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Consider tuples (K1, . . . , Kr ) of separable algebras over a common local or
global number field F , with the Ki related to each other by specified resol-
vent constructions. Under the assumption that all ramification is tame, simple
group-theoretic calculations give best possible divisibility relations among the
discriminants of Ki/F . We show that for many resolvent constructions, these
divisibility relations continue to hold even in the presence of wild ramification.

1. Overview

Let G be a finite group and let φ1, . . . , φr be permutation characters of G. We say
that a tuple (K1, . . . , Kr ) of separable algebras over a common ground field F has
type (G, φ1, . . . , φr ) if for a joint splitting field K gal one can identify Gal(K gal/F)
with a subgroup of G such that the action of Gal(K gal/F) on HomF (Ki , K gal) has
character φi .

When F is a local or global number field, one has discriminants DKi/F which
are ideals in the ring of integers OF of F . One can ask for the strongest divisibility
relations among these discriminants which hold as (K1, . . . , Kr )/F varies over all
possibilities of a given type (G, φ1, . . . , φr ). This question has a simple group-
theoretic answer if one restricts attention to tuples for which all ramification in each
Ki/F is tame.

This paper focuses on the following phenomenon: for many (G, φ1, . . . , φr ), the
divisibility relations for tame (K1, . . . , Kr )/F of type (G, φ1, . . . , φr ) hold also
for arbitrary (K1, . . . , Kr )/F of type (G, φ1, . . . , φr ). In this case, we say that
the tame-wild principle holds for (G, φ1, . . . , φr ). Our terminology “tame-wild
principle” is intended to be reminiscent of the standard terminology “local-global
principle”: we are showing in this paper that simple tame computations can often
solve a complicated wild problem, just as simple local computations can often solve
a complicated global problem.
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Section 2 provides an introductory example. Section 3 reviews some ramification
theory centering on Artin characters, placing it in a framework which will be
convenient for us. Section 4 states the tame-wild principle and gives two simple
methods for proving instances of it.

If the tame-wild principle holds for a fixed G and any (φ1, . . . , φr ) then we say
it holds universally for G. Section 5 proves that the tame-wild principle holds
universally for G in a small class of groups we call U-groups. Section 6 considers
the remaining groups, called N-groups, finding that the tame-wild principle usually
does not hold universally for them.

Sections 7 and 8 return to the more practical situation where one is given not
only G but also a small list of naturally arising φi . Our theme is that the tame-wild
principle is likely to hold, despite the negative results on N-groups. Section 7
focuses on comparing an arbitrary algebra K/F with its splitting field K gal/F ,
proving that one of the two divisibility statements coming from the tame-wild
principle holds for arbitrary G. Section 8 gives a collection of examples exploring
the range of (G, φ1, . . . , φr ) for which the tame-wild principle holds.

This paper is written with applications to tabulating number fields of small
discriminant in mind. The topics in Section 2B, Section 7E, and Section 8A all
relate to this application. Moreover, as we will make clear, the theory we present
here still applies when permutation characters φi are replaced by general characters
χi , and discriminants are correspondingly generalized to conductors. Applications
to Artin L-functions of small conductor will be presented elsewhere.

2. An introductory example

In Section 2A, we provide an introductory instance of the tame-wild principle that
we will revisit later to provide simple illustrations of general points. In Section 2B,
we illustrate how this instance of the tame-wild principle gives an indirect but
efficient way of solving a standard problem in tabulating number fields.

2A. The tame-wild principle for (S5, φ5, φ6).

The Cayley–Weber type. For our introductory example, we take the type (S5, φ5, φ6),
where φ5 is the character of the given degree five permutation representation, and
φ6 is the character of the degree six representation S5 −→

∼ PGL2(5) ⊂ S6. A pair
of algebras (K5, K6) has type (S5, φ5, φ6) exactly when K6 is the Cayley–Weber
resolvent of K5 (see [Jensen et al. 2002, §2.3], for instance, for this notion). An
explicit example over Q is given by Kn =Q[x]/ fn(x) with

f5(x)= x5
− 2x4

+ 4x3
− 4x2

+ 2x − 4, D5 = 283451, (2-1)

f6(x)= x6
− 2x5

+ 4x4
− 4x3

+ 2x2
− 4x − 6, D6 = 2103453. (2-2)
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Figure 1. The complete list of pairs (a, b) 6= (0, 0) which occur
as (ap, bp) for (S5, φ5, φ6) over Q. The pairs labeled T can occur
with tame ramification, while the others can only occur for wild
p-adic ramification as indicated.

In this example, the Galois group is all of S5, discriminants DKn/Q = (Dn) are as
indicated, and ramification is wild at 2 and tame at 3 and 5. We are concerned with
exponent pairs (ap, bp) on discriminants. Here (a2, b2)= (8, 10), (a3, b3)= (4, 4),
(a5, b5)= (1, 3), and otherwise (ap, bp)= (0, 0).

All possibilities for (ap, bp). Figure 1 gives all nonzero possibilities for (ap, bp)
over Q. The fact that the tame list is complete is immediate from the general
formalism of the next section. A brute force proof that the wild list is complete
goes as follows: there are 113, 57, and 51 quintic algebras K5 over Qp for p = 2,
3, and 5 respectively [Jones and Roberts 2006]; for each, one can compute K6 and
thus the pairs (ap, bp); the lists arising are the ones drawn in Figure 1. For larger
number fields F , the list of possibilities for tame (ap, bp) is exactly the same, but
the list of possibilities for wild (ap, bp) grows without bound.

The tame-wild principle. Figure 1 and the comment about general base fields F
clearly illustrate two general phenomena about exponent vectors (ap, bp). First, in
absolute terms, the exponents can be much larger in wild cases than they are in all
tame cases. But second, in relative terms, one can hope that the ratios ap/bp are
quite similar in the wild and tame cases. We are interested in this paper only in the
second phenomenon and so we systematically consider ratios.

In our example, the tame-wild principle is the statement that

1
3 bp ≤ ap ≤ bp (2-3)

holds for all (K5, K6)/F of type (S5, φ5, φ6) and all primes p of F . In other words,
when bp 6= 0 one must have ap/bp ∈

[1
3 , 1

]
. We have summarized a proof that

(2-3) holds when one restricts F to be Q or one of the Qp. We will see by a
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group-theoretic argument in Section 4C, not involving inspecting wild ramification
at all, that (2-3) holds for general F . However the situation is subtle, as the analog
of (2-3) holds for many (G, φn, φm) but not for all.

2B. Application to number field tabulation. The example of this section provides
a convenient illustration of the application of tame-wild inequalities to number
field tabulation. The right inequality of (2-3) globalizes to the divisibility relation
DK5/F |DK6/F which on the level of magnitudes becomes

|DK5/F | ≤ |DK6/F |. (2-4)

Consider the problem of finding sextic field extensions K6/F with Galois group
either PSL2(5) or PGL2(5). These all arise as Cayley–Weber resolvents of K5/F
with Galois group either A5 or S5. From (2-4), one sees that to find all K6/F with
|DK6/F |≤ B it suffices to find all K5/F with |DK5/F |≤ B, apply the Cayley–Weber
resolvent, and keep those K6/F with |DK6/F | ≤ B. This indirect quintic method is
enormously faster for large B, but the direct sextic method over F =Q was used in
[Ford and Pohst 1992] and [Ford et al. 1998] for the PSL2(5) and PGL2(5) cases,
respectively.

3. Character theory and discriminants

In this section, we review how Artin characters underlie discriminants. Each of
the subsections introduces concepts and notation which play an important role in
the rest of the paper. The notions we emphasize are slightly different from the
most standard representation-theoretic notions. However they are appropriate here
because all our characters are rational-valued.

3A. Class sets. Let G be a finite group. We say that two elements of G are
power-conjugate if each is conjugate to a power of the other. Let G] be the set of
power-conjugacy classes. Thus one has a natural surjection G→ G], with the fiber
Cσ ⊂ G above σ ∈ G] being its set of representatives. The order σ̄ of an element
σ ∈ G] is the order of a representing element g ∈ Cσ . Similarly the power σ k of a
class σ is the class of gk for any representing element g ∈ Cσ .

When dealing with explicit examples, we most commonly indicate an element of
G] by giving its order and an extra identifying label, as in, e.g., 2B. To emphasize
the role of order, we say that a class τ divides a class σ if some power of σ is τ .
Thus divisibility of classes τ | σ implies divisibility of integers τ̄ | σ̄ , but not
conversely. In connection with divisibility, the quantity [σ ] = |Cσ |/φ(σ̄ ) is useful,
with φ(n)= |(Z/n)×| the Euler φ-function. This quantity is integral because Cσ
consists of [σ ] power-classes, each of size φ(σ̄ ). Alternatively, one can think of G]

as indexing conjugacy classes of cyclic subgroups of G, and then [σ ] is the number
of cyclic subgroups of type σ .
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Sections 5 and 6 systematically reason with class sets using diagrams based on
the divisibility relation and the quantities [σ ]. In general, G itself often recedes
into the background of our considerations and the focus is on G] and its inherited
structures.

3B. Characters. Our calculations take place mainly in the ring Q(G]) of Q-valued
functions on G]. We also use the larger ring R(G]) of real-valued functions, so that
we can use standard terms like cone, hull, and interval with their usual meaning.
We make extensive use of the natural inner product on Q(G]), given by

( f1, f2)=
∑
σ∈G]

|Cσ |
|G|

f1(σ ) f2(σ ).

Important elements in Q(G]) for us include the characters φX of G-sets X . By
definition, these characters are obtained by counting fixed points: φX (σ )= |X g

|, for
g any representative of σ . Both the identity class e ∈ G] and the constant function
1 ∈ Q(G]) usually play trivial roles in our situation. To efficiently remove these
quantities from our attention, we define G]0

= G]
−{e} and let Q(G])0 ⊂Q(G])

be the orthogonal complement to 1.

The characters φG/H and aH . Let H be a subgroup of G. Then the character of
the G-set G/H is given by

φG/H (σ )=
|G||Cσ ∩ H |
|H ||Cσ |

. (3-1)

Taking H = {e} gives the regular character φG with value |G| at e and 0 elsewhere.
We define the formal Artin character of H to then be the difference

aH = φG −φG/H , (3-2)

which lies in Q(G])0. Here we use the adjective “formal” because often one talks
about Artin characters only in the presence of fields, while currently we are in a
purely group-theoretic setting.

The case that H is cyclic. The case where H is cyclic is particularly important
to us. The generators of H all represent the same class τ ∈ G] and we use the
alternative notation aτ = aH , calling the aτ tame characters for reasons which will
be clear shortly in Section 3C.

To study the aτ explicitly, it is convenient to make use of what we call prechar-
acters âτ , for τ ∈ G]. By definition, âe is the 0 function and otherwise âτ has two
nonzero values:

âτ (e)= |G|, âτ (τ )=−
|G|
|Cτ |

. (3-3)
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Tame characters and precharacters are related to each other via

aτ =
∑
k|τ̄

φ(τ̄/k)
τ̄

âτ k , âτ =
∑
k|τ̄

τ̄µ(k)
φ(τ̄ )k

aτ k , (3-4)

where µ is the Möbius µ-function taking values in {−1, 0, 1}. Thus, ae = âe = 0,
aτ = τ̄−1

τ̄
âτ if τ̄ is prime, and otherwise aτ and âτ are not proportional to each

other. As τ ranges over G]0, the âτ clearly form a basis for Q(G])0. So the aτ also
form a basis for Q(G])0

3C. Artin characters. Let F be a local or global number field. Let L/F be a
Galois extension with Galois group identified with a subgroup of G. A permutation
representation ρ of G gives an F-algebra K split by L . For p a prime ideal of F ,
the discriminant exponent cp(K ) depends only on the character φ ∈Q(G]) of ρ and
in fact depends linearly on φ. The associated Artin character aL/F,p is the unique
element of Q(G]) such that one has the general formula

cp(K )= (aL/F,p, φ). (3-5)

From cp(F) = 0, one gets (aL/F,p, 1) = 0 and so aL/F,p ∈ Q(G])0. One can
completely compute aL/F,p by computing cp(K ) for any |G]0

| different K having
characters which are linearly independent in Q(G])/Q.

Before continuing, we note a subtlety that disappears in the Artin character
formalism that we are reviewing. Namely, it can happen that nonisomorphic
algebras K ′ and K ′′ give rise to the same permutation character φ. In this case
K ′ and K ′′ are called arithmetically equivalent. They are indeed equivalent from
the point of view of this paper, and any occurrence of K ′ can simply be replaced
by K ′′.

An Artin conductor aL/F,p can be expressed directly in terms of inertia groups
in their upper numbering as follows. Let P be a prime of L above p and let
IL/F,P ⊆Gal(L/F)⊆ G be the corresponding inertia group. Then one has rational
numbers 1≤ s1 < s2 < · · ·< sk and normal subgroups

IL/F,P = I s1 ⊃ I s2 ⊃ · · · ⊃ I sk ⊃ {e} (3-6)
satisfying

aL/F,p =

k∑
i=1

(si − si−1)aI si . (3-7)

Here, for the sake of the conciseness of formulas, we put s0 = 0. As a similar
convention, we put I sk+1 = {e}. The upper numbers si we are using here are called
slopes in [Jones and Roberts 2006] and are designed to capture tame and wild
ramification simultaneously; one has si = ui+1 where the ui are the upper numbers
used in the standard reference [Serre 1979].
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If s1 = 1 then I s1/I s2 is cyclic of order prime to p. Otherwise, all the I su/I su+1

are abelian groups of exponent p. In particular, IL/F,P itself is a p-inertial group
in the sense that it is an extension of a prime-to-p cyclic group by a p-group. In
general, we say that a group is inertial if it is p-inertial for some prime p.

The prime p is unramified in L/F if and only if k = 0 in which case aL/F,p is
zero. The cases where p is ramified but only tamely are those with k = 1 and s1 = 1.
In both these two settings, (3-7) becomes aL/F,p = aτ with τ being the class of any
generator of any IL/F,P. Thus the tame characters of the previous subsection are
exactly the Artin characters which arise when ramification is tame.

3D. Bounds on Artin characters. Define cones in R(G])0 spanned by characters
or precharacters as follows:

the tame cone T+(G)= 〈aτ 〉,

the wild cone W+(G)= 〈aL/F,p〉,

the inertial cone T̃+(G)= 〈aI 〉,

the broad cone T̂+(G)= 〈âτ 〉.

The tame and broad cones are the simplest of these objects, as their generators are
indexed by the small and explicit set G]0. The inertial cone is also a purely group-
theoretic object, although now more complicated as its generators are indexed by
conjugacy classes of inertial subgroups. Finally, W+(G) is much more complicated
in nature: its definition depends on the theory of p-adic fields, with aL/F,p running
over all possible Artin characters, as above.

Our considerations in this section have established the following inclusions:

T+(G)⊆W+(G)⊆ T̃+(G)⊆ T̂+(G). (3-8)

The first inclusion holds because tame characters are special cases of Artin characters,
the second by the expansion (3-7), and the third because all aI take only positive
values on G]0.

4. The tame-wild principle

We begin in Section 4A by giving a formulation of the tame-wild principle in a
somewhat abstract context, so that its motivation and structural features can be seen
clearly. Next, Section 4B observes that the bounds from the previous section give
techniques for group-theoretically proving instances of the tame-wild principle.
Finally, Section 4C details one way of introducing coordinates to render everything
explicit and Section 4D sketches alternative approaches.

4A. Abstract formulation. We seek settings where general ramification is gov-
erned by tame ramification. The statement that equality holds in T+(G)⊆W+(G)
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is true for some G, in which case it is the ideal statement. For general G, we
seek weaker statements in the same spirit. Accordingly, consider the orthogonal
projection a 7→ aV from R(G]) onto an arbitrary subspace V ⊆ R(G]). Let
T+(G, V ), W+(G, V ), T̃+(G, V ), and T̂ (G, V ) be the images of T+(G), W+(G),
T̃+(G), and T̂ (G), respectively.

Definition 4.1. Let G be a finite group and let V ⊆ R(G]) be a subspace. If
equality holds in T+(G, V )⊆W+(G, V ), then we say the tame-wild principle holds
for (G, V ).

As V gets larger, the tame-wild principle for (G, V ) becomes a stronger statement.
If it holds when V is all of R(G]), then we say it holds universally for G.

An important aspect of our formalism is as follows. Given (G, V ), consider
inertial subgroups I of G. For each I , one has the subspace VI ⊆ R(I ]) consisting
of pullbacks of functions in V under the natural map I ]→ G]. Then the tame-wild
principle holds for (G, V ) if and only if it holds for all (I, VI ). In fact, while G
typically arises as a global Galois group in our applications, whether or not the tame-
wild principle holds for (G, V ) is purely a question about local Galois extensions.

4B. Two proof methods. Projection turns the chain (3-8) into a chain of cones
in V :

T+(G, V )⊆W+(G, V )⊆ T̃+(G, V )⊆ T̂+(G, V ). (4-1)

As we will see, for many G all three inclusions are strict in the universal case
V =R(G]). However strict inclusions can easily become equalities after projection,
giving us elementary but quite effective proof techniques. Namely, the broad method
for proving that the tame-wild principle holds for (G, V ) is to show that equality
holds in T+(G, V )⊆ T̂+(G, V ). The inertial method is to show that equality holds
in T+(G, V )⊆ T̃+(G, V ).

Applying the broad method gives the following simple result which we highlight
because of its wide applicability:

Theorem 4.2. Let G be a finite group and let V be a subspace of R(G]). Suppose
that the broad cone T̂+(G, V ) is generated by the âV

τ with τ of prime order. Then
T+(G, V )= T̂+(G, V ) and the tame-wild principle holds for (G, V ).

Proof. For τ of prime order one has

âτ =
τ̄

τ̄ − 1
aτ ,

as noted after (3-4). Thus T̂+(G, V ) is contained in T (G, V ) and so all four sets in
(4-1) are the same. �

In general, the broad method is very easy to apply, while the harder inertial
method can work when the broad method does not.
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4C. Calculations with permutation characters. Let φ1, . . . , φr be permutation
characters spanning V . Then we are exactly in the situation described in the
introduction, and in this subsection we describe how one approaches the tame-wild
principle in this particular coordinatization. We incorporate the φi into our notation
in straightforward ways, for example by writing (G, φ1, . . . , φr ) rather than (G, V ).

Throughout this subsection, we illustrate the generalities by returning to the intro-
ductory example with G = S5 and V = 〈φ5, φ6〉. The very simple two-dimensional
picture of V in Figure 1 serves as an adequate model for mental images of the
general situation. In particular, we always think of the aV

τ , aL/F,p, aV
I , and âτ as in

the drawn V . We think of our various cones in the drawn V as well. On the other
hand, it is not useful to draw the φi on these pictures. Rather, via the identification
of V with its dual by the inner product, we think of the φi as coordinate functions
on the drawn V .

Conductor vectors. The space V is identified with a subspace of Rr , viewed but
not always written as column vectors, via v 7→ (c1, . . . , cr ) with ci = (v, φi ).
For example, an Artin character aV

L/F,p becomes a vector of conductors as in the
introduction:

cL/F,p = (cp(K1), . . . , cp(Kr )).

The main case is when the φi are linearly independent, so that V is all of Rr . One
can always work in this main case by picking a basis from among the φi .

Various matrices. Our approach to calculations centers on matrices. The r ×G]0

partition matrix P(G, φ1, . . . , φr ) has i-τ entry the cycle type λτ (φi ) of ρi (g),
where ρi is a permutation representation with character φi and g ∈ G represents τ .
Thus,

P(S5, φ5, φ6)=

(
2111 221 311 41 5 32
222 2211 33 411 51 6

)
. (4-2)

Partition matrices are purely group-theoretic objects, but one can use fields in a
standard way to help construct them. For example, the columns from left to right
are the partitions obtained by factoring the pair ( f5(x), f6(x)) from (2-1) and (2-2)
modulo the primes 67, 211, 31, 13, 11, and 7 respectively.

One passes to the tame matrix T (G, φ1, . . . , φr ) by replacing each partition
λτ (φi ) by its conductor cτ (φi )= (aτ , φi )— its degree minus its number of parts.
Thus

T (S5, φ5, φ6)=

(
1 2 2 3 4 3
3 2 4 3 4 5

)
. (4-3)

The broad matrix T̂ (G, φ1, . . . , φr ) consists of what we call preconductors, the
preconductor ĉτ (φi )= (âτ , φi ) being the degree of λτ (φi ) minus its number of ones.
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Thus

T̂ (S5, φ5, φ6)=

(
2 4 3 4 5 5
6 4 6 4 5 6

)
. (4-4)

Inertial matrices T̃ (G, φ1, . . . , φr ) typically have more columns, because columns
are indexed by conjugacy classes of inertial subgroups I . But an entry is just the
formal conductor cI (φi )= (aI , φi ), this being the degree of ρi minus the number
of orbits of ρi (I ), just as in the cyclic case. The cones T+ ⊆ T̃+ ⊆ T̂+ ⊂ Rr are
then generated by the columns of the corresponding matrices T , T̃ , and T̂ .

Inclusions aV
∈ T+(G, V ) in matrix terms. By dropping rows, we can assume that

φ1, . . . , φr span V and so T = T (G, φ1, . . . , φr ) has full rank r , as discussed above.
In general, let c ∈ Rr be a column r -vector. For each r -element subset J ⊆ G]0 for
which the corresponding minor T (J ) is invertible, let u(J ) = (u(J )τ )τ∈J be the
vector T (J )−1c. Then c =

∑
τ∈J u(J )τTτ , with Tτ the τ -th column of T . Then

c is in the tame cone T+ if and only if there exists such a J with u(J )τ ≥ 0 for
all τ ∈ J .

To prove that the tame-wild principle holds for (G, φ1, . . . , φr ) directly, one
would have to show this positivity condition holds for all conductor vectors cL/F,p.
To show it via the inertial method, one has to show that it holds for all formal
conductor vectors cI . To show it holds via the broad method, one has to show that
it holds for all preconductor vectors ĉτ .

Projectivization. In the introductory example, we emphasized taking ratios of
conductors, thereby removing the phenomenon that wild conductors are typically
much larger than tame conductors, but keeping the phenomenon we are interested
in. We can do this in the general case as well, assuming without loss of generality
that φr comes from a faithful permutation representation so that the conductors
cτ (φr ) are strictly positive for all τ ∈ G]0. We projectivize c = (c1, . . . , cr ) to
c′ = (c′1, . . . , c′r−1) with c′i = ci/cr .

Applying this projectivization process to columns gives the projective tame,
inertial, and broad matrices respectively, each notationally indicated by a ′. In our
continuing introductory example, one has, very simply,

T ′(S5, φ5, φ6)=
( 1

3 1 1
2 1 1 3

5

)
, (4-5)

T̂ ′(S5, φ5, φ6)=
( 1

3 1 1
2 1 1 5

6

)
. (4-6)

In general, the τ -columns of T ′(G, φ1, . . . , φr ) and T̂ ′(G, φ1, . . . , φr ) agree if τ
has prime order. Here they disagree only in the last column corresponding to the
composite order 6.

Let T ′
+
(G, φ1, . . . , φr ) be the convex hull of the columns of T ′(G, φ1, . . . , φr )

and define W ′
+
(G, φ1, . . . , φr ), T̃ ′

+
(G, φ1, . . . , φr ) and T̂ ′

+
(G, φ1, . . . , φr ) to be the
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analogous hulls. Then (4-1) has its obvious analog at the level of hulls, and one
can think about the broad method and the inertial method at this level. In the
introductory example, (4-5) and (4-6) say that T ′

+
(S5, φ5, φ6)⊆ T̂ ′

+
(S5, φ5, φ6) is

an equality because both sides are
[1

3 , 1
]
. Thus the tame-wild principle holds for

(S5, φ5, φ6).
The drop in dimension from r to r−1 has a number of advantages. As illustrated

already by (4-5) and (4-6), it renders the r = 2 case extremely concrete. As we will
illustrate in Section 8A, it renders the r = 3 case highly visible. In general, it lets one
determine whether aV is in T ′

+
(G, φ1, . . . , φr ) by computation with (r−1)×(r−1)

minors rather than r × r minors.

4D. Alternative approaches. Our abstract formulation of the tame-wild principle
is designed to be very flexible. For example, say that a vector v ∈ R(G]) is bad if
(aτ , v)≥ 0 for all τ ∈ G]0 but (aL/F,p, v) < 0 for some Artin character aL/F,p. The
bad vectors form a union of cones in R(G]) and the tame-wild principle holds for
(G, V ) if and only if V misses all these cones. In this sense, the one-dimensional V
spanned by bad v are essential cases, but these V are never spanned by permutation
characters.

Sections 5 and 6 are in the universal setting V = R(G]), and we do not use φi

at all. Sections 7 and 8 return to the permutation character setting described in
Section 4C. In general, the systematic study of the tame-wild principle for a fixed
G and varying V would be facilitated by the canonical basis of Q(G]) given by
irreducible rational characters.

5. The universal tame-wild principle holds for U-groups

In Section 5A, we present a diagrammatic way of understanding class sets G].
Making use of this viewpoint, Section 5B gives the canonical expansion of a formal
Artin character aI as a sum of tame characters aτ . Next, Section 5C introduces
the notion of U-group and proves that the universal tame-wild principle holds for
U-groups. However the class of U-groups is quite small, as discussed in Section 5D.

5A. Divisibility posets. For G a finite group, the set G] is naturally a partially
ordered set via the divisibility relation. We draw this divisibility poset in the
standard way with an edge from σ down to τ of vertical length one if σ p

= τ for
some prime p. With notation as in Section 3A, the natural weight d(τ, σ )= [σ ]/[τ ]
plays an important role, and we write it next to the edge whenever it is different
from 1, considering this data as part of the divisibility poset.

The product of the edge weights from any vertex σ down to another τ is path-
independent, being in fact just d(τ, σ )= [σ ]/[τ ]. Define integers uG,σ via∑

τ |σ

d(τ, σ )uG,σ = 1. (5-1)
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Thus uG,τ = 1 for maximal τ , and all the integers uG,τ can be computed by
downwards induction on the divisibility poset G].

PGL2(9)] S]6
8S1

4S0 10N1

2S0

45

3U1

40

2N0
36

5N0

36
1−120

321
4

3

41 421 61

3
4

2−3

15

3−2
20

51
36

22−1
45

33−2
20

222−3

15
1−30

Figure 2. Two divisibility posets G] with uG,τ subscripted on τ ∈ G].

Figure 2 draws the divisibility posets PGL2(9)] and S]6, with each τ subscripted by
its uG,τ . The case PGL2(9) represents the general case PGL2(p f ), with split-torus
classes indexed by nonunital divisors of p f

−1, a unipotent class pU , nonsplit-torus
classes indexed by nonunital divisors of p f

+ 1, and finally the identity class 1.
The case S6 represents the general case Sn , where classes are indexed by partitions
of n, with 1s usually left unprinted.

In general, the largest edge weights on divisibility posets G] tend to be on edges
incident on the identity class. These edges do not play an important role for us and
in the sequel we work instead with the divisibility poset associated to G]0.

5B. Expansion of formal Artin characters. Divisibility posets for inertial groups
I and the associated integers u I,σ are important to us because of the role they play
in the following lemma.

Lemma 5.1. Let G be a finite group, let I be a subgroup, and let i : I ]→ G] be
the induced map. Then the expansion of the formal Artin character aI ∈Q(G])0 in
the basis {aτ }τ∈G]0 can be read off from the divisibility poset I ]0 via the formula

aI =
1
|I |

∑
σ∈I ]0

u I,σ [σ ] σ̄ai(σ ). (5-2)

Before proving the lemma, we explain the roles that various parts of (5-2) play in
the sequel. The positive integer [σ ] σ̄ plays a very passive role: only the positivity of
[σ ] σ̄ is used in the proof of Theorem 5.3; moreover, [σ ] σ̄ factors out in Section 6A
and accordingly does not enter into Section 6B-Section 6E. The factor |I |−1 is
more important: while only its positivity enters into the proof of Theorem 5.3,
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it contributes to the index factor in (6-1) which enters significantly into the rest
of Section 6. The part with the most important role is u I,σ , as it is the possible
negativity of u I,σ that can lead to failures of the tame-wild principle. Our use of
the function i relegates the difference between I and G to the background, but one
should note that for τ ∈ G]0 the actual coefficient of aτ in (5-2) has |i−1(τ )| terms.

Proof. First consider the case I = G. Then both sides of (5-2) are in Q(I ])0. The
left side takes the value aI (τ )=−1 for all τ ∈ I ]0. We thus need to evaluate the
right side on an arbitrary τ ∈ I ]0 and see that it simplifies to −1:

1
|I |

∑
σ∈I ]0

u I,σ [σ ] σ̄aσ (τ )=
1
|I |

∑
τ |σ

u I,σ [σ ] σ̄aσ (τ )

=
1
|I |

∑
τ |σ

u I,σ [σ ] σ̄

(
−
φ(τ̄ )

σ̄

|I |
|Cτ |

)

=−

∑
τ |σ

u I,σ [σ ]
φ(τ̄ )

|Cτ |

= −

∑
τ |σ

u I,σ [σ ]

[τ ]

= −

∑
τ |σ

d(τ, σ )u I,σ =−1.

Here we have used formulas from Section 3A and Section 3B as well as the definition
of d(τ, σ ) and the defining property of the u I,σ from Section 5A. Finally the case
of general G follows, by induction of both sides from I to G. �

5C. Applying the inertial method. Say that a class τ ∈G] is a U-class if it divides
exactly one maximal element σ of G] and d(τ, σ ) = 1. Otherwise, say it is an
N-class. Here U stands for unique and N for nonunique. The following three facts
are immediate from the definition. First, a maximal class τ is always a U-class with
uG,τ = 1. Second, other U-classes τ have uG,τ = 0. Third, a maximal N-class τ
always has uG,τ < 0.

We divide all finite groups into two types, as follows.

Definition 5.2. A finite group is a U-group if every nonidentity element is contained
in exactly one maximal cyclic subgroup. Otherwise it is an N-group.

It is immediate that a group G is a U-group if and only if all classes τ ∈ G]0 are
U-classes. Thus from Figure 2, PGL2(9) is a U-group while S6 is an N-group. It
follows easily from the definition that any subgroup of a U-group is itself a U-group.
Similarly, any quotient of a U-group is a U-group [Suzuki 1950].
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Via (3-4), the chain (3-8) completely collapses to the equality T+(G)= T̂+(G) if
and only if all nonidentity elements in G have prime order. The following theorem
is a subtler version of this idea.

Theorem 5.3. Suppose G is a group such that all inertial subgroups of G are
U-groups. Then one has T+(G) = T̃+(G), and so the tame-wild principle holds
universally for G.

Proof. Let I be an arbitrary inertial subgroup. Since I is assumed to be a U-group,
the associated integers u I,σ are nonnegative for all σ ∈ I ]0. For any τ ∈ G]0,
the terms |I |−1u I,σ [σ ] σ̄ contributing to the coefficient of aτ in Lemma 5.1 are
all nonnegative. Hence the coefficient itself is nonnegative and so aI is in the
tame cone T+(G). Since the aI generate the inertial cone T̃+(G), equality holds in
T+(G)⊆ T̃+(G). �

In particular, the tame-wild principle holds for all U-groups. This is the main
import of Theorem 5.3, as we are not aware of any group satisfying the hypothesis
of Theorem 5.3 which is not itself a U-group.

5D. Classification of U-groups. Given Theorem 5.3, it is of interest to classify
U-groups. This problem has been addressed in the literature, with Kontorovich
[1939; 1940] referring to U-groups as completely decomposable groups, and Suzuki
[1950] calling them groups with a complete partition. We give a summary of the
classification situation here.

The condition to be a U-group is very restrictive, but it is easy to check that it
includes many groups of small order. In particular, the following groups are U-
groups: cyclic groups, dihedral groups, groups of prime exponent, and the Frobenius
groups Fp =C p :C p−1. The last class is particularly important in our context, since
an extension of a p-adic field of degree p has normal closure with Galois group a
subgroup of Fp. If q is a prime power, the linear groups PSL2(q) and PGL2(q) are
U-groups, so that in particular S4 ∼= PGL2(3), S5 ∼= PGL2(5) and A6 ∼= PSL2(9)
are all U-groups. There are more U-groups than those listed here, most of them
being more general types of Frobenius groups.

The following observation is useful in understanding the nature of U-groups. In
two settings, the extreme members of a class of groups are exactly the U-groups
as follows. First, consider abelian p-groups of order pn . Up to isomorphism, they
correspond to partitions of n. The groups which are U-groups are the two extreme
ones (C p)

n and C pn . Second, consider semidirect products Ca :γ Cb with a and b
being relatively prime and γ : Cb→ Aut(Ca). If γ is trivial, then Ca :γ Cb ∼= Cab

is a U-group. If γ is injective, then Ca :γ Cb is again a U-group, being of a nature
similar to Fp above. Again, it is the intermediate cases which are N-groups: if γ is
neither trivial nor injective then nontrivial elements in the kernel of γ are in more
than one maximal cyclic subgroup.



The tame-wild principle for discriminant relations 623

6. The universal tame-wild principle usually fails for N-groups

In this section, we study the universal tame-wild principle for N-groups. In
Section 6A, we give the canonical expansion of a general Artin character aL/F,p

in terms of tame characters aτ . In Section 6B, we list out N-groups of order pqr
where p, q, and r are not necessarily distinct primes, finding six series. We show
in Section 6C that the universal tame-wild principle generally fails for groups in
the first four series. In Section 6D we take a close look at the quaternion group
Q8, which is the first group of the fifth series, finding failure again. On the other
hand we show in Section 6E that the universal tame-wild principle holds for all
groups in the sixth series. Finally, Section 6F explains how the negative results for
small groups support the principle that most N-groups do not satisfy the universal
tame-wild principle.

6A. Expansion of general Artin characters. Let aL/F,p ∈ Q(G])0 be an Artin
character coming from an inertial subgroup I ⊆ G. Equation (3-7) expands aL/F,p

in terms of formal Artin characters aI si and Lemma 5.1 in turn expands each aI si

in terms of tame characters. Putting these two expansions together and replacing
the divisibility posets (I si )]0 with their images in I ]0 gives the following lemma.

Lemma 6.1. Let G be a group, and let aL/F,p ∈Q(G])0 be an Artin character with
inertia group I = I s1 ⊃ I s2 ⊃ · · · as in (3-6). Let i : I ]→ G] be the induced map.
Then one has the expansion

aL/F,p =
1
|I |

∑
σ∈I ]0

wL/F,p,σ [σ ] σ̄ai(σ ),

where

wL/F,p,σ =

k∑
i=1

(si − si−1)[I : I si ]u I si ,σ . (6-1)

While the lemma applies to the general situation, our focus in Sections 6B–6E is
on the case I =G. Here aL/F,p is in the tame cone T+(G) if and only ifwL/F,p,τ ≥ 0
for all τ ∈ G]0.

6B. Inertial N-groups of order pqr. Groups of order p or pq are U-groups. In
the complete list of inertial groups of order pqr , in a rough sense about half of
them are U-groups and the other half N-groups. For example, for a given prime p,
there are two nonabelian groups of order p3, the extra-special groups often denoted
p1+2
+ and p1+2

− . For p odd, p1+2
+ has exponent p and so is a U-group, while p1+2

−

is an N-group. Similarly the dihedral group D4 = 21+2
+ is a U-group while the

quaternion group Q8 = 21+2
− is an N-group.
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In fact, it is easy to see that the inertial N-groups are as follows. Now p, q , and
r are required to be different primes, with q | p− 1 whenever Fp,q = C p : Cq is
present:

1: The product Fp,q ×Cr .

2: The semidirect product C p : Cq2 ∼= Fp,q ∗Cq Cq2 .

3: The abelian group C pq ×C p ∼= C p×C p×Cq .

4: The product Fp,q ×C p.

5: The extra-special group p1+2
− .

6: The abelian group C p2 ×C p.

These groups I are all p-inertial groups, but not inertial groups for any other
primes. Moreover, since all proper subgroups are U-groups, the universal tame-
wild principle fails for I if and only if there exists a totally ramified local Galois
extension L/F having Gal(L/F)∼= I with associated Artin character aL/F,p having
a negative coefficient wL/F,p,τ . Furthermore, in each case it turns out that there
is exactly one N-class τ ∈ I ]0. Only for this class τ could wL/F,p,τ possibly be
negative, and this N-class is boxed in the displayed divisibility posets below.

In general, let I be a p-inertial group. Then it is known that there indeed exists a
totally ramified Galois extension of p-adic fields L/F with Gal(L/F) isomorphic
to I . This fact for our particular I is essential to our proofs that the universal
tame-wild principle does not hold. However it is easy to prove this fact for all the
above I by direct exhibition of L/F . We will go into this level of detail only for the
groups in Series 4 and Q8 from Series 5, as here we need particular fields satisfying
conditions on their wild ramification.

6C. Negative results for four series. Our first result concerns Series 1-4 and is
negative:

Theorem 6.2. F3,2×C3 ∼= S3×C3 satisfies the universal tame-wild principle, but
otherwise the groups Fp,q ×Cr , C p : Cq2 , C pq ×C p, and Fp,q ×C p, do not.

Proof. In the divisibility posets below, the wild classes, meaning the classes of
p-power order, are put in boldface for further emphasis. For the first three series,
the unique N-class τ has prime-to-p order and so we do not need to enter into an
examination of wild slopes. In Series 4, τ has order p and bounds on wild slopes
lead to the exception.

1. For the group I = Fp,q ×Cr , power-conjugacy classes are determined by their
orders, and the divisibility poset I ]0 is
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pr qr

p

p r q

Equation (6-1) becomes wr = u I,r = −p < 0. So by the existence of totally
ramified I -extensions as discussed in the previous subsection, the universal tame-
wild principle does not hold for I = Fp,q ×Cr .

2. The group I = C p : Cq2 behaves very similarly. Again power-conjugacy classes
are determined by their orders:

pq q2

p

p q

The key quantity wq = u I,q = −p is again negative, so the universal tame-wild
principle fails for C p : Cq2 .

3. The group I = C2
p ×Cq has a more complicated divisibility poset I ]0 but the

behavior is otherwise similar. The classes of order p and the classes of order pq
have the structure of projective lines over Fp in bijection with one another:

p0q · · · pi q · · · p∞q

p0 · · · pi · · · p∞ q

Once again wq = u I,q = −p and so the universal tame-wild principle fails for
C2

p×Cq .

4. For I = Fp,q ×C p the divisibility poset I ]0 is disconnected:

p∞q

p

p0 · · · pi · · · p∞ q

Here p0 and q lie in the factor Fp,q while p∞ lies in the factor C p. The first term
in (6-1) is u I,p∞ = 1− p. However, now we must take into account how wild
ramification contributes to the remaining terms. Let s > 1 be the slope associated
to Fp,q and let c > 1 be the slope associated to C p. Since C p is abelian, c must be
integral and hence c ≥ 2. On the other hand, s must have exact denominator q . Let
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m = min(c, s), so that I m
= C2

p is the wild inertia group and I max(c,s) ∼= C p is a
higher inertia group. If c> s then (I c)]0 = {p∞}, while if s > c then (I s)]0 = {p0}.
Equation (6-1) becomes

wp∞ =

{
(1− p)+ q(s− 1)+ qp(c− s) if c > s,
(1− p)+ q(c− 1) if s > c.

For (p, q)= (3, 2), the general formula simplifies to

w3∞ =

{
6c− 4s− 4 if c > s,
2c− 4 if s > c.

Thus, using c ≥ 2, one has w3∞ ≥ 0 and so the universal tame-wild principle holds
for F3,2×C3.

There are many ways to produce an explicit instance with wp∞ < 0 for the
remaining (p, q). We will present one in the setting s > c = 2 in which case
wp∞ = 1+ q − p is indeed negative. To get an Fp,q extension, start with x p

− p,
which gives a totally ramified Fp,p−1 extension of Qp with wild slope best written
in the form 1+ p/(p− 1). Write e = (p− 1)/q and extend the ground field from
Qp to Fe = Qp[π ]/(π

e
− p). Then x p

− p has Galois group Fp,q over Fe, with
wild slope 1+ ep/(p − 1), as tame base-change always scales slopes this way.
But now x p

−πx p−1
+π has wild slope 2 and, after perhaps replacing Fe by an

unramified extension F , Galois group C p [Amano 1971]. The splitting field of
(x p
− p)(x p

− πx p−1
+ π) gives the desired extension L/F , showing that the

universal tame-wild principle does not hold for Fp,q ×C p. �

6D. Negative result for Q8. The fifth series, consisting of groups of the form p1+2
− ,

is the most complicated. Here we treat only 21+2
− = Q8, getting a negative result.

Proposition 6.3. The universal tame-wild principle fails for the quaternion group.

Proof. The divisibility poset Q]0
8 , with unique N-class boxed as always, is

4i 4 j 4k .

2

The generic case has three distinct slopes. We seek only counterexamples and so we
focus on the special case with two slopes s1< s2, with s1 occurring with multiplicity
two. The key quantity (6-1) here becomes w2 = −2s1 + 4(s2 − s1) = 4s2 − 6s1.
Thus one gets a counterexample to the universal tame-wild principle if and only if
s2 < 1.5s1.

The table of octic 2-adic fields [Jones and Roberts 2008] available from the
website of [Jones and Roberts 2006] then give four types of counterexamples in this
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context, after tame base-change from Q2 to its Galois extension F with ramification
index t and residual field degree u:

# c slope content I D s1 s2

2 10 [1.3, 1.3, 1.5]23 SL2(3) GL2(3) 2 2.5
2 16 [2, 2, 2.5]2 Q8 Q̂8 2 2.5
4 16 [2, 2, 2.5]4 Q8 8T17 2 2.5
8 22 [2.6, 2.6, 3.5]23 SL2(3) GL2(3) 6 8.5

(6-2)

Here in the first and last cases, we use the general conversion from slope content
[. . . σi . . . ]

u
t over Q2 to slope content [. . . si . . . ]

1
1 over F given by si = 1+ t (σi−1).

A full treatment of the range of possible counterexamples could have Proposition 4.4
of [Fontaine 1971] as its starting point. �

Our counterexamples in Section 7D and Section 8B will be built from one of
the two fields with slope content [2, 2, 2.5]2. A point to note here is that Q2 does
have totally ramified quaternionic extensions, in fact four of them, all with slope
content [2, 3, 4] [Jones and Roberts 2008]. However, these extensions do not give
counterexamples to the universal tame-wild principle for Q8. The fact that the first
local counterexamples come from Q̂8 = 8T8 extensions of Q2 plays a prominent
role in our later global counterexamples.

6E. Positive results for C p2 × C p. Here we prove that the N-groups in Series 6
always satisfy the universal tame-wild principle. Unlike most of our previous
positive results, but like the exception S3×C3 of Section 6C, this result is not purely
group-theoretic. Rather it depends on a close analysis of the possibilities for wild
slopes. Said in a different way, the situation for these I is T+(I )=W+(I )⊂ T̃+(I ),
so that the universal tame-wild principle holds, even though it is not provable by
the inertial method.

Theorem 6.4. The groups C p2 ×C p satisfy the universal tame-wild principle.

Proof. Let K p2/F be a cyclic extension of degree p2 and slopes s1 < s2. Let K p/F
be a cyclic extension of degree p and slope t . Switch to the indexing scheme of
[Serre 1979] via si = 1+vi and t = 1+c, so as to better align also with our reference
[Fontaine 1971] and in particular make (6-5) below as simple as possible. There
are three possibilities for how the slope filtration goes through the group:

c < v1 < v2 v1 ≤ c < v2 v1 < v2 ≤ c

p2

p

p0 p1 · · · p∞,

p2

p

p0 p1 · · · p∞,

p2

p

p0 p1 · · · p∞.
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Here, assuming all inequalities are strict, classes in the higher inertia group of
order p2 are put in bold and the classes in the higher inertia group of order p are
furthermore underlined. If one has equality, the formulas below still apply.

As in the previous two subsections, only one wτ from Lemma 6.1 could possibly
be negative, and in this case it is w = wp0 . Equation (6-1) becomes

w =


(c+ 1)(1− p)+ (v2− v1)p2 if c < v1 < v2,
(v1+ 1)(1− p)+ (c− v1)p+ (v2− c)p2 if v1 ≤ c < v2,
(v1+ 1)(1− p)+ (v2− v1)p if v1 < v2 ≤ c.

(6-3)

Let e be the ramification index of F/Q2 and put B = e/(p− 1). From the known
behavior of cyclic degree p extensions, one has

1≤ c ≤ pB and 1≤ v1 ≤ pB. (6-4)

There are two regimes to consider: the geometric regime, where v1 < B, and the
arithmetic regime, where v1 ≥ B. One has

v2 ≥ pv1 in the geometric regime, (6-5)

v2 = v1+ e in the arithmetic regime. (6-6)

These last two facts and other related information dating back to [Maus 1965] are
conveniently available in [Fontaine 1971, Proposition 4.3].

The quantity e does not enter into the geometric inequality (6-5), and since we
need to deal with arbitrary e the upper bounds in (6-4) are not available to us. This
fact is the source of our terminology because the geometric case is now identified
with the case where p-adic fields have been replaced by Fp f ((t)), which have e=∞.
The worst case is always when v2= pv1 and, in the second case, when c takes on its
limiting bound v2 as well. Substituting these worst cases into (6-3) and simplifying,
one has

w ≥


(v1+ 1)(1− p)+ (pv1− v1)p2 if c < v1 < v2,
(v1+ 1)(1− p)+ (pv1− v1)p if v1 ≤ c < v2,
(v1+ 1)(1− p)+ (pv1− v1)p if v1 < v2 ≤ c.

With m equal to p2, p, p in the three cases, one further simplifies by

w ≥ (p− 1)(−v1− 1+ v1m)= (p− 1)((m− 1)v1− 1)≥ 0.

Thus, in the geometric regime, w is never negative.
In the arithmetic regime the substitute (6-6) for (6-5) is simpler in that it is an

equality, but now the upper bounds in (6-4) will need to be used. The substitution
v2= v1+e= v1+B(p−1) into (6-3) makes w factor, and we divide by the positive
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quantity p− 1:

w

p− 1
=


Bp2
− 1− c if c < v1 < v1+ e,

Bp2
− v1− p(c− v1)− 1 if v1 ≤ c < v1+ e,

Bp− v1− 1 if v1 < v1+ e ≤ c.

Using the bounds (6-4) one has

w

p− 1
≥


Bp2
− 1− Bp = Bp(p− 1)− 1= ep− 1≥ 1,

Bp2
− Bp− p(e− 1)− 1= ep− p(e− 1)− 1= p− 1≥ 1,

Bp− v1− 1≤ Bp− (Bp− e)− 1= e− 1≥ 0.

in the three cases. Thus here too w ≥ 0. �

6F. From smaller to larger groups. Our final topic in this section is to promote
our counterexamples from the small groups I to larger groups G that contain them.
In general, let I ⊆ G be an inclusion of groups and consider the induced map
i : I ]→ G]. Then the lack of injectivity of i can obstruct the promotion process.
For example, consider Series 4 groups I = Fp,q ×C p and their product embedding
into G = Sp2 . Then all p+ 1 classes in I ] of order p go to the single class in S]p2

indexed by the partition p p
= p · · · p. To get the coefficient of ap p of the pushed-

forward formal Artin conductor aI ∈Q(S]p2)
0 one has to add the contributions of

the fiber, as in Lemma 5.1. There are p contributions of 1/pq and one contribution
of (2− p)/pq for a total of 2/pq. Equation (6-1) says that wild ramification can
only increase this 2/pq to larger positive numbers, and so all pushed-forward Artin
characters aL/F,p from I are in the tame cone T+(Sp2).

For Series 1–3 and also for Q8, this complication does not arise because the
unique N-class in I ]0 is the only class of its order. Hence the promotion process
works:

Corollary 6.5. Let G be a group containing a subgroup I of the form Fp,q ×Cr ,
C p :Cq2 , C pq×C p or Q8. Then G does not satisfy the universal tame-wild principle.

Since there are so many possibilities for I , the hypothesis holds for many G.
Moreover the fact that it holds for a given G is often easily verified. For example,
when studying G one commonly has a list of maximal subgroups H , and one can
often easily see that at least one I is in at least one of the H . As another example,
the presence of C pq ×C p can often be read off from the divisibility poset: suppose
one has a class τ ∈ G] of order τ̄ = pq not dividing a class of order p2q but such
that p2 divides the numerator of |G|/|Cτ |. Then any representative g of τ lies in a
group of type C pq ×C p. This criterion is satisfied particularly often for p = 2 and
some odd prime q .
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7. Comparing an algebra with its splitting field

In this section we return to a very concrete setting, considering types (G, φi , φr )

where φi comes from a faithful permutation representation i : G ⊆ Sn and φr is the
regular character. Thus we are considering algebras K = Ki of a specified Galois
type compared with their splitting fields K gal

= Kr .
In Section 7A we introduce explicit notation for comparing two algebras and in

Section 7B we explain how it is sometimes best to highlight root discriminants d
rather than discriminants D. The tame-wild principle in the notation set up then
takes the following form:

d
α(G,φi ,φr )

K gal/F | dK/F | d
ω(G,φi ,φr )

K gal/F .

We observe in Section 7C that the right divisibility often trivially holds. In
Section 7D, we give four examples where it holds nontrivially and one where
it fails to hold. In Section 7E we show that the left divisibility always holds, and
discuss applications to number field tabulation.

7A. Generalities. The case r = 2 of just two algebras deserves special attention
for at least three reasons. First, hulls T ′

+
(G, φ1, φ2)⊂ R1 are intervals while hulls

for larger r can have up to |G]0
| vertices. Second, the inequality for each face of any

T ′
+
(G, φ1, . . . , φr ) also comes from some T ′

+
(G, ψ1, ψ2) with the new characters

ψ j being certain sums of the old characters φi . Third, it is the case which applies
most directly to number field tabulation.

To present results coming from r = 2 as explicitly as possible, we let α =
α(G, φ1, φ2) and ω = ω(G, φ1, φ2) be the left and right endpoints of the interval
T ′
+
(G, φ1, φ2). The tame-wild principle says that all local exponents satisfy

αcp(K2)≤ cp(K1)≤ ωcp(K2). (7-1)

In this r = 2 setting, the tame-wild principle breaks cleanly into two parts: the left
and right tame-wild principles respectively say that the left and right inequalities in
(7-1) always hold. Similarly, one has the perhaps larger inertial interval [α̃, ω̃] and
the perhaps even larger broad interval [α̂, ω̂].

To transfer the additive inequalities (7-1) into the multiplicative language of
divisibility, we make use of the following formalism. Note that the torsion-free
group I of fractional ideals of a local or global number field F embeds into its
tensor product over Z with Q, a group we write as IQ to account for the fact that
I is written multiplicatively. In IQ, as our notation indicates, general rational
exponents on ideals are allowed. Then (7-1) corresponds to

Dα
K2/F |DK1/F |D

ω
K2/F , (7-2)
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which makes sense for both local and global number fields. In this formalism, the
relations of the introductory example take the form D

1/3
K6/F |DK5/F |DK6/F .

7B. Mean-root normalization and the comparison interval. It is sometimes in-
sightful to switch to a slightly different normalization. We call this normalization
mean-root normalization, with “mean” capturing how additive quantities are renor-
malized and “root” capturing how multiplicative quantities are renormalized.

If K/F has degree n and discriminant DK/F then its root discriminant is by
definition dK/F =D

1/n
K/F . To make this shift in our formalism, we simply replace

all permutation characters φi by the scaled-down quantities φi = φi/φi (1). One has
mean tame conductors cτ (φi )= (aτ , φi ) as well as their analogs cI (φi )= (aI , φi )

and ĉτ (φi )= (âτ , φi ). We always indicate this alternative convention by underlining.
Thus the mean-root normalized tame hull for two characters indexed by dimension
is T ′

+
(G, φn, φm) = [α, ω] where α = mα/n and ω = mω/n. The divisibility

relation (7-2) becomes dαKm/F | dKn/F | d
ω

Km/F .
The comparison interval [α, ω] just introduced supports an intuitive understand-

ing of how ramification in Kn/F and Km/F relate to each other. Suppose, for
example, that Km/Kn/F is a tower of fields so that one has the standard divisibility
relation

dKn/F | dKm/F . (7-3)

Then, assuming Km/F is actually ramified, the ratio

log |dKn/F |

log |dKm/F |
∈ [0, 1]

can be understood as the fraction of ramification in Km/F which is seen already
in Kn/F . If the corresponding tame-wild principle holds, then this quantity is
guaranteed to be in [α, ω].

The mean-root normalization introduces a sense of absolute scale, with the
number one playing a prominent role, as illustrated by the preceding paragraph
and the next three subsections. Assuming φn − φm is not a constant, one always
has strict inequality α < ω. The failure of resolvent constructions from (G, φn)-
fields to (G, φm)-fields to preserve ordering by absolute discriminants is, roughly
speaking, measured by the length of [α, ω]. For φn and φm coming from faithful
transitive permutation representations, a very common situation is α ≤ 1≤ ω. This
tendency gets stronger as n and m increase to |G|. For example, for (A5, φ20, φ30)

the partition matrix is (
210 3612 54

21412 310 56

)
,

and the comparison interval works out to
[ 9

10 ,
15
14

]
≈ [0.90, 1.07].
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7C. The right tame-wild principle often holds for (G, φi, φr). Applying (7-3) in
our setting gives

dK/F | dK gal/F (7-4)

when K is a field. This relation holds also when K is an algebra, as can be seen by
expressing K as a product of fields and comparing each factor to the field K gal.

The critical quantity is simply expressed as

ω(G, φi , φr )= max
τ∈G]0

cτ (φi )

cτ (φr )
. (7-5)

The denominator depends only on the order τ̄ of τ via cτ (φr )= (τ̄ − 1)/τ̄ . For the
more complicated numerator, one has cτ (φi )≤ (τ̄ − 1)/τ̄ , with equality if and only
if the partition λτ (φi ) has the form τ̄ n/τ̄

= τ̄ . . . τ̄ . A permutation is semiregular if
all cycles have the same length. Therefore ω(G, φr , φi )≤ 1, with equality if and
only if G contains a nonidentity element which is semiregular. Summarizing:

Proposition 7.1. Let G ⊆ Sn be a permutation group containing a nonidentity
semiregular element, φi the given permutation character, and φr the regular char-
acter. Then the right tame-wild principle holds for (G, φi , φr ) with

ω(G, φi , φr )= 1.

However, this principle is nothing more than the classical statement that for any
(K , K gal) of type (G, φi , φr ), one has dK/F | dK gal/F .

7D. Elusive groups. In the global setting, we are mainly interested in the case
when K is a field and thus G is transitive. A transitive permutation group which does
not contain a nonidentity semiregular element is called an elusive group [Cameron
et al. 2002]. So Proposition 7.1 is the best statement for nonelusive transitive groups,
but the situation needs to be investigated further for elusive groups.

Elusive groups are aptly named in that they are relatively rare. The smallest n
for which Sn contains an elusive group is n = 12. There are five elusive groups in
S12 up to permutation equivalence, listed in Table 1, all subgroups of the Mathieu
group M11 in its transitive degree twelve realization 12T272. Here and in the sequel
we use the T-notation for transitive permutation groups introduced in [Conway et al.
1998] and available online in several places, including [LMFDB 2013].

The following proposition treats these five groups.

Proposition 7.2. The right tame-wild principle for (G, φi , φr ) holds for the elusive
groups 12T46, 12T84, 12T181, and 12T272 with ω(G, φi , φr ) =

20
21 . Thus the

strengthening dK/F | d
20/21
K gal/F of (7-5) holds for these groups. For 12T47, one has

ω(12T47, φi , φr )=
8
9 . Extensions (Ki , Kr ) from (7-6) give an counterexample to

the tame-wild principle over Q(
√
−3 ), but there is no counterexample over Q.
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12T46 ∼= C2
3 : Q8

√ √ √ √

12T47 ∼= M9
√ √ √

12T84 ∼= C2
3 : Q̂8

√ √ √ √ √

12T181∼= M10
√ √ √ √ √

12T272∼= M11
√ √ √ √ √ √ √

τ 2A 3A 4A 5A 6A 8A 11A Q8 I
λτ (φi ) 2414 3313 4222 5212 6321 84 (11)1 84
cτ (φi ) 4 6 8 8 8 10 10 10 ≤ 10
cτ (φr ) 1/2 2/3 3/4 4/5 5/6 7/8 10/11 7/8 (|I |−1)/|I |
c′τ 2/3 3/4 8/9 5/6 4/5 20/21 11/12 20/21 ≤ 20/21

Table 1. Information used in the proof of Proposition 7.2.

Proof. The part below the line of Table 1 supports applying the broad and inertial
methods for 12T272∼= M11. Thus the line labeled τ lists out the seven elements
of 12T272]0. The next two lines gives the corresponding dodecic partitions λτ (φi )

and conductors cτ (φi )= 12cτ (φi ) respectively. The next lines give

cτ (φr )=
cτ (φr )

|M11|
and c′τ =

cτ (φi )

cτ (φr )
.

Thus the comparison interval is [α, ω] =
[ 2

3 ,
20
21

]
.

One inertial subgroup of 12T272 is Q8, which has orbit partition 84. As indicated
in the second-to-last column of Table 1, its associated quantity is c′Q8

=
20
21 , which

is the right endpoint of
[ 2

3 ,
20
21

]
. In general, the difficulty with the inertial method is

that there can be many inertial N-subgroups I to inspect. However here we can treat
them all at once as follows. Since none of the elusive groups from the complete list
are themselves inertial groups, I must act intransitively and so cI (φi )≤ 10. Also
cI (φr )= (|I | − 1)/|I | ≥ 7

8 , since N-groups have order at least 8. So, as indicated
by the table, c′I ≤

20
21 . Thus our initial case Q8 was in fact the worst case, and the

right tame-wild principle holds for (M11, φi , φr ).
The part of the table above the line gives the partitions which arise for all the

G, as a subset of those that we have listed for 11T272. The smaller groups 12T46,
12T84, and 12T181 still have elements of cycle type 84, and so the same argument
goes through for them, proving the tame-wild principle for (G, φi , φr ) in these
cases. Note that our uniform treatment of all the G uses that cτ (φr ) is independent
of G; in contrast, the unnormalized quantity cτ (φr ) depends on G.

A counterexample seems likely for G = 12T47 because it contains Q8 and its
comparison interval is only [α, ω] =

[ 2
3 ,

8
9

]
, with 8

9 being considerably less than 20
21 .

However, as discussed in reference to (6-2), there are no quaternionic extensions
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of Q2 giving counterexamples to the universal tame-wild principle for Q8. Other
candidate I do not work either, and we are forced to leave Q as a ground field.

Our counterexample comes from fields Kn = Q[x]/ fn(x) with discriminants
Dn ∈ Z and Galois groups Gn = Gal(K gal

n /Q) as follows:

n fn(x) Dn Gn

8 x8
+ 6x4

− 3 −21637 Q̂8

9 x9
− 3x8

+ 18x5
+ 18x4

− 27x + 9 −216315 9T19
12 x12

− 6x10
− 4x9

+ 12x7
− 36x5

+ 30x4
+ 8x3

− 8 222318 12T84

(7-6)

The overgroup 12T84 ∼= C2
3 : Q̂8 ⊃ 12T47 was chosen because it contains not just

Q8 but also Q̂8. The nonic group 9T19 is a lower degree realization of 12T84,
where the isomorphism with C2

3 : Q̂8 is naturally realized. The field K8 was chosen
as a strong candidate from which to build a counterexample, because Gal(K gal

8 /Q)

is its own decomposition group with slope content [2, 2, 2.5]2 as in (6-2). The field
K9 was extracted from the database [Jones and Roberts≥ 2014] as a 9T19 field with
K8 as a resolvent, and then K12 was obtained from K9 by resolvent calculations.

The splitting field K gal
12 contains Q(

√
−3 ) with Gal(K gal

12 /Q(
√
−3 ))= 12T47

by construction. The root discriminant of K gal
12 is 223127/72, as computed by using

the website of [Jones and Roberts 2006] to analyze ramification in K9/Q. Here
the exponent 2 can be confirmed from a standard computation associated with
the slope content [2, 2, 2.5]2, namely 2

8 +
2
4 +

2.5
2 = 2. On the other hand K12

has root discriminant 222/12318/12. The quotient 22
12/2 =

11
12 is to the right of the

root-normalized tame hull [α, ω] =
[ 2

3 ,
8
9

]
, giving a counterexample to the right

tame-wild principle for (12T47, φi , φr ) over Q(
√
−3 ). �

7E. The left tame-wild principle always holds for (G, φi, φr). The following the-
orem shows that an important part of the tame-wild principle holds for all finite
groups G.

Theorem 7.3. Let G ⊆ Sn be any permutation group, φi the given permutation
character, and φr the regular character. Let F(G) be the maximal number of fixed
points of a nonidentity element of G. Then the left tame-wild principle holds for
(G, φi , φr ) with

α(G, φi , φr )= 1− F(G)
n

.

Thus for any (K , K gal) of type (G, φi , φr ), one has d1−F(G)/n
K gal/F | dK/F .

Proof. We apply the broad method. Let τ be an arbitrary element of G]0 and
call its order t . Consider the corresponding column

(
λ
3

)
of the partition matrix

P(G, φi , φr ). Then λ =
∏t

k=1 kmk is some partition of n and 3 = t |G|/t is the
corresponding partition of |G|.
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The projective matrices T ′(G, φi , φr ) and T̂ ′(G, φi , φr ) have just one row each.
The entries in the τ column are respectively c(λ)/c(3) and ĉ(λ)/ĉ(3). Their
difference is positive:

ĉ(λ)
ĉ(3)

−
c(λ)
c(3)

=

∑t
k=2 mkk
|G|

−

∑t
k=2 mk(k− 1)
|G|(t − 1)/t

=
1
|G|

t∑
k=2

mk
k(t − 1)

t − 1
−

1
|G|

t∑
k=2

mk
t (k− 1)

t − 1

=
1
|G|

t∑
k=2

mk
(kt − k)− (kt − t)

t − 1

=
1
|G|

t∑
k=2

mk
t − k
t − 1

≥ 0.

Thus ĉ(λ)/ĉ(3)≥ c(λ)/c(3), and so certainly all the ĉ(λ)/ĉ(3) are at least

α(G, φi , φr )= min
τ∈G]0

cτ (λ)
cτ (3)

.

Thus the left tame-wild principle holds for (G, φi , φr ), and moreover we can
compute α(G, φi , φr ) using ĉτ rather than cτ , giving

α(G, φi , φr )= min
τ∈G]0

ĉτ (λ)
ĉτ (3)

= min
τ∈G]0

n−m1

|G|
=

n−F(G)
|G|

.

Switching to the mean-root normalization gives α(G, φi , φr )= 1−F(G)/n. �

Number field tabulation. For certain solvable transitive groups G ⊂ Sn , the tech-
niques of [Jones and Wallington 2012] let one compute all degree n fields K of
type G where |dK gal/Q| is at most some constant β. Then the theorem just proved
can be applied through its corollary |d1−F(G)/n

K gal/Q
| ≤ |dK/Q| to obtain all K with

|dK/Q| at most B = β1−F(G)/n . This computation is carried out in [Jones 2013]
for the primitive nonic groups 9T9, 9T14, 9T15, 9T16, 9T23, and 9T27 to obtain
the corresponding nonic fields with smallest absolute discriminant. This particular
application served as the catalyst for the present paper.

8. Examples and counterexamples

The positive and negative results of the previous sections give one a good idea
of the extent to which the tame-wild principle holds and how it can be applied.
We now refine this picture, by considering various (G, φ1, . . . , φr ) of interest and
determining whether the tame-wild principle holds. In Section 8A, we give examples
illustrating the broad method and the inertial method. In Section 8B, we conclude
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by arguing that counterexamples to the tame-wild principle from pairs (K1, K2)/Q

of number fields are not easily found, but present one such counterexample with
Galois group 12T112 of order 192.

8A. The broad and inertial methods. We illustrate the two methods of Section 4B
with positive results for three N-groups.

The broad method for (Aff3(F2), φ7, φ8, φ8a, φ8b). The group Aff3(F2) provides a
simple illustration of the broad method in the setting r=4. It has five nontrivial small
permutation representations ρ7a, ρ7b, ρ8, ρ8a, ρ8b, with images the permutation
groups 7T5, 7T5, 8T37, 8T48, 8T48. The first three representations are through the
quotient GL3(F2)∼= PGL2(F7) while the last two are faithful. The representations
ρ7a and ρ7b share a common character φ7. They are thus arithmetically equivalent
and we call them identical twins. The representations ρ8a and ρ8b have different
characters φ8a and φ8b and so we call them fraternal twins. The four characters φ7,
φ8, φ8a , and φ8b are linearly independent.

Figure 3 first presents the partition matrix P = P(Aff3(F2), φ7, φ8, φ8a, φ8b) and
the broad and tame matrices derived from it. For visualization purposes, it then
drops consideration of φ8. After this projection, it plots the columns of T̂ ′ as +s and
those of T ′ as •s. Since the +s are in the hull T ′

+
of the •s, the tame-wild principle

holds for (Aff3(F2), φ7, φ8a, φ8b). Working more algebraically, as described in
Section 4C, one can verify the analogous convexity assertion in the presence of φ8,
giving the first sentence of the following result.

Proposition 8.1. The tame-wild principle holds for (Aff3(F2), φ7, φ8, φ8a, φ8b). In
particular, to find all 8T48 extensions with |DK8a/F | ≤ B, one need look only at
7T5 extensions with |DK7/F | ≤ B and select from among the octic resolvents of
their 14T34 quadratic overfields.

The second sentence comes from an understanding of the algebraic meaning of
Figure 3. Associate variables u, a, and b to φ7, φ8a , and φ8b respectively. The four
sides of the trapezoid T ′

+
(Aff3(F2), φ7, φ8a, φ8b) in the drawn (u/b, a/b) plane

correspond to the four faces of the cone T+(Aff3(F2), φ7, φ8a, φ8b) in (u, a, b)-
space. These four faces correspond to the four inequalities on local exponents on
the left and they translate into divisibility relations among either local or global
discriminants on the right:

u ≤ a ≤ u+ b, DK7/F |DK8a/F |DK7/FDK8b/F ,

u ≤ b ≤ u+ a, DK7/F |DK8b/F |DK7/FDK8a/F .

For tabulations of all extensions K8a/F with |DK8a/F | at most some bound B, the
procedure referred to by the proposition is to look for all K7/F with |DK7/F | ≤ B,
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τ 2A 2B 2C 3A 4A 4B 4C 6A 7A

17 22111 22111 331 22111 421 421 331 7
P 18 2222 2222 3311 2222 44 44 3311 71

2222 221111 2222 3311 44 4211 44 62 71
2222 2222 221111 3311 44 44 4211 62 71

0 4 4 6 4 6 6 6 7
T̂ 0 8 8 6 8 8 8 6 7
+ 8 4 8 6 8 6 8 8 7

8 8 4 6 8 8 6 8 7

0 2 2 4 2 4 4 4 6
T 0 4 4 4 4 6 6 4 6
• 4 2 4 4 6 4 6 6 6

4 4 2 4 6 6 4 6 6

++ +

+

+

+

+

+

+

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2A 4A 6A
3A

7A

2B

4B

4C

2C

Figure 3. Top: The partition matrix, broad matrix, and tame
matrix for (Aff3(F2), φ7, φ8, φ8a, φ8b). Bottom: the broad hull
and tame hulls coinciding after removing φ8 from consideration,
proving the tame-wild principle for (Aff3(F2), φ7, φ8a, φ8b).

take suitable square roots to pass from 7T5 fields to 14T34 fields, and then use
resolvents to obtain the desired 8T48 fields.

The inertial method for (S6, φ6a, φ6b, φ10). The group S6 has three faithful permuta-
tion representations of degree at most ten: two sextic ones ρ6a and ρ6b interchanged
by the outer automorphism of S6, and a decic one ρ10 coming from the exceptional
isomorphism S6 ∼= PSL2(F9).Gal(F9/F3)= 10T32⊂ S10.
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2A 2B 2C 3A 3B 4A 4B 5A 6A 6B

P 222 214 2211 33 3111 42 411 51 6 321
214 222 2211 3111 33 42 411 51 321 6
2314 2314 2412 3331 3331 4411 442 55 631 631

T̂ 6 2 4 6 3 6 4 5 6 5
+ 2 6 4 3 6 6 4 5 5 6

6 6 8 9 9 8 10 10 9 9

T 3 1 2 4 2 4 3 4 5 3
• 1 3 2 2 4 4 3 4 3 5

3 3 4 6 6 6 7 8 7 7

+

+

+

+

+

+

+

+

+

+

0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

4B

6A

6B

3A

3B

5A

2C

4A

2A

2B

Figure 4. Top: The partition matrix, broad matrix, and tame
matrix for (S6, φ6a, φ6b, φ10). Bottom: the broad hull strictly con-
taining the tame hull, showing that the broad method does not
suffice to prove the tame-wild principle for (S6, φ6a, φ6b, φ10).

Figure 4 presents our standard analysis of the situation. Since some +s are
outside of the tame hull T ′

+
(S6, φ6a, φ6b, φ10), the broad method does not suffice

for (S6, φ6a, φ6b, φ10). However after projection to the horizontal axis, the +s are
indeed in the convex hull of the •s, so that the broad method establishes the tame-
wild principle for (S6, φ6a, φ10). Also the ratios a/b for the + points (a, b) are
within the interval

[ 1
3 , 3

]
formed by the ratios for the • points, proving the tame-wild

principle for (S6, φ6a, φ6b).
In fact, the tame-wild principle is true for (S6, φ6a, φ6b, φ10) as follows. The

only inertial subgroups not covered by previous considerations are I1 = D4×C2
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and the twin pair (I2, I3)= (A4×C2, 6T6). The orbit partitions in the three cases
are (42, 42, 442), (42, 6, 64), and (6, 42, 64). The associated conductor vectors are
then (4, 4, 7), (4, 5, 8), and (5, 4, 8). Their projectivized versions are (4

7 ,
4
7), (

1
2 ,

5
8),

and ( 5
8 ,

1
2). Since these points are visibly in T ′

+
(S6, φ6a, φ6b, φ10), the tame-wild

principle holds. We have given this argument to illustrate how the inertial method
typically applies. However in this case the inertial groups I2 and I3 could also
have been treated by using the techniques from Section 6, as in fact the universal
tame-wild principle holds for A4×C2.

Summarizing, we have proved the first sentence:

Proposition 8.2. The tame-wild principle holds for (S6, φ6a, φ6b, φ10). In particu-
lar to find all decic S6-extensions with |DK10/F | ≤ B, one need only look at sextic
S6-extensions with |DK6a/F | ≤ B2/3 and select from among their decic resolvents.

For the second sentence, note first that the locations of the rightmost and high-
est points of the tame hull in Figure 4 respectively correspond to the equivalent
statements DK6a/F |DK10/F and DK6b/F |DK10/F . Each of these says that to find
all decics with absolute discriminant ≤ B, it suffices to look at all sextics up to
that bound. A considerable improvement is to see that the long diagonal boundary
between them corresponds to DK6a/FDK6b/F |D

4/3
K10/F which implies the statement.

The broad method for (W(E6),φ27,φ36,φ40a,φ40b,φ45). As we have seen in Section
7E and by the earlier examples of this subsection, the broad method works well in
the setting r = 2. As r increases, the difference between aτ and âτ becomes more
visible, and the broad method often fails even when the tame-wild principle is true,
as we just saw for (S6, φ6a, φ6b, φ10).

A clear illustration of the effectiveness of the broad method and its decay with
increasing r comes from the Weyl group W (E6) of order 51840 = 26345 and
the permutation characters φ27, φ36, φ40a, φ40b, φ45 corresponding to five maximal
subgroups [Conway et al. 1985]. The broad method immediately shows that the
tame-wild principle for (W (E6), φu, φv) holds for all ten possibilities for {u, v}.
From ten pictures like Figures 3 and 4, now quite involved since |W (E6)

]0
| = 24,

the broad method establishes the tame-wild principle in exactly four of the ten cases
(W (E6), φu, φv, φw) as follows.

Proposition 8.3. For {u, v, w}={27, 36, 40a}, {27, 40a, 40b}, {36, 40a, 40b}, and
{36, 40b, 45}, the tame-wild principle holds for (W (E6), φu, φv, φw).

Pursuing this situation further with the inertial method would be harder, because
W (E6) has many 2-inertial and 3-inertial subgroups.

8B. Best counterexamples. Let G be a group for which the universal tame-wild
principle fails. Then there exists a vector v ∈ Q(G]) for which the tame-wild
principle fails for (G, 〈v〉). There are infinitely many solutions to φ1 − φ2 ∈ 〈v〉
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with the φi permutation characters. So any failure of the universal tame-wild
principle can be converted to a failure in the setting (G, φ1, φ2) of the introduction.
By switching φ1 and φ2 if necessary, it can be converted to a failure of the left
tame-wild principle for (G, φ1, φ2).

However these counterexamples are not guaranteed to have immediate bearing on
our applications to tabulating number fields. All that is asserted by the failure of the
principle for (G, φ1, φ2) is that there exists a pair of local extensions (K1, K2)/F
of the given type with

D
α(G,φ1,φ2)
K2/F |DK1/F (8-1)

not holding. More directly relevant would be global counterexamples with the φi

both coming from faithful transitive permutation representations and the extensions
Ki/F full in the sense of each having Galois group Gal(K gal/F) all of G. More
demanding still is to ask for counterexamples of this sort with F =Q. Finally, one
can seek examples for which even the weaker numerical statement

|DK2/Q|
α(G,φ1,φ2) ≤ |DK1/Q| (8-2)

fails. Examples of this explicit nature often do not exist for a given G, and even
when they exist they can be hard to find. The rest of this subsection discusses the
construction of global counterexamples built from one of the two local counterexam-
ples with I = Q8 with slope-content [2, 2, 5

2 ]
2 from (6-2). There are several points

of contact with Section 7D, but here we find counterexamples to (8-1) over Q.

Inadequacy of G = Q̂8 as a source of global counterexamples. The group Q̂8 itself
is not a source of global counterexamples of the sort we seek because it has only
two transitive faithful permutation characters and the tame-wild principle holds for
the corresponding type (Q̂8, φ8, φ16). To illustrate the best that can be done with
this group, take

n fn(x) Dn Gn |Gn|

8 x8
+ 6x4

− 3 −21637 Q̂8 16
4 x4

+ 6x2
− 3 −2633 D4 8

2 x2
+ 3 −3 C2 2

(8-3)

The global and 2-adic Galois groups of f8(x) agree, and so one has this agreement
for the resolvents f4(x) and f2(x) as well. The Galois groups Gn and the field
discriminants Dn are as indicated. The fields Kn =Q[x]/ fn(x) belong to transitive
characters φ8, φ4, and φ2 of Q̂8.

Figure 5 is an analog of Figure 1, but now for (Q̂8, φ8+φ2, φ8+φ4). The algebra
pair (K8× K2, K8× K4)/Q yields the exponent pair (a2, b2)= (16, 22) which is
just outside the tame cone. So this pair of algebras indeed contradicts (8-1), but we
are seeking counterexamples among pairs of fields.
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Figure 5. An analog of the introductory Figure 1 for the type
(Q̂8, φ8+φ2, φ8+φ4). The points are exactly all the possibilities
for exponent pairs (a2, b2) from wild 2-adic ramification over Q2,
and (16, 22) is just outside the tame cone.

Failure of the inertial method for (M12, φ12a, φ12b). To get a better global coun-
terexample corresponding to the same local counterexample, we need to replace Q̂8

by larger groups G containing it. An initial key observation is that the quaternion
group Q8 is the four-point stabilizer of the Mathieu group M12 ⊂ S12 of order
12 · 11 · 10 · 9 · 8 in its natural action, and also one has Q8 ⊂ Q̂8 ⊂ M12. On the one
hand, the given character φ12a of the Mathieu group has decomposition φ8+φ2+2
when restricted to Q̂8. On the other hand, there is a twin dodecic character φ12b

coming from the outer involution of M12; its restriction to Q̂8 decomposes as
φ8+φ4.

Further group-theoretic facts are necessary for this situation to give number fields
as desired. First, the partition matrix and projective tame matrix of (M12, φ12a, φ12b)

are as follows:

τ 2A 2B 3A 3B 4A 4B 5A 6A 6B 8A 8B 10A 11AB Q8

λτ (φ12a) 26 2414 3313 34 4222 4214 5212 62 6321 84 8212 (10)2 (11)1 814

λτ (φ12b) 26 2414 3313 34 4214 4222 5212 62 6321 8212 84 (10)2 (11)1 84

c′τ 1 1 1 1 8
6

6
8 1 1 1 10

8
8
10 1 1 7

10

Thus, in the language introduced in Section 8A, extensions (K12a, K12b)/F of full
type (M12, φ12a, φ12b) are fraternal twins, this being necessary for our purposes. But
they are near-identical in the sense that the interval [α, ω] is small, being

[ 3
4 ,

4
3

]
=

[0.75, 1.33] here, rather than the intervals
[ 1

2 , 2
]

and
[ 1

3 , 3
]

seen in Section 8A
for Aff3(F2)-twins and S6-twins respectively. The orbit partitions of Q8 are as
indicated above, yielding cQ8(φ12a)/cQ8(φ12b) =

7
10 = 0.70 which is outside the

interval [0.75, 1.33]. Thus the inertial method for proving the tame-wild principle
fails here.
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Failure of the tame-wild principle for (M12, φ12a, φ12b). Computing with the slopes
[2, 2, 2.5]2, the 8s in the last column above give discriminant exponent 3·2+4·2.5=
16 while the 4 gives the discriminant exponent 3 · 2 = 6. So the ratio of wild
conductors is 16

22 = 0.72, which is still outside the interval [0.75, 1.33]. Thus the
tame-wild principle itself fails for (M12, φ12a, φ12b).

Smaller groups. We have looked in several places, including the two-parameter
family of [Malle 2000], for twin pairs (K12a, K12b) of M12 fields with the needed
quaternionic 2-adic behavior. We did not find any, and so we consider smaller
groups as follows as potential sources of counterexamples:

Aff2(F3) P0L2(F9)

∼= ∼=

Q̂8 ⊂ M9.2 ⊂ M10.2
∪ ∪ ∪

Q8 ⊂ M9 ⊂ M10 ⊂ M11 ⊂ M12 ⊃ T ⊃ P.

The four groups in the middle are boxed to stress that they appear in Proposition 8.4
below.

Proceeding from M12 to the left, the groups M11 and M10 contain Q̂8, since
Q̂8 has orbit partition 8211. Thus, using 0.72 6∈ [0.75, 1.33] exactly as above,
the tame-wild principle fails also for (M11, φ11, φ12b) and (M10, φ10, φ12b). Here
the transitive permutation groups in question are respectively (11T6, 12T272) and
(10T31, 12T181). The analog of Figure 5 for M10 and M11 has the same tame cone,
but more dots. For M12 there are many more dots, and a symmetry appears with
the cone doubling so that its bounding lines have slope 3

4 and 4
3 rather than 1 and 4

3 .
Moving further leftward to M9 and Q8 relates our current discussion to our earlier

counterexamples. For M9, the transitive groups are (9T14, 12T47). However now
Q̂8 is not contained in M9 and so we do not have counterexamples over Q. However
the counterexample for (M9, φ12b, φ72) over Q(

√
−3 ) from Section 7D also gives

a counterexample for (M9, φ9, φ12b), as always because the projectivized wild Artin
conductor 0.72 is not in the tame hull [0.75, 1.33]. Finally for Q̂8 itself we recover
(8-3), now interpreted as an intransitive counterexample for (Q8, φ8, φ8+φ4) over
Q(
√
−3 ).

The extended groups M9.2 and M10.2 corresponding to the pairs (9T19, 12T84)
and (10T35, 12T220) are natural candidates to support examples over Q because
they contain Q̂8. However they have orbit partitions 921 and (10)2 as subgroups
of M12. Computation in the column headed by 8B then has to be adjusted, with
the 2 in 8212 removed. The conductor ratio is then 7

10 rather than 8
10 and in fact the

inertial method above works to prove the tame-wild principle for (M9.2, φ9, φ12b)

and (M10.2, φ10, φ12b). This phenomenon illustrates the fundamental difficulty in
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promoting local nontransitive counterexamples to global transitive ones with a
larger group. While wild Artin conductor ratios, here 0.72 stay the same, tame hulls
increase, here from [0.75, 1] for Q̂8 itself to

[ 7
10 ,

7
6

]
= [0.70, 1.16] for M10.2.

There are other good candidates for global Galois groups. The 2-Sylow subgroup
P of M12 of order 26 is not good for us, because neither the given orbit decomposi-
tion nor its twin is transitive, both having orbit partition 84. However an overgroup
T of order 26

· 3= 192 is good, with (φ12a, φ12b) remaining a fraternal pair of type
(12T112, 12T112). Our computations have shown that the tame-wild principle fails
for (12T112, φ12a, φ12b).

Number fields. Constructing number fields with nonsolvable Galois groups and
prescribed ramification remains a difficult problem despite the increasing attention
it has been receiving recently. Just as we have not found M12 fields with the
appropriate quaternionic ramification, we have also not found M11 or M10 fields.

In contrast, it is relatively easy to build solvable fields step by step, and we
have found many explicit pairs (K12a, K12b)/Q providing counterexamples to the
tame-wild principle for (12T112, φ12a, φ12b). One such, with tame ramification at
the prime number q = 277, is

f12a(x)= x12
+223x10

+14856x8
+1784qx6

+38160qx4
+1712q2x2

+9216q2,

f12b(x)= x12
+202x8

+49qx4
+4q2.

The discriminants are D12a = 2162778 and D12b = 2222776, with the tame prime
277 having ramification partitions µ12a = 4222 and µ12b = 4214.

By design, D0.75
K12b

- DK12a . However the tame ramification at 277 completely
overwhelms the wild ramification at 2 in terms of magnitudes, and easily |DK12b |

.75
≤

|DK12a |. Indeed |DK12b |
1.15
≈ |DK12a |. To improve upon the counterexample

( f12a, f12b), one would like examples with D12a = 216(p1 . . . pk)
6 and D12b =

222(p1 . . . pk)
8 so that (8-2) is contradicted as well. However no such counterex-

amples exist with G = 12T112, as the subgroup Q8 together with all elements of
type 4214 generate an index two subgroup of type 12T63 and this subgroup does
not contain Q̂8. Partially summarizing:

Proposition 8.4. The tame-wild principle for (G, φ12a, φ12b) fails for the groups
G = M12, M11, M10 and 12T112. For G = 12T112 the pair of number fields
(K12a, K12b) contradicts the divisibility statement (8-1), but no pair with G =
12T112 contradicts the numerical statement (8-2).

The group-theoretic argument for 12T112 does not apply to the three Mn and we
expect that there exist pairs (K12a, K12b) for them contradicting not only (8-1) but
also (8-2). In general, a closer analysis of the exact range of applicability of the
tame-wild principle would be interesting.
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