Vol. 8, No. 3, 2014

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 1681–1865
Issue 9, 1533–1680
Issue 8, 1359–1532
Issue 7, 1239–1357
Issue 6, 1127–1237
Issue 5, 981–1126
Issue 4, 805–980
Issue 3, 541–804
Issue 2, 267–539
Issue 1, 1–266

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
Lefschetz operator and local Langlands modulo $\ell$: the limit case

Jean-François Dat

Vol. 8 (2014), No. 3, 729–766
Abstract

Let K be a finite extension of p with residue field Fq, and let be a prime such that q 1(mod). We investigate the cohomology of the Lubin–Tate towers of K with coefficients in F¯, and we show how it encodes Vignéras’ Langlands correspondence for unipotent F¯-representations.

Keywords
local Langlands, Lefschetz operator, modulo $\ell$
Mathematical Subject Classification 2010
Primary: 11S37
Secondary: 11F70, 14G35
Milestones
Received: 18 June 2013
Revised: 7 November 2013
Accepted: 10 December 2013
Published: 31 May 2014
Authors
Jean-François Dat
Institut de Mathématiques de Jussieu
Université Pierre et Marie Curie (Paris 6)
4, place Jussieu
75252 Paris
France