. Let (G,M, R) be an arithmetical graph. Consider any two distinct
vertices (A, a) and (A′, a′), and let αA,A′ denote the image of E(A, A′) in 8M .
Then the set {αAA′ | A 6= A′} is a set of generators for 8M .

Proof. Let us note first that the statement is proved for (G,M, R) as soon as it
is proved for (G,M, R/ gcd(r1, . . . , rv)). We will thus assume now that gcd(r1,

. . . , rv)= 1. Fix a vertex A, and consider the subgroup (8M)A of 8M generated
by {αAA′ | all A′ 6= A}. We claim that a8M ⊆ (8M)A. Indeed, an element φ ∈8M

is represented by the class of a vector ( fD | D ∈ G) such that
∑

fDr(D)= 0. It
follows that aφ =−

∑
gcd(a, r(D)) fDαAD . Since gcd(r1, . . . , rv)= 1, φ can be

expressed in terms of elements of the form αAA′ . �

The following is a key relation between the τi ’s:

Proposition 3.5. Let (G,M, R) be an arithmetical tree. Let (C, r) be a vertex of
degree d ≥ 2. Keep the notation introduced in 3.3. Then

∑d−1
i=1 gcd(ri , rd)τi = 0.

Proof. Consider any two distinct vertices (A, a) and (A′, a′), and let α denote
the image of E(A, A′) in 8M . The previous lemma shows that the group 8M is
generated by such elements α.

Let τ :=
∑d−1

i=1 gcd(ri , rd)τi . We claim that 〈τ, α〉 = 0 for all such elements α.
This claim, proved below, implies immediately that τ = 0. Indeed, recall that, 〈 · , · 〉
being perfect, the element τ is trivial if and only if 〈τ, φ〉 = 0 for all φ ∈8M .

Let us now prove our claim. Assume first that the path Q between A and A′

contains the vertices Di and Dd with i 6=d . We use (3.2.1) to compute modulo Z that

〈τ, α〉 = ± lcm(a, a′)

×

(
gcd(ri , rd) lcm(ri , rd)

( 1
rir
+

1
rrd

)
+

∑
j 6=i,d

gcd(r j , rd) lcm(r j , rd)
( 1

rrd

))
,

which simplifies to

〈τ, α〉 = ± lcm(a, a′)
( d∑

j=1

r j

)
1
r
.
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Since
∑d

j=1 r j = |C ·C |r , we find that 〈τ, α〉 = 0. When Q contains Di and D j

with i, j 6= d and i 6= j , we find that modulo Z

〈τ, α〉 = ± lcm(a, a′)
(

gcd(ri , rd) lcm(ri , rd)
1

rir
− gcd(r j , rd) lcm(r j , rd)

1
r jr

)
=± lcm(a, a′)

(rd
r
−

rd
r

)
= 0.

It is clear that if the path Q contains no vertices Di , or if it contains exactly one
vertex Di and does not contain the vertex C , then 〈τ, α〉 = 0. It remains to consider
the case where the path Q contains exactly one vertex Di and the vertex C . Then
C is an endpoint of Q, and thus, r divides lcm(a, a′). When i 6= d , we find that

〈τ, α〉 = ± lcm(a, a′) lcm(ri , rd) gcd(ri , rd)
1

rir

is 0 modulo Z, and when i = d , we find that

〈τ, α〉 = ± lcm(a, a′)
(d−1∑

i=1

lcm(ri , rd) gcd(ri , rd)
1

rir

)
is also 0 modulo Z. �

4. Some combinatorics

Let (G,M, R) be an arithmetical graph. We introduce below a measure γDgD
of how “complicated” certain subgraphs GD of G are, and we describe GD in
Proposition 4.3 when γDgD is as small as possible. This result is needed in the proof
of Theorem 6.8. A geometric motivation for the introduction of the quantity γDgD
is found in the genus formula (6.1.1).

4.1. Let (G,M, R) be an arithmetical graph. Fix a vertex (C0, r(C0)) of G. Assume
that C0 is linked to a vertex (D, r(D)) by a single edge e and that, when the edge e
is removed from G, then D and C0 are not in the same connected component of the
resulting graph. Let GD denote the connected component of G \{e} that contains D.
Consider the minor ND of M corresponding to the vertices in GD . Let

γD := gcd(r(A) | A a vertex of GD).

Then γD divides r(C0). Indeed, γD divides the multiplicity of D and of all vertices
linked to D except possibly that of C0. But the relation M R = 0 implies then that
γD divides the multiplicity of C0. Let RD denote the vector R restricted to the
vertices of GD . By definition, we find that RD/γD is an integer vector.
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Let β(G) denote the first Betti number of the graph G. Letting dG(A) denote
the degree of a vertex A in the graph G, we have

2β(G)− 2=
∑

vertices A of G

(dG(A)− 2).

Associated with any arithmetical graph (G,M, R) is the following integer invariant
g0(G)≥ β(G) [Lorenzini 1989, Theorem 4.10], defined by the formula

2g0(G)= 2β(G)+
∑

vertices A of G

(r(A)− 1)(dG(A)− 2). (4.1.1)

Let C0 and D be as above. We now associate to the pair (ND, RD) an integer gD ,
defined so that the formula below holds:

γDgD = r(C0)+ r(D)+
∑

vertices A of GD

r(A)(dGD (A)− 2).

Since γD divides r(C0), the invariant gD is indeed an integer. We can rewrite this
formula as

γDgD = 2β(GD)+ (r(C0)− 1)+ (r(D)− 1)

+

∑
vertices A of GD

(r(A)− 1)(dGD (A)− 2), (4.1.2)

and we find that

gD = 2β(GD)+

(
r(C0)

γD
− 1

)
+

(
r(D)
γD
− 1

)
+

∑
vertices A of GD

(
r(A)
γD
− 1

)
(dGD (A)− 2). (4.1.3)

4.2. We will make use below of the following facts. Suppose that, on G, the
vertices D0, D1, . . . , Dn are consecutive vertices on a terminal chain and Dn is the
terminal vertex on this chain (in other words, Di is linked by one edge to Di+1

for i = 0, . . . , n − 1, dG(Di ) = 2 for i = 1, . . . , n − 1 and dG(Dn) = 1). Then
gcd(r(D0), r(D1))= r(Dn), and if |Di · Di |> 1 for all i = 1, . . . , n, then

r(D0) > r(D1) > · · ·> r(Dn).

Indeed, the equality |Dn ·Dn|r(Dn)= r(Dn−1) obtained from the relation M R = 0
shows that r(Dn) divides r(Dn−1) and r(Dn) < r(Dn−1) if |Dn · Dn| > 1. Sup-
pose that, for some i , we have r(Di ) > r(Di+1). Then r(Di−1) > r(Di ) because
|Di · Di |r(Di )=r(Di−1)+r(Di+1) and |Di ·Di |≥2. The equality |Di · Di |r(Di )=

r(Di−1)+ r(Di+1) implies that gcd(r(Di−1), r(Di ))= gcd(r(Di ), r(Di+1)).
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Proposition 4.3. Let (G,M, R) be an arithmetical tree containing a vertex C0

of prime multiplicity p. Assume that a vertex D linked to C0 by an edge e has
multiplicity divisible by p. Let GD denote the connected component of G \ {e} that
contains D. Assume in addition that GD does not contain any vertex A of degree 1
or 2 in G with |A · A| = 1. Then

γDgD ≥ 2(p− 1).

If γDgD = 2(p− 1), then γD = 1 and GD is a graph of the shape depicted below,
containing one node C of G only, of multiplicity p and degree 3 in G. The two
terminal vertices of G that belong to GD have multiplicity 1.

p p p p p

�2 �2 �2 �2
C

p � r.C1/

r.C1/

C1

1

1C0

Let α denote the number of vertices of GD on the chain linking C0 to the node C
of GD (including the node C). Let C1 and C ′1 denote the vertices linked to C on the
two terminal chains. Then 1≤ r(C1) < p, and the minor of M corresponding to the
vertices of GD is completely determined by p, α and r(C1).

The proof of Proposition 4.3 is given in 4.6. We start with a preliminary lemma.

4.4. Let (G,M, R) be an arithmetical tree. For each node (C, r(C)) of degree
d(C)≥ 3 in G, we define an invariant µ(C) as follows. Let ρ(C) denote the number
of terminal chains attached to C , and let D1(C), . . . , Dρ(C)(C) be the vertices of G
linked to C that belong each to one terminal chain attached to C . Let ri (C) denote
the multiplicity of Di (C). The multiplicity of the terminal vertex on the chain
containing Di (C) is gcd(r(C), ri (C)). If no vertex A on the terminal chain has
|A · A| = 1, then ri (C) < r(C) (see 4.2). When a chain attached to C is not terminal,
we will call it a connecting chain. As in [Lorenzini 1989, Theorem 4.7], we let,
when ρ(C) > 0,

µ(C) := (d(C)− 2)(r(C)− 1)−
ρ(C)∑
j=1

(gcd(r(C), r j (C))− 1).

When ρ(C)= 0, we let µ(C) := (d(C)−2)(r(C)−1). It is clear that, if r(C)= 1,
then µ(C)= 0.

Lemma 4.5. Assume that the terminal chains attached to C do not contain a
vertex A with |A · A| = 1. Then µ(C) ≥ 0, and µ(C) = 0 if and only if r(C) = 1
and ρ(C)= 0.
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Proof. It is clear that, if a node C has ρ(C) = 0, then µ(C) ≥ 0, and µ(C) = 0
only when r(C) = 1. Assume now that ρ(C) > 0. Our hypothesis implies that
r(C) > gcd(r(C), ri (C)) for each vertex Di (C), i = 1, . . . , ρ(C). In particular,
r(C) > 1, and we need to prove that µ(C) > 0. Let

s := gcd(r(C), r1(C), . . . , rd(C)).

Assume first that ρ(C) = d(C) so that G has a single node. It is proven in
[Lorenzini 1989, Proposition 4.1] that, if ρ(C)= d(C) and s = 1, then µ(C)≥ 0.
When s > 1, define

µs(C) := (d(C)− 2)
(

r(C)
s
− 1

)
−

ρ(C)∑
j=1

(
gcd(r(C), r j (C))

s
− 1

)
.

The integer µs(C) is nothing but the µ-invariant of the node on the arithmetical
graph obtained from G by dividing all its multiplicities by s. Thus, µs(C) is even
[Lorenzini 1989, Definition 3.6] and µs(C)≥ 0. Since

µ(C)=−2(s− 1)+ sµs(C),

we find that µ(C) > 0 if µs(C) > 0. We claim that, under our hypotheses, µ(C) > 0
when s = 1. Indeed, our hypotheses imply that r(C) > gcd(r(C), ri (C)) for each
vertex Di (C), i = 1, . . . , ρ(C). Dropping the reference to C , we can write

µ(C) := (d − 2)(r − 1)−
d∑

j=1

(gcd(r, ri )− 1)

≥ (d − 2)(r − 1)− d(r/2− 1)= (d − 4)r/2+ 2.

Thus, µ(C) > 0 if d ≥ 4. Assume now that d = 3. Then cr = r1 + r2 + r3 for
some c. Let hi = gcd(r, ri ), and assume that h1 ≥ h2 ≥ h3. Then (h1, h2, h3) =

(r/2, r/2, r/2), (r/2, r/2, r/3), (r/2, r/3, r/3), (r/2, r/3, r/4) cannot occur due
to the divisibility r | (r1+ r2+ r3). Since the cases (h1, h2, h3)= (r/3, r/3, r/3),
(r/2, r/4, r/4), (r/2, r/3, r/6) haveµ(C)>0, we need only consider (h1,h2,h3)=

(r/2, r/3, r/5). In this case, r1 = r/2, r2 = r/3 or 2r/3 and r3 = ar/5 with
a = 1, . . . , 4. The reader will check that cr = r1+ r2+ r3 is impossible to achieve
with these values, and our claim is proved.

Let us assume now that 0< ρ(C) < d(C). Then

µ(C) := (d − 2)(r − 1)−
ρ∑

j=1

(gcd(r, ri )− 1)

≥ (d − 2)(r − 1)− (d − 1)(r/2− 1)= (d − 3)r/2+ 1> 0. �

4.6. Proof of Proposition 4.3. We claim that GD contains a node of G. (This node is
also a node of GD unless it is D itself and dG(D)= 3.) Indeed, the hypotheses that
r(C0)≤ r(D) and |D · D|> 1 imply that dG(D) > 1 because the relation M R = 0
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provides otherwise for the equality |D · D|r(D)= r(C0), which is a contradiction.
Suppose then that D is connected in GD to D1. If dG(D)= 2, then we find from the
relation |D ·D|r(D)= r(C0)+r(D1) that r(D)≤ r(D1). Repeating this discussion
with D and D1 instead of C0 and D, we find that the graph GD has a chain of
increasing multiplicities r(D) ≤ r(D1) ≤ · · · , which eventually leads to a node
of GD (and of G).

In G, C0 and D are adjacent vertices. Consider the connected component G
of G \ {D} that contains C0. Two cases can occur: either (a) G contains a node
of G, or (b) G does not contain a node of G, in which case we will call G a terminal
chain of G. In the latter case, the terminal vertex on this chain has multiplicity
gcd(r(C0), r(D)) (see 4.2), which equals r(C0) by hypothesis. The definition of
γDgD in (4.1.2), along with the fact that we assume that G is a tree, allow us to write

γDgD = (r(C0)− 1)+
∑

vertices A of GD

(r(A)− 1)(dG(A)− 2).

In case (a), C0 is not on a terminal chain of G so that, by definition of µ(C) in 4.4,
we can write

γDgD = (r(C0)− 1)+
∑

nodes C of G in GD

µ(C) (4.6.1)

(where µ(C) is computed viewing C as a node of G and not of GD). In case (b)
where C0 is on a terminal chain of G whose terminal vertex has multiplicity r(C0),
we have

γDgD = 2(r(C0)− 1)+
∑

nodes C of G in GD

µ(C).

We prove below case (a). The arguments to prove (b) are similar and are left to the
reader. Case (b) will not be used in the remainder of this article.

Assume that we are in case (a). We can apply Lemma 4.5, and we obtain that each
term µ(C) in the above sum is nonnegative. In view of (4.6.1), since r(C0)= p by
hypothesis, we need to show that

∑
nodes C µ(C)≥ p− 1, and we need to describe

the graphs for which
∑

nodes C µ(C)= (p− 1).
Denote by C the node of G closest to C0 in GD . (This node could be D.) The mul-

tiplicity of C is divisible by p since p divides the consecutive multiplicities r(C0)

and r(D) (similar argument as in 4.2). Let np denote the multiplicity of C .
Suppose that C (of degree d in G) has only one connecting chain. If n = 1, then

all terminal multiplicities at C equal 1 and µ(C)= (d− 2)(p− 1). The case d = 3
leads to the case described in the statement of Proposition 4.3 with µ(C)= (p−1),
γDgD = 2(p− 1) and γD = 1. When d > 3, we have µ(C) > p− 1, as desired.
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When n > 1, the inequality

µ(C)≥ (d − 2)(np− 1)− (d − 1)(np/2− 1)

= (d − 2)np/2− np/2+ 1

shows that we have µ(C) > p− 1 unless d = 3. When n > 1 and d = 3, every
vertex on the chain linking C to C0 has multiplicity divisible by p. Thus, either
(i) both terminal multiplicities of C are coprime to p (call them n1 and n2), or
(ii) both are divisible by p (call them m1 p and m2 p).

In case (i), µ(C) = np − n1 − n2 + 1 with n1 and n2 dividing n. It follows
that µ(C) ≥ n(p − 2)+ 1. Clearly, µ(C) > p − 1 unless p = 2. Assume that
p = 2. If (n1, n2) 6= (n, n), we find that µ(C)= n(p− 1)+ 1> (p− 1). The case
(n1, n2) = (n, n) cannot happen because, in that case, n divides the multiplicity
of all the components linked to C , which implies then that n = 2. But a node of
multiplicity 4 cannot have exactly three vertices of multiplicity 2 attached to it.

In case (ii), µ(C)= (n−m1−m2)p+1 with m1 and m2 dividing n. The equality
(n−m1−m2)= 0 is not possible. Indeed, it is only possible if m1=m2= n/2. But
since gcd(m1,m2)= 1, this case can happen only if n = 2. But then |C ·C | would
equal 3/2, a contradiction. It follows that µ(C)= (n−m1−m2)p+ 1> p− 1.

Suppose now that C, of multiplicity np, has at least two connecting chains. If
n > 1, then

µ(C)≥ (d − 2)(np− 1)− (d − 2)(np/2− 1)= (d − 2)np/2> p− 1,

as desired. If n = 1, then µ(C) = (d − 2)(p− 1). Thus, µ(C) > p− 1 if d > 3.
Suppose now that d = 3. Since GD is a tree with a node C of degree 3, GD must
have at least three terminal vertices. Thus, there must exist at least one additional
node C ′ on the graph GD that has a terminal chain. It follows that µ(C ′) ≥ 1
(Lemma 4.5) and, therefore, µ(C)+µ(C ′) > p− 1, as desired.

4.7. To conclude the proof of Proposition 4.3, we now specify the intersection
matrix in the case where γDgD = 2(p− 1). Let (G,M, R) be as in Proposition 4.3,
and assume that the vertex D is such that γDgD = 2(p− 1). Let ND denote the
matrix M restricted to the vertices of GD. Let α denote the number of vertices
of GD on the chain linking C0 to the node C of GD (including the node C). Each of
these vertices except C is of degree 2. The multiplicity of C is p. Since we assume
that no vertex of degree 2 has self-intersection −1, we find that the multiplicity
of each of these vertices must be p. It follows that each of these vertices except
possibly C must have self-intersection −2.

Let C1 and C ′1 denote the vertices linked to C on the two terminal chains.
Since they have degree 1 or 2 and cannot have self-intersection −1, we find that
1 ≤ r(C1) < r(C) = p and r(C ′1) < r(C). Moreover, from M R = 0, we find
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that p + r(C1) + r(C ′1) = p|C · C |. It follows that |C · C | = 2, and r(C ′1) =
p− r(C1). We claim that ND depends only on p, α and r(C1), and we write it
as ND = N (p, α, r(C1)). Indeed, the pair (p, r(C1)) completely determines all
multiplicities and all self-intersections on the terminal chain containing C1: use
(r, s)= (p, r(C1)) in 4.8 below to determine the self-intersections and multiplicities
of the terminal chain. Similarly, the pair (p, r(C ′1)) completely determines all
multiplicities and all self-intersections on the terminal chain containing C ′1. This
conclude the proof of Proposition 4.3. The matrix ND is an intersection matrix also
introduced in [Lorenzini 2013a, Example 3.18]. �

4.8. Recall the following standard construction. Given an ordered pair of positive
integers r > s with gcd(r, s) = 1, we construct an associated intersection matrix
N = N (r, s) with vector R = R(r, s) and N R =−re1 as follows (where e1 denotes
the first standard basis vector of Zn). Using the division algorithm, we can find
positive integers b1, . . . , bm and s1 = s > s2 > · · ·> sm = 1 such that r = b1s− s2,
s1= b2s2−s3 and so on until we get sm−1= bmsm . These equations are best written
in matrix form: 

−b1 1 . . . 0

1 −b2
. . .

. . .
. . . 1

0 . . . 1 −bm




s1
...
...

sm

=

−r
0
...

0

 .

We let N (r, s) denote the above square matrix and R(r, s) be the column matrix on
the left of the “equals” sign. It is well-known that det(N (r, s))=±r (see [Lorenzini
2000, Lemma 2.6]). We recall also for use in Corollary 6.12 that

1
rs
+

1
ss2
+ · · ·+

1
sm−1sm

=
c
r
, (4.8.1)

where 0< c< r is such that r | cs− 1 (see [Lorenzini 2000, Lemmas 2.8 and 2.6]).

Remark 4.9. In Proposition 4.3, the hypothesis that γDgD = 2(p− 1) allowed us
to completely describe the graph GD. For a fixed γDgD > 2(p− 1), the situation
is much more complicated and several possible types of graphs GD may occur. It
would follow from our guess in 6.2 that, for applications to models of curves, it
suffices to classify the cases where γDgD is a multiple of p− 1. We give below
several possible types of graphs GD with γDgD = 3(p− 1) when p is odd.

(a) GD is a graph with one node of G only, of multiplicity p and degree 4 in G.
The three terminal vertices of G that belong to GD have multiplicity 1.



350 Dino Lorenzini

1
p p p p p

�2 �2 �2

1

1
C0

To completely determine the intersection matrix ND and the vector RD , one
needs to also provide the multiplicities r1, r2 and r3, of the first vertices on
each of the three terminal chains, with the conditions 1 ≤ r1, r2, r3 < p and
r1 + r2 + r3 divisible by p. Such data can only be provided when p is odd.
The self-intersection of the node is then −(p+ r1+ r2+ r3)/p =−2 or −3.

(b) GD is a graph with one node of G only, of multiplicity 2p and degree 3 in G.
The two terminal vertices of G that belong to GD have multiplicity 1 and 2,
respectively.

p p p p 2p

�2 �2 �3

2

1
C0

(c) GD is a graph with 2 nodes C and C ′ of G. Let C be the node closest to C0

in GD . It has multiplicity p and degree 3 in G, and it has a single terminal chain
with terminal multiplicity 1. The node C ′ is connected to C by a connecting
chain that contains a vertex of multiplicity coprime to p.

(i)
p p p

1

p

C 0

1

1
C0

(ii)
p p p

1

2p

C 0

2

p
C0

We conclude this section with some general remarks concerning the invariant gD
introduced in (4.1.2).

Remark 4.10. Let (G,M, R) be an arithmetical graph. As at the beginning of
this section, fix a vertex (C0, r(C0)) of G. Assume that C0 is linked to a vertex
(D, r(D)) by a single edge e and that, when the edge e is removed from G, then
D and C0 are not in the same connected component of the resulting graph. Let GD

denote the connected component of G \ {e} that contains D. Consider the minor
N = ND of M corresponding to the vertices in GD. Let n denote the number of
vertices of GD .
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(a) The integer gD depends only on the matrix ND and the vertex D on the graph GD .
To prove this statement, we show that the vector RD/γD is completely determined
by ND and the vertex D. Indeed, let us number the vertices of GD such that D is
the first vertex numbered. Then RD/γD is a vector with positive coefficients such
that ND(RD/γD)=

t(−r(C0)/γD, 0, . . . , 0) (where the superscript t indicates the
transpose vector). The existence of such a relation insures that ND is negative-
definite (see [Lorenzini 2013a, §3.3]), and the vector RD/γD is a rational multiple
of the first column of the unique matrix N ∗ such that N N ∗ = N ∗N = det(N ) Idn

[Lorenzini 2013a, Definition 3.4]. The integer r(C0)/γD is the order in Zn/ Im(N )
of the class of the first basis vector e1 [Lorenzini 2013a, Lemma 3.5].

(b) The integer gD is nonnegative. More precisely,

gD − 2β(GD)≥

(
r(C0)

γD

)
+ gcd

(
r(D)
γD

,
r(C0)

γD

)
− 2≥ 0. (4.10.1)

To prove the first inequality, complete the pair (N , RD/γD) into an arithmetical
graph (G ′,M ′, R′) by adding a chain attached to D, as in [Lorenzini 2013a, §3.15].
Clearly, β(G ′) = β(GD). The graphs G ′ and GD differ in only two vertices of
degree not equal to 2: the terminal vertex on the new terminal chain on G ′ has
terminal multiplicity gcd(r(D)/γD, r(C0)/γD), and dG ′(D)= dGD (D)+ 1. Using
(4.1.1) and (4.1.3), it is easy to show that

2g0(G ′,M ′, R′)− 2β(G ′)

= gD − 2β(GD)−

(
r(C0)

γD
− 1

)
−

(
gcd

(
r(D)
γD

,
r(C0)

γD

)
− 1

)
. (4.10.2)

The integer g0(G ′)−β(G ′) is always nonnegative [Lorenzini 1989, Theorem 4.10],
and the statement follows.

(c) In analogy with the arithmetic genus of curves on surfaces, we define, given
Z ∈ Zn , a (possibly negative) integer pa(Z) as follows. If Z =Ci is a vertex of GD ,
we let pa(Z) = 0. We let pa(rCi ) be defined by the formula 2pa(rCi ) − 2 =
r2C2

i + r(|C2
i | − 2) (where we have abbreviated Ci · Ci by C2

i ). Since r2
− r is

always even, pa(rCi ) is an integer. In general, when Z =
∑n

i=1 ri Ci , we let

Z2
:=

∑
1≤i, j≤n

rir j (Ci ·C j )

and set

2pa(Z)− 2 := Z2
+

n∑
i=1

ri (|C2
i | − 2).

We leave it to the reader to check that

gD = 2pa(RD/γD)− 2+
r(D)
γD

(
r(C0)

γD
+ 1

)
.



352 Dino Lorenzini

(d) The integer gD is even when either r(C0) is odd or r(D) is even. This can be
seen from the formula for gD in (c) or from (4.10.2).

(e) Assume that GD is a tree. Then the order |det(N )| of the group8N :=Zn/N (Zn)

can be computed completely in terms of the vector RD/γD and of the graph GD

(see [Lorenzini 2013a, Theorem 3.14]), and we find that

|det(N )| =
r(D)
γD

r(C0)

γD

∏
vertices A of GD

(
r(A)
γD

)dGD (A)−2

,

where dGD (A) is the degree of the vertex A in the graph GD . Recall now the formula
(4.1.3):

gD =

(
r(D)
γD
− 1

)
+

(
r(C0)

γD
− 1

)
+

∑
vertices A of GD

(
r(A)
γD
− 1

)
(dGD (A)− 2).

This last expression is surprisingly similar to the expression for |det(N )|. This
motivates the following result.

Let x > 0 be any integer, and define the function `(x) :=
∑

q prime
ordq(x)(q−1). Then

`(|det(N )|)≤ gD. (4.10.3)

This result is not used in the remainder of this paper, and we will provide here
only a sketch of proof.

Sketch of proof. We complete the pair (N , RD/γD) into an arithmetical graph
(G ′,M ′, R′) by adding a chain attached to D, as in [Lorenzini 2013a, §3.15]. The
order of the component group8(M ′) is given in [Lorenzini 1989, Corollary 2.5], and
the relation between det(N ) and |8(M ′)| is discussed in the proof of Theorem 3.14
in [Lorenzini 2013a]. We can then bound |8(M ′)| in terms of g0(G ′,M ′, R′) using
[Lorenzini 1989, Corollary 4.8], which states that `(|8(M ′)|)≤ 2g0(G ′,M ′, R′).
The inequality `(|det(N )|)≤ gD follows then from (4.10.2). �

5. The quotient construction

Let K be a complete discrete valuation field with valuation v, ring of integers OK ,
uniformizer πK and residue field k of characteristic p > 0, assumed to be alge-
braically closed. Let X/K be a smooth proper geometrically connected curve of
genus g > 0. When g = 1, assume in addition that X (K ) 6=∅. Assume that X/K
does not have semistable reduction over OK and that it achieves good reduction
after a cyclic extension L/K of prime degree q .

Let H denote the Galois group of L/K . Let Y/OL be the smooth model of X L/L .
Let σ denote a generator of H . By minimality of the model Y , σ defines an
automorphism of Y also denoted by σ (but note that σ : Y→ Y is not a morphism
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of OL -schemes). We also denote by σ the automorphism of Yk induced by the
action of σ on Y . Let Z/OK denote the quotient Y/H , and let α : Y → Z
denote the quotient map. The scheme Z is normal. The map α induces a natural
map Yk→ Z red

k that factors as follows:

Yk
ρ
−→ Yk/〈σ 〉 → Z red

k .

5.1. We claim that the first map is Galois of order |H | and that the second map is
the normalization map of Z red

k . Indeed, let Spec(B) denote a dense open set of Y
invariant under the action of H . Then Spec(B H ) is a dense open set of Z . Let
A := B H . Let PB = (πL) denote the prime ideal of B corresponding to Yk , and let
PA := PB ∩ A. We have the natural maps

B H/PA ↪→ (B/PB)
H ↪→ B/PB .

The extension of discrete valuation rings (B H )PA → BPB induces an extension of
residue fields (B H )PA/PA(B H )PA → BPB/PB BPB . We claim that this extension
has degree |H |. Indeed, our assumption is that the curve X/K does not have good
reduction over OK . If the residue extension is trivial, the normalization of the
curve Z red

k is isomorphic to Yk and, thus, is of genus g. In addition, we find that
PA BPB = (PB BPB )

|H | so that πK APA = (PA APA). The special fiber of Z is then
reduced, and the curve X/K has good reduction over OK , a contradiction. It follows
then that PA BP B = PB BP B so that πK APA = (PA APA)

|H |. Hence, the multiplicity
in Z of the irreducible component Z red

k equals |H |.
It is easy to check that, for any x ∈ (B/PB)

H , |H |x and x |H | belong to A/PA.
Thus, when |H | 6= p, A/PA and (B/PB)

H have the same field of fractions. When
|H | = p, it could happen that A/PA and (B/PB)

H do not have the same field of
fractions, and then the extension of fields of fractions is purely inseparable of degree
p with (B/PB)

H
= B/PB . It follows that the special fiber of Z also has genus g.

When g > 1, this is not possible since the multiplicity of Zk is p. When g = 1, it
could happen that Z is the minimal model of X/K with a multiple special fiber. This
case cannot happen in our situation because we assumed X (K ) 6=∅: a K -rational
point always reduces to a smooth point in the special fiber. Thus, the automorphism
σ : Yk→ Yk is not trivial. We find that A/PA and (B/PB)

H have the same fields
of fractions so that the Dedekind domain (B/PB)

H is the integral closure of A/PA.

5.2. Let P1, . . . , Pd be the ramification points of the map Yk → Yk/〈σ 〉. Let
Q1, . . . , Qd be their images in Z . The normal scheme Z is singular exactly at
Q1, . . . , Qd . Indeed, the morphism Y→Z is unramified outside these points. If the
point Qi were regular, the morphism would be flat above Qi [Altman and Kleiman
1970, Corollary V.3.6] and the branch locus would then be pure of codimension 1
[Altman and Kleiman 1970, Theorem VI.6.8], a contradiction.
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Consider the regular model X → Z obtained from Z by a minimal desingular-
ization. After finitely many blow-ups X ′→ X , we can assume that the model X ′
is such that X ′k has smooth components and normal crossings and is minimal with
this property. Let f denote the composition X ′→ Z . Let C0/k denote the strict
transform in X ′ of the irreducible closed subscheme Z red

k of Z . The curve C0 has
multiplicity |H | in X ′. Let D1, . . . , Dd denote the irreducible components of X ′k
that meet C0. Let ri denote the multiplicity of Di , i = 1, . . . , d . We assume d ≥ 1.
Our main theorem in this section is this:

Theorem 5.3. Let X/K be a smooth proper geometrically connected curve of
genus g > 0 with X (K ) 6=∅ if g = 1. Assume that X/K does not have semistable
reduction over OK and that it achieves good reduction after a cyclic extension L/K
with Galois group H of prime degree p. Keep the above notation, and let Qi be a
singular point of the quotient Z :=Y/H. Let G Qi denote the graph associated with
the curve f −1(Qi ). Let G denote the graph associated with the special fiber X ′k .
Then, for all i = 1, . . . , d , the graph G Qi contains a node of G and p divides ri .

Proof. When d = 1, the theorem is immediate: the component C0 of multiplicity p
is a terminal vertex of the graph of X ′, and thus, p|C0 ·C0| = r1. Assume that G Q1

does not contain a node of G. Then since d=1, G does not contain a node. Since the
resolution is minimal with normal crossings, none of the components of X ′k can have
self-intersection−1 except possibly for C0. It is clear that the graph G is not reduced
to a single vertex since the model Z is singular. Thus, the graph G has a second
terminal vertex C ′ in addition to C0. But then, walking on G from C ′ towards C0,
we find that the multiplicities can only be strictly increasing. This is a contradiction
since all multiplicities on G are divisible by p (because two consecutive ones are),
and G must contain a node. We assume from now on that d > 1.

Let A := Jac(X/K ). Let AK /OK denote the Néron model of A/K . Let AL/OL

denote the Néron model of AL/L , and denote by η : AK ×OK OL → AL the
canonical map induced by the functoriality property of Néron models. The special
fiber (AK )k is an extension of a finite group 8A/K , called the group of components,
by the connected component of zero (AK )

0
k of (AK )k :

0→ (AK )
0
k→ (AK )k→8A/K → 0.

Assume by contradiction that p is coprime to one of the ri ’s. Without loss of
generality, we may assume that p - rd . For each i = 1, . . . , d , choose a point xi ∈ Di

such that xi is a regular point of (X ′k)red. Since K is complete, we can find a closed
point Ri of X of degree ri over K and such that the closure of Ri in X ′ meets the
special fiber Xk exactly in xi (see, e.g., [Gabber et al. 2013, Proposition 8.4(3)]).
For each i = 1, . . . , d − 1, consider the following divisor of degree 0 on X :
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Si :=
rd

gcd(ri , rd)
Ri −

ri

gcd(ri , rd)
Rd .

We also denote by Si its image in Jac(X)/K . We recall below Raynaud’s description
of the Néron model of a Jacobian in order to be able to describe explicitly the
image of Si under both the reduction map Jac(X)(K )→8A/K and the reduction
map Jac(X)(L)→ (AL)k(k). We will be able to contradict the hypothesis that p - rd

by considering the reductions of
∑d−1

i=1 gcd(ri , rd)Si .
Raynaud [1970] exhibited an explicit separated quotient QK /OK of the open

subfunctor of PicX ′/OK consisting of line bundles of total degree 0, and he showed
that, when the residue field k is algebraically closed, QK /OK is isomorphic to
the Néron model of A/K [Bosch et al. 1990, Theorem 9.5.4(a)]. The canonical
map QK (K )→ 8QK is described as follows [Bosch et al. 1990, Lemma 9.5.9,
Theorem 9.6.1]. Represent an element of QK (K ) by a line bundle L on X of
degree 0. Let L denote an extension of L to X ′. Number the irreducible components
of X ′k as C1, . . . ,Cv . Consider the map

⊕
i ZCi→Hom

(⊕
i ZCi ,Z

)
that sends Ci

to the map δCi with δCi (C j ) := (Ci ·C j ). The group8M is isomorphic to the torsion
subgroup of the cokernel of this map. The group of components 8QK is isomorphic
to 8M , and under this isomorphism, the image of L under QK (K )→ 8QK is
the map δL with δL(Ci ) := (Ci ·L). It follows immediately from these facts that
the image in 8QK of Si ∈ Jac(X)(K ) can be identified with the image τi of the
vector E(Di , Dd) in 8M (notation as in 3.1 and 3.3).

Consider now the reduction map QL(L) → (QL)k(k). The closure of any
point in the preimage under X L → X of the closed point Ri meets the special
fiber of the smooth model Y of X L only at the point Pi . The line bundle L
corresponding to the divisor Si pulls back to a line bundle LL on X L . We find that
the reduction of LL ∈ Jac(X L)(L) is the point of Jac(Yk)(k) corresponding to the
divisor lcm(ri , rd)(Pi − Pd).

We may now find a contradiction to the assertion that p - rd when the quo-
tient of Yk by the action of H has genus 0. As we indicated above, the ele-
ment

∑d−1
i=1 gcd(ri , rd)Si in Jac(X)(K ) reduces to the element

∑d−1
i=1 gcd(ri , rd)τi

in 8M . Proposition 3.5 shows that the latter element is zero in 8M . Thus,∑d−1
i=1 gcd(ri , rd)Si reduces in the connected component (QK )

0
k . Our additional

hypothesis implies that this connected component is unipotent. This follows
from [Bosch et al. 1990, Theorem 9.5.4] if the greatest common divisor of the
multiplicities of the components of X ′k is 1 and from [Liu et al. 2004, Propo-
sition 7.1] in general. It follows that the image of (QK )

0
k under the canonical

map η :AK ×OK OL →AL is trivial.
Consider now the element

∑d−1
i=1 gcd(ri , rd)Si in Jac(X L)(L). Our discussion

above shows that it reduces to the element rd
(∑d−1

i=1 ri (Pi − Pd)
)

in Jac(Yk)(k).
We have thus proved that rd

(∑d−1
i=1 ri (Pi − Pd)

)
= 0 in Jac(Yk)(k). Our hypothesis
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on the quotient of Yk by H implies that each Pi − Pd has order p (Proposition 2.5).
Since rd

(∑d−1
i=1 ri (Pi − Pd)

)
= 0 and we assume that p does not divide rd , we can

conclude that
∑d−1

i=1 ri (Pi − Pd)= 0. Then Proposition 2.5 implies that p divides
ri for all i = 1, . . . , d−1. Since |C0 ·C0|p= r1+· · ·+rd , it follows that p divides
rd , which contradicts our assumption.

When the quotient of Yk by the action of H has positive genus, the image of
(QK )

0
k under the canonical map η : AK ×OK OL → AL is not trivial, and the

following additional considerations must be discussed. Let Norm(X ′) denote the
normalization of X ′ in the field of fractions of Y . Since Y is integral over Z , we
have a natural map Norm(X ′)→ Y . All components of X ′ are rational except
possibly the component C0 [Lorenzini 2013a, Lemma 2.10].

By construction, we have a natural map Norm(X ′)→ X ′×OK OL . Let N →
Norm(X ′) denote a resolution of the singularities of Norm(X ′). Consider the
commutative diagram of OL -morphisms

N −−−→ Norm(X ′) −−−→ Yy y
X ′×OK OL −−−→ Z ×OK OL

The maps N → Norm(X ′)→ X ′×OK OL induce maps of the associated Picard
functors

PicX ′/OK ×OK OL ∼= PicX ′×OK OL/OL → PicNorm(X ′)/OL → PicN /OL ,

whose composition induces the canonical map of Néron models

η : QK ×OK OL → QL .

Considering the special fibers over k, we obtain a commutative diagram

Pic0
Nk/k −−−→ (QL)

0
kx x

Pic0
X ′k/k −−−→ (QK )

0
k

Since we do not have additional information on the special fiber X ′k , we cannot
conclude that the bottom horizontal map is an isomorphism. It is however faithfully
flat [Raynaud 1970, Corollaire 4.1.2]. Since the special fiber of Y is reduced, we find
that the top horizontal map is an isomorphism [Bosch et al. 1990, Theorem 9.5.4].

Let D denote the irreducible component of Nk lying above Yk . The composition
D ↪→Nk→ Yk is an isomorphism. The image of D in (X ′)red

k is the curve C0, and
we will identify the map D→C0 with the quotient map ρ :Yk→Yk/〈σ 〉. Consider
the following diagram, whose top right horizontal morphism is an isomorphism:
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Pic0
D(k) ←−−− Pic0

Nk
(k)

∼
−−−→ (QL)

0
k(k)

ρ∗

x x x
Pic0

C0
(k) ←−−− Pic0

X ′k
(k) −−−→ (QK )

0
k(k)

We may now conclude the proof of Theorem 5.3 using the same method as in the case
where the reduction of Jac(X)/K is purely unipotent. Consider again the element∑d−1

i=1 gcd(ri , rd)Si in Jac(X)(K ), which reduces to the element
∑d−1

i=1 gcd(ri , rd)τi

in 8M . Proposition 3.5 shows that the latter element is zero in 8M . Thus,∑d−1
i=1 gcd(ri , rd)Si reduces in the connected component (QK )

0
k . Consider now

the element
∑d−1

i=1 gcd(ri , rd)Si in Jac(X L)(L). Our discussion above shows that
it reduces to the element rd

(∑d−1
i=1 ri (Pi − Pd)

)
in Jac(Yk)(k).

Since Pic0
X ′k/k→(QK )

0
k is a faithfully flat morphism and each of the above squares

commutes, the element
∑d−1

i=1 gcd(ri , rd)Si , which reduces to rd
(∑d−1

i=1 ri (Pi−Pd)
)

in Pic0
Yk/k(k), in fact reduces to an element in ρ∗(Jac(Yk/〈σ 〉)). Thus, the image

of rd
(∑d−1

i=1 ri (Pi − Pd)
)

in Jac(Yk)/ρ
∗(Jac(Yk/〈σ 〉)) is trivial. Each Pi − Pd

defines an element of order p in Jac(Yk)/ρ
∗(Jac(Yk/〈σ 〉)) (Proposition 2.5). Since

rd
(∑d−1

i=1 ri (Pi−Pd)
)
=0, we conclude that

∑d−1
i=1 ri (Pi−Pd)=0. Then Proposition

2.5 implies that p divides ri for all i=1, . . . , d−1, and since |C0·C0|p=r1+· · ·+rd ,
we find that p divides rd , which contradicts our assumption.

Now that we know that p divides ri , we see that the multiplicities on the chain
of G that leaves C0 starting with Di can only be increasing or constant because this
chain of vertices of degree 2 contains no vertex of self-intersection −1. If Di is not
a node of G, we continue along this chain and find either a terminal vertex or a node
of G. We cannot find a terminal vertex because the multiplicity of a terminal vertex
can only be at most the multiplicity of its unique neighbor with equality only if the
self-intersection of the terminal vertex is −1. Thus, G Qi contains a node of G. �

Remark 5.4. Let Ni denote the intersection matrix of the exceptional divisor, with
smooth components and normal crossings, of a resolution of the Z/pZ-quotient
singularity Qi . We recall here some properties of Ni :

(a) It is negative definite (attributed to Du Val in [Lipman 1969, Lemma 14.1]).

(b) The graph G(Ni ) associated with Ni is a tree, and all components of the
exceptional divisor are rational [Lorenzini 2013a, Theorem 2.8].

(c) Let ni denote the number of irreducible components in the exceptional divi-
sor. The Smith group 8Ni := Zni / Im(Ni ) is killed by p [Lorenzini 2013a,
Theorem 2.6].

(d) The fundamental cycle Z of Ni is such that |Z2
|≤ p [Lorenzini 2013a, Theorem

2.3, Remark 2.4].
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6. The weakly ramified case

We present in this section some applications of Theorem 5.3. Let us recall our
notation. Let K be a complete discrete valuation field with valuation v, ring of
integers OK , uniformizer πK and residue field k of characteristic p > 0, assumed
to be algebraically closed. Let X/K be a smooth proper geometrically connected
curve of genus g > 0. When g = 1, we assume in addition that X (K ) 6=∅.

Assume that X/K does not have semistable reduction over OK and that it
achieves good reduction after a cyclic extension L/K of prime degree p. Let
H = 〈σ 〉 denote the Galois group of L/K . Let Y/OL be the smooth model of
X L/L . Let Z/OK denote the quotient Y/H with singular points Q1, . . . , Qd and
d ≥ 1. Recall the regular model f : X ′→ Z introduced in 5.2.

6.1. The resolution of a singularity Q of Z is a local process and depends only on
the local ring OZ,Q . It seems therefore natural to try to relate the “complexity” of
the resolution graph to some local invariants of OZ,Q . In this respect, we propose
the following.

Consider the Galois morphism ρ : Yk → Yk/〈σ 〉. Associated with any point
Q ∈ Yk/〈σ 〉 is the following measure of the ramification of ρ over Q:

ν(Q) := δ(P)=
∞∑
j=0

(|H j (P)| − 1),

where P is the preimage of Q in Yk and H j (P) denotes the j-th higher rami-
fication group at P . (For more general morphisms, we would define ν(Q) :=∑

P∈ρ−1(Q) δ(P).) Recall from 2.2 that the morphism is weakly ramified at P
if δ(P)= 2(p− 1). Our guess is that ν(Q) should also be an important measure of
how complicated the exceptional divisor of the resolution of Q is. To formulate this
guess more precisely, we compare the expressions of the genus g in the Riemann–
Hurwitz formula and in the adjunction formula. The Riemann–Hurwitz formula for
the morphism ρ can be rephrased as

2g = 2g(Yk)= 2|H |g(C0)− 2(|H | − 1)+
d∑

i=1

ν(Qi ).

Consider now the model X ′. By hypothesis, it is minimal with the property
that the special fiber has smooth components and normal crossings. Thus, none
of the vertices A in the graph G := G(X ′) with degree 1 or 2 can have self-
intersection −1 (we use here also the fact that only the curve C0 can have positive
genus [Lorenzini 2013a, Lemma 2.10]). Moreover, since the curve X/K has
potentially good reduction, the graph G(X ′) is a tree [Lorenzini 2013a, Lemma 2.10].
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The adjunction formula

2g− 2= X ′k ·X ′k +X ′k ·�,

with � a relative canonical divisor of X ′/OK , can be rewritten as

2g = 2|H |g(C0)+
∑

vertex A of G

(r(A)−1)(dG(A)−2)

= 2|H |g(C0)−2(|H |−1)+
d∑

i=1

(
|H |−1 +

∑
vertex A of G Qi

(r(A)−1)(dG(A)−2)
)

= 2|H |g(C0)−2(|H |−1)+
d∑

i=1

γDi gDi ,

(6.1.1)
where D1, . . . , Dd are the vertices attached to C0 in the tree G(X ′) and the integers
γDi and gDi are defined as in 4.1 and (4.1.2). Since the graph G Di is nothing
but the graph G Qi of the desingularization of Qi , we define our measure of the
desingularization of Qi to be γQi gQi := γDi gDi for each i = 1, . . . , d . The integer
gQi := gDi depends only on the intersection matrix of the desingularization and the
marked vertex Di on its graph. Since r(C0)= p and is divisible by γQi , we find
that γQi = 1 or p.

6.2. Our guess regarding the resolution X ′→ Z of the singularities of Z is that

γQi gQi = ν(Qi ) holds for all i = 1, . . . , d.

This equality would have interesting implications. For instance, since H = Z/pZ,
we always have ν(Q) divisible by p − 1 so that p − 1 divides γQi gQi when
γQi gQi = ν(Qi ). Since γQi = 1 or p, we find that

p− 1 divides gQi when γQi gQi = ν(Qi ).

Examples where gQi = 2(p− 1) and 3(p− 1) are given in 4.7 and Remark 4.9.
It immediately follows from the Riemann–Hurwitz formula and the adjunction
formula that:

Lemma 6.3. With the above notation and hypotheses,

d∑
i=1

ν(Qi )=

d∑
i=1

γQi gQi . (6.3.1)

We now prove the equality γQi gQi = ν(Qi )= 2(p− 1) for all i = 1, . . . , d in
the weakly ramified case, using Theorem 5.3.
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Theorem 6.4. Let X/K be a curve with potentially good reduction after a ram-
ified extension L/K of prime degree p. Keep the above notation. Then for all
i = 1, . . . , d:

(a) We have γQi gQi ≥ 2(p− 1) and ν(Qi )≥ 2(p− 1).

(b) If the ramification points of Yk→Yk/〈σ 〉 are all weakly ramified (in particular,
if Yk is ordinary), then γQi gQi = ν(Qi )= 2(p− 1).

Proof. (a) The fact that ν(Qi )≥ 2(p− 1) follows immediately from the properties
of a wildly ramified extension: the higher ramification groups H0 and H1 must be
nontrivial. To prove that γQi gQi ≥ 2(p− 1), we note first that Theorem 5.3 shows
that p | ri . The inequality follows then from Proposition 4.3.

(b) When the ramification points of Yk→ Yk/〈σ 〉 are all weakly ramified, we have
ν(Qi ) = 2(p− 1) (2.2). It follows from (6.3.1) and from the fact that γQi gQi ≥

2(p− 1) proven in (a) that γQi gQi = 2(p− 1). �

Remark 6.5. Without the use of Theorem 5.3, we could only argue that γQi gQi ≥

p− 1. Indeed, if r(C0) does not divide r(Di ), then γDi = 1. Then we can use the
fact that gQi ≥ r(C0)− 1 established in Remark 4.10.

Using the notation γQi introduced in this section, we may now state a corollary
to Theorem 5.3.

Corollary 6.6. Let X/K be a curve with potentially good reduction after a wildly
ramified Galois extension L/K of degree p as in Theorem 5.3. Let Ni denote the
intersection matrix associated with the resolution of Qi . Assume that γQi = 1. Then
p2 divides det(Ni ).

Proof. The graph associated with the matrix Ni is G Qi with a marked vertex Di on
it. Let RDi denote the vector of multiplicities of the components of the resolution
of Qi . Then the determinant of Ni can be computed in terms of the coefficients
of RDi /γDi (see [Lorenzini 2013a, Theorem 3.14]). In particular, it is known that
(r(C0)/γDi ) gcd(r(C0)/γDi , r(Di )/γDi ) divides det(Ni ). Under our hypotheses,
r(C0)= p, p divides r(Di ) (Theorem 5.3) and γDi = 1. �

Remark 6.7. Let X/K be a curve with potentially good reduction after a wildly
ramified extension L/K of degree p as in Theorem 5.3. Let Ni denote the intersec-
tion matrix associated with the resolution of Qi . Then p kills the Smith group 8Ni

[Lorenzini 2013a, Theorem 2.6], and thus, |det(Ni )| is a power of p. It follows
from (4.10.3) that ordp(|det(Ni )|)(p− 1)≤ gDi .

In the examples of graphs and matrices Ni given in Remark 4.9 with gDi =

3(p−1), we find that both |det(Ni )| = p2 and |det(Ni )| = p3 can occur: the former
in (b) and (c)(ii), and the latter in (a) and (c)(i).
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Theorem 6.8. Let X/K be a curve with potentially good reduction after a wildly
ramified Galois extension L/K of degree p. Assume that all ramification points
of Yk→ Yk/〈σ 〉 are weakly ramified (this is the case if Yk is ordinary). Keep the
above notation. Then, for all i = 1, . . . , d, we have ri = p, and G Qi is a graph1

with a single node Ci of degree 3:

p p p p p

�2 �2 �2 �2

Ci

p � r1.i/

r1.i/

1

1C0

Di

The intersection matrix N (p, αi , r1(i)) of the resolution of Qi is uniquely deter-
mined as in 4.7 by the two integers αi and r1(i) with 1≤ r1(i) < p. The integer αi is
the number of vertices of self-intersection −2 (including the node Ci ) on the chain
in G Qi connecting the node C0 to the single node Ci of G Qi , and this integer αi is
divisible by p.

Proof. Theorem 6.4(b) shows that γQi gQi =2(p−1) for all i=1, . . . , d . Proposition
4.3 classifies the graphs with γQi gQi = 2(p− 1), and the statement on the shape of
the graph follows.

The Smith group of the intersection matrix N (p, αi , r1(i)) is computed in [Loren-
zini 2013a, §3.19, Lemma 3.21] and is found to be of order p2 and killed by p
if and only if p divides αi . Theorem 2.6(c) of [Lorenzini 2013a] shows that this
Smith group must be killed by p. The divisibility p | αi follows. �

Remark 6.9. It is natural to wonder whether the statements of Theorems 6.4(b)
and 6.8 hold for the resolution of Qi when Pi is a weakly ramified ramification
point of Yk→ Yk〈σ 〉 without also assuming as we do in Theorems 6.4(b) and 6.8
that all ramification points are weakly ramified.

Corollary 6.10. Let X/K be a curve with potentially good reduction after a wildly
ramified Galois extension L/K of degree p as in Theorem 6.8. Suppose that g > 1
and that all ramification points of Yk→ Yk/〈σ 〉 are weakly ramified. Then:

(a) X (K ) 6=∅.

(b) Let A/K denote the Jacobian of X/K . Let A/OK be its Néron model. Then
the unipotent part U/k of the connected component of the identity in Ak/k is
a product of additive groups Ga,k .

(c) The group of components8A,K of the Néron model is isomorphic to (Z/pZ)2d−2.

1A bullet • represents an irreducible component of the desingularization of Qi . A positive number
next to a vertex is the multiplicity of the corresponding component while a negative number next to a
vertex is the self-intersection of the component.
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Proof. Part (a) is immediate since it follows from Theorem 6.8 that a regular model
of X/K contains a component of multiplicity 1. It follows from [Penniston 2000,
Theorem 2.4] that p kills U since the maximal multiplicity in the regular model
X ′/OK is equal to p. That U is now split follows from [Serre 1959, Proposition
VII.11.11]. This proves (b).

The order of 8A,K can be computed using the intersection matrix of the regular
model X ′. Since the associated graph is a tree, we find using [Lorenzini 1989,
Corollary 2.5] that |8A,K | = p2d−2. Part (c) follows since8A,K is killed by [L : K ]
because A/K has potentially good reduction [Edixhoven et al. 1996]. �

Note that in general the special fiber Ak/k need not be killed by p even when its
subgroup U and quotient 8A,K are both killed by p (see [Liu and Lorenzini 2001]
for a general discussion of such phenomena).

6.11. Let A/K be the Jacobian of a smooth proper and geometrically connected
curve X/K having a K -rational point. For use in our next corollary, we recall
below the main result of [Bosch and Lorenzini 2002, Theorem 4.6]. Identify A/K
with its dual A′/K via the map −ϕ[2] : A→ A′ as in [Bosch and Lorenzini 2002]
just before Theorem 4.6. Let X /OK denote a regular model of X/K . Let M be
the intersection matrix of Xk . Identify, as recalled in [Bosch and Lorenzini 2002,
Theorem 2.3], the component group 8A/K with the group of components 8M of M
(8M is the torsion subgroup of Zv/ Im(M)). Then Grothendieck’s pairing

〈 · , · 〉K :8A/K ×8A/K →Q/Z

coincides with the pairing 〈 · , · 〉M :8A/K ×8A/K →Q/Z considered in 3.1. In
particular, this pairing is nondegenerate. Recall also the definition of the functorial
subgroup 80

A/K of 8A/K in 1.3. We denote by (80
A/K )

⊥ the orthogonal of 80
A/K

under Grothendieck’s pairing.

Corollary 6.12. Let A/K be the Jacobian of a curve X/K of genus g > 1 hav-
ing potentially good reduction after a Galois extension L/K of degree p as in
Theorem 6.8. Assume that all ramification points of Yk → Yk/〈σ 〉 are weakly
ramified. Then 8A/K is a Z/pZ-vector space of dimension 2d − 2, and 80

A/K is a
subspace of dimension d − 1. Moreover, 80

A/K = (8
0
A/K )

⊥.

Proof. It follows from Corollary 6.10 that X (K ) 6=∅. We can thus use the results of
[Bosch and Lorenzini 2002] recalled above. We produce below explicit generators
for the groups 8A/K and 80

A/K . For each singular point Qi on the model Z/OK ,
denote by Ai and Bi the terminal components of multiplicity 1 in the exceptional
divisor of the resolution of Qi in X ′. Let αi denote the image in 8A/K of the
vector E(Ai , Bi ), i = 1, . . . , d − 1 (notation as in 3.1). Let βi denote the image
in 8A/K of the vector E(Ai , Ad), i = 1, . . . , d−1. We have seen in Corollary 6.10
that 8A/K is a Z/pZ-vector space of dimension 2(d − 1).
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We claim that

{α1, . . . ,αd−1,β1, . . . ,βd−1}

is a basis for 8A/K and that {α1, . . . ,αd−1} is a basis for 80
A/K . To prove our

claim, consider the matrix V := (〈αi ,β j 〉)1≤i, j≤d−1 with coefficients in Q/Z. We
can use the computation (4.8.1) to show that V is the diagonal matrix

diag
(
c1/p (mod Z), . . . , cd−1/p (mod Z)

)
,

where, for each i = 1, . . . , d−1, 0< ci < p and p divides cir1(i)−1. In particular,
ci/p 6= 0 in Q/Z. It follows that the set {α1, . . . ,αd−1,β1, . . . ,βd−1} is linearly
independent in (Z/pZ)2d−2. Hence, it is a basis.

It follows from the explicit computations in [Lorenzini 2000, Proposition 3.7(a)],
that 〈αi ,α j 〉 = 0 for all 1 ≤ i, j ≤ d − 1. Since the pairing 〈 · , · 〉 is perfect on
(Z/pZ)2d−2, we find that {α1, . . . ,αd−1} generates a maximal isotropic subspace.

It remains to show that α1, . . . ,αd−1 belong to 80
A/K and that neither β1, . . . ,

βd−1 nor any nontrivial linear combination of β1, . . . ,βd−1 belong to 80
A/K . For

this, since K is complete, we can pick for each i = 1, . . . , d − 1 two K -rational
points ai and bi of X whose closure in X ′ intersects X ′k in a smooth point of Ai

and Bi , respectively (see, e.g., [Bosch et al. 1990, Corollary 9.1.9]). Then ai − bi

and ai −ad are divisors of degree 0 on X , which we identify with K -rational points
in the Jacobian A/K of X/K . These rational points reduce in the component
group 8A/K of the Néron model of A/K to the points αi and βi , respectively.
Since A(K )⊂ A(L), we can reduce ai − bi in the special fiber of the Néron model
A′/OL . This special fiber is isomorphic to the Jacobian of the special fiber Yk of
the smooth model Y/OL of X L/L . It is clear that, by construction, the reduction
of ai − bi is trivial so that αi ∈8

0
A/K for i = 1, . . . , d − 1. On the other hand, the

reduction of ai−ad is the divisor Pi−Pd , which is a nontrivial p-torsion point when
viewed in the quotient A′k/η(Ak). This shows that βi /∈8

0
A/K for i = 1, . . . , d − 1.

Moreover, any nontrivial linear combination of the images of the divisors Pi − Pd

is not zero in A′k/η(Ak) (Proposition 2.5), so no nontrivial linear combination of
β1, . . . ,βd−1 belongs to 80

A/K . �

Example 6.13. Examples of curves having good reduction after an extension of
degree p can be obtained as twists as follows. Choose a smooth proper curve C/k
having an automorphism σk of order p. Over an appropriate ring OK with residue
field k, there exists a smooth scheme Y0/OK with an OK -automorphism σ such
that C is k-isomorphic to Y0

k and σ restricted to Y0
k induces the given automorphism

σk . It is shown in [Sekiguchi et al. 1989, §IV, Theorem 2.2] that one can take OK

to be the Witt ring W (k)(ζp) with ζp a primitive p-th root of unity. If one wants a
lift in equicharacteristic p, one can trivially take OK = k[[t]].



364 Dino Lorenzini

Choose any cyclic (ramified) extension L/K of degree p. The twist of Y0
K /K

by L/K and σ is a curve X/K that achieves good reduction over L . Starting with
an ordinary curve C/k produces a curve X/K having potentially good ordinary
reduction over L .

Corollary 6.14. Fix any odd prime p. For each integer m > 0, there exist a regular
local ring B of equicharacteristic p endowed with an action of H := Z/pZ and a
regular local ring B ′ of mixed characteristic (0, p) endowed with an action of Z/pZ

such that Spec B H and Spec(B ′)H are singular exactly at their closed point, and
the graphs associated with a minimal resolution of Spec B H and Spec(B ′)H have
one node and more than m vertices.

Proof. As we noted in Example 6.13, there exist a field K of either mixed characteris-
tic (0, p) or of equicharacteristic p and a curve X/K without good reduction over K
and with good ordinary reduction over a Galois extension L/K of degree p. Let
H :=Gal(L/K ). Let Y/OL denote the smooth model of X L/L . Let Z/OK denote
the quotient Y/H . Let P denote a ramification point of the morphism Yk→Yk/H ,
and let B :=OY,P . Theorem 6.8 shows that the resolution of singularity of Spec B H

has an intersection matrix of type N (p, α, r1) for some α ≥ 1 and 0< r1 < p.
Immediately after the statement of Theorem 6.8 given in the introduction, we

briefly alluded to the fact that the integer α is likely to be related to the valuation of
the different of L/K . Thus, in principle, by choosing K and L/K appropriately,
the above method will produce examples with α as large, as desired. Since at this
time we do not know how to prove in general that α is related to the valuation
of the different of L/K (except when p = 2 and g = 1; see [Lorenzini 2013a,
Theorem 4.1]), we proceed below with a different argument to prove the existence
of resolutions with α as large, as desired.

Consider a quadratic extension K ′/K . Since p is odd by hypothesis, the extension
K ′/K is tame, and one knows how to compute a regular model of X K ′/K ′ from
the model X /OK of X/K obtained in Theorem 6.8: simply normalize the base
change X ×OK OK ′ and resolve its singularities. A singularity on the normalization
can only be the preimage of a closed point of Xk that belongs to two irreducible
components of Xk and such that both components have odd multiplicity. This
singular point is resolved by a single smooth rational curve.

Let L ′ := L K ′ with [L ′ : K ′] = p. The curve X K ′/K ′ achieves good ordinary
reduction over L ′. The model Y ′/OL ′ :=Y×OL OL ′ is smooth, and we let P ′ denote
the preimage of P under the natural map Y ′→ Y . Let B ′ :=OY ′,P ′ . We leave it to
the reader to check, using [Halle 2010, Proposition 4.3] and the desingularization of
the normalization of X×OK OK ′ , that the resolution of the singularity of Spec(B ′)H

has an intersection matrix of type N (p, 2α, r ′1), where r ′1 := r1/2 if r1 is even and
r ′1 := (r1+ p)/2 if r1 is odd.
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Since we can make an infinite chain of quadratic extensions K ⊂ K ′ ⊂ K ′′ ⊂ · · ·
and since the graph associated with N (p, β, r1) has at least β irreducible compo-
nents, the corollary is proved. �

Remark 6.15. Consider an intersection matrix N , and assume that, for some
prime p, it satisfies all the conditions listed in Remark 5.4, conditions that would
have to be satisfied if this intersection matrix was associated with the resolution of
a Z/pZ-singularity: its graph G(N ) is a tree, |det(N )| is a power of p, the Smith
group 8N is killed by p and the fundamental cycle Z has |Z2

| ≤ p. If det(N )= 1
and G(N ) is a tree, then the above conditions are satisfied for every prime at least
equal to |Z2

|. In particular, when det(N ) = 1, the matrix N could potentially be
associated with the resolution of a Z/pZ-singularity for infinitely many primes p.

An interesting consequence of our guess in 6.2 that γQi gQi = ν(Qi ) holds for
all i = 1, . . . , d is that a matrix N as above can be associated with the resolution
of a (Z/pZ)-quotient singularity X ′→ Z occurring in models of curves as at the
beginning of this section only for finitely many primes p. Indeed, the choice of
a vertex D on N lets us define the integer gD associated with N and D. If N is
the intersection matrix of the resolution of a singularity Qi of Z with the marked
vertex D linked to C0, we noted in 6.2 that p− 1 must then divide gD when the
equality γQi gQi = ν(Qi ) holds. Since there are only finitely many vertices D, the
set of integers gD is finite, and hence, any prime p larger than the maximum of the
integers gD cannot have the property that p− 1 divides some gD .

Remark 6.16. Let X/K be a curve with potentially good reduction over an exten-
sion L/K of degree p as at the beginning of this section. Let Qi be a singular
point of the quotient Z , and consider the graph G Qi associated with the resolution
of Qi in X ′→ Z . One may wonder whether a node of G in G Qi could have its
multiplicity in X ′k divisible by p2. Similar considerations are found in [Lorenzini
2010, Question 1.4].
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