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Noncrossed product bounds
over Henselian fields

Timo Hanke, Danny Neftin and Jack Sonn

The existence of noncrossed product division algebras (finite-dimensional central
division algebras with no maximal subfield that is Galois over the center) was for
a time the biggest open problem in the theory of division algebras, until it was
settled by Amitsur.

Motivated by Brussel’s discovery of noncrossed products over Q((t)), we
describe the “location” of noncrossed products in the Brauer group of general
Henselian valued fields with arbitrary value group and global residue field. We
show that within the fibers defined canonically by Witt’s decomposition of the
Brauer group of such fields, crossed products and noncrossed products are,
roughly speaking, separated by an index bound. This generalizes a result of
Hanke and Sonn for rank-1 valued Henselian fields.

Furthermore, we show that the new index bounds are of different nature from
the rank-1 case. In particular, all fibers not covered by the rank-1 case contain
noncrossed products, unless the residue characteristic interferes.

1. Introduction

A finite-dimensional division algebra over its center F is called a crossed product
if it has a maximal commutative subfield which is Galois over F , and otherwise a
noncrossed product.

After Amitsur [1972] settled the fundamental long-standing problem of existence
of noncrossed products, they were discovered over more familiar fields. Most
notably, Brussel [1995; 2002] showed that noncrossed products exist over complete
discrete rank-1 valued fields with a global residue field,1 for example, over Q((x)).
From this basic case, their existence over many other fields was derived, for example,
over all finitely generated fields that are neither finite nor global [Brussel 2002], and
over all function fields of curves over complete discrete valuation rings [Brussel
2001; Chen 2010].

MSC2010: primary 16S35; secondary 11R32, 12F12.
Keywords: noncrossed product, division algebra, Henselian fields.

1By a global field we mean a finite extension of Q or a finite extension of Fq (t), where Fq is a
finite field.
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The basic setup used for Brussel’s discovery is Witt’s description [1936] of
the Brauer group Br(F) of a complete discrete rank-1 valued field. More pre-
cisely, Witt’s theorem describes the inertially split part SBr(F), which consists
of all elements of Br(F) split by an unramified extension (see [Hanke 2011, §5]).
Witt’s theorem applies more generally to Henselian fields F with arbitrary value
group 0 (see [Scharlau 1969; Jacob and Wadsworth 1990, §5; Aljadeff et al. 2007,
Theorem 3.2]; or the section titled “The canonical Brauer group filtration” in
[Tignol and Wadsworth ≥ 2014]), for example, to the field of iterated Laurent series
Q((x1)) . . . ((xr )), and gives an isomorphism

SBr(F)∼= Br(K )⊕Homc(GK ,1/0), (1-1)

where K is the residue field and GK is its absolute Galois group equipped with
the Krull topology, 1 is the divisible hull of 0, 1/0 is equipped with the discrete
topology, and Homc is the group of continuous homomorphisms.

Assume K is a global field. Hanke and Sonn [2011] took the approach of fixing
an element χ ∈ Homc(GK ,1/0) and considering the fiber Br(K )+χ . We call
χ cyclic if its image Im(χ) is cyclic. For cyclic χ , [Hanke and Sonn 2011] shows
that for every N ∈ N there are only two possible cases:

(I) all division algebras of index N in the fiber over χ are crossed products;

(II) the fiber over χ contains infinitely many noncrossed products of index N .

Furthermore, and most importantly, there are bounds on the exponents in the prime
decomposition of N such that case (I) occurs “below the bounds” and case (II)
“above”. A precise formulation of this result is the special case of Theorem 1.1
below, in which χ is assumed to be cyclic.2

Little was known about the appearance of noncrossed products in the more
complicated case of noncyclic χ . In fact, there were only two examples [Coyette
2012; Hanke 2004] of noncyclic χ , the fiber of which contains noncrossed products.

In the present paper, we show that the phenomenon discovered in [Hanke and
Sonn 2011] for cyclic χ holds more generally for arbitrary χ (Theorem 1.1).
Moreover, we show that “away from char K ” noncrossed products appear in every
noncyclic fiber (Theorem 1.2).

Note that by [Jacob and Wadsworth 1990, Theorem 5.15(a)], the index of an
element in the fiber over χ is always a multiple of |χ | := |Im(χ)|.

Theorem 1.1. There exists a collection of bounds bp = bp(χ) ∈N∪ {∞}, where p
runs through the rational primes, such that, for every natural number m =

∏
pn p ,

2In order to see that Theorem 1.1 for cyclic χ was proved in [Hanke and Sonn 2011] not only for
rank-1 valued fields, one should replace [Hanke and Sonn 2011, Brussel’s Lemma, p. 322] by [Hanke
2011, Corollary 5].
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(a) if n p ≤ bp(χ) for all p, then all division algebras of index m|χ | in the fiber
over χ are crossed products;

(b) if n p > bp(χ) for some p, then the fiber over χ contains infinitely many
noncrossed products of index m|χ |.

Our proof of Theorem 1.1 includes the case of cyclic χ and is simpler than
[Hanke and Sonn 2011].

Note that bp(χ)=∞ is allowed, and hence, as shown in [Hanke and Sonn 2011],
it may happen that for some cyclic χ , only (I) occurs. However, in striking contrast
to the cyclic case, we show:

Let M be the fixed field of the kernel of χ .

Theorem 1.2. If p 6= char K and the p-Sylow subgroup of Im(χ) is noncyclic, then:

(i) bp(χ) <∞;

(ii) if M does not contain the p-th roots of unity, then bp(χ)= 0.

In particular, the fiber over χ contains noncrossed products whenever the maximal
prime-to-char K subgroup of Im(χ) is noncyclic.

This is in contrast to the cyclic case because, according to [Hanke and Sonn
2011], bp(χ)=∞ can occur for cyclic χ , even if M does not contain the p-th roots
of unity. Thus, neither of statements (i) and (ii) of Theorem 1.2 holds for cyclic χ .

Section 4 demonstrates, for noncyclic χ , how a description of the bounds obtained
from the proof of Theorem 1.1 can be used to compute the bounds in examples. In
particular, we obtain new noncrossed products of low index (Examples 4.1, 4.3)
and show that, unlike in the rank-1 case, the value of the bound bp(χ) can be zero
regardless of the number of roots of unity in M .

2. Existence of bounds

Setup. Let F be a Henselian valued field with value group 0 and residue field a
global field K . Let 1 denote the divisible hull of 0. We fix an isomorphism as in
(1-1) and write α+χ to denote an element of SBr(F) corresponding to (α, χ).

Throughout the paper, we consider the character χ ∈ Homc(GK ,1/0) as fixed.
We let M denote the fixed field of the kernel of χ , which is a finite abelian extension
of K with Galois group Im(χ).

Let P be the set of finite rational primes, and for any p ∈ P, n ∈ N, denote by
vp(n) the maximal exponent e such that pe

| n.

Towards the proof of Theorem 1.1. For α ∈ Br(K ), we denote by αM the image
of α in Br(M) under the restriction map. The index formula [Jacob and Wadsworth
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1990, Theorem 5.15(a)]3 gives

ind(α+χ)= |χ | indαM .

Therefore, in order to prove Theorem 1.1, we consider the following condition
on χ :

For every α ∈Br(K ) with indαM
=m, the division algebra

underlying α+χ is a crossed product.
(Im)

For a global field K , we shall prove the existence of bounds bp(χ) such that (Im)
holds if and only if vp(m) ≤ bp(χ) for all p ∈ P. The details of our proof will
reveal that if (Im) does not hold, then there are in fact infinitely many α ∈ Br(K )
with indαM

= m such that the division algebra underlying α+χ is a noncrossed
product (Remark 2.9). The proof of Theorem 1.1 will then be completed.

Galois covers. We say that a field L ⊇ M is a cover of M/K if L/K is Galois.
In this case, we call m := [L : M] the degree of the cover and speak of L as an
m-cover.

The division algebra underlying α+ χ is a crossed product if and only if the
division algebra underlying αM contains a maximal subfield which is Galois over K
(see [Hanke 2011, Corollary 5; Brussel 1995, p. 381, Corollary] for complete
discrete rank-1 valued F). Such maximal subfields are characterized as the m-
covers of M/K that split α, where m = indαM (see, for example, [Pierce 1982,
Corollary 13.3]). Condition (Im) is therefore equivalent to:

Every α ∈ Br(K ) with indαM
= m is split by an m-cover of M/K . (Am)

Remark 2.1. (i) For the equivalence of (Im) and (Am) it is not required that K be
a global field.

(ii) Condition (Am) is a condition on M rather than on χ . (Am) can be considered
more generally for any Galois extension M/K . In fact, from now on M may be
replaced by an arbitrary finite Galois extension of the global field K .

Local and global splitting covers. Let L be a cover of the fixed Galois extension
M/K . We write Kp for the completion at p and [L : M]p := [LP : MP∩M ] for the
local degree of L at p, where P is any prime of L dividing p.

Let α ∈ Br(K ). For a prime p of K , let indp α := ind(αKp) and invp α ∈Q/Z be
the Hasse invariant at p. Recall (see, for example, [Pierce 1982, §17.10]) that invp α
is of order indp α and that invP αL

= [L : K ]p invp α for any Galois extension L/K
and P | p. Thus, LP splits αKp if and only if indp α | [L : K ]p, and LP embeds into
the division algebra underlying αKp if and only if [L : K ]p | indp α. We also get

vp(indp α)≤ vp(indp αL)+ vp([L : K ]p), (2-1)

3 Theorem 5.15(a) of [Jacob and Wadsworth 1990] does not require that K be a global field.
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where indp αL
:= indαLP for any prime P of L dividing p. Furthermore, (2-1) is

an equality if vp(indp αL) > 0.
By the theorem of Albert, Brauer, Hasse, and Noether (see, for example, [Pierce

1982, §18.4]), a Brauer class over a global field is split by a field L if and only if
its completions are split by L . In particular, for any cover L of M/K ,

L splits α if and only if indp αM
| [L : M]p for all primes p of K . (2-2)

Limits on local indices. Our first goal is to translate (Am) to a condition about the
existence of M/K with prescribed local degrees at finitely many primes of K (see
Proposition 2.8 below). For this, in view of (2-2), we analyze the possible local
indices indp αM . We describe upper limits for the possible local indices in Lemmas
2.3 and 2.4, using the following terminology:

Definition 2.2. For p ∈P, let u(1)p , u(2)p , . . . be the family of numbers vp([M : K ]p),
where p runs over the primes of K , ordered so that u(1)p ≥ u(2)p ≥ . . . . If u(1)p > u(2)p ,
then the unique prime p of K with vp([M : K ]p) = u(1)p is called p-isolated in
M/K . We denote by gp the gap u(1)p − u(2)p , so that gp > 0 if and only if there is a
p-isolated prime. We shall call a prime p of K isolated if it is p-isolated for some
p ∈ P.

Let Up be the set of primes p of K for which vp([M : K ]p)≥ u(2)p . Let U consist
of the isolated primes in M/K , and if |U2| is finite and odd, also of the primes
in U2.

The following properties are deduced from Chebotarev’s density theorem. For
every infinite prime q of K , [M : K ]q is at most 2. If 2 | [M : K ], by Chebotarev’s
theorem, there is a finite prime p such that [M : K ]p = 2. In particular, infinite
primes are nonisolated, and for every i ∈ N there is a finite prime pi with

vp([M : K ]pi )= u(i)p . (2-3)

Moreover, for any prime q of K unramified in M , by Chebotarev’s theorem, there
is a prime p with [M : K ]p = [M : K ]q. Hence, isolated primes must ramify
nontrivially in M/K , and the set U is finite. For every p ∈Up, the set Up can be
infinite, and in view of (2-3), it contains at least two finite primes.

For m ∈ N and a prime p of K , define

wp(m, p) :=
{
vp(m) if p is non-p-isolated,
max{vp(m)− gp, 0} if p is p-isolated.

(2-4)

Note that the dependence on p is marginal4 and that clearly wp(m, p)≤ vp(m).

4A reader who for the time being decides to disregard the possible appearance of isolated primes
may substitute vp(m) for wp(m, p).
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Lemma 2.3. For every α ∈ Br(K ) and prime p of K ,

vp(indp αM)≤ wp(indαM , p). (2-5)

Proof. Set k := vp(indp αM), n := vp(indαM), and let u(1)p , u(2)p be as above. For a
non-p-isolated prime p, the assertion holds since k ≤ n. Assume that p is p-isolated.
The assertion to prove is: k = 0 or n ≥ k+ gp. Assume k > 0. By (2-1),

vp(indp α)= vp(indp αM)+ vp([M : K ]p)= k+ u(1)p .

Since the sum of Hasse invariants of α is 0, there exists a prime p1 6= p of K with
vp(indp1 α)≥ k+ u(1)p . Since vp([M : K ]p1)≤ u(2)p , (2-1) gives

n ≥ vp(indp1 α
M)≥ vp(indp1 α)− vp([M : K ]p1)≥ k+ u(1)p − u(2)p = k+ gp. �

To prove the second restriction, we use the following inequality, which holds5

for every prime p of K , p ∈ P, and m ∈ N:

wp(m, p)+ vp([M : K ]p)≤ vp(m)+ u(2)p , (2-6)

with equality if and only if p ∈Up.

Lemma 2.4. Let α ∈ Br(K ) with v2(indαM) > g2 and let p = 2. Then the number
of primes p ∈U2 for which (2-5) is an equality is even.

Proof. Let m = indαM . Let U2,α be the set of primes p ∈U2 for which (2-5) is an
equality. Then (2-1), (2-5), and (2-6) imply

v2(indp α)≤ v2(indp αM)+ v2([M : K ]p)

≤ w2(indαM , p)+ v2([M : K ]p)≤ v2(indαM)+ u(2)2 (2-7)

for every prime p of K , with equalities for every p ∈U2,α . Since (2-6) is strict for
p 6∈U2 and (2-5) is strict for p ∈U2 \U2,α , (2-7) is strict for every prime p 6∈U2,α .

Let r := v2(indαM)+ u(2)2 . Since (2-7) holds for all p, we have v2(indα) ≤ r
with equality if and only if U2,α is nonempty. If v2(indα) < r , then U2,α is empty
and the assertion holds. Thus, we may assume v2(indα)= r and write indα= 2r m′

for odd m′. Then the class α′ := α2r−1m′
∈ Br(K ) has exponent 2, nontrivial Hasse

invariants at primes of U2,α, and trivial invariants outside U2,α. Since the sum of
invariants of α′ is 0, |U2,α| is even. �

Lemmas 2.3 and 2.4 lead to upper limits on local indices (see Proposition 2.8).
We shall now construct elements which attain these upper bounds. We divide the
construction into several cases:

5This inequality is easily verified separately for p-isolated and non-p-isolated primes.
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Definition 2.5. For a finite set S of primes of K and m ∈ N, (S,m) is balanced
if v2(m) ≤ g2 or |S ∩U2| is even. We say that (S,m) is balanceable if S can be
enlarged so that (S,m) is balanced, and otherwise unbalanceable.

Remark 2.6. Note that (S,m) is unbalanceable if and only if |U2| is odd, S ⊇U2,
and v2(m) > g2. In particular, (S,m) can be unbalanceable only if m is even.

Lemma 2.4 shows that if (S, 2n) is unbalanceable, then there are no elements
α∈ Br(K )with indαM

=2n , and indp αM
=2w2(2n,p) for every p∈ S. The following

lemma constructs such elements if (S,m) is balanced.

Lemma 2.7. Let n be a positive integer, p ∈ P, m = pn , and q ∈ U2. Let S be a
finite set of primes of K which contains at least two finite primes of Up.

Then there exists α ∈ Br(K ), with indαM
= m, indp αM

= 1 for all p 6∈ S and
indp αM

= gcd(p, 2) for every real p ∈ S which is unramified in M , such that

(i) if (S,m) is balanced, then indp αM
= pwp(m,p) for all finite p ∈ S;

(ii) if (S,m) is unbalanceable, then p= 2, q∈ S, w2(m, q)> 0, indp αM
= 2w2(m,p)

for all finite p ∈ S \ {q}, and 2w2(m,q)−1
| indq αM .

Proof. Write Sp :=Up∩ S. Note that if (S,m) is unbalanceable then p= 2, U2⊆ S,
and n− g2 > 0, and hence q ∈U2 ⊆ S and w2(m, q)≥ n− g2 > 0.

If p = 2 and (S,m) is balanced, we claim that |S2| can be assumed to be
even. Indeed, if |S2| is odd, then n ≤ g2, M/K has a 2-isolated prime p1, and
w2(m, p1) = 0. Hence by Lemma 2.3, for any α ∈ Br(K ) with indαM

= m, one
has indp1 α

M
= 1. Thus, we may add or remove p1 from S without changing the

desired assertion. We may therefore assume that |S2| is even, proving the claim.
We define α by setting its Hasse invariants. Let q1, q2 be two distinct finite primes

in Sp. If (S,m) is unbalanceable, assume q1 = q. Set invp α to be of order prp ,
where rp = n+ vp([M : K ]p) for every finite p ∈ S \ Sp and rp = n+ u(2)p for every
finite p ∈ Sp \ {q1, q2}, and of order gcd(p, 2) for every real p ∈ S \ {q1, q2}.

The order of all invariants we have set so far divides pn+u(2)p . If (S,m) is balanced,
we can set invq2 α to be of order pn+u(2)p such that x :=

∑
p∈S\{q1}

invp α has order
pn+u(2)p . Note that this is possible for p = 2 since the invariants which were set to
be of order 2n+u(2)2 are at primes of S2 \ {q1, q2}, a set of even order. If (S,m) is
unbalanceable then p = 2, n+ u(2)2 ≥ 2, and we can set invq2 α = a/2n+u(2)2 for odd
a such that x :=

∑
p∈S\{q1}

invp α = b/2n+u(2)2 with b 6≡ 0 (mod 4). Note that this is
possible since a can be chosen to be congruent to either 1 or 3 (mod 4).

Setting invq1 α := −x and invp α = 0 for p 6∈ S completes the definition of α. By
(2-1), we have

vp(indp αM)=max
{
vp(indp α)− vp([M : K ]p), 0

}
. (2-8)
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For finite p∈ S\Sp, we have vp(indp α)=n+vp([M :K ]p), and hence indp αM
= pn

by (2-8). For finite p ∈ Sp \ {q1}, we have vp(indp α)= n+ u(2)p , and hence (2-8)
gives indp αM

= pwp(m,p) for all finite p ∈ S \ {q1}, and indp αM
= gcd(p, 2) for all

real p ∈ S \ {q1} unramified in M/K . If (S, pn) is balanced, indq1 α = pn+u(2)p , and
hence by (2-8) we have indq1 α

M
= pwp(pn,q1), as required.

If (S, pn) is unbalanceable then p = 2, 2n+u(2)2 −1
| indq1 α, n > g2, and hence

w2(2n, q1) > 0. Thus, (2-8) and (2-6) give

v2(indq1 α
M)≥ n+ u(2)2 − 1− v2([M : K ]q1)= w2(2n, q1)− 1.

Since indp αM
| pn for all p, indαM

| pn . Since Sp contains two finite primes, at least
one of these primes p satisfies wp(m, p)= n, and hence indαM

= indαM
p = pn . �

Covers with prescribed local degrees. We can now translate (Am) to a condition on
the local degrees of covers. Let m ∈N. For a finite prime p of K , define dp(m) ∈N

by requiring p ∈ P for every vp(dp(m))= wp(m, p). For an infinite prime p of K ,
set dp(m) := gcd(m, 2) if p is real and unramified in M and dp(m) := 1 otherwise.

Clearly, dp(m) |m for any p, and dp(m)= m if p is finite and nonisolated.

Proposition 2.8. Condition (Am) is equivalent to:

For every finite set S and q ∈ U2, M/K has an m-cover L such
that dp(m) | [L :M]p for every p∈ S, except for p= q when (S,m)
is unbalanceable, in which case (dq(m)/2) | [L : M]q.

(Bm)

Proof. (Bm) =⇒ (Am): Let α ∈Br(K ) with indαM
=m. Let S be the set of primes

p of K such that indp α 6= 1. For every finite p and p ∈ P, Lemma 2.3 implies

vp(indp αM)≤ wp(m, p)= vp(dp(m)).

If p is real and unramified in M , indp αM
| gcd(m, 2)= dp(m). Thus, indp α | dp(m)

for all primes p of K . If (S,m) is balanceable, (Bm) gives an m-cover L for which
indp αM

| [L : M]p for all p ∈ S. Hence, by (2-2), L splits α.
Assume (S,m) is unbalanceable. By Lemma 2.4, there is a prime q ∈U2 ⊆ S

for which
v2(indq αM)≤ w2(m, q)− 1.

It follows that indp αM
| dp(m) for all p 6= q and indq αM

| (dq(m)/2). Letting L be
the m-cover obtained by applying (Bm) with S and q, we have indp αM

| [L : M]p
for all p ∈ S. Hence, by (2-2), L splits α.

(Am) =⇒ (Bm): Let S be any finite set of primes of K and q ∈U2. For every p |m,
if |S ∩Up| ≥ 2, let Sp := S; otherwise form Sp by adding to S finite primes of Up,
so that |Sp ∩Up| = 2. Note that (S2,m) is unbalanceable if and only if (S,m)
is unbalanceable. If (S2,m) is balanceable, enlarge S2 to assume that (S2,m) is
balanced.
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For every p |m, construct αp by applying Lemma 2.7 with p, n = vp(m), q,
and Sp. Set α =

∑
p|m αp. Since Sp ⊇ S, by the definition of dp(m), the properties

of αp, p |m, give indαM
= m, indp αM

= gcd(m, 2) for all real p ∈ S which are
unramified in M , and indp αM

= dp(m) for every finite p∈ S, except for p= q when
(S,m) is unbalanceable, in which case indq αM

= dq(m)/2. Applying (Am) to α,
we obtain the desired cover L . �

Remark 2.9. The proof of Proposition 2.8 shows that if there are noncrossed
products α+χ with indαM

= m, then there are infinitely many such noncrossed
products. Indeed, if (Bm) fails for a set S0, it fails for every set S containing S0, so
that (S,m) is balanceable if and only if (S0,m) is balanceable. The proof reveals
that for every such set S, there is an α whose Hasse invariants are nonzero at primes
of S and α+χ is a noncrossed product. In particular, there are infinitely many such
classes α.

Definition 2.10. For a prime p of K , we say that the cover L has full local degree
at p if [L : M]p = [L : M] for finite p, or if [L : M]p = gcd(2, [L : M]) for real p,
or if p is complex. For a set S of primes of K , we say L has full local degree in S
if L has full local degree at each p ∈ S.

Note that (Bm) requires full local degree at every p ∈ S \U .

Lemma 2.11. Let m′ |m. Suppose there is a finite nonempty set S0 disjoint from U
such that any m-cover of M/K with full local degree in S0 contains an m′-cover.
Then (Bm) implies (Bm′).

Proof. Let p1 be a finite prime for which v2([M : K ]p1)= u(1)2 . For a given finite
set S, let S′ := S ∪ S0. Note that there are three possible cases: (a) (S′,m′) and
(S′,m) are balanceable; (b) (S′,m′) and (S′,m) are unbalanceable; (c) (S′,m′) is
balanceable and (S′,m) is not. Also note that (c) occurs only if w2(m′, p1)= 0.

If (b) occurs, fix a prime q ∈U2. Let L be an m-cover obtained by applying (Bm)
to S′, S′ and q, and S′ and p1 in cases (a), (b), (c), respectively. Since S0∩ U = ∅,
L has full local degree in S0. By assumption, L contains an m′-cover L ′ of M/K .
Since dp(m) | [L : M]p (resp. (dp(m)/2) | [L : M]p) implies dp(m′) | [L ′ : M]p (resp.
(dp(m′)/2) | [L ′ : M]p) for all primes p of K , L ′ satisfies dp(m′) | [L ′ : M]p for all
p ∈ S except for p= q when (b) holds, in which case (dq(m′)/2) | [L ′ : M]p. �

Reduction to prime powers. Having shown the equivalence of (Im) and (Bm), we
now consider (Bm). We provide choices of the set S that enforce tight restrictions
on the structure of Gal(L/K ) for covers L of M/K with full local degree in S.

Our first usage of this strategy is in reducing (Bm) from arbitrary m ∈N to prime
powers. Except for the part concerning the characteristic of K (Lemma 2.13 below),
this reduction is identical to the corresponding one in [Hanke and Sonn 2011].



846 Timo Hanke, Danny Neftin and Jack Sonn

Let m =
∏

pn p be the prime factorization. By taking field composita of covers,
if (Bpn p ) holds for all p |m, then (Bm) holds. We show:

Proposition 2.12. (Bm) holds if and only if (Bpn p ) holds for all p |m.

We first treat the wild case separately:

Lemma 2.13. If p = char K then (Bpn ) holds for all n ∈ N.

Proof. Let n ∈ N and S be a finite set of primes of K . For every p ∈ S there
is a cyclic pn-extension L ′(p)/Kp which is disjoint from Mp (see [Koch 1970,
Satz 10.4]6). By the Grunwald–Wang theorem, there is a cyclic pn-extension
L ′/K whose completion at p is L ′p = L ′(p) for all p ∈ S. Let L := L ′M . Since
L ′p∩Mp = Kp, one has [L : M]p = pn for all p ∈ S. Thus, L is a pn-cover of M/K
with full local degree in S. �

It remains to show that (Bm) implies (Bpn p ) for all p |m with p 6= char K .

Proof of Proposition 2.12. Let p |m with p 6= char K . By [Hanke and Sonn 2011,
§7, p. 325, Corollary], there are infinitely many primes p of K such that for any
m-cover of M/K with full local degree at p, the p-Sylow subgroup of Gal(L/M)
has a complement Gal(L/M0) which is normal in Gal(L/K ), and hence L contains
a pn-cover M0 of M/K . (Note that the assumption M/K cyclic is never used in the
proof of [Hanke and Sonn 2011, §7, p. 325, Corollary].) Since U is finite we can
choose such p 6∈U . The proof is completed by setting S0 := {p} in Lemma 2.11. �

An invariant subgroup. We are now able to complete the proof of Theorem 1.1.
As outlined in Section 2, and using Propositions 2.8 and 2.12, it remains to prove
Proposition 2.14 below. Let p ∈ P be fixed.

Proposition 2.14. For any n ∈ N, (Bpn ) implies (Bpn−1).

Indeed, the bound bp(χ) of Theorem 1.1 is the maximal n for which (Bpn ) holds
if such a maximum exists, and bp(χ) = ∞ otherwise. For more details on the
description of bp(χ), see Corollary 2.17 below.

For any cover L of M/K , we consider the group extension

1→ Gal(L/M)→ Gal(L/K )→ Gal(M/K )→ 1. (2-9)

We will analyze several kinds of constraints that are imposed on (2-9) by the
condition that L has full local degree in S0, for certain chosen sets S0. More precisely,
after showing that the kernel A := Gal(L/M) can be assumed to be abelian, we
focus on constraints regarding the conjugation action of B :=Gal(M/K ) on A. The
analysis of this action is the main ingredient in the proofs of both Proposition 2.14
and Theorem 1.2 below.

6Koch’s book has been translated into English. However, Theorem 10.4 in the English version
contains a typo: “finitely generated” should be replaced by “on countably many generators”.
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In view of Lemma 2.13, we assume from now on that p 6= char K . Fix pn and
set T := M ∩ K (µp∞). For the proof of Proposition 2.14, it will suffice to analyze
the action of Gal(M/T ) on A.

Lemma 2.15. There exists a finite set S0 of primes of K disjoint from U such that
for any pn-cover L of M/K with full local degree in S0, the kernel A is abelian, the
group Gal(M/T ) acts trivially on A, and A has rank at most 2.

Proof. At first fix a σ ∈Gal(M/T ). By the Chebotarev density theorem, the Galois
extension M(µpn )/K has infinitely many unramified finite primes P of M(µpn )

whose Frobenius element restricts to the identity on K (µpn ) and to σ on M . Of
those infinitely many P, choose one such that p := P ∩ K 6∈ U and p does not
divide the norm N (p). (There are only finitely many P that do not satisfy this,
since p 6= char K .) Since p - N (p) and µpn ⊂ Kp, we have N (p)≡ 1 (mod pn).

Assume a pn-cover L of M/K has full local degree at the chosen p. Let P
be a prime of L dividing p. The decomposition group Gal(LP/Kp) then equals
Gal(L/Mσ ), where Mσ is the fixed field of σ . We will show that Gal(LP/Kp) is
abelian, and thus σ acts trivially on Gal(L/M): since char K - N (p), LP/Kp is
tame. Therefore, Gal(LP/Kp) is a metacyclic group, generated by the inertia group
IP and the Frobenius element, with the Frobenius acting on IP by raising each
element to the power N (p). Since p is unramified in M , |IP| divides pn . Hence
Gal(LP/Kp) is abelian, because N (p)≡ 1 (mod pn).

Now let 6 be a set of generators of Gal(M/T ), or 6 = {1} if M = T . For each
σ ∈ 6, choose a prime pσ as described in the first paragraph of the proof. Then
S0 := {pσ | p ∈6} has the desired property. �

By Lemma 2.11, Proposition 2.14 is completed once we show:

Proposition 2.16. Let S0 be as in Lemma 2.15. Any pn-cover of M/K with full
local degree in S0 contains a pn−1-cover of M/K .

Proof. We have assumed p 6= char K . Let B = Gal(M/K ). Let L be a pn-cover
of M/K with full local degree in S0. By Lemma 2.15, the kernel A is abelian.
The subgroup A[p] of p-torsion elements is a characteristic subgroup and hence
invariant under the action of B (we say B-invariant). It suffices to find a B-invariant
subgroup A0 ≤ A[p] of order p; then the fixed field L A0 is the desired pn−1-cover.

If A is cyclic then A[p] itself is such a subgroup; hence, assume A noncyclic
for the rest of the proof.

Recall that A[p] is an Fp-vector space and that any action of some group H on
A[p] is a representation of H over Fp. In this sense, the H -invariant subgroups of
order p are the H -invariant subspaces of dimension 1.

By Lemma 2.15, B acts on A through Gal(T/K ). Let Gal(T/K )= P ⊕C with
P the p-part and |C | prime to p. Then |C | divides p − 1. Since |C | is prime



848 Timo Hanke, Danny Neftin and Jack Sonn

to p, any representation of C over Fp is semisimple and hence decomposes into a
product of irreducible representations. Since Fp contains the |C |-th roots of unity,
the irreducible representations of C are of dimension 1. Thus, there is a C-invariant
subgroup A0 ≤ A[p] of order p.

By Lemma 2.15, A has rank 2, that is, A[p] ∼= C p×C p. This group has exactly
p+ 1 order-p subgroups, say A0, . . . , Ap, which are permuted by the action of B.
Thus, we have an induced action of B on the set of indices {0, . . . , p}.

We know A0 is C-invariant. If A0 is P-invariant then A0 is B-invariant and
we are done. Assume A0 is not P-invariant. Since P is a p-group, there are two
P-orbits on {0, . . . , p}, say {0, . . . , p− 1} and {p}. Since P and C commute and
A0 is C-invariant, each of A0, . . . , Ap−1 is also C-invariant. Hence the remaining
subgroup Ap is C-invariant and P-invariant. We found a B-invariant subgroup Ap

of A with |Ap| = p. As noted in the beginning of the proof, this gives the assertion.
�

This completes the proof of Proposition 2.14, and hence of Theorem 1.1.

Summary. In addition to the existence of bounds (Theorem 1.1) we get:

Corollary 2.17. The bound bp(χ) is the maximal n such that for every finite set S
of primes of K and q ∈U2, there is a pn-cover L of M/K satisfying:

(i) dp(pn) | [L : M]p for all p ∈ S, except for p = q when p = 2 and (S, 2n) is
unbalanceable, in which case (dq(2n)/2) | [L : M]q;

(ii) A = Gal(L/M) is abelian of rank at most 2;

(iii) Gal(M/T ) acts trivially on A via conjugation in Gal(L/K ).

If no maximal n exists, then bp(χ)=∞.

Proof. Let S0 be a finite set of primes of K that is disjoint from U . Suppose that any
pn-cover of L with full local degree in S0 has a certain property. Then this property
can be added to the condition (Bpn ) without changing the truth value of (Bpn ),
because the set S in (Bpn ) can be enlarged by S0. By Lemma 2.15, this argument
applies to the properties (ii) and (iii). Hence, the corollary is a consequence of
Proposition 2.14. �

Remark 2.18. Regarding condition (i) in Corollary 2.17, if p is not isolated, then
dp(pn) | [L : M]p is equivalent to saying that L has full local degree at p.

Regarding condition (iii) in Corollary 2.17, if M and K (µp∞) are disjoint over K ,
then (iii) is equivalent to saying that the group extension (2-9) is central.

3. Finiteness of bounds

The exponents of kernels. Suppose we use the setup described in Section 2, so
that M/K is an abelian extension of global fields. Let p ∈ P be fixed and different
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from char K , and as before set T := K (µp∞)∩M . In Section 2 we showed that
suitable choices of the set S put constraints on structure of covers L of M/K with
full local degree in S, to the extent that the action of Gal(M/T ) on A=Gal(L/M)
is trivial. This was sufficient to prove the existence of the bounds. Now, in order
to prove the finiteness of the bounds, we analyze constraints on the action of the
entire group B = Gal(M/K ) on A. The set S for this purpose will be constructed
from the families Qσ , which we define next for each σ ∈ B.

Denote by ps the number of p-power roots of unity in M and by r the maximal
number for which µ2r ⊆ M(

√
−1). Let U be the finite set defined in Definition 2.2,

so that for every finite set S, condition (Bm) requires full local degree at every prime
p ∈ S \U .

Fix an element σ ∈ B and let fσ be the order of the restriction σ|T of σ to T .
We define Qσ to be the set of all primes p 6∈ U of K , unramified in M , whose
Frobenius automorphism in M/K is σ , and such that the norm N (p) is prime to
p and is of order strictly greater than fσ as an element of (Z/ps+1Z)∗ (resp. mod
(Z/2r+2Z)∗ if p = 2).

Lemma 3.1. For every σ ∈ B, the set Qσ is infinite.

Proof. Assume without loss of generality that
√
−1 ∈ M . Otherwise, repeat the

proof for a lift τ ∈ Gal(M(
√
−1)/K ) of σ to deduce that Qτ is infinite. Since

Qτ ⊆ Qσ and fτ ≥ fσ , the assertion for σ follows. Note that under this assumption
we have r = s, so we will use only s in the rest of the proof. Set T ′ := K (µps+1)

(resp. T ′ := K (µ2s+2) if p = 2) and note that T ′ ∩M = T .
We first claim that Gal(T ′/K ) contains an element σ ′ of order greater than

fσ whose restriction to T is σ|T . For s > 0, T = K (µps ), and hence the group
Gal(T/T σ ) is naturally identified with a subgroup H of (Z/psZ)∗, and Gal(T ′/T σ )

is identified with the full preimage of H under the natural projection

π : (Z/ps+1Z)∗→ (Z/psZ)∗ (resp. π : (Z/2s+2Z)∗→ (Z/2sZ)∗ if p = 2).

The claim follows for s > 0 since each element of (Z/psZ)∗ has a preimage under
π of a greater order. If s = 0, then p is odd, and the claim holds, as the restriction
map Gal(T ′/T σ )→Gal(T/T σ ) is an epimorphism of cyclic groups with nontrivial
kernel.

Since σ and σ ′ agree on T , Chebotarev’s density theorem implies that there are
infinitely many primes p of K , with p - N (p), whose Frobenius automorphism is
σ ′ in T ′/K and is σ in M/K . Such primes are in Qσ since the order of the norm
of p as an element in (Z/ps+1Z)∗ (resp. in (Z/2s+2Z)∗) is the same as the order of
their Frobenius automorphism in K (µps+1)/K (resp. in K (µ2s+2)/K ). �

For a prime p of K , denote by ep(L/K ) the ramification index of p in a Galois
extension L/K .
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Lemma 3.2. Let S0 be as in Lemma 2.15 and let σ ∈ B. Suppose that a pn-cover
L of M/K has full local degree in S0 and at p ∈ Qσ . Then ep(L/K ) | ps if p is odd
and ep(L/K ) | 2r+1 if p = 2.

Proof. By Lemma 2.15, the kernel A is abelian, Gal(M/T ) acts trivially on A, and
hence the action of B on A factors through the action of Gal(T/K ). Thus, σ acts
on the inertia group I ⊆ A of p in L/K as an automorphism of order at most fσ .

Assume on the contrary that there is an element a ∈ I of order ps+1 (resp. 2r+2

if p = 2). Since p is tamely ramified in L , σ acts on I by raising each element
to the power N (p) and hence defines an automorphism of order greater than fσ
on 〈a〉, a contradiction. �

We derive Theorem 1.2 from the following proposition, whose proof appears in
the end of this subsection.

Proposition 3.3. Assume the p-Sylow subgroup of B is noncyclic. Then there exists
a finite set S0 of primes of K disjoint from U such that for any pn-cover L of M/K
with full local degree in S0, Gal(L/M) is abelian of rank at most 2 and exponent at
most ps (resp. 2r+2 if p = 2).

If the p-Sylow subgroup of B is noncyclic, then Proposition 3.3 allows us to
improve on Corollary 2.17 by adding the following property to the list:

(iv) exp A | ps if p is odd and exp A | 2r+2 if p = 2.

In particular, since A has rank at most 2, bp(χ)≤2s if p is odd and bp(χ)≤2(r+2)
if p = 2. This proves Theorem 1.2.

The proof of Proposition 3.3 relies on the following group-theoretic proposition,
whose proof is given starting on page 851.

Proposition 3.4. Let
1→ A→ G

π
→ B→ 1 (3-1)

be an extension of nontrivial abelian p-groups A, B. If B is noncyclic and π−1
〈x〉

is cyclic for all x ∈ B, then |A| = 2.

Proof of Proposition 3.3. Replacing K with the fixed field of the p-Sylow subgroup
of B, we can assume without loss of generality that B is a p-group. By the
assumptions of the proposition, B is a noncyclic abelian group.

Choose S0 to be the set from Lemma 2.15 joined with one pσ ∈ Qσ for each
σ ∈ B. Suppose L is a pn-cover of M/K with full local degree in S0.

By Lemma 2.15, A is abelian of rank at most 2. Since the ps-torsion subgroup
A[ps
] is a characteristic subgroup of A, it is a normal subgroup of Gal(L/K ) and

hence the fixed field L0 := L A[ps
] is Galois over K . If p = 2, then we consider

L0 := L A[2r+1
] instead, which is also Galois over K . To prove our claim it suffices

to show that L0 = M (resp. [L0 : M] ≤ 2 if p = 2).
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Fix an element σ ∈ B and let Pσ be a prime of L which divides pσ . Let Iσ ⊆ A
be the inertia group of Pσ in L/K . By Lemma 3.2, |Iσ | ≤ ps (resp. |Iσ | ≤ 2r+1)
and hence Iσ ⊆ A[ps

] (resp. Iσ ⊆ A[2r+1
]). Thus, L0/K is unramified at pσ and

hence Pσ ∩ L0 has a cyclic decomposition group in L0/K . Since L0 has full local
degree at p, the decomposition group of Pσ ∩ L0 in L0/K is Gal(L0/Mσ ), and
hence L0/Mσ is a cyclic extension.

Since L0/Mσ is cyclic for all σ ∈ B and since B is noncyclic, Proposition 3.4
applied to the group extension

1→ Gal(L0/M)→ Gal(L0/K )→ Gal(M/K )→ 1

shows L0 = M (resp. [L0 : M] ≤ 2 if p = 2), proving the claim. �

Central group extensions. The last ingredient is a proof of Proposition 3.4. We
begin with elementary properties of commutators in a central group extension

1→ A→ G→ B→ 1 (3-2)

of abelian groups A, B. Let s : B→ G be a section of G→ B (not necessarily a
homomorphism).

Lemma 3.5. Commutators in G are bimultiplicative. That is, the map

β : B× B→ A, (x, y) 7→ [s(x), s(y)]

does not depend on the choice of s and is bimultiplicative.

Proof. Since [G,G] ⊆ A ⊆ Z(G), we have

[ab, x] = abxb−1a−1x−1
= a(bxb−1x−1)xa−1x−1

= [a, x][b, x].

Similarly one checks [x, ab] = [x, a][x, b], that is, that commutators are bimulti-
plicative. The statement about β follows from this. �

We next look at the meaning of the condition that π−1
〈 x 〉 is cyclic for x ∈ B. For

x = 1 it means A is cyclic, and for x 6= 1 one has:

Lemma 3.6. Assume A is cyclic. For x ∈ B, x 6= 1, π−1
〈 x 〉 is cyclic if and only if

A is trivial or generated by s(x)ord x .

In order to prove Proposition 3.4, we now assume A, B are nontrivial p-groups
and A is cyclic. The map

γ : B[p] → A/Ap, x 7→ s(x)p

is obviously independent of the choice of s.

Lemma 3.7. Assume A, B are nontrivial p-groups and A is cyclic.

(i) For x ∈ B[p], x 6= 1, π−1
〈 x 〉 is cyclic if and only if γ (x) 6= 1.
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(ii) If p is odd then γ is a homomorphism.

(iii) If p = 2 then γ is a homomorphism if and only if β(x, y) ∈ A2 for all x, y in
B[2].

Proof. (i) is Lemma 3.6. Since [G,G] ⊆ A ⊆ Z(G), we have (s(x)s(y))p
=

s(x)ps(y)pβ(x, y)p(p−1)/2 for all x, y ∈ B. In particular, for all x, y ∈ B[p],

γ (xy)= s(xy)p Ap
= (s(x)s(y))p Ap

= γ (x)γ (y)β(x, y)p(p−1)/2.

Thus γ is a homomorphism if and only if β(x, y)p(p−1)/2
∈ Ap. If p = 2 then

p(p− 1)/2= 1, proving (iii). For p odd, we use Lemma 3.5 to see that β(x, y) ∈
A[p] for all x, y ∈ B[p], so the term β(x, y)p(p−1)/2 vanishes. �

Proof of Proposition 3.4. Let A, B be nontrivial abelian p-groups, A cyclic and
B noncyclic. By hypothesis and Lemma 3.7(i), γ (x) 6= 1 for all x ∈ B[p], x 6= 1.
Therefore, if γ is a homomorphism then it is injective, in contradiction to A being
cyclic and B noncyclic. Hence, γ is not a homomorphism. By parts (ii) and (iii) of
Lemma 3.7, we have p= 2 and an element a := β(x, y) 6∈ A2 for some x, y ∈ B[2].
By Lemma 3.5, a ∈ A[2] \ A2 and hence |A| = 2. �

4. Examples

Suppose we are in the setup described in Section 2. In particular, α ∈ Br(K ),
χ ∈ Hom(GK ,1/0), and M is the fixed field of kerχ , an abelian extension of K .
In this section we provide examples of noncrossed products with the smallest
possible indices in fibers over noncyclic χ .

For p ∈P, let psp(M) denote the number of p-power roots of unity in M . If α+χ
has index equal to |χ |, then the division algebra contained in α+ χ is a crossed
product, because α is split by M . Therefore, noncrossed products of index p2 are
possible only if |χ | = p, in particular only if χ is cyclic.

Suppose χ is noncyclic with |χ | = p2. If bp(χ) = 0, then the fiber over χ
contains infinitely many noncrossed products of index p|χ |. By Theorem 1.2, this
happens, for example, whenever sp(M)= 0. We give examples of bicyclic χ with
|χ | = p2 and bp(χ)= 0 but sp(M)≥ 1. Note that such a phenomenon is in contrast
to the case of cyclic χ , for which one always has bp(χ)≥ sp(M) (see [Hanke and
Sonn 2011]).

For p = 2, an example as described above was given over K = Q in [Hanke
2004] and over K = Fq(t) for all q ≡ 3 (mod 8) in [Coyette 2012, Example 2.8].
These turn out to be special cases of our Examples 4.1 and 4.3 below.

We start with K =Q and p = 2:

Example 4.1. Let q, ` be odd primes such that q ≡ 3 (mod 4), q 6≡ −` (mod 8),
and q is a nonsquare modulo `. Note that for any odd prime `, a suitable q can be
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chosen using Dirichlet’s theorem.7 Let M :=Q(
√

q,
√
−`). Corollary 2.17 applied

with S = {`} and the following claim show bp(χ)= 0.

Claim. The extension M/Q has no isolated primes and there is no 2-cover L of
M/K with local degree [L : M]` = 2.

Proof. Set K1 := Q(
√

q), K2 := Q(
√
−`) and let χ be a character for which the

fixed field of kerχ is M .
We first check that M/Q has no isolated primes. The prime ` ramifies in K2 and

is inert in K1, so [M :Q]` = 4.

Case ` ≡ 3 (mod 4): By reciprocity, ` is a square modulo q, and hence −` is
a nonsquare modulo q. The prime q thus ramifies in K1 and is inert in K2, so
[M :Q]q = 4.

Case ` ≡ 1 (mod 4): Since q 6≡ −` (mod 8), we have Q2(
√

q) 6= Q2(
√
−`), so

[M :Q]2 = 4. In any case, M/Q has no isolated prime.

Now assume L is a 2-cover of M/Q with full local degree at `. Since K1 is real and
M is not, M/K1 does not have a cyclic 2-cover. Since q ≡ 3 (mod 4), −1 is not
a square in Qq . This implies that Qq does not have any totally ramified degree-4
extension, so that any ramified quadratic extension of Qq cannot have a cyclic
2-cover. Thus, globally, K1/Q does not have a cyclic 2-cover. The inertia field
of ` in L/Q contains K1 and is cyclic over Q, and thus is equal to K1. This is a
contradiction because L is then a cyclic 2-cover of M/K1. �

Remark. (i) Suppose M/Q is as in Example 4.1. Consider α ∈ Br(Q) such that
indα = 8 and indαQ(χ)

= 2. Since ` is not 2-isolated in M/Q, we can find such
an α with ind` α = 8. Since M/Q does not have a 2-cover L with [L : M]` = 2,
no 2-cover of M/Q splits α. Hence, the underlying division algebra of α+χ is a
noncrossed product of index 8.

(ii) In Example 4.1 we can choose (`, q)= (3, 11), (5, 7), (7, 3), etc. The example
in [Hanke 2004] is the case `= 7 and q = 3.

We now turn to arbitrary global fields K and a prime p 6= char K . Example 4.1
does not generalize immediately because its proof uses a real prime. The following
argument uses a third finite prime instead of a real prime:

Proposition 4.2. Let K be a global field and let p ∈ P with p 6= char K . Assume
s := sp(K ) > 0. Let p be any prime of K with p - N (p). There exists a bicyclic
extension M/K with group C ps × C ps and without isolated primes such that no
p-cover L of M/K has [L : M]p = p.

7Using the reciprocity law, it is also possible to choose a suitable ` for any prime q ≡ 3 (mod 4).
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Proof. By Chebotarev’s density theorem, there are primes q1, q2 of K such that
N (qi )≡ 1 (mod ps) but N (qi ) 6≡ 1 (mod ps+1). By the Grunwald–Wang theorem,
there are cyclic extensions Ki/K of degree [Ki : K ] = ps such that in K1, p is inert,
q1 is totally ramified, and q2 splits completely; and in K2, q1 is inert and p and q2

are totally ramified. Since p and q1 both have full local degree in M , M/K has no
isolated primes.

Since N (q1) 6≡ 1 (mod ps+1) and q1 is totally ramified in K1/K , K1/K does
not have a cyclic p-cover. Similarly, considering q2, M/K1 does not have a cyclic
p-cover.

Assume on the contrary there is a p-cover L of M/K with [L : M]p = p. Since
the inertia field of p contains K1 and is cyclic over K , it equals K1. This shows
that L is a cyclic p-cover of M/K1, a contradiction. �

Example 4.3. Let p ∈P and K = Fq(t) for q ≡ 1 (mod p), so that s := sp(K ) > 0.
Assume a 6∈ (K×)p. Let M = K

(
ps√

t, ps√
(t − 1)(t − a)

)
. By the following claim,

the proof of Proposition 4.2 applies to M and the primes p= (t−a), q1 = (t), q2 =

(t − 1). Therefore, bp(χ)= 0 for any χ for which M is the fixed field of kerχ .

For q ≡ 3 (mod 4) and p = 2, Example 4.3 is identical to [Coyette 2012,
Example 2.8].

Claim. Let K1 = K ( ps√
t), K2 = K

(
ps√
(t − 1)(t − a)

)
. Then (t − a) is inert in K1

and totally ramified in K2, (t) is totally ramified in K1 and inert in K2, and (t − 1)
splits completely in K1 and is totally ramified in K2.

Proof. In K1 we have: t ≡ a (mod t−a) is not a p-th power and t ≡ 1 (mod t−1)
is a ps-th power, and hence (t − a) is inert, (t − 1) splits completely, and (t) is
totally ramified.

In K2 we have: (t − 1)(t − a)≡ a (mod t) is not a p-th power, and hence (t) is
inert and (t − 1), (t − a) are totally ramified. �
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