
Algebra &
Number
Theory

msp

Volume 8

2014
No. 2

Geometry of Wachspress surfaces
Corey Irving and Hal Schenck



msp
ALGEBRA AND NUMBER THEORY 8:2 (2014)

dx.doi.org/10.2140/ant.2014.8.369

Geometry of Wachspress surfaces
Corey Irving and Hal Schenck

Let Pd be a convex polygon with d vertices. The associated Wachspress surface
Wd is a fundamental object in approximation theory, defined as the image of the
rational map

P2 wd
−→ Pd−1,

determined by the Wachspress barycentric coordinates for Pd . We show wd is
a regular map on a blowup Xd of P2 and, if d > 4, is given by a very ample
divisor on Xd so has a smooth image Wd . We determine generators for the ideal
of Wd and prove that, in graded lex order, the initial ideal of IWd is given by a
Stanley–Reisner ideal. As a consequence, we show that the associated surface is
arithmetically Cohen–Macaulay and of Castelnuovo–Mumford regularity 2 and
determine all the graded Betti numbers of IWd .

1. Introduction

Introduced by Möbius [1827], barycentric coordinates for triangles appear in a host
of applications. Recent work in approximation theory has shown that it is also
useful to define barycentric coordinates for a convex polygon Pd with d ≥ 4 vertices
(a d-gon). The idea is as follows. To deform a planar shape, first place the shape
inside a control polygon. Then move the vertices of the control polygon, and use
barycentric coordinates to extend this motion to the entire shape.

For a d-gon with d ≥ 4, barycentric coordinates were defined by Wachspress
[1975] in his work on finite elements; these coordinates are rational functions
depending on the vertices ν(Pd) of Pd . Warren [2003] shows that Wachspress’
coordinates are the unique rational barycentric coordinates of minimal degree.
The Wachspress coordinates define a rational map wd on P2, whose value at a
point p ∈ Pd is the d-tuple of barycentric coordinates of p. The closure of the image
of wd is the Wachspress surface Wd , first defined and studied by Garcia-Puente and
Sottile [2010] in their work on linear precision.
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In Definition 1.3, we fix linear forms `i that are positive inside Pd and vanish on
an edge. Let A= `1 · · · `d , Z be the

(d
2

)
singular points of V(A), and Y = Z \ν(Pd).

We call Y the external vertices of Pd and show that wd has basepoints only at Y .
Let Xd be the blowup of P2 at Y . In Section 2, we prove that Wd is the image
of Xd , embedded by a certain divisor Dd−2 on Xd . The global sections of Dd−2

have a simple interpretation in terms of the edges V(`i ) of Pd : we prove that

H 0(OXd (Dd−2)) has basis {`3 · · · `d , `1`4 · · · `d , . . . , `2 · · · `d−1}.

We show that Dd−2 is very ample if d > 4; hence, Wd ⊆ Pd−1 is a smooth surface.

1A. Statement of main results. For a d-gon Pd with d ≥ 4:

(1) We give explicit generators for IWd ⊆ S = K[x1, . . . , xd ].

(2) We determine in≺(IWd ), where ≺ is graded lex order.

(3) We prove in≺(IWd ) is the Stanley–Reisner ideal of a graph 0.

(4) We prove that S/IWd is Cohen–Macaulay, and reg(S/IWd )= 2.

(5) We determine the graded Betti numbers of S/IWd .

In Section 1B, we give some quick background on geometric modeling, and in
Section 1C, we do the same for algebraic geometry (in particular, we define all the
terms above). Our strategy runs as follows. In Section 2, we study IWd by blowing
up P2 at the external vertices. Define a divisor

Dd−2 = (d − 2)E0−
∑
p∈Y

E p

on Xd , where E0 is the pullback of a line and E p is the exceptional fiber over p.
We show that Dd−2 is very ample and that IWd is the ideal of the image of

Xd → P(H 0(Dd−2)).

Riemann–Roch then yields the Hilbert polynomial of S/IWd .
In Sections 3 and 4, we find distinguished sets of quadrics and cubics vanishing

on Wd and use them to generate a subideal I (d)⊆ IWd . In Section 5, we tie every-
thing together, showing that, in graded lex order, I0(d)⊆ in≺ I (d), where I0(d) is
the Stanley–Reisner ideal of a certain graph. Using results on flat deformations and
an analysis of associated primes, we prove

I0(d)= in≺(I (d)).

The description in terms of the Stanley–Reisner ring yields the Hilbert series
for S/I0(d). We prove that S/I0(d) is Cohen–Macaulay and has Castelnuovo–
Mumford regularity 2, and it follows from uppersemicontinuity that the same is
true for S/I (d). The differentials on the quadratic generators of I0(d) turn out to
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be easy to describe, and combining this with the regularity bound and knowledge
of the Hilbert series yields the graded Betti numbers for in≺(I (d)).

Finally, we show that I (d) has no linear syzygies on its quadratic generators,
which allows us to prune the resolution of in≺(I (d)) to obtain the graded Betti
numbers of I (d). Comparing Hilbert polynomials shows that up to saturation

S/I (d)= S/IWd .

Since IWd is prime, it is saturated, and a short-exact-sequence argument shows that
S/I (d) is also saturated, concluding the proof.

1B. Geometric modeling background. Let Pd be a d-gon with vertices v1, . . . , vd

and indices taken modulo d .

Definition 1.1. Functions {βi : Pd → R | 1≤ i ≤ d} are barycentric coordinates if,
for all p ∈ Pd ,

βi (p)≥ 0, p =
d∑

i=1

βi (p)vi ,

d∑
i=1

βi (p)= 1.

Wachspress coordinates have a geometric description in terms of areas of subtri-
angles of the polygon. Let A(a, b, c) denote the area of the triangle with vertices a,
b, and c. For 1≤ j ≤ d , set αj := A(vj−1, vj , vj+1) and Aj := A(p, vj , vj+1).

Definition 1.2. For 1≤ i ≤ d, the functions

βi =
bi∑d

j=1 bj
, where bi = αi

∏
j 6=i−1,i

Aj

are Wachspress barycentric coordinates for the d-gon Pd ; see Figure 1.

We embed Pd in the plane z = 1⊆R3 and form the cone with 0 ∈R3. Explicitly,
to each vertex vi ∈ ν(Pd), we associate the ray vi := (vi , 1) ∈ R3. Let Pd denote
the cone generated by the rays vi , and ν(Pd) := {vi | vi ∈ ν(Pd)}. The cone over

vi

vj

vj+1

Aj

p

αi

Figure 1. Wachspress coordinates for a polygon.
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the edge [vi , vi+1] corresponds to a facet of Pd with normal vector ni := vi × vi+1.
We redefine αj and Aj to be the determinants |vj−1vjvj+1| and |vjvj+1 p|, where
p= (x, y, z). This scales the bi by a factor of 2 so leaves the βi unchanged, save
for homogenizing the Aj with respect to z, and allows us to define Wachspress
coordinates for nonconvex polygons, although Property 1 of barycentric coordinates
fails when Pd is nonconvex.

Definition 1.3. `j := Aj = nj · p= |vjvj+1 p|.

The `j are homogeneous linear forms in (x, y, z) and vanish on the cone over
the edge [vj , vj+1]. We use Theorem 1.6 below, but Warren’s proof does not require
convexity. Our results hold over an arbitrary field K as long as no three of the lines
V(`i )⊆ P2 meet at a point. For the first condition of Definition 1.1 to make sense,
K should be an ordered field.

Definition 1.4. The dual cone to Pd is the cone spanned by the normals n1, . . . , nd

and is denoted P∗d .

Triangulating Pd yields a triangulation of Pd , and the volume of the parallelepiped
S spanned by vertices {vi , vj , vk, 0} is aS = |vivjvk |.

Definition 1.5. Let C be a cone defined by a polygon Pd and T (C) a triangulation
of C obtained from a triangulation of Pd as above. The adjoint of C is

AT (C)( p)=
∑

S∈T (C)

aS

∏
v∈ν(Pd )\ν(S)

(v · p) ∈ K[x, y, z]d−3.

Theorem 1.6 [Warren 1996]. AT (C)( p) is independent of the triangulation T (C).

1C. Algebraic geometry background. Next, we review some background in alge-
braic geometry, referring to [Eisenbud 1995; Hartshorne 1977; Schenck 2003] for
more detail. Homogenizing the numerators of Wachspress coordinates yields our
main object of study:

Definition 1.7. The Wachspress map defined by a polygon Pd is the rational map
P2 wd
99KPd−1 given on the open set Uz 6=0⊆P2 by (x, y) 7→ (b1(x, y), . . . , bd(x, y)).

The Wachspress variety Wd is the closure of the image of wd .

The polynomial ring S = K[x1, . . . , xd ] is a graded ring: it has a direct-sum
decomposition into homogeneous pieces. A finitely generated graded S-module N
admits a similar decomposition; if s ∈ Sp and n ∈ Nq , then s ·n ∈ Np+q . In particular,
each Nq is a (S0 = K)-vector space.

Definition 1.8. For a finitely generated graded S-module N , the Hilbert series
HS(N , t)=

∑
dimK Nq tq .
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Definition 1.9. A free resolution for an S-module N is an exact sequence

F : · · · → Fi
di
−→ Fi−1→ · · · → F0→ N → 0,

where the Fi are free S-modules.

If N is graded, then the Fi are also graded, so letting S(−m) denote a rank-1 free
module generated in degree m, we may write Fi =

⊕
j S(− j)ai, j . By the Hilbert

syzygy theorem [Eisenbud 1995], a finitely generated, graded S-module N has a
free resolution of length at most d with all the Fi of finite rank.

Definition 1.10. For a finitely generated graded S-module N , a free resolution
is minimal if, for each i , Im(di ) ⊆ mFi−1, where m = 〈x1, . . . , xd〉. The graded
Betti numbers of N are the ai, j that appear in a minimal free resolution, and the
Castelnuovo–Mumford regularity of N is maxi, j {ai, j − i}.

While the differentials di that appear in a minimal free resolution of N are not
unique, the ranks and degrees of the free modules that appear are unique. The
graded Betti numbers are displayed in a Betti table. Reading this table right and
down, starting at (0, 0), the entry bi j := ai,i+ j , and the regularity of N is the index
of the bottommost nonzero row in the Betti table for N .

Example 1.11. In Examples 2.9 and 3.11 of [Garcia-Puente and Sottile 2010],
it is shown that IW6 is generated by three quadrics and one cubic. The variety
V(`1 · · · `6) of the edges of P6 has

(6
2

)
= 15 singular points, of which six are

vertices of P6, and S/IW6 has Betti table

total 1 4 6 3
0 1 – – –
1 – 3 – –
2 – 1 6 3

For example, b1,2 = a1,3 = 1 reflects that IW6 has a cubic generator, and S/IW6 has
regularity 2. The Hilbert series can be read off the Betti table:

HS(S/IW6, t)=
1− 3t2

− t3
+ 6t4

− 3t5

(1− t)6
=

1+ 3t + 3t2

(1− t)3
.

Theorem 5.11 gives a complete description of the Betti table of S/IWd .

2. H0(Dd−2) and the Wachspress surface

2A. Background on blowups of P2. Fix points p1, . . . , pk ∈ P2, and let

X
π
−→ P2 (1)

be the blowup of P2 at these points. Then Pic(X) is generated by the exceptional
curves Ei over the points pi and the proper transform E0 of a line in P2. A classical
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geometric problem asks for a relationship between numerical properties of a divisor
Dm = m E0−

∑
ai Ei on X and the geometry of

X
φ
−→ P(H 0(Dm)

∨).

First, we discuss some basics. Let m and ai be nonnegative, let Ipi denote the ideal
of a point pi , and define

J =
k⋂

i=1

I ai
pi
⊆ K[x, y, z] = R. (2)

Then H 0(Dm) is isomorphic to the m-th graded piece Jm of J (see [Harbourne
2002]). Davis and Geramita [1988] show that, if γ (J ) denotes the smallest degree t
such that Jt defines J scheme theoretically, then Dm is very ample if m>γ (J ), and
if m = γ (J ), then Dm is very ample if and only if J does not contain m collinear
points, counted with multiplicity. Note that γ (J )≤ reg(J ).

2B. Wachspress surfaces. For a polygon Pd , fix defining linear forms `i as in
Definition 1.3 and let A := `1 · · · `d ; the edges of Pd are defined by the V(`i ). Let
Z denote the

(d
2

)
singular points of V(A) and Y = Z \ ν(Pd). Finally, Xd will be

the blowup of P2 at Y . We study the divisor

Dd−2 = (d − 2)E0−
∑
p∈Y

E p

on Xd . First, we present some preliminaries.

Definition 2.1. Let L be the ideal in R = K[x, y, z] given by

L = 〈`3 · · · `d , `1`4 · · · `d , . . . , `2 · · · `d−1〉 = 〈A/`1`2, A/`2`3, . . . , A/`d`1〉,

where A =
∏d

i=1 `i .

For any variety V , we use IV to denote the ideal of polynomials vanishing on V .

Lemma 2.2. The ideals L and IY are equal up to saturation at 〈x, y, z〉.

Proof. Being equal up to saturation at 〈x, y, z〉 means that the localizations at any
associated prime except 〈x, y, z〉 are equal. The ideal Ip of a point p is a prime
ideal. Recall that the localization of a ring T at a prime ideal p is a new ring Tp
whose elements are of the form f/g with f, g ∈ T and g /∈ p. Localize R at Ip,
where p ∈ Y . Then in RIp , `i is a unit if p /∈ V(`i ). Without loss of generality,
suppose forms `1 and `2 vanish on p (note that all points of Y are intersections of
exactly two lines) and the remaining forms do not. Thus, L Ip =〈`1, `2〉= (IY )Ip . �

The ideal L is not saturated.

Lemma 2.3. IY is generated by one form F of degree d − 3 and d − 3 forms of
degree d−2. Hence, a basis for Ld−2 consists of F ·x , F ·y, F ·z, and the d−3 forms.
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Proof. First, note that IY cannot contain any form of degree d − 4 since Y contains
d sets of d − 3 collinear points. So the smallest degree of a minimal generator
for IY is d− 3. Since Y consists of

(d−1
2

)
− 1 distinct points and the space of forms

of degree d − 3 has dimension
(d−1

2

)
, there is at least one form F of degree d − 3

in IY . We claim that it is unique. To see this, first note that no `i can divide F : by
symmetry, if one `i divides F , they all must, which is impossible for degree reasons.
Now suppose G is a second form of degree d − 3 in IY . Let p ∈ ν(Pd) and V(`i )

be a line corresponding to an edge containing p. F(p) must be nonzero since if not
V(F) would contain d−2 collinear points of V(`i ), forcing V(F) to contain V(`i ),
a contradiction. This also holds for G. But in this case, F(p)G − G(p)F is a
polynomial of degree d−3 vanishing at d−2 collinear points, again a contradiction.
So F is unique (up to scaling), which shows that the Hilbert function satisfies

HF(R/L , d − 3)= |Y |,

so HF(R/L , t)= |Y | for all t ≥ d − 3 (see [Schenck 2003]). As the polynomials
A/`i`i+1 are linearly independent and there are the correct number, Ld−2 must be
the degree-(d − 2) component of IY . �

Theorem 2.4. The minimal free resolution of R/L is

0→ R(−d)
d3
−→ R(−d+1)d

d2
−→ R(−d+2)d

[ A
`1`2

A
`2`3
· · ·

A
`d`1

]
−−−−−−−−−−−−−−→ R→ R/L→ 0,

where d2 =



`1 0 · · · · · · 0 0 m1

−`3 `2 0 · · ·
...

... m2

0 −`4
. . .

. . .
...

...
...

... 0
. . .

. . . `d−2 0
...

...
...

. . .
. . . −`d `d−1

...

0 · · · · · · 0 0 −`1 md


and the mi are linear forms.

Proof. By Lemma 2.3, the generators of IY are known. Since IY is saturated, the
Hilbert–Burch theorem implies that the free resolution of R/IY has the form

0→ R(−d + 1)d−3
→ R(−d + 3)⊕ R(−d + 2)d−3

→ R→ R/IY → 0.

Writing IY as 〈 f1, . . . , fd−3, F〉 and L as 〈 f1, . . . , fd−3, x F, yF, zF〉, the task is
to understand the syzygies on L given the description above of the syzygies on IY .
From the Hilbert–Burch resolution, any minimal syzygy on IY is of the form∑

gi fi + q F = 0,
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where gi are linear and q is a quadric (or zero). Since

q F = g1x F + g2 yF + g3zF with gi linear,

all d − 3 syzygies on IY lift to give linear syzygies on L . Furthermore, we obtain
three linear syzygies on {x F, yF, zF} from the three Koszul syzygies on {x, y, z}.
It is clear from the construction that these d linear syzygies are linearly independent.
Since HF(R/L , d − 1) = |Y |, this means we have determined all the linear first
syzygies. Furthermore, the three Koszul first syzygies on {x F, yF, zF} generate a
linear second syzygy, so the complex given above is a subcomplex of the minimal
free resolution. A check shows that the Buchsbaum–Eisenbud criterion [1973]
holds, so the complex above is actually exact and hence a free resolution. The
differential d2 above involves the canonical generators A/`i`i+1 rather than a set
involving {x F, yF, zF}. Since the d−1 linear syzygies appearing in the first d−1
columns of d2 are linearly independent, they agree up to a change of basis; the last
column of d2 is a vector of linear forms determined by the change of basis. �

Theorem 2.5.

(i) H 0(Dd−2)' SpanK{A/`1`2, A/`2`3, . . . }.

(ii) H 1(Dd−2)= 0= H 2(Dd−2).

Proof. The remark following Equation (2) shows that H 0(Dd−2) ' Ld−2. Since
K =−3E0+

∑
p∈Y E p (see [Hartshorne 1977]), by Serre duality,

H 2(Dd−2)' H 0
(
(−d − 1)E0+

∑
p∈Y

E p

)
,

which is clearly zero. Using that Xd is rational, it follows from Riemann–Roch that

h0(Dd−2)− h1(Dd−2)=
D2

d−2− Dd−2 · K

2
+ 1.

The intersection pairing on Xd is given by E2
i = 1 if i = 0 and −1 if i 6= 0, and

Ei · E j = 0 if i 6= j .

Thus,

D2
d−2 = (d − 2)2− |Y | and − Dd−2K = 3(d − 2)− |Y |, (3)

yielding

h0(Dd−2)− h1(Dd−2)=
d2
− d − 2− 2|Y |

2
+ 1= d. (4)

Thus, h0(Dd−2)−h1(Dd−2)= d . Now apply the remark following Equation (2). �

Corollary 2.6. If d > 4, Dd−2 is very ample, so the image of Xd in Pd−1 is smooth.
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Proof. By Theorem 2.4, the ideal L is d−2 regular. Furthermore, the set Y contains
d sets of d − 3 collinear points but no set of d − 2 collinear points if d > 4. The
result follows from the Davis–Geramita criterion. �

Theorem 2.7. W4 ' P1
× P1, and X4 → W4 is an isomorphism away from the

(−1) curve E0− E1− E2, which is contracted to a smooth point.

Proof. The surface X4 is P2 blown up at two points, which is toric, and isomorphic
to P1

× P1 blown up at a point. By Proposition 6.12 of [Cox et al. 2011], D2

is basepoint free. Since D2
2 = 2, W4 is an irreducible quadric surface in P3. As

D2 · (E0− E1− E2)= 0, the result follows. �

Replacing Dd−2 with t Dd−2, a computation as in Equations (3) and (4) and Serre
vanishing shows that the Hilbert polynomial HP(S/IWd , t) is equal to

((d−2)2−|Y |)t2
+(3(d−2)−|Y |)t
2

+1=
d2
−5d+8

4
t2
−

d2
−9d+12

4
t+1. (5)

3. The Wachspress quadrics

In this section, we construct a set of quadrics that vanish on Wd . These quadrics
are polynomials that are expressed as a scalar product with a fixed vector τ . The
vector τ defines a linear projection Pd−1 99K P2, also denoted by τ , given by

x 7→
d∑

i=1

xivi ,

where x = [x1 : · · · : xd ] ∈Pd−1. By the second property of barycentric coordinates,
the composition τ ◦wd : P

2 99K P2 is the identity map on P2. Since vi ∈ K3, the
vector τ is a triple of linear forms (τ1, τ2, τ3) ∈ S3. The linear subspace C of Pd−1

where the projection is undefined is the center of projection, and IC = 〈τ1, τ2, τ3〉.

3A. Diagonal monomials. A diagonal monomial is a monomial xi x j ∈ S2 such
that j /∈ {i−1, i, i+1}. We write D for the subspace of S2 spanned by the diagonal
monomials; identifying xi with the vertex vi , a diagonal monomial is a diagonal
in Pd ; see Figure 2.

xi

x j

Figure 2. A diagonal monomial.
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Lemma 3.1. Any quadric that vanishes on Wd is a linear combination of elements
of D.

Proof. Let Q be a polynomial in (IWd )2. Then Q(wd) = Q(b1, . . . , bd) = 0. On
the edge [vk, vk+1], all the bi vanish except bk and bk+1. Thus, on this edge, the
expression Q(wd)= 0 is

c1b2
k + c2bkbk+1+ c3b2

k+1 = 0 (6)

for some constants c1, c2, and c3 in K. Recall that bi (vj )= 0 if i 6= j and bi (vi ) 6= 0
for each i . Evaluating (6) at vk and vk+1, we conclude c1 = c3 = 0. At an interior
point of edge [vk, vk+1], neither bk nor bk+1 vanishes. This implies that c2 = 0. A
similar calculation on each edge shows that all coefficients of nondiagonal terms in
Q are zero. �

3B. The map to (IC)2. We define a surjective map onto (IC)2 and use the map
to calculate the dimension of the vector space of polynomials in (IC)2 that are
supported on diagonal monomials. Let S3

1 denote the space of triples of linear forms
on Pd−1. Define the map9 : S3

1→ (IC)2 by F 7→ F ·τ , where · is the scalar product.

Lemma 3.2. The kernel of 9 is three-dimensional.

Proof. Since IC is a complete intersection, the kernel is generated by the three
Koszul syzygies on the τi . �

Next we determine conditions on F so that9(F)∈D. If ui ∈K3 for i =1, . . . , d ,
then

F =
d∑

i=1

xi ui

is an element of S3
1 . Viewing the projection τ as an element of S3

1 , we have

9(F)= F · τ =
( d∑

i=1

xi ui

)
·

( d∑
i=1

xivi

)
=

d∑
i, j=1

(ui · vj + uj · vi )xi x j . (7)

If 9(F) ∈ D, then the coefficients of nondiagonal monomials must vanish:

ui · vi = 0 and ui · vi+1+ ui+1 · vi = 0 for all i . (8)

Lemma 3.3. The dimension of the vector space D∩ (IC)2 is d − 3.

Proof. We show the conditions in (8) give 2d independent conditions on the
3d-dimensional vector space S3

1 , and the solution space is 9−1(D∩ (IC)2); thus,
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dim(9−1(D∩ (IC)2))= d . The conditions are represented by the matrix equation



v1 · u1
...

vd · ud

v1 · u2+ v2 · u1
...

vd · u1+ v1 · ud


=

M︷ ︸︸ ︷

vT
1 0 · · · 0

0 vT
2

...
...

. . . 0
0 · · · 0 vT

d
vT

2 vT
1 0

0
. . .

vT
d vT

1





u1

u2
...
...
...
...

ud


=



0
0
...
...
...

0


,

where the vi and ui are column vectors and the superscript T indicates trans-
pose. The matrix M in the middle is a 2d × 3d matrix, and the proof will be
complete if the rows are shown to be independent. Denote the rows of M by
r1, . . . , rd , rd+1, . . . , r2d , and let c1r1+ · · · + cdrd + cd+1rd+1+ · · · + c2dr2d be a
dependence relation among them. The first three columns of M give the dependence
relation c1v1 + cd+1v2 + c2dvd = 0. Since vd , v1, and v2 define adjacent rays of
a polyhedral cone, they must be independent, so c1, cd+1, and c2d must be zero.
Repeating the process at each triple vi−1, vi , and vi+1 shows the rest of the ci ’s
vanish. Since the restriction 9 :9−1(D∩ (IC)2)→ D∩ (IC)2 remains surjective,
we find dim(D∩ (IC)2)= dim(9−1(D∩ (IC)2))− dim(ker(9))= d − 3. �

3C. Wachspress quadrics. We now compute the dimension and a generating set
for (IWd )2.

Definition 3.4. Let γ (i) denote the set {1, . . . , d}\{i−1, i}, γ (i, j)= γ (i)∩γ ( j),
and γ (i, j, k)= γ (i)∩ γ ( j)∩ γ (k).

The image of a diagonal monomial xi x j under the pullback map w∗d : S→ R is

bi bj = αiαj

∏
k∈γ (i)

`k

∏
m∈γ ( j)

`m = αiαj

d∏
k=1

`k

∏
m∈γ (i, j)

`m,

and each diagonal monomial has a common factor A =
∏d

k=1 `k . To find the
quadratic relations among Wachspress coordinates, it suffices to find linear relations
among products

∏
m∈γ (i, j) `m ∈ Rd−4 for diagonal pairs i and j . Define the map

φ :D→ Rd−4 by xi x j 7→ bi bj/A, and extend by linearity; this is w∗d restricted to D

and divided by A. By Lemma 3.1, it follows that (IWd )2 = ker(φ)⊆ D.

Lemma 3.5. The dimension of (IWd )2 is d − 3.

Proof. We will show φ : D→ Rd−4 is surjective with dim(kerφ)= d − 3. To see
this, note that there are d−3 diagonal monomials that have x1 as a factor. We show
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x2,4 · · · x2,d x3,5 · · · x3,d · · · xd−3,d−1 xd−3,d xd−2,d

p1,3 ∗

...
. . .

p1,d−1 ∗

p2,4 ∗ ∗

...
. . .

p2,d−1 ∗ ∗

...
. . .

p(d−4)(d−2) ∗

p(d−4)(d−1) ∗ ∗

p(d−3)(d−1) ∗ ∗ ∗

Table 1. Values of images of diagonal monomials at external vertices.

that the images of the remaining

d(d − 3)/2− (d − 3)= (d − 3)(d − 2)/2= dim(Rd−4)

diagonal monomials are independent. Let ps,t = `s∩`t and x p,q = x pxq . In Table 1,
a star, ∗, represents a nonzero number and a blank space is zero. The (i, j) entry in
the table represents the value of the image of the diagonal monomial in column j
at the external vertex in row i . The external vertices not lying on `d are arranged
down the rows with their indices in lexicographic order.

Since Table 1 is lower triangular, the images are independent. We have found
dim(Rd−4) independent images, and hence, φ is surjective. This is a map from a
vector space of dimension d(d−3)/2 to one of dimension (d−2)(d−3)/2. The map
is surjective, so the kernel has dimension d(d−3)/2−(d−2)(d−3)/2= d−3. �

There is a generating set for (IWd )2 where each generator is a scalar product with
the vector τ . The other vectors in these scalar products are

3k =
xk+1

αk+1
nk+1−

xk

αk
nk−1 ∈ S3

1 .

Lemma 3.6. The vectors {31, . . . , 3d} form a basis for the space 9−1(D∩ (IC)2).

Proof. Suppose that
∑d

k=1 ck3k = 0 is a linear dependence relation among the 3k .
The coefficient of a variable xk is

1
αk
(ck−1nk − cknk−1).

By the dependence relation, this must be zero, which implies that nk−1 and nk are
scalar multiples. This is impossible since they are normal vectors of adjacent facets
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of a polyhedral cone. Hence, ck−1 = ck = 0 for all k, which shows that the 3k are
independent.

In the proof of Lemma 3.3, we showed that dim(9−1(D∩ (IC)2))= d, and we
have just shown dim(〈3k | k = 1, . . . , d〉) = d. To prove the result, it suffices to
show 〈3k | k = 1, . . . , d〉 ⊆9−1(D∩ (IC)2). The conditions of (8) are required for
3k ∈ S3

1 to lie in 9−1(D∩ (IC)2). We show these conditions are satisfied for each
3k .

Let ui = 0 if i 6= k, k + 1, uk = −nk−1/αk , and uk+1 = nk+1/αk+1 for each
fixed k. Then

3k =
xk+1

αk+1
nk+1−

xk

αk
nk−1 =

d∑
i=1

ui xi .

Since nk−1 · vk = 0, nk+1 · vk+1 = 0, and ui = 0 for i 6= k, k + 1, we have that
ui · vi = 0 for each i = 1, . . . d. The expression ui · vi+1+ ui+1 · vi is zero for all
i 6= k− 1, k, k+ 1 simply because ui = 0 for i 6= k, k+ 1. We have

uk · vk+1+ uk+1 · vk =−
nk−1

αk
· vk+1+

nk+1

αk+1
· vk

=−
vk−1× vk · vk+1

αk
+

vk+1× vk+2 · vk

αk+1

=−
|vk−1vkvk+1|

αk
+
|vk+1vk+2vk |

αk+1
= 0

as αj =|vj−1vjvj+1|. It is easy to show that the expression ui ·vi+1+ui+1 ·vi is zero
for i = k±1. Thus, the ui satisfy the conditions in (8), so 3k ∈9

−1(D∩(IC)2). �

Theorem 3.7 (Wachspress quadrics). The Wachspress quadrics (IWd )2 are those
elements of S2 that are diagonally supported and vanish on C. The quadrics
Qk =3k · τ for k = 1, . . . , d span (IWd )2.

Proof. Let p be the vector (x, y, z). By definition of Wachspress coordinates,

τ(wd( p))=
d∑

i=1

bi ( p)vi = p
d∑

i=1

bi ( p).

We have

3k(wd( p))=
bk+1( p)
αk+1

nk+1−
bk( p)
αk

nk−1

=

( ∏
j 6=k,k+1

`j

)
nk+1−

( ∏
j 6=k−1,k

`j

)
nk−1

=

( ∏
j 6=k−1,k,k+1

`j

)
(`k−1nk+1− `k+1nk−1)

= H [nk+1(nk−1 · p)− nk−1(nk+1 · p)],
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where H =
∏

j 6=k−1,k,k+1 `j . Set H := H
∑d

i=1 bi ( p). Then we have

Qk(wd( p))= τ(wd( p)) ·3k(wd( p))

= H p · [nk+1(nk−1 · p)− nk−1(nk+1 · p)]

= H [(nk+1 · p)(nk−1 · p)− (nk−1 · p)(nk+1 · p)] = 0.

We have just shown that Qk ∈ (IWd )2. By Lemma 3.6, 9−1(D ∩ (IC)2) is
spanned by the 3k . Observe that 〈Q1, . . . , Qd〉 = 9(〈3k〉) = D ∩ (IC)2. Thus,
dim(〈Q1, . . . , Qd〉)= d − 3, and by Lemma 3.5, dim((IWd )2)= d − 3. Therefore,
since 〈Q1, . . . , Qd〉 ⊆ (IWd )2, we have 〈Q1, . . . , Qd〉 = (IWd )2 = D∩ (IC)2. �

Corollary 3.8. The quadrics {32 · τ, . . . , 3d−2 · τ } are a basis for the quadrics
in IWd , and in graded lex order, {x1x3, . . . , x1xd−1} is a basis for in≺(IWd )2.

Proof. Expanding the expression for 3i · τ yields

3i · τ = x1xi+1

(v1 · ni+1

αi+1

)
− x1xi

(v1 · ni−1

αi

)
+ ζi ,

where ζi ∈ K[x2, . . . , xd ]. Since ni = vi × vi+1,

32 · τ = x1x3

(v1 · n3

α3

)
+ ζ2.

Since no three of the lines V(li ) are concurrent, vi ·nj is nonzero unless j ∈ {i, i+1},
so we may use the lead term of 32 · τ to reduce 33 · τ to x1x4 + f (x2, . . . , xd).
Repeating the process proves that

{x1x3, . . . , x1xd−1} ⊆ in≺(IWd )2.

By Lemma 3.5, (IWd )2 has dimension d − 3, which concludes the proof. �

Corollary 3.9. There are no linear first syzygies on (IWd )2.

Proof. By Corollary 3.8, we may assume that a basis for (IWd )2 has the form

x1x3+ ζ3(x2, . . . , xd),

x1x4+ ζ4(x2, . . . , xd),

x1x5+ ζ5(x2, . . . , xd),

...

x1xd−1+ ζd−1(x2, . . . , xd).

Since the ζi do not involve x1, this implies that any linear first syzygy on (IWd )2

must be a linear combination of the Koszul syzygies on {x3, . . . , xd−1}. Now change
the term order to graded lex with xi > xi+1 > · · ·> xd > x1 > x2 > · · ·> xi−1. In
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this order, arguing as in the proof of Corollary 3.8 shows that we may assume a
basis for (IWd )2 has the form

xi xi+2+ ζi+2(x1, . . . , x̂i , . . . , xd),

xi xi+3+ ζi+3(x1, . . . , x̂i , . . . , xd),

xi xi+4+ ζi+4(x1, . . . , x̂i , . . . , xd),

...

xi xi−2+ ζi−2(x1, . . . , x̂i , . . . , xd).

Hence, any linear first syzygy on (IWd )2 must be a combination of Koszul syzygies
on xi+2, xi+3, . . . , xi−2. Iterating this process for the term orders above shows there
can be no linear first syzygies on (IWd )2. �

3D. Decomposition of V(〈(IWd )2〉). We now prove that V(〈(IWd )2〉) = C ∪Wd .
The results in Sections 4 and 5 are independent of this fact.

Lemma 3.10. For any i , j , and k, we have

|ni nj nk | = |vjvkvk+1| · |vivi+1vj+1| − |vj+1vkvk+1| · |vivi+1vj |.

Proof. Apply the formulas a× (b× c)= b(a · c)− c(a · b) and |abc| = a× b · c:

|ni nj nk | = ni × nj · nk = (ni × (vj × vj+1)) · nk

= [vj (ni · vj+1)− vj+1(ni · vj )] · nk

= (vj · nk)(ni · vj+1)− (vj+1 · nk)(ni · vj )

= |vjvkvk+1| · |vivi+1vj+1| − |vj+1vkvk+1| · |vivi+1vj |. �

Corollary 3.11. We have |ni nj nj+1| = αj+1|vivi+1vj+1|.

Proof. This follows from Lemma 3.10 and the definition of αj+1. �

Corollary 3.12. We have |ni−1ni ni+1| = αiαi+1.

Proof. This follows from Lemma 3.10 and the definition of αi and αi+1. �

Lemma 3.13. Let x = [x1 : · · · : xd ] ∈ V(〈(IWd )2〉) \ C. If τ(x) is a base point
pi j = ni × nj , then x lies on the exceptional line p̂i j over pi j .

Proof. Since indices are cyclic, we assume that i = 1. Thus, τ(x)= p1, j = n1×nj

for some j /∈ {d, 1, 2}. The relation Q1(x)=31 · τ(x)=31 · (n1×nj )= 0 yields

L(1) := x2n2 · p1, j − x1nd · p1, j = 0. (9)

The relation Q j (x)= 0 implies

L( j) := x j+1|nj+1n1nj | − x j |n2n1nj | = 0. (10)
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Also,

Q2(x)= (x3n3− x2n1) · n1× nj = x3|n3n1nj | = 0,

implying x3 = 0 since |n3n1nj | 6= 0 if j 6= 3. Assume xk = 0 for 3 ≤ k < j − 1.
Note that

Qk(x)= (xk+1nk+1− xknk−1) · n1× nj = xk+1|nk+1n1nj | = 0;

hence, xk+1 = 0 since |nk+1n1nj | 6= 0 and by induction xk = 0 for 3≤ k ≤ j − 1.
An analogous argument shows that xk = 0 for j + 2≤ k ≤ d . Hence, x lies on the
line V(L(1), L( j), xk | k /∈ {1, 2, j, j + 1}), which is the exceptional line p̂1, j . �

Theorem 3.14. The subset V(〈(IWd )2〉) \C is contained in Wd . It follows that the
variety V(〈(IWd )2〉) has irreducible decomposition Wd ∪C.

Proof. Let x = [x1 : · · · : xd ] ∈ V(〈(IWd )2〉) \C. The Wachspress quadrics give the
relations

xr+1nr+1 · τ = xr nr−1 · τ (11)

for each r = 1, . . . , d . By Theorem 1.6, the adjoint is independent of triangulation,

nk−2nk−1

nk

Figure 3. Triangulation used for adjoint.

so we use A to denote the adjoint, specifying the triangulation if necessary. We now
show, for each k ∈ {1, . . . , d}, bk(τ (x))=A(τ (x))xk , where the triangulation above
is used for the adjoint A. It follows from the uniqueness of Wachspress coordinates
that the denominator

∑d
i=1 bi of βi is the adjoint of P∗d , so it follows that

wd(τ (x))=A(τ (x))x. (12)

Provided A(τ (x)) 6= 0, the result follows since wd(τ (x))∈Pd−1 is a nonzero scalar
multiple of x; hence, x is in the image of the Wachspress map and thus lies on Wd . If
x∈V(〈(IWd )2〉)\C and A(τ (x))=0, then by (12)wd(τ (x))=0, and hence, τ(x) is a
basepoint ofwd . Thus, τ(x)=ni×nj for some diagonal pair (i, j). By Lemma 3.13,
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x lies on an exceptional line and hence lies on Wd . To prove the claim, note that
since all indices are cyclic it suffices to assume k = 3. Let |ni nj nk | = |ni jk | and

ni1,...,im · τ :=

m∏
j=1

(ni j · τ).

This is the product of m linear forms in S, and with this notation,

b3(τ )= n1,4,5,...,d · τ.

For each r ∈ {3, . . . , d}, define

σr := (n4,...,r ·τ)n1·

[ r∑
i=3

vi (nr+1,...,d ·τ)xi+

d∑
i=r+1

vi (nr−1,...,i−2·τ)(ni+1,...,d ·τ)xr

]
,

where we set ni,..., j · τ = 1 if j < i . We show x3A(τ (x)) = σ3 = σd = b3(τ (x)).
First, we show σ3 = x3A(τ ): to see this, note that

x3A(τ )= |n123|(n4,...,d · τ)x3+

d∑
i=4

|n1,i−1,i |(n2,...,i−2 · τ)(ni+1,...,d · τ)x3, (13)

where we express the adjoint A using the triangulation in Figure 3. Applying the
scalar triple product to |n123| and |n1,i−1,i | in the expression (13) yields

n1 ·(n2×n3)(n4,...,d ·τ)x3+

d∑
i=4

n1 ·(ni−1×ni )(n2,...,i−2 ·τ)(ni+1,...,d ·τ)x3. (14)

Factoring an n1 and noting that ni × ni+1 = vi+1, (14) becomes

n1 ·

[
v3(n4,...,d · τ)x3+

d∑
i=4

vi (n2,...,i−2 · τ)(ni+1,...,d · τ)x3

]
= σ3.

Now we show σd = b3(τ ). Since nd+1,...,d · τ = 1,

σd = (n4,...,d · τ)n1 ·

( d∑
i+3

vi (nd+1,...,d · τ)xi

)
= (n4,...,d · τ)n1 ·

( d∑
i+3

vi xi

)
. (15)

Observing that n1 ·
∑2

i=1 xivi = 0, we see that (15) is

(n4,...,d · τ)(n1 · τ)= n1,4,...,d · τ = b3(τ ).
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We now claim that for r ∈ {3, . . . , d − 1} we have σr = σr+1. Indeed,

σr = (n4,...,r · τ)n1 ·

[ r∑
i=3

vi (nr+1,...,d · τ)xi

+

d∑
i=r+1

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)(nr−1 · τ)xr

]
= (n4,...,r · τ)n1 ·

[ r∑
i=3

vi (nr+1,...,d · τ)xi

+

d∑
i=r+1

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)(nr+1 · τ)xr+1

]
,

where we have applied (11) to the last term. Factoring out nr+1 · τ yields

(n4,...,r+1 · τ)n1 ·

[ r∑
i=3

vi (nr+2,...,d · τ)xi +

d∑
i=r+1

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)xr+1

]
.

Lastly, since the expressions in both summations agree at the index i = r + 1, we
can shift the indices of summation,

(n4,...,r+1 · τ)n1 ·

[r+1∑
i=3

vi (nr+2,...,d · τ)xi +

d∑
i=r+2

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)xr+1

]
,

which is precisely σr+1, proving the claim. The claim shows that σ3 = σd ; hence,
(12) holds, and so x lies in Wd if A(τ (x)) 6= 0. �

4. The Wachspress cubics

Theorem 3.14 shows that the Wachspress quadrics do not suffice to cut out the
Wachspress variety Wd . We now construct cubics, the Wachspress cubics, that lie
in IWd and do not arise from the Wachspress quadrics. These cubics are determinants
of 3× 3 matrices of linear forms. The key to showing that they are in IWd is to
write them as a difference of adjoints AT1(C)−AT2(C), where T1(C) and T2(C) are
two different triangulations of a subcone C of the dual cone P∗d . By Theorem 1.6,
the difference is zero, so the cubic is in IWd .

4A. Construction of Wachspress cubics. As in Lemma 3.6, let

3r =
xr+1

αr+1
nr+1−

xr

αr
nr−1.

Theorem 4.1. If i 6= j 6= k 6= i , then wi, j,k := |3i ,3j ,3k | ∈ IWd .

Proof. We break the proof into two parts. First, suppose no pair of (i, j, k)
corresponds to an edge of Pd . We call such an (i, j, k) a T -triple. A direct
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calculation shows that, if (i, j, k) is a T -triple, then evaluating the monomial xi x j xk

at Wachspress coordinates yields

xi x j xk(wd)= bi bj bk = A2
∏

m∈γ (i, j,k)

`m, (16)

where γ (i, j, k) is as in Definition 3.4. Since there are no T -triples if d < 6, we
may assume d ≥ 6. Changing variables by replacing xi with xi/αi , we may ignore
the constants αi . Using the definition of the 3’s, observe that

wi, j,k = |ni+1nj+1nk+1|xi+1x j+1xk+1− |ni+1nj+1nk−1|xi+1x j+1xk

− |ni+1nj−1nk+1|xi+1x j xk+1+ |ni+1nj−1nk−1|xi+1x j xk

− |ni−1nj+1nk+1|xi x j+1xk+1+ |ni−1nj+1nk−1|xi x j+1xk

+ |ni−1nj−1nk+1|xi x j xk+1− |ni−1nj−1nk−1|xi x j xk . (17)

There are several situations to consider, depending on various possibilities for
interactions among the indices. Interactions may occur if i+1= j−1 or j+1= k−1
or k+ 1= i − 1, so there are four cases:

1. All three hold. 2. Two hold. 3. One holds. 4. None hold.

Case 1. The indices (i, j, k) satisfy Case 1 if and only if d = 6. For d = 6, there
are only two T -triples: (1, 3, 5) and (2, 4, 6). We show that w1,3,5 vanishes on
Wachspress coordinates; the case ofw2,4,6 is similar. All but two of the determinants
in Equation (17) vanish, leaving

w1,3,5 = |31,33,35| = |n2n4n6|x2x4x6− |n6n2n4|x1x3x5. (18)

Notice that the coefficients are equal, and we conclude by showing that

x1x3x5− x2x4x6

vanishes on Wachspress coordinates. The monomials x1x3x5 and x2x4x6 evaluated
at Wachspress coordinates are b1b3b5 and b2b4b6, respectively. Both of these are
equal to A2, so x1x3x5− x2x4x6 vanishes on Wachspress coordinates.

Case 2. We can assume without loss of generality i + 1 6= j − 1, j + 1 = k − 1,
and k+ 1= i − 1. Four coefficients vanish in (17), yielding

wi, j,k = |ni+1nj+1ni−1|xi+1x j+1xi−1

− |ni+1nj−1ni−1|xi+1x j xi−1

+ |ni+1nj−1nj+1|xi+1x j xi−2

− |ni−1nj−1nj+1|xi x j xi−2.
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Evaluating this at Wachspress coordinates yields

wi, j,k ◦wd = |ni+1nj+1ni−1|
∏

m∈γ (i+1, j+1,i−1)

`m+|ni+1nj−1ni−1|
∏

m∈γ (i+1, j,i−1)

`m

− |ni+1nj−1nj+1|
∏

m∈γ (i+1, j,i−1)

`m − |ni−1nj−1nj+1|
∏

m∈γ (i, j,i−1)

`m

= A2
( ∏

m∈γ (i−1,i+1, j+1, j)

`m

)(
|ni+1nj+1ni−1|`j−1− |ni+1nj−1ni−1|`j+1

+ |ni+1nj−1nj+1|`i−1− |ni−1nj−1nj+1|`i+1
)

= A2
( ∏

m∈γ (i−1,i+1, j+1, j)

`m

)[
(|ni+1nj+1ni−1|`j−1+ |ni−1nj+1nj−1|`i+1)

− (|ni+1nj−1ni−1|`j+1+ |ni+1nj+1nj−1|`i−1)
]
,

where

A =
d∏

i=1

`i .

The last factor is the difference of two adjoints with respect to the triangulations
of the quadrilateral in Figure 4. The vanishing can be seen directly: write n1, . . . , n4

for ni−1, ni+1, nj−1, and nj+1. Then the last factor is

|n2n3n4|`1− |n1n3n4|`2+ |n1n2n4|`3− |n1n2n3|`4.

Applying d
dx

to this shows the x coefficient is

|n2n3n4|n11− |n1n3n4|n21+ |n1n2n4|n31− |n1n2n3|n41.

This is the determinant of the matrix of the ni with a repeat row for the x coordinates
ni1, so it vanishes. Reason similarly for the y and z coefficients.

ni+1 nj+1

nj−1ni−1

ni+1 nj+1

nj−1ni−1

Figure 4. Case 2 triangulation.
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ni−1

nj−1

ni+1nk−1

nj+1

ni−1

nj−1

ni+1nk−1

nj+1

Figure 5. Case 3 triangulation.

Case 3. Assume without loss of generality i + 1 6= j − 1, j + 1 6= k − 1, and
k+ 1= i − 1. In this case, two coefficients vanish in (17), and after evaluating at
Wachspress coordinates, we obtain

wi, j,k ◦wd

= |ni+1nj+1ni−1|
∏

m∈γ (i+1, j+1,k+1)

`m − |ni+1nj+1nk−1|
∏

m∈γ (i+1, j+1,k)

`m

− |ni+1nj−1ni−1|
∏

m∈γ (i+1, j,k+1)

`m + |ni+1nj−1nk−1|
∏

m∈γ (i+1, j,k)

`m

+ |ni−1nj+1nk−1|
∏

m∈γ (i, j+1,k)

`m − |ni−1nj−1nk−1|
∏

m∈γ (i, j,k)

`m

= A2
( ∏

m∈γ (i, j,k,
i+1, j+1,k+1)

`m

)(
|ni+1nj+1ni−1|`j−1`k−1− |ni+1nj+1nk−1|`i−1`j−1

− |ni+1nj−1ni−1|`j+1`k−1+ |ni+1nj−1nk−1|`j+1`i−1

+ |ni−1nj+1nk−1|`i+1`j−1− |ni−1nj−1nk−1|`i+1`j+1
)
.

The last factor is the difference of adjoints with respect to the triangulations of the
pentagon in Figure 5.

Case 4. In this case, evaluation at Wachspress coordinates yields

wi, j,k◦wd=|ni+1nj+1nk+1|
∏

m∈γ (i+1, j+1,k+1)

`m−|ni+1nj+1nk−1|
∏

m∈γ (i+1, j+1,k)

`m

− |ni+1nj−1nk+1|
∏

m∈γ (i+1, j,k+1)

`m + |ni+1nj−1nk−1|
∏

m∈γ (i+1, j,k)

`m

− |ni−1nj+1nk+1|
∏

m∈γ (i, j+1,k+1)

`m + |ni−1nj+1nk−1|
∏

m∈γ (i, j+1,k)

`m

+ |ni−1nj−1nk+1|
∏

m∈γ (i, j,k+1)

`m − |ni−1nj−1nk−1|
∏

m∈γ (i, j,k)

`m
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ni−1

nj−1

ni+1

nk+1

nj+1

nk−1

ni−1

nj−1

ni+1

nk+1

nj+1

nk−1

Figure 6. Case 4 triangulation.

= A2
( ∏

m∈γ (i, j,k,
i+1, j+1,k+1)

`m

)

×
(
|ni+1nj+1nk+1|`i−1`j−1`k−1− |ni+1nj+1nk−1|`i−1`j−1`k+1

− |ni+1nj−1nk+1|`i−1`j+1`k−1+ |ni+1nj−1nk−1|`i−1`j+1`k+1

− |ni−1nj+1nk+1|`i+1`j−1`k−1+ |ni−1nj+1nk−1|`j+1`i−1`k+1

+ |ni−1nj−1nk+1|`i+1`j+1`k−1− |ni−1nj−1nk−1|`i+1`j+1`k+1
)
.

The last factor is the difference of adjoints expressed using the triangulations of the
hexagon in Figure 6. This completes the analysis when (i, j, k) is a T -triple.

Next, we consider the situation when (i, j, k) contains a pair of consecutive
indices. Suppose first that there are exactly two consecutive vertices; without loss
of generality, we assume the indices are (2, 3, i) with i > 4. We have

w2,3,i := |32333i | = |n2n4ni+1|x3x4xi+1− |n3n4ni−1|x3x4xi

− |n3n2ni+1|x3x3xi+1+ |n3n2ni−1|x3x3xi

− |n1n4ni+1|x2x4xi+1+ |n1n4ni−1|x2x4xi

+ |n1n2ni+1|x2x3xi+1− |n1n2ni−1|x2x3xi .

We show that w2,3,i ◦wd is a multiple of the difference between two expressions
of the adjoint polynomial of a polygon with respect to two different triangulations.
After evaluation at wd , each monomial has a common factor of A

∏
j 6=2,3

`j . Thus, we
can express

w2,3,i (wd)

A
∏

j 6=2,3
`j
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n1

ni+1

n3

n4

ni−1

n2

n1

ni+1

n3

n4

ni−1

n2

Figure 7. Triangulations for the non-T -triples.

as
w2,3,i (wd)

A
∏

j 6=2,3
`j
= |n2n4ni+1|

∏
j 6=3,4,i+1

`j − |n3n4ni−1|
∏

j 6=3,4,i−1

`j

− |n3n2ni+1|
∏

j 6=2,3,i+1

`j + |n3n2ni−1|
∏

j 6=2,3,i−1

`j

− |n1n4ni+1|
∏

j 6=1,4,i+1

`j + |n1n4ni−1|
∏

j 6=1,4,i−1

`j

+ |n1n2ni+1|
∏

j 6=1,2,i+1

`j − |n1n2ni−1|
∏

j 6=1,2,i−1

`j

=

( ∏
j∈γ (2,4,i,i+1)

`j

)(
|n2n4ni+1|`1`3`i−1− |n3n4ni−1|`1`2`i+1

− |n3n2ni+1|`1`4`i−1+ |n3n2ni−1|`1`4`i+1

− |n1n4ni+1|`2`3`i−1+ |n1n4ni−1|`2`3`i+1

+ |n1n2ni+1|`3`4`i−1− |n1n2ni−1|`3`4`i+1
)
.

The factor in parentheses is the difference of the adjoints computed with respect to
the triangulations of the polygon in Figure 7.

Finally, for the case where the three vertices are consecutive, assume without
loss of generality the triple is (2, 3, 4), and proceed as above. In this case, the
triangulations that arise are those that appear in Figure 5. �

Definition 4.2. I (d) is the ideal generated by the Wachspress quadrics appearing
in Corollary 3.8 and the Wachspress cubics appearing in Theorem 4.1.

5. Gröbner basis, Stanley–Reisner ring, and free resolution

In this section, we determine the initial ideal of I (d) in graded lex order and prove
I (d)= IWd . First, we present some preliminaries.
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5A. Simplicial complexes and combinatorial commutative algebra. An abstract
n-simplex is a set consisting of all subsets of an (n+1)-element ground set. Typically
a simplex is viewed as a geometric object; for example, a 2-simplex on the set
{a, b, c} can be visualized as a triangle with the subset {a, b, c} corresponding to
the whole triangle, {a, b} an edge, and {a} a vertex. For this reason, elements of
the ground set are called the vertices.

Definition 5.1 [Ziegler 1995]. A simplicial complex 1 on a vertex set V is a
collection of subsets σ of V such that, if σ ∈ 1 and τ ⊂ σ , then τ ∈ 1. If
|σ | = i + 1, then σ is called an i-face. Let fi (1) denote the number of i-faces
of 1, and define dim(1) = max{i | fi (1) 6= 0}. If dim(1) = n − 1, we define
f1(t) =

∑n
i=0 fi−1tn−i . The ordered list of coefficients of f1(t) is the f -vector

of 1, and the coefficients of h1(t) := f1(t − 1) are the h-vector of 1.

Example 5.2. Consider the 1-skeleton of a tetrahedron with vertices x1, x2, x3, x4,
as in the figure.
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x4

x3

x2x1

The corresponding simplicial complex 1 consists of all vertices and edges,
so 1 = {∅, {xi }, {xi , x j } | 1≤ i ≤ 4 and i < j ≤ 4}. Thus, f (1) = (1, 4, 6) and
h(1)= (1, 2, 3); the empty face gives f−1(1)= 1.

A simplicial complex 1 can be used to define a commutative ring, known as
the Stanley–Reisner ring. This construction allows us to use tools of commutative
algebra to prove results about the topology or combinatorics of 1.

Definition 5.3. Let1 be a simplicial complex on vertices {x1, . . . , xn}. The Stanley–
Reisner ideal I1 is

I1 = 〈xi1 · · · xi j | {xi1, . . . , xi j } is not a face of 1〉 ⊆ K[x1, . . . , xn],

and the Stanley–Reisner ring is K[x1, . . . , xk]/I1.

In Example 5.2, since 1 has no 2-faces,

I1 = 〈x1x2x3, x1x2x4, x1x3x4, x2x3x4〉 =
⋂

1≤i< j≤4

〈xi , x j 〉.

Definition 5.4. A prime ideal P is associated to a graded S-module N if P is the
annihilator of some n ∈ N , and Ass(N ) is the set of all associated primes of N .
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Definition 5.5. Let codim(N ) = min{codim(P) | P ∈ Ass(N )} for a finitely gen-
erated graded S-module N . The projective dimension pdim(N ) is the length of
a minimal free resolution of N ; N is Cohen–Macaulay if codim(N ) = pdim(N ).
S/I is arithmetically Cohen–Macaulay if it is Cohen–Macaulay as an S-module.

5B. Application to Wachspress surfaces.

Definition 5.6. Define I0(d)⊆ K[x1, . . . , xd ] as

I0(d)= 〈x1x3, . . . , x1xd−1〉+ K2,d−1,

where K2,d−1 consists of all square-free cubic monomials in x2, . . . , xd−1.

Theorem 5.7. The quotient S/I0(d) is arithmetically Cohen–Macaulay, of Castel-
nuovo–Mumford regularity two, and has Hilbert series

HS(S/I0(d), t)=
1+ (d − 3)t +

(d−3
2

)
t2

(1− t)3
.

Proof. The ideal I0(d) is the Stanley–Reisner ideal of a one-dimensional simplicial
complex 0 consisting of a complete graph on vertices {x2, . . . , xd−1} with a single
additional edge x1x2 attached. All connected graphs are shellable, so since shellable
implies Cohen–Macaulay (see [Miller and Sturmfels 2005]), S/I0(d) is Cohen–
Macaulay. Since I0(d) contains no terms involving xd , if S′=K[x1, . . . , xd−1], then

S/I0(d)' S′/I0(d)⊗K[xd ].

The Hilbert series of a Stanley–Reisner ring has numerator equal to the h-vector of
the associated simplicial complex (see [Schenck 2003]), which in this case is a graph
on d − 1 vertices with

(d−2
2

)
+ 1 edges. Converting f (0) = (1, d − 1,

(d−2
2

)
+ 1)

to h(0) yields the Hilbert series of S′/I0(d). The Hilbert series of a graph has
denominator (1− t)2, and tensoring with K[xd ] contributes a factor of 1/(1− t),
yielding the result. �

Theorem 5.8. In graded lex order, in≺ I (d)= I0(d).

Proof. First, note that
I0(d)⊆ in≺ I (d),

which follows from Corollary 3.8 and Theorem 4.1, combined with the observation
that, in graded lex order, in(|3i3j3k |) = xi x j xk if i < j < k as long as k 6= d.
Since I (d)⊆ IWd , there is a surjection

S/I (d)� S/IWd ;

hence, HP(S/I (d), t)≥ HP(S/IWd , t). Since

HP(S/I (d), t)= HP(S/ in≺ I (d), t)
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and
I0(d)⊆ in≺ I (d),

we have

HP(S/I0(d), t)≥ HP(S/ in≺ I (d), t)= HP(S/I (d), t)≥ HP(S/IWd , t).

The Hilbert polynomial HP(S/IWd , t) is given by Equation (5). The Hilbert series of
S/I0(d) is given by Theorem 5.7, from which we can extract the Hilbert polynomial:

HP(S/I0(d), t)=
(d−3

2

)( t
2

)
+ (d − 3)

( t+1
2

)
+

( t+2
2

)
,

and a check shows this agrees with Equation (5). Since I0(d)⊆ in≺ I (d), equality
of the Hilbert polynomials implies that in high degree (i.e., up to saturation)

I0(d)= in≺ I (d) and I (d)= IWd .

Consider the short exact sequence

0→ in≺ I (d)/I0(d)→ S/I0(d)→ S/ in≺ I (d)→ 0.

By Lemma 3.6 of [Eisenbud 1995],

Ass(in≺ I (d)/I0(d))⊆ Ass(S/I0(d)). (19)

Since HP(S/I0(d), t)= HP(S/ in≺ I (d), t), the module in≺ I (d)/I0(d) must van-
ish in high degree so is supported at m, which is of codimension d . But I0(d) is a
radical ideal supported in codimension d − 3, so it follows from Equation (19) that
in≺ I (d)/I0(d) must vanish. �

Corollary 5.9. The ideal I (d) is the ideal of the image of

Xd → P(H 0(Dd−2)).

In particular, I (d)= IWd , and S/I (d) is arithmetically Cohen–Macaulay.

Proof. By the results of Sections 2 and 3, I (d)⊆ IWd , and the proof of Theorem 5.8
showed that they are equal up to saturation. Hence, IWd/I (d) is supported at m.
Consider the short exact sequence

0→ IWd/I (d)→ S/I (d)→ S/(IWd )→ 0.

Since S/I0(d) = S/ in≺ I (d) is arithmetically Cohen–Macaulay of codimension
d − 3, by uppersemicontinuity [Herzog 2005], so is S/I (d), so IWd/I (d)= 0. �

Corollary 5.10. The quotient S/IWd has regularity 2.

Proof. Since S/I (d) is Cohen–Macaulay, reducing modulo a linear regular sequence
of length 3 yields an Artinian ring with the same regularity, which is equal to the
socle degree [Eisenbud 2005]. By Theorems 5.7 and 5.8, this is 2, so the regularity
of S/IWd is 2. �
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Theorem 5.11. The nonzero graded Betti numbers of the minimal free resolution
of S/I (d) are given by b12 = d − 3 and for i ≥ 3 by

bi−2,i =

(d−3
i

)
− (d − 3)

(d−3
i−1

)
+

(d−3
2

)(d−3
i−2

)
.

Proof. By Corollary 5.10, there are only two rows in the Betti table of S/I (d). By
Corollary 3.9, the top row is empty, save for the quadratic generators at the first
step. Thus, the entire Betti diagram may be obtained from the Hilbert series, which
is given in Theorem 5.7, and the result follows. �

We are at work on generalizing the results here to higher dimensions.
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