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Double Dirichlet series
and quantum unique ergodicity

of weight one-half Eisenstein series
Yiannis N. Petridis, Nicole Raulf and Morten S. Risager

The problem of quantum unique ergodicity (QUE) of weight 1
2 Eisenstein series

for 00(4) leads to the study of certain double Dirichlet series involving GL2

automorphic forms and Dirichlet characters. We study the analytic properties of
this family of double Dirichlet series (analytic continuation, convexity estimate)
and prove that a subconvex estimate implies the QUE result.

1. Introduction

An important problem of quantum chaos is to describe the behavior of eigenfunctions
of Laplacians φλ with eigenvalue λ, as λ → ∞. This problem has a rich and
interesting history; see [Shnirelman 1974; Zelditch 1987; Colin de Verdière 1985;
Zelditch 1992; Lindenstrauss 2006; Soundararajan 2010a], for example. For the
weight 0 Eisenstein series E(z, s) on the surface SL2(Z)\H, Luo and Sarnak [1995]
determined the asymptotic behavior of the measures

dµt(z)= |E(z, 1
2 + i t)|2 dµ(z)

on compact sets. Here dµ(z)=dx dy/y2 denotes the volume element corresponding
to the hyperbolic metric on the upper half-plane H. The main input in doing so
was subconvex bounds on certain standard GL1 and GL2 L-functions, namely
the Riemann zeta function and the L-function of a Maaß cusp form. Their work
was later generalized to the corresponding micro-local lifts [Jakobson 1994] and
other arithmetic symmetric spaces [Koyama 2000; Truelsen 2011]. Also for these
generalizations, subconvex bounds were at the heart of the proofs. In [Petridis et al.
2013] we studied similar questions for scattering states.

In this paper we study the analogous problem for Eisenstein series of weight 1
2 .

To be precise: Let E(z, s, 1
2) be the weight 1

2 Eisenstein series at the cusp infinity for
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the group 0=00(4) (see Section 3). We study the limiting behavior as |t |→∞ of

dµt(z)= |E(z, 1
2 + i t, 1

2)|
2 dµ(z). (1-1)

Since the Fourier coefficients φn(s, 1
2) of E(z, 1

2 + i t, 1
2) are essentially values

of Dirichlet L-functions on the critical line — see (3-3) — and, therefore, are not
multiplicative, the problem is much harder. The Rankin–Selberg convolutions that
appear are not factored into standard L-functions. Instead, we find that certain
double Dirichlet series play a crucial role. The relevant double Dirichlet series are
the following.

Let χ , χ ′ be characters mod 8, and let tn be either the eigenvalue of the Hecke
operator Tn for a weight 0 Maaß form ψ on 00(4)\H or tn = τ(n) be the divisor
function. Let s0(1 − s0) be the corresponding Laplace eigenvalue of ψ , with
<(s0)≥

1
2 , and if tn = τ(n) let s0 =

1
2 .

We then define

Z(s, w, χ, χ ′)= ζ2(4s− 1)
∞∑

n=1
(n,2)=1

χ(n)tn L∗(2w− 1
2 , n, χ ′)

ns−w+ 1
2

, (1-2)

where L∗(w, n, χ)= q(w, n, χ)L2(w, χn0χ). Here n0 is the squarefree part of n,
χn0(c)=

( n0
c

)
and L2(w, χn0χ) is the standard L-function with the 2-factor removed.

The functions q(w, n, χ) are explicitly given so-called “correction polynomials”;
see (2-7) below. The function L∗(w, n, χ) may seem strange at first, but it occurs
naturally as the n-th Fourier coefficient of the Eisenstein series of weight 1

2 , and it
has many nice properties. See, for example, [Shimura 1973] or Section 3 below.

Friedberg and Hoffstein [1995] have studied a Rankin–Selberg integral (see
(3-13) below) which turns out to be a linear combination of Z(s, w, χ, χ ′) and
Z(s, w, χ, χ4χ

′), where χ4 is the primitive character mod 4. They observed that
this admits meromorphic continuation and that certain linear combinations have
a pole at (s, w) = (3

4 ,
3
4) (in our normalization). They did this in order to prove

nonvanishing of quadratic twists of GL2-L-functions at the central point.
Furthermore similar series with higher-order twists instead of the quadratic

characters χn0 were studied by Brubaker, Bucur, Chinta, Frechette and Hoffstein
[Brubaker et al. 2004] in order to prove nonvanishing of higher-order twists. To un-
derstand the new series Z(s, w, χ, χ ′) we follow essentially the program introduced
in [Bump et al. 1996] to prove the following.

The series defining Z(s, w, χ, χ ′) converges absolutely and uniformly in cer-
tain regions in C2, and hence defines an analytic function there. The functions
Z(s, w, χ, χ ′) admit meromorphic continuation to C2 and they satisfy a group of
functional equations generated by

α : (s, w) 7→ (s, 1−w), β : (s, w) 7→ (w, s).
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The functions Z(s, w, χ, χ ′) grow at most polynomially for (<(s),<(w)) in com-
pact sets. For the precise form of the functional equations we refer to Theorems
2.11 and 2.13. The group of functional equations is isomorphic to the dihedral
group of order 8. A similar result for higher-order twists may be found in [Brubaker
et al. 2004].

We want to investigate the growth of Z(s, w, χ, χ ′) in s and w. The notions of
analytic conductor and subconvexity are not completely well established for general
multiple Dirichlet series. Certain cases are dealt with in [Blomer 2011; Blomer
et al. 2014] but a general theory is missing.

To define these notions in the present case we note that when <(s),<(w) > 3
4

the function Z(s, w, χ, χ ′) has a representation

Z(s, w, χ, χ ′)=
∞∑

c=1
(c,2)=1

χ ′(c)L∗∗(s−w+ 1
2 , ψ, c, χ)

c2w−1/2 , (1-3)

where L∗∗(s, ψ, c, χ)=Q∗(s, c, χ)L2(s, ψ⊗χ̃c0χ) (see (2-19) and Theorem 2.13).
Here c0 is the squarefree part of c, χ̃c0(n)=

( n
c0

)
and L2(s, ψ⊗χ̃c0χ) is the standard

L-function with the 2-factor removed. The functions Q∗(s, c, χ) are explicitly given
so-called “correction polynomials”; see (2-20) below.

When proving bounds on standard L-functions one usually normalizes the coef-
ficients to be essentially bounded, at least on average. In our case it is not so clear
how to do that since the true size of L∗∗(s, ψ, c, χ) is known only conjecturally.
If the generalized Lindelöf hypothesis is true the coefficients of the series (1-3)
are essentially bounded. We investigate what happens when this is true on average
(over c). To be precise: we want to know what bound on Z(s, w, χ, χ ′) can be
proved if we assume that the coefficients are essentially bounded, i.e., if∑

c≤X
(c,2)=1

|L∗∗(s, ψ, c, χ)| = O(X1+ε(1+ |s|)ε). (1-4)

Using the properties of Q∗(s, c, χ) we will see that this follows from assuming∑
1≤c0≤X
c0 odd,

squarefree

|L2(s, ψ ⊗ χ̃c0χ)|
2
= O(X1+ε(1+ |s|)ε) when <(s)= 1

2 . (1-5)

Also, it is easy to see that (1-4) implies (1-5) with the exponent 2 replaced by a 1.
In particular it implies the generalized Lindelöf hypothesis in the t parameter.

We now define the analytic conductor of Z( 1
2 + i t, 1

2 + iu, χ, χ ′) to be

q(t, u)= (1+ |t |)(1+ |t + u|)2(1+ |u|). (1-6)



1542 Yiannis N. Petridis, Nicole Raulf and Morten S. Risager

Using an approximate functional equation argument for Z(s, w, χ, χ ′) we can
prove the following bound on the critical line.

Theorem 1.1. Assume (1-4). Then

Z(1
2 + i t, 1

2 + iu, χ, χ ′)= Oψ(q(t, u)
1
4+ε). (1-7)

Unconditionally,

Z( 1
2 + i t, 1

2 + iu, χ, χ ′)= Oψ

((
q(t, u)(1+ |t − u|)2

) 1
4+ε
)
. (1-8)

Remark 1.2. We call the unconditional bound (1-8) the trivial bound. The condi-
tional bound (1-7) is called the convexity bound. Any bound O(q(t, u)

1
4−δ) with

δ > 0 is called a subconvex bound with saving δ. If δ = 1
4 − ε is permitted, we say

that Z(s, w, χ, χ ′) admits a Lindelöf-type bound. In the theory of L-functions, the
notion of convexity and subconvexity is standard and has numerous applications;
see, e.g., [Iwaniec and Kowalski 2004].

Remark 1.3. We note that even proving the trivial bound requires strong input. In
particular, in order to prove Theorem 1.1 (1-8), we need the Lindelöf hypothesis
on average in the conductor aspect for L(s, χn), and the convexity estimate in the
s aspect. This bound is available, as follows from Heath-Brown’s famous large
sieve inequality for quadratic characters (2-28); see (2-29) below.

Also, we note that we can prove unconditionally (see Lemma 3.2 below) that, if
{tn} comes from a cusp form,

Z(1
2 + i t, 1

2 − i t, χ, χ ′)+ bZ( 1
2 + i t, 1

2 − i t, χ, χ ′)= Oψ(q(t,−t)
1
4+ε).

Here b is the product of the sign of χ and the sign of the cusp form. We note that
this is of the same order as the convexity estimate above without assuming (1-4).

Remark 1.4. For special configurations of s, w (in our case s−w constant) the
trivial bound and the convexity bound coincide. This is because, in this case, (1-5)
follows from Heath-Brown’s estimate (2-30).

We emphasize that our notion of convexity is different from that of Blomer,
Goldmakher and Louvel [Blomer 2011; Blomer et al. 2014]. What we call the
trivial bound corresponds to what they call the convexity bound.

Remark 1.5. Even though we cannot prove it, it is not unreasonable to expect
subconvexity for Z(s, w, χ, χ ′)! Double Dirichlet series similar to Z(s, w, χ, χ ′)—
with degree-one L-functions as coefficients — are known to satisfy subconvex
bounds [Blomer 2011; Blomer et al. 2014]. (Blomer et al. [2014] consider a
configuration such that the bound they prove would be considered a subconvex bound
also by our definition. Likewise the bound proved in [Blomer 2011, Theorem 1] is
a subconvex bound by our definition if one restricts to s = 1

2 or w = 1
2 .)
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Furthermore, it is known that on average the double Dirichlet series considered
by Blomer admits Lindelöf-type bounds [Blomer 2011, Theorem 2] in the (s, w)
aspect. In the conductor aspect (which is here the conductor related to the form with
eigenvalues {tn}), Hoffstein and Kontorovich [2010, (1.23)] conjecture Lindelöf-type
bounds to hold.

Theorem 1.6. Assume that, for all χ ,χ ′, {tn} the function Z(s, w, χ, χ ′) admits a
subconvex bound. Then, for any compact Jordan measurable subsets A and B of
0\H, we have ∫

A|E(z,
1
2 + i t, 1

2)|
2 dµ(z)∫

B |E(z,
1
2 + i t, 1

2)|
2 dµ(z)

→
vol(A)
vol(B)

as |t | →∞. (1-9)

Remark 1.7. Theorem 1.6 is the analogue of the Luo–Sarnak theorem [1995] for
the weight 0 Eisenstein series. Their theorem, however, is unconditional, as in their
case subconvex bounds for standard GL1 and GL2-L-functions are readily available.
As in that paper, we really prove — conditionally on any subconvex bound — the
asymptotic result∫

A
|E(z, 1

2 + i t, 1
2)|

2 dµ(z)∼
4

vol(0\H)
vol(A) log|t | as |t | →∞. (1-10)

In contrast to the case of quantum unique ergodicity of Maaß cusp forms, the rate
of convergence in (1-10) is very slow. As in [Luo and Sarnak 1995] one can prove
O(log t/ log log t).

It is understood in many arithmetic cases that the equidistribution of masses is
implied by subconvexity bounds for appropriate L-functions of degree 8; see, e.g.,
[Sarnak 2011; Soundararajan 2010b; Nelson et al. 2014].

Remark 1.8. The structure of the paper is as follows. In Section 2 we study
the double Dirichlet series Z(s, w, χ, χ ′) which arise when we address QUE of
the weight 1

2 Eisenstein series E(z, s, 1
2). In Section 3 we review the theory for

E(z, s, 1
2) with explicit computations. In Section 4, which is the main section of the

paper, we analyze (1-10) by splitting it into a cuspidal contribution and incomplete
Eisenstein series contributions. For example, in the cuspidal space we find that, for
a cusp form ψ with eigenvalue s0(1− s0), the integral∫

0\H

ψ(z)|E(z, 1
2 + i t, 1

2)|
2 dµ(z) (1-11)

equals a linear combination of terms of the form

cχ,χ ′±(s, w)Z(s, w, χ, χ
′)

1

0(w± 1
4)

∫
∞

0
W0,s0−

1
2
(2y)W

±
1
4 ,w−

1
2
(2y)ys−1 dy

y
(1-12)
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evaluated at (s, w) = ( 1
2 + i t, 1

2 − i t). Here cχ,χ ′±(s, w) are functions which can
easily be understood when <(w) = <(s) = 1

2 , and Wµ,ν are Whittaker functions.
In the Appendix we analyze the Mellin transform of the product of Whittaker
functions.

We can then deal with (1-12) using bounds on Z(s, w, χ, χ ′). To deal with
the cuspidal space we need subconvexity for Z(1

2 + i t, 1
2 − i t, χ, χ ′), with tn

corresponding to Hecke eigenvalues for Maaß forms. For the incomplete Eisenstein
series a similar analysis shows that we need the same type of bound for tn = τ(n),
the divisor function, for all configurations of s and w. We also use Zagier’s theory
of Rankin–Selberg integrals for functions not of rapid decay.

Remark 1.9. Although the analytic continuation of

I (s, w)=
∫
0\H

ψ(z)E(z, w, 1
2)E(z, s̄, 1

2) dµ(z)

(of which (1-11) is a special case) follows from the well-known analytic properties
of E(z, w, 1

2), its growth/decay properties jointly in (s, w) are less clear. This is
why we have to unfold and eventually analyze Z(s, w, χ, χ ′) to see that the above
integral is O(|t |−δ) for s = 1−w = 1

2 + i t when |t | →∞, assuming subconvexity
with saving δ. The Maaß–Selberg relation gives an upper bound (see, e.g., (3-15)
below), but this is not good enough to prove Theorem 1.6.

Remark 1.10. One could speculate whether the implication in Theorem 1.6 could
be reversed, i.e., to what extent bounds on integrals like (1-11) would imply bounds
on Z(s, w, χ, χ ′) via the expression (1-12). Such speculation is problematic at
least for the following reason. We have good control over the asymptotics of the
Mellin transform (see, e.g., Lemma A.1) but since integrals like (1-11) are linear
combinations of terms of the form (1-12), we cannot conclude from bounds on
integrals like (1-11) the same bounds on the individual summands. We elaborate
on this in Lemma 3.2 and Remark 3.3 below.

2. A double Dirichlet series

In this section we define and prove various properties of the double Dirichlet series.
To derive its meromorphic continuation and functional equation we proceed as in
[Brubaker et al. 2004], but with some simplifications and refinements. We show, for
instance, that knowing optimal bounds towards the Ramanujan–Petersson conjecture
is not necessary to get optimal regions of convergence. To prove the convexity
bounds we use a combination of techniques from [Blomer 2011; Blomer et al. 2014].
Although the techniques we use are certainly known to the experts in the field, we
were not able to find precise enough statements in the existing literature for the
double Dirichlet series (1-2).
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We start by introducing some notation and deriving some basic results about
Gauss sums and Dirichlet series involving Gauss sums.

Let {tn}n∈N be the coefficients of the normalized L-function of a self-dual GL2

automorphic form ψ . For good primes — and we assume that only p = 2 could
potentially be a bad prime — the Satake parameters αp, βp satisfy αp + βp = tp,
αp ·βp = 1 and

tpλ =

λ∑
j=0

α j
pβ

λ− j
p =

αλ+1
p −βλ+1

p

αp −βp
. (2-1)

The Fourier coefficients satisfy the Ramanujan–Petersson conjecture on average,
since the Rankin–Selberg method gives∑

|n|≤X

|tn|2 ∼ C X (2-2)

as X→∞. Here C is an explicit constant; see, e.g., [Iwaniec 2002, (8.15)]. The
corresponding p-factor, i.e., the local L-function, is given by

L(p)(s, ψ)=
∞∑
λ=0

tpλ

pλs = (1− tp p−s
+ p−2s)−1

= (1−αp p−s)−1(1−βp p−s)−1.

Similar but easier identities and estimates are true for the divisor function tn = τ(n),
where αp = βp = 1.

For any L-function we will write L(p)(s) for its corresponding p-factor and
L2(s) for the L-function with the 2-factor removed.

2A. Gauss sums and some related series. We now recall a few basic relevant
results about Gauss sums for real characters. Let n, d be integers with d odd and
positive and let

( n
d

)
be the Jacobi–Legendre symbol(n

d

)
=

∏
pv‖d

( n
p

)v
,

where for an odd prime p we denote by
( n

p

)
the usual Legendre symbol. The

symbol
( n

d

)
is then extended to all odd d ∈ Z as in [Shimura 1973, p. 442]; see also

[Koblitz 1984, p. 147, 187–188].
For an integer n and a positive odd integer d we define Gauss sums

Gn(d) :=
∑

m mod d

(m
d

)
e
(nm

d

)
. (2-3)

Here e(x) = e2π i x . Gauss ingeniously proved that for odd squarefree d we have
G1(d) = εd

√
d, where εd = 1 if d ≡ 1 (mod 4) and εd = i if d ≡ −1 (mod 4).
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Quadratic reciprocity states that for relatively prime odd positive integers n, d ,(n
d

)(d
n

)
= (−1)

n−1
2

d−1
2 . (2-4)

It is elementary to verify that the right-hand side equals εnεd/εnd . For odd d it
turns out to be convenient to consider

Hn(d) := ε−1
d Gn(d).

Proposition 2.1. The function Hn(d) has the following properties:

(1) For fixed n, Hn(d) is multiplicative, i.e., if d1, d2 are coprime odd positive
integers, then

Hn(d1d2)= Hn(d1)Hn(d2).

(2) If (n1, d)= 1, then

Hn1n2(d)=
(

n1

d

)
Hn2(d).

(3) Let α, β be nonnegative integers and let p be an odd prime. Then

Hpα (pβ)=


φ(pβ) if α ≥ β, β ≡ 0 (mod 2),
pβ−

1
2 (δβ≡1 (mod 2)− p−

1
2 δβ≡0 (mod 2)) if α = β − 1,

0 otherwise.

Proof. (1) follows from the Chinese remainder theorem and quadratic reciprocity;
(2) from the fact that if (n1, d)= 1 then n1m runs through a set of representatives
mod d; and (3) from elementary considerations. �

We now compute
∞∑

c=1
(c,2)=1

χ(c)Hn(c)
c2s and

∞∑
n=1

(n,2)=1

tnχ(n)Hn(c)
ns , (2-5)

where χ is a character mod q with q|8. As we shall see later these sums occur
naturally in the Fourier coefficients of the weight 1

2 Eisenstein series of 00(4), and
in Rankin–Selberg-type integrals formed from these Eisenstein series.

For n odd and positive we denote

χ̃n(c)=
( c

n

)
,

which is a character mod n. When n is squarefree its conductor is n.
For c odd we denote

χn(c)=
(n

c

)
,
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which for n odd and squarefree has an extension to all c which is a character of
conductor |n| if n≡ 1 (mod 4) and 4|n| if n≡ 3 (mod 4). See [Koblitz 1984, p. 147,
187–188].

By quadratic reciprocity (2-4) we have, for odd positive m, n,

χn(m)= χ̃n(m)
{

1 if n ≡ 1 (mod 4),
χ4(m) if n ≡ 3 (mod 4),

(2-6)

where χ4 is the primitive character mod 4. We can write any nonzero integer n
uniquely as n = n0n2

1, where n0 is squarefree and n1 > 0. We define correction
polynomials as

q(s, n, χ)=
∏

26=p|n1

vp(n1)∑
β=0

1− δβ<vp(n1)χn0(p)χ(p)p
−s

p2β(s− 1
2 )

, (2-7)

where vp is the p-adic valuation. For χ=1, we sometimes write q(s, n)=q(s, n, χ).
We define

L∗(s, n, χ)= q(s, n, χ)L2(s, χn0χ). (2-8)

Lemma 2.2. We have

∞∑
c=1

(c,2)=1

χ(c)Hn(c)
c2s =

L∗(2s− 1
2 , n, χ)

ζ2(4s− 1)
.

Proof. Using multiplicativity of Hn(d) (Proposition 2.1) we see that the sum factors
into local factors. For a prime p 6= 2 we compute the corresponding factor

Rp(s)=
∞∑
β=0

χ(pβ)Hn(pβ)
pβ2s .

Write n = n′ pα, where (n′, p)= 1. Then using Proposition 2.1 (2), (3) we have

Rp(s)=
∞∑
β=0

( n′
pβ
)
χ(pβ)Hpα (pβ)

pβ2s =

∑
β=0
β even

αφ(p
β)

pβ2s +

( n′
pα+1

)
χ(pα+1)Hpα (pα+1)

p(α+1)2s

(2-9)
Consider first α even, in which case α = 2vp(n1). Then we find

Rp(s)= 1+
α∑
β=1
β even

pβ−1(p− 1)
pβ2s +

χn0(p)χ(p)p
α+ 1

2

p(α+1)2s ,
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noting that χn0(p)=
( n′

p

)
. By induction we find

Rp(s)=
L(p)(2s− 1

2 , χn0χ)

ζ (p)(4s− 1)

( α∑
β=0
β even

pβ(1−2s)
−

α−2∑
β=0
β even

χn0(p)χ(p)p
−(2s− 1

2 ) pβ(1−2s)
)
.

Here we have used χ2
n0
(p)= 1.

Returning to (2-9), we assume instead that α is odd, in which case α−1=2vp(n1).
We find that in this case

Rp(s)= 1+
α∑
β=1
β even

pβ−1(p− 1)
pβ2s +

−pα

p(α+1)2s

= (1− p−(4s−1))

α−1∑
β=0
β even

pβ(1−2s) ,

where again we have used induction. Using that, for α odd, χn0(p)= 0, we may
write this as

Rp(s)=
L(p)(2s− 1

2 , χn0χ)

ζ (p)(4s− 1)

α−1∑
β=0
β even

pβ(1−2s).

Since χn0(p)= 0, we arrive at the desired result. �

Proposition 2.3. The function q(s, n, χ) has the following properties:

(1) If n is squarefree, then q(s, n, χ)= 1.

(2) If n = n0n2
1 with n0 squarefree and n0, n1 odd, then

q(s, n, χ)= (n2
1)

1
2−sq(1− s, n, χ).

(3) If <(s)≥ 1
2 , then q(s, n, χ)= O(nε) uniformly in <(s).

Proof. These statements are all straightforward to verify from the definition. (1) is
clear and (2) is easily verified by considering factors. Trivial estimates for <(s)≥ 1

2
lead to |q(s, n, χ)| ≤ 2#{p|n}τ(n), which gives (3). �

Write c= c0c2
1 with c0 squarefree and set v= vp(c1). We then define, for odd c,

Qψ(s, c, χ)=
∏
p|c1

tp2v − tp2v−1 χ̃c0(p)χ(p)(p
1−s
+ ps)/p+ tp2v−2 χ̃c0(p)

2/p

p2v(s− 1
2 )

.

(2-10)
Sinceψ is fixed, we shall often omit it from the notation and simply write Q(s, c, χ).
We define

L∗(s, c, ψ, χ) := Qψ(s, c, χ)L2(s, ψ ⊗ χ̃c0χ). (2-11)
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Lemma 2.4. Let c be an odd natural number. Then
∞∑

n=1
(n,2)=1

tnχ(n)Hn(c)
ns =

√
cL∗(s, c, ψ, χ).

Proof. A similar computation can be found in [Brubaker et al. 2004, Section 3].
We first show that the Dirichlet series factors into local factors. For p an odd
prime, write c = c′ pl with (c′, p) = 1, and m = pvp(m)m/pvp(m). Then using
Proposition 2.1 (1) and (2) we find

Hm(c)=
(

m/pvp(m)

pl

)(
pvp(m)

c′

)
Hpvp (m)(pl)Hm/pvp (m)(c′).

Writing m = npλ, we can write the Dirichlet series as

∞∑
n=1

(n,2p)=1

∞∑
λ=0

tnpλχ(npλ)
(npλ)s

Hnpλ(c
′ pl)

=

∞∑
n=1

(n,2p)=1

tnχ(n)Hn(c′)
( n

pl

)
ns

( ∞∑
λ=0

tpλχ(pλ)
pλs Hpλ(p

l)

(
pλ

c′

))
.

Repeating this argument for every prime p, it follows that the series factors as

∏
p 6=2

( ∞∑
λ=0

tpλ

pλs Hpλ
(

pvp(c)
)( pλ

c/pvp(c)

)
χ(pλ)

)
. (2-12)

We now compute the local factors of (2-12), i.e., we compute, for p 6= 2,

∞∑
λ=0

tpλχ(pλ)
pλs Hpλ(p

l)

(
pλ

c′

)
, (2-13)

where l = vp(c) and c′ = c/pvp(c). If l = 0 the sum reduces to

∞∑
λ=0

tpλχ(pλ)
pλs

(
pλ

c

)
= L(p)(s, ψ ⊗ χ̃c0χ),

where we have used that χ̃c(p)= χ̃c0(p) if (p, c)=1. Here c0 denotes the squarefree
part of c.

If l > 0 is even we use Proposition 2.1 (3) to see that in this case (2-13) is equal
to (

−
tpl−1 pl−1χ(pl−1)

p(l−1)s

(
pl−1

c′

)
+

∞∑
λ=l

tpλ pl−1(p− 1)χ(pλ)
pλs

(
pλ

c′

))
. (2-14)
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For tn being a Hecke eigenvalue we can use the Satake parameters and evaluate the
resulting geometric sums to see that

∞∑
λ=l

tpλχ(pλ)
pλs

(
pλ

c′

)

=
1

αp −βp

∞∑
λ=l

αλ+1
p −βλ+1

p

pλs χ(pλ)
(

pλ

c′

)

=
1

αp −βp

(
αl+1

p

pls (1−αp

(
p
c′

)
χ(p)p−s)−1

−
βl+1

p

pls (1−βp

(
p
c′

)
χ(p)p−s)−1

)
(where we have used

(( p
c′
)
χ(p)

)l
= 1),

=
L(p)(s, ψ ⊗ χ̃c0χ)

pls

·
1

αp −βp

(
αl+1

p

(
1−βp

(
p
c′

)
χ(p)p−s

)
−βl+1

p

(
1−αp

(
p
c′

)
χ(p)p−s

))
=

L(p)(s, ψ ⊗ χ̃c0χ)

pls (tpl − tpl−1

(
p
c′

)
χ(p)p−s). (2-15)

This is also true when tn = τ(n) by a similar computation, which we omit.
It follows that (2-14) can be written as

pl−1
[
−tpl−1

p(l−1)s χ̃c0(p
l−1)χ(pl−1)

+
L(p)(s, ψ⊗χ̃c0χ)

pls (p−1)
(

tpl−tpl−1

(
p
c′

)
χ(p)p−s

)]
= pl−1 L(p)(s, ψ⊗χ̃c0χ)

pls

[
−tpl−1

p−s χ̃c0(p
l−1)χ(pl−1)

(
1−tpχ̃c0(p)χ(p)p

−s
+p−2s)

+(p−1)
(

tpl−tpl−1

(
p
c′

)
χ(p)p−s

)]
= pl/2 L(p)(s, ψ⊗χ̃c0χ)

pl(s− 1
2 )+1

[ptpl−tpl−1 χ̃c0(p)χ(p)(p
1−s
+ps)+tpl−2],

using that the Hecke-eigenvalues satisfy tpl−1 tp = tpl + tpl−2 .
If instead l > 0 is odd we can again use Proposition 2.3 (3) and we find that in

this case (2-13) is equal to

tpl−1

p(l−1)s pl− 1
2

(
pl−1

c′

)
χ(pl−1)=

tpl−1

p(l−1)(s−1)− 1
2

.
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We note also that χ̃c0(p) =
( p

c0

)
= 0 since by l being odd we may conclude that

c0 is divisible by p. It follows that, in this case, L(p)(s, ψ ⊗ χ̃c0χ) = 1, and we
conclude that (2-13) can be written as

pl/2tpl−1

p(l−1)(s− 1
2 )

L(p)(s, ψ ⊗ χ̃c0χ),

which gives the desired result in this case. �

Proposition 2.5. The function Q(s, c, χ) has the following properties:

(1) If c is squarefree, then Q(s, c, χ)= 1.

(2) If c = c0c2
1 with c0 squarefree and c0, c1 odd, then

(c2
1)

1−2s Q(1− s, c, χ)= Q(s, c, χ).

Proof. Statement (1) is clear and (2) is easily verified by considering factors. �

We would like to have bounds analogous to Proposition 2.3 (3). Any bound of the
form |tpl | ≤ τ(pl)pθl implies that, when <(s)≥ 1

2 ,

|Q(s, c, χ)| ≤ τ(c)4#{p|c}cθ = O(cθ+ε). (2-16)

The Ramanujan–Petersson conjecture will give the strongest bound with θ = 0.
Since the Ramanujan–Petersson conjecture is true on average by (2-2), we can
prove that Q(s, c, χ) is bounded on average:

Lemma 2.6. For <(s)≥ 1
2 we have∑
c≤X,
c odd

|Q(s, c, χ)|2 = O(X1+ε)

uniformly in s.

Proof. Write c = c0c2
1 with c0 squarefree and c odd. It is easy to see that

|Q(s, c, χ)| ≤
∏
p|c1

(∣∣tp2vp (c1)

∣∣+ 2
∣∣tp2vp (c1)−1

∣∣+ ∣∣tp2vp (c1)−2

∣∣)
≤

∏
p|c1

4 max
i=0,1,2

∣∣tp2vp (c1)−i

∣∣
= 4#{p|c1}|td0 |, where d0 is some divisor of c2

1.

It follows that

|Q(s, c, χ)|2 ≤ 16#{p|c1}|td0 |
2
≤ 16#{p|c}

∑
d|c

|td |2.
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Using the Ramanujan–Petersson conjecture on average, (2-2), and 16#{p|c}
= O(cε),

we find ∑
c≤X

|Q(s, c, χ)|2 = O
(

X ε
∑
c≤X

∑
d|c

|td |2
)

= O
(

X ε
∑
d≤X

|td |2#{c ≤ X | d divides c}
)

= O
(

X1+ε
∑
d≤X

|td |2

d

)
= O(X1+ε). �

We are now ready to define the double Dirichlet series. Let χ4 be the primitive
character mod 4, χ4(n) =

(
−1
n

)
= (−1)(n−1)/2 for (n, 2) = 1, and let χ8 be the

primitive character mod 8 given by χ8(n)=
( 2

n

)
= (−1)

1
8 (n−1)(n+1) for (n, 2)= 1.

Let χ , χ ′ be characters mod 8, i.e., χ , χ ′ are induced from 1, χ4, χ8, or χ4χ8. We
then define

Z(s, w, χ, χ ′)= ζ2(4s− 1)
∞∑

n=1
(n,2)=1

χ(n)tn L∗(2w− 1
2 , n, χ ′)

ns−w+ 1
2

. (2-17)

It is easy to see — using Proposition 2.3 (3) and (2-8) — that for <(2w − 1
2),

<(s−w+ 1
2) large enough the series is absolutely and locally uniformly convergent.

By Lemma 2.2 we see that

Z(s, w, χ, χ ′)= ζ2(4s− 1)ζ2(4w− 1)
∞∑

n=1
(n,2)=1

tnχ(n)

ns−w+ 1
2

∞∑
c=1

(c,2)=1

χ ′(c)Hn(c)
c2w .

Interchanging summations and using Lemma 2.4 we see that this equals

Z(s, w, χ, χ ′)= ζ2(4s− 1)ζ2(4w− 1)
∞∑

c=1
(c,2)=1

χ ′(c)L∗(s−w+ 1
2 , c, ψ, χ)

c2w− 1
2

.

(2-18)
Note that, since

ζ2(4s− 1)ζ2(4w− 1)=
∞∑

n=1
(n,2)=1

σ2−4(s−w+ 1
2 )
(n)

n2(2w− 1
2 )

,

we also have the series representation

Z(s, w, χ, χ ′)=
∞∑

c=1
(c,2)=1

χ ′(c)L∗∗(s−w+ 1
2 , ψ, c, χ)

c2w− 1
2

, (2-19)



Double Dirichlet series and quantum unique ergodicity of Eisenstein series 1553

where
L∗∗(s, ψ, c, χ)= Q∗(s, c, χ)L2(s, ψ ⊗ χ̃c0χ)

with
Q∗(s, c, χ)=

∑
l2|c

σ2−4s(l)Q(s, c/ l2, χ). (2-20)

Remark 2.7. The two representations (2-17), (2-18) will be instrumental in proving
meromorphic continuation of Z(s, w, χ, χ ′) to C2. The proof follows the strategy
outlined in [Bump et al. 1996; Diaconu et al. 2003]. The choice of arguments in
the definition of (2-17), 2w− 1

2 and s−w+ 1
2 , might seem a bit strange, but for

the purpose we have in mind it is the most natural one. We shall see that with this
choice the functional equations are especially simple.

2B. Functional equations of the standard L-functions. We now recall the func-
tional equations for the two L-functions L(s, χn0χ) and L(s, ψ ⊗ χ̃c0χ).

2B1. GL1. We will use the functional equation for L2(s, χn0χ) for n0 a squarefree
odd natural number, and χ mod 8: Let χ8

0 be the trivial character mod 8. We
have that χn0χ is odd precisely if χ = χ4χ

8
0 or χ = χ4χ8. Also it is known (see

[Davenport 2000, Chapter 5], for example) that χn0χ is induced from the primitive
character

(χn0χ)
∗
=



χn0 if n0 ≡ 1 (mod 4), χ = χ8
0 ,

χ4χ−n0 if n0 6≡ 1 (mod 4), χ = χ8
0 ,

χ4χn0 if n0 ≡ 1 (mod 4), χ = χ4χ
8
0 ,

χ−n0 if n0 6≡ 1 (mod 4), χ = χ4χ
8
0 ,

χ8χn0 if n0 ≡ 1 (mod 4), χ = χ8χ
8
0 ,

χ4χ8χ−n0 if n0 6≡ 1 (mod 4), χ = χ8χ
8
0 ,

χ4χ8χn0 if n0 ≡ 1 (mod 4), χ = χ4χ8χ
8
0 ,

χ8χ−n0 if n0 6≡ 1 (mod 4), χ = χ4χ8χ
8
0 .

It follows that

L(s, (χn0χ)
∗)=

(
δn0,χ

π

)1
2−s 0

( 1
2(1− s+ κχ )

)
0
( 1

2(s+ κχ )
) L(1− s, (χn0χ)

∗), (2-21)

where

κχ =

{
0 if χ = χ8

0 , χ8,

1 if χ = χ4χ
8
0 , χ4χ8,

δn0,χ =


n0 if χ = χ8

0 , n0 ≡ 1 (mod 4) or χ = χ4χ
8
0 , n0 6≡ 1 (mod 4),

4n0 if χ = χ8
0 , n0 6≡ 1 (mod 4) or χ = χ4χ

8
0 , n0 ≡ 1 (mod 4),

8n0 if χ = χ8, χ4χ8.

(2-22)

Note that all the functional equations are even, i.e., G1((χn0χ)
∗)

iκχ
√
δn0,χ

= 1.
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We have

L(s, χn0χ)=
∏

p
∣∣8n0/δn0,χ

(1− (χn0χ)
∗(p)p−s)L(s, (χn0χ)

∗)

and also

L2(s, χn0χ)= L2(s, (χn0χ)
∗)= L(s, (χn0χ)

∗)h2(s, n0, χ), (2-23)

where h2(s, n0, χ) is either 1, 1− 2−s , or 1+ 2−s . Since (χn0χ)
∗(2) depends only

on χ and n0 mod 8, h2 has the same dependence.

2B2. GL2. We now turn to L2(s, ψ⊗χ̃c0χ) for c0 a squarefree odd natural number,
and χ mod 8. The character χ̃c0 is primitive of conductor c0, and is even precisely
when χ̃c0(−1) = χ4(c0) = 1, i.e., when c0 ≡ 1 (mod 4). A reference on twisting
of automorphic forms (at least for modular forms) is [Iwaniec and Kowalski 2004,
Section 14.8].

We need to take special care of 2-factors. For any primitive automorphic form f
for GL2 we define a polynomial p2, f (z) of degree 1 or 2, depending on whether 2
is ramified or not, by

1
p2, f (z)

=

∞∑
j=0

t2 j ( f )z j , (2-24)

where tn( f ) are the coefficients of L(s, f ). In particular the 2-factor of L(s, f )
equals p−1

2, f (2
−s). If p2, f is of degree 2, p2, f (z)= (1−α2z)(1−β2z), the estimate

|α2|, |β2|<21/5 [Shahidi 1988, p. 549] shows that p2, f (±2−s) is uniformly bounded
away from 0 at <(s)≥ 1

2 . If p2, f (z) is of degree 1, the explicit value of t2 (= 0 or
±1/
√

2) shows that p2, f (±2−s) does not vanish on <(s)≥ 1
2 and, as a result,

1
p2, f (±2−s)

= O(1) (2-25)

uniformly in f when <(s)≥ 1
2 .

We assume now that ψ is primitive Maaß Hecke form for 00(4) with real
Fourier coefficients. The twisted function ψ ⊗χ is still a Hecke form with trivial
character χ2 but not necessarily primitive. Let g = (ψ ⊗χ)∗ be the primitive form
whose Fourier coefficients agree with those of ψ⊗χ except possibly at the 2-factor.
This is a cusp form of level N = Nψ,χ = 2 j , a divisor of 64. For fixed ψ there are 4
such forms g, as there are 4 characters mod 8. We have that L2(s, ψ⊗χ)= L2(s, g)
since the Fourier coefficients of g and ψ ⊗χ agree on odd numbers.

We now twist g by χ̃c0 . Since the conductor of χ̃c0 is relatively prime to the level
of g, the result is a primitive cusp form of level N · c2

0. The twisted L-function
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L(s, ψ ⊗ χ̃c0χ) agrees with L(s, g⊗ χ̃c0) outside the prime 2, so that

L2(s, g⊗ χ̃c0)= L2(s, ψ ⊗ χ̃c0χ).

We have the functional equation of g⊗ χ̃c0 :

L(s, g⊗χ̃c0)

= ε(g, χ̃c0)

(
Nc2

0

π2

)1
2−s ∏
ε∈{±1}

0
( 1

2(1−s+κχ,ψ,c0+ε(s0−
1
2))
)

0
(1

2(s+κχ,ψ,c0+ε(s0−
1
2))
) L(1−s, g⊗χ̃c0). (2-26)

This functional equation involves the root number ε(g, χ̃c0) that depends on c0

mod 8, as it is given by

ε(g)χ2(c0)χ̃c0(2
j )G(χ̃c0)

2/c0,

where ε(g) is the root number of g. We have

L2(s, ψ ⊗ χ̃c0χ)= H2(s, g, c0)L(s, g⊗ χ̃c0),

where
H2(s, g, c0)= p2,g⊗χ̃c0

(2−s)= p2,g(χ̃c0(2)2
−s). (2-27)

The dependence of H2(s, g, c0) on c0 is only mod 8, as it involves χ̃c0(2). We note
also that κχ,ψ,c0 = κχ,ψ χ̃c0(−1) depends only on c0 mod 4 since χ̃c0(−1)= χ4(c0).

Remark 2.8. In the GL1×GL1 case, i.e., if ψ = ψτ and tn = τ(n), we have

L(s, ψτ ⊗ χ̃c0χ) :=

∞∑
n=1

τ(n)χ̃c0χ(n)
ns = L(s, χ̃c0χ)

2.

We see (after using quadratic reciprocity) that the analogues of the results of this
section follow from Section 2B1.

2C. Average bounds on twisted L-functions. Before we can give the proof of the
meromorphic continuation we recall a few facts concerning the involved L-series.
We first recall an average bound on L-functions twisted with quadratic characters.
The main ingredient in proving such a bound is Heath-Brown’s large sieve estimate
for quadratic characters. He proves [1995, Theorem 1] that for any positive ε > 0
there exists a constant C > 0 such that for any positive integers M , N and for
arbitrary complex numbers a1, . . . , aN we have∑

m≤M

∗

∣∣∣∣∑
n≤N

∗

an

( n
m

)∣∣∣∣2 ≤ C(M N )ε(M + N )
∑
n≤N

∗

|an|
2. (2-28)

Here a ∗ means summation over positive odd squarefree integers. From this one
can prove the following.
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Theorem 2.9. For <(s)≥ 1
2 ,∑

1<d0≤X
d0 odd,

squarefree

|L(s, χd0χ)|
4
= O((X |s|)1+ε), (2-29)

∑
1<d0≤X
d0 odd,

squarefree

|L(s, ψ ⊗ χ̃d0χ)|
2
= O((X |s|)1+ε). (2-30)

The bound (2-29) is already in [Heath-Brown 1995, Theorem 2] and (2-30)
is essentially proved in the same way. See also [Soundararajan and Young 2010,
Section 2.3; Chinta and Diaconu 2005, Lemma 3.2]. These bounds give the Lindelöf
hypothesis on average in the character aspect, while keeping the convexity bound
in the s aspect when <(s)= 1

2 .

Remark 2.10. By considering 2-factors it is straightforward to see that the above
bounds (2-29) and (2-30) are true also if we remove 2-factors, i.e., replace L by L2.

2D. Meromorphic continuation and functional equations of Z(s,w, χ, χ ′). We
first analyze Z(s, w, χ, χ ′) from the representation (2-17).

Theorem 2.11. The function (w− 3
4)Z(s, w, χ, χ

′) is analytic in

D1 = {(s, w) : <(s−w) > 1
2 ,<(s+w) >

3
2},

and satisfies a functional equation α : (s, w) 7→ (s, 1−w) given by

(1−2−(3−4w))Z(s, w, χ, χ ′)=
0
( 1

2(
3
2−2w+κχ ′)

)
0
( 1

2(2w−
1
2+κχ ′)

) ∑
χ ′′mod 8

pχ ′′(w)Z(s,1−w,χ ′′,χ ′).

Here the pχ ′′(w) are polynomials in 2−w. In particular they are bounded in vertical
strips. Furthermore, away from w = 3

4 ,

Z(s,w,χ,χ ′)=
{

O((|w|+1)
1
4+ε) if 1

2 ≤<w ≤ K ,<(s−w)≥ 1
2+δ,

O((|w|+1)
1
4+1−2<(w)+ε) if −K ≤<w ≤ 1

2 ,<(s+w)≥
3
2+δ,

for any fixed K > 1
2 and δ > 0.

Remark 2.12. We shall see in the proof that the factor (w− 3
4) is only necessary

when χ ′ is trivial. We note also that the implied constant may depend on ψ .
Moreover, the bounds given above are not necessarily optimal. All we need for
Theorem 2.15 and Lemma 2.18 below is polynomial control.

Proof. We remark that the factor ζ2(4s − 1) appearing in (2-17) does not have a
pole in the region D1. Thus we only have to study the series from (2-17) to prove
the analytic properties of (w− 3

4)Z(s, w, χ, χ
′).
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We consider the regions where the series representation (2-17) is absolutely
convergent. We consider first the sum over all nonperfect squares (n 6= m2).

If <(w)≥ 1
2 (which corresponds to <(2w− 1

2)≥
1
2 ) we use (2-2), Theorem 2.9,

Proposition 2.3 (3), and Cauchy–Schwarz to see that, away from w = 3
4 ,∑

n≤X
n 6=m2

∣∣tnχ(n)q(2w− 1
2 , n, χ ′)L2(2w− 1

2 , χn0χ
′)
∣∣= O(X1+ε

|w|
1
4+ε). (2-31)

It follows that the nonperfect square contribution is convergent for <(s−w)≥ 1
2+δ

and <(w) ≥ 1
2 and that, in the region <(s −w) ≥ 1

2 + δ, <(w) ≥
1
2 , it is analytic

and bounded by O(|w|
1
4+ε).

For <(w) ≤ 1
2 , we use Proposition 2.3 (2) and the functional equation for

L2(2w − 1
2 , χn0χ

′) to see that the product q(2w − 1
2 , n, χ ′)L2(2w − 1

2 , χn0χ
′)

equals

n1−2w
(
δn0,χ ′

n0π

)1−2w0
( 1

2(
3
2−2w+κχ ′)

)
0
( 1

2(2w−
1
2+κχ ′)

)q(2(1−w)−1
2 ,n,χ

′)L2(2(1−w)− 1
2 ,χn0χ

′)

times a factor h2(2w− 1
2 , n0, χ)

/
h2(2(1−w)− 1

2 , n0, χ), which is bounded when
<(w)≤ 1

2 (recall (2-23) for the definition of h2). We notice that δn0,χ ′/n0 is 1, 4,
or 8, and that in bounded w-strips the quotient of 0-factors is O(|w|1−2<(w)). It
follows that in bounded w-strips and for <(w)≤ 1

2 we have∑
n≤X
n 6=m2

∣∣n2w−1tnχ(n)q(2w− 1
2 , n, χ ′)L2(2w− 1

2 , χn0χ
′)
∣∣

= O(|w|1−2<(w))
∑
n≤X

∣∣tnχ(n)q(2(1−w)− 1
2 , n, χ ′)L2(2(1−w)− 1

2 , χn0χ
′)
∣∣

= O(|w|
1
4+1−2<(w)+εX1+ε),

where in the last line we have used the same argument as used to bound (2-31). It
follows that when <(s+w) ≥ 3

2 + δ, <(w) ≤
1
2 the nonsquare contribution from

the series in (2-17) converges absolutely and that in this region this contribution is
analytic and bounded by O(|w|

1
4+1−2<(w)+ε).

We next consider the sum over all perfect squares n = m2,

L2(2w− 1
2 , χ

′)

∞∑
m=1

(m,2)=1

tnχ(n)q(2w− 1
2 ,m2, χ ′)

m2(s−w+ 1
2 )

.

Using Proposition 2.3 and (2-2) we easily see that the sum is convergent in

{(s, w) : <(s−w) > 0,<(s+w) > 1},
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and that the factor in front has a simple pole at w = 3
4 if χ ′ is trivial. That this

contribution has the desired growth properties follows from the convexity estimate
on L2(2w− 1

2 , χ
′).

Having established that (w− 3
4)Z(s, w, χ, χ

′) is analytic in D1, we now show
that it satisfies a functional equation here. For (s, w) in this region we use the
functional equation (2-21) and Proposition 2.3 and the subsequent discussion to see
that Z(s, w, χ, χ ′)/ζ2(4s− 1) equals
∞∑

n=1
(n,2)=1

tnχ(n)q(2w− 1
2 , n, χ ′)L2(2w− 1

2 , χn0χ
′)

ns−w+ 1
2

=

∞∑
n=1

(n,2)=1

n1−2w
(
δn0,χ ′

n0π

)1−2w h2(2w− 1
2 , n0, χ

′)

h2(2(1−w)− 1
2 , n0, χ ′)

0
( 1

2(
3
2 − 2w+ κχ ′)

)
0
( 1

2(2w−
1
2 + κχ ′)

)
·

tnχ(n)q(2(1−w)− 1
2 , n, χ ′)L2(2(1−w)− 1

2 , χn0χ
′)

ns−w+ 1
2

= π2w−10
( 1

2(
3
2 − 2w+ κχ ′)

)
0
( 1

2(2w−
1
2 + κχ ′)

) ∞∑
n=1

(n,2)=1

h2(2w− 1
2 , n0, χ

′)

h2(2(1−w)− 1
2 , n0, χ ′)

(
δn0,χ ′

n0

)1−2w

·
tnχ(n)q(2(1−w)− 1

2 , n, χ ′)L2(2(1−w)− 1
2 , χn0χ

′)

ns−(1−w)+ 1
2

.

We split the sum according to n mod 8, and notice that for fixed χ ′ the function

h2(2w− 1
2 , n0, χ

′)

h2(2(1−w)− 1
2 , n0, χ ′)

(
δn0,χ ′

n0

)1−2w

is the same fraction of Dirichlet polynomials in 2−w throughout each of these
sums, so that we can put them outside the sums. Using again that the indicator
function of residue class mod 8 can be written as a linear combination of characters
mod 8 (at least on the odd numbers), we arrive at the functional equation for
Z(s, w, χ, χ ′). We note that the factor 1− 2−(3−4w) is the product of all possible
h2(2(1 − w) − 1

2 , n0, χ
′). This shows that the pχ ′′(w) are in fact polynomials

in 2−w. �

We now apply the same type of analysis to the second series representation of
Z(s, w, χ, χ ′) given in (2-18). Recall from Section 2B2 that g denotes (ψ ⊗χ)∗,
where χ is one of the 4 characters mod 8. Let

V (s, w)=
∏

g

p2,g(2−(w−s+ 1
2 ))p2,g(−2−(w−s+ 1

2 )),

where p2,g(z) is as in (2-24).
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Theorem 2.13. The function (s−w− 1
2)

2 Z(s, w, χ, χ ′) is analytic in

D2 = {(s, w) : <(s) > 3
4 ,<(w) >

3
4},

and satisfies a functional equation β : (s, w) 7→ (w, s) given by

V (s, w)Z(s, w, χ, χ ′)

=

∑
k=0,1
χ ′′ mod 8

∏
ε∈{±1}

0
( 1

2(1−(s−w+
1
2)+k+ε(s0−

1
2))
)

0
( 1

2((s−w+
1
2)+k+ε(s0−

1
2))
) Pψ,χ,χ ′′(s,w)Z(w,s,χ,χ ′′).

Here the Pψ,χ,χ ′′(s, w) are polynomials in 2−(s−w). In particular they are functions
bounded in vertical strips. Furthermore, away from s−w− 1

2 = 0,

Z(s, w, χ, χ ′)=
{

O((|s−w|+1)
1
2+ε) for 3

4+δ ≤<w ≤<(s)≤ K ,
O((|s−w|+1)

3
2−2<(s−w+ 1

2+ε)) for 3
4+δ ≤<s ≤<(w)≤ K ,

where K , δ are any constants with K > 3
4 and δ > 0.

Remark 2.14. We shall see in the proof that the factor (s−w− 1
2)

2 is only necessary
when ψ is GL1×GL1 and χ is trivial. We note also that the implied constant may
depend on ψ . Moreover, as before the bounds given above are not necessarily
optimal, as all we need for Theorem 2.15 and Lemma 2.18 below is polynomial
control.

Proof. We now want to find the region of absolute convergence of (2-18). Consider
first the region <(s−w+ 1

2)≥
1
2 . We can use Cauchy–Schwarz, Theorem 2.9, and

Lemma 2.6 to see that the sum over nonperfect squares satisfies∑
c≤X

c 6=r2,c odd

∣∣χ ′(c)Q(s−w+ 1
2 ,c,χ)L2(s−w+ 1

2 ,ψ⊗χ̃c0χ)
∣∣=O

(
X1+ε(1+|s−w|)

1
2+ε
)
.

Hence the sum over these terms is absolutely convergent when <(2w− 1
2)≥ 1+ δ.

The sum over the perfect squares potentially has a double pole at s−w+ 1
2 = 1:

For tn = τ(n) we have L2(s, ψ ⊗χ8
0 )= ζ

2
2 (s). The sum over perfect squares is

L2(s−w+ 1
2 , ψ ⊗χ)

∞∑
c=1
c=r2

χ ′(c)Q(s−w+ 1
2 , c, χ)

c2w− 1
2

,

where the sum is again absolutely convergent for <(2w− 1
2)≥ 1+δ, using Cauchy–

Schwarz and Lemma 2.6. It follows that, when <(s −w+ 1
2) ≥

1
2 , the sums are

convergent for <(w) ≥ 3
4 + δ, and hence Z(s, w, χ, χ ′) is analytic in this region

except for a potential double polar line at s−w+ 1
2 = 1. We also find that in this

region we have the bound Z(s, w, χ, χ ′)= O((1+ |s−w|)
1
2+ε).
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Turning now to <(s −w+ 1
2) ≤

1
2 , we use the functional equation (2-26) and

Proposition 2.5 (2) to move to a region where we can use the same bounds as for
<(s−w+ 1

2)≥
1
2 :

Z(s, w, χ, χ ′)
ζ2(4s−1)ζ2(4w−1)

=

∞∑
c=1

(c,2)=1

1

c2w− 1
2

χ ′(c)Q(s−w+1
2 , c, χ)L2(s−w+1

2 , ψ⊗χ̃c0χ)

=

∞∑
c=1

(c,2)=1

1

c2w− 1
2

χ ′(c)c−2(s−w)Q(1−(s−w+
1
2
), c, χ)ε(ψ, χ̃c0χ)

(
N1

π2

)−(s−w)

×
0
(1

2(1−(s−w+
1
2)+κχ,ψ,c0+(s0−

1
2))
)
0
( 1

2(1−(s−w+
1
2)+κχ,ψ,c0−(s0−

1
2))
)

0
( 1

2((s−w+
1
2)+κχ,ψ,c0+(s0−

1
2))
)
0
( 1

2((s−w+
1
2)+κχ,ψ,c0−(s0−

1
2))
)

×
H2(s−w+ 1

2 , g1, c0)

H2(1−(s−w+ 1
2), g1, c0)

L2(1−(s−w+1
2), ψ⊗χ̃c0χ), (2-32)

where g1 = (ψ⊗ χ̃c0χ)
∗ with level N1c2

0 for N1 a divisor of 64 depending on χ , ψ
(recall (2-27) for the definition of H2). Using the same trick as before of splitting
the sum into perfect squares and nonperfect squares, and using the bounds from
Lemma 2.6 and Theorem 2.9 as well as the Stirling bound on the Gamma factors
and a trivial bound on the 2-factors, we find that Z(s, w, χ, χ ′) is analytic in

{(s, w) : <(s−w+ 1
2)≤

1
2 ,<s ≥ 3

4 + δ}

and bounded, as Z(s, w, χ, χ ′)= O
(
1+ |s−w|

1
2+ε|s−w|1−2<(s−w+ 1

2 )
)

for <(s),
<(w) bounded in this region.

We have established that Z(s, w, χ, χ ′) is analytic in D2. We now show that it
also satisfies a functional equation in this region. Consider (2-32). We noticed that
ε(ψ, χ̃0χ), κχ,ψ,c0 , and H2(s, g1, c0) depend only on c0 modulo 8 (see Section 2B2).
We split the sum into residue classes modulo 8 and we can put these data outside
the sum. Since H2(1−(s−w+ 1

2), g1, c0) can have zeros in the region we multiply
the left-hand side with all possible expressions of it, which is V (s, w), and arrive
at the desired functional equation. �

Using the two previous theorems we can now show that Z(s, w, χ, χ ′) admits a
meromorphic continuation to all of C2.

Theorem 2.15. The function

Z∗(s, w, χ, χ ′)= (s−w− 1
2)

2(s+w− 3
2)

2(w− 3
4)(s−

3
4)Z(s, w, χ, χ

′) (2-33)
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1

1

<(w)

<(s)

Figure 1. D1 ∪ D2.

admits an analytic continuation to (s, w) ∈ C2 with at most polynomial growth for
<(s), <(w) in bounded regions.

Proof. We use repeatedly the functional equations in Theorems 2.11 and 2.13. We
notice that these two theorems show that Z∗(s, w, χ, χ ′) is analytic in the union of
the two overlapping sets

D1 = {(s, w) : <(s−w) > 1
2 ,<(s+w) >

3
2},

D2 = {(s, w) : <(s) > 3
4 ,<(w) >

3
4},

since (w− 3
4)Z(s, w, χ, χ

′) is analytic in D1 and (s −w− 1
2)

2 Z(s, w, χ, χ ′) is
analytic in D2. (See Figure 1.)

We now use the group of functional equations generated by the two functional
equations

α : (s, w) 7→ (s, 1−w), β : (s, w) 7→ (w, s).

They generate a group of order 8 isomorphic to the dihedral group D4 of order 8.
We note that α2

= β2
= Id. Using β, we see that (s − 3

4)Z(s, w, χ, χ
′) is a

holomorphic function of at most bounded polynomial growth (bounding the ratio
of Gamma functions using Stirling asymptotics) in D3 = βD1, which then extends
Z∗(s, w, χ, χ ′) to D1∪D2∪D3. We notice that the Gamma factor on the right-hand
side of the functional equation in Theorem 2.13 and V (s, w)−1 does not have poles
when <(w− s) > 0 (by (2-25) and properties of the Gamma function).

Using α, we extend Z∗(s, w, χ, χ ′) analytically to D1∪D2∪βD1∪αD2∪αβD1.
We notice that the 2 factor (1−2−(3−4w))−1 and the Gamma factor in Theorem 2.11
are analytic when <(w) < 3

4 . The reflection α of the double polar line s−w = 1
2

in D2 produces the double polar line s+w = 3
2 in αD2.
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1

1

<(w)

<(s)

1

1

<(w)

<(s)

The regions D4 = βαD2, D5 = βαβD1, and D6 = αβαD2 = αD4 can be dealt
with using Theorems 2.11 and 2.13 in the same way and no new polar lines are
introduced, neither due to the 2 factors, nor the Gamma factors.

1

1

<(w)

<(s)

The function in (2-33) is now extended to a holomorphic function on the complement
of the domain with tube given by the shaded region. It is bounded polynomially for
<(w), <(s) bounded. We can therefore use Bochner’s tube theorem (see [Diaconu
et al. 2003, Propositions 4.6 and 4.7 and the argument on p. 341]) to extend the
holomorphic function to the convex hull of this region (which is C2) with at most
polynomial bounds for (<(s),<(w)) in compact sets. Therefore, Z(s, w, χ, χ ′)
has the same properties, apart from being meromorphic with the specified polar
lines in (2-33). �

Remark 2.16. Combining Theorems 2.11 and 2.13 we note that α◦β◦α◦β(s, w)=
(1− s, 1−w), and it follows that there exist functions αρ,ρ′,χ,χ ′(s, w) bounded in
vertical strips such that

F(s, w)Z(s, w, χ, χ ′)

=

∑
k̄∈{0,1}4

G(1− s, 1−w, k̄)
G(s, w, k̄)

∑
ρ,ρ′ mod 8

αk̄,ρ,ρ′,χ,χ ′(s, w)Z(1− s, 1−w, ρ, ρ ′), (2-34)
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where

G(s, w, k̄) := 0
( 1

2(2w−
1
2+k1)

) ∏
ε1∈{±1}

0
( 1

2(s+w−
1
2+k2+ε1(s0−

1
2))
)

·0
( 1

2(2s− 1
2+k3)

) ∏
ε2∈{±1}

0
(1

2(s−w+
1
2+k4+ε2(s0−

1
2))
)

(2-35)

and

F(s, w) := (1− 2−(3−4w))(1− 2−(3−4s))V (s, w)V (w, 1− s).

Using
0( 1

2(1− z+ 1))

0( 1
2(z+ 1))

=
0(1

2(1− z))

0(1
2 z)

cot(π z/2) we see that

G(1− s, 1−w, k̄)
G(s, w, k̄)

=
G(1− s, 1−w, 0)

G(s, w, 0)
cotk̄(s, w),

where

cotk̄(s, w)= cotk1

(
π(2w− 1

2)

2

) ∏
ε1∈{±1}

cotk2

(
π(s+w− 1

2 + ε1(s0−
1
2))

2

)

· cotk3

(
π(2s− 1

2)

2

) ∏
ε2∈{±1}

cotk4

(
π(s−w+ 1

2 + ε2(s0−
1
2))

2

)
.

Away from poles of cot we have uniform bounds cot( 1
2π z)= i sign(y)+ O(e−πy),

so we see that cotk̄(s, w) is bounded in vertical strips (for the arguments away from
the poles of cotk̄). It follows that the functional equation (2-34) can be written
simply as

F(s, w)Z(s, w, χ, χ ′)

=
G(1− s, 1−w, 0)

G(s, w, 0̄)

∑
ρ,ρ′mod 8
k̄∈{0,1}4

βk̄,ρ,ρ′,χ,χ ′(s, w)Z(1− s, 1−w, ρ, ρ ′), (2-36)

where the functions βk̄,ρ,ρ′,χ,χ ′(s, w) are bounded in vertical strips (away from any
poles).

2E. Bounds on Z(s,w, χ, χ ′). In this section we bound Z(s, w, χ, χ ′) when
<(s)=<(w)= 1

2 . Recall that in (1-6) we defined the analytic conductor to be

q(t, u) := (1+ |t |)(1+ |t + u|)2(1+ |u|). (2-37)

Theorem 2.17. Assume (1-4). Then

Z( 1
2 + i t, 1

2 + iu, χ, χ ′)= O(q(t, u)
1
4+ε).
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Unconditionally,

Z(1
2 + i t, 1

2 + iu, χ, χ ′)= O
(
(q(t, u)(1+ |t − u|)2)

1
4+ε
)
.

We call the bound obtained in Theorem 2.17 the convexity bound. Any bound of
the form O(q(t, u)

1
4−δ) is called a subconvex bound.

To prove Theorem 2.17 we first prove an approximate functional equation similar
to the one in [Blomer et al. 2014, Lemma 4.2].

Lemma 2.18. Let t , u ∈ R and χ , χ ′ mod 8. There exist smooth functions
W± : R+→ C depending on u, t , and the characters satisfying

y j d j

dy j W±(y)= O(1+ y)−A

for all j , A ∈ N0, uniformly in u, t , such that

Z(1
2 + i t, 1

2 + iu, χ, χ ′)

=

∑
ρ,ρ′ mod 8

∑
±

∞∑
c=1

ρ ′(c)L∗∗( 1
2 ± i(t − u), ψ, c, ρ)

c
1
2±2iu

W±

(
c

√
q(t, u)

)
.

Proof. Recall 1/ cos(z) is holomorphic in the strip |<(z)| < π/2 and satisfies
1/ cos(z) = Oε0(e

−|z|) for |<(z)| ≤ π/2− ε0. For η(log 2)/(π i) bounded away
from Z, the function Pη(z)= (1−2η−z)(1−2η+z)/(1−2η)2 is uniformly bounded
in vertical strips, holomorphic in C, even in z, with a simple zero at η, and satisfies
Pη(0)= 1. For a given multiset B let

HB(z)=
(

cos
(
π z
3A

))−12A ∏
η∈B

Pη(z),

which is O(e−4π |z|) for, say, |<(z)| ≤ (3
2 − δ)A with δ > 0 sufficiently small. For

an appropriate choice of multiset B = Bt,u we set Ht,u(z) = HBt,u (z) so that the
integrand of

1
2π i

∫
(1)

F(s+z, w+z)
F(s, w)

Z(s+z, w+z, χ, χ ′)
G(s+z, w+z, 0)

G(s, w, 0)
Ht,u(z)

dz
z

(2-38)

is holomorphic in the entire z-plane except for a simple pole at z = 0. (The function
Ht,u has been used to remove the poles of Z(s+ z, w+ z, χ, χ ′).) Also it has rapid
decay in z on vertical lines due to Theorem 2.15. Moving the line of integration to
<(s)=−1, we see that (2-38) equals

Z(s, w, χ, χ ′)

+
1

2π i

∫
(−1)

F(s+ z, w+ z)
F(s, w)

Z(s+ z, w+ z, χ, χ ′)
G(s+ z, w+ z, 0)

G(s, w, 0)
Ht,u(z)

dz
z
.
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Using the functional equation (2-36) and the change of variable z 7→ −z, the last
integral equals∑
ρ,ρ′mod 8
k̄∈{0,1}4

1
2π i

∫
(1)

βk̄,ρ,ρ′,χ,χ ′(s− z, w− z)

F(s, w)
Z(1− s+ z, 1−w+ z, ρ, ρ ′)

×
G(1− s+ z, 1−w+ z, 0)

G(s, w, 0)
Ht,u(z)

dz
z
.

Thus there exist functions γk̄,ρ,ρ′,χ,χ ′,±(x, x ′), bounded if <(x) = <(x ′) = −1
2

(note that using (2-25) we see that F(s, w)−1 is uniformly bounded), such that
Z(1

2 + i t, 1
2 + iu, χ, χ ′) equals∑

±

ρ,ρ′mod 8
k̄∈{0,1}4

1
2π i

∫
(1)
γk̄,ρ,ρ′,χ,χ ′,±(

1
2±i t−z, 1

2±iu−z)Z(1
2±i t+z, 1

2±iu+z, ρ, ρ ′)

×
G( 1

2 ± i t + z, 1
2 ± iu+ z, 0)

G(1
2 + i t, 1

2 + iu, 0)
Ht,u(z)

dz
z
.

Using the series representation (2-19) we arrive at the result with W±(y) equal to∑
k̄∈{0,1}4

1
2π i

∫
(1)
γk̄,ρ,ρ′,χ,χ ′,±(

1
2 ± i t − z, 1

2 ± iu− z)
(
y
√

C ′(t, u)
)−2z

×
G( 1

2 ± i t + z, 1
2 ± iu+ z, 0)

G(1
2 + i t, 1

2 + iu, 0)
Ht,u(z)

dz
z
.

From Stirling’s formula we find that 0(s+ z)/0(s)= O((1+ |s|)<(z)eπ |z|/2) uni-
formly for s, z in bounded strips away from poles. It follows that we have

G(1
2 ± i t + z, 1

2 ± iu+ z, 0)

G( 1
2 + i t, 1

2 + iu, 0)
= O(q(u, t)<(z)e2π |z|).

By shifting the contour to σ and differentiating under the integral sign we see that

y j ∂
j W±
∂ j y

= O
(

y−2σ
∫
(σ )

e(−4π+2π)|z| (1+ |z|)
j

|z|
dz+ δ j=0,σ<0

)
for −δ ≤ σ < (3

2 − δ)A. The last term comes from the pole at z = 0. For y ≤ 1
we can choose σ = −δ/2, and for y > 1 we choose σ = A and find the desired
bound. �

Proof of Theorem 2.17. Let ε > 0. For <(z)= 1
2 we have, assuming (1-4),∑

c≤Y
c odd

|L∗∗(z, ψ, c, ρ)| = O
(
Y 1+ε(1+ |z|)a+ε

)
(2-39)

with a = 0. Unconditionally, (2-39) holds with a = 1
2 , as is straightforward to verify

from Lemma 2.6, Theorem 2.9 (2-30), and Cauchy–Schwartz.
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It follows that for an appropriate choice of A in Lemma 2.18 we have∑
c>q(u,t)

1
2+ε

|L∗∗(1
2 ± i(t − u), ψ, c, ρ)|

c
1
2

∣∣∣∣W±( c
√
q(t, u)

)∣∣∣∣≤Cε((1+|t−u|)aq(u, t)ε).

It follows also that∑
c≤q(u,t)

1
2+ε

|L∗∗(1
2 ± i(t − u), ψ, c, ρ)|

c
1
2

= O
(
q(u, t)

1
4+ε(1+ |t − u|)a+ε

)
.

Theorem 2.17 now follows from the approximate functional equation. �

Remark 2.19. We notice that for the special configuration w= 1− s the conductor
drops to essentially

(1+ |t |)(1+ |u|).

This configuration will be the relevant one in Theorem 4.3 below.

Remark 2.20. One could speculate whether using another functional equation could
lead to a smaller conductor. During the proof of Theorem 2.17, or more precisely in
the proof of the approximate functional equation Lemma 2.18, we have made certain
choices: we have chosen a particular functional equation (s, w)→ (1− s, 1−w)
and a particular series representation (2-19). In principle, there is nothing that
prohibits running the same type of argument with the other series representation
(2-17) and/or another functional equation.

Let us consider what happens if we make other choices. If we use (2-17) and
if <(z)= 1 and <(s)= <(w)= 1

2 , then the function Z(s+ z, w, χ, χ ′) in (2-38)
is evaluated in D1, where the series representation (2-17) is convergent. Similarly,
if we consider (2-19) and if <(z) = 1 and <(s) = <(w) = 1

2 , then the function
Z(s + z, w+ z, χ, χ ′) is evaluated in D2, where the series representation (2-19)
is convergent. In order for the argument in Lemma 2.18 to work we need to use
a functional equation γ : C2

→ C2 with the property that, when <(z) = 1 and
<(s)=<(w)= 1

2 , the numbers γ (s− z, w− z)/γ (s− z, w) lie in D1 or D2. Only
in this case is the integrand evaluated where the double Dirichlet series has a
series representation (after moving the line of integration to <(z)=−1, using the
functional equation and making a change of variable z→−z).

When we are using (2-19) we assume (1-4). When we are using (2-17) we make
the similar assumption for this series, namely that∑

n≤X
(n,2)=1

|tn L∗(w, n, χ ′)| = O
(
X1+ε(1+ |w|)ε

)
for <(w)= 1

2 .

With these restrictions we list the possible “analytic conductors” in Table 1.
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Functional equation Series repn. Analytic conductor

βαβ : (s, w)→ (1− s, w) (2-17) (1+ |t + u|)2(1+ |t − u|)2(1+ |t |)2

αβα : (s, w)→ (1−w, 1− s) (2-19) (1+ |t |)(1+ |t + u|)2(1+ |u|)
αβαβ : (s, w)→ (1− s, 1−w) (2-17) (1+ |t + u|)2(1+ |t − u|)2(1+ |t |)2

αβαβ : (s, w)→ (1− s, 1−w) (2-19) (1+ |t |)(1+ |t + u|)2(1+ |u|)

Table 1. Different choices of analytic conductors.

Since, for all t, u ∈ R,

(1+ |t |)(1+ |t + u|)2(1+ |u|)≤ (1+ |t + u|)2(1+ |t − u|)2(1+ |t |)2,

the conductor defined in (2-37) is the smallest among these.

2F. Another double Dirichlet series. It turns out that there is another double
Dirichlet series which is relevant in the applications to QUE. We now define
it and then immediately show that it can be understood in terms of the series
Z(s, w, χ, χ ′) which was analyzed in the previous sections. Let

Ẑ(s, w, χ, χ ′)=
∑
c=1

(c,2)=1

χ ′(c)L∗(s−w+ 1
2 , c, χ)2

c2w− 1
2

. (2-40)

In order to understand Ẑ(s, w, χ, χ ′) we exhibit an interesting nontrivial relation
between the q-polynomials and the Q-polynomials in the case of the Eisenstein
series when tn = τ(n). Let Q̂ be defined as Q but with the one exception that we
use χc0 instead of χ̃c0 , i.e., with v = vp(c1),

Q̂(s, c0c2
1, χ)=

∏
p|c1

tp2v − tp2v−1χc0(p)χ(p)(p
1−s
+ ps)/p+ tp2v−2χc0(p)

2/p

p2v(s− 1
2 )

,

defined for c0, c1 odd. By (2-6) we see that

Q̂(s, c, χ)=
{

Q(s, c, χ) if c0 ≡ 1 (mod 4),
Q(s, c, χχ4) if c0 ≡ 3 (mod 4).

(2-41)

Lemma 2.21. Let d0 be an odd squarefree positive integer, d1 odd, and tn = τ(n).
Then ∑

d|d1

d1−2s
(

q
(

s, d0
d2

1

d2 , χ

))2

=

∑
d|d1

σ2−4s(d)Q̂
(

s, d0
d2

1

d2 , χ

)
.

Proof. Since the arithmetical functions involved are multiplicative, it is enough to
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verify the claim on prime powers d1 = pn , i.e., we need to verify

n∑
i=0

p2i( 1
2−s)q2(s, d0 p2(n−i))=

n∑
i=0

i∑
j=0

p4 j ( 1
2−s)Q(s, d0 p2(n−i), χ).

Using the definitions of q(s, d, χ) and Q(s, d, χ), it is a straightforward but tedious
algebraic computation with sums and products of geometric sums. The details are
omitted. �

Using the above lemma we can now show that many properties of Ẑ(s, w, χ, χ ′)
can be understood on the basis of the properties of Z(s, w, χ, χ ′). The following
lemma implies in particular that Ẑ(s, w, χ, χ ′) admits a meromorphic continua-
tion, and that any bound we have on Zψτ (s, w, χ, χ

′) translates into a bound for
Ẑ(s, w, χ, χ ′).

Lemma 2.22. Assume that ψ = ψτ , i.e., tn = τ(n). Then

Ẑ(s, w,χ,χ ′)=
1

2ζ2(2s+2w−1)

(
Zψτ (s,w,χ,χ

′)+Zψτ (s,w,χχ4,χ
′)

+Zψτ (s,w,χ,χ
′χ4)−Zψτ (s,w,χχ4,χ

′χ4)
)
.

Proof. We start by noticing that L2(s, χc0χ)
2
= L2(s, ψτ ⊗χc0χ). Now let d0 be

an odd squarefree natural number. Then

ζ2(2s+ 2w− 1)
∞∑

d1=1
d1 odd

q2(s, d0d2
1 , χ)

d2w
1

=

∞∑
d,d1=1

d1, d odd

d1−2sq2(s, d0d2
1 , χ)

(dd1)2w

=

∞∑
d1=1
d1 odd

1
d2w

1

∑
d|d1

d1−2sq2(s, d0d2
1/d

2, χ).

We then use Lemma 2.21 and arrive at
∞∑

d1=1
d1 odd

1
d2w

1

∑
d|d1

σ2−4s(d)Q̂(s, d0d2
1/d

2, χ)

=

∞∑
l=1
l odd

σ2−4s(l)
l2w

∞∑
d1=1
d1 odd

Q̂(s, d0d2
1 , χ)

d2w
1

= ζ2(4s+ 2w− 2)ζ2(2w)
∞∑

d1=1
d1 odd

Q̂(s, d0d2
1 , χ)

d2w
1

.

Multiply the first and last expression by χ ′(d0)L2(s, χd0χ)
2/dw0 , then summing
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over all odd squarefree natural numbers d0 we get

ζ2(2s+ 2w− 1)
∞∑

d=1
(d,2)=1

χ ′(d)q2(s, d, χ)L2(s, χd0χ)
2

dw

= ζ2(4s+ 2w− 2)ζ2(2w)
∞∑

d=1
(d,2)=1

χ ′(d)Q̂(s, d, χ)L2(s, ψτ ⊗χd0χ)

dw
.

By (2-6) we see that

Q̂(s, d, χ)L2(s, ψτ ⊗χd0χ)

=

{
Qψτ (s, d, χ)L2(s, ψτ ⊗χd0χ) if d ≡ 1 (mod 4),
Qψτ (s, d, χχ4)L2(s, ψτ ⊗χd0χχ4) if d ≡ 3 (mod 4).

Substituting (s−w+ 1
2 , 2w− 1

2) for (s, w) and comparing with (2-18), we obtain
the desired result. �

3. Eisenstein series

We briefly recall a few facts about Eisenstein series with weights. For γ ∈ SL2(R)

and z ∈ H we define j (γ, z) = cz + d and jγ (z) = (cz + d)/|cz + d|. We
let arg denote the principal argument and define jγ (z)k = eik arg(cz+d). Since
j (γ1γ2, z)= j (γ1, γ2z) j (γ2, z),

ω̃(γ1, γ2)=
1

2π
(arg j (γ1, γ2z)+ arg j (γ2, z)− arg j (γ1γ2, z))

is an integer independent of z. The factor system of weight k ∈ R is then defined as

ω(γ1, γ2)= e(kω̃(γ1, γ2)).

Then we have ω(γ1, γ2) jγ1γ2(z)
k
= jγ1(γ2z)k jγ2(z)

k . We refer to [Iwaniec 1997,
Chapters 2.6, 3] for the basic properties of multiplier systems as well as for further
explanations of the generalities of Fourier expansions.

Let ν be a weight k multiplier system, and let 0 be a cofinite subgroup of SL2(R).
For an open cusp a, i.e., ν(a)= 1, we define the weight k Eisenstein series for 0 by

Ea(z, s, k) :=
∑

γ∈0a\0

ν(γ )ω(σ−1
a , γ ) jσ−1

a γ (z)
−k
=(σ−1

a γ z)s for <(s) > 1,

where σa is a scaling matrix of the cusp a, i.e., σ−1
a 0aσa = 0∞, with 0∞ being

generated by γ∞ =
( 1

0
1
1

)
and −γ∞ if −I ∈ 0. The function satisfies, for γ ∈ 0,

Ea(γ z, s, k)=ν(γ ) j k
γ (z)Ea(z, s, k), it is an eigenfunction of the weight k Laplacian

with eigenvalue s(1− s), and admits a meromorphic continuation to s ∈C. We now
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briefly recall how to find the Fourier coefficients of Ea(z, s, k) at an open cusp b.
We have

jσb(z)
−k Ea(σbz, s, k)=

∑
γ∈0∞\σ

−1
a 0σb

νab(γ ) jγ (z)−k
=(γ z)s,

where νab(γ ) = ν(σaγ σ
−1
b )ω(σ−1

a , σaγ σ
−1
b )ω(γ σ−1

b , σb). For the rest of the
paper we can assume that −I ∈ 0. Summing over a set of representatives of
0∞\σ

−1
a 0σb/0∞, which we can assume have cγ > 0 for γ 6∈ 0∞, we see that

jσb(z)
−k Ea(σbz, s, k)= δa=bys

+

∑
I 6=γ∈0∞\σ−1

a 0σb/0∞

νab(γ )
∑
l∈Z

jγ γ l
∞
(z)−k
=(γ γ l

∞
z)s .

Therefore, by a familiar computation, we have∫ 1

0

(
jσb(z)

−k Ea(σbz, s, k)− δa=bys)e(−nx) dx

=

∑
I 6=γ∈0∞\σ−1

a 0σb/0∞

νab(γ )

c2s e
(

n
d
c

)
ys
∫
∞

−∞

(
z
|z|

)−k 1
|z|2s e(−nx) dx .

Substituting t = x/y in the last integral we see that

ys
∫
∞

−∞

(
z
|z|

)−k e(−nx)
|z|2s dx = y1−s

∫
∞

−∞

(
t+i
|t+i |

)−k e(−nty)
|t+i |2s dt

= e−ikπ/2 y1−s
∫
∞

−∞

(
1−i t
|1−i t |

)−k e(−nty)
|1+i t |2s dt

=


π se−ikπ/2 |n|

s−1

0
(
s+ kn

2|n|

)W kn
2|n| ,s−

1
2
(4π |n|y) if n 6= 0,

π41−se−ikπ/2 0(2s−1)y1−s

0
(
s+ k

2

)
0
(
s− k

2

) if n = 0,

where Wµ,ν(y) is the Whittaker function and where we have used [Gradshteyn and
Ryzhik 2007, 3.384 (9), p. 349] for n 6= 0 and [Shimura 1975, p. 84–85] for n = 0.

3A. Eisenstein series of level 4. We now specialize to 0 = 00(4). In this case the
Fourier coefficients of half-integral weight Eisenstein series were originally studied
by Shimura [1975]. We consider the weight 1

2 multiplier system ν related to the
theta series

θ(z) := y
1
4
∑
m∈Z

e(m2z),
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i.e., θ(γ z)= ν(γ ) jγ (z)
1
2 θ(z) for γ ∈ 0. It is well known that

ν(γ )=
( c

d

)
ε−1

d for
(

a b
c d

)
= γ ∈ 00(4).

Here the Jacobi–Legendre symbol is extended as in [Shimura 1973, p. 442]. The
group 00(4) has 3 cusps, a1 =∞, a2 = 0, a3 =

1
2 , with corresponding stabilizers

0ai generated by ±γai where

γa1 =

(
1 1
0 1

)
, γa2 =

(
1 0
−4 1

)
, γa3 =

(
−1 1
−4 3

)
and we define scaling matrices

σa1 =

(
1 0
0 1

)
, σa2 =

(
0 − 1

2
2 0

)
, σa3 =

(
1 − 1

2
2 0

)
.

Only the cusps∞ and 0 are open with respect to ν, as

ν(γa1)= ν(γa2)= 1, ν(γa3)=
(
−4
3

)
ε−1

3 = i.

We now compute the Fourier expansion for the weight 1
2 Eisenstein series. We

focus on the cusp at infinity but the analysis for the other cusps is similar, although
slightly more technical. The main extra complication at the other cusps comes from
the factor system. This can be dealt with as follows: For k = 1

2 we can use z= γ−1
2 i

in the definition of the factor system to see that

ω(γ1, γ2)=

{
1 if −π < arg(cγ1 i + dγ1)+ arg(cγ2 i + aγ2)≤ π,

−1 otherwise.

Using the properties of a multiplier system one finds (see [Iwaniec 1997, (3.5)])
that

νab(γ )= ν(σaγ σ
−1
b )

ω(σaγ σ
−1
b , σb)

ω(σa, γ )
.

This is explicit enough that one can do the computations also for the other cusps.
We now focus on (a1, a1) = (∞,∞), and omit the corresponding subscripts.

Using that all the nonidentity elements of 0∞\0/0∞ are parametrized by
(
∗

4c
∗

d

)
with c > 0, d mod 4c, (d, 4c)= 1, we find that

E(z, s, 1
2)= ys

+φ(s, 1
2)y

1−s
+

∑
n 6=0

φn(s, 1
2)Wn/(4|n|),s− 1

2
(4π |n|y)e(nx)



1572 Yiannis N. Petridis, Nicole Raulf and Morten S. Risager

with

φn(s, 1
2)=

π se−iπ/4
|n|s−1

0
(
s+ n

4|n|

) ∞∑
c=1

1
(4c)2s

∑
d mod 4c
(d,4c)=1

ν

(
∗ ∗

4c d

)
e(nd/4c)

=
π se−iπ/4

|n|s−1

0
(
s+ n

4|n|

) ∞∑
c=1

1
(4c)2s

∑
d mod 4c

εd

(4c
d

)
e(nd/4c), (3-1)

and

φ(s, 1
2)=

π41−se−iπ/40(2s− 1)

0(s+ 1
4)0(s−

1
4)

∞∑
c=1

1
(4c)2s

∑
d mod 4c

εd

(4c
d

)
.

If we write 4c = 2kc′ with c′ odd then Sturm proved [1980, Lemma 1] — using
quadratic reciprocity and the Chinese remainder theorem — that∑

d mod 4c

εd

(4c
d

)
e(nd/4c)= Hn(c′)

∑
r mod 2k

(2k

r

)
εr e(nr/2k). (3-2)

It follows that, for n 6= 0,

φn
(
s, 1

2

)
=
π se−iπ/4

|n|s−1

0
(
s+ n

4|n|

) ∞∑
c′=1

(c′,2)=1

Hn(c′)
c′2s

∞∑
k=2

∑
r mod 2k

( 2k

r

)
εr e(nr/2k)

22ks ,

which by Lemma 2.2 equals

π se−iπ/4
|n|s−1

0
(
s+ n

4|n|

) L∗(2s− 1
2 , n, 1)

ζ2(4s− 1)
r2(s, n), (3-3)

where we have written

r2(s, n) :=
∞∑

k=2

∑
r mod 2k

(2k

r

)
εr e(nr/2k)

2k2s . (3-4)

The function r2(s, n) can also be computed. One uses that εd can be expressed as a
sum of characters mod 4 as

εd =
1
2(1+ i)χ0

4 (d)+
1
2(1− i)χ4(d).

Inserting this in (3-4) the numerator becomes

1
2(1+ i)Gn(χ

k
8χ

0
2k )+

1
2(1− i)Gn(χ

k
8χ4χ

0
2k ), (3-5)

where χ8 is the primitive character mod 8 given by χ8(n) = (−1)
1
8 (n−1)(n+1) for

(n, 2) = 1, and the Gn denote the usual Gauss sums. Using [Shimura 1975,
Lemma 3] as well as explicit computations of G1(χ1), G1(χ8), G1(χ4), G1(χ4χ8),
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these can all be computed and using the result one can compute r2(s, n). We omit
the details but state the result. Assume first n 6≡ 0 (mod 4). Then

r2(s, n)= 1
4(1+ i)


−

1
22(2s−1) n 6≡ 1 (mod 4),

1
22(2s−1) +

χ8(n)
√

2
23(2s−1) n ≡ 1 (mod 4).

(3-6)

More generally we find that, if n = 4r n0 with n0 6≡ 0 (mod 4), then

r2(s, n)= 1
4(1+ i)ur (2−(2s−1))+ 4−r(2s−1)r2(s, n0), (3-7)

where
ur (x)=

(x2)r+1
− x2

x2− 1
. (3-8)

We remark that r2(s, n) is entire.

3A1. Scattering term. We now compute the scattering term φ(s, 1
2), which by (3-2)

equals
π41−se−iπ/40(2s− 1)

0(s+ 1
4)0(s−

1
4)

∞∑
c′=1

(c′,2)=1

H0(c′)
c′2s

∞∑
k=2

∑
r mod 2k

(2k

r

) εr

22ks .

The sum
∞∑

c′=1
(c′,2)=1

H0(c′)
c′2s factors, and for an odd prime p we observe that

H0(pβ)=
{
ϕ(pβ) if β ≡ 0 (mod 2),
0 otherwise.

Here ϕ is Euler’s ϕ-function. Therefore
∞∑
β=0

H0(pβ)
pβ2s =

∞∑
β=0

ϕ(p2β)

p2β2s =
ζ (p)(4s− 2)
ζ (p)(4s− 1)

.

For the prime 2 we note that for k ≥ 2 we have

G0(χ4χ
0
2k )= G0(χ8χ

0
2k+1)= G0(χ4χ8χ

0
2k+1)= 0

Using this, we find
∞∑

k=2

∑
r mod 2k

(2k

r

) εr

2k2s

=

∞∑
k=2

k even

1+i
2 G0(χ

0
4χ

0
2k )+

1−i
2 G0(χ4χ

0
2k )

2k2s +

∞∑
k=2
k odd

1+i
2 G0(χ8χ

0
2k )+

1−i
2 G0(χ8χ4χ

0
2k )

2k2s

=

∞∑
k=2

k even

1+i
2 ϕ(2

k)

2k2s = (1+i)
2−4s

1−2−(4s−2) .
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It follows that

φ(s, 1
2)= π41−se−iπ/4 0(2s− 1)

0(s+ 1
4)0(s−

1
4)

(1+ i)
24s

ζ(4s− 2)
ζ2(4s− 1)

.

Using that 0(s+ 1
4)0(s−

1
4)=
√
π23/2−2s0(2s− 1

2), this simplifies to

1
24s−1− 1

ξ(4s− 2)
ξ(4s− 1)

, (3-9)

where ξ(s)= π−s/20(s/2)ζ(s) (compare [Iwaniec 1997, p. 247–248]). The other
entries in the scattering matrix 8(s, 1

2) can be computed in a similar way and we
find

8(s, 1
2)=

(
2−(4s−1)

1−2−(4s−2)
1−i
22s

1+i
22s

2−(4s−1)

1−2−(4s−2)

)
1− 2−(4s−2)

1− 2−(4s−1)

ξ(4s− 2)
ξ(4s− 1)

. (3-10)

As a consistency check we note that a direct computation and the functional equation
for ξ show that the scattering matrix verifies 8(s, 1

2)8(1− s, 1
2)= I , as predicted

by the general theory.

3B. Eisenstein series of level 2n. We now consider the group00(N ), where N=2n

with n ≥ 2. Let χ be a Dirichlet character modulo N , and consider the weight 1
2

multiplier system

ν(γ )= χ(d)
( c

d

)
ε−1

d for
(

a b
c d

)
= γ ∈ 00(N ).

We consider the corresponding Eisenstein series of weight 1
2 at the cusp at 0, denoted

by
E0,χ (z, s, 1

2).

Similarly one denotes E∞,χ (z, s, 1
2) the corresponding Eisenstein series at the

cusp∞. The Fourier coefficients at infinity of the Eisenstein series at zero has a
simpler 2-factor than the Eisenstein series at infinity. The stabilizer at 0 is generated
by ±γ0 and has corresponding scaling matrix σ0, where

γ0 =

(
1 0
−2n 1

)
, σ0 =

(
0 −1/

√
2n

√
2n 0

)
.

From the general considerations in the beginning of Section 3 we find that the
nonzero Fourier coefficients at infinity equal∑

I 6=γ∈0∞\σ−1
0 00(N )/0∞

ν0∞(γ )

c2s e
(

n
d
c

)
π se−iπ/4 |n|s−1

0
(
s+ n

4|n|

)W n
4|n| ,s−

1
2
(4π |n|y).
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After some computations one finds∑
I 6=γ∈0∞\σ−1

0 00(N )/0∞

ν0∞(γ )

c2s e
(

n
d
c

)
=

iχ(−1)
N s

∞∑
a=1

(a,2)=1

χ(a)Hn(a)
a2s

=
iχ(−1)

N s

L∗(2s− 1
2 , n, χ)

ζ2(4s− 1)
, (3-11)

where in the last equality we have used Lemma 2.2. Using this it is straightforward
to see how Z(s, w, χ, χ ′) relates directly to a Rankin–Selberg integral in the case
where {tn} comes from a cusp form. Let ψ be a cuspidal Hecke newform of
weight zero, and trivial multiplier for 00(2k) with eigenvalue s0(1− s0) and Fourier
expansion

ψ(z)=
∑
n 6=0

bnW0,s0−
1
2
(4π |n|y)e(nx). (3-12)

Let χ be a Dirichlet character mod 8. Consider the twisted Maaß form

ψ ⊗χ(z)=
∑
n 6=0

χ(n)bnW0,s0−
1
2
(4π |n|y)e(nx),

which is a weight zero cusp form for some 00(M) and character χM
0 for some

M | lcm(64, 2k) and 8|M . Let χ ′ be another Dirichlet character mod 8. Consider
now the Rankin–Selberg integral

I (ψ, χ, χ ′, s, w)=
∫
00(M)\H

ψ ⊗χ(z)E0,χM
0 χ
′(z, w, 1

2)E∞,χM
0 χ
′

(
z, s̄, 1

2

)
dµ(z).

This is the integral studied by Friedberg and Hoffstein [1995, (1.2) p. 388].
Unfolding, using bn = bn/|n||n|−

1
2 t|n|, (3-11), and L∗(s,−n, χ)= L∗(s, n, χ4χ)

we arrive at

I (ψ, χ, χ ′, s, w)

=
πwe−iπ/4iχ ′(−1)

(2π)s−1 Mwζ2(4w−1)

∑
n 6=0

(n,2)=1

χ(n)bn/|n| t|n|L∗(2w− 1
2 , n, χ ′)

|n|s−w+
1
2

G n
|n|
(w)

=

πwe−iπ/4iχ ′(−1)
[
Z(s, w, χ,χ ′)G+(w)

+χ(−1)b−1 Z(s, w, χ, χ4χ
′)G−(w)

]
(2π)s−1 Mwζ2(4w−1)ζ2(4s−1)

, (3-13)

where

G±(w)=
1

0(w± 1
4)

∫
∞

0
W
±

1
4 ,w−

1
2
(2y)W0,s0−

1
2
(2y)yw−1 dy

y
.

Lemma 3.1. I (ψ, χ, χ ′, 1
2 + i t, 1

2 + iu)= O
(
log((2+|t |)(2+|u|))

)
.
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Proof. This follows from the Maaß–Selberg relation, and known properties of the
relevant scattering matrix. �

It is tempting to speculate whether the above bound on I (ψ, χ, χ ′, 1
2+i t, 1

2+iu)
can be used to bound Z(s, w, χ, χ ′) through (3-13). What we can prove is the
following:

Denote the expression in the square brackets of (3-13) by Ĩ (ψ, χ, χ ′, s, w). We
then find that

Ĩ (ψ, χ, χ ′, s, w)± Ĩ (ψ, χ, χ4χ
′, s, w)

= (Z(s, w, χ, χ ′)± Z(s, w, χ, χ4χ
′))(G+(w)±χ(−1)b−1G−(w)). (3-14)

Lemma 3.2. Assume that ψ is a cusp form. Then, for s = 1−w = 1
2 + i t ,

Z(s, w, χ, χ ′)+χ(−1)b−1 Z(s, w, χ, χ4χ
′)= O((1+ |t |)

1
2+ε). (3-15)

Proof. From (3-14) we see that

Z(s, w, χ, χ ′)+χ(−1)b−1 Z(s, w, χ, χ4χ
′)(G+(w)+G−(w))

= Ĩ (ψ, χ, χ ′, s, w)+χ(−1)b−1 Ĩ (ψ, χ, χ4χ
′, s, w).

The claim now follows from Lemmas 3.1 and A.1, combined with Remark A.2. �

Remark 3.3. We notice that with the restriction above on s, w the conductor
q(t,−t) is of order (1+|t |)2. So the right-hand side in (3-15) is of order q(t,−t)

1
4+ε ,

i.e., for the linear combination Z(s, w, χ, χ ′)+χ(−1)b−1 Z(s, w, χ, χ4χ
′)we have

proved the convexity estimate unconditionally. Surprisingly this “soft” method
of using the Maaß–Selberg relations gives much stronger bounds than the harder
method using Heath-Brown’s equation (2-29) and approximate functional equations.
Unfortunately we do not know how to prove this unconditionally for Z(s, w, χ, χ ′)
and Z(s, w, χ, χ4χ

′) separately. The main reason for this is that G+(w)−G−(w)
decays much faster than G+(w)+G−(w), so using a similar argument on

Z(s, w, χ, χ ′)−χ(−1)b−1 Z(s, w, χ, χ4χ
′)

gives very poor bounds.

If we use (2-19) (i.e., interchange sums) we find, like [Friedberg and Hoffstein
1995, (1.2) p. 389], that Ĩ (ψ, χ, χ ′, s, w) equals∑

c=1
(c,2)=1

χ ′(c)L∗∗(s−w+ 1
2 , ψ, c, χ)

c2w− 1
2

(G+(w)+χ(−1)b−1χ4(c)G−(w)).

By taking linear combinations over different χ ′ we can restrict to c in a specific
residue class, as in the work of [Friedberg and Hoffstein 1995].
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4. Limits of weight 1
2 Eisenstein series

We consider separately Maaß cusp forms and incomplete Eisenstein series, i.e., we
analyze ∫

0\H

ψ(z)|E(z, 1
2 + i t, 1

2)|
2 dµ(z),

where ψ is either a Maaß cusp form or an incomplete Eisenstein series. Then a
standard approximation argument — see [Luo and Sarnak 1995, p. 217] — implies
the result (1-10).

4A. The cuspidal contribution. Let ψ be a cuspidal element of a weight zero
Hecke basis for 00(4) with eigenvalue s0(1− s0) and Fourier expansion

ψ(z)=
∑
n 6=0

bnW0,s0−
1
2
(4π |n|y)e(nx).

We will freely use that we can assume that the Fourier coefficients are real.
We want to study ∫

0\H

ψ(z)|E(z, s, 1
2)|

2 dµ(z)

when <(s)= 1
2 . It turns out to be convenient to consider the slightly more general

integral

I (s, w)=
∫
0\H

ψ(z)E(z, w, 1
2)E(z, s̄, 1

2) dµ(z).

For sufficiently large <(s), we can unfold to get

I (s, w)=
∫
0∞\H

ψ(z)E(z, w, 1
2)y

s dµ(z). (4-1)

Using the Fourier expansions of ψ and E∞(z, w, 1
2), and computing the x-integral,

we find

I (s, w)=
∫
∞

0

∑
n 6=0

bnφ−n(w,
1
2)W0,s0−

1
2
(4π |n|y)W

−
1
4 n/|n|,w− 1

2
(4π |n|y)ys−1 dy

y

=

∑
n 6=0

bnφ−n(w,
1
2)

(2π |n|)s−1

∫
∞

0
W0,s0−

1
2
(2y)W

−
1
4 n/|n|,w− 1

2
(2y)ys−1 dy

y
. (4-2)

We consider the series

Z±(s, w) :=
0(w∓ 1

4)

πwe−iπ/4 ζ2(4s− 1)ζ2(4w− 1)
∞∑
±n=1

bnφ−n(w,
1
2)

|n|s−1 .
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By (3-3) we see that

Z±(s, w)= ζ2(4s− 1)
∞∑
±n=1

bnr2(w,−n)L∗(2w− 1
2 ,−n, 1)

|n|s−w
. (4-3)

The next proposition reduces many questions about Z±(s, w) to questions about
Z(s, w, χ, χ ′). Consider the Dirichlet polynomial

T (s, w) :=
∏
ε∈{±1}

p2(ε2−(s+w−
1
2 ))p2(ε2−(s−w+

1
2 )),

where p2(z) is defined in (2-24).

Proposition 4.1. There exist functions f±(s, w, χ, χ ′) bounded in vertical strips
such that

T (s, w)Z±(s, w)=
∑
χ,χ ′

f±(s, w, χ, χ ′)Z(s, w, χ, χ ′),

where the sum is over all pairs of characters mod 8.

Proof. We first assume that ψ is a newform. Then we have

bn = bn/|n||n|−
1
2 t|n|,

where {tn}n∈N are the coefficients of L(s, ψ). We note that if m ≥ 1 is odd then
χ(±2l m)0 = χm0χ where m0 denotes the squarefree part of m for some character χ
whose conductor divides 8, namely

χ(d)=


(
±2
d

)
if l odd,(

±1
d

)
if l even.

(4-4)

Notice that χ depends only on l mod 2 and the sign ±. For the same χ we have
q(w,m, χ)= q(w,±2lm). It follows that L∗(s,m, χ)= L∗(s,±2lm, 1). We write
the summation index n in (4-3) as n = 2lm, where m is odd, and split the sum as

∞∑
l=0

l odd

∞∑
±m=1
(m,2)=1

· · · +

∞∑
l=0

l even

∞∑
±m=1
(m,2)=1

· · · .

We split the m sum further according to m ≡ 1, 3, 5, 7 (mod 8), which can be done
by using a linear combination of characters. We then use the explicit formulae for
r2(w,−n) in (3-6), (3-7) and that the Fourier coefficients satisfy the Hecke relations
to see that Z±(s, w) can be written as a linear combination of Z(s, w, χ, χ ′) with
coefficients being functions bounded on vertical strips multiplied by one of the
following series:
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∞∑
j=0

t22 j

22 j (s+w− 1
2 )
,

∞∑
j=0

t22 j+1

2(2 j+1)(s+w− 1
2 )
,

∞∑
j=0

t22 j u j (2−(2w−1))

22 j (s−w+ 1
2 )

,

∞∑
j=0

t22 j+1u j (2−(2w−1))

2(2 j+1)(s−w+ 1
2 )

.

(4-5)

We easily see that

2
∞∑
j=0

t22 j

22 js =
1

p2(2−s)
+

1
p2(−2−s)

, 2
∞∑
j=0

t22 j+1

2(2 j+1)s =
1

p2(2−s)
−

1
p2(−2−s)

.

We see also that, using (3-8),

∞∑
j=0

t22 j u j (x)
22 js =

x2

2(1− x2)

(
1

p2(2−s)
+

1
p2(−2−s)

−
1

p2(x2−s)
−

1
p2(−x2−s)

)
,

which has no poles coming out of x2
− 1 in the denominator. Similarly, we see that

∞∑
j=0

t22 j+1u j (x)
2(2 j+1)s =

x2

2(1−x2)

(
1

p2(2−s)
−

1
p2(−2−s)

−
1
x

(
1

p2(x2−s)
−

1
p2(−x2−s)

))
.

We substitute in the last four equations s+w− 1
2 or s−w+ 1

2 for s as required and
x = 2−(2w−1) to identify the possible polynomials that appear in the denominators.
These have product T (s, w). We now notice that multiplying any of the 4 functions
in (4-5) by T (s, w) we get holomorphic functions bounded on vertical strips, which
proves the claim.

If ψ is an oldform with, say, ψ =ψ1(2 j z) with ψ1 a primitive form, and j = 1, 2,
then the series in (4-2) becomes∑

n 6=0

bn(ψ1)φ−2 j n(w,
1
2)

(2π |2 j n|)s−1 ,

which by the explicit expression for φn(w,
1
2) can be analyzed similarly to the

newform case. �

Remark 4.2. In Theorem 4.3 below, we need to study Z±(1
2 + i t, 1

2 − i t). For
<(s)=<(w)= 1

2 we notice that by (2-25) we have 1/T (s, w)= O(1).

Theorem 4.3. Assume that for any χ , χ ′ mod 8 the function Z(s, 1− s, χ, χ ′)
satisfies a subconvex bound. Then∫

0\H

ψ(z)|E(z, 1
2 + i t, 1

2)|
2 dµ(z)→ 0 as |t | →∞.
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Proof. By Proposition 4.1, a subconvex bound with saving δ translates into a
bound Z±(s, 1 − s) = O(|t |2(

1
4−δ)) when <(s) = 1

2 . Combining this with the
bound in Lemma A.1, the estimate 1/ζ(1+ i t) = O(log |t |) [Titchmarsh 1986,
Equation 3.11.8], and the identity (4-2) we see that I (s, 1− s)= O(|t |2(

1
4−δ)−

1
2+ε)

for any ε > 0 when <(s)= 1
2 . Since

I (1
2 + i t, 1

2 − i t)=
∫
0\H

ψ(z)|E(z, 1
2 − i t, 1

2)|
2 dµ(z),

we find that, when δ > 0, I (1
2 + i t, 1

2 − i t)→ 0 as |t | →∞. �

Remark 4.4. In the proof above we see that the trivial bound from Theorem 2.17
only gives O(|t |

1
2+ε).

4B. The incomplete Eisenstein series contribution. In the following we choose a
fundamental domain of 0 such that

D= D0 ∪

3⋃
j=1

σa j D
Y ,

where DY
:= {x + iy : 0 < x < 1, y > Y }, Y sufficiently large, D0 is a suitable

compact set and, as before, σa j denotes the scaling matrix of the cusp a j .
In order to introduce the incomplete Eisenstein series, let h(y) ∈ C∞(R+) be a

function which decreases rapidly at 0 and∞, and whose derivatives are also of
rapid decay. Its Mellin transform evaluated at −s is

H(s)=
∫
∞

0
h(y)y−s dy

y
(4-6)

and thus by the Mellin inversion formula we have

h(y)=
1

2π i

∫
<s=a

H(s)ys ds (4-7)

for any a ∈ R. The function H(s) is entire and H(a+ i t) is in the Schwartz space
in the t variable for any a ∈ R. The incomplete Eisenstein series corresponding to
the cusp a is then given by

Fh(z, a)=
∑

γ∈0a\0

h(=σ−1
a γ z)= 1

2π i

∫
<s=a>1

H(s)Ea(z, s, 0) ds. (4-8)

For i = 1, 2, 3 we are interested in the behavior of

J (t, ai )=

∫
0\H

Fh(z, ai )|E(z, 1
2 + i t, 1

2)|
2 dµ(z) as |t | →∞.

In the following we only treat the contribution from the cusp at infinity, but the
other contributions can be dealt with similarly. Unfolding the incomplete Eisenstein
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series we find

J (t,∞)=
∫
0\H

Fh(z,∞) dµt(z)= J1(t,∞)+ J2(t,∞)

with

J1(t,∞) :=
∫
∞

0
h(y)

∣∣y 1
2+i t
+φ( 1

2 + i t, 1
2)y

1
2−i t

∣∣2 dy
y2 , (4-9)

J2(t,∞) :=
∫
∞

0
h(y)

∑
n 6=0

∣∣φn(
1
2 + i t, 1

2)
∣∣2∣∣Wn/(4|n|),i t(4π |n|y)

∣∣2 dy
y2 . (4-10)

The integral J1(t,∞) is easily dealt with. Namely, we obtain

J1(t,∞)

=
(
1+ |φ( 1

2 + i t, 1
2)|

2) ∫ ∞
0

h(y)
dy
y
+φ( 1

2 + i t, 1
2)

∫
∞

0
h(y)y−2i t dy

y

+φ( 1
2 + i t, 1

2)

∫
∞

0
h(y)y2i t dy

y

=
(
1+ |φ( 1

2 + i t, 1
2)|

2)H(0)+φ( 1
2 + i t, 1

2)H(2i t)+φ(1
2 + i t, 1

2)H(−2i t)

= O(1). (4-11)

For the integral J2(t,∞) we find, using the rapid decay of the Whittaker function
and the Mellin inversion formula,

J2(t,∞)=
1

2π i

∫
<s=a>1

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

ds, (4-12)

where

R1
(
|E(z, w, 1

2)|
2, s
)
=

∑
n 6=0

|φn(w,
1
2)|

2
∫
∞

0

∣∣Wn/(4|n|),w− 1
2
(4π |n|y)

∣∣2 ys−1 dy
y

=

∑
n 6=0

|φn(w,
1
2)|

2

(2π |n|)s−1

∫
∞

0

∣∣Wn/(4|n|),w− 1
2
(2y)

∣∣2 ys−1 dy
y
. (4-13)

In order to analyze the asymptotic behavior of J2(t,∞) we need to understand
the function R1

(
|E(z, w, 1

2)|
2, s
)
. There are (at least) two ways to do this: to use

properties of the double Dirichlet series we defined in Section 2, or to use Zagier’s
theory of the Rankin–Selberg method for functions that are not of rapid decay but
satisfy a certain mild growth condition. We will actually use a combination of
these two techniques. We want to shift the line of integration in (4-12) to <(s)= 1

2 .
For this we need to identify the poles, estimate them, see what the contribution
of
∫
<(s)= 1

2
H(s)R1

(
|E(z, w, 1

2)|
2, s
)

is to the asymptotics. For the first and third
aspect we use the Rankin–Selberg approach and for the second aspect the multiple
Dirichlet approach works best.
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We first describe why double Dirichlet series techniques apply. The growth of
the Mellin transform of the absolute value of the Whittaker function is analyzed in
Lemma A.5. By combining (3-3), (3-6), and (3-7) we see that φn(w̄,

1
2)= φn(w,

1
2).

This shows that when <(w)= 1
2 we have

|φn(w,
1
2)|

2
= φn(w,

1
2)φn(1−w, 1

2).

The right-hand side has the advantage of being meromorphic in w. We define

Ẑ±(s, w)=
0(w± 1

4)0(1−w±
1
4)

π i

∞∑
±n=1

φn(w,
1
2)φn(1−w, 1

2)

|n|s−1 ,

which by (3-3) equals

1
ζ2(4w− 1)ζ2(4(1−w)− 1)

×

∞∑
±n=1

L∗(2w− 1
2 , n, 1)L∗(2(1−w)− 1

2 , n, 1)
|n|s

r2(w, n)r2(1−w, n).

We now show that Ẑ±(s, w) is directly related to the function Ẑ(s, w, χ, χ ′) defined
in (2-40). Let

U (s, w)= (1− 2−(4w−1))(1− 2−2s)(1− 2−(4w−2+2s))(1− 2−(−4w+2+2s)).

Proposition 4.5. There exist functions f̂±,κ(s, w, χ, χ ′) bounded in vertical strips
such that

U (s, w)Ẑ±(s, w)=
1

ζ2(4w−1)ζ2(4(1−w)−1)

∑
κ∈{0,1}

0( 1
2(2w−

1
2+κ))

0
( 1

2(2(1−w)−
1
2+κ)

)
×

∑
χ,χ ′

f̂±,κ(s, w, χ, χ ′)Ẑ
(

s+2w− 1
2

2
,

s−2w+ 3
2

2
, χ, χ ′

)
.

Proof. As in the proof of Proposition 4.1 we write n = 2lm and split into sums over
l even, odd respectively. We then split the m sum according to the residue class
mod 8 which is a linear combination over characters mod 8. Inserting the explicit
formulae for r2(w, n), (3-6), (3-7) we are led to consider the series

∞∑
j=0

u j (x)u j (y)z j ,

∞∑
j=0

u j (x)z j ,

∞∑
j=0

z j

with x , y, z being appropriate powers of 2. Since these are all sums of geomet-
ric series — see (3-8) — they are explicitly computable and after multiplying by
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(1−2−2s)(1−2−(4w−2+2s))(1−2−(−4w+2+2s)) they become Dirichlet polynomials
in powers of 2, hence holomorphic and bounded in vertical strips. Therefore

(1− 2−2s)(1− 2−(4w−2+2s))(1− 2−(−4w+2+2s))Ẑ±(s, w)

=

∑
χ,χ ′

f̃±(s, w, χ, χ ′)Z̃(s, w, χ, χ ′),

where

Z̃(s, w, χ, χ ′)

=
1

ζ2(4w−1)ζ2(4(1−w)−1)

∞∑
n=1

χ ′(n)L∗(2w− 1
2 , n, χ)L∗(2(1−w)− 1

2 , n, χ)
ns

and f̃±(s, w, χ, χ ′) are bounded in vertical strips. Using the functional equation
on L∗(2(1−w)− 1

2 , n, χ) we see — as in the proof of Theorem 2.11 — that

(1− 2−(4w−1))

∞∑
n=1

χ ′(n)L∗(2w− 1
2 , n, χ)L∗(2(1−w)− 1

2 , n, χ)
ns

=

∑
κ∈{0,1}

0(1
2(2w−

1
2 + κ))

0(1
2(2(1−w)−

1
2 + κ))

∑
χ,χ ′

˜̃f κ(x, y, χ, χ ′)˜̃Z(s, w, χ, χ ′),
where ˜̃f κ(x, y, χ, χ ′) is another set of functions bounded in vertical strips and

˜̃Z(s, w, χ, χ ′)= ∞∑
n=1

χ ′(n)L∗(2w− 1
2 , n, χ)2

ns−2w+1 .

Combining the above equations and comparing with (2-40) finishes the proof. �

The above lemma implies that many questions about R1
(
|E(z, w, 1

2)|
2, s
)

can
be dealt with using Z(s, w, χ, χ ′). We now describe a different method for
understanding R1

(
|E(z, w, 1

2)|
2, s
)
, namely Zagier’s Rankin–Selberg method for

functions not of rapid decay. This method was introduced by Zagier [1981] for
the group SL2(Z) and generalized by Kudla (unpublished), Dutta Gupta [1997],
and Mizuno [2005]. Its usefulness for determining the contribution of the in-
complete Eisenstein series to the asymptotics can already be seen in [Zelditch
1991]. We introduce the generalized Rankin–Selberg transform, following [Zagier
1981] and [Mizuno 2005]. We write ei j (y, s, k) = δi j ys

+ φi j (s, k)y1−s for the
zero Fourier coefficient of Eai (z, s, k) at a j and we denote the scattering matrix
by 8(s, k) = (φi j (s, k)). We note that for 00(4) the matrix 8(s, 0) is 3 × 3
whereas 8(s, 1

2) is 2× 2. For the weight 0 Eisenstein series we use the notation
Ei (z, s, 0)= Eai (z, s, 0).
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Theorem 4.6 [Mizuno 2005, Theorem 2]. Let F be a continuous functions on H

that is 0-invariant and satisfies, for i = 1, 2, 3,

F(σai z)= ψi (y)+ O(y−N ) for all N as y→∞,
where

ψi (y)=
l∑

j=1

ci j

ni j !
yαi j logni j y, ni j ∈ N∪ {0}, i = 1, 2, 3.

For such a function F the Rankin–Selberg transform Ri (F, s) corresponding to the
cusp ai , i = 1, 2, 3, is defined by

Ri (F, s) :=
∫
∞

0

∫ 1

0
(F(σai z)−ψi (y))ys dµ(z),

for <s sufficiently large. Then we have

Ri (F, s)=
∫

D0

F(z)Ei (z, s, 0) dµ(z)

+

3∑
j=1

∫
DY

(
F(σa j z)Ei (σa j z, s, 0)−ψ j (y)ei j (y, s, 0)

)
dµ(z)

+

3∑
j=1

φi j (s, 0)
∫
∞

Y
ψ j (y)y−s−1 dy−

∫ Y

0
ψi (y)ys−2 dy

=

∫
D0

F(z)Ei (z, s, 0) dµ(z)

+

3∑
j=1

∫
DY

(
F(σa j z)Ei (σa j z, s, 0)−ψ j (y)ei j (y, s, 0)

)
dµ(z)

−

3∑
j=1

φi j (s, 0)ψ̂ j (1− s, Y )− ψ̂i (s, Y ),
(4-14)

where

ψ̂i (s, Y )=
l∑

j=1

ci j

ni j∑
m=0

(−1)ni j−m

m!
Y s+αi j−1 logm Y

(s+αi j − 1)ni j−m+1 .

Furthermore, for each i = 1, 2, 3, the function Ri (F, s) can be meromorphically
continued to C and we have the functional equation

R(F, s) := t(R1(F, s), R2(F, s), R3(F, s))=8(s, 0)R(F, 1− s).

We want to move the line of integration in (4-12) to <(s)= 1
2 and Theorem 4.6

plays a major role, as it allows to identify the relevant poles and to calculate the
corresponding residues. By the above theorem, in particular by (4-14), we infer
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R1
(
|E(z, 1

2+i t, 1
2)|

2, s
)

=

∫
D0

|E(z, 1
2+i t, 1

2)|
2 E1(z, s, 0) dµ(z)−ψ̂(s, Y )

+

3∑
j=1

∫
DY

(
|E(σa j z,

1
2+i t, 1

2)|
2 E1(σa j z, s, 0)−ψ j (y)e1 j (y, s, 0)

)
dµ(z), (4-15)

where

ψ̂(s, Y )= ψ̂1(s, Y )+φ11(s, 0)ψ̂1(1−s, Y )+Y 1−s

1−s
φ12(s, 0)|φ12(

1
2+i t, 1

2)|
2,

ψ̂1(s,Y )=
Y s

s
(
1+|φ11(

1
2+i t, 1

2)|
2)
+

Y s−2i t

s−2i t
φ11(

1
2+i t, 1

2)+
Y s+2i t

s+2i t
φ11(

1
2+i t, 1

2),

ψ j (y)=
∣∣δ1 j y

1
2+i t
+φ1 j (

1
2+i t, 1

2)y
1
2−i t

∣∣2, j = 1, 2,

ψ3(y)= 0.

Thus we easily see that we pick up residues at s=1 and s=1±2i t when we shift the
line of integration. The pole at s = 1 is responsible for the contribution of the log |t |
term in (1-10), as we will see. We therefore examine H(s)R1

(
|E(z, 1

2 + i t, 1
2)|

2, s
)

at s = 1. In order to determine the order of the pole at s = 1 and its residue we use
the Laurent expansion of H(s) and R1

(
|E(z, 1

2 + i t, 1
2)|

2, s
)
. The first two terms

of (4-15) are easily understood because of the Eisenstein series, which has simple
poles at s = 1 and no other poles in <(s) ≥ 1

2 . In order to treat the last term of
(4-15) we write Y 1−s

1− s
=−

1
s− 1

+ log Y + O(|s− 1|),

φ1 j (s, 0)=
1

vol(0\H)
1

s− 1
+ b1 j

0 + O(|s− 1|).

These expansions and the fact that the scattering matrix8(s, 1
2)= (φi j (s, 1

2))1≤i, j≤2

is unitary for <(s)= 1
2 (see [Roelcke 1966, Lemma 10.5]) yield

ψ̂(s, Y )

=−
1

vol(0\H)

(
1+

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2
)

1
(s− 1)2

+

((
1+

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2
)

log Y
vol(0\H)

−
(
1+ |φ11(

1
2 + i t, 1

2)|
2)b11

0 − |φ12(
1
2 + i t, 1

2)|
2b12

0

+
1

vol(0\H)
φ11(

1
2 + i t, 1

2)Y
2i t
−φ11(

1
2 + i t, 1

2)Y
−2i t

2i t

)
1

s− 1
+O(1)
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=−
2

vol(0\H)
1

(s− 1)2

+

(
2 log Y

vol(0\H)
−
(
1+ |φ11(

1
2 + i t, 1

2)|
2)b11

0 − |φ12(
1
2 + i t, 1

2)|
2b12

0

+
1

vol(0\H)
φ11(

1
2 + i t, 1

2)Y
2i t
−φ11(

1
2 + i t, 1

2)Y
−2i t

2i t

)
1

s− 1
+ O(1).

Consequently we see that R1(|E(z, 1
2 + ir, 1

2)|
2, s) has a pole of order 2 in s = 1.

Furthermore,

res
s=1

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

=

(
1

vol(0\H)

(
−2 log Y +

∫
D0

|E(z, 1
2 + i t, 1

2)|
2 dµ(z)

+

3∑
j=1

∫
DY

(
|E(σa j z,

1
2 + i t, 1

2)|
2
−ψ j (y)

)
dµ(z)

−
φ11(

1
2 + i t, 1

2)Y
2i t
−φ11(

1
2 + i t, 1

2)Y
−2i t

2i t

)

+ b11
0 +

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2b1 j

0

)
H(1)+

2H ′(1)
vol(0\H)

=

(
−

1
vol(0\H)

2∑
j=1

φ1 j
′( 1

2 + i t, 1
2)φ1 j (

1
2 + i t, 1

2)

+ b11
0 +

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2b1 j

0

)
H(1)+

2H ′(1)
vol(0\H)

, (4-16)

where we used the Maaß–Selberg relations (see [Roelcke 1966, Lemma 11.2], for
example). For the remaining poles at s = 1± 2i t we obtain

res
s=1+2i t

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)
= H(1+ 2i t)φ11(1+ 2i t, 0)φ11(

1
2 + i t, 1

2),

and this expression is of rapid decay as |t | →∞. This follows from the following
general facts: the entries of the scattering matrix of weight zero are uniformly
bounded for <(s) ≥ 1

2 , |=(s)| ≥ 1 (see [Selberg 1989, p. 655], for example),
φ11(

1
2± i t, 1

2) is bounded since 8( 1
2+ i t, k) is unitary, and we have the rapid decay

of H(1±2i t). The same bound holds for the residue of H(s)R1
(
|E(z, 1

2+i t, 1
2)|

2, s
)

at s = 1− 2i t . We now want to shift the line of integration in (4-12). To do this we
need to control the growth of the R1

(
|E(z, 1

2 + i t, 1
2)|

2, s
)

as well as knowing the
residues.
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Lemma 4.7. Let F(z)= |E1(z, 1
2 + i t, 1

2)|
2. The function R1(F(z), σ + iv) is of at

most polynomial growth as |v| →∞ for σ ≥ 1
2 .

Proof. In order to avoid the poles of the Eisenstein series coming from the zeros
of the zeta function in the critical strip we work with R∗i (F, s) := ζ(2s)Ri (F, s),
i = 1, 2, 3. Then the function R∗i (F, s) has only finitely many poles in the strip
0≤<(s)≤ 1. The estimates for the Eisenstein series and the scattering matrix
imply that

R∗i (F, s)= O(1)

as |=(s)| →∞ for <(s) > 1, i = 1, 2, 3. Using the functional equation as well as
explicit expressions for φ1 j (s, 0) we then get

R∗1(F, s)=
ζ(2s)

ζ(2(1− s))

3∑
j=1

φ1 j (s, 0)R∗j (F, 1− s)= O(|=(s)|1−2σ )

as |=(s)| → ∞ for σ = <(s) < 0, i = 1, 2, 3. Thus by the Phragmén–Lindelöf
principle we finally obtain that

R1(F, σ + iv)= O(|v|k) as |v| →∞, σ ≥ 1
2 , for some k ∈ N. �

Now that polynomial growth has been established it follows from (4-16) that

J2(t,∞)=
(
−

1
vol(0\H)

2∑
j=1

φ1 j
′

φ1 j
( 1

2 + i t, 1
2)|φ1 j (

1
2 + i t, 1

2)|
2
+ b11

0

+

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2b1 j

0

)
H(1)+

H ′(1)
π

+
1

2π i

∫
<s= 1

2

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

ds+ O(1). (4-17)

In Section 3 we saw that, up to constants and fractions of polynomials in powers of
2, the entries of the scattering matrix are equal to ξ(3− 4s)/ξ(4s− 1); see (3-10).
Hence, in order to determine the asymptotic behavior of the first term in (4-17)
with respect to the t-variable, we need to understand the logarithmic derivative of
ξ(3− 4s)/ξ(4s − 1) at s = 1

2 + i t . The contribution from the remaining terms is
O(1). We have(

log
ξ(3− 4s)
ξ(4s− 1)

)′ ∣∣∣∣
s= 1

2+i t
= 4 logπ − 2

0′

0

( 1
2 − 2i t

)
− 2

0′

0

( 1
2 + 2i t

)
− 4

(
ζ ′

ζ
(1− 4i t)−

1
4i t
+
ζ ′

ζ
(1+ 4i t)+

1
4i t

)
=−4 log |t | + o(log |t |)
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by Stirling’s formula and [Titchmarsh 1986, Theorem 5.17]. Since 8(s, 1
2) is

unitary for <s = 1
2 , we finally arrive at

J2(t,∞)=
4H(1)

vol(0\H)
log|t |+ 1

2π i

∫
<s= 1

2

H(s)R1
(
|E(z, 1

2+i t, 1
2)|

2,s
)

ds+o(log |t |)

(4-18)
as |t |→∞. To treat the last integral we use again the connection to double Dirichlet
series.

Lemma 4.8. Assume that for any χ, χ ′ mod 8 the function Zψτ (s, 1− s, χ, χ ′)
satisfies a subconvex bound with saving δ > 0. Then, as |t | →∞,

1
2π i

∫
<s=1

2

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

ds = o(1).

Proof. We find, by (4-13), Proposition 4.5 combined with U (s, w)−1
= O(1)

when <(s)=<(w)= 1
2 , Lemma 2.22, Stirling’s formula, Lemma A.5 and, finally,

1/ζ(1+ i t)= O(log |t |), that

R1
(
|E(z, 1

2 + i t, 1
2)|

2, 1
2 + iu

)
= O

(
|t |−

1
2+ε max

χ,χ ′

∣∣Zψτ (1
2 + i(u+ 2t), 1

2 + i(u− 2t), χ, χ ′)
∣∣).

Subconvexity implies that the max is

O
((
(1+ |u+ 2t |)(1+ |u− 2t |)(1+ 2|u|)2

) 1
4−δ
)
.

Using the rapid decay of H(s) we finally obtain that

J3(t,∞)= O
(
|t |−

1
2+ε|t |2(

1
4−δ)

)
= o(1). �

Remark 4.9. In the above proof we see that, as in the cuspidal case, the trivial
bound from Theorem 2.17 only gives O(|t |

1
2+ε). However, for a compact set A the

Maaß-Selberg relations easily yield∫
A
|E(z, 1

2 + i t, 1
2)|

2 dµ(z)= O(log t).

To summarize, we have proved:

Theorem 4.10. Assume that for any χ, χ ′ mod 8 the function Z(s, 1− s, χ, χ ′)
satisfies a subconvex bound. Then, as |t | →∞,∫

0\H

Fh(z)|E∞(z, 1
2 + i t, 1

2)|
2 dµ(z)=

4
vol(0\H)

H(1) log|t | + o(log|t |).

The asymptotics (1-10) and hence Theorem 1.6 now follow from Theorems 4.3
and 4.10 by an approximation argument as in [Luo and Sarnak 1995, p. 217].
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Appendix: Mellin transforms of products of Whittaker functions

In this appendix we prove various bounds on Mellin transforms of products of
Whittaker functions that we have not been able to find in the literature in the
generality needed.

Lemma A.1. Let p ∈ {±1}. For s = 1
2 + i t , w = 1− s, and s0 fixed, we have the

bound

1
0(w+ p/4)

∫
∞

0
W0,s0−

1
2
(y)Wp/4,w− 1

2
(y)ys−1 dy

y
= O

(
(1+ |t |)−

1
2
)

as |t | →∞.

Remark A.2. The estimate in Lemma A.1 cannot be improved, as the proof below
shows that the estimate can be turned into an asymptotic rate of decay of the same
order.

Proof. Using [Gradshteyn and Ryzhik 2007, 7.611 7., p. 821] we obtain∫
∞

0
W0,s0−

1
2
(y)Wp/4,w− 1

2
(y)ys−1 dy

y

=
0(s+w− s0)0(s+w+ s0− 1)0(1− 2w)

0(1− p/4−w)0(s+w)

× 3 F2

(
s+w− s0, s+w+ s0− 1, w−

p
4
; 2w, s+w; 1

)
+
0(s−w+ s0)0(s−w− s0+ 1)0(2w− 1)

0(w− p/4)0(s−w+ 1)

× 3 F2

(
s−w+ s0, s−w− s0+ 1, 1−

p
4
−w; 2− 2w, s−w+ 1; 1

)
, (A-1)

if |<(s0−
1
2)|+|<(w−

1
2)|<<s. The generalized hypergeometric series that appear

in (A-1) converge for <s < 1+ p/4. We now set s = 1
2 + i t and w= 1

2 − i t and get∫
∞

0
W0,s0−

1
2
(y)Wp/4,−i t(y)ys−1 dy

y

=
0(1− s0)0(s0)0(2i t)

0(1
2 −

p
4 + i t)0(1)

3 F2

(
1− s0, s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
+
0(s0+ 2i t)0(1− s0+ 2i t)0(−2i t)

0( 1
2 −

p
4 − i t)0(1+ 2i t)

× 3 F2

(
s0+ 2i t, 1− s0+ 2i t, 1

2
−

p
4
+ i t; 1+ 2i t, 1+ 2i t; 1

)
.
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Using [Bailey 1964, p. 18], we infer that (see also [Jakobson 1994, (2.9), p. 1491])

3 F2

(
s0+ 2i t, 1− s0+ 2i t, 1

2
−

p
4
+ i t; 1+ 2i t, 1+ 2i t; 1

)
=
0(1

2 +
p
4 − i t)0(1+ 2i t)

0( 1
2 +

p
4 + i t)0(1)

3 F2

(1
2
−

p
4
+ i t, 1− s0, s0; 1+ 2i t, 1; 1

)
,

and thus∫
∞

0
W0,s0−

1
2
(y)Wp/4,−i t(y)ys−1 dy

y

=
0(1− s0)0(s0)0(2i t)

0( 1
2 −

p
4 + i t)

3 F2

(
1− s0, s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
+
0(s0+ 2i t)0(1− s0+ 2i t)0(−2i t)0( 1

2 +
p
4 − i t)

0( 1
2 −

p
4 − i t)0(1

2 +
p
4 + i t)

× 3 F2

(
1− s0, s0,

1
2
−

p
4
+ i t; 1+ 2i t, 1; 1

)
. (A-2)

We want to understand the asymptotic behavior of the hypergeometric series ap-
pearing in (A-2). Since <(s)= 1

2 < 1+ p
4 , these converge absolutely. Moreover,

the only difference between the two series is the sign of i t , so that it suffices to
treat the first series. The treatment of the second hypergeometric series appearing
in (A-2) is similar. Using the series representation for 3 F2 we see that

3 F2

(
s0, 1− s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
=

∞∑
n=0

(s0)n(1− s0)n(
1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

1
n!
.

(A-3)
In order to determine its asymptotic behavior as |t | →∞ we want to interchange
the summation with the limit, i.e., we want to take the limit |t | →∞ in each term
of the series separately. For this, let ε ∈ (0; 1

4) be sufficiently small and rewrite the
terms appearing in (A-3) as∣∣∣∣(s0)n(1− s0)n(

1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

∣∣∣∣= ∣∣∣∣(s0)n(1− s0)n

(1+ ε)n

∣∣∣∣ ∣∣∣∣(1+ ε)n(1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

∣∣∣∣ .
For 0≤ l ≤ n we have∣∣∣∣(l+1+ε)(l+ 1

2−
p
4 −i t)

(l+1)(l+1−2i t)

∣∣∣∣2=
(
l2
+(3

2−
p
4 +ε)l+(1+ε)(

1
2−

p
4 )
)2
+t2(l+1+ε)2

(l+1)4+4t2(l+1)2
.

Since 2(l + 1) > l + 1+ ε and

0≤ l2
+

(3
2
−

p
4
+ ε

)
l + (1+ ε)

(1
2
−

p
4

)
≤ (l + 1)2, (A-4)
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this implies that ∣∣∣∣(s0)n(1− s0)n(
1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

∣∣∣∣≤ ∣∣∣∣(s0)n(1− s0)n

(1+ ε)n

∣∣∣∣
for all n ≥ 0. Furthermore, the hypergeometric series

2 F1(s0, 1− s0; 1+ ε; 1)=
∞∑

n=0

(s0)n(1− s0)n

(1+ ε)n

1
n!

converges absolutely and therefore, by the theorem of majorized convergence, we
finally obtain

lim
|t |→∞

3 F2

(
s0, 1− s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
= 2 F1

(
s0, 1− s0; 1;

1
2

)
.

Thus only the Gamma factors appearing in (A-2) determine the asymptotic behavior,
and using Stirling’s formula we see that∫

∞

0
W0,s0−

1
2
(y)Wp/4,−i t(y)ys−1 dy

y
= O

(
|t |−(

1
2−

p
4 )e−

π
2 |t |
)

as |t | →∞. This implies the desired bound. �

Lemma A.3. Let p ∈ {±1}. We have

3 F2

(1
2
+

p
4
− i t, 1

2
+ iu, 1

2
− iu; 1, 1− 2i t; 1

)
� eπ |u||u|−2ε

as |u| →∞, where the implied constant does not depend on t. Furthermore, there
exists a constant C independent of t such that

3 F2

(1
2
+

p
4
− i t, 1

2
,

1
2
; 1, 1− 2i t; 1

)
≤ C.

Proof. Since <(2 − 2i t − (1 + 1
2 +

p
4 − i t)) > 0, the hypergeometric series

3 F2(
1
2 +

p
4 − i t, 1

2 + iu, 1
2 − iu; 1, 1 − 2i t; 1) converges. By the definition of

the hypergeometric series we have

3 F2

(1
2
+

p
4
− i t, s, 1− s; 1, 1− 2i t; 1

)
= 1+

∞∑
m=1

(s)m(1− s)m
(1)mm!

( 1
2 +

p
4 − i t)m

(1− 2i t)m

with s = 1
2 + iu. We now determine the behavior of the series as |u| →∞. We use

the same argumentation that was already useful in the proof of Lemma A.1. We
write

(s)m(1− s)m
(1)mm!

(1
2 +

p
4 − i t)m

(1− 2i t)m
=
(s)m(1− s)m
(1+ ε)mm!

( 1
2 +

p
4 − i t)m(1+ ε)m

(1)m(1− 2i t)m
(A-5)
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with ε > 0 sufficiently small. As before the second factor on the right-hand side
can be bounded in norm by 1, and it is straightforward to see that the first factor is
real and positive, so∣∣∣3 F2

(1
2
+

p
4
− i t, s, 1− s; 1, 1− 2i t; 1

)∣∣∣≤ 2 F1(s, 1− s; 1+ ε; 1).

The last hypergeometric function equals (see [Bailey 1964, (1), p. 2])

0(1+ ε)0(ε)

0( 1
2 + ε+ iu)0( 1

2 + ε− iu)
,

and the first statement now follows from Stirling’s formula. The second statement
follows from plugging u = 0 in the above argument. �

Remark A.4. A similar bound is given in [Jakobson 1994], Claim 3.4, p. 1499.

Lemma A.5. Let p ∈ {±1}. For u, t ∈ R we have

1

|0( 1
2 +

p
4 + i t)|2

∫
∞

0
y−

1
2+iu

∣∣Wp/4,i t(y)
∣∣2 dy

y
= O((1+ |t |)−

1
2 )

as |t | →∞. The implied constant is uniform in u.

Proof. Set

Ip,t(u) :=
∫
∞

0
y−

1
2+iu

∣∣Wp/4,i t(y)
∣∣2 dy

y
.

Since |In,t(u)| ≤ In,t(0), we assume that u = 0. By [Gradshteyn and Ryzhik 2007,
Formula 7.611 7., p. 821] we get

In,t(0)

=
0( 1

2−2i t)0( 1
2)0(2i t)

0( 1
2−

p
4+i t)0(1− p

4−i t)
× 3 F2

(1
2
−2i t, 1

2
,

1
2
−

p
4
−i t; 1−2i t, 1− p

4
−i t; 1

)
+
0( 1

2+2i t)0( 1
2)0(−2i t)

0( 1
2−

p
4−i t)0(1− p

4+i t)
× 3 F2

(1
2
+2i t, 1

2
,

1
2
−

p
4
+i t; 1+2i t, 1− p

4
+i t; 1

)
.

It suffices to consider the first term since the second term differs from the first one
only by the sign of t . Using the transformation formulae of [Bailey 1964, p. 18], as
in the proof of Lemma A.1 we see that

3 F2

(1
2
− 2i t, 1

2
,

1
2
−

p
4
− i t; 1− 2i t, 1− p

4
− i t; 1

)
=
0(1− p

4 − i t)0( 1
2)

0( 1
2 −

p
4 − i t)

3 F2

(1
2
+

p
4
− i t, 1

2
,

1
2
; 1, 1− 2i t; 1

)
.
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By the second part of Lemma A.3 the hypergeometric series is bounded and we
find — by bounding all the Gamma functions using Stirling — that

|Ip,t(0)| = O
(
0(1− p

4 − i t)

0( 1
2 −

p
4 − i t)

0(1
2 − 2i t)0(2i t)

0( 1
2 −

p
4 + i t)0(1− p

4 − i t)

)
= O

(
e−π |t ||t |−

1
2+

p
2
)

as |t | →∞, which gives the result. �
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Monodromy and local-global compatibility
for l = p
Ana Caraiani

We strengthen the compatibility between local and global Langlands correspon-
dences for GLn when n is even and l D p. Let L be a CM field and … a
cuspidal automorphic representation of GLn.AL/ which is conjugate self-dual
and regular algebraic. In this case, there is an l-adic Galois representation
associated to …, which is known to be compatible with local Langlands in almost
all cases when l D p by recent work of Barnet-Lamb, Gee, Geraghty and Taylor.
The compatibility was proved only up to semisimplification unless … has Shin-
regular weight. We extend the compatibility to Frobenius semisimplification in
all cases by identifying the monodromy operator on the global side. To achieve
this, we derive a generalization of Mokrane’s weight spectral sequence for log
crystalline cohomology.
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1. Introduction

This paper is a continuation of [Caraiani 2012]. Here we extend our local-global
compatibility result to the case l D p.

Theorem 1.1. Let n 2 Z�2 be an integer and L be a CM field with complex
conjugation c. Let l be a prime of Q and �l WQl ! C be an isomorphism. Let … be
a cuspidal automorphic representation of GLn.AL/ satisfying

� …_ '… ı c,
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Keywords: Galois representations, automorphic forms, local-global compatibility, monodromy
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� … is cohomological for some irreducible algebraic representation „ of
GLn.L˝Q C/.

Let
Rl.…/ W Gal.L=L/! GLn.Ql/

be the Galois representation associated to … by [Shin 2011; Chenevier and Harris
2013]. Let y be a place of L above l . Then we have the isomorphism of Weil–
Deligne representations

WD.Rl.…/jGal.Ly=Ly//
F-ss
' ��1l Ln;Ly .…y/:

Here Ln;Ly .…y/ is the image of …y under the local Langlands correspondence,

using the geometric normalization; i.e., Ln;Ly .…y/ WD rec
�
…_y ˝jdet j

1�n
2

�
, where

rec is the local Langlands correspondence compatible with L- and �-factors (see
the introduction to [Harris and Taylor 2001] for more details). WD.r/ is the Weil–
Deligne representation attached to a de Rham l-adic representation r of the absolute
Galois group of an l-adic field; F-ss denotes Frobenius semisimplification. Note
that we are assuming throughout that n � 2. The local-global compatibility of
Langlands correspondences for GL1 follows from the compatibility between local
and global class field theory.

This theorem is proved in [Barnet-Lamb et al. 2012; Barnet-Lamb et al. 2011]
in the case when … has Shin-regular weight (either n is odd or if n is even then …
satisfies an additional regularity condition) and in general up to semisimplification.
The strategy for obtaining the local-global compatibility of monodromy operators
in these cases is to make use of the fact that the l-adic Galois representation
associated to … occurs in the cohomology of certain very special unitary Shimura
varieties. These are associated to unitary similitude groups with signature .1; n�1/
(respectively, .1; n/ if n is even) at exactly one infinite place and signature .0; n/
(respectively, .0; n C 1/) at all the other infinite places. The problem can be
reduced to the case when …y has an Iwahori-fixed vector, in which case one has
to compute the crystalline cohomology of a compact Shimura variety which is
strictly semistable. This computation makes use of the weight spectral sequence
for crystalline cohomology due to Mokrane [1993], which is shown to degenerate
at the first page. We remark that the l-adic Galois representation associated to …
is only known to occur in the cohomology of a proper, smooth variety in the case
when … has Shin-regular weight.

Our goal in this paper is to match up the monodromy operators in the case when
n is even and … does not necessarily have Shin-regular weight. Following the
conventions of [Taylor and Yoshida 2007], we call a Weil–Deligne representation
pure of weight k if it admits a weight filtration, with all the weights in kCZ, such
that the (iterated) monodromy operator induces an isomorphism of the .kC i/-th



Monodromy and local-global compatibility for l = p 1599

and .k� i/-th graded pieces for all positive integers i . By Lemma 1.4 (4) of [Taylor
and Yoshida 2007], given a semisimple representation of the Weil group of some
l-adic field, there is at most one way to choose the monodromy operator such that
the resulting Weil–Deligne representation is pure of some weight. By Theorem 1.2
of [Caraiani 2012], …y is tempered, so we know that ��1

l
Ln;Ly .…y/ is pure of

some weight.
By Theorem A of [Barnet-Lamb et al. 2011], we also know that we have an

isomorphism up to semisimplification:

WD.Rl.…/jGal.Ly=Ly//
ss
' ��1l Ln;Ly .…y/

ss:

We note that Theorem A of [Barnet-Lamb et al. 2011] is stated for an imaginary
CM field F . For our CM field L we proceed as on pages 230–231 of [Harris and
Taylor 2001] to find a quadratic extension F=L which is an imaginary CM field, in
which y D y0y00 splits, such that

ŒRl.…/jGal.L=F /�D ŒRl.BCF=L.…//�:

This together with Theorem A of [Barnet-Lamb et al. 2011] gives the compatibility
up to semisimplification for the place y of L. Therefore, in order to complete the
proof of Theorem 1.1, it suffices to show that W WDWD.Rl.…/Gal.Ly=Ly//

F-ss is
pure of some weight when n is even. From now on we will let n 2 Z�2 be an even
integer.

Our argument will follow the same general lines as that of [Taylor and Yoshida
2007], which is also the strategy followed by [Barnet-Lamb et al. 2012; Barnet-
Lamb et al. 2011]. We reduce the problem to the case when…y has an Iwahori-fixed
vector. In this case, we find not W itself, but rather the tensor square of W in
the log crystalline cohomology of a compact Shimura variety with Iwahori-level
structure, and finally compute a part of this cohomology explicitly. For the last
step, however, we can not make use of the Mokrane spectral sequence, since our
Iwahori-level Shimura variety is no longer semistable, but rather Zariski-locally
étale over a product of strictly semistable schemes. Therefore, we need to derive
a formula for the log crystalline cohomology of the special fiber of this Shimura
variety in terms of the crystalline cohomology of closed Newton polygon strata
in the special fiber. Deriving this formula constitutes the heart of this paper; we
obtain it in the form of a generalization of the Mokrane spectral sequence or as a
crystalline analogue of Corollary 4.28 of [Caraiani 2012].

We briefly outline the structure of our paper. In Section 2 we reduce to the
case where … has an Iwahori-fixed vector, we define an inverse system of compact
Shimura varieties associated to a unitary group and we show that the crystalline
cohomology of the Iwahori-level Shimura variety realizes the tensor square of W .
The Shimura varieties we work with are the same as those studied in [Caraiani 2012],
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so in Section 2 we also recall the main results from [Caraiani 2012] concerning
them. In Section 3 we recall and adapt to our situation some standard results from
the theory of log crystalline cohomology and the de Rham–Witt complex; we define
and study some slight generalizations of the logarithmic de Rham–Witt complex.
In Section 4 we generalize the Mokrane spectral sequence to our geometric setting.
The main technical result is Theorem 4.6. In Section 5 we prove Theorem 1.1.

2. Shimura varieties

Let L;…;Rl.…/ and y be as described in the introduction. Below, we show that we
can understand the Weil–Deligne representation W DWD.Rl.…/Gal.Ly=Ly//

F-ss

by computing a part of the crystalline cohomology of an inverse system of Shimura
varieties. In the first part we closely follow Sections 2 and 7 of [Caraiani 2012] and
afterwards we use some results from Section 5 of the same work.

We claim first that we can reduce the problem to the case when … has Iwahori-
fixed vectors at y, and we can also put ourselves in a situation where the base change
from unitary groups to GLn is well understood. This means that we can reduce the
problem to understanding the cohomology of certain Iwahori-level unitary Shimura
varieties. More precisely, we can find a CM field extension F 0 of L such that:

� F 0 D EF1, where E is an imaginary quadratic field in which l splits and
F1 D .F

0/cD1 has ŒF1 WQ�� 2;

� F 0 is soluble and Galois over L;

� …0F 0 WD BCF 0=L.…/ is a cuspidal automorphic representation of GLn.AF 0/;
and

� there is a place p above the place y of L such that …0F 0;p has a nonzero
Iwahori-fixed vector;

and a CM field F which is a quadratic extension of F 0, such that:

� pD p1p2 splits in F ;

� RamF=Q[RamQ.…/� SplF=F2;Q, where F2 WD .F /cD1; and

� …0F D BCF=F 0.…0F 0/ is a cuspidal automorphic representation of GLn.AF /.

We can find F and F 0 as in the proof of Corollary 5.9 of [Caraiani 2012]. Since
purity is preserved under finite extensions by Lemma 1.4 of [Taylor and Yoshida
2007], to show that W is pure it suffices to show that

WF 0 WDWD
�
Rl.…

0
F 0/jGal.F 0p=F 0p/

�F-ss

is pure. Note that in this new situation …0F 0;p has a nonzero Iwahori-fixed vector.
We can define an algebraic group G over Q and an inverse system of Shimura

varieties over F 0 corresponding to a PEL Shimura datum .F;�; V; h � ; � i; h/. Here



Monodromy and local-global compatibility for l = p 1601

F is the CM field defined above and � D c is the involution corresponding to
complex conjugation. We take V to be the F -vector space F n. The pairing

h � ; � i W V �V !Q

is a nondegenerate Hermitian pairing such that hf v1; v2i D hv1; f �v2i for all
f 2 F and v1; v2 2 V . The last element we need is an R-algebra homomorphism
h W C! EndF .V /˝Q R such that the bilinear pairing

.v1; v2/! hv1; h.i/v2i

is symmetric and positive definite. We define the algebraic group G over Q by

G.R/D
˚
.g; �/ 2 EndF˝QR.V ˝QR/

�
�R� j hgv1; gv2i D �hv1; v2i

	
for any Q-algebra R.

We choose embeddings �i W F ,!C such that �2D �1 ı� , where � is an element
of Gal.F=F 0/ which takes p1 to p2. For � 2 HomE;�E .F;C/ we let .p� ; q� / be
the signature at � of the pairing h � ; � i on V ˝Q R. In particular, �E WD �1jE D �2jE
is well-defined. We claim that it is possible to choose a PEL datum as above such
that .p� ; q� /D .1; n�1/ for � D �1 or �2 and .p� ; q� /D .0; n/ otherwise and such
that GQv is quasisplit at every finite place v of Q. This follows from Lemma 2.1 of
[Caraiani 2012] and the discussion following it, and it depends crucially on the fact
that n is even. We choose such a PEL datum and we let G be the corresponding
algebraic group over Q with the prescribed signature at infinity and quasisplit at all
the finite places.

Let „0F WD BCF=L.„/ and F2 D F cD1. Lemma 7.2 of [Shin 2011] says that
we can find a character  W A�E=E

�! C� and an algebraic representation �C of G
over C satisfying the following conditions:

�  …0F
D  c= .

� „0F is isomorphic to the restriction of „0 to ResF=Q.GLn/�Q C, where „0 is
obtained from �C by base change from G to Gn WD ResE=Q.G �QE/.

� �Cj
�1
E�1
D  c1.

� RamQ. /� SplF=F2;Q.

�  jO
E�u
D 1, where u is the place above l induced by ��1

l
�E .

Define � WD �l�C, and define …1 WD  ˝…0F , which is a cuspidal automorphic
representation of GL1.AE /�GLn.AF /.

Corresponding to the PEL datum .F;�; V; h � ; � i; h/, we have a PEL-type moduli
problem of abelian varieties. This moduli problem is defined in Section 2.1 of
[Caraiani 2012], and here we recall some facts about it. Since the reflex field of the
PEL datum is F 0, the moduli problem for an open compact subgroup U �G.A1/ is
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representable by a Shimura variety XU =F 0, which is a smooth and quasiprojective
scheme of dimension 2n� 2. The inverse system of Shimura varieties XU as U
varies has an action of G.A1/. As in Section III.2 of [Harris and Taylor 2001],
starting with �, which is an irreducible algebraic representation of G over Ql , we
can define a lisse Ql -sheaf L� over each XU , and the action of G.A1/ extends to
the inverse system of sheaves. The direct limit

H i .X;L�/ WD lim
!
H i .XU �F 0 F 0;L�/

is a semisimple admissible representation of G.A1/ with a continuous action of
Gal.F 0=F 0/. It can be decomposed as

H i .X;L�/D
M
�

� ˝Ri�;l.�/;

where the sum runs over irreducible admissible representations � of G.A1/ over
Ql . The Ri

�;l
.�/are finite-dimensional continuous representations of Gal.F 0=F 0/

over Ql . Let AU be the universal abelian variety over XU , to the inverse system of
which the action of G.A1/ extends. To the irreducible representation � of G we
can associate as in Section III.2 of [Harris and Taylor 2001] nonnegative integers
m� and t� as well as an idempotent a� of H�.Am�

U �F
0 F 0;Ql.t�//. (Here A

m�
U

denotes the m� -fold product of AU with itself over XU and Ql.t�/ is a Tate twist.)
We have an isomorphism

H i .XU �F 0 F 0;L�/' a�H
iCm� .A

m�
U �F

0 F 0;Ql.t�//;

which commutes with the G.A1/-action.
For every finite place v of Q we can define a base-change morphism taking

certain admissible G.Qv/-representations to admissible G.Qv/-representations, as
in Section 4.2 of [Shin 2011]. Recall that RamF=Q[RamQ…

1 � SplF=F2;Q. If
v … SplF=F2;Q then we can define the morphism

BC W Irrur
.l/.G.Qv//! Irrur;�-st

.l/
.G.Qv//;

taking unramified representations of G.Qv/ to unramified, � -stable representations
of G.Qv/. If v 2 SplF=F2;Q then the morphism

BC W Irr.l/.G.Qv//! Irr�-st
.l/ .G.Qv//

can be defined explicitly since G.Qv/ is split. Putting these maps together, we get,
for any finite set of primes Sfin such that

RamF=Q[RamQ.…/�Sfin � SplF=F2;Q;
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a base-change morphism

BC W Irrur
.l/

�
G.ASfin[f1g/

�
˝ Irr.l/

�
G.ASfin/

�
! Irrur;�-st

.l/

�
G.ASfin[f1g/

�
˝ Irr�-st

.l/

�
G.ASfin/

�
:

Let p be a prime of Q which splits in E and such that there is a place of F 0

above p which splits in F . Let Sfin be a finite set of primes such that

RamF=Q[RamQ.…/[fpg �Sfin � SplF=F2;Q;

and set S WD Sfin [ f1g. For any R 2 Groth.G.AS/�G.ASfin/�Gal.F 0=F 0//
(over Ql ) and �S 2 Irrur.G.AS// define the �S-isotypic part of R to be

Rf�S
g WD

X
�

n.�S
˝ �/Œ�S�Œ��;

where � runs over Irrl.G.AS/�Gal.F 0=F 0//. Also define

RŒ…1;S� WD
X
�S

RŒ�S�;

where each sum runs over �S 2 Irrur
l
.G.AS// such that BC.�l�S/'…1;S.

Proposition 2.1. Let SDSfin[f1g be as above. We have the equality

BC.H 2n�2.X;L�/Œ…
1;S�/' CG Œ�

�1
l …1;1�ŒRl.…

0
F 0/
˝2
˝ recl;�l . /�

of elements of Groth.G.A1/ � Gal.F 0=F //. Here CG is a positive integer and
recl;�l . / is the continuous l-adic character Gal.E=E/!Q�

l
associated to  by

global class field theory, normalized so that it matches uniformizers with geometric
Frobenius elements.

Remark. Unlike in the classical situation of modular forms or in the case of Harris–
Taylor-type Shimura varieties [Harris and Taylor 2001; Shin 2011], the cohomology
of our inverse system of Shimura varieties realizes a twist of the tensor square of the
l-adic Galois representation associated to …, because we have chosen our unitary
similitude groups to have signature .1; n� 1/ two infinite places. One could use
Matsushima’s formula and .g; K/-cohomology to check that the dimension of the
Galois representation seen by this cohomology is n2, as predicted by the statement.

Proof. Let p 2Sfin be a prime which splits in E such that there is a place w of F 0

above the place induced by �E over p which splits in F , w D w1w2. We start by
recalling some constructions and results from Sections 2 and 5 of [Caraiani 2012].
It is possible to define an integral model of each XU over the ring of integers OK
in K WD Fw1 ' Fw2 , which itself represents a moduli problem of abelian varieties
and to which the sheaf L� extends. The special fiber YU of this integral model
has a stratification by open Newton polygon strata Y ıU;S;T , according to the formal
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(or étale) height of the p-divisible group of the abelian variety at w1 and w2. Each
open Newton polygon stratum is covered by a tower of Igusa varieties Ig.h1;h2/

Up; Em
,

where 0 � h1; h2 � n� 1 represent the étale heights of the p-divisible groups at
w1 and w2, and Em is a tuple of positive integers describing the level structure at p.

Define

J .h1;h2/.Qp/ WDQ�p �D
�
K;n�h1

�GLh1.K/�D
�
K;n�h2

�GLh2.K/�
Y
w

GLn.Fw/;

where DK;n�h is the division algebra over K of invariant 1=.n� h/ and w runs
over places of F above �E other than w1 and w2. The group J .h1;h2/.Qp/ acts on
the directed system of H j

c .Ig
.h1;h2/

Up; Em
;L�/, as U p and Em vary. Let

Hc.Ig.h1;h2/;L�/ 2 Groth
�
G.A1;p/�J .h1;h2/

�
be the alternating sum of the direct limit of H j

c .Ig
.h1;h2/

Up; Em
;L�/ as in Section 5.1 of

[Caraiani 2012]. Let �p 2 Irrl.G.Qp// be a representation such that BC.�p/ '
��1
l
…1p (such a �p is unique up to isomorphism since p splits in E). Theorem 5.6 of

[Caraiani 2012] gives a formula for computing the cohomology of Igusa varieties,
as elements of Groth

�
G.AS/�G.ASfinnfpg/�J

.h1;h2/.Qp/
�
:

BCp
�
Hc.Ig.h1;h2/;L�/Œ…

1;S�
�

D e0.�1/
h1Ch2CG Œ�

�1
l …1;S�Œ��1l …1Sfinnfpg

�ŒRed.h1;h2/n .�p/� (2.1)

Here e0 D˙1 independently of h1; h2 and Red.h1;h2/n is a group morphism from
Groth.G.Qp// to Groth.J .h1;h2/.Qp//, defined explicitly above Theorem 5.6 of
[Caraiani 2012].

We can combine the above formula with Mantovan’s formula for the cohomology
of Shimura varieties. This is the equality

H.X;L�/D
X

0�h1;h2�n�1

.�1/h1Ch2 Mant.h1;h2/
�
Hc.Ig.h1;h2/;L�/

�
(2.2)

of elements of Groth.G.A1/�WK/. Here H.X;L�/ is the alternating sum of the
direct limit of the cohomology of the Shimura fibers (generic fibers) and

Mant.h1;h2/ W Groth.J .h1;h2/.Qp//! Groth.G.Qp/�WK/

is the functor defined in [Mantovan 2005]. The formula (2.2) is what Theorem 22 of
[Mantovan 2005] amounts to in our situation, where h1 and h2 are the parameters
for the Newton stratification. The extra term .�1/h1Ch2 occurs on the right-hand
side because we use the same convention for the alternating sum of cohomology as
in [Caraiani 2012], which differs by a sign from the conventions used in [Mantovan
2005] and [Shin 2011].
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By combining formulas (2.1) and (2.2) we get

BCp
�
H.X;L�/Œ…

1;S�
�

D e0CG Œ�
�1
l …1;1;p�

� X
0�h1;h2�n�1

ŒMant.h1;h2/.Red.h1;h2/n .�p//�

�
in Groth.G.A1;p/�G.Qp/�WK/. We claim thatX
0�h1;h2�n�1

ŒMant.h1;h2/.Red.h1;h2/n .�p//�

D Œ�p�
�
.�p;0 ıArt�1Qp

/jWK ˝ �
�1
l LK;n.…

0
F 0;w/

�
: (2.3)

By its definition above Theorem 5.6 of [Caraiani 2012], the morphism Red.h1;h2/n .�p/

breaks down as a product

.�1/h1Ch2�p;0˝Redn�h1;h1.�w1/˝Redn�h2;h2.�w2/˝
O

w 6Dw1;w2

�w ;

where w runs over places above the place of p induced by �E other than w1 and
w2. The morphism

Redn�h;h W Groth.GLn.K//! Groth.D�K;n�h �GLh.K//

is also defined above Theorem 5.6 of [Caraiani 2012]. On the other hand, the functor
Mant.h1;h2/ also decomposes as a product (see [Shin 2011, Formula 5.6]), into

Mant.h1;h2/.�/

DMant1;0.�0/˝Mantn�h1;h1.�w1/˝Mantn�h2;h2.�w2/˝
O

w 6Dw1;w2

Mant0;m.�w/;

where w again runs over places above the place of p induced by �E other than w1
and w2. SoX
0�h1;h2�n�1

ŒMant.h1;h2/.Red.h1;h2/n .�p//�

D ŒMant1;0.�p;0/�˝
n�1X
h1D0

.�1/h1 ŒMantn�h1;h1.Redn�h1;h1.�w1//�

˝

n�1X
h2D0

.�1/h2 ŒMantn�h2;h2.Redn�h2;h2.�w2//�˝
O

w 6Dw1;w2

Œ�w �:

Now by applying Propositions 2.2(i) and 2.3 of [Shin 2011] we get the desired
result (note that the normalization used in their statements is slightly different than
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ours, but the relation between the two different normalizations is explained above
the statement of Proposition 2.3).

Applying Equation (2.3), we first see that

BC
�
H.X;L�/Œ…

1;S�
�

D e0CG Œ�
�1
l …1;1�

�
.�p;0 ıArt�1Qp

/jWK ˝ �
�1
l LK;n.…

0
F 0;w/

�
(2.4)

in Groth.G.A1/�WK/, which means that

BC
�
H.X;L�/Œ…

1;S�
�
D e0Œ�

�1
l …1;1�ŒR0.…1/�;

for some ŒR0.…1/� 2 Groth.Gal.F 0=F //. We show now that

ŒR0.…1/�D CG ŒR.…
0
F 0/
˝2
˝ recl;�l . /�

in Groth.Gal.F =F 0//, using the Cebotarev density theorem. Note first that R0.…1/
is simply the sum of (the alternating sum of) Rk

�;l
.�1/, where �1 runs over

Irrl.G.A1// such that

� BC.�l�S/'…1;S,

� BC.�l�Sfin/'…Sfin ,

� Rk
�;l
.�1/ 6D 0 for some k.

The set of such � doesn’t depend on S if S is chosen as described above this
proposition, so the Galois representation R

0

.…1/ is also independent of S. There-
fore, for any prime w1 of F where …1 is unramified and which is above a prime w
of F 0 which splits in F and above a prime p 6D l of Q which splits in E, we can
choose a finite set of places S containing p such that we get from Equation (2.4)

ŒR0.…1/jWFw1
�D CG

�
.R.…0F 0/

˝2
˝ recl;�l . //WFw1

�
:

By the Cebotarev density theorem (which tells us the Frobenius elements of primes
w1 are dense in Gal.F 0=F /) we conclude that

ŒR0.…1/�D CG ŒR.…
0
F 0/
˝2
˝ recl;�l . /�

in Groth.Gal.F =F 0//.
It remains to see that e0 D 1 and that Hk.X;L�/Œ…

1;S�D 0 unless k D 2n� 2.
In fact, it suffices to show the latter, since then H.X;L�/Œ…1;S� will have to be an
actual representation, so that would force e0D 1. The fact thatHk.X;L�/Œ…

1;S�D

0 for k 6D 2n� 2 can be seen, as in the proof of Corollary 7.3 of [Caraiani 2012],
by choosing a prime p 6D l to work with and applying the spectral sequences in
Proposition 7.2 of [ibid.], and noting that the terms of those spectral sequence are 0
outside the diagonal corresponding to k D 2n� 2. �
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Corollary 2.2. By Lemmas 1.4 and 1.7 of [Taylor and Yoshida 2007] and by the
same argument as in the proof of Theorem 7.4 of [Caraiani 2012], in order to show
that

WD
�
Rl.…

0
F 0/jGal.F 0p=F 0p/

�F-ss

is pure, it suffices to show that

WD
�
BC.H 2n�2.X;L�/Œ…

S�/jGal.F 0p=F 0p/

�F-ss

is pure, where S is chosen such that it contains l .

At this point, we’ve reduced the question of proving the local-global compatibility
of monodromy operators when lDp to proving that the…S-part of the cohomology
of a system of proper, smooth Shimura varieties over F 0 gives rise to a pure Weil–
Deligne representation. In the rest of this section, we shall describe integral models
of these Shimura varieties which are no longer smooth but are log smooth and of
Cartier type. We shall relate their log crystalline cohomology to the Weil–Deligne
representation we are interested in. The upshot is that we reduce the question of
local-global compatibility to proving the purity of (the …S-part of) certain log
crystalline cohomology groups. This statement is made precise in Corollary 2.3
below.

Recall that p is a place of F 0 above l such that p D p1p2. From now on, set
K WD Fp1 ' Fp2 , where the isomorphism is via � . Let OK be the ring of integers in
K with uniformizer $ and residue field k. For i D 1; 2 let Iwn;pi be the subgroup
of matrices in GLn.OK/ which reduce modulo pi to the Borel subgroup Bn.k/.
Now we set

UIw D U
l
�U

p1;p2
l

.m/� Iwn;p1 � Iwn;p2 �G.A
1/;

for some U l �G.A1/ compact open and U p1;p2
l

a congruence subgroup at l away
from p1 and p2. In Section 2.2 of [Caraiani 2012], an integral model for XUIw=OK
is defined. This is a proper scheme of dimension 2n� 1 with smooth generic fiber.
The special fiber YUIw has a stratification by closed Newton polygon strata YUIw;S;T

with S; T � f1; : : : ; ng nonempty subsets. These strata are proper, smooth schemes
over k of dimension 2n� #S � #T . In fact,

YUIw;S;T D

�\
i2S

Y1;i

�
\

�\
j2T

Y2;j

�
;

where each Yi;j for i D 1; 2 and j D 1; : : : ; n is cut out by one local equation. We
can also define

Y
.l1;l2/
UIw

D

G
S;T�f1;:::;ng

#SDl1
#TDl2

YUIw;S;T :
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By Proposition 2.8 of [Caraiani 2012], the completed local rings of XUIw at closed
geometric points s of XUIw are isomorphic to

O^XUIw ;s
'W.K/ŒŒX1; : : : ; Xn; Y1; : : : ; Yn��=.Xi1 � � �Xir �$;Yj1 � � �Yjs �$/;

where fi1; : : : ; irg � f1; : : : ; ng, fj1; : : : ; jrg � f1; : : : ; ng and W.K/ is the ring of
integers in the completion of the maximal unramified extension of K. The closed
subscheme Y1;il is cut out in O^XUIw ;s

by Xil D 0 and Y2;jl is cut out by Yjl D 0.
The action of G.A1;p/ extends to the inverse system XUIw=OK . There is a

universal abelian variety AUIw=OK and the actions of G.A1/ and a� extend to it.
We can define a stratification of the special fiber of AUIw by

AUIw;S;T DAUIw �XUIw
XUIw;S;T :

Moreover, AUIw satisfies the same geometric properties as XUIw with respect to the
above stratification of its special fiber and the analogous statement holds for A

m�
UIw

.
In particular, we shall see in the next section (or it follows from Section 3 of
[Caraiani 2012]) that A

m�
UIw

can be endowed with a vertical logarithmic structure M
such that

.A
m�
UIw
;M/! .Spec OK ;N/

is log smooth, where .Spec OK ;N/ is the canonical log structure associated to
the closed point. Also, we will see that its special fiber is of Cartier type. This
means that we can define the log crystalline cohomology of .Am�

UIw
;M/. Indeed, if

W DW.k/ is the ring of Witt vectors of k, then we let

H�cris.A
m�
UIw
=W /

be the log crystalline cohomology of .Am�
UIw
�OK k;M/ (here we suppress M from

the notation). This also has an action of a� as an idempotent and of G.AS/.
From the isomorphism

H 2n�2.X;L�/' a�H
2n�2Cm� .Am� ;Ql.t�//

and Corollary 2.2, we see that it is enough to show that

a�WD
�
H 2n�2Cm� .Am� ;Ql.t�/jGal.K=K//Œ…

1;S�
�

is pure. Let �0 WW ,!Ql be an embedding over Zl . By the semistable comparison
theorem of [Nizioł 2008], we have

lim
!
UIw

a�
�
H
2n�2Cm�
cris .A

m�
UIw
�OK k=W /˝W;�0 Ql.t�/

�
Œ…1;S�

' lim
!
UIw

a�WD
�
H 2n�2Cm� .Am� �OK K;Ql.t�/jGal.K=K//Œ…

1;S�
�
;
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where the crystalline cohomology on the left-hand side as constructed in [Hyodo
and Kato 1994] has a priori the structure of a .';N /-module over W , but which
gives rise to a Weil–Deligne representation .r; N / ofWK by setting r.�/ WD'nŒkWFp�

whenever � 2WK is a lift of Frobnk . Therefore, it suffices to understand the (direct
limit of the) log crystalline cohomology of the special fiber of A

m�
UIw

. Note that
the semistable comparison theorem was first proved by Kato [1994a] and Tsuji
[1999] for proper, vertical log schemes with semistable reduction; the reason for
citing Niziol’s work is that her main theorem applies to a general fine and saturated,
log-smooth, proper, vertical .Spec OK ;N/-scheme with special fiber of Cartier type.
The fact that .Am�

UIw
;M/ satisfies all these properties follows immediately from the

explicit description of the log structure M in Section 3.
We summarize the above discussion in the following corollary:

Corollary 2.3. The Weil–Deligne representation

WD.Rl.…
0
F 0/jGal.F 0p=F 0p/

/F-ss

is pure if

lim
!
UIw

a�
�
H
2n�2Cm�
cris .A

m�
UIw
�OK k=W /˝W;�0 Ql.t�/

�
Œ…1;S�

is pure, where S is chosen such that it contains l .

3. Log crystalline cohomology

3A. Log structures. Let OK be the ring of integers in a finite extension K of Qp

with uniformizer $ and residue field k. (Here, p is some prime number, which
will be taken to equal l for our applications to local-global compatibility.) Let
W DW.k/ be the ring of Witt vectors of k, with WnDWn.k/ referring to the Witt
vectors of length n over k. Let W.K/ be the ring of integers in the completion of
the maximal unramified extension of K.

Let X=OK be a scheme locally of finite type such that the completions of the
strict henselizations O^X;s at closed geometric points s of X are isomorphic to

W.K/ŒŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm��=.Xi1 � � �Xir �$;Yj1 � � �Yjs �$/

for some indices i1; : : : ; ir ; j1; : : : ; js 2 f1; : : : ; ng and some 1 � r; s � n. Also
assume that the special fiber Y is a union of closed subschemes Y 1;j with j 2
f1; : : : ; ng which are cut out by one local equation in OX , such that if s is a closed
geometric point of Y 1;j , then j 2 fi1; : : : ; irg and Y 1;j is cut out in O^X;s by the
equation Xj D 0. Similarly, assume that Y is a union of closed subschemes Y 2;j
with j 2 f1; : : : ; ng, which are cut out by one local equation in OX such that if s is a
closed geometric point of Y2;j then j 2 fj1; : : : ; jrg and Y 2;j is cut out in O^X 0;s by
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the equation Yj D 0. Then, by Lemma 2.9 of [Caraiani 2012], X is Zariski-locally
étale over

Xr;s;mD Spec OK ŒX1; : : : ;Xn; Y1; : : : ; Yn;Z1; : : : ;Zm�=.X1 � � �$;Y1 � � �Ys�$/:

The closed subschemes Yi;j for i D 1; 2 and j D 1; : : : ; n are Cartier divisors,
which in the local model Xr;s;m correspond to the divisors Xj D 0 or Yj D 0.

Let Y=k be the special fiber of X . For 1 � i; j � n we define Y .i;j / to be the
disjoint union of the closed subschemes of Y

.Y1;l1 \ � � � \Y1;li /
\
.Y2;m1 \ � � � \Y2;mj /;

as fl1; : : : ; lig (resp. fm1; : : : ; mj g) range over subsets of f1; : : : ; ng of cardinality i
(resp. j ). Each Y .i;j / is a proper smooth scheme over k of dimension 2n� i � j .

Remark 3.1. Even though this section is general, we will only apply the results
of this section in the case when X is AUIw for some compact open subgroup
UIw �G.A

1/ with Iwahori-level structure at p1 and p2. XUIw (and therefore AUIw

as well) satisfies the above conditions by Proposition 2.8 of [Caraiani 2012]. The
prime p is meant to be identified with l .

Let .Spec OK ;N/ be the log scheme corresponding to Spec OK endowed with
the canonical log structure associated to the special fiber. This is given by the map
1 2 N 7!$ 2 OK . We endow X with the log structure M associated to the special
fiber Y . Let j W XK ! X be the open immersion and i W Y ! X be the closed
immersion. This log structure is defined by

M D j�.O
�
XK
/\OX ! OX :

We have a map of log schemes .X;M/! .Spec OK ;N/, given by sending 1 2 N

to $ 2M . Locally, we have a chart for this map, given by

N! Nr ˚Ns=.1; : : : ; 1; 0; : : : ; 0/D .0; : : : ; 0; 1; : : : ; 1/;

1 7! .1; : : : ; 1; 0; : : : ; 0/D .0; : : : ; 0; 1; : : : ; 1/:

It is easy to see from this that .X;M/=.Spec OK ;N/ is log smooth and that the
log structure M on X is fine, saturated and vertical. We can pull back M to a log
structure on Y , which we still denote M and then we get a log-smooth map of log
schemes

.Y;M/! .Spec k;N/:

(Here we have the canonical log structure on k associated to 1 2N 7! 0 2 k, which
is the same as the pullback of the canonical log structure on Spec OK .) Note that,
since .X;M/ is saturated over .Spec OK ;N/, its special fiber is of Cartier type
(see [Tsuji 1997]).
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We can also endow X with log structures zM1, zM2 and zM . Let Ui;j be the
complement of Yi;;j in X for i D 1; 2 and j D 1; : : : ; n. Let

ji;j W Ui;j !X

denote the open immersion. We define zM1, zM2 and zM as follows

zM1 D

� nM
jD1

�
j1;j�.O

�
U1;j

/\OX
��ı
�;

zM2 D

� nM
jD1

�
j1;j�.O

�
U1;j

/\OX
��ı
�;

zM D

� nM
jD1

�
j1;j�.O

�
U1;j

/\OX
�
˚

nM
jD1

�
j2;j�.O

�
U2;j

/\OX
��ı
�;

where � signifies that we have identified the image of O�X in all the terms of the
direct sums (in other words, we are taking an amalgamated sum of the log structures
associated to each of the Yi;j ). We have a map zM !M given by inclusion on each
O�Ui;j .

Lemma 3.2. Locally on X , we have a chart for zM given by

X ! Spec OkŒX1; : : : ;Xn; Y1; : : : ; Yn;Z1; : : : ;Zm�=.X1 � � �Xr�$;Y1 � � �Yr�$/

! Spec ZŒNr˚Ns�;

where .0; : : : ; 0; 1; 0; : : : ; 0/ 7!Xi if the 1 is in the i -th position and 1� i � r and
.0; : : : ; 0; 1; 0; : : : ; 0/ 7! Yi�r if the 1 is in the i -th position and r C 1� i � r C s:

Proof. We shall make use of Kato and Niziol’s results on log smoothness and log
regularity, namely:

� If f W T ! S is a log smooth morphism of fs log schemes with S log regular
then T is log regular (see 8.2 of [Kato 1994b]).

� If T is log regular, then MT D j�O�U \OX , where j W U ,! T is the inclusion
of the open subset of triviality of T (see 8.6 of [Nizioł 2006]).

Let us define the following log schemes over .Spec OK ; triv/:

zU WD Spec OK ŒX1; : : : ; Xn; ��=.X1 � � �Xr � �/;

zV WD Spec OK ŒY1; : : : ; Yn; � �=.Y1 � � �Ys � �/;

W WD Spec OK ŒZ1; : : : ; Zm�;

Z WD zU �.Spec OK ;triv/
zV �.Spec OK ;triv/W:
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Then Z, equipped with the product log structure L, is smooth over OK and
log smooth over .Spec OK Œ�; ��; triv/. Therefore, Z is regular. The log structure L
is given by the simple normal crossings divisor

D WD

� r[
jD1

.Xj D 0/

�
[

� s[
jD1

.Yj D 0/

�
:

Since Z is regular, the log structure L is the same as the amalgamation of the log
structures defined by the smooth divisors .Xj D 0/, .Yj D 0/. Locally on X , we
have a commutative diagram of schemes with a cartesian square

X // Xr;s;m

��

// Z

��
Spec OK // Spec OK Œ�; ��

(3A.1)

where the inverse image of .Xj D 0/ in X is Y 1j and the inverse image of .Yj D 0/
in X is Y 2j . Therefore, the log structure on X induced by that of Z coincides with
the log structure zM defined as the amalgamated sum of the log structures induced
by the Y 1j and Y 2j . �

If we endow Spec OK with the log structure N2 associated to .a; b/ 2 N2 7!

�aCb 2 OK , then we claim that we have a log-smooth map of log schemes

.X; zM/! .Spec OK ;N
2/ (3A.2)

whose chart is given locally by

.a; b/ 2 N2 7! .a; : : : ; a; b; : : : b/ 2 Nr ˚Ns:

By definition, zM is the amalgamated sum of zM1 and zM2 as log structures on
X (or, in other words, zM is the log structure associated to the prelog structure
zM1˚ zM2! OX ). Therefore, it suffices to prove the following lemma:

Lemma 3.3. We can define a global map of log schemes .X; zM1/! .Spec OK ;N/

which locally admits the chart given by the diagonal embedding N! Nr .

Proof. It suffices to show that$ is a global section of zM1, since then we can simply
map 1 2 N to $ 2 zM1. For this, note that we have a natural map of log structures
on X

zM1!M;

since the open subset of triviality of zM1 is the generic fiber of X and M is the
log structure defined by the inclusion of the generic fiber. Moreover, we can
check locally that this map is injective, since it can be described by the chart
Nr !Nr ˚Ns! .Nr ˚Ns/=N for r; s � 1, where the first map is the identity on
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the first factor. Now, locally on X we have the equation X1 � � �Xr D$ , where Xi
are local equations defining the closed subschemes Y 1i of X . By definition, the Xi
are local sections of zM1, so $ is a local section of zM1. But $ is also a global
section of M and zM1 ,!M , so $ is a global section of zM1. �

Lemma 3.4. We have a cartesian diagram of maps of log schemes

.X;M/ //

��

.X; zM/

��
.Spec OK ;N/ // .Spec OK ;N

2/

where the bottom horizontal arrow is the identity on the underlying schemes and
maps .a; b/ 2 N2 to aC b 2 N.

Proof. We go back to the notation used in the proof of Lemma 3.2. Locally on X ,
we have the following commutative diagram of log schemes

.X;M/

��

// zU �Spec OK Œu�
zV �W //

��

Z

��
.Spec OK ;N/ // .Spec OK Œu�;N/ // .Spec OK Œ�; ��;N

2/

where in the bottom row both � and � are mapped to u, which is in turn mapped
to 0. The second square is cartesian and the horizontal maps in it are closed, but
not exact, immersions. The first bottom map is an exact closed immersion, while
the first top map is the composition of an étale morphism with an exact closed
immersion. The lemma follows from the commutative diagram (3A.1) and the
above diagram. �

3B. Variations on the logarithmic de Rham–Witt complex. Define the prelog
structure N2!WnŒ�; �� given by .a; b/ 7! �a�b . By abuse of notation, we write
.SpecWnŒ�; ��;N2/ for the log scheme endowed with the associated log structure.
We have the composite map of log schemes

.Y; zM/! .Spec k;N2/! .SpecWnŒ�; ��;N2/;

where N2 ! N2 is the obvious isomorphism. We shall call .Z; zN/ a lifting
for this morphism if .Z; zN/ is a fine log scheme such that the composite map
.Y; zM/! .SpecWnŒ�; ��;N2/ factors through f W .Y; zM/! .Z; zN/ which is a
closed immersion, and a map .Z; zN/! .SpecWnŒ�; ��;N2/ which is log smooth.
Such liftings always exists locally on Y and give rise to embedding systems as de-
fined in Paragraph 2.18 of [Hyodo and Kato 1994]. If .U; zMU /! .Y; zM/ is a cover-
ing and .Z; zN/ is a lifting for .U; zMU /! .SpecWnŒ�; ��/;N2/, then we may define
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an embedding system ..U i ; zM i
U /; .Z

i ; zN i // for .Y; zM/! .SpecWnŒ�; ��;N2/ by
taking the fiber product of i C 1 copies of U over Y and of i C 1 copies of .Z; zN/
over .SpecWnŒ�; ��;N2/. Since .Y; zM/ is an fs log scheme, we may assume the
same for the local lifting .Z; zN/.

Let C �
.Y; zM/=.Wn;triv/

be the crystalline complex associated to the embedding
system obtained from local liftings .Z�; zN �/, and define

zzC
�

Y WD C.Y; zM/�=.Wn;triv/
˝Wnh�;�iWn:

Let SpecWnŒu� be endowed with the log structure associated to 1 2 N 7! u 2

WnŒu�. Consider the map of log schemesG W .SpecWnŒu�;N/! .SpecWnŒ�;��;N2/
given by �; � 7!u and .a; b/2N2 7! aCb 2N. The pullback of .Y; zM/ along G is
just .Y;M/. Let .Z0; N 0/ be the pullback of .Z; zN/ along G, equipped with a map
f 0 W .Y 0;M 0/! .Z0; N 0/ which is the pullback of f . Then .Z0; N 0/ is a (local)
lifting for .Y;M/! .SpecWnŒu�;N/, and gives rise to an embedding system for
this morphism. Indeed, what we need to check is that .Z0; N 0/! .SpecWnŒu�;N/
is log smooth and that f 0 is a closed immersion of log schemes. For the first we
note that log-smoothness is preserved under base change in the category of log
schemes, and that

.Z0; N 0/D
�
..Z; zN/�G .SpecWnŒu�;N//int�sat

! .Z; zN/�G .SpecWnŒu�;N/

is log smooth. We also note that g W Y ! .Z �SpecWnŒ�;�� SpecWnŒu�/ is a closed
immersion, since Y ! Z is a closed immersion. The morphism of schemes
Z0! .Z �SpecWnŒ�;�� SpecWnŒu�/ is a composition of a finite morphism with a
closed immersion, so Y !Z0 is a closed immersion as well. Also, g�. zN˚N2N/!

M is surjective and factors through .f 0/�.N 0/ ! M , so .f 0/�.N 0/ ! M is
surjective as well.

We now follow the constructions in Section 3.6 of [Hyodo and Kato 1994] using
the embedding system obtained from the liftings .Z0; N 0/. Let C �

.Y;M/=.Wn;triv/
be

the crystalline complex associated to the composite .Z0; N 0/! .Wn; triv/. Define

zC �Y WD C
�
.Y;M/=.Wn;triv/

˝WnhuiWn:

On the other hand, let Z00 DZ0 �SpecWnŒu� SpecWnhui be endowed with N 00 the
inverse image of the log structure N 0. Let L be the log structure on SpecWnhui
obtained by taking the inverse image of (the log structure associated to) N on
SpecWnŒu�. Then .Z00; N 00/ gives rise to an embedding system for

.Y;M/! .SpecWnhui;L/;

with crystalline complex C �
.Y;M/=.SpecWnhui;L/

. Define

C �Y WD C
�
.Y;M/=.SpecWnhui;L/

˝WnhuiWn:
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Note that C �Y is the crystalline complex C �
.Y;M/=.Wn;N/

with respect to the embed-
ding system obtained from .Z0 �SpecWnŒu� SpecWn; N 000/. As in Section 3.6 of
[Hyodo and Kato 1994], we have an exact sequence of complexes

0! C �Y Œ�1�!
zC �Y ! C �Y ! 0; (3B.1)

where the second arrow is ^ .du=u/ and the third arrow is the canonical projection.
The monodromy operator on the crystalline cohomology of .Y;M/ is induced by
the connecting homomorphism of this exact sequence.

Lemma 3.5. Let C �Z be one of the complexes zzC
�

Y , zC �Y or C �Y obtained with respect
to a lifting .Z; zN/ of some coverU!Y . In the derived category, C �Z is independent
of the choice of lifting .Z; zN/.

Proof. We may work étale locally on Y , in which case we have to show that for
any two liftings .Z1; zN1/ and .Z2; zN2/ we have a canonical quasi-isomorphism
between the corresponding complexes and moreover, that these quasi-isomorphisms
satisfy the obvious cocycle condition for three different liftings.

First, we show that the complexes corresponding to .Z1; zN1/ and .Z2; zN2/ are
quasi-isomorphic. We may assume that ii W .Y; zM/! .Zi ; zNi / is an exact closed
immersion for i D 1; 2. Let i12 W .Y; zM/! .Z1 �Wn Z2;

zN1�2/ be the diagonal
immersion of .Y; zM/ into the fiber product of .Z1; zN1/ and .Z2; zN2/ as fs log
schemes over .Wn; triv/. Let .Z12; zN12/ be a log scheme such that étale locally on
Y we have a factorization of i12

.Y; zM/
f
�! .Z12; zN12/

g
�! .Z1 �Z2; zN1�2/;

with g log étale and f an exact closed immersion. This factorization is possible
by Lemma 4.10 of [Kato 1989]. Let Di be the PD-envelope of Y in Zi (again,
for i D 1; 2 or 12). (Since we have exact closed immersions, the logarithmic PD-
envelope coincides with the usual PD-envelope in these cases.) It suffices to show
that the canonical map

!�
.Z1; zN1/=Wn;triv

˝OZ1
OD1 ! !�

.Z12; zN12/=Wn;triv
˝OZ12

OD12 (3B.2)

is a quasi-isomorphism. This follows from Paragraph 2.21 of [Hyodo and Kato
1994]. For completeness, we sketch the proof here. Let p1 W .Z12; N12/! .Z1; N1/

be the log-smooth map induced by projection onto the first factor. For any geo-
metric point Ny of Y , the stalks at Ny of N12 and p�1N1 coincide, so by replac-
ing .Z12; N12/ with an étale neighborhood of Ny ! Z12, we may assume that
N12 D p

�
1N1. Then the map p1 W Z12! Z1 is smooth in the usual sense. Since
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the problem is étale local on Y , we may assume that Z12'Z1˝WnWnŒt1; : : : ; tr �
for some positive integer r such that Y is contained in the closed subscheme
of Z12 defined by t1 D � � � D tr D 0. As in Proposition 6.5 of [Kato 1989],
we also have OD12 ' OD1ht1; : : : ; tri, the PD-polynomial ring over OD1 in r
variables. The quasi-isomorphism (3B.2) is reduced then to the standard quasi-
isomorphism

Wn!�WnŒt1;:::;tr �˝WnŒt1;:::;tr �Wnht1; : : : ; tri:

The quasi-isomorphism (3B.2) commutes with ˝Wnh�;�iWn, so it induces a
quasi-isomorphism

zzC
�

Z1
�!� zzC

�

Z12
:

Now consider the morphism Z012 ! Z01 obtained by pulling back Z12 ! Z1
along G. We claim that the canonical morphisms zC �Z12 !

zC �Z1 and C �Z12 !
C �Z1 are quasi-isomorphisms as well. This is proved in the same way as in the
case of zzC

�
(for C �Z12 ! C �Z1 this amounts to proving that the logarithmic de

Rham–Witt complex is independent of the choice of embedding system). The
quasi-isomorphisms are also compatible with the canonical maps zzC

�

Z !
zC �Z !

C �Z .
Note that the above result also implies that in the derived category, C � commutes

with étale base change. Indeed, if Y2=Y1 is étale and .Z1; zN1/ is a lifting for
.Y1; zM/! .SpecWnŒ�; ��;N2/, then by [Grothendieck 1967, 18.1.1] we can find,
Zariski locally on Y2, an étale morphism Z2!Z1 such that the following diagram
is cartesian

Y2 //

��

Z2

��
Y1 // Z1

We take zN2 on Z2 to be the inverse image of zN1. Then .Z2; zN2/ is a lifting for
.Y2; zM/! .SpecWnŒ�; ��;N2/ and, since log differentials commute with étale
base change [Kato 1989, Proposition 3.12], C �

.Z2/
on Y2 is just the pullback of

C �
.Z2/

on Y1.
We are left with verifying the cocycle condition. The canonical quasi-isomor-

phism 
12 W C
�
Z1
�!� C�Z2

� factors through C �Z1�Z2 , since by construction Z12
is log étale over Z1 �Z2 and so we have a quasi-isomorphism C �Z1�Z2 �!

� C �Z12 .
Let .Z3; zN3/ be another lifting. Then we have the following commutative diagram
of complexes:



Monodromy and local-global compatibility for l = p 1617

C �Z1�Z2�Z3

C �Z1�Z2

88

C �Z1�Z3

OO

C �Z2�Z3

ff

C �Z1


12 //

OO 88

C �Z2


23 //

88ff

C �Z3

OOff

where all the maps are quasi-isomorphisms. This proves the cocycle condition.
�

Corollary 3.6. The following sheaves on Y are well-defined and commute with
étale base change:

Wn QQ!
q
Y WDHq

�
zzC
�

Y

�
; Wn Q!

q
Y WDHq

�
zC �Y
�

and Wn!
q
Y WDHq.C �Y /:

The sheaves Wn!
q
Y make up the q-th terms of the log de Rham–Witt complex

associated to .Y;M/. We have canonical morphisms of sheaves on Y :

Wn QQ!
q
Y !Wn Q!

q
Y !Wn!

q
Y :

In order to understand the monodromy N , we will study the short exact sequence
of complexes

0!Wn!
�
Y Œ�1�!Wn Q!

�
Y !Wn!

�
Y ! 0;

which we obtain below from the short exact sequence (3B.1). In Section 4 we will
construct a resolution of this short exact sequence in terms of some subquotients of
Wn QQ!

�

Y . For now, since these complexes are independent of the choice of lifting, we
will fix some specific kinds of liftings of .Y; zM/ over .W Œ�; ��;N2/, which we call
admissible liftings, following the terminology used in [Hyodo 1991] and [Mokrane
1993]. Since Y is locally étale over

Yr;s;m D Spec kŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : Zm�=.X1 � � �Xr ; Y1 � � �Ys/;

we consider the lifting

Zr;s;m

D SpecW ŒX1; : : : ;Xn;Y1; : : : ;Yn;Z1; : : :Zm; �;��=.X1 � � �Xr��;Y1 � � �Ys��/

of .Yr;s;m;Nr ˚Ns/=.W Œ�; ��;N2/. The log structure on Zr;s;m is also induced
from Nr ˚Ns (with the obvious structure map sending Nr to products of the Xi
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and Ns to products of the Yj ). We let Z=Zr;s;m be étale and such that the diagram

.Y; zM/ //

��

.Z; zN/

��
.Yr;s;m;N

r ˚Ns/ // .Zr;s;m;N
r ˚Ns/

is cartesian, with the log structures on top obtained by pullback from the ones
on the bottom. Then, locally on Y , the complexes Wn QQ!

�

Y , Wn Q!�Y and Wn!�Y are
just pullbacks of the corresponding complexes on Yr;s;m with respect to the lifting
.Zr;s;m;N

r ˚Ns/. Note that admissible liftings exist locally on Y .
Now we will explain the relationships between zzC

�

Y , zC �Y and C �Y . First, note
that we have the functoriality map G�!

.Z; zN/=.Wn;triv/
! !.Z0;N 0/=.Wn;triv/, which

induces a canonical map

C �
.Y; zM/=.Wn;triv/

˝Wnh�;�iWnhui ! C �.Y;M/=.Wn;triv/
;

which in turn induces a canonical map zzC
�

Y !
zC �Y . By composition, we also get a

map zzC
�

Y !C �Y . We claim that we can identify zC �Y with zzC
�

Y =.d�=� �d�=�/^
zzC
�

Y

and C �Y with zzC
�

Y =..d�=�/^
zzC
�

Y C .d�=�/^
zzC
�

Y /. We explain this in the case of
zC �Y :

Lemma 3.7. We have an isomorphism

zzC
�

Y

ı�d�
�
�
d�

�

�
^ zzC
��1

Y �!� zC �Y :

Proof. Let .Z; zN/ be an admissible lifting of .Y; zM/ over .SpecWnŒ�; ��;N2/. Let
.D; zMD/ be the divided power envelope of .Y; zM/ in .Z; zN/. Note that the kernel
of the map OD! OY is generated by � Œn� and � Œn�. The divided power envelope
.D0;M 0D/ of .Y;M/ in .Z0; N 0/ satisfies the property

OD0 ' OD˝Wnh�;�iWnhui;

where the map Wnh�; �i !Wnhui is given by � Œn�; � Œn� 7! uŒn�. The complexes
zzC
�

Y and zC �Y are defined by

zzC
�

Y WD
�
!�
.Z; zN/=.Wn;triv/

˝OZ OD
�
˝Wnh�;�iWnhui˝WnhuiWn

D
�
!�
.Z; zN/=.Wn;triv/

˝WnŒ�;��WnŒu�
�
˝OZ0 OD0 ˝WnhuiWn

and
zC �Y D .!

�
Z0;N 0=Wn;triv/˝OZ0 OD0 ˝WnhuiWn:

Note that since we have chosen an admissible lifting, .Z0; N 0/ hasZ�WnŒ�;��WnŒu�
as its underlying scheme because zN˚N2N is already fine and saturated. It is enough
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to show that the sequence

!��1
.Z; zN/=.Wn;triv/

˝WnŒ�;��WnŒu�! !�
.Z; zN/=.Wn;triv/

˝WnŒ�;��WnŒu�

! !�.Z0;N 0/=.Wn;triv/! 0 (3B.3)

is exact, where the first map is ^.d�=� �d�=�/ and the second map is induced by
functoriality. We denote by G� the pullback along SpecWnŒu�! SpecWnŒ�; �� or
along Z0!Z. By Proposition 3.12 of [Kato 1989], we have the following diagram
of (vertical) exact sequences of sheaves on Z0:

0

��
G�!1

.SpecWnŒ�;��;N2/=.Wn;triv/
˝WnŒu�OZ0

��

// !1
.SpecWnŒu�;N/=.Wn;triv/

˝WnŒu�OZ0

��
G�!1

.Z; zN/=.Wn;triv/

��

// !1
.Z0;N 0/=.Wn;triv/

��
G�!1

.Z; zN/=.SpecWnŒ�;��;N2/

��

// !1
.Z0;N 0/=.SpecWnŒu�;N/

��
0 0

The bottom horizontal arrow is an isomorphism, since .Z0; N 0/ was obtained by
pullback from .Z; zN/. In order to show that the middle horizontal arrow is a
surjection, it is enough to check that du=u is in its image, but both d�=� and d�=�
map to du=u. We also see similarly that the kernel of the middle horizontal arrow
is generated by d�=� � d�=� . The exactness of (3B.3) follows. �

Corollary 3.8. We have an isomorphism

zzC
�

Y

ı�d�
�
^ zzC
��1

Y C
d�

�
^ zzC
��1

Y

�
�!� C �Y :

Proof. This follows from the exact sequence (3B.1) and Lemma 3.7. �

Lemma 3.9. The sections d�=� , d�=� 2Wn QQ!
1
Y are global sections, independent

of the choice of admissible lifting. The same holds for du=u 2Wn Q!1Y .

Proof. We will explain the proof only for d�=� since the same proof also works for
d�=� and du=u. We use basically the same argument as for part 3 of Lemma 3.4
of [Mokrane 1993]. We consider two admissible liftings of .Y; zM/, .Z1; zN1/ and
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.Z2; zN2/, and we let .Z12; zN12/ be defined as in Lemma 3.5. It is enough to show
that locally on Y

d�

�
2 !1

.Z1; zN1/=.Wn;triv/
˝OZ1

OD1

and
d� 0

� 0
2 !1

.Z2; zN2/=.Wn;triv/
˝OZ2

OD2

have the same image in H1.!�
.Z12; zN12/=.Wn;triv/

˝OZ12
OD12/.

Note that d�=� 2 zN1 and d� 0=d� 0 2 zN2 have the same image in zM . This is
because locally on Y we have commutative diagrams

.Y; zM/

��

// .Zi ; zNi /

��
.k;N2/ // .WnŒ�; ��;N

2/

for i D 1; 2, so both d�=� and d� 0=� 0 map to the image of .1; 0/2N2 in zM . By the
construction of .Z12; zN12/ (see the proof of Proposition 4.10 of [Kato 1989]), we
know that d�=� � d� 0=� 0 Dm 2 zN12. Moreover, if ˛12 WN12! OZ12 is the map
defining the log structure of Z12 then m maps to 0 2 zM , so v D ˛12.m/ 2 O�Z12
maps to 1 2 OY . Therefore,

d�

�
�
d� 0

� 0
D
dv

v

for some v 2 OD12 for which Wnhv � 1i � OD12 . But then we see that dv=v 2
d.Wnhv � 1i/, using the fact that the power series expansion of log.v/ around 1
belongs toWnhv�1i. Therefore, d�=��d� 0=� 0 is exact and the lemma follows. �

As in the classical case [Illusie and Raynaud 1983; Hyodo and Kato 1994],
we can define operators F W WnC1 QQ!

q
! Wn QQ!

q , V W Wn QQ!
q
! WnC1 QQ!

q and the
differential d WWn QQ!

q
!Wn QQ!

qC1, which satisfy

d2 D 0; F V D VF D p; dF D pFd; Vd D pdV and FdV D d:

Indeed, fix local liftings .Zn; zNn/ of .Y; zM/! .SpecWnŒ�; ��;N2/ and denote the
crystalline complex zzC

�

Zn
by zzC

�

n. We can see that zzC
�

n is flat over Wn in the same
way as in Lemma 2.22 of [Hyodo and Kato 1994] (using an admissible lifting), and
we have

zzC
�

n˝Z=pnZ Z=pmZ �!� zzC
�

m

for m� n. We let F WWnC1 QQ!
�
!Wn QQ!

� be the map induced by zzC
�

nC1!
zzC
�

n and

V W Wn QQ!
�
! WnC1 QQ!

� be the map induced by p W zzC
�

n!
zzC
�

nC1. We define d to



Monodromy and local-global compatibility for l = p 1621

be the connecting homomorphism in the exact sequence of cohomology sheaves
associated to the exact sequence of crystalline complexes

0! zzC
�

n

pn

��! zzC
�

2n!
zzC
�

n! 0:

The same operators can be defined for W� Q!�Y and W�!�Y .

Lemma 3.10. Let nD 1. Locally, fix an admissible lifting .Z; zN/ as above. Let Fr
be the relative Frobenius of Y=k. We have Cartier isomorphisms

C�1 W !
q
Y �!
� Hq.Fr� !�Y /;

zC�1 W !
q

.Z0;N 0/=.k;triv/˝kŒu� k �!
� Hq.Fr�.!�.Z0;N 0/=k;triv˝kŒu� k//;

zzC
�1
W !

q

.Z; zN/=.k;triv/
˝kŒt;s� k �!

� Hq.Fr�.!�.Z; zN/=k;triv˝kŒt;s� k//:

Proof. Note that .Y;M/=.Spec k;N/ is log smooth of Cartier type. The Cartier
isomorphism for W1!

q
Y is then defined in Section 2.12 of [Hyodo and Kato 1994].

Similarly, .Z0; N 0/=.Spec k; triv/ and .Z; zN/=.Spec k; triv/ are log smooth and of
Cartier type. Thus, the morphisms zC�1 and zzC

�1
for zC qY and zzC

q

Y are induced from
the Cartier isomorphisms for these schemes.

Since we are working locally on Y , we may assume that Y D Y1 �k Y2 and that
the lifting Z D Z1 �Z2, where Z1; Z2 are smooth over k and Yi is a reduced
normal crossings divisor in Zi . Let Ii be the ideal defining Yi �k Z3�i in Z for
i D 1; 2. Define !�1;2 WD !

�

.Z; zN/=k
˝I1˚!

�

.Z; zN/=k
˝I2 To check that zzC

�1
is an

isomorphism, we use the following commutative diagram of exact sequences:

!
q

.Z; zN/=k
˝I1I2 //

��

!
q
1;2

//

��

!
q

.Z; zN/=k
//

��

zzC
q

Y
//

��

0

Hq.Fr�!�
.Z; zN/=k

˝I1I2/ // !
q
1;2

// Hq.Fr�!�
.Z; zN/=k

/ // Hq.F�
zzC
�

Y /
// 0

The complex !�
.Z; zM/=k;triv

is the same as ��
Z1=k

.logY1/˝k ��Z2=k.logY2/, so it
does satisfy a Cartier isomorphism, by [Deligne and Illusie 1987, 4.2.1.1]. Sim-
ilarly, the complexes on its left are (sums of) products of complexes of the form
��
Zi=k

.˙ logYi / for iD 1; 2, which also satisfy a Cartier isomorphism, by [Deligne
and Illusie 1987, 4.2.1.3]. Therefore, the first three vertical arrows are isomorphisms.
Once we know the exactness of the top and bottom sequence we can also deduce
that the rightmost vertical arrow is an isomorphism. The exactness of the top row
follows from the definition of zzC

q

Y .
The exactness of the bottom row follows from the cohomology long exact

sequence associated to the short exact sequences obtained from the top row combined
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with the Cartier isomorphisms for the first three vertical arrows, which tell us that
the coboundary morphisms of these long exact sequences are all 0. Indeed, if we
let N!�

.Z; zN/
be the complex obtained by completing the inclusion of complexes

!�
.Z; zN/=k

˝I1I2! !�
.Z; zN/=k

˝I1˚!
�

.Z; zN/=k
˝I2

to a distinguished triangle, then we get a long exact sequence

� � � !Hq.!�
.Z; zN/=k

˝I1I2/!Hq.!�
.Z; zN/=k

˝I1/˚Hq.!�
.Z; zN/=k

˝I2/

!Hq. N!�
.Z; zN/

/! � � � :

From the Cartier isomorphisms for !�
.Z; zN/=k

˝I1I2 and !�1;2, we deduce that

Hq.!�
.Z; zN/=k

˝I1I2/ ,!Hq.!�
.Z; zN/=k

˝I1/˚Hq.!�
.Z; zN/=k

˝I2/;

so the coboundaries of the long exact sequence are all 0. By continuing this
argument, we deduce the exactness of the entire bottom row, and this proves that
zzC
�1

is an isomorphism.
Now we prove that zC�1 is an isomorphism. We will show that zC�1 is an

isomorphism in degree q as well. From the short exact sequence (3B.1), we get the
following commutative diagram with exact rows:

0 // C
q�1
Y

//

��

zC
q
Y

//

��

C
q
Y

//

��

0

0 // Hq�1.Fr� C �Y / // Hq.Fr� zC �Y / // Hq.Fr� C �Y / // 0

To see that the bottom row is exact, we have to check that in the long exact
cohomology sequence associated to the top row the coboundaries are all 0, which
is equivalent to showing surjectivity of Hq.Fr� zC �Y /!Hq.Fr� C �Y /. However, by
the top row and the Cartier isomorphism C�1, the composite

zC
q
Y ! C

q
Y !Hq.Fr� C �Y /

is surjective, so the desired map is surjective as well. Now we have a map of short
exact sequences, where the left and right vertical maps are isomorphisms, so the
middle one must be as well. �

We can define canonical projections � WWnC1 QQ!
�

Y !Wn QQ!
�

Y using the Cartier
isomorphisms. The construction works in the same way for Wn Q!�Y . The definition
of � for Wn!�Y can be found in Section 1 of [Hyodo 1991] in the semistable case
and in Section 4 of [Hyodo and Kato 1994] in general. The constructions in [Hyodo
1991] and in [Hyodo and Kato 1994] are the same, although they are formulated
slightly differently. Our construction follows that in Section 1 of [Hyodo 1991],
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by first defining a map p WWn QQ!
�

Y !WnC1 QQ!
�

Y and then showing that p is injective
and its image coincides with the image of multiplication by p on WnC1 QQ!

�

Y . The
projection � will then be the unique map which makes the following diagram
commute:

Wn QQ!
�

Y

p

��

WnC1 QQ!
�

Y�
oo

p

yy
WnC1 QQ!

�

Y

The map p W Wn QQ!
i
Y ! WnC1 QQ!

i
Y is induced from p�iC1 Fr� W zzC

i

Y !
zzC
i

Y , where
Fr W .Z; zN/! .Z; zN/ is a lifting of the Frobenius endomorphism of .Z; zN/�W k

such that Fr�.W Œ�; ��/�W Œ�; ��. The injectivity of p and the fact that its image
coincides with that of multiplication by p are deduced as in Section 2 of [Hyodo
1991] (or as in Lemma 6.8 of [Nakkajima 2005]) from the Cartier isomorphism and
from the fact that zzC

�

Y is W -torsion-free (when we take zzC
�

Y to be the crystalline
complex associated to an embedding system for .Y; zM ) over W ).

Now we will consider a different interpretation of the monodromy operator N .
Taking the cohomology sheaves of the short exact sequence

0! C �Y Œ�1�!
zC �Y ! C �Y ! 0;

we get a long exact sequence of sheaves on Y

� � � !Wn!
q�1
Y !Wn Q!

q
Y !Wn!

q
Y ! � � �

whose coboundaries are actually all 0. This can be checked as in Lemma 1.4.3 of
[Hyodo 1991], since it suffices to see that the induced map on cocycles Zq. zCY /!
Zq.CY / modulo pn is surjective, and we can use the Cartier isomorphisms in
Lemma 3.10 to give an explicit formula for cocycles modulo pn. So we have a
short exact sequence of sheaves on Y

0!Wn!
q�1
Y !Wn Q!

q
Y !Wn!

q
Y ! 0; (3B.4)

which is compatible with operators �; F; V and d . We have a morphism of distin-
guished triangles in the derived category D.Yét; W / of sheaves of W -modules on
Y :

C �Y Œ�1�
//

��

zC �Y
//

��

C �Y
//

��

C �Y

��
Wn!

�
Y Œ�1�

// Wn Q!
�
Y

// Wn!
�
Y

// Wn!
�
Y
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The left and right vertical maps are defined in the proof of Theorem 4.19 of [Hyodo
and Kato 1994], and the middle one can be defined in exactly the same way. Note
that the definition of the maps in Theorem 4.19 has a gap which is corrected in
Lemma 7.18 of [Nakkajima 2005], namely, checking that they commute with
the transition morphisms � W WnC1!�Y ! Wn!

�
Y . The fact that the middle map

commutes with the transition morphisms � WWnC1 Q!�Y !Wn Q!
�
Y can be checked

in the same way as in Lemma 7.18 of [Nakkajima 2005], using the corresponding
Cartier isomorphism to check that the complexesWn Q!�Y give rise to formal de Rham–
Witt complexes as in Definition 6.1 of [ibid.] and thus applying Corollary 6.28(8).
We also need to check that lim

 �
Wn Q!

1
Y is torsion-free, but we can use the fact that this

is known for lim
 �

Wn!
1
Y and the exact sequence (3B.4). The first and third vertical

maps are quasi-isomorphisms by Theorem 4.19 of [Hyodo and Kato 1994], so we
get an isomorphism of distinguished triangles. Thus, the exact sequence (3B.4)
induces the monodromy operator N on cohomology.

Assume that Y has an admissible lifting Z over .W Œt; s�;N2/, and set Z D
Z˝W k. We consider a few more variations on the de Rham–Witt complex, which
we will only define locally on Z. Let Wn��Z be the de Rham–Witt complex of Z.
Let

Y 1 D Spec kŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm�=X1 � � �Xr

and
Y 2 D Spec kŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm�=Y1 � � �Ys:

Each Y i is a normal crossings divisor in Zr;s;m �W k. Let Din be the structure
sheaf of the divided power envelope of Y i in Zr;s;m and IDin D ker.Din! OY i /.
For i D 1; 2, let Wn��Z.� logY i / be the (pullback to Z) of the “compact support”
version of the de Rham–Witt complex of Zr;s;m with respect to Y i . This complex
was introduced by Hyodo [1991, Section 1] and is defined by

Wn�
q
Zr;s;m

.� logY i /DHq.��Z=Wn.logY i /˝OZr;s;m IDin/:

Let Wn��Z.� logY 1 � logY 2/ be the pullback from Zr;s to Z of the complex
defined by

Wn�
q
Zr;s;m

.� logY 1� logY 2/ WDHq.!�Zr;s;m;Nr˚Ns=Wn
˝OZ ID1ID2/:

This third complex is meant to approximate a product of complexes of the form
Wn�Z.� logY /. When nD1, considerZ1DSpeckŒX1; : : : ;Xn; t �=.X1 � � �Xr�t /,
Z2 D Spec kŒY1; : : : ; Yn; u�=.Y1 � � �Ys �u/ and Z3 D Spec kŒZ1; : : : ; Zm�. Then

W1�
�
Zr;s;m

.� logY 1� logY 2/

'��
Z1=k

.� logY 1/˝k �
�

Z2=k
.� logY 2/˝k �

�

Z3=k
: (3B.5)
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All these also are endowed with operators F; V , differential d and projection � ,
and they also satisfy a Cartier isomorphism.

Let R be Raynaud’s ring, introduced in [Illusie and Raynaud 1983], i.e., the
graded W -algebra generated by F; V in degree 0 and d in degree 1, subject to the
usual relations

d2 D 0; F V D VF D p; dF D pFd; Vd D pdV and FdV D d:

Let Rn be the right R-module R=.V nRC dV nR/.

Lemma 3.11. Let Wn�� be one of the complexes Wn��Z , Wn��Z.� logY i / for
i D 1; 2 or Wn��Z.� logY 1� logY 2/. Let

W�� D lim
 �

Wn�
�:

Then W��˝LR Rn DWn�
�.

Proof. For nD 1, andWn��Z andWn��Z.� logY i /, we have Cartier isomorphisms

W1�
i
�!� Hi .F�W1�

�/;

by [Deligne and Illusie 1987, Result 4.2.1.3]. For Wn��Z.� logY 1� logY 2/ the
Cartier isomorphism follows from the product formula (3B.5) and from the Cartier
isomorphisms above. Let Zn D Z �W Wn. By abuse of notation, we write ��Zn
for the complex of sheaves of Wn-modules such that

Wn�
i
DHi .��Zn/:

In fact, we have complexes ��Z , ��Z.� logY i / or ��Z.� logY 1� logY 2/ which
give the corresponding complexes��Zn , ��Zn.� logY i / or��Zn.� logY 1� logY 2/
when reduced modulo pn. We also denote any of the initial complexes over W as
��Z . Then there is an explicit description of cocycles modulo pn given by

d�1.pn�iC1Z /D

nX
kD0

pkf n�k�iZ C

n�1X
kD0

f kd�i�1Z ;

where f W �iZ ! �iZ is defined by f D Fr =pi . This is the same as Formula A
from Editorial Comment 11 in [Hyodo 1991] and is proven in the same way as in
that paper and in the same way as in the classical crystalline cohomology case (see
[Illusie 1979, 0.2.3.13]).

As in the case ofWn!Y ,W��� (andW��) is endowed with a differential d , oper-
ators F; V satisfying the usual relations and a canonical projection �n WWnC1��!
Wn�

� such that p ı�n coincides with multiplication by p on WnC1��.
We claim that the lemma follows from the Cartier isomorphism, from the descrip-

tion of cocycles modulo pn in ��Z and from the formal properties of Wn��. The
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proof is the same as for Lemma 1.3.3 of [Mokrane 1993]. We outline the argument
in order to show that it applies to our case as well. To prove the desired result, we
use the flat resolution of Rn as an R-module given by

0! R
.F n;�F nd/
���������! R˚R

dV nCV n

�������! R! Rn! 0;

and it suffices by Corollary 1.3.3 of [Illusie and Raynaud 1983] to prove that the
sequence

0!W�i�1
.F n;�F nd/
���������!W�i�1˚W�i

dV nCV n

�������!W�i !Wn�
i
! 0

is exact. The last map is the canonical projection � WW�i !Wn�
i .

Exactness at the first term follows from the fact that multiplication by p (and
hence also F ) is injective on W��. Indeed, multiplication by p on Wn�� factors
as p ı�n and p is injective by definition, so if p.xn/D 0 for all n then �n.xn/D
xn�1 D 0 for all n, so x D .xn/D 0.

Exactness at the last term is the statement that � is surjective, which follows by
construction, since pD pı� , p is injective and the image of p WWn��!WnC1�

�

coincides with the image of multiplication by p.
Now we check that ker�DdV nW��CV nW��. Recall that�n WWnC1!Wn is

the canonical projection. It is enough to show that ker�nDdV nW1��CV nW1��.
First, if x D V naC dV nb 2WnC1�, it suffices to check that px D 0 and indeed
pxDFV nC1aCdFV nC1bD 0. Now, let Œx�nC1 2 ker�n, where x is an element
of ��Z modulo pnC1. Then Œpx�nC1 D pŒx�nC1 D 0, so it must be the case that
pxDpnC1aCdb. We get dbD0 mod p, so by the description of cocycles mod p
we have b D pb0CFb00C db00, so that db D pdb0CpFdb00. Thus,

Œx�nC1 D Œp
na�nC1C Œdb

0�nC1C ŒFdb
00�nC1

D V nŒa�nC1C dŒp
nFb00�nC1 D V

nŒa�C dV nŒF b00�:

Now we check exactness at the second term. First, note that the sequence

W2n�
q�1 F n

��!Wn�
q�1 d
�!Wn�

q

is exact, which is proved in the same way as Lemma 1.3.4 of [Mokrane 1993], by
taking the long exact sequence of cohomology sheaves of the short exact sequence

0!��Z=p
n��Z

pn

��!��Z=p
2n��Z!��Z=p

n��Z! 0:

We note that the proof of the analogous statement in the classical case in [Illusie 1979,
I(3.21)] is wrong and corrected in [Illusie and Raynaud 1983, II(1.3)]. Nakkajima
[2005, 6.28(6)] proves this statement for formal de Rham–Witt complexes, using
the same argument as Lemma 1.3.4 of [Mokrane 1993].
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We now claim that the projection

W��=pnW��!Wn�
�

is a quasi-isomorphism. This implies that

d�1.pnW�q/D F nW�q�1;

so if dV nxCV ny D 0, then dxCpny D 0, which in turn implies x D F nz and
y D �F ndz for some z 2 W�q�1. This checks exactness at the second term.
Moreover, the fact that

W��=pnW��!Wn�
�

is a quasi-isomorphism follows in the same way as Corollary 3.17 of [Illusie
1979], boiling down to the Cartier isomorphism and to the description of ker� as
dV nCV n. �

Remark 3.12. One can use the Cartier isomorphisms to check Properties 6.0.1–
6.0.5 of [Nakkajima 2005] for ��Z ; �

�
Z.� logY i / and ��Z.� logY 1 � logY 2/,

thus proving the analogue of Proposition 6.27 there for all three complexes. Then
Theorem 6.24 of [Nakkajima 2005] also implies Lemma 3.11.

3C. The weight filtration. The goal of this section is to define a double filtration
Pk;l onW QQ!�Y , which will be an analogue of the weight filtration defined by Mokrane
on Wn Q!�Y in the semistable case (see [1993, Section 3]).

Let .Z; zN/ be an admissible lifting of .Y; zM/ over .W Œ�; ��;N2/. We know that
such liftings exist étale locally. Let Zn DZ �W Wn. Let zN1 be the log structure
on Z (or Zn) obtained by pulling back the log structure on Zr;s;m associated to

Nr !W ŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm�;

.0; : : : ; 0; 1; 0; : : : ; 0/ 7!Xi ;

where 1 is in the i -th position. Define zN2 analogously. The pullback of zNi to Y is
the same as zMi . For i D 1; 2, we have maps of sheaves of monoids zNi ! zN .

We define the following filtration on !�
.Zn; zN/=.Wn;triv/

:

Pi;j!
q

.Zn; zN/=.Wn;triv/

WD Im
�
!i
.Zn; zN1/=.Wn;triv/

˝!
j

.Zn; zN2/=.Wn;triv/
˝�

q�i�j

Zn=k
! !

q

.Zn; zN/=.Wn;triv/

�
for i; j � 0 and i C j � q. This filtration respects the differential and induces a
filtration Pi;j zzC

�

Y on zzC
�

Y (which can be thought of as a quotient of !�
.Zn; zM/=.Wn;triv/

,
as in the proof of Lemma 3.10). Note that if we let

Pk!
q

.Zn; zN/=.Wn;triv/
D Im

�
!k
.Zn; zN/=.Wn;triv/

˝�
q�k

Zn=k
! !

q

.Zn; zN/=.Wn;triv/

�
;
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then Pk is the weight filtration defined in [Mokrane 1993, 1.1.1], and

Pi;j!
�

.Zn; zN/=.Wn;triv/
� PiCj!

�

.Zn; zN/=.Wn;triv/
:

For i D 1; : : : ; r , let D1;i be the pullback to Z of the divisor of Zr;s;m obtained
by setting Xi D 0. Similarly, for i D 1; : : : ; s, let D2;i be the pullback to Z of the
divisor of Zr;s;m obtained by setting Yi D 0. For i; j � 0 let D.i;j / be the disjoint
union of

D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj ;

over all k1; : : : ; ki 2f1; : : : ; rg and l1; : : : ; lj 2f1; : : : ; sg. And let �i;j WD.i;j /!Z

be the obvious morphism, with D
.i;j /
n , �i;j the pullbacks to Zn. Let

Gri;j !
q

.Zn; zN/=.Wn;triv/

WD Pi;j!
q

.Zn; zN/=.Wn;triv/
=
�
Pi�1;j!

q

.Zn; zN/=.Wn;triv/
CPi;j�1!

q

.Zn; zN/=.Wn;triv/

�
:

For i; j � 1, we will define a morphism of sheaves

Res W Gri;j !
q

.Zn; zN/=.Wn;triv/
! .�i;j /��

q�i�j

D
.i;j /
n =Wn

;

which extends to a morphism of complexes. If

! D ˛^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYkj

Ykj

is a local section of Pi;j!
q

.Zn; zN/=.Wn;triv/
with k1 < � � �< ki and l1 < � � �< lj , then

Res.!/ WD ˛jD1;k1�Z ����ZD1;ki�ZD2;l1�Z ����ZD2;lj :

This factors through Pi�1;j CPi;j�1 and extends to a global map of sheaves.
Alternatively, we can follow the construction in Section 3 of Chapter II of

[Deligne 1970]. Let Dkn be the disjoint union of intersections of k divisorsDj;ki with
j D 1; 2 and ki 2 f1; : : : ; ng. These intersections are in one-to-one correspondence
with images of injections

f W f1; : : : ; kg ! f1; : : : ; ng[ f1; : : : ; ng;

and so we denote one of these k intersections by D
f
n (even though it only really

depends on Imf ). We have

Dkn D
G

iCjDk
i;j�0

Di;jn D
G
Imf

Dfn :
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Let �f WD
f
n ! Zn be the closed immersion. In [Deligne 1970, 3.5.2], a morphism

�1 W .�f /��
q�k

D
f
n

! Pk!
q

.Zn; zN/=.Wn;triv/
=Pk�1

(and then a morphism �2, which depends on an ordering of f1; : : : ; ng[f1; : : : ; ng) is
associated to each such injection, and the sum of �2 over all injections f determines
an isomorphism

� W .�k/��
�

Dkn=Wn
Œ�k� �!� Pk!

q

.Zn; zN/=.Wn;triv/
=Pk�1

by Proposition 3.6 of Chapter II of [Deligne 1970].
We are only interested in injections qi;j W f1; : : : ; iCj g!f1; : : : ; ng[f1; : : : ; ng

with image of cardinality i in the first f1; : : : ; ng term and cardinality j in the second
f1; : : : ; ng term. We let Res�1 be the sum of the morphisms �2 over all injections
qi;j . When we have an injection of type qi;j , the image of the morphism �2 defined
by Deligne falls in

Pi;j!
q

.Zn; zN/=.Wn;triv/
=.Pi�1;j CPi;j�1/� PiCj!

q

.Zn; zN/=.Wn;triv/
=PiCj�1:

For k � 1, we have the direct sum decompositions

Pk!
�

.Zn; zN/=.Wn;triv/
=Pk�1 D

M
iCjDk
i;j�0

Gri;j !�.Zn; zN/=.Wn;triv/
;

.�k/��
q�k

D
.k/
n =Wn

D

M
iCjDk
i;j�0

.�i;j /��
q�i�j

D
.i;j /
n =Wn

:

It is easy to check that the isomorphism � matches up the .i; j / terms in each
decomposition. Putting this discussion together, we get the following:

Lemma 3.13. For i; j � 1, the map

Res�1 W .�i;j /��
q�i�j

D
.i;j /
n =Wn

! Gri;j !
q

.Zn; zN/=.Wn;triv/

is an isomorphism.

We also have the following analogue of Lemma 1.2 of [Mokrane 1993].

Lemma 3.14. We have an exact sequence of complexes

0! Pi�1;j�1!
�

.Zn; zN/=.Wn;triv/

! Pi�1;j!
�

.Zn; zN/=.Wn;triv/
˚Pi;j�1!

�

.Zn; zN/=.Wn;triv/

! Pi;j!
�

.Zn; zN/=.Wn;triv/
! Gri;j !�.Zn; zN/=.Wn;triv/

! 0:
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The long exact cohomology sequence(s) associated to this have all coboundaries 0,
so we get the exact sequence

0!Hq.Pi�1;j�1!
�

.Zn; zN/=.Wn;triv/
/

!Hq.Pi�1;j!
�

.Zn; zN/=.Wn;triv/
/˚Hq.Pi;j�1!

�

.Zn; zN/=.Wn;triv/
/

!Hq.Pi;j!
�

.Zn; zN/=.Wn;triv/
/!Hq.��

D
.i;j /
n =Wn

Œ�i � j �/! 0:

Proof. The first assertion is clear. In order to show that the second sequence is
exact, it suffices to show the following two statements about cocycles:

(1) ZPi;j!
q

.Zn; zN/=.Wn;triv/
�Z�

q�i�j

D
.i;j /
n =Wn

.

(2) ZPi�1;j!
q

.Zn; zN/=.Wn;triv/
˚ZPj;i�1!

q

.Zn; zN/=.Wn;triv/

�Z
�
Pi�1;j!

q

.Zn; zN/=.Wn;triv/
CPi;j�1!

q

.Zn; zN/=.Wn;triv/

�
.

The first statement is proved in the same way as the main step in Lemma 1.1.2 of
[Mokrane 1993]. If ˛ is a local section of Z�q�i�j

D
.i;j /
n =Wn

, assume that ˛ is supported
on some

D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj ;

for some k1; : : : ; ki , l1; : : : ; lj 2 f1; : : : ; ng. Let

� W Zn!D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj

be the retraction associated to the immersion

D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj ! Zn:

Then ��˛ lifts ˛ to a section of Z�q�i�j
Zn=Wn

and the section

!˛ D �
�˛^

dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYlj

Ylj
2 Pi;j!

q

.Zn; zN/=.Wn;triv/

satisfies d! D 0 and Res.!/D ˛. From this, we know that the coboundaries of the
long exact sequence associated to

0! Pi�1;j!
�

.Zn; zN/=.Wn;triv/
CPi;j�1!

�

.Zn; zN/=.Wn;triv/

! Pi;j!
�

.Zn; zN/=.Wn;triv/
! Gri;j !�.Zn; zN/=.Wn;triv/

! 0

are 0, so we also know that

Hq
�
Pi�1;j!

�

.Zn; zN/=.Wn;triv/
CPi;j�1!

�

.Zn; zN/=.Wn;triv/

�
,!Hq.Pi;j!

�

.Zn; zN/=.Wn;triv/
/

for every i; j � 1.
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For the second statement, we have to prove that if ˛ 2 Pi�1;j!
q

.Zn; zN/=.Wn;triv/
and ˇ 2 Pi;j�1!

q

.Zn; zN/=.Wn;triv/
satisfy d.˛ C ˇ/ D 0, then we can find ˛0 2

ZPi�1;j!
q

.Zn; zN/=.Wn;triv/
and ˇ0 2 ZPi;j�1!

q

.Zn; zN/=.Wn;triv/
such that ˛0 C ˇ0 D

˛Cˇ. If ˛ 2 Pi�1;j�1!
q

.Zn; zN/=.Wn;triv/
, then we are done, since we can just take

˛0D0, ˇ0D˛Cˇ. The same holds for ˇ. Otherwise, we have d˛2Pi�1;j�1, so by
the injectivity proved in statement (1) for .i �1; j /, we know that d˛D d˛1Cd˛2
for some ˛1 2 Pi�1;j�1 and ˛2 2 Pi�2;j . Thus, we’ve reduced our problem from
.i �1; j / to .i �2; j /. Proceeding by induction, we may assume that i D 0. In that
case d˛2i 2 P0;j�1. By (the same argument as in the proof of) Lemma 1.1.2 of
[Mokrane 1993], we have an injection

Hq.P0;j�1!
�

.Zn; zN/=.Wn;triv/
/ ,!Hq.P0;j!

�

.Zn; zN/=.Wn;triv/
/;

which implies d˛2i D d˛2iC1 for some ˛2iC1 2 P0;j�1. Then

˛0 WD ˛�

iX
i 0D0

˛2i 0C1 2ZPi�1;j ; ˇ0 WD ˇC

iX
i 0D0

˛2i 0C1 2ZPi;j�1

satisfy the desired relations. �

The double filtration Pi;j on !�
.Zn; zN/=.Wn;triv/

induces a double filtration Pi;j
on zzCZn , and, for i; j � 1, the residue morphism Res W Pi;j!

q

.Zn; zN/=.Wn;triv/
!

�
q�i�j

D
.i;j /
n =Wn

factors through Pi;j zzCZn .

Lemma 3.15. For any two admissible liftings .Z1; zN/ and .Z2; zN/ of .Y; zM/, we
have a canonical isomorphism

˛Z1Z2 WH
q.Pi;j

zzC
�

Z1;n
/!Hq.Pi;j

zzC
�

Z2;n
/

satisfying the cocycle condition for any three admissible liftings.
Moreover, the residue morphism

ResZ WHq.Pi;j
zzC
�

Zn
/!Hq�i�j .��

D
.i;j /
n =Wn

/'Wn�
q

Y .i;j /

induced on cohomology satisfies the compatibility

ResZ1 D ResZ2 ı˛Z1Z2 :

Proof. The proof of the first part is basically the same as the proof of Lemma 3.5.
We take admissible lifts .Z1; zN/ and .Z2; zN/ (we denote the log structures on both
simply by zN , as it will be understood from the context which is the underlying
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scheme). As in the proof of Lemma 3.5, we form .Z12; zN/, which is smooth over
.Zi ; zN/, even though it is not quite an admissible lift. However, Z12 is étale over

SpecW ŒX1; : : : ;Xn;Y1; : : : ;Yn;X 01; : : :X
0
n;Y
0
1; : : : ;Y

0
n;v
˙1
1 ; : : : ;v˙1r ;u˙11 ; : : :u˙1s �

=.Xivi �X
0
i :Yj vj �Y

0
j /:

So we can endow zzC
�

Z12;n
with a filtration Pi;j zzC

�

Z12;n
defined as above, in terms of

log structures zN1 and zN2 (which come from formally “inverting” the Xi and X 0i or
the Yi and Y 0i ). Then the same argument used in the proof of Lemma 3.5 gives us
quasi-isomorphisms

Pi;j
zzCZi;n ! Pi;j

zzCZ12;n

for i D 1; 2, which satisfy the right compatibility condition for three admissible
lifts.

For the second part, we follow the argument in Lemma 3.4(2) of [Mokrane 1993].
We let

! D ˛^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYli
Yli

be a section of Pi;j!
q

.Z1;n; zN/=.Wn;triv/
and

!0 D ˛0 ^
dX 0

k1

X 0
k1

^ � � � ^
dX 0

ki

X 0
ki

^
dY 0

l1

Y 0
l1

^ � � � ^
dY 0

li

Y 0
li

be a section of Pi;j!
q

.Z2;n; zN/=.Wn;triv/
such that ! D !0 in Pi;j!

q

.Z12;n; zN/=.Wn;triv/
.

We have to check that ˛j
D
.i;j /
12;n

D ˛0j
D
.i;j /
12;n

. But

! �!0 D .˛�˛0/^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYli
Yli
C‰;

where ‰ 2 Pi;j�1!
q

.Z2;n; zN/=.Wn;triv/
CPi�1;j!

q

.Z2;n; zN/=.Wn;triv/
. This means that

.˛�˛0/^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYli
Yli

is also a section of Pi;j�1!
q

.Z2;n; zN/=.Wn;triv/
C Pi�1;j!

q

.Z2;n; zN/=.Wn;triv/
, and so

.˛�˛0/j
D
.i;j /
12;n

D 0. �

Corollary 3.16. We can define the sheaves

Pi;jWn QQ!
q
Y WDHq.Pi;j

zzC
�

Y /:
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The complexes Pi;jWn QQ!
�

Y form an increasing double filtration of Wn QQ!
�

Y such that
the graded pieces for i; j � 1

Gri;j Wn QQ!
�

Y WD Pi;jWn QQ!
�

Y =Pi;j�1CPi�1;j

are canonically isomorphic to the de Rham–Witt complexes of the smooth sub-
schemes Y .i;j /:

Res W Gri;j Wn QQ!
�

Y �!
� Wn�

�

Y .i;j /
Œ�i � j �.�i � j /:

Lemma 3.17. The constructions in Section 3C are compatible with the transition
morphisms � , in the following way:

(1) The following diagrams are commutative:

WnC1 QQ!
q
Y

^
d�
� ��

� // Wn QQ!
q
Y

^
d�
���

WnC1 QQ!
q
Y

� // Wn QQ!
q
Y

and

WnC1 QQ!
q
Y

^
d�
� ��

� // Wn QQ!
q
Y

^
d�
���

WnC1 QQ!
q
Y

� // Wn QQ!
q
Y

(2) The projection � WWnC1 QQ!
q
Y !Wn QQ!

q
Y preserves the weight filtration Pi;j on

Wm QQ!
q
Y for mD n; nC 1.

(3) The morphism � W Pi;jWnC1 QQ!
q
Y ! Pi;jWn QQ!

q
Y is surjective.

Proof. The first part follows in the same way as Proposition 8.1 of [Nakkajima
2005], by using a local admissible lifting .Z; zN/ of .Y; zM/ together with a lift of
the Frobenius ˆ. Then ˆ�.�/D �p.1Cpu/ for some

u 2 OZ ˝W Œ�;��Wnh�; �i

and soˆ�.d log �/ is equivalent to pd log � modulo an exact form. The same holds
for � .

The second part follows in the same way as Proposition 8.4 of [Nakkajima
2005]. The question is local, so we may assume that the admissible lift .Z; zN/
is étale over SpecW ŒX1; : : : ; Xn; Y1; : : : ; Yn�, Nr ˚Ns . First we see that, for a
lift ˆ of Frobenius we have that ˆ�.d logXi / is equivalent modulo an exact form
to pd logXi for 1 � i � r and that ˆ�.d logYj / is equivalent modulo an exact
form to pd logYj for 1� j � s. This implies that the map p WWn QQ!

q
Y !WnC1 QQ!

q
Y

preserves the weight filtration Pi;j .
In order to see that� WWnC1 QQ!

q
Y!Wn QQ!

q
Y also preservesPi;j we use a descending

induction on .i; j / in lexicographic order. Note that Pr;sWn QQ!
q
Y DWn

QQ!
q
Y , so there

is nothing to prove in this case. We can prove the result for .r; s� 1/ in the same
way as Proposition 8.4(2) of [Nakkajima 2005], using the commutative diagrams
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Pi;jWnC1 QQ!
q
Y

�

��

Res // WnC1�
q�i�j

Y .i;j /

�

��

Pi;jWn QQ!
q
Y

Res // Wn�
q�i�j

Y .i;j /

for .i; j / successively equal to .r; s/; .r �1; s/; : : : ; .1; s/. At the last step we get a
commutative diagram of (vertical) exact sequences

0

��

0

��
Pr;s�1WnC1 QQ!

q
Y CP0;sWnC1

QQ!
q
Y

��

Pr;s�1Wn QQ!
q
Y CP0;sWn

QQ!
q
Y

��
Pr;s�1WnC1 QQ!

q
Y CP1;sWnC1

QQ!
q
Y �

//

��

Pr;s�1Wn QQ!
q
Y CP1;sWn

QQ!
q
Y

��

WnC1�
q�s�1

Y .1;s/

��

�
// Wn�

q�s�1

Y .1;s/

��
0 0

which means there is an induced morphism � WPr;s�1WnC1 QQ!
q
Y CP0;sWnC1

QQ!
q
Y !

Pr;s�1Wn QQ!
q
Y CP0;sWn

QQ!
q
Y .

At this stage, we note that we can define

Y .0;s/ D
G

T�f1;:::;ng
#TDs

�\
i2T

Y 2i

�
:

This will be a simple reduced normal crossings divisor over k, and we can endow it
with the pullback of the log structure zM1 so that .Y; zM/ is a .k;N/-semistable log
scheme, in the terminology of Section 2.4 of [Mokrane 1993]. There is a surjective
residue morphism obtained via the restriction

Pi;jWn QQ!
q
Y

Res
��! PiWn Q!

q�j

Y .0;j/
;

which respects the weight filtrations. Just as the commutative diagram 8.4.3 of
[Nakkajima 2005] is obtained, we can use the injectivity of p W Wn Q!

q

Y .0;s/
!

WnC1 Q!
q

Y .0;s/
for Y .0;s/=k [Nakkajima 2005, Corollary 6.28(2)] to see that there is
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a commutative diagram

P0;sWnC1 QQ!
q
Y

�

��

Res // P0WnC1 Q!
q�s

Y .0;s/

�

��
P0;sWn QQ!

q
Y

Res // P0Wn Q!
q�s

Y .0;s/

We therefore get a commutative diagram of (vertical) exact sequences:

0

��

0

��
Pr;s�1WnC1 QQ!

q
Y

��

Pr;s�1Wn QQ!
q
Y

��
Pr;s�1WnC1 QQ!

q
Y CP0;sWnC1

QQ!
q
Y �

//

��

Pr;s�1Wn QQ!
q
Y CP0;sWn

QQ!
q
Y

��
P0WnC1 Q!

q�s

Y .0;s/

��

�
// P0Wn Q!

q�s

Y .0;s/

��
0 0

so there is an induced morphism � W Pr;s�1WnC1 QQ!
q
Y ! Pr;s�1Wn QQ!

q
Y .

Finally, the third part follows in the same way as Corollary 8.6.4 of [Nakkajima
2005]. For an admissible lift .Z; zN/, let Z1 WDZ �W k. We have surjective mor-
phisms Wn�

q
Z1
! P0;0Wn QQ!

q
Y , which commute with the transition morphisms � .

So � is surjective for P0;0. Using the exact sequences of the form

0! P0;j�1Wn QQ!
q
Y ! P0;jWn QQ!

q
Y ! P0Wn Q!

q�j

Y .0;j/
! 0

and the surjectivity of � on the third term, we prove by induction on j that � is
surjective for P0;j . The same statement holds for Pi;0. Then, we prove that � is
surjective for a general Pi;j by induction on i C j , using the exact sequences of
the form

0! Pi�1;jWn QQ!
q
Y CPi;j�1Wn

QQ!
q
Y ! Pi;jWn QQ!

q
Y !Wn�

q�i�j

Y .i;j /
! 0: �

4. Generalizing the Mokrane spectral sequence

In this section, we derive a generalization of the Mokrane spectral sequence which
will allow us to compute the log crystalline cohomology of the Shimura varieties
we are interested in terms of the crystalline cohomology of certain proper smooth
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Newton polygon strata in the special fiber. Mokrane’s spectral sequence applies
to the case of semistable reduction. Here we treat the case of a scheme whose
singularities are locally those of a product of semistable schemes which is no longer
semistable.

We define a double complex WnA�� as follows. Its terms are

WnA
ij
WD

jM
kD0

Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/ for i; j � 0;

and WnAij WD 0 otherwise. The operators d , � , F , V of W� QQ!
� induce oper-

ators d 0, � , F , V of the procomplexes W�A�j . For x in the direct summand
Wn QQ!

iCjC2
Y =.Pk;iCjC2 C PiCjC2;j�k/ of WnAij , d 0x is the class of .�1/jd Qx,

where Qx is a lift of x in Wn QQ!
iCjC2
Y . We also have a differential d 00 W WnAij !

WnA
ijC1 given by

d 00x D .�1/i
�
d�

�
^ xC

d�

�
^ x

�
;

where d�=� and d�=� are the global sections of Wn QQ!
1
Y defined in Lemma 3.9. We

have d 0d 00 D d 00d 0, so we indeed get a double procomplex .W�A��; d 0; d 00/. As
in Lemma 3.9 of [Mokrane 1993], we can use dévissage by weights to see that
the components of this procomplex are p-torsion-free. Let W�A� be the simple
procomplex associated to the double procomplex W�A��.

We define now an endomorphism � of bidegree .�1; 1/ of WnA�� which will
induce the monodromy operator on cohomology. For each k 2 f0; : : : ; j g we have
natural maps

Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/

!Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;jC1�k/

˚Wn QQ!
iCjC2
Y =.PkC1;iCjC2CPiCjC2;j�k/;

which are sums of .�1/iCjC1 proj on each factor. Summing over k we get maps
� WWnA

ij !WnA
i�1jC1, which induce an endomorphism � of bidegree .�1; 1/.

The morphism of complexes Wn QQ!
�

Y !WnA
�0 given by

x 7!
d�

�
^
d�

�
^ x

factors through Wn!�Y . We get a morphism of complexes

‚ WWn!
�
Y !WnA

�:
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The following lemma is analogous to Theorem 9.9 of [Nakkajima 2005]. It
ensures that the resulting spectral sequence will be compatible with the Frobe-
nius endomorphism (defined as an endomorphism of Wn-modules). We let ˆn W
Wn!Y !Wn!Y be the Frobenius endomorphism induced by the absolute Frobenius
endomorphism of .Y;M/.

Lemma 4.1. Let n be a positive integer. Then the following hold:

(1) There exists a unique endomorphism zẑ
�;�

n of WnA�� of double complexes,
making the following diagram commutative:

WnC1A
qm � //

pqF

��

WnA
qm

zẑ
qm

n

��
WnA

qm id // WnA
qm

(2) The endomorphism zẑ
�;�

n induces an endomorphism zẑn of the complex WnA�,
fitting in a commutative diagram

Wn!
�
Y

ˆn //

‚

��

Wn!
�
Y

‚

��
WnA

�
zẑ
n // WnA

�

(3) Finally, the Poincaré residue isomorphism Res fits in the following commutative
diagrams for i; j � 1:

Gri;jWn QQ!
q
Y

Res //

‰n

��

Wn�
q�i�j

Y .i;j /

piCjˆn

��

Gri;jWn QQ!
q
Y

Res // Wn�
q�i�j

Y .i;j /

where ‰n is an endomorphism of Wn QQ!
�

Y which respects the weight filtration

Pi;j and which induces zẑ
�;�

n on WnA�;�.

Proof. The proof is essentially the same as that of Theorem 9.9 of [Nakkajima
2005]. We emphasize only the key points. We can define a morphism

‰j;qn WWn QQ!
q
Y !Wn QQ!

q
Y

via the composition
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Wn QQ!
q
Y

p
�!WnC1 QQ!

q
Y

pj�1

����!WnC1 QQ!
q
Y

F
��!Wn QQ!

q
Y :

The fact that these morphisms commute with the maps .d�=�/^ and .d�=�/^
follows from the proof of the first part of Lemma 3.17. This implies that the second
diagram is commutative. The fact that the ‰��n respect the weight filtration follows
from the analogous statement for p, which is proved in Lemma 3.17 as well. This
means that we can use ‰jjCqC2n to define endomorphisms zẑ

jq

n of WnAjq , at least
for j �1. For j D0we use the Frobenius endomorphismˆn ofWn.OY .kC1;j�kC1//
together with the residue isomorphisms to define zẑ

0q

n . The commutativity of the
first diagram now follows from the definitions, from the commutative diagram

WnC1 QQ!
qm
Y

�
//

pqF

��

Wn QQ!
qm
Y

‰
qm
n

��
WnA

qm
id

// WnA
qm

(which is deduced from pd D dp and dF D pFd ) and from Diagram 9.2.2 of
[Nakkajima 2005] in the case of a smooth morphism. The fact that the first diagram
is commutative ensures the uniqueness of ˆq;mn . Finally, the third commutative dia-
gram follows from the surjectivity of � proved in Lemma 3.17, from Diagram 9.2.2
of [Nakkajima 2005] in the case of a smooth morphism and from the commutative
diagrams

Pi;jWnC1 QQ!
q
Y

�

��

Res // WnC1�
q�i�j

Y .i;j /

�

��

Pi;jWn QQ!
q
Y

Res // Wn�
q�i�j

Y .i;j /

for i; j � 1. �

Proposition 4.2. The sequence

0!Wn!
�
Y

‚
�!WnA

�0 d 00

��!WnA
�1 d 00

��! � � �

is exact.

Proof. We follow the proof of Proposition 3.15 of [Mokrane 1993]. Let � W
Wn QQ!

i�1
Y ˚Wn QQ!

i�1
Y !Wn QQ!

i
Y be defined by

.x; y/ 7!
d�

�
^ xC

d�

�
^y:
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It suffices to check that the sequence

Wn QQ!
i�2
Y

.d�
�
^;d�

�
^/

��������!Wn QQ!
i�1
Y ˚Wn QQ!

i�1
Y

�
�!Wn QQ!

i
Y

d�
�
^d�
�
^

�������!Wn QQ!
iC2
Y =.P0;iC2CPiC2;0/

d 00

��!Wn QQ!
iC3
Y =.P1;iC3CPiC3;0/˚Wn QQ!

iC3
Y =.P0;iC3CPiC3;1/

d 00

��! � � � (4.1)

is exact. We do this by using first a dévissage by weights, reducing to the case nD 1
and then using the fact that the scheme Y is Zariski-locally étale over a product of
(the special fibers of) strictly semistable schemes.

We let

K�4 DWn QQ!
i�2
Y ;

K�3 DWn QQ!
i�1
Y ˚Wn QQ!

i�1
Y ;

K�2 DWn QQ!
i
Y ;

Kj D

jM
kD0

Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/; j � 0:

For j � �4; j 6D �1 we define a double filtration of Kj as follows:

Pl;mK�4 D Pl�2;m�2Wn QQ!
i�2
Y ;

Pl;mK�3 D Pl�2;m�1Wn QQ!
i�1
Y ˚Pl�1;m�2Wn QQ!

i�1
Y ;

Pl;mK�2 W D Pl�1;m�1Wn QQ!
i
Y ;

Pl;mKj W D

jM
kD0

PlCk;mCj�kWn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/; j � 0:

Here we set the convention Pl;mWn QQ!
i
D 0 if either l < 0 or m< 0. The sequence

(4.1) is a filtered sequence and to prove exactness it suffices to prove exactness for
each graded piece

Grl;mKj WD Pl;mKj =.Pl;m�1Kj CPl�1;mKj /:

For l; m� 0 we can rewrite the sequences of graded pieces as:

Grl�2;m�2Wn QQ!
i�2
Y ! Grl�2;m�1Wn QQ!

i�1
Y ˚Grl�1;m�2Wn QQ!

i�1
Y

! Grl�1;m�1Wn QQ!
i
Y ! Grl;mWn QQ!

iC2
Y

! GrlC1;mWn QQ!
iC3
Y ˚Grl;mC1Wn QQ!

iC3
Y ! � � � :
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For l < 0 or m< 0 the sequence is trivial.
It suffices to show that the sequence of complexes

Grl�2;m�2Wn QQ!
�

Y Œ�2�! Grl�2;m�1Wn QQ!
�

Y Œ�1�˚Grl�1;m�2Wn QQ!
�

Y Œ�1�

! Grl�1;m�1Wn QQ!
�

Y

�
�! Grl;mWn QQ!

�

Y Œ2�

! GrlC1;mWn QQ!
�

Y Œ3�˚Grl;mC1Wn QQ!
�

Y Œ3�! � � � (4.2)

is exact. Note that we can check this locally. When l; m � 1, we know by
Corollary 3.16 that

Grl;mWn QQ!
�

Y 'Wn�
�

Y .l;m/
Œ�l �m�.�l �m/:

For lD0 andm�1 let YD0;m be the normal crossing divisor ofD0;m corresponding
to s D 0. In this case we have

Grl;mWn QQ!
�

Y ' ŒWn�D0;m.� logYDo;m/!Wn�D0;m �;

and for l D 0;mD 0 we have the quasi-isomorphism

Grl;mWn QQ!
�

Y ' ŒWn�
�
Z.� logY 1� logY 2/

!Wn�
�
Z.� logY 1/˚Wn��Z.� logY 2/!Wn�

�
Z �;

where Z DZ˝W k. In any case, Grl;mWn QQ!
� satisfies the property

.lim Grl;mWn QQ!
�
/˝LR Rn ' Grl;mWn QQ!

�

by Lemma 1.3.3 of [Mokrane 1993] and Lemma 3.11. By Proposition 2.3.7 of
[Illusie 1983], it suffices to check exactness of the sequence (4.2) for nD 1.

For nD 1 and working locally with our admissible lifts, we know that the exact
sequence (4.2) is the pullback to Y of the corresponding exact sequence on Y1�kY2.
We can assume that Y D Y1 �k Y2 and Z D Z1 �k Z2. Each Yi for i D 1; 2 is a
reduced normal crossings divisor in Zi , for which we know that

Grli�2W1 Q!
�
Yi
Œ�1�! Grli�1W1 Q!Yi ! Grl W1 Q!

�
Yi
Œ1�! GrlC1W1 Q!

�
Yi
Œ2�! � � �

is exact, by the proof of Proposition 3.15 of [Mokrane 1993]. In other words,
for i D 1; 2 we have quasi-isomorphisms between the top row and the bottom
row. Multiplying the quasi-isomorphisms for i D 1; 2 gives us exactly the quasi-
isomorphism � needed to prove the exactness of (4.2) in the case nD 1. Here, we
use the Cartier isomorphisms for W1 Q!Yi and for W1 QQ!Y and the fact that

.!�
.Z1; zN1/=k

˝OZ1
OY1/˝k .!

�

.Z2; zN2/=k
˝OZ2

OY2/' !
�

.Z; zN/
˝OZ OY ;

where the two complexes on the left determine W1 Q!�Yi for i D 1; 2 and the one on
the right determines W1 QQ!

�

Y . �
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Corollary 4.3. The morphism of complexes ‚ WWn!�Y !WnA
� is a quasi-isomor-

phism. It induces a quasi-isomorphism ‚ WW!�Y �!
� WA�.

Proposition 4.4. The endomorphism � of W�A�� induces the monodromy operator
N over H�cris..Y;M/=.W;N//:

Proof. We define the double complex B��n as follows:

B��n DWnA
i�1j
˚WnA

ij ; i; j � 0;

d 0.x1; x2/D .d
0x1; d

0x2/;

d 00.x1; x2/D .d
00x1C �.x2/; d

00x2/:

We have a morphism of complexes ‰ W Wn Q!�Y ! B�n defined as follows: for
x 2Wn Q!

i
Y ,

‰.x/

D

��
d�

�
�
d�

�

�
^x .mod P0;iC1CPiC1;0/;

d�

�
^
d�

�
^x .mod P0;iC2CPiC2;0/

�
:

Thus we have a commutative diagram of exact sequences of complexes:

0 // Wn!
�
Y Œ�1�

‚Œ�1�

��

// Wn Q!
�
Y

//

‰
��

Wn!
�
Y

//

‚
��

0

0 // WnA
�Œ�1� // B�n

// WnA
� // 0

where the left and right downward arrows are quasi-isomorphisms. Thus, ‰ is
also a quasi-isomorphism and the commutative diagram defines an isomorphism of
distinguished triangles. Thus the monodromy operatorN on cohomology is induced
by the coboundary operator of the bottom exact sequence, which by construction
is �. �

We can compute the monodromy filtration of the nilpotent operator N on coho-
mology from the monodromy filtration of � on WnA�. We will exhibit a filtration
Pk.WnA

�/D
L
i;j�0 Pk.WnA

ij / which satisfies the following:

(1) �.Pk.W�A�//� Pk�2.W�A�/.�1/.

(2) For k � 0, the induced map �k W Grk.W�A�/ ! Gr�k.W�A�/.�k/ is an
isomorphism.

A filtration satisfying these two properties must be the monodromy filtration of �.

Note 4.5. From now on, we will not work in the category C of complexes of sheaves
of W -modules but rather in Q˝ C, which is the category with the same set of
objects as C, but with morphisms Q˝HomC.A;B/. We will in fact identify the
monodromy filtration of � on Q˝WnA

�, but for simplicity of notation we still
denote an object A of C as A when we regard it as an object of Q˝C.
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Define Pl.WnA��/ WD
L
i;j�0

Pl.WnA
ij / for l � 0, where Pl.WnAij / is 0 if

l < 2n� 2� j and

jM
kD0

� l�2nC2CjX
mD0

PkCmC1;2j�kCl�2n�mC3Wn QQ!
iCjC2
Y =.Pk;iCjC2CPj�k;iCjC2/

�
if l � 2n�2�j . It is easy to check that �.Pl.WnAij //�Pl�2WnAiC1;j�1. More-
over, we can also compute the graded pieces Grl.WnA��/D

L
i;j�0 Grl.WnAij /,

where

Grl.WnA
ij /

D

�
0 if l < 2n�2�j;Lj

kD0

Ll�2nC2Cj
mD0 GrkCmC1;2j�kCl�2n�mC3Wn QQ!

iCjC2
Y if l � 2n�2�j:

For l D 2n�2Ch, with h>0, we claim that � induces an injection Grl.WnAij / ,!
Grl�1.WnAij /. This can be verified through a standard combinatorial argument.
We have

Grl.WnA
ij /D

jM
kD0

hCjM
mD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y

and

Grl�1.WnA
ij /D

jC1M
kD0

hCj�1M
mD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y :

The map � sends the term corresponding to a pair .k;m/ to the direct sum of
terms corresponding to .k;m/ and to .k C 1;m � 1/. Therefore, it is easy to
see that � restricted to the direct sum of terms for which k Cm is constant is
injective, so � is injective. Moreover, we see that �h induces an isomorphism
Gr2n�2Ch.WnAij /' Gr2n�2�h.WnAi�h;jCh/, since the terms on the right-hand
side are of the form

jM
kD0

hCjM
mD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y

and the terms on the left-hand side are of the form
jM

mD0

hCjM
kD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y ;

so on either side we have the same number of terms corresponding to k C m.
Since the filtration Pl.WnA��/ satisfies the two properties above, it must be the
monodromy filtration of �.
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Note that the differentials d 00 on Grl.W�A��/ are always 0. Using the isomor-
phisms in Corollary 3.16 we can rewrite

Gr2n�2Ch.W�A
�/

'

M
j�0;j��h

jM
kD0

jChM
mD0

.W��
�

Y .kCmC1;2jChC1�.kCm//
/Œ�2j � h�.�j � h/:

This leads to the main geometric result of the paper. Recall from Section 3.1
that Y=k is the special fiber of X=OK , which is Zariski-locally étale over a product
of strictly semistable schemes. Recall also that Y is globally the union of certain
proper, smooth .2n� 2/-dimensional subschemes Yi;j with i D 1; 2, j D 1; : : : ; n.
Taking disjoint unions of intersections of these subschemes gives rise to schemes
Y .l1;l2/=k for 1� l1; l2� n, which cover closed strata in Y . Each Y .l1;l2/ is proper,
smooth and has dimension 2n� l1� l2.

Theorem 4.6. There is a spectral sequence

E
�h;iCh
1 D

M
j�0;j��h

jM
kD0

jChM
mD0

H
i�2j�h
cris .Y .kCmC1;2jChC1�.kCm//=W /.�j �h/

)H i
cris.Y=W /:

Remark 4.7. Note that the schemes Y .l1;l2/ are proper and smooth so the E�h;iCh

terms of the spectral sequence are strictly pure of weight iCh. If the above spectral
sequence degenerates at the first page, then H i

cris.Y=W / is pure of weight i .

5. Proof of the main theorem

In this section we prove the main theorem. By Corollary 2.3, its proof reduces to
the following proposition.

Proposition 5.1. Let A
m�
UIw

be the universal abelian variety over Xm�UIw
. The direct

limit of log crystalline cohomologies

lim
!
UIw

a�
�
H
2n�2Cm�
cris .A

m�
UIw
�OK k=W /˝W Ql.t�/

�
Œ…1;S�

is pure of a certain weight.

Proof. Recall that we have chosen

UIw D U
l
�U

p1;p2
l

.m/� Iwn;p1 � Iwn;p2 �G.A
1/:

Pick m large enough such that .�l/U
p1;p2
l

.m/�Iwn;p1 � Iwn;p2 is nonzero, where
�l 2 Irrl.G.Ql// is such that BC.�l/ D ��1l …l . The results of Sections 3 and 4
apply to A

m�
UIw

. We have a stratification of its special fiber by closed Newton polygon
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strata A
m�
UIw;S;T

with S; T � f1; : : : ; ng nonempty. For brevity, let K1 WD kCmC1
and K2 WD 2j C hC 1� .kCm/. By Theorem 4.6, we have a spectral sequence

E
�h;iCh
1 D

M
j�0
j��h

jM
kD0

jChM
mD0

M
#SDK1
#TDK2

H
i�2j�h
cris

�
.A
m�;
UIw;S;T

=W /.�j � h/
�

)H i
cris.A

m�
UIw
�OK k=W /:

We replace the cohomology degree i by iCm� , tensor with Ql.t�/, apply a� (which
is obtained from a linear combination of étale morphisms); passing to a direct limit
over U l and taking the …1;S-isotypic components we get a spectral sequence

E
�h;iCh
1

D

M
j�0
j��h

jM
kD0

jChM
mD0

M
#SDK1
#TDK1

lim
!

U l

�
a�H

iCm��2j�h

cris

�
.A
m�;
UIw;S;T

=W /.�j � h/

˝W;�0Ql.t�/
�
Œ…1;S�

�
) lim
!

U l

�
a�H

iCm�
cris .A

m�
UIw
�OK k=W /˝W;�0 Ql.t�/

�
Œ…1;S�:

For any compact open subgroup U l �G.A1;l/ and any prime p 6D l with isomor-
phism �p WQp �!

� C, set � 0 WD .�p/�1�l� and …0 WD .�p/�1…1.
We have

dimQl

�
lim
!

U l

a�H
iCm��2j�h

cris

�
.A
m�;
UIw;S;T

=W /.�j � h/˝W;�0 Ql

��
Œ…1;S�U

l

D dimQp

�
lim
!

U l

a�0H
iCm�0�2j�h.A

m�
UIw;S;T

;Qp/
�
Œ.…0/S�U

l

D dimQp
.lim
!

U l

H i�2j�h
�
XUIw;S;T ;L�0

�
/Œ.…0/S�U

l

:

The first equality is a consequence of the main theorem of [Gillet and Messing
1987] and of Theorem 2(2) of [Katz and Messing 1974]. The former proves that
crystalline cohomology is a Weil cohomology theory in the strong sense. The
latter is the statement that the characteristic polynomial on H i .X/ of an integrally
algebraic cycle on X �X of codimension n, for a projective smooth variety X=k
of dimension n, is independent of the Weil cohomology theory H .

The dimension in the third row is equal to 0 unless i D 2n�2 by Proposition 5.10
of [Caraiani 2012]. Therefore, E�h;iCh1 D 0 unless i D 2n�2, so theE1 page of the
spectral sequence is concentrated on a diagonal. The spectral sequence degenerates
at the E1 page and the term corresponding to Eh;2n�2Ch1 is strictly pure of weight
hC 2n� 2Cm� � 2t� , which shows that the abutment is pure. �
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Finite generation of the cohomology
of some skew group algebras

Van C. Nguyen and Sarah Witherspoon

We prove that some skew group algebras have Noetherian cohomology rings,
a property inherited from their component parts. The proof is an adaptation of
Evens’ proof of finite generation of group cohomology. We apply the result to a
series of examples of finite-dimensional Hopf algebras in positive characteristic.

1. Introduction

The cohomology ring of a Hopf algebra encodes potentially useful information about
its structure and representations. It is always graded commutative (see, for example,
[Suarez-Alvarez 2004]). For many classes of finite-dimensional Hopf algebras, it is
also known to be finitely generated: for example, cocommutative Hopf algebras
[Friedlander and Suslin 1997], small quantum groups [Ginzburg and Kumar 1993],
and small quantum function algebras [Gordon 2000]. Etingof and Ostrik [2004]
conjectured that it is always finitely generated, as a special case of a conjecture
about finite tensor categories. Snashall and Solberg [2004] made an analogous
conjecture for Hochschild cohomology of finite-dimensional algebras that was seen
to be false when Xu [2008] constructed a counterexample. In contrast, there is
neither a counterexample nor a proof of the Hopf algebra conjecture. Each finite
generation result so far has used, in crucial ways, known structure of a particular
class of Hopf algebras. Further progress will require new ideas.

In this article, we present one technique for handling some types of algebras
inductively. Many (Hopf) algebras of interest are skew group algebras (that is,
smash products with group algebras). Under some conditions on a skew group
algebra, we show that its cohomology is Noetherian if the same is true of the
underlying algebra on which the group acts.

This material is based upon work done while Nguyen was a Texas A&M graduate student. It was
supported by the National Science Foundation under grant No. 0932078000 while both Nguyen and
Witherspoon were in residence at the Mathematical Sciences Research Institute (MSRI) in Berkeley,
California, during the semester of Spring 2013. Both authors were also supported by NSF grant
DMS-1101399.
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Specifically, if A is a finite-dimensional augmented algebra over a field k, with an
action of a finite group G by automorphisms, there is a spectral sequence relating the
cohomology of the smash product A # kG (definition in Section 2) as an augmented
algebra to that of each of A and G. (It is essentially the Lyndon–Hochschild–Serre
spectral sequence.) This allows us to use the framework of Evens’ classic proof
[1961] of finite generation of group cohomology to prove that the cohomology
rings of some smash products are Noetherian (Theorem 3.1). In order to do this,
we need a particularly nice set of permanent cycles in the cohomology of A. In the
finite group case, these cycles exist due to an application of Evens’ norm map. In
our setting, there may be no such norm map, and we instead hypothesize existence
of these permanent cycles.

We focus on a class of examples (in Section 5) found by Cibils, Lauve, and
the second author [Cibils et al. 2009] that satisfy our hypotheses. We prove finite
generation of the cohomology of these noncommutative, noncocommutative Hopf
algebras in positive characteristic. While our main theorem is tailored to suit these
examples, we state and prove it in the abstract setting, in order to add one more
tool to the collection of techniques available for proving finite generation. Our
restrictive hypotheses serve to highlight the difficulty in adapting methods designed
for the finite group setting, where serendipity reigns.

2. Definitions and notation

Throughout this article, let k be a field. All algebras will be associative algebras
over k, and all modules will be left modules, finite-dimensional over k. Let ⊗=⊗k .

Let G be a finite group acting on a finite-dimensional augmented k-algebra A by
automorphisms. Let A #kG be the resulting smash product (or skew group algebra),
that is, A⊗ kG as a vector space, with multiplication (a⊗ g)(b⊗ h)= a(gb)⊗ gh,
for all a, b ∈ A and g, h ∈ G. (For simplicity, we will drop tensor symbols in this
notation from now on.) We assume the action of G preserves the augmentation of
A, so that A # kG is also augmented with augmentation map εA#kG : A # kG→ k
defined by εA#kG(ag)= εA(a), for all a ∈ A, g ∈ G.

We use the symbol k also to denote the one-dimensional A-module (respectively,
A # kG-module) on which A (respectively, A # kG) acts via its augmentation. Let

H∗(A, k) := Ext∗A(k, k) and H∗(A # kG, k) := Ext∗A#kG(k, k).

Both are algebras under Yoneda composition. The embedding of A into A # kG as
a subalgebra induces a restriction map

resA#kG,A : H
∗(A # kG, k)→ H∗(A, k)

on cohomology. There is an action of G on H∗(A, k) that may be defined for
example via the diagonal action of G on the components of the bar resolution for A.
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There is a similar action of G on H∗(A # kG, k) that is trivial since it comes from
inner automorphisms on A # kG.

3. Finite generation of cohomology

In this section, we prove our main theorem that under certain hypotheses, the
cohomology ring H∗(A # kG, k) of A # kG is Noetherian:

Theorem 3.1. Let G be a finite group acting on a finite-dimensional augmented
algebra A, preserving the augmentation map. Assume that Im(resA#kG,A) contains
a polynomial subalgebra over which H∗(A, k) is Noetherian and free as a module,
with a free basis whose k-linear span is a kG-submodule of H∗(A, k). Then,
H∗(A # kG, k) is Noetherian.

Remarks 3.2. (a) The hypothesis that Im(resA#kG,A) contains a polynomial sub-
algebra over which H∗(A, k) is Noetherian, together with the left module version
of [Goodearl and Warfield 2004, Corollary 1.5], implies that H∗(A, k) is (left)
Noetherian.

(b) We did not specify the characteristic of the base field k in the theorem. If the
characteristic of k does not divide the order of G, then kG is semisimple and its
cohomology is trivial except in degree zero. In this case, H∗(A#kG, k)∼=H∗(A, k)G ,
the invariant ring under the action of G. Here, one can use invariant ring theory in
the noncommutative setting to show that the conclusion of the theorem holds. (See,
for example, [Montgomery 1993, Corollary 4.3.5].) For the proof of Theorem 3.1,
we assume the characteristic of k divides the order of G.

Proof. We use the Lyndon–Hochschild–Serre spectral sequence (see, for example,
[Barnes 1985, Chapter VI] in a very general setting):

E p,q
2 = E p,q

2 (k)= Hp(G,Hq(A, k))H⇒ Hp+q(A # kG, k).

Let Er (k) denote the resulting r-th page, and note that for each q, Hq(A, k) is a
finite-dimensional k-vector space.

Note that E0,∗
∞

is a submodule of E0,∗
2 , since no dr : E

p,q
r → E p+r,q−r+1

r ends
on the vertical edge. It follows that the restriction map H∗(A # kG, k)→ E0,∗

2 (k) is
part of the following commuting diagram:

H∗(A # kG, k)

��

resA#kG,A // H0(G,H∗(A, k))= H∗(A, k)G

E0,∗
∞
(k) ↪→ // E0,∗

2 (k)

We can identify E0,∗
∞

with the image of the restriction map in E0,∗
2 .
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Let T = k[χ1, . . . , χm] denote the polynomial subalgebra of Im(resA#kG,A)

hypothesized in the statement of the theorem. The action of G on H∗(A, k) restricts
to the trivial action on T since it is a subalgebra of Im(resA#kG,A). Therefore, by
the universal coefficients theorem, H∗(G, T )∼= H∗(G, k)⊗ T , an isomorphism of
graded algebras.

Let S := H∗(G, k) = E∗,02 (k). Let R be the subring of E2(k) generated by S
and T . By the above observations, R ∼= S[χ1, . . . , χm], a polynomial ring over S
in m indeterminates (that we also denote by χ1, . . . , χm for convenience). Since
d2 vanishes on the horizontal edge, R ⊆ Ker(d2). So R projects onto a subring
of E3(k)= H(E2(k), d2). Similarly, R projects onto a subring of Er (k) for every
r > 0 including∞. Therefore, we may consider Er (k) to be a module over R, for
every r > 0 including∞.

Claim 1. E2(k) is a Noetherian module over R.

Proof of Claim 1. By hypothesis, there are (homogeneous) elements ρ1, . . . , ρt ∈

H∗(A, k) that form a free basis of H∗(A, k) as a T -module, and for which

V := Spank{ρ1, . . . , ρt }

is a kG-submodule of H∗(A, k). Let

L := H∗(G, V ).

Note that L contains a copy of S = H∗(G, k) as V must include an element in
degree 0, that is, in H0(A, k) ∼= k, which has trivial G-action. By hypothesis,
H∗(A, k)= k[χ1, . . . , χm] · V , and so

E2(k)= H∗(G, k[χ1, . . . , χm] · V ).

Further, k[χ1, . . . , χm] has trivial G-action and the module H∗(A, k) for this poly-
nomial ring is free with free basis ρ1, . . . , ρt . It follows that, as a kG-module,

k[χ1, . . . , χm] · V ∼=
⊕

i1,...,im≥0

χ
i1
1 · · ·χ

im
m · V ∼=

⊕
i1,...,im≥0

V,

a direct sum of copies of the same kG-module, V . Therefore by the universal
coefficients theorem, E2(k) is the image of

H0(G, k[χ1, . . . , χm])⊗H∗(G, V )∼= k[χ1, . . . , χm]⊗ L ,

under cup product. We thus identify E∗,∗2 (k) with S[χ1, . . . , χm]⊗S L .
Since G is a finite group and V is a finite-dimensional vector space over k,

L =H∗(G, V ) is Noetherian over S =H∗(G, k) [Evens 1961]. By the Hilbert basis
theorem for graded commutative rings (see, for example, [Goodearl and Warfield
2004, Theorem 2.6]), S[χ1, . . . , χm]⊗S L is Noetherian over R = S[χ1, . . . , χm].
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Therefore, E∗,∗2 (k) is Noetherian over R. We have proven Claim 1.

Claim 2. The spectral sequence stops; i.e., Er = E∞ for some r <∞.

Proof of Claim 2. Let Zi be the space of i-cocycles and Bi be the space of i-
coboundaries in Ei = Ei (k). Recall that E1 = Z1 and E2 = Z2/B2. Consider the
“pull back” Br in E2 of dr (Er ) as follows.

Each element of E2 on which d2 vanishes determines an element of E3. Suppose
d3 vanishes on that element, so that it in turn determines an element of E4. Continue
placing such restrictions until we determine an element of Er , and suppose that
element is in the image of dr . We define:

Br := {τ ∈ E2 : τ ∈ Ker(di ) for 2≤ i ≤ r − 1 and τ ∈ Im(dr )}.

Note that Br is an R-submodule of E2 since d j is a derivation for all j , 2≤ j ≤ r ,
and the image in each E j of R consists of universal cycles. Moreover, Br ⊆ Br+1

so we obtain an ascending chain of R-submodules of E2:

0= B1 ⊆ B2 ⊆ · · ·

Since E2 is Noetherian over R by Claim 1, this chain must stabilize by the ascending
chain condition. Thus there exists some r0 finite such that Br0= Br0+1= Br0+2=· · · ,
and so dr = 0 for all r > r0. This implies Er = E∞ for r > r0, proving Claim 2.

We can put this together to finish the proof of the theorem: Each Zr , Br is a
submodule of E2 over R = S[χ1, . . . , χm]. Thus, each Er , which is a submodule
of a quotient module of Er−1, is Noetherian over R by Claim 1 and induction on
r . By Claim 2, E∞ is Noetherian over R, and so by [Goodearl and Warfield 2004,
Corollary 1.5] it is a Noetherian ring.

Now, H∗(A # kG, k) has a filtration whose filtered quotients are

E p,q
∞
(k)∼=

F p Hp+q(A # kG, k)
F p+1 Hp+q(A # kG, k)

.

Suppose that H∗(A#kG, k) is not Noetherian and let T1⊆ T2⊆ · · · ⊆H∗(A#kG, k)
be an infinite ascending chain of ideals of H∗(A # kG, k). Let

F pTi := Ti ∩ F p H∗(A # kG, k)
and

Ui :=
⊕
p ≥ 0

F pTi/F p+1Ti ⊆ E∞(k).

If x ∈ Ti+1 \ Ti , then for some p, x ∈ F pTi+1 but x /∈ F pTi and x /∈ F p+1Ti+1, so
x + F p+1Ti+1 is not in the image of the inclusion

F pTi/F p+1Ti ↪→ F pTi+1/F p+1Ti+1,
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that is, x ∈Ui+1 \Ui . So Ui+1 properly contains Ui , for all i . Therefore, we have
an infinite ascending chain of ideals of E∞(k):

U1 $ U2 $ · · ·

This contradicts the result that E∞(k) is Noetherian. Therefore, H∗(A # kG, k) is
Noetherian. �

Remark 3.3. Theorem 3.1 parallels the main step in Evens’ proof of finite genera-
tion of group cohomology: Let H be a finite p-group (where k has characteristic p),
A= k Z is the group algebra of a central subgroup Z of H of order p, and G= H/Z .
(In case Z is complemented in H , we obtain k H ∼= A #kG, whereas more generally,
k H is a crossed product of A with G.) In this case, Evens’ norm map is applied to
show that Im(resk H,k Z ) contains a polynomial subalgebra k[ζ ] (in one indetermi-
nate). One observes that H∗(k Z , k) is a free module over k[ζ ], and that the k-linear
span of any free basis is a kG-submodule. This special case is somewhat simpler
than our more general context as it uses a polynomial ring in one indeterminate.

We are particularly interested in those actions of finite groups G on algebras A
for which A # kG is a Hopf algebra. We turn to a class of such examples in the
remainder of the paper.

4. Examples: Nichols algebras in positive characteristic

In this section, we first recall the Nichols algebras A from [Cibils et al. 2009,
Corollary 3.14] and the corresponding Hopf algebras A # kG from the same paper.
We will prove that these Hopf algebras have finitely generated cohomology. This
will follow from Theorem 3.1 and explicit calculation using Anick’s resolution
[1986]. In this section we explain these calculations for A, and in the next we
complete the proof of finite generation of cohomology of A # kG. The results of
this section were anticipated by Ø. Solberg (personal communication, 2012) as a
consequence of computer calculations (for small p) that gave the graded vector
space structure and generators of cohomology.

In the remainder of the paper, k will be a field of characteristic p > 2. (The case
p = 2 is included in [Cibils et al. 2009], but is different, and we will not consider
that case here.) Let A be the augmented k-algebra generated by a, b, with relations

a p
= 0, bp

= 0, ba = ab+ 1
2a2,

and augmentation ε : A→ k given by ε(a)= ε(b)= 0. Let G be a cyclic group of
order p with generator g, acting on A by

g(a)= a, g(b)= b− a.
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Then A # kG is a Hopf algebra with comultiplication given by

1(g)= g⊗ g, 1(a)= a⊗ 1+ g⊗ a, 1(b)= b⊗ 1+ g⊗ b.

It is useful to consider A as a quotient of a larger algebra. Let

B := k〈a, b〉/(ba− ab− 1
2a2), (4-1)

so that A ∼= B/(a p, bp). We will show that B is a PBW algebra in the sense of
[Bueso et al. 2003] or [Shroff 2013, Section 2], although we will not need this fact
for our cohomology calculations.

Choose the lexicographic order on N2 for which (0, 1) < (1, 0), and assign
deg(a) = (0, 1), deg(b) = (1, 0). Then ba− ab− 1

2a2 is a Gröbner basis for the
ideal of the free algebra k〈a, b〉 that it generates. It follows that {ai b j

| i, j ≥ 0} is a
vector space basis of B. The relation ab= ba− 1

2a2 satisfies the required condition
in the definition of a PBW algebra since deg(a2) < deg(ab), so B is a PBW algebra.
Moreover, B is a Koszul algebra by Theorem 5.3 in [Priddy 1970].

Applying [Cibils et al. 2009, (3.9)], one finds that the elements a p, bp are in
the center of B. We may thus apply Theorem 4.3 of [Shroff 2013] to the Nichols
algebra A to conclude that the cohomology ring H∗(A, k) of A is Noetherian.

We will need some details about this cohomology of A for the next section.
For this, we will construct Anick’s resolution [1986] for A, and show that it is
minimal. We use the combinatorial description of the resolution given by Cojocaru
and Ufnarovski [1997], however we index differently, and use left modules instead
of right. This is a free resolution of the trivial A-module k, of the form

· · · −→ A⊗ kC2 −→ A⊗ kC1 −→ A⊗ kC0 −→ k→ 0,

for (finite) sets Cn , where kCn denotes the vector space with basis Cn . Let C0 := {1}
and C1 := {a, b}. Then C2 := {a p, bp, ba} is the set of “tips” or “obstructions.”
To define Cn in general, consider the graph

1

}} !!
a





boo




a p−1

II

bp−1

hh II

The elements of Cn correspond to paths of length n that start at 1. We label such
paths with the product of all elements through which the path passes (including the
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endpoint). In this way we obtain

C3 =
{
a p+1, bp+1, bpa, ba p},

C4 =
{
a2p, b2p, bp+1a, bpa p, ba p+1},

and in general

C2m−1 =
{
bkpa(m−1−k)p+1, bkp+1a(m−1−k)p

∣∣ k = 0, 1, . . . ,m− 1
}
,

C2m =
{
bmp, bkpa(m−k)p, bkp+1a(m−1−k)p+1 ∣∣ k = 0, 1, . . . ,m− 1

}
.

For qualitative understanding of the differentials, give each of the generators
a, b of A the degree 1. We claim that the differentials preserve degree, where the
graded module structure of a tensor product A⊗ kCi is given by deg(a ⊗ x) =
deg(a)+ deg(x) if a, x are homogeneous. This claim results from the recursive
definition of the differential d in each homological degree: By construction, d
applied to elements of A⊗ kC1 is multiplication, and to A⊗ kC2 takes each tip to
the Gröbner basis element to which it corresponds, suitably expressed as an element
of A⊗ kC1. The remaining differentials are defined iteratively, via splitting maps
in each homological degree that are also defined iteratively. Since the relations
are homogeneous and differentials in low homological degrees preserve degrees of
elements, the splitting maps and differentials in higher degrees may be chosen to
have the same property.

Now note that C2m−1 consists of elements of degree (m − 1)p + 1, and C2m

consists of elements of degrees mp and (m− 1)p+ 2. Therefore elements of Cn

and of Cn−1 never have the same degree. As a consequence the differential takes
elements of Cn to elements of A+⊗Cn−1, where A+ denotes all elements of A
of positive degree (and these are in the kernel of the augmentation map ε). When
applying the functor HomA(−, k), then, the induced differentials all become 0.
Therefore in this case, Anick’s resolution is minimal, and for each n, the dimension
of Hn(A, k) is n+ 1.

5. Examples: pointed Hopf algebras in positive characteristic

We wish to apply Theorem 3.1 to the Hopf algebras A # kG introduced in the
previous section. In order to do this, we next give some of the details from [Shroff
2013, Section 4] as they apply to these examples in particular. Recall the PBW
algebra B defined in (4-1). Let ξa, ξb : B⊗B→ k be the k-linear functions given by

ξa(r ⊗ s)= γa, ξb(r ⊗ s)= γb,

where γa and γb are the scalar coefficients of a p and bp, respectively, in the product
rs in B. (Shroff writes these functions ζ̃1, ζ̃2.) Extending to left B-module homomor-
phisms in HomB(B⊗3, k) under the isomorphism HomB(B⊗3, k)∼=Homk(B⊗2, k),
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the functions ξa, ξb are coboundaries on the bar resolution of B, as shown in
[loc. cit.], and they factor through A ∼= B/(a p, bp). The resulting functions (which
we will also denote ξa, ξb by abuse of notation) are no longer coboundaries. They
represent nonzero elements in the cohomology of A, corresponding to permanent
cycles in the May spectral sequence for A as a filtered algebra (see [May 1966,
Theorem 3] or [Weibel 1994, Theorem 5.4.1]). On page E1 of this spectral sequence,
their counterparts generate a polynomial ring over which E1 is finitely generated (by
the elements 1, ηa, ηb, ηaηb, where ηa, ηb have cohomological degree 1, functions
dual to a and b in Homk(gr A, k) ∼= Homgr A(gr A⊗ gr A, k)). The cohomology
H∗(A, k) is finitely generated over its subalgebra generated by ξa, ξb, as a con-
sequence of the proof of [Shroff 2013, Theorem 4.3]. We will see below that
the subalgebra generated by ξa, ξb is in fact a polynomial ring in ξa, ξb, which is
Noetherian, so applying the left module version of [Goodearl and Warfield 2004,
Corollary 1.5], H∗(A, k) is itself (left) Noetherian.

To verify the hypothesis of Theorem 3.1, we use the above information to define
2-cocycles representing elements in H∗(A#kG, k): Note that a p, bp are G-invariant
by [Cibils et al. 2009, (3.10)]. Thus, by the construction of ξa, ξb, these functions are
also G-invariant, and so they in fact extend to 2-coboundaries on B # kG, factoring
through A # kG ∼= B # kG/(a p, bp). This also shows that ξa, ξb commute with each
other in H∗(A, k), since H∗(A # kG, k) is graded commutative and ξa, ξb each have
even degree, so they are commuting elements in Im(resA#kG,A).

We next claim that ξa, ξb generate a polynomial subalgebra k[ξa, ξb] of H∗(A, k)
over which H∗(A, k) is free with free basis {1, ηa, ηb, ηaηb}.1 This will follow
once we see that the set

{ξ i
aξ

j
b η

l
aη

m
b | i, j ≥ 0, l,m = 0, 1}

represents a basis of H∗(A, k), since ξa, ξb commute with each other. Note that
the cohomology of S = gr A is well known, and has a basis precisely of this form.
Recall that Anick’s resolution for A is minimal, and a comparison shows that
in each degree, the dimensions of H∗(A, k) and of H∗(S, k) are the same. This
forces the May spectral sequence [1966] for A to collapse at E1 = H∗(S, k), and
so gr H∗(A, k) ∼= H∗(S, k), and H∗(A, k) has basis as claimed. This implies that
ξa, ξb generate a polynomial subring (we already know they commute). Therefore
H∗(A, k) is free as a k[ξa, ξb]-module, as claimed. Further, the k-linear span of
{1, ηa, ηb, ηaηb} is indeed a kG-submodule of H∗(A, k): we compute

gηa = ηa + ηb,
gηb = ηb,

g(ηaηb)= ηaηb.

1 Since B is a Koszul algebra, H∗(B, k)∼= B!, the Koszul dual of B, which is generated by ηa, ηb
(by abuse of notation) with relations dual to those of B, that is, η2

a =
1
2ηaηb, η

2
b = 0, ηbηa =−ηaηb.

These relations also hold in H∗(A, k), however we do not need this fact.



1656 Van C. Nguyen and Sarah Witherspoon

We have shown that the hypotheses of Theorem 3.1 are satisfied. Therefore,
H∗(A # kG, k) is Noetherian.

Question 5.1. Are there more examples of Nichols algebras in positive characteris-
tic to which Theorem 3.1 applies?

Nichols algebras and their bosonizations, which are Hopf algebras, have only just
begun to be explored in positive characteristic. There is a vast (and recent) literature
on Nichols algebras in characteristic zero. See, for example, [Andruskiewitsch et al.
2011a; 2011b; Andruskiewitsch and Schneider 2010; Heckenberger 2006].
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On the supersingular locus
of the GU(2,2) Shimura variety

Benjamin Howard and Georgios Pappas

We describe the supersingular locus of a GU.2; 2/ Shimura variety at a prime
inert in the corresponding quadratic imaginary field.

1. Introduction

This paper contributes to the theory of integral models of Shimura varieties, and, in
particular, to the problem of explicitly describing the basic locus in the reduction
modulo p of a canonical integral model. In many cases where this integral model
is a moduli space of abelian varieties with additional structures, the basic locus
coincides with the supersingular locus, i.e., with the subset of the moduli in positive
characteristic where the corresponding abelian variety is isogenous to a product
of supersingular elliptic curves. The first investigations of a higher-dimensional
supersingular locus were for the Siegel moduli space, and are due to Koblitz, Katsura
and Oort, and Li and Oort. See the introduction of [Vollaard 2010] for these and
other references. More recently, such explicit descriptions for certain unitary and
orthogonal Shimura varieties have found applications to Kudla’s program relating
arithmetic intersection numbers of special cycles on Shimura varieties to Eisenstein
series; this motivated further study, as in [Kudla and Rapoport 2009; 1999; 2000;
2011; Vollaard and Wedhorn 2011].

In this paper, we study the supersingular locus of the special fiber of a GU.2; 2/
Shimura variety at an odd prime inert in the corresponding imaginary quadratic field.
Our methods borrow liberally from [Vollaard 2010] and [Vollaard and Wedhorn
2011], which dealt with the GU.n; 1/ Shimura varieties at inert primes, and from
[Rapoport et al. 2014], which considered them at ramified primes. If one attempts
to directly imitate the arguments in those papers to study the general GU.r; s/
Shimura variety, the method breaks down at a crucial point. The key new idea
for overcoming this obstacle is to exploit the linear algebra underlying a twisted
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version of the exceptional isomorphism SU.2; 2/ Š Spin.4; 2/ corresponding to
the Dynkin diagram identity A3 DD3. As such, we do not expect our methods to
extend to unitary groups of other signatures (although we do hope that our result
will eventually help to predict the shape of the answer in the general case). The
problem of understanding the supersingular locus of the GU.3; 2/ Shimura variety,
for example, remains open.

However, our methods should extend to the family of GSpin.n; 2/ Shimura
varieties. Work of Kisin [2010] and Madapusi Pera [2012] (see also [Vasiu 1999])
provides us with a good theory of integral models for these Shimura varieties, and
recent work of W. Kim [2013] gives a good theory of Rapoport–Zink spaces as well.
An extension of our results in this direction would have applications to Kudla’s
program, for example by allowing one to generalize the work of Kudla and Rapoport
[1999; 2000] from GSpin.2; 2/ and GSpin.3; 2/ Shimura varieties to the general
GSpin.n; 2/ case. Using the isomorphism between GSpin.6; 2/ and the similitude
group of a 4-dimensional symplectic module over the Hamiltonian quaternions
[Freitag and Hermann 2000], one could also expect to generalize Bültel’s results
[2012] on the supersingular locus of the moduli space of polarized abelian eightfolds
with an action of a definite quaternion algebra. More ambitiously, one could hope to
exploit the connection between polarized K3 surfaces and the GSpin.19; 2/ Shimura
variety in order to study the moduli space of supersingular K3 surfaces. Some of
these topics will be pursued in subsequent papers.

As this paper was being prepared, Görtz and He were conducting a general
study of basic minuscule affine Deligne–Lusztig varieties for equicharacteristic
discrete valued fields. The preprint [Göertz and He 2013] provides a list of cases
where these affine Deligne–Lusztig varieties can be expressed as a union of usual
Deligne–Lusztig varieties, and that list contains an equicharacteristic analogue of
the GU.2; 2/ Rapoport–Zink space considered here. These results of Görtz and He
in the equicharacteristic case are analogous to our mixed characteristic results.

1.1. The local result. Our main result concerns the structure of the Rapoport–
Zink space parametrizing quasi-isogenies between certain p-divisible groups with
extra structure. Fix an algebraically closed field k of characteristic p > 2, let W
be the ring of Witt vectors over k, and let E=Qp be an unramified degree-two
extension. Consider the family of triples .G; �; �/, defined over W -schemes S on
which p is locally nilpotent, consisting of a supersingular p-divisible group G
with an action � W OE ! End.G/ and a principal polarization � W G ! G_. We
require that the action � and the polarization � be compatible in the sense of
(2-1), and that the action of OE on Lie.G/ satisfy the signature-.2; 2/ determinant
condition of (2-2). A choice of one such triple .G ; �;�/ over k as a basepoint
determines the Rapoport–Zink space, M , parametrizing quadruples .G; �; �; %/ in
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which % WG �S S0!G �k S0 is an OE -linear quasi-isogeny under which � pulls
back to a Q�p -multiple c.%/�. Here, S0D S �W k. The Rapoport–Zink space M is
a formal scheme over W , and admits a decomposition into open and closed formal
subschemes M D

U
`2Z M .`/, where M .`/ is the locus where ordp.c.%// D `.

Here and elsewhere, we use the symbol
U

to denote disjoint union. The group pZ

acts on M , where the action of p sends .G; �; �; %/ 7! .G; �; �; p%/. This action
has M .0/]M .1/ as a fundamental domain. In fact, the action of pZ extends to a
larger group J which acts transitively on the set fM .`/ W ` 2 Zg. Define

N D pZ
nM ;

and let N C and N � be the images of M .0/ and M .1/, respectively, under the
quotient map M !N .

In Section 2, we construct a 6-dimensional Qp-vector space

LˆQ � End.G /Q

of special quasi-endomorphisms of G as the ˆ-fixed vectors in a slope-0 isocrystal
.LQ; ˆ/. The vector spaceLˆ

Q
is endowed with a Qp-valued quadratic formQ.x/D

x ı x, and we define a vertex lattice in Lˆ
Q

to be a Zp-lattice ƒ�Lˆ
Q

such that

pƒ�ƒ_ �ƒ:

The type tƒ 2 f2; 4; 6g of ƒ is the dimension of ƒ=ƒ_. To each point .G; �; �; %/
of N , the quasi-isogeny % allows us to view ƒ as a lattice of quasi-endomorphisms
of G. Let zN ƒ � N be the locus of points where ƒ � End.G/ (i.e., the locus
where these quasi-endomorphisms are integral). It is a closed formal subscheme
of N , whose underlying reduced k-scheme we denote by Nƒ. We show that the
underlying reduced subscheme Nred of N is covered by these closed subschemes:

Nred D
[
ƒ

Nƒ;

and that

Nƒ1
\Nƒ2

D

�
Nƒ1\ƒ2

if ƒ1\ƒ2 is a vertex lattice;
∅ otherwise;

where the left-hand side is understood to mean the reduced subscheme underlying
the scheme-theoretic intersection (we suspect that the scheme-theoretic intersection
is already reduced, but are unable to provide a proof).

Section 3 is devoted to understanding the structure of N ˙
ƒ DNƒ\N ˙. Setting

dƒ D tƒ=2, we prove that N ˙
ƒ is a projective, smooth, and irreducible k-scheme

of dimension dƒ� 1. In fact:

(1) If dƒ D 1, then N ˙
ƒ is a single point.
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(2) If dƒ D 2, then N ˙
ƒ is isomorphic to P1.

(3) If dƒ D 3, then N ˙
ƒ is isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

The irreducible components of N ˙ are precisely the closed subschemes N ˙
ƒ

indexed by the type-6 vertex lattices. From this we deduce the following theorem:

Theorem A. The underlying reduced scheme M
.`/
red of M .`/ is connected. Every

irreducible component of M
.`/
red is a smooth k-scheme of dimension 2, isomorphic

to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

If two irreducible components intersect nontrivially, the reduced scheme underlying
their scheme-theoretic intersection is either a point or a projective line.

See Sections 3.5 and 3.6 for a more detailed description of Mred.

1.2. The global result. In Section 4, we consider the global situation. Let E be a
quadratic imaginary field, and let p > 2 be inert in E. Let O �E be the integral
closure of Z.p/, and let V be a free O-module of rank 4 endowed with a perfect
O-valued Hermitian form of signature .2; 2/. Let G D GU.V / be the group of
unitary similitudes of V , a reductive group over Z.p/. Fix a compact open subgroup
U p �G.A

p

f
/, which we assume is sufficiently small, and define Up DG.Zp/ and

U D UpU
p �G.Af /.

Using this data we define a schemeMU , smooth of relative dimension 4 over Z.p/,
as a moduli space of abelian fourfolds, up to prime-to-p-isogeny, with additional
structure, in such a way that the complex fiber of MU is the Shimura variety

MU .C/DG.Q/n.D�G.Af /=U /:

Here, D is the Grassmannian of negative-definite planes in V ˝O C.
Let k be an algebraically closed field of characteristic p, and denote by M ss

U

the reduced supersingular locus of the geometric special fiber MU �Z.p/
k. The

uniformization theorem of Rapoport and Zink expresses M ss
U as a disjoint union of

quotients of the scheme Mred described above. As a consequence we obtain the
following result:

Theorem B. The k-scheme M ss
U has pure dimension 2. For U p sufficiently small,

all irreducible components of M ss
U are isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

If two irreducible components intersect nontrivially, the reduced scheme underlying
their scheme-theoretic intersection is either a point or a projective line.
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1.3. Notation. We use the following notation throughout Sections 2 and 3. Fix
an odd prime p and an unramified quadratic extension E of the field of p-adic
numbers Qp. The nontrivial Galois automorphism of E is denoted by ˛ 7! ˛.
Let k be an algebraically closed field of characteristic p. Its ring of Witt vectors
W DW.k/ is a complete discrete valuation ring with residue field kDW=pW and
fraction field WQ. Label the two embeddings of OE into W as

 0 WOE !W;  1 WOE !W;

and denote by � both the absolute Frobenius x 7! xp on k and its unique lift to a
ring automorphism of W . Denote by �0; �1 2OE ˝W the orthogonal idempotents
characterized by

�iM D fx 2M W .˛˝ 1/ � x D .1˝ i .˛// � x for all ˛ 2OE g

for any OE˝W -module M . For any Z-module M , we abbreviate MQDM ˝Z Q.
In particular, MQ DM ˝W W Œ1=p� for any W -module M .

2. Moduli spaces and lattices

In this section we recall the Rapoport–Zink space of a GU.2; 2/ Shimura variety,
and define a stratification of the underlying reduced scheme.

2.1. The Rapoport–Zink space. Let NilpW be the category of W -schemes on
which p is locally nilpotent. We wish to parametrize triples .G; �; �/ over objects
S of NilpW in which

� G is a supersingular p-divisible group of dimension 4,

� � WOE ! End.G/ is an action of OE on G,

� � WG!G_ is a principal polarization.

We further require that every ˛ 2OE satisfy both the OE -linearity condition

� ı �.˛/D �.˛/_ ı� (2-1)

and the signature-.2; 2/ condition

det.T � �.˛/ILie.G//D .T � 0.˛//2.T � 1.˛//2 (2-2)

as sections of OS ŒT �. The signature-.2; 2/ condition is equivalent to each of the
OS -module direct summands in Lie.G/ D �0 Lie.G/˚ �1 Lie.G/ being locally
free of rank 2.

Fix one such triple .G ; �;�/ over k as a base point, and let M be the functor on
NilpW sending S to the set of isomorphism classes of quadruples .G; �; i; %/ over S ,
where .G; �; �/ is as above and % W G=S0

! G=S0
is an OE -linear quasi-isogeny

such that %�� D c.%/� for some c.%/ 2 Q�p . Here, S0 is the k-scheme S ˝W k.
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The functor M is represented by a formal scheme locally of finite type over Spf.W /
by [Rapoport and Zink 1996]. There is a decomposition M D

U
`2Z M .`/ into

open and closed formal subschemes, where M .`/ is the locus of points where
ordp.c.%//D `.

Let J � End.G /�
Q

denote the subgroup of E-linear elements such that g��D
�.g/� for some �.g/ 2Q�p . The group J acts on M in an obvious way:

g � .G; �; �; %/D .G; �; �; g ı %/:

As usual, the group J is the Qp-points of a reductive group over Qp. In fact,
by [Vollaard 2010, Remark 1.16], this reductive group is the group of unitary
similitudes of the split Hermitian space of dimension 4 over E. In particular, the
derived subgroup J der is isomorphic to the special unitary group, and the similitude
character � W J ! Q�p is surjective. Note that the action of any g 2 J with
ordp.�.g//D 1 defines an isomorphism M .`/ ŠM .`C1/.

As a special case of this action, the group pZ acts on M by

p � .G; �; �; %/D .G; �; �; p%/;

and the quotient N D pZnM has M .0/ ]M .1/ as a fundamental domain. Let
N C ŠM .0/ and N � ŠM .1/ be the open and closed formal subschemes of N

on which ordp.c.%// is even and odd, respectively. By the previous paragraph there
is an isomorphism N C ŠN �, and we will see later in Theorem 3.12 that N C

and N � are precisely the connected components of N .

2.2. Special endomorphisms. In this subsection we will define a Qp-subspace

LˆQ � End.G /Q

of special quasi-endomorphisms of G in such a way that x 7! x ı x defines a
Qp-valued quadratic form on Lˆ

Q
. The subspace Lˆ

Q
is not quite canonical; it will

depend on the auxiliary choice of a certain tensor ! in the top exterior power of
the Dieudonné module of G .

Denote by D the covariant Dieudonné module of G , with its induced action
of OE and induced alternating form � W

V2
WD ! W satisfying �.F x; y/ D

�.x; Vy/� . Under the covariant conventions, Lie.G /ŠD=VD as k-vector spaces
with OE -actions. Abbreviate

V`
EDD

V`
OE˝W

D. Once we fix a ı2O�E satisfying
ı� D�ı, there is a unique Hermitian form

h � ; � i WD �D!OE ˝W
satisfying

�.x; y/D TrE=Qp
ı�1hx; yi; (2-3)
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which in turn induces a Hermitian form on every exterior power
V`
ED by

hx1 ^ � � � ^ x`; y1 ^ � � � ^y`i D
X
�2S`

sgn.�/
Ỳ
iD1

hxi ; y�.i/i:

This Hermitian form identifies each lattice
V`
ED with its dual lattice in

�V`
ED

�
Q

.
In order to make explicit calculations, we now put coordinates on DQ.

Lemma 2.1. There are WQ-bases

e1; e2; e3; e4 2 �0DQ;

f1; f2; f3; f4 2 �1DQ;

such that

hei ; fj i D

�
�0 if i D j ;
0 otherwise,

(2-4)

and the � -semilinear operator F satisfies

Fe1 D f1; Fe2 D f2; Fe3 D pf3; Fe4 D pf4;

Ff1 D pe1; Ff2 D pe2; Ff3 D e3; Ff4 D e4:

Proof. Denote by D0
Q

the isocrystal with WQ-basis fe1; : : : ; e4; f1; : : : ; f4g and
by F the operator defined by the above relations. Endow D0

Q
with the E-action

�0.˛/ei D 0.˛/ei and �0.˛/fi D 1.˛/fi and the unique Hermitian form satisfying
(2-4). This Hermitian form determines a polarization �0.x; y/D TrE=Qp

ı�1hx; yi.
As D0

Q
is isoclinic of slope 1=2, there is an isomorphism of isocrystals

% WDQ ŠD
0
Q:

Any two embeddings of E into End.D0
Q
/ are conjugate, by the Noether–Skolem

theorem, and so % may be modified to make it E-linear. Another application of
Noether–Skolem shows that % may be further modified to ensure that the polariza-
tions on DQ and D0

Q
induce the same Rosati involution on

End.DQ/Š End.D0Q/:

This implies that % identifies the polarizations, and hence the Hermitian forms, on
DQ and D0

Q
up to scaling by an element c.%/ 2Q�p .

Finally, for every c 2Q�p one can find an E-linear isocrystal automorphism g

of D0
Q

such that g rescales the polarization of D0
Q

by the factor c. For example, if
ordp.c/ is even then write c D ˛˛ with ˛ 2E� and take g D �0.˛/. If c D p then
take g to be

e1 7! e3; e2 7! e4; e3 7! pe1; e4 7! pe2;

f1 7! pf3; f2 7! pf4; f3 7! f1; f4 7! f2:
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Thus % may be further modified to ensure that c.%/D 1. �

Lemma 2.2. There is an OE˝W -module generator!2
V4
ED such that h!;!iD1

and F!D p2!. If !0 2
V4
ED is another such element, there is an ˛ 2O�E such

that ˛˛ D 1 and !0 D ˛!.

Proof. The W -module decomposition D D �0D˚ �1D induces a corresponding
decomposition

V4
ED D

V4
�0D ˚

V4
�1D: Fixing a basis as in Lemma 2.1, we

must have V4
�0D DW �p

k0e1 ^ e2 ^ e3 ^ e4;V4
�1D DW �p

k1f1 ^f2 ^f3 ^f4;

for some integers k0 and k1. The self-duality of
V4
ED under h � ; � i implies

k0C k1 D 0. The signature-.2; 2/ condition on

Lie.G /ŠD=VD D �0D=V�1D˚ �1D1=V�0D

implies that each of the summands on the right has dimension 2 over W=pW , and
hence the cokernels of

V W
V4
�0D!

V4
�1D; V W

V4
�1D!

V4
�0D

are each of length 2 as W -modules. Using

V.e1 ^ e2 ^ e3 ^ e4/D p
2f1 ^f2 ^f3 ^f4;

V .f1 ^f2 ^f3 ^f4/D p
2e1 ^ e2 ^ e3 ^ e4;

we deduce that k1 and k2 are equal, and hence both are equal to 0. It follows that

!D e1 ^ e2 ^ e3 ^ e4Cf1 ^f2 ^f3 ^f4 (2-5)

generates
V4
ED as an OE˝W -module. A simple calculation shows that h!;!iD1

and F!D p2!, proving the existence part of the lemma. The uniqueness part of
the claim is obvious. �

Definition 2.3. For any ! as in the lemma, define the Hodge star operator x 7! x?

on
V2
ED by the relation y ^ x? D hy; xi �! for all y 2

V2
ED.

The Hodge operator satisfies .˛x/? D ˛x? for all ˛ 2OE ˝W . Denote by

LD fx 2
V2
ED W x

?
D xg

the W -submodule of Hodge fixed vectors. The Hermitian form h � ; � i on D deter-
mines an injection

V2
ED! EndW .D/ by

.a^ b/.z/D ha; zib� hb; zia;
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and we obtain inclusions L�
V2
ED � EndW .D/: Note that both the Hodge star

operator and the submodule L depend on the choice of !.

Proposition 2.4. For any choice of !, the induced Hodge star operator has the
following properties:

(1) Every x 2
V2
ED satisfies .x?/? D x.

(2) Every x 2L, viewed as an endomorphism ofD, satisfies

x ı x D�
hx; xi

2
: (2-6)

In particular, Q.x/D x ı x defines a W -valued quadratic form on L.

(3) The W -quadratic space L is self-dual of rank 6, and

LD fx 2LQ W xD �Dg:

(4) If C.L/ denotes the Clifford algebra of L, the natural map

C.L/! EndW .D/

induced by the inclusion L � EndW .D/ is an isomorphism. Under this
isomorphism, the even Clifford algebra is identified with the subalgebra of
OE -linear endomorphisms in EndW .D/.

Proof. Fix a basis of DQ as in Lemma 2.1, and suppose first that ! is given by
(2-5). An easy calculation shows that

.e1 ^ e2/
?
D f3 ^f4; .f3 ^f4/

?
D e1 ^ e2;

.e1 ^ e3/
?
D f4 ^f2; .f4 ^f2/

?
D e1 ^ e3;

.e1 ^ e4/
?
D f2 ^f3; .f2 ^f3/

?
D e1 ^ e4;

.e2 ^ e3/
?
D f1 ^f4; .f1 ^f4/

?
D e2 ^ e3;

.e2 ^ e4/
?
D f3 ^f1; .f3 ^f1/

?
D e2 ^ e4;

.e3 ^ e4/
?
D f1 ^f2; .f1 ^f2/

?
D e3 ^ e4;

(2-7)

from which .x?/? D x is obvious. Now set !0 D ˛! with ˛ 2O�E of norm 1, and
denote by x 7! x?0 the Hodge star operator defined by !0. It is related to the Hodge
star operator for ! by x?0 D ˛x?, and hence

.x?0/?0 D .˛.˛x?//? D ˛˛.x?/? D x:

This proves the first claim in full generality.
Keep ! as in (2-5). For the second claim, one first checks that all x; y 2

V2
ED

satisfy the relation
x ıyCy? ı x? D�hx; yi (2-8)
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in EndW .D/. Indeed, it suffices to prove this when x and y are pure tensors of
the form ei ^ ej and fi ^ fj , and this can be done by brute force. Of course
(2-8) immediately implies (2-6) for all x 2L, proving the second claim for !. The
validity of (2-8) for any other !0 follows by the reasoning of the previous paragraph.

For the third claim, note that the quadratic formQ.x/D�hx; xi=2 onL extends
to a quadratic form on

V2
ED by the same formula (using the standing hypothesis

that p is odd), with associated bilinear form

Œx; y�D�1
2
�TrE=Qp

hx; yi;

and that there is an orthogonal decompositionV2
ED DL˚fx 2

V2
ED W x

?
D�xg:

The self-duality of
V2
ED under h � ; � i implies its self-duality under Œ � ; � �, which

then implies the self-duality of the orthogonal summandL. The Hodge star operator
acts on the W -module V2

ED D
V2
�0D˚

V2
�1D

of rank 12 by interchanging the two summands on the right, and hence its submodule
of fixed points, L, has rank 6. Finally, set L0 D fx 2 LQ W xD �Dg. Certainly
L � L0, and the quadratic form Q.x/ D x ı x restricted to L0 takes values in
W DWQ\EndW .D/. Therefore .L0/_ �L_DL�L0 � .L0/_; and so equality
holds throughout.

For the fourth claim, the self-duality of L implies that L=pL is the unique
nondegenerate k-quadratic space of dimension 6, and so its Clifford algebra is
isomorphic to M8.k/. This means that the induced map

C.L=pL/Š C.L/˝W k! EndW .D/˝W k

is a homomorphism between central simple k-algebras of the same dimension, and
hence an isomorphism. It follows from Nakayama’s lemma that C.L/!EndW .D/
is an isomorphism. Every x 2 L satisfies x ı �.˛/ D �.˛/ ı x, and hence the
composition of any two elements of L is OE -linear. This implies that the even
Clifford algebra is contained in EndOE˝W .D/, and equality holds because both
are W -module direct summands of C.L/Š EndW .D/ of the same rank. �

The operator
ˆ.a^ b/D p�1.Fa/^ .F b/

makes
V2
EDQ into a slope-0 isocrystal. In terms of the inclusion

V2
EDQ �

EndW .D/Q, this operator is just

ˆ.a^ b/D F ı .a^ b/ ıF�1:
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As ˆ commutes with the Hodge star operator, it stabilizes the subspace LQ and
makes LQ into a slope-0 isocrystal. In this way, we obtain inclusions of Qp-vector
spaces

LˆQ �
�V2
EDQ

�ˆ
� End.G /Q; (2-9)

where the ˆ superscripts denote the subspaces of ˆ-fixed vectors. Endow Lˆ
Q

with
the quadratic form Q.x/D x ı x and the associated bilinear form

Œx; y�D x ıyCy ı x D�1
2
�TrE=Qp

hx; yi:

Remark 2.5. The 6-dimensional E-vector space .
V2
EDQ/

ˆ is characterized as the
space of all Rosati-fixed x 2 End.G /Q satisfying x ı �.˛/D �.˛/ ı x for all ˛ 2E.
On the other hand, the 6-dimensional Qp-vector space Lˆ

Q
depends on the choice

of !, and so does not have a similar interpretation in terms of � and � alone.

While the subspace Lˆ
Q
� End.G /Q depends on the choice of !, the following

proposition shows that its isomorphism class as a quadratic space does not. Denote
by H the hyperbolic Qp-quadratic space of dimension 2.

Proposition 2.6. For any choice of !, the quadratic space Lˆ
Q

has Hasse invariant
�1 and determinant det.Lˆ

Q
/ D �� for any nonsquare � 2 Z�p . Furthermore,

the special orthogonal group SO.Lˆ
Q
/ is quasi-split and splits over Qp2 , and the

space Lˆ
Q

with the rescaled quadratic form p�1Q is isomorphic to H2 ˚Qp2 ,
where Qp2 is endowed with its norm form x 7! NormQ

p2=Qp
.x/.

Proof. First suppose that ! is defined by (2-5). In this case the relations (2-7) show
that the vectors

x1 D e1 ^ e2Cf3 ^f4; x2 D e3 ^ e4Cf1 ^f2;

x3 D e1 ^ e3Cf4 ^f2; x4 D e4 ^ e2Cf1 ^f3;

x5 D e1 ^ e4Cf2 ^f3; x6 D e2 ^ e3Cf1 ^f4

form a basis of LQ. In this basis the operator ˆ takes the block-diagonal form

ˆD

0BBBBBBB@

0 p

p�1 0

0 1

1 0

0 1

1 0

1CCCCCCCA
ı �;
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and the matrix of Q is

.Œxi ; xj �/D

0BBBBBB@
0 �1

�1 0

0 �1

�1 0

0 �1

�1 0

1CCCCCCA :

Fix any nonsquare � 2 Z�p , and let u 2W � be a square root of �. The vectors

y1 D px1C x2; y2 D u.px1� x2/;

y3 D x3C x4; y4 D u.x3� x4/;

y5 D x5C x6; y6 D u.x5� x6/

form an orthogonal basis of Lˆ
Q

with

�
Œyi ; yj �

2

�
D

0BBBBBBB@

�p

p�

�1

�

�1

�

1CCCCCCCA
; (2-10)

from which one computes the determinant �� and Hasse invariant .�p;p�/D�1
of Lˆ

Q
. As a nondegenerate quadratic space over Qp is determined by its rank,

determinant, and Hasse invariant, the remaining claims are easily checked for this
special choice of !.

Now suppose !0 D ˛! for some ˛ 2 O�E of norm 1. Hilbert’s Theorem 90
implies that there is some � 2 O�E satisfying ���1 D ˛. Denote by x 7! x?0 the
Hodge star operator defined by !0, by L0 �

V2
ED the submodule of Hodge fixed

vectors, and by Q0 the quadratic form x ıx on L0. Using the relation x?0D ˛x?, it
is easy to see that the function x 7! �x defines an isomorphism of quadratic spaces

.LˆQ ; ��Q/Š .L
0ˆ
Q ;Q

0/:

In particular, there is a basis of L0ˆ
Q

such that the quadratic form Q0 is given by ��
times the matrix of (2-10). The Hasse invariant and determinant (modulo squares)
of the matrix in (2-10) are unchanged if the matrix is multiplied by any element of
Z�p , and so L0ˆ

Q
has the same determinant and Hasse invariant as Lˆ

Q
. �

From now on we fix, once and for all, any ! as in Lemma 2.2.
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2.3. An exceptional isomorphism. Define the unitary similitude group

GU.DQ/D fg 2 AutE˝W .DQ/ W g
��D �.g/� for some �.g/ 2W �Q g;

and set
GU0.DQ/D fg 2 GU.DQ/ W �.g/

2
D det.g/g:

The action � of GU.DQ/ on EndW .D/Q defined by g � x D g ı x ı g�1 leaves
invariant the subspace

V2
EDQ, and satisfies

g � .a^ b/D �.g/�1 � .ga/^ .gb/: (2-11)

Using this formula one checks that the action of the subgroup GU0.DQ/ commutes
with the Hodge star operator on

V2
EDQ, and so preserves the subspace LQ.

The canonical involution x 7! x0 on the Clifford algebra C.L/ is the unique
W -linear endomorphism satisfying .x1 � � � xk/0 D xk � � � x1 for all x1; : : : ; xk 2L,
and the spinor similitude group of LQ is

GSpin.LQ/D fg 2 C0.L/
�
Q W gLQg

�1
DLQ and g0g 2W �Q g:

Here, C0.L/ is the even Clifford algebra. From [Bass 1974] or [Shimura 2010] we
have the exact sequence

1 �!W �Q �! GSpin.LQ/ �! SO.LQ/ �! 1:

Proposition 2.7. There is an isomorphism

GSpin.LQ/Š GU0.DQ/ (2-12)

compatible with the action of both groups on LQ. In particular, the action of
GU0.DQ/ on LQ determines an exact sequence

1 �!W �Q �! GU0.DQ/
g 7!g�
�����! SO.LQ/ �! 1:

Proof. By Proposition 2.4 the inclusion ofL into EndW .D/ induces an isomorphism
C.L/Š EndW .D/, under which C0.L/Š EndOE˝W .D/. We will prove that the
induced isomorphism

C0.L/
�
Q Š AutE˝W .DQ/

restricts to an isomorphism (2-12). Note that every element x 2L, viewed as an
endomorphism of D, satisfies hxa; bi D �ha; xbi (indeed, this already holds for
every x 2

V2
ED). Thus hga; bi D ha; g0bi for every g 2 C0.L/ and a; b 2D.

One inclusion of (2-12) is obvious: if g 2 GU0.DQ/ then, as noted above, the
conjugation action of g on C.L/Q Š EndW .D/Q preserves the subspace LQ. The
relation hga; gbi D ha; g0gbi implies that �.g/D g0g, and so g 2 GSpin.LQ/.
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For the other inclusion, start with a g 2 GSpin.LQ/. The relation hga; gbi D
.g0g/ha; bi shows that g 2 GU.DQ/. To show that �.g/2 D det.g/, fix any x 2L
and any y 2

V2
ED for which hy; xi 6D0. As g�xDgxg�1 lies inLQ by assumption,

the Hodge star operator fixes g � x. Thus

.g �y/^ .g � x/D hg �y; g � xi!D hy; xi!;

where the second equality follows from (2-11). On the other hand, the Hodge star
operator fixes x, and so

.g �y/^ .g � x/D �.g/�2 det.g/.y ^ x/D �.g/�2 det.g/hy; xi!:

This proves that g 2 GU0.DQ/, and completes the proof of (2-12). �

The similitude character � WGU0.DQ/!W �
Q

restricts to x 7!x2 on the subgroup
W �

Q
, and so descends to the spinor norm

Q� W SO.LQ/!W �Q =.W
�

Q /
2:

Remark 2.8. The group J defined in Section 2.1 is characterized by

J D fg 2 GU.DQ/ W g ıF D F ıgg;

and we define a subgroup

J 0 D fg 2 GU0.DQ/ W g ıF D F ıgg:

The isomorphism (2-12) restricts to an isomorphism GSpin.Lˆ
Q
/Š J 0, and hence

there is an exact sequence

1 �!Q�p �! J 0 �! SO.LˆQ/ �! 1;

which identifies J der with Spin.Lˆ
Q
/. See [Knus et al. 1998, Proposition IV.15.27]

for similar exceptional isomorphisms.

2.4. Dieudonné lattices and special lattices. In this subsection we show that the
k-points of N can be identified with the set of homothety classes of certain lattices
in DQ, which we call Dieudonné lattices. We then use the inclusion

LQ � EndW .DQ/

to construct a bijection between the set of homothety classes of Dieudonné lattices
and a set of special lattices in the slope-0 isocrystal LQ. Thus the points of N .k/

are parametrized by these special lattices.
In fact, the proof of Theorem 3.9 below requires that we establish such a bijection

not just over k, but over any extension field k0 � k. Let W 0 be the Cohen ring
of k0. Thus W 0 is the unique, up to isomorphism, complete discrete valuation ring
of mixed characteristic with residue field W 0=pW 0 Š k0. The inclusion k ! k0
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induces an injective ring homomorphism W !W 0, and we set D0 DD˝W W 0

and L0 D L˝W W 0. There is a continuous ring homomorphism � W W 0 ! W 0

reducing to the Frobenius on k0, and the �-semilinear operators F and ˆ on DQ

and LQ have � -semilinear extensions to D0
Q

and L0
Q

. Similarly the symplectic and
Hermitian forms on DQ and the quadratic form on LQ have natural extensions to
D0

Q
and L0

Q
.

Note that the operators F and ˆ are surjective on DQ and LQ, respectively,
but this need not be true of their extensions to D0

Q
and L0

Q
. If D � D0

Q
is a

W 0-submodule then so is its preimage F�1.D/, but its image F.D/ need not be.
Denote by F�.D/ the W 0-submodule generated by F.D/. Similarly, denote by
ˆ�.L/ the W 0-submodule generated by ˆ.L/ for a W 0-submodule L�L0

Q
.

For any W 0-lattice D �D0
Q

, set D1 D F�1.pD/.

Definition 2.9. A Dieudonné lattice in D0
Q

is an OE -stable W 0-lattice D �D0
Q

such that

(1) pD �D1 �D,

(2) D_ D cD for some c 2Q�p ,

(3) D D F�.F�1.D//.

Here, the superscript _ denotes the dual lattice with respect to the symplectic form
�, or, equivalently, with respect to the Hermitian form h � ; � i.

The volume of a lattice D �D0
Q

is the W 0-submodule

Vol.D/D
V8
D �

V8
D0Q;

By considering the slopes of the isocrystal DQ, one can show that Vol.F�.D//D
p4 �Vol.D/. However, taking preimages of lattices may change volumes in unex-
pected ways: a lattice D �D0

Q
satisfies

Vol.F�1.D//� p�4 �Vol.D/;

but equality holds if and only if F�.F�1.D// D D. In particular, the condition
D D F�.F

�1.D// in Definition 2.9 is equivalent to Vol.D1/D p4 Vol.D/, and so
one could replace (3) in the definition of a Dieudonné lattice by

(30) dimk0.D1=pD/D 4.

The volume of a lattice in L0
Q

is defined in the analogous way, but in this case
Vol.ˆ�.L//D Vol.L/ for any lattice L�L0

Q
.

Proposition 2.10. Suppose D is a Dieudonné lattice. The OE -stable k0-subspace
D1=pD � D=pD is Lagrangian with respect to the nondegenerate symplectic
form c�, and every ˛ 2OE acts on D=D1 with characteristic polynomial

det.T � �.˛/ID=D1/D .T � 0.˛//2.T � 1.˛//2: (2-13)
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Proof. For any a; b 2D1 we have

c�.a; b/� D p�1c�.Fa; F b/ 2 p�.cD;D/D pW:

This shows that D1=pD is isotropic. It is maximal isotropic, as D1=pD has
dimension 4. Lemma 2.1 implies thatV4

F�.�0M/D p2 �
V4
�1M;

as submodules of
V4
�1D

0
Q

, for any lattice M �D0
Q

. Applying this with M DD1
shows that �1D=�1D1 has dimension 2. The same argument shows that �0D=�0D1
has dimension 2, and (2-13) follows. �

Corollary 2.11. There is a bijection M .k0/Š fDieudonné lattices inD0
Q
g.

Proof. If k D k0 then this is immediate from the equivalence of categories between
Dieudonné modules and p-divisible groups: for any point .G; �; �; %/ 2 M .k/

we let D be the Dieudonné module of G, viewed as a lattice in DQ using the
isomorphism of isocrystals % WDQ ŠDQ. For general k0 the argument is the same,
using Zink’s theory of windows [2001] in place of Dieudonné modules. �

Theorem 2.12. Given a Dieudonné lattice D, set

LD fx 2L0Q W xD1 �D1g and L] D fx 2L0Q W xD �Dg:

The rule D 7! .L;L]/ defines a bijection from pZnfDieudonné lattices inD0
Q
g to

the set of all pairs of self-dual lattices .L;L]/ in L0
Q

such that

(1) ˆ�.L/D L],

(2) .LCL]/=L has length 1.

Moreover, LCL] D fx 2L0
Q
W xD1 �Dg.

The proof of Theorem 2.12 will be given in the next subsection.

Definition 2.13. A special lattice is a self-dual W 0-lattice L�L0
Q

such that

length
�
.LCˆ�.L//=L

�
D 1:

Obviously any pair of self-dual lattices .L;L]/ appearing in Theorem 2.12 is
determined by its first element, and in fact the function L 7! .L;ˆ�.L// establishes
a bijection between the set of special lattices and the set of pairs of self-dual lattices
.L;L]/ such thatˆ�.L/DL] and .LCL]/=L has length 1. The only thing to check
is the self-duality of ˆ�.L/ for a special lattice L. The inclusion ˆ�.L/�ˆ�.L/_

is clear from the self-duality of L and the relation Œˆx;ˆy� D Œx; y�� . Equality
holds because Vol.ˆ�.L//DVol.L/ and L is self-dual. The following corollary is
now simply a restatement of Theorem 2.12:
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Corollary 2.14. The rule D 7! fx 2L0
Q
W xD1 �D1g defines a bijection

pZ
nfDieudonné lattices inD0

Q
g Š fspecial lattices in L0Qg:

2.5. Proof of Theorem 2.12. In this subsection we prove Theorem 2.12. Say that
a W 0-lattice D �D0

Q
is nearly self-dual if D_ D cD for some c 2Q�p .

Lemma 2.15. The construction D 7! fx 2L0
Q
W xD �Dg establishes a bijection

pZ
nfnearly self-dual lattices D �D0

Q
g Š fself-dual lattices L] �L0

Q
g:

Proof. Start with a nearly self-dual latticeD, and setL]Dfx 2L0
Q
W xD�Dg. The

condition D_ D cD implies that there is some g 2 GU0.D0
Q
/ such that D D gD0,

and hence L]D g �L0. As g� respects the quadratic form Q, the self-duality of L0

implies the self-duality of L]. Conversely, if we start with a self-dual L] � L0
Q

,
the Clifford algebra C.L]/ is a maximal order in C.L0

Q
/Š EndW 0.D0Q/, and so

there is, up to scaling, a unique lattice D �D0
Q

satisfying

C.L]/D EndW .D/: (2-14)

Choose any h2SO.L0
Q
/ such thatL]DhL0, and lift h to an element g2GU0.D0

Q
/.

By rescaling g we may arrange to haveDDgD0, and the self-duality ofD0 implies
D_ D �.g/�1D. �
Lemma 2.16. Suppose D �D0

Q
is nearly self-dual, L] �L0

Q
is self-dual, and L]

and D are related by L] D fx 2 L0
Q
W xD � Dg. If x 2 L]=pL] is any nonzero

isotropic vector, viewed as an endomorphism of D=pD using (2-14), the kernel
of x is an OE -stable Lagrangian subspace with respect to c�. Conversely, if
D1 �D=pD is an OE -stable Lagrangian subspace then fx 2L]=pL] W xD1 D 0g

is an isotropic line in L]=pL]. This construction establishes a bijection

fisotropic lines in L]=pL]g Š fOE -stable Lagrangian subspaces in D=pDg:

If L1 � L
]=pL] corresponds to D1 �D=pD under this bijection, then

L?1 D fx 2 L
]=pL] W x �D1 � D1g: (2-15)

Proof. Abbreviate L D L]=pL] and D DD=pD, so that D is the unique simple
left module over the Clifford algebra C.L /ŠM8.k

0/. In particular C.L /Š D8

as left C.L /-modules. If x 2 L is any nonzero isotropic vector, the kernel and
image of left multiplication by x on C.L / are equal, and hence the kernel and
image of x 2 End.D/ are also equal. In particular ker.x/ has dimension 4. The
relation ˛x D x˛ for all ˛ 2OE shows that ker.x/ is OE -stable, and the relation
.c�/.xs; t/D .c�/.s; xt/ implies that ker.x/D xD is totally isotropic.

If x; y 2 L are nonzero isotropic vectors with ker.x/ D ker.y/ then, from
the discussion above, ker.x/ D yD and ker.y/ D xD . In particular Œx; y� D
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x ıyCy ıxD 0. If x and y are not colinear then (after possibly extending scalars)
we can find a z 2L such that k0xCk0yCk0z is a maximal isotropic subspace of L .
The left ideal C.L /xyz has dimension 8 as a k-vector space, and so we must have
D Š C.L /xyz as left C.L /-modules. But it is easy to see by direct calculation
that the kernels of left multiplication by x and y on C.L /xyz are different. This
contradiction shows that x and y are colinear, and so x 7! ker.x/ establishes an
injection L1 7! D1 from the set of isotropic lines in L to the set of OE -stable
Lagrangian subspaces in D .

Endow D with the OE˝Zp
k0-valued Hermitian form induced by ch � ; � i. Exactly

as in Proposition 2.7, there is an isomorphism of k0-groups GSpin.L /Š GU0.D/:
This isomorphism is compatible, in the obvious sense, with the map L1 7!D1, and
so the image of the map is stable under the action of GU0.D/. But GU0.D/ acts
transitively on the set of OE -stable Lagrangian subspaces in D , proving surjectivity.

Finally, we verify (2-15). If L1 corresponds to D1 under our bijection, then
D1 D ker.y/D yD for any nonzero y 2L1, and an elementary argument (using
k0\yC.L /D 0 for the middle() shows that

x ? y () xyCyx D 0 () xyC.L /� yC.L / () xyD � yD1: �

Proof of Theorem 2.12. Suppose first that D is a Dieudonné lattice. Using the
relationsDDF�.F�1.D// and hFv; FwiDphv;wi� , one can show that the near
self-duality ofD implies thatD1DF�1.pD/ is also nearly self-dual. Lemma 2.15
then implies that the lattices

LD fx 2L0Q W xD1 �D1g and L] D fx 2L0Q W xD �Dg (2-16)

are self-dual. The relationˆ.x/ıF DF ıx for all x 2L0
Q

implies thatˆ�.L/�L],
and equality must hold as

Vol.ˆ�.L//D Vol.L/D Vol.L]/:

By Proposition 2.10 the k-subspaceD1=pD�D=pD is OE -stable and Lagrangian,
and so it follows from Lemma 2.16 that

L1 D fx 2 L
]=pL] W x.D1=pD/D 0g

is an isotropic line in L]=pL] with orthogonal complement

L?1 D fx 2 L
]=pL] W x.D1=pD/�D1=pDg:

On the other hand, L\L] D fx 2 L] W xD1 �D1g, and so

.LCL]/=LŠ L]=.L\L]/Š .L]=pL]/=L?1

has length 1.
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Now suppose we start with a pair of self-dual lattices .L;L]/ such that ˆ�.L/D
L] and .LCL]/=L has length 1. By Lemma 2.15 there are unique (up to scaling)
nearly self-dual lattices D1 and D in D0

Q
satisfying (2-16). Set L0 D L\L], so

that L]=L0 has length 1, and pick any nonzero y 2 L]=L0. The Clifford algebra
C.L]/ satisfies

C.L]/D C.L0/CyC.L0/;

where C.L0/� C.L]/ is the W -subalgebra generated by L0, and so

C.L]/D1 D C.L0/D1CyC.L0/D1 DD1CyD1:

This implies C.L]/pD1 � D1 � C.L]/D1: The self-duality of L] implies that
C.L]/ is a maximal order in C.L0

Q
/DEndW 0.D0Q/; and so we must have C.L]/D

EndW 0.D/. As the lattice C.L]/D1 is obviously stabilized by C.L]/, it must have
the form C.L]/D1 D p

kD for some integer k. Thus after rescaling D1 we may
assume that C.L]/D1 DD and

pD �D1 �D:

The relation ˆ.x/ ıF D F ı x implies

C.L]/F�.D1/D C.ˆ�.L//F�.D1/D F�.C.L/D1/D F�.D1/;

and so F�.D1/D pkD for some k. Combining

p8k �Vol.D/D Vol.F�.D1//D p4 �Vol.D1/

and
p8 �Vol.D/� Vol.D1/� Vol.D/

shows that in factF�.D1/DpD. The relationsD1DF�1.pD/ andF�.F�1.D//D
D follow easily from this, proving that D is a Dieudonné lattice.

It only remains to prove that LCL] D fx 2 L0
Q
W xD1 � Dg. The inclusion

LCL] � fx 2L0
Q
W xD1 �Dg is obvious from (2-16). On the other hand, each

side contains L] with quotient of length 1 (for the right-hand side this follows from
Proposition 2.10 and Lemma 2.16). Thus equality holds. �

2.6. Vertex lattices and the Bruhat–Tits stratification. If we start with a k-point
.G; �; i; %/ 2 M .k/ and let D be the covariant Dieudonné module of G, then
%.D/�DQ is a Dieudonné lattice. This construction is simply the k0 D k case of
the bijection

M .k/Š fDieudonné lattices in DQg

of Corollary 2.11. Combining this with Corollary 2.14 yields a bijection

N .k/Š fspecial lattices in LQg (2-17)
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defined by

.G; �; i; %/ 7! fx 2LQ W x%.D1/� %.D1/g;

where D1 D VD. Moreover, Theorem 2.12 implies that the special lattice

LD fx 2LQ W x%.D1/� %.D1/g

satisfies

ˆ.L/D fx 2LQ W x%.D/� %.D/g:

The next step is to show that the special lattices come in natural families, indexed
by certain vertex lattices in the Qp-quadratic space Lˆ

Q
. Using this and the bijection

(2-17), we will then express the reduced scheme underlying N as a union of closed
subvarieties indexed by vertex lattices.

Definition 2.17. A vertex lattice is a Zp-lattice ƒ�Lˆ
Q

such that

pƒ�ƒ_ �ƒ:

The type of ƒ is tƒ D dimk.ƒ=ƒ_/.

Lemma 2.18. The type of a vertex lattice is either 2, 4, or 6.

Proof. Let ƒ be a vertex lattice. Proposition 2.6 implies that ordp.det.ƒ// is even,
from which it follows that the type of ƒ is also even. If ƒ has type 0 then ƒ
is self-dual, and hence admits a basis such that the matrix of Q is diagonal with
diagonal entries in Z�p . But this implies thatLˆ

Q
has Hasse invariant 1, contradicting

Proposition 2.6. �

The proof of the following proposition is identical to that of Proposition 4.1 of
[Rapoport et al. 2014]. See also Lemma 2.1 of [Vollaard 2010].

Proposition 2.19. Let L�LQ be a special lattice, and define

L.r/ D LCˆ.L/C � � �Cˆr.L/:

There is an integer d 2 f1; 2; 3g such that

LD L.0/ ¨ L.1/ ¨ � � �¨ L.d/ D L.dC1/:

For each L.r/ ¨ L.rC1/ with 0 � r < d , the quotient L.rC1/=L.r/ is annihilated
by p and satisfies dimk.L.rC1/=L.r//D 1. Moreover,

ƒL D fx 2 L
.d/
W ˆ.x/D xg

is a vertex lattice of type 2d and satisfies ƒ_L D fx 2 L W ˆ.x/D xg:
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By (2-9), each vertex lattice ƒ determines a collection of quasi-endomorphisms
ƒ_�End.G /Q: Define a closed formal subscheme zMƒ�M as the locus of points
.G; �; �; %/ such that

%�1ƒ_%D f%�1 ı x ı % W x 2ƒ_g � End.G/:

In other words, the locus where the quasi-endomorphisms %�1ƒ_% ofG are actually
integral. Set zN ƒ D p

Zn zMƒ; and let Nƒ be the reduced k-scheme underlying
zN ƒ. The bijection (2-17) identifies

Nƒ.k/D fspecial lattices L such that ƒ_ �ˆ.L/g

D fspecial lattices L such that ƒ_ � Lg

D fspecial lattices L such that ƒL �ƒg: (2-18)

The same proof used in [Rapoport et al. 2014, Proposition 4.3] shows that

Nƒ1
\Nƒ2

D

�
Nƒ1\ƒ2

if ƒ1\ƒ2 is a vertex lattice;
∅ otherwise;

where the left-hand side is understood to mean the reduced subscheme underlying
the scheme-theoretic intersection.

Proposition 2.20. Each k-scheme Nƒ is projective.

Proof. Let Rƒ be the W -subalgebra of EndW .DQ/ generated by ƒ_, and let zRƒ be
a maximal order in EndW .DQ/ containing Rƒ. It follows from the isomorphism
C.LQ/ Š EndW .DQ/ of Proposition 2.4 that Rƒ is a W -lattice in EndW .DQ/,
and hence zRƒ=Rƒ is killed by some power of p, say pM . Up to scaling by powers
of p, there is a unique W -lattice zD �DQ such that zRƒ zD D zD.

Now suppose .G; �; �; %/ is a k-point of Nƒ. The quasi-isogeny % determines
(up to scaling) a W -lattice D � DQ satisfying RƒD D D. It follows from
zRƒD D zD that

pM zD �D � zD;

after possibly rescaling D, and so there are integers a < b, independent of the point
.G; �; �; %/, such that paD �D � pbD. It follows from this bound and [Rapoport
and Zink 1996, Corollary 2.29] that Nƒ is a closed subscheme of a projective
scheme, hence is projective. �

An obvious corollary of Proposition 2.19 is that every special lattice L contains
some ƒ_ (take ƒDƒL), and hence

Nred D
[
ƒ

Nƒ;
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where the subscript red indicates the underlying reduced scheme. This union is not
disjoint, as N ˙

ƒ1
�N ˙

ƒ2
whenever ƒ1 �ƒ2. Define

N ı
ƒ DNƒ n

[
ƒ0¨ƒ

Nƒ0 ;

so that (2-17) identifies

N ı
ƒ.k/D fspecial lattices L such that ƒL Dƒg:

It follows easily that Nƒ D
U
ƒ0�ƒN ı

ƒ0 ; and that

Nred D
]
ƒ

N ı
ƒ : (2-19)

Abbreviate N ˙
ƒ DNƒ\N ˙ and N ˙ı

ƒ DN ı
ƒ\N ˙. By analogy with [Rapoport

et al. 2014; Vollaard 2010; Vollaard and Wedhorn 2011], we call the decomposition
(2-19) the Bruhat–Tits stratification of Nred. This terminology should be taken with
a grain of salt: unlike the situation in those references, the strata in (2-19) are not
in bijection with the vertices in the Bruhat–Tits building of the group J der. See
Sections 2.7 and 3.6 below.

Remark 2.21. One could also define an E-vertex lattice to be an OE -lattice ƒE �
.
V2
EDQ/

ˆ such that pƒE �ƒ_E �ƒE , where the dual lattice is taken with respect
to h � ; � i. The rule ƒ 7! OE �ƒ establishes a bijection between vertex lattices
and E-vertex lattices, with inverse ƒE 7! fx 2ƒE W x? D xg: The action (2-11)
of GU.DQ/ on

V2
EDQ restricts to an action of J on .

V2
EDQ/

ˆ, and induces an
action of J on the set of all E-vertex lattices. In particular, J acts on the set of
all vertex lattices. This action is compatible with the action of J on N defined in
Section 2.1, in the obvious sense: gNƒ DNg�ƒ. The restriction of this action to
the subgroup J 0 of Remark 2.8 factors through the surjection J 0! SO.Lˆ

Q
/, and

agrees with the obvious action of SO.Lˆ
Q
/ on the set of vertex lattices.

2.7. The Bruhat–Tits building. In [Garrett 1997, § 20.3] one finds a description
of the Bruhat–Tits building of SO.Lˆ

Q
/ in terms of lattices. See also [Tits 1979,

§1.16]. We will translate this description into the language of our vertex lattices.
Consider the set Vadm of all vertex lattices ƒ of type 2 or 6. We call such vertex
lattices admissible, and define an adjacency relation � in Vadm as follows: distinct
admissible vertex lattices are adjacent (ƒ�ƒ0) if either:

(1) ƒ0 �ƒ or ƒ0 �ƒ.

(2) ƒ and ƒ0 are both type-6 and

dimFp
.ƒ=ƒ\ƒ0/D dimFp

.ƒ0=ƒ\ƒ0/D 1;

dimFp
.ƒCƒ0=ƒ/D dimFp

.ƒCƒ0=ƒ0/D 1:



On the supersingular locus of the GU(2,2) Shimura variety 1681

If ƒ and ƒ0 are of type 6 and are adjacent, then ƒ\ƒ0 is a vertex lattice of type 4
(so is not admissible). We construct an abstract simplicial complex with set of
vertices Vadm as follows: An m-simplex (0�m� 2) of Vadm is a subset of mC 1
admissible vertex lattices ƒ0; ƒ1; : : : ; ƒm which are mutually adjacent. The group
SO.Lˆ

Q
/ acts simplicially on Vadm by g 2 SO.Lˆ

Q
/ taking ƒ to g �ƒ.

Now consider the Bruhat–Tits building BT of SO.Lˆ
Q
/. We will use the same

symbol BT to denote the underlying simplicial complex.

Proposition 2.22. There is an SO.Lˆ
Q
/-equivariant simplicial bijection BT ŠVadm.

Furthermore, every vertex lattice of type 4 is contained in precisely two vertex
lattices of type 6, and is equal to their intersection.

Proof. Define a new quadratic space .V0;Q0/D .LˆQ ; p
�1Q/, and note that, by

Proposition 2.6, V0 Š H2˚Qp2 . The rule ƒ 7! pƒ defines a bijection from the
set of vertex lattices in Lˆ

Q
to the set of lattices L� V0 satisfying

L� L� � p�1L:

Here L� is the dual lattice of L with respect to the quadratic form Q0. The
isomorphism BT Š Vadm now follows from the description and properties of the
affine building of SO.Lˆ

Q
/Š SO.V0/ found in [Garrett 1997, Section 20.3].

If ƒ is a type-4 vertex lattice, the lattice LD pƒ in V0 satisfies dim.L�=L/D 2.
Moreover, the k-quadratic space L�=L is a hyperbolic plane (choose a basis of
L for which the bilinear form has diagonal matrix, and use the fact that V0 has
Hasse invariant 1), and so contains exactly two isotropic lines. Those lines have
the form L1=L and L2=L, and p�1L1 and p�1L2 are the unique type-6 vertex
lattices containing ƒ. �

We can also construct a simplicial complex V with vertices the set of all vertex
lattices as follows (compare to [Rapoport et al. 2014, §3]). We call two distinct
vertex lattices ƒ and ƒ0 neighbors if ƒ�ƒ0 or ƒ0 �ƒ. An m-simplex (m � 2)
in V is formed by vertex lattices ƒ0; ƒ1; : : : ; ƒm such that any two members of
this set are neighbors. The vertex lattices of type 4 are in bijection with pairs of
adjacent type-6 vertex lattices. Hence a vertex lattice of type 4 corresponds to
an edge in the Bruhat–Tits building between type-6 vertex lattices. From basic
properties of the Bruhat–Tits building, we deduce the following:

Corollary 2.23. The group SO.Lˆ
Q
/ acts transitively on the set of vertex lattices of

a given type, and any two vertex lattices are connected by a sequence of adjacent
vertices in V . In particular, the group J , and even the subgroup J 0, act transitively
on the set of vertex lattices of a given type (under the action of Remark 2.21).
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3. Deligne–Lusztig varieties and the Bruhat–Tits strata

In this section we show that for any vertex lattice ƒ, the varieties

Nƒ DN C

ƒ ]N �
ƒ and N ı

ƒ DN ıC

ƒ ]N ı�
ƒ

of Section 2.6 can be identified with varieties over k defined purely in terms of the
linear algebra of the k-quadratic space �D .ƒ=ƒ_/˝Fp

k.

3.1. Deligne–Lusztig varieties. Let us recall the general definition of Deligne–
Lusztig varieties. Suppose that G0 is a connected reductive group over the finite
field Fp, and set G D G0 ˝Fp

k. We will also use the symbol G to denote the
abstract group of k-valued points of G0. Denote by ˆ W G ! G the Frobenius
morphism. By Lang’s theorem, G0 is quasi-split, and so we may choose a maximal
torus T �G and a Borel subgroup containing T , both defined over Fp. The Weyl
group W that corresponds to the pair .T; B/ is acted upon by ˆ, and the group W
with its ˆ-action does not depend on our choices. In fact, in [Deligne and Lusztig
1976] a Weyl groupW withˆ-action is defined as a projective limit over all choices
of pairs .T; B/, without having to assume that these pairs are ˆ-stable.

Let �� D f˛1; : : : ; ˛ng be the set of simple roots corresponding to the pair
.T; B/, and consider the corresponding simple reflections si D s˛i

in the Weyl
group W . For I ���, let WI be the subgroup of W generated by fsi W i 2 I g, and
consider the corresponding parabolic subgroup PI D BWIB . The quotient G=PI
parametrizes parabolic subgroups of G of type I . Suppose J � �� is another
subset with corresponding standard parabolic PJ . Since

G D
]

w2WI nW=WJ

PIwPJ ;

we have a bijection
PInG=PJ ŠWInW=WJ :

Composing this with G=PI �G=PJ ! PInG=PJ given by .g1; g2/ 7! g�11 g2
defines the relative position invariant

inv WG=PI �G=PJ !WInW=WJ :

The Frobenius ˆ WG!G induces ˆ WG=PI !G=Pˆ.I/.

Definition 3.1. For w 2WInW=Wˆ.I/, the Deligne–Lusztig variety XPI
.w/ is the

locally closed reduced subscheme of G=PI with k-points

XPI
.w/D fgPI 2G=PI W inv.g;ˆ.g//D wg:

The variety XPI
.w/ is actually defined over the unique extension of degree r

of Fp in k, where r is the smallest positive integer for which ˆr.I /D I .
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Proposition 3.2. The Deligne–Lusztig variety XPI
.w/ is smooth of pure dimension

dimXPI
.w/D `.w/C dim.G=PI\ˆ.I//� dim.G=PI /:

If I Dˆ.I / then dimXPI
.w/D `I .w/� `.wI /, where wI is the longest element

in WI and `I .w/ is the maximal length of an element in WIwWI . Taking I D ∅,
the variety XB.w/ is irreducible of dimension dimXB.w/D `.w/.

Proof. This is standard. See, e.g., [Vollaard and Wedhorn 2011, Section 3.4]. �

Remark 3.3. If w D 1, then XPI
.1/ can be identified with the intersection of the

image of the closed immersion G=PI\ˆ.I/ ,!G=PI �G=Pˆ.I/ with the graph of
the Frobenius ˆ WG=PI !G=Pˆ.I/. In particular XPI

.1/ is projective. If[
r�0

ˆr.I /D��

then XPI
.1/ is also irreducible, by [Bonnafé and Rouquier 2006].

3.2. An even orthogonal group. We now consider the case that G0 is a nonsplit
special orthogonal group in an even number of variables. Let �0 be an Fp-vector
space of dimension 2d equipped with a nondegenerate nonsplit quadratic form.
There is a basis fe1; : : : ; ed ; f1; : : : ; fd g of �D�0˝Fp

k such that he1; : : : ; ed i
and hf1; : : : ; fd i are isotropic, Œei ; fj �D ıij , and the Frobenius

ˆD id˝ �

acting on � fixes ei and fi for 1� i � d � 1, and interchanges ed with fd . Note
that � contains no ˆ-invariant Lagrangian subspaces. Abbreviate G0 D SO.�0/
and G D SO.�/.

Denote by OGr.r/ the scheme whose functor of points assigns to a k-scheme S
the set of all totally isotropic local OS -module direct summands L � �˝k OS
of rank r . In particular, OGr.d/ is the moduli space of Lagrangian subspaces
of �. Denote by OGr.d � 1; d/ the scheme whose functor of points assigns to a k-
scheme S the set of all flags of totally isotropic local OS -module direct summands
Ld�1 � Ld ��˝k OS of rank d � 1 and d , respectively. The following lemma
is elementary:

Lemma 3.4. For each totally isotropic local OS -module direct summand

Ld�1 ��˝k OS

of rank d � 1, there are exactly two totally isotropic local OS -module direct sum-
mands of rank d containing Ld�1.

In other words, the forgetful map OGr.d � 1; d/! OGr.d � 1/ is a two-to-one
cover. In fact, the Grassmannian OGr.d � 1; d/ has two connected components,
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which are interchanged by the action of any orthogonal transformation of determi-
nant �1. Each of the two components maps isomorphically to OGr.d � 1/ under
the forgetful map. Label the two components as

OGr.d � 1; d/D OGrC.d � 1; d/]OGr�.d � 1; d/

in such a way that the flags

he1; : : : ; ed�1i � he1; : : : ; ed�1; ed i (3-1)

and
he1; : : : ; ed�1i � he1; : : : ; ed�1; fd i (3-2)

define k-points of OGrC.d � 1; d/ and OGr�.d � 1; d/, respectively.
Denote by X � OGr.d/ the reduced closed subscheme with k-points

X D fL 2 OGr.d/ W dim.LCˆ.L//D d C 1g:

There is a closed immersion X ! OGr.d � 1; d/ sending

L 7! L\ˆ.L/� L;

and the open and closed subvariety X ˙DX \OGr˙.d �1; d/ of X is identified
with

X ˙ D fLd�1 � Ld 2 OGr˙.d � 1; d/ W Ld�1 �ˆ.Ld /g: (3-3)

Remark 3.5. Although we have defined OGr.d �1; d/ and X as k-schemes, they
both have natural Fp-structures. The Frobenius morphism from OGr.d � 1; d/
to itself interchanges the flags (3-1) and (3-2), and hence interchanges the two
connected components. It follows that X ˙ Š ��X �, and that the individual
components X C and X � have natural Fp2-structures.

Our choice of basis of � determines a maximal ˆ-stable torus T �G. Set

F˙i D he1; : : : ; ei i for 1� i � d � 1;

FC
d
D he1; : : : ; ed�1; ed i;

F�d D he1; : : : ; ed�1; fd i:

(3-4)

This gives two “standard” isotropic flags FC� and F�� in� satisfying F˙� Dˆ.F�� /:
These flags have the same stabilizer B �G, which is a ˆ-stable Borel subgroup
containing T . The corresponding set of simple reflections in the Weyl group is

fs1; : : : ; sd�2; t
C; t�g

where:

� si interchanges ei with eiC1, fi with fiC1, and fixes the other basis elements.
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� tC interchanges ed�1 with ed , fd�1 with fd , and fixes the other basis ele-
ments.

� t� interchanges ed�1 with fd , fd�1 with ed , and fixes the other basis elements.

Notice that ˆ.si /D si and ˆ.t˙/D t�, and so the products

w˙ D t�sd�2 � � � s2s1

are Coxeter elements: products of exactly one representative from each ˆ-orbit in
the set of simple reflections above. More generally, define w0 D 1, w˙1 D t

�, and

w˙r D t
�
� sd�2 � � � sd�r

for 2� r � d � 1. In particular, w˙
d�1
D w˙. Define parabolic subgroups

B D Pd�1 � Pd�2 � � � � � P0 � P
˙

ofG as follows: set Pd�1DPd�2DB , and for 0� r �d�2 let Pr be the parabolic
corresponding to the set fs1; : : : ; sd�.rC2/g. DefineP˙ to be the maximal parabolic
corresponding to fs1; : : : ; sd�2; t˙g. One can easily check that P0 is the stabilizer
in G of F˙

d�1
, and so

G=P0 Š OGr.d � 1/: (3-5)

More generally,Pr is the stabilizer of the standard isotropic flag F˙
d�r�1

�� � ��F˙
d

.
Similarly, P˙ is the stabilizer of the Lagrangian subspace F˙

d
, and so

G=P˙ Š OGr.d/: (3-6)

Proposition 3.6. The isomorphism (3-6) identifies X ˙ with the Deligne–Lusztig
variety XP˙.1/. In particular, X ˙ is projective, irreducible, and smooth of
dimension d � 1.

Proof. Note that P0 D PC \ P�, and that the Frobenius ˆ interchanges PC

and P�. The two projections G=P0!G=P˙ combine to give closed immersions

iC WG=P0!G=PC �G=P� and i� WG=P0!G=P� �G=PC;

while the Frobenius induces morphisms ˆ W G=PC! G=P� and ˆ W G=P�!
G=PC with graphs �Cˆ �G=P

C�G=P� and ��ˆ �G=P
��G=PC, respectively.

The isomorphisms (3-5) and (3-6) identify the intersection of �˙ˆ and the image
of i˙ with the set of flags Ld�1�Ld 2OGr˙.d �1; d/ such that Ld�1�ˆ.Ld /.
By (3-3), this intersection is isomorphic to X C. All of the claims now follow from
Remark 3.3, together with the dimension formula

dimXP˙.1/D dim.G=P0/� dim.G=P˙/D d � 1

of Proposition 3.2. �
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It is also useful to view X ˙ as the closure of a Deligne–Lusztig variety in the
flag variety G=P0.

Lemma 3.7. The isomorphism OGr˙.d � 1; d/ Š OGr.d � 1/ Š G=P0 identi-
fies X ˙ with the closure in G=P0 of the Deligne–Lusztig variety

XP0
.t�/D fg 2G=P0 W inv.g;ˆ.g//D t�g:

Proof. Using (3-3), we may characterize the k-points of X ˙ by

X ˙ D
˚
Ld�1 � Ld 2 Gr˙.d � 1; d/ W

ˆ.Ld�1/D Ld�1 or Ld�1Cˆ.Ld�1/Dˆ.Ld /
	
:

Recalling the standard isotropic flags of (3-4), the rule g 7! gF˙
d�1
� gF˙

d
defines

an isomorphism

XP0
.1/Š fLd�1 � Ld 2 Gr˙.d � 1; d/ W Ld�1 Dˆ.Ld�1/g;

while the same rule defines an isomorphism

XP0
.t�/Š fLd�1 � Ld 2 Gr˙.d � 1; d/ W Ld�1Cˆ.Ld�1/Dˆ.Ld /g:

Thus X ˙ is the disjoint union of XP0
.1/ and XP0

.t�/. Elementary properties of
the Bruhat order (see Section 8.5 of [Springer 1998], for example) imply that

XP0
.t�/DXP0

.1/]XP0
.t�/;

completing the proof. �

The following proof is essentially the same as [Rapoport et al. 2014, Proposi-
tion 5.5].

Proposition 3.8. There is a stratification

X ˙ D

d�1]
rD0

XPr
.w˙r /

of X ˙ into a disjoint union of locally closed subvarieties. The stratum XPr
.w˙r /

is smooth of pure dimension r , and has closure

XPr
.w˙r /DXP0

.w˙0 /] � � � ]XPr
.w˙r /:

The highest-dimensional stratum XPd�1
.w˙
d�1

/ D XB.w
˙/ is irreducible, open,

and dense.

Proof. Suppose L is a k-point of X ˙ � Gr.d/, and define

L.i/ D L\ˆ.L/\ � � � \ˆi .L/:
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An inductive argument, using

L.i/\ˆ.L.i//D L.i�1/\ˆ.L.i�1//\ˆ2.L.i�1//;

shows that L.iC1/ has codimension at most 1 in Li . Denote by X ˙r �X ˙ the
reduced closed subscheme whose k-valued points are those L satisfying L.rC2/ D
L.rC1/. The complement X ˙r nX ˙r�1 is the locally closed subvariety of X ˙

consisting of those L for which

L.rC2/ D L.rC1/ ¨ � � �¨ L.1/ ¨ L.0/ D L: (3-7)

Recalling that the parabolic subgroupPr is the stabilizer of the standard isotropic flag
F˙
d�r�1

� � � � �F˙
d

of length rC 2, we obtain a morphism X ˙r nX ˙r�1!G=Pr
by sending L to the flag (3-7). By similar reasoning as [Rapoport et al. 2014,
Proposition 5.5], this defines an isomorphism X ˙r nX

˙
r�1ŠXPr

.w˙r / with inverse
g 7! gF˙

d
. All claims now follow easily. �

3.3. A few special cases. We continue to let G0 D SO.�0/, where �0 is the
nonsplit quadratic space over Fp of dimension 2d ,�D�0˝k, andGDSO.�/. In
the applications we will only need to consider d � 3, and in these cases the structure
of the k-variety X (with its Fp2-structure of Remark 3.5) can be made more explicit.

(a) First suppose d D 1. In this case X ˙ is a single point, defined over Fp2 .

(b) Now suppose d D 2. In this case P1 D P0 D B , and the stratification of
Proposition 3.8 is

X ˙ DXB.1/]XB.t
�/;

where XB.1/ is a 0-dimensional closed subvariety and the open stratum XB.t
�/

has dimension 1. The Dynkin diagram identity D2 D A1 �A1 corresponds to an
exceptional isomorphism Spin.�/Š SL2 �SL2. Indeed, the even Clifford algebra
C0.�0/ is isomorphic to M2.Fp2/, and hence C0.�/ Š M2.k/ �M2.k/. This
isomorphism restricts to an isomorphism of algebraic groups

GSpin.�/Š f.x; y/ 2 GL2 �GL2 W det.x/D det.y/g

over k, which in turn determines an isomorphism of k-varieties G=P0 Š P1 �P1

in such a way that the Frobenius morphism on the left corresponds to .x; y/ 7!
.ˆ.y/;ˆ.x// on the right. The subvarieties X ˙ �G=P0 are identified with

X C D f.ˆ.x/; x/ W x 2 P1g;

X � D f.x;ˆ.x// W x 2 P1g:

Therefore, both X C and X � are isomorphic (over Fp2) to P1. The closed stratum
XB.1/ corresponds to the Fp2-rational points of P1.



1688 Benjamin Howard and Georgios Pappas

(c) Finally, suppose d D 3. In this case

X ˙ DXP0
.1/]XB.t

�/]XB.t
�s1/: (3-8)

The open stratum XB.t
�s1/ has dimension 2, the stratum XB.t

�/ is locally closed
of dimension 1, and the closed stratum XP0

.1/ has dimension 0. To continue,
we will use the Dynkin diagram isomorphism D3 D A3, corresponding to an
isomorphism between the adjoint forms of G and a unitary group in 4 variables, as
in Proposition 2.7 and Remark 2.8.

Let V0 be the 4-dimensional Fp2-vector space with basis e1; e2; e3; e4, endowed
with the split Fp2=Fp-Hermitian form defined by hei ; e5�j i D ıij . Denote by U0
the unitary group of V0, an algebraic group over Fp , so that U D U0 �Fp

k acts on
V D V0˝Fp

k. Recall the isomorphism Fp2 ˝Fp
k ' k˚ k defined by x˝ a 7!

.xa; xpa/, and denote by �0 and �1 the idempotents that correspond to .1; 0/ and

.0; 1/, so that
�0V Š V0˝F

p2
k: (3-9)

The action of U on �0V defines an isomorphism U ŠGL4. The diagonal torus and
the standard Borel subgroup of upper-triangular matrices in GL4 give a maximal
torus and a Borel subgroup of U , both defined over Fp . Given r; s� 0 with rCsD 4,
the pair .r; s/, viewed as an ordered partition of 4, defines a parabolic subgroup
P.r;s/ containing B with Levi component GLr �GLs . The parabolic subgroup
P.r;s/ is defined over Fp2 and satisfies ˆ.P.r;s//D P.s;r/.

Let Gr.r/ be the Grassmanian of r-planes in �0V . The above isomorphism
U Š GL4 induces an isomorphism U=P.r;s/ Š Gr.r/ defined over Fp2 , and the
Frobenius morphism ˆ W U=P.r;s/! U=P.s;r/ corresponds to a morphism

ˆ W Gr.r/ �! Gr.s/ (3-10)

which can be described, as in [Vollaard 2010], as follows. Consider the k-valued
form hh � ; � ii on (3-9) defined by

hhx˝ a; y˝ bii D hx; yi˝ abp:

It is k-linear in the first variable but Frobenius-semilinear in the second. For a
subspace U � �0V , denote by Ux the perpendicular of U for the form hh � ; � ii. If U
is Fp2-rational then UxD U?. If dimk.U/D r then dimk.Ux/D s, and, according
to [Vollaard 2010, Lemma 2.12], the morphism (3-10) is given by ˆ.U/D Ux on
k-valued points. Using this description of ˆ, the unitary Deligne–Lusztig variety
XP.r;s/

.1/� Gr.r/ is seen to be

XP.r;s/
.1/D

�
fU � �0V W dimk.U/D r; U � Uxg if r � s;
fU � �0V W dimk.U/D r; Ux � Ug if s � r:
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By Remark 3.3 these Deligne–Lusztig varieties are projective and smooth.
By inspecting the Dynkin diagram identity D3 D A3 we can see that the excep-

tional isomorphism between the adjoint forms of G and U can be chosen so that
the parabolic subgroups PC, P� and P0 of G correspond to P.1;3/, P.3;1/ and
P.1;3/\P.3;1/ of U Š GL4 respectively. Therefore, the Deligne–Lusztig variety
X C is isomorphic to the unitary Deligne–Lusztig variety

XP.1;3/
.1/D fU � k4 W dimk.U/D 1; U � Uxg:

Similarly X � is isomorphic to the unitary Deligne–Lusztig variety

XP.3;1/
.1/D fU � k4 W dimk.U/D 3; Ux � Ug:

Therefore, both X C and X � are isomorphic over Fp2 to the smooth hypersurface
in P3 given by the homogeneous equation

x1x
p
4 C x2x

p
3 C x3x

p
2 C x4x

p
1 D 0:

In fact, since all nondegenerate Hermitian forms on V0 D F4
p2 are isomorphic we

can also determine equations for the unitary Deligne–Lusztig varieties using the
Hermitian form given by the identity matrix I4. This gives the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0;

which is isomorphic to the surface above.
The stratification (3-8) of X C now corresponds to the stratification of the unitary

Deligne–Lusztig variety XP.1;3/
.1/ studied in [Vollaard 2010, Theorem 2.15]. The

Frobenius � Wk!k defines an operator on V which interchanges the two summands
V D �0V ˚ �1V . Thus we obtain an operator � D �2 on �0V . Any k-subspace
U � �0V satisfies �.U/D .Ux/x. The open 2-dimensional stratum of XP.1;3/

.1/

has k-valued points corresponding to lines U such that

dimk.U C �.U//D 2;
dimk.U C �.U/C �2.U//D 3:

The 1-dimensional stratum has k-valued points corresponding to lines U such that
dimk.U C �.U//D 2 and U C �.U/ is �-invariant (i.e., Fp2-rational). Finally, the
0-dimensional stratum consists of k-valued points corresponding to lines U which
are �-invariant. In other words, the 0-dimensional stratum of X C is just the set
of Fp2-rational points. For a k-valued point U on the 1-dimensional stratum, set
U 0DUC�.U/. This is an Fp2-rational plane with U 0xDU 0?DU 0. The irreducible
components of the 1-dimensional stratum are parametrized by such planes. Indeed,
conversely, given an Fp2-rational plane U 0 which is isotropic (U 0D U 0?), we obtain
a closed subscheme of XP.1;3/

.1/ with points corresponding to all lines U with
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U � U 0. This subscheme is isomorphic to P1 and gives the Zariski closure of the
corresponding irreducible component of the 1-dimensional stratum.

We can now also determine the number of components of the strata:
� The 0-dimensional stratum consists of .p3C1/.p2C1/ points. Indeed, observe

that, as in [Vollaard and Wedhorn 2011, Example 5.6], we can calculate that
the number of Fp2-valued points of the Fermat surface above is equal to
.p3C 1/.p2C 1/. (Note that there is a typographical error in [loc. cit.]: the
summation for †l should start at j D 0.) This is equal to the number of
Fp2-rational lines U � F4

p2 such that U � U?, where the orthogonal is with
respect to the (standard) Hermitian form h � ; � i on F4

p2 . Therefore, we have
.p3C 1/.p2C 1/ components of the 0-dimensional stratum.

� The 1-dimensional stratum has .p3C1/.pC1/ components. Note that by the
above, the Zariski closure of each component is isomorphic to a projective
line P1 over Fp2 and the corresponding component is the complement of all
Fp2-rational points in this line. To determine the number of irreducible compo-
nents of the 1-dimensional stratum, we start by counting the number of such
components whose closure passes a given Fp2-rational point, i.e., the number
of copies of P1 in our configuration that cross at that point: By the above, this
count is given by the number of Fp2-rational planes U 0 which are isotropic and
satisfy U �U 0�U?. These are given by Fp2-rational lines in U?=U which are
isotropic for the induced hermitian form. We can easily see that there are exactly
pC1 such lines. Since there are a total of .p3C1/.p2C1/ Fp2-rational points,
each belonging on pC1 projective lines which each have p2C1 points, we con-
clude that there are exactly .p3C1/.pC1/ projective lines in our configuration.

The same discussion applies to X �.

3.4. Deligne–Lusztig varieties and the Bruhat–Tits stratification. Now we relate
the varieties X studied above to the varieties N ı

ƒ � Nƒ of Section 2.6. Fix a
vertex lattice ƒ of type 2d 2 f2; 4; 6g, and endow the 2d -dimensional Fp-vector
space

�0 Dƒ=ƒ
_

with the nondegenerate Fp-valued quadratic form q.x/D pQ.x/ induced by the
quadratic form Q on Lˆ

Q
. Set �D�0˝Fp

k, and let G be the special orthogonal
group of �. Note that �0 is nonsplit: the existence of a d -dimensional totally
isotropic subspace in �0 would imply the existence of a self-dual lattice in Lˆ

Q
,

contradicting the Hasse invariant calculation of Proposition 2.6.
Recall from Section 3.2 the reduced closed subscheme X D Xƒ � OGr.d/

whose k-points are the Lagrangian subspaces L�� with

dimk.LCˆ.L//D d C 1: (3-11)
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The Lagrangian subspaces of � are in bijection with the W -lattices L � LQ

satisfying LD L_ and ƒ_ � L, and the condition (3-11) is equivalent to L being a
special lattice. Combining this with (2-18), we obtain bijections

Xƒ.k/Š fspecial lattices L�LQ such that ƒ_ � Lg ŠNƒ.k/:

Theorem 3.9. There is an isomorphism of k-schemes NƒŠXƒ inducing the above
bijection on k-points. After possibly relabeling the two connected components of
Xƒ DX Cƒ ]X �ƒ , we may assume that this isomorphism identifies N ˙

ƒ ŠX ˙ƒ .

Proof. Let R be a reduced k-algebra of finite type. Given an R-valued point
.G; �; �; %/ 2Nƒ.R/, there is an induced map of Zp-modules

ƒ_! End.G/

defined by x 7! %�1 ı x ı %. Let D be the covariant Grothendieck–Messing crystal
of G, evaluated at the trivial divided power thickening Spec.R/! Spec.R/, so
that D is a locally free R-module sitting in an exact sequence

0 �!D1 �!D �! Lie.G/ �! 0:

The formation of the pair D1�D is functorial inG, so there are induced morphisms
of R-modules

 W .ƒ_=pƒ_/˝Fp
R! EndR.D/

and
 1 W .ƒ

_=pƒ_/˝Fp
R! EndR.D1/

with ker. / � ker. 1/. Given x 2 ker. 1/ and y 2 .ƒ_=pƒ_/˝Fp
R, the endo-

morphism
Œx; y�D x ıyCy ı x 2 EndR.D1/

is trivial. Thus the kernel of  1 is contained in the radical of the quadratic space
.ƒ_=pƒ_/ ˝Fp

R, which is .pƒ=pƒ_/ ˝Fp
R. Let L] � K be the images of

ker. /� ker. 1/ under the obvious isomorphism

.pƒ=pƒ_/˝Fp
RŠ .ƒ=ƒ_/˝Fp

RŠ�˝k R:

When R D k, the point .G; �; �; %/ corresponds to some Dieudonné lattice D
with D1 D VD, and D1 � D is canonically identified with D1=pD � D=pD.
Under these identifications,

ker. /D fx 2 .pƒ=pƒ_/˝Fp
k W xD � pDg;

ker. 1/D fx 2 .pƒ=pƒ_/˝Fp
k W xD1 � pDg;

and so
L] D fx 2 .ƒ=ƒ_/˝ k W xD �Dg;
KD fx 2 .ƒ=ƒ_/˝ k W xD1 �Dg:
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If we identify a subspace of .ƒ=ƒ_/˝ k with the lattice in LQ that it generates,
then L] corresponds to the lattice L] D fx 2 LQ W xD � Dg of Theorem 2.12,
and K corresponds to LCL] D fx 2LQ W xD1 �Dg. In particular, L] is totally
isotropic of dimension d and K has dimension dC1. Moreover, the quadratic space
K=K? is a hyperbolic plane, and so has precisely two isotropic lines. One of them
is L], and the other is the subspace L corresponding to LD fx 2LQ W xD1 �D1g.

For a general reduced R of finite type, it follows from the previous paragraph
(use Exercise X.16 of [Lang 2002] and the fact thatR is a Jacobson ring) that L] is a
totally isotropic rank-d local direct summand of�˝kR and K is a rank-.dC1/ local
direct summand. By Lemma 3.4 there is a unique totally isotropic rank-d local direct
summand L 6D L] of �˝k R contained in K. As Nƒ is itself reduced and locally
of finite type, the construction .G; �; �; %/ 7! L defines a morphism of k-schemes

Nƒ! OGr.d/

inducing the desired bijection Nƒ.k/ŠXƒ.k/ on k-valued points. As the argu-
ments of Section 2.4 were all done over an arbitrary extension of k, the above
morphism induces a bijection Nƒ.k

0/ ŠXƒ.k
0/ for every field extension k0=k.

The morphism Nƒ ! Xƒ is therefore birational, quasi-finite, and proper (by
Proposition 2.20). As Xƒ is smooth (and therefore normal), Zariski’s main theorem
implies Nƒ ŠXƒ. The claim about connected components is obvious. �

3.5. The main results. Now we state our main results about the structure of the
underlying reduced subscheme Nred DN C

red tN �
red of N . Recall from Section 2.6

that N ˙
red is covered by the closed subschemes N ˙

ƒ as ƒ runs over the vertex
lattices of type tƒ D 2dƒ 2 f2; 4; 6g in the 6-dimensional Qp-quadratic space Lˆ

Q
,

and that their intersections are given by the simple rule

N ˙
ƒ1
\N ˙

ƒ2
D

�
N ˙
ƒ1\ƒ2

if ƒ1\ƒ2 is a vertex lattice;
∅ otherwise;

where, as before, the left-hand side is understood to mean the reduced scheme
underlying the scheme-theoretic intersection. In other words, the combinatorics of
the intersections are controlled by the combinatorics of the simplicial complex V
of Section 2.7.

Theorem 3.10. The k-variety N ˙
ƒ is projective, smooth, and irreducible of dimen-

sion dƒ� 1. Moreover:

(1) If dƒ D 1, then N ˙
ƒ is a single point.

(2) If dƒ D 2, then N ˙
ƒ is isomorphic to P1.

(3) If dƒ D 3, then N ˙
ƒ is isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:
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Proof. Combine Theorem 3.9 with the discussion of Section 3.3. �
Theorem 3.11. Under the isomorphism X ˙ƒ ŠN ˙

ƒ , the stratification of Proposi-
tion 3.8 and the stratification

N ˙
ƒ D

]
ƒ0�ƒ

N ˙ı
ƒ0

of Section 2.6 are related by

XPr
.w˙r /Š

]
ƒ0�ƒ

dƒ0DrC1

N ˙ı
ƒ0 (3-12)

for all 0 � r � dƒ � 1. In particular (by taking r D dƒ � 1), the dense open
subvariety N ˙ı

ƒ is isomorphic to the Deligne–Lusztig variety XB.w˙/ associated
with a Coxeter element.

Proof. For each special lattice L, we defined in Proposition 2.19 a sequence of
lattices

LD L.0/ ¨ L.1/ ¨ � � �¨ L.d/ D L.dC1/

by L.r/ D LCˆ.L/C � � �Cˆr.L/; and a type-2d vertex lattice

ƒL D fx 2 L
.d/
W ˆ.x/D xg:

The bijection (2-18) identifies N ˙
ƒ .k/with the set of special latticesLwithƒL�ƒ,

and the k-points of the right-hand side of (3-12) correspond to those L for which
ƒL has type 2r C 2; in other words, those L for which

LD L.0/ ¨ L.1/ ¨ � � �¨ L.rC1/ D L.rC2/:

If we instead define L.r/DL\ˆ.L/\� � �\ˆr.L/; this condition is equivalent to

L.rC2/ D L.rC1/ ¨ � � �¨ L.1/ ¨ L.0/ D L:

In the proof of Proposition 3.8, this is the same as the condition defining the strata
XPr

.w˙r /. �
Theorem 3.12. The reduced k-scheme Nred is equidimensional of dimension two. It
has two connected components, N C

red and N �
red, and these connected components are

isomorphic. The irreducible components of Nred are precisely the closed subschemes
N ˙
ƒ as ƒ varies over the type-6 vertex lattices. Furthermore:

(1) For each irreducible component Nƒ, there are exactly .p3C 1/.pC 1/ irre-
ducible components Nƒ0 such that Nƒ \Nƒ0 Š P1, and .p3C 1/.p2C 1/
irreducible components Nƒ0 such that Nƒ\Nƒ0 consists of a single point.

(2) For each type-4 vertex lattice ƒ, the closed subscheme Nƒ Š P1 is contained
in exactly two irreducible components, and is equal to their intersection.
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Proof. The isomorphism N C
red ŠN �

red follows from the isomorphism N CŠN � of
Section 2.1. The connectedness of N ˙

red follows from Corollary 2.23. The remaining
claims are clear from the theorems above and the discussion of Section 3.3. �

3.6. Hermitian vertex lattices. As in [Rapoport et al. 2014; Vollaard 2010; Vol-
laard and Wedhorn 2011], it is possible to describe the stratification of N in terms
of the Bruhat–Tits building of the special unitary group J der, although in our setting
the description in these terms is slightly convoluted. Recall from Remark 2.8 the
central isogeny J der! SO.Lˆ

Q
/. Using [Bruhat and Tits 1984, § 4.2.15], we see

that this gives an identification of the building BT of SO.Lˆ
Q
/, which was described

in Section 2.7, with the building of J der. Therefore, using [Vollaard 2010] and
J der Š SU.T /, we can see that the underlying simplicial complex of the building
BT can also be described using OE -lattices in the split Hermitian space T of
dimension 4 over E.

We say that an OE -lattice „� T is a Hermitian vertex lattice if

„�„_ � p�1„:

The type of „ is dimF
p2
.„_=„/; the type can be 0, 2 or 4. As in [Vollaard 2010],

these Hermitian vertex lattices correspond bijectively to the vertices of the Bruhat–
Tits building of SU.T /. The action of the group SU.T / preserves the vertex type
and is transitive on the set of vertices of a given type. The simplicial structure of
the building of SU.T / is generated, as above, using a notion of adjacency, in which
„ and „0 are adjacent if either „�„0 or „0 �„. Consider now the identification
of the buildings given by the central isogeny SU.T /! SO.Lˆ

Q
/. We can see by

looking at the local Dynkin diagrams that Hermitian vertex lattices „ of type 0
and 4 are sent to vertex lattices ƒ of type 6, and Hermitian vertex lattices „ of
type 2 are sent to vertex lattices ƒ of type 2. Note that SO.Lˆ

Q
/ acts transitively on

the set of vertex lattices of type 6, but the map SU.T /! SO.Lˆ
Q
/ is not surjective

on Qp-points: its image is the kernel of the spinor norm.
Consider the set S which is defined as the disjoint union of the set of Hermitian

vertex lattices „ with the set of all pairs f„;„0g consisting of adjacent Hermitian
vertex lattices of types 0 and 4. Note that there is a natural bijection between the
set S and the set of all vertex lattices ƒ. Hermitian vertex lattices of type 0 and 4
in S correspond to vertex lattices of type 6, Hermitian vertex lattices of type 2 in S
correspond to vertex lattices of type 2, and finally the pairs f„;„0g correspond to
vertex lattices of type 4.

We define a partial order on S as follows: For two Hermitian vertex lattices we
define „<„0 if either

(1) „ is of type 2, „0 is of type 0, and „�„0,

(2) „ is type 2, „0 is of type 4, and „0 �„
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(so Hermitian vertex lattices of type 0 and 4 are not comparable). Two pairs
f„1; „

0
1g and f„2; „02g in S are not compared. If „ is a Hermitian vertex lattice

then „< f„1; „2g if „, „1, and „2 form a simplex in the building of J der (which
requires that „ have type 2). Finally, f„1; „2g<„ if „ 2 f„1; „2g. Under the
bijection between S and the set of vertex lattices, this partial order corresponds to
inclusion of vertex lattices. Define an adjacency relation in S by x �S y if either
x < y or y < x. We also define a dimension function d W S!f0; 1; 2g by d.x/D 0
if x is a Hermitian vertex lattice of type 2, d.x/ D 2 if x is a Hermitian vertex
lattice of type 0 or 4, and d.x/D 1 if x is a pair f„;„0g.

The following theorems are simply restatements in this new language of some
results of the previous subsection:

Theorem 3.13. Writing the reduced k-scheme as a union

Mred D
]
`2Z

M
.`/
red

gives the decomposition of Mred into its connected components M
.`/
red . These con-

nected components are all isomorphic and are of pure dimension 2.

(1) There is a stratification of M
.0/
red by locally closed smooth subschemes given by

M
.0/
red D

]
x2S

M ı
x :

Each stratum M ı
x is isomorphic to N Cı

ƒ , where ƒ is the vertex lattice that
corresponds to x, and is therefore isomorphic to a Deligne–Lusztig variety of
dimension d.x/. The closure Mx of any M ı

x in M
.0/
red is

Mx D

]
y�x

M ı
y :

(2) We have My � Mx if and only if y � x. In particular, the irreducible
components of M

.0/
red are precisely the closed subschemes M„ for „ 2 S a

Hermitian vertex lattice of type 0 or 4.

(3) The schemes Mx are as follows:

(a) If d.x/D 0, then Mx is a single point.
(b) If d.x/D 1, then Mx is isomorphic to P1.
(c) If d.x/D 2, then Mx is isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

Theorem 3.14. The irreducible components of M
.0/
red are parametrized by vertices

of type 0 and 4 in the Bruhat–Tits building of J der. Two irreducible components
M„ and M„0 intersect if and only if „ and „0 are either adjacent, or are adjacent
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to a common element of S . If they are adjacent then one is type 0, the other of type 4,
and they intersect along a P1. If they are not adjacent but have a common adjacent
point y 2 S , then y is a Hermitian vertex lattice of type 2, and M„\M„0 DMy is
a single point.

4. Applications to Shimura varieties

We now use our explicit description of the Rapoport–Zink space N D pZnM to
describe the supersingular locus of a GU.2; 2/-Shimura variety. With the results of
Section 3.5 in hand, this is exactly as in the GU.n�1; 1/ cases studied in [Rapoport
et al. 2014; Vollaard and Wedhorn 2011]. Accordingly, our discussion will be brief.

4.1. The Shimura variety. Let E � C be a quadratic imaginary field, fix a prime
p > 2 inert in E, and let O � E be the integral closure of Z.p/ in E. Let V be a
free O-module of rank 4 endowed with a perfect O-valued Hermitian form h � ; � i of
signature .2; 2/, and denote by G D GU.V / the group of unitary similitudes of V .
It is a reductive group over Z.p/. Fix a compact open subgroup U p �G.Ap

f
/, and

define Up DG.Zp/ and U D UpU p �G.Af /.
The Grassmannian D of negative-definite planes in V ˝O C is a smooth complex

manifold of dimension 4, with an action of G.R/. Define

MU .C/DG.Q/n.D�G.Af /=U /:

For sufficiently small U p , this is a smooth complex manifold parametrizing prime-
to-p isogeny classes of quadruples .A; �; �; Œ�p�/, in which A is an abelian variety
of dimension 4, � WO! End.A/.p/ is a ring homomorphism such that

det.T � �.˛/ILie.A//D .T �˛/2.T �˛/2

for all ˛ 2O, � 2 Hom.A;A_/.p/ is a prime-to-p-quasi-polarization satisfying

� ı �.˛/D �.˛/_ ı�

for all ˛ 2O, and Œ�p� is the U p-orbit of an O˝A
p

f
-linear isomorphism

�p W yTa
p
.A/˝A

p

f
! V ˝A

p

f

respecting the Hermitian forms up to scaling by .Ap
f
/� (the Hermitian form on the

source is determined by �, as in (2-3)). A prime-to-p-isogeny between two such pairs
.A; �; �; Œ�p�/ and .A0; �0; �0; Œ�p0�/ is an O-linear quasi-isogeny in Hom.A;A0/.p/
of degree prime to p that respects the level structures, and such that �0 pulls back
to a Z�

.p/
-multiple of �.

The parametrization is similar to the constructions found in [Kudla and Rapoport
2009], and can be described as follows. For each triple .A; i; �; Œ��/ above, the
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existence of �p implies that H1.A;Q/ and V ˝Q are isomorphic, as Hermitian
spaces, locally at all places v − p. But this implies that they are also isomorphic
at p, and hence there is a global isomorphism

ˇ WH1.A;Q/! V ˝Q:

As Tap.A/˝Qp Š V ˝Qp , a result of Jacobowitz, stated in [Kudla and Rapoport
2009, Proposition 2.14], shows that there is a unique Up-orbit of isomorphisms
Tap.A/Š V ˝Zp compatible with the O-actions and Hermitian forms. Thus there
is a unique way to extend �p to a U -orbit of isomorphisms

� W yTa.A/˝Af Š V ˝Af

compatible with the O-actions and the symplectic forms, and identifying Tap.A/
with V ˝Zp. The composition

V ˝Af
��1

���!H1.A;Af /
ˇ
�! V ˝Af

defines an element g 2G.Af /=U , and the Hodge structure on V ˝R induced by
the isomorphism ˇ corresponds to a point of D, as in [Kudla and Rapoport 2009,
Section 3].

4.2. The uniformization theorem. Let k be an algebraic closure of the field of p
elements.

Extending the moduli problem of the previous subsection to Z.p/-schemes in the
obvious way yields a schemeMU , smooth of relative dimension 4 over Z.p/. Denote
byM ss

U the reduced supersingular locus of the geometric special fiberMU �Z.p/
k. A

choice of geometric point .A; �;�; Œ��/ 2M ss
U .k/ determines a base point .G ; �;�/

with G D AŒp1�, and so defines a Rapoport–Zink space M as in Section 2.1,
endowed with an action of the subgroup J �End.G /�

Q
. Denote by I.Q/�End.A/�

Q

the subgroup of O-linear quasi-automorphisms that preserve the Q�-span of �. It
is the group of Q-points of an algebraic group I over Q satisfying I.Qp/ Š J ,
and the orbit Œ�� determines a right U p-orbit of isomorphisms I.Ap

f
/ŠG.A

p

f
/. In

particular, I.Q/ acts on both M and on G.Ap
f
/=U p.

Theorem 4.1 (Rapoport–Zink). There is an isomorphism of k-schemes

M ss
U Š I.Q/n.Mred �G.A

p

f
/=U p/:

As in [Vollaard 2010, Corollary 6.2], combining the above uniformization theo-
rem with the results of Section 3.5 yields the following corollary:

Corollary 4.2. The k-schemeM ss
U has pure dimension 2. For U p sufficiently small,

all irreducible components of M ss
U are isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0;



1698 Benjamin Howard and Georgios Pappas

and any two irreducible components either intersect trivially, intersect at a single
point, or their intersection is isomorphic to P1. Here “intersection” is understood
to mean the reduced scheme underlying the scheme-theoretic intersection.
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Poincaré–Birkhoff–Witt deformations
of smash product algebras

from Hopf actions on Koszul algebras
Chelsea Walton and Sarah Witherspoon

Let H be a Hopf algebra and let B be a Koszul H -module algebra. We provide
necessary and sufficient conditions for a filtered algebra to be a Poincaré–Birkhoff–
Witt (PBW) deformation of the smash product algebra B # H . Many examples of
these deformations are given.

A correction was posted on 3 May 2017 in an online supplement.

Introduction

Given a Hopf algebra (H -)action on a Koszul algebra B, the aim of this work is to
provide necessary and sufficient conditions for a certain filtered algebra, namely
DB,κ in Notation 0.3 below, to be a Poincaré–Birkhoff–Witt (PBW) deformation of
the smash product algebra B # H , i.e., gr DB,κ ∼= B # H (Definition 0.1). One well-
studied case is that of group actions on polynomial rings, where many algebras of
interest arise as such deformations; see for example [Crawley-Boevey and Holland
1998; Drinfeld 1986; Etingof and Ginzburg 2002; Lusztig 1989; Ram and Shepler
2003; Shepler and Witherspoon 2012a]. For group actions on other Koszul algebras,
see [Levandovskyy and Shepler 2014; Naidu and Witherspoon 2014; Shepler and
Witherspoon 2012b; Shroff 2014]. There are some results involving Hopf algebra
actions, such as those of Khare [2007], when H is cocommutative and B is a
polynomial algebra. More specifically, the case when H = U (g), with g the Lie
algebra of a (not necessarily connected) reductive algebraic group, was studied
by Etingof, Gan, and Ginzburg [Etingof et al. 2005], and by Khare and Tikaradze
[2010] where g = sl2. Results for an action of the quantized enveloping algebra
H =Uq(sl2) on the quantum plane are provided by Gan and Khare [2007].

The goal of this paper is to provide a general theorem encompassing all of the
above known classes of examples from the literature. Specifically, Theorem 3.1
gives PBW deformation conditions for B # H , and it only requires the following

MSC2010: primary 16S80; secondary 16E40, 16S37, 16S40.
Keywords: Hopf algebra, Koszul algebra, PBW deformation, smash product algebra.
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of H and B: (1) the antipode of the Hopf algebra H is bijective, (2) the Koszul
H -module algebra B is connected (B0 = k), and (3) the H -action on B preserves
the grading of B. We then apply our theorem to several different choices of Hopf
algebras acting on Koszul algebras to obtain nontrivial PBW deformations, both
known and new. Our work indicates that such examples abound.

Many ring-theoretic properties are preserved under PBW deformation. To discuss
this, let us consider the following definition:

Definition 0.1. Let D=
⋃

i≥0 Fi be a filtered algebra with {0}⊆ F0⊆ F1⊆· · ·⊆ D.
We say that D is a Poincaré–Birkhoff–Witt (PBW) deformation of an N-graded alge-
bra A if A is isomorphic to the associated graded algebra grF D =

⊕
i≥0 Fi/Fi−1,

as N-graded algebras.

Now if grF D is an integral domain, prime, or (right) noetherian, then so is D.
Moreover, if D is affine with the standard filtration F ′, then the Gelfand–Kirillov
(GK) dimensions of D and of grF ′ D are equal; GKdim(grF D) ≤ GKdim(D) for
a general filtration F of D. The Krull dimension and global dimension of grF D
serve as upper bounds for the corresponding dimensions of D. These ring-theoretic
results can all be found in [McConnell and Robson 2001]. Homological properties
preserved under PBW deformation have also been investigated; see [Berger and
Taillefer 2007] and [Wu and Zhu 2013] regarding the Calabi–Yau property, for
instance. The representation theory of some classes of PBW deformations of smash
product algebras has been thoroughly studied in the literature and still remains an
active area of research. Some examples of PBW deformations whose representation
theory is of interest include rational Cherednik algebras, symplectic reflection
algebras, and various types of Hecke algebras (see, for example, [Drinfeld 1986;
Etingof et al. 2005; Etingof and Ginzburg 2002; Lusztig 1989; Ram and Shepler
2003], and for more recent work, see [Ding and Tsymbaliuk 2013; Losev and
Tsymbaliuk 2014; Tikaradze 2010; Tsymbaliuk 2014]).

In order to state the main result, we need the following notation and terminology.
Let k be a field of arbitrary characteristic and let an unadorned ⊗ mean ⊗k . Let
N denote the natural numbers, including 0. Recall that an N-graded algebra is
Koszul if its trivial module k admits a linear minimal graded free resolution; see
[Polishchuk and Positselski 2005, Chapter 2] for more details.

Notation 0.2 (H, B, I, κ, κC, κL ). Let V be a finite-dimensional vector space over k.

(i) Let H be a Hopf algebra with the standard structure notation (H,m,1, u, ε, S).
Here, we assume that the antipode S of H is bijective.

(ii) Let B = Tk(V )/(I ) be an N-graded, Koszul, left H -module algebra B =⊕
j≥0 B j with B0=k and I ⊆V⊗V . We assume that the action of H preserves

the grading and the subspace I of V ⊗ V . So in this case, V is an H -module.



PBW deformations of smash product algebras from Hopf actions 1703

(iii) Take κ : I → H ⊕ (V ⊗ H) to be a k-bilinear map, where κ is the sum of its
constant and linear parts κC

: I → H and κL
: I → V ⊗ H , respectively.

Notation 0.3 (DB,κ ). Let DB,κ be the filtered k-algebra given by

DB,κ =
Tk(V ) # H
(r − κ(r))r∈I

.

Here, we assign the elements of H degree 0.

Our main result is given as follows:

Theorem 3.1. The algebra DB,κ is a PBW deformation of B # H if and only if the
following conditions hold:

(a) κ is H-invariant (Definition 1.4); and

If dimk V ≥ 3, then the following equations hold for the maps κC
⊗ id− id⊗κC

and κL
⊗ id− id⊗κL , which are defined on the intersection (I ⊗ V )∩ (V ⊗ I ):

(b) Im(κL
⊗ id− id⊗κL)⊆ I ;

(c) κL
◦ (κL

⊗ id− id⊗κL)=−(κC
⊗ id− id⊗κC);

(d) κC
◦ (id⊗κL

− κL
⊗ id)≡ 0.

In the case that H is cocommutative and B is the symmetric algebra S(V ), this
result was proven by Khare [2007, Theorem 2.1], via the diamond lemma. Our
proof is a generalization of that of [Braverman and Gaitsgory 1996, Lemma 0.4,
Theorem 0.5] (where H = k) and of [Shepler and Witherspoon 2012b, Theorem 5.4]
(where H is a group algebra).

Background information on Hopf algebra (co)actions, Hochschild cohomology,
and deformations of algebras are provided in Section 1. In Section 2, we produce
a free resolution of the smash product algebra B # H ; see Construction 2.5 and
Theorem 2.10. This resolution is adapted from Guccione and Guccione [2002];
Negron [2014] independently constructed a similar resolution. Our resolution is
used in the proof of Theorem 3.1, which is given in Section 3. Many examples of
PBW deformations of B # H are provided in Section 4, including/involving:

• (Example 4.1) the Crawley-Boevey–Holland algebras;

• (Examples 4.2 and 4.4) some actions of semisimple, noncommutative, nonco-
commutative Hopf algebras on skew polynomial rings;

• (Examples 4.13 and 4.16) actions of the Sweedler and the Taft algebras on the
polynomial ring k[u, v];

• (Example 4.18) the quantized symplectic oscillator algebras of rank 1.

All of the examples of B # H above have nontrivial PBW deformations.
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1. Background material

We begin by discussing Hopf (co)actions on algebras and (co)modules and end
with a discussion on deformations of algebras. For further background on these
topics, we refer the reader to [Montgomery 1993] and [Braverman and Gaitsgory
1996; Gerstenhaber 1964], respectively.

1A. Hopf algebra (co)actions.

Definition 1.1. (i) For a left H -module M , we denote the H -action by · : H⊗M→
M , that is, by h ·m ∈ M for all h ∈ H , m ∈ M . Similarly for all h ∈ H and m ∈ M ,
we denote the right h-action on m by m · h.

(ii) Given a Hopf algebra H and an algebra A, we say that H acts on A (from the
left, as a Hopf algebra) if A is a left H -module and

h · (ab)=
∑

(h1 · a)(h2 · b) and h · 1A = ε(h)1A

for all h ∈ H, a, b ∈ A, where the comultiplication is given by 1(h)=
∑

h1⊗ h2

(Sweedler’s notation). In this case, we say that A is a left H-module algebra.

(iii) For any left H -comodule M , we denote the left H -coaction by ρ(M)⊆ H⊗M ,
where ρ(m)=

∑
m−1⊗m0 for m−1 ∈ H and m,m0 ∈ M . Likewise, the right H -

coaction on a right H -comodule M is given by ρ(m)=
∑

m0⊗m1 for m,m0 ∈ M
and m1 ∈ H .

Note that H is naturally an H -bimodule via left and right multiplication. This
yields a left H-adjoint action on H given by

(1-2) h · ` :=
∑

h1`S(h2)

for h, ` ∈ H . Moreover, if V is a left H -module, we give V ⊗ H an H -bimodule
structure as follows: h(v ⊗ `) =

∑
(h1 · v)⊗ h2` and (v ⊗ `)h = v ⊗ `h for all

h, ` ∈ H and v ∈ V . A left H-adjoint action on V ⊗ H arises by combining these:

(1-3) h · (v⊗ `) :=
∑

(h1 · v)⊗ h2`S(h3).

The left H -adjoint actions in (1-2) and (1-3) extend to the standard left H -adjoint
action on A= B#H (where B=Tk(V )/(I ) as in Notation 0.2(ii)), via Definition 1.1,
since the action of H preserves I .

Now we discuss the H -invariance of the map κ (Notation 0.2(iii)), which is one
of the necessary conditions for the filtered algebra DB,κ (Notation 0.3) to be a PBW
deformation of B # H .

Definition 1.4. Recall Notation 0.2. We say that the map κ is H-invariant if
h · (κ(r))= κ(h · r) in H ⊕ (V ⊗ H) for any relation r ∈ I and h ∈ H .
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1B. Deformations of algebras and Hochschild cohomology. In this part, we re-
mind the reader of the notion of a deformation of a k-algebra A and how Hochschild
cohomology plays a role in its construction. This is seminal work of Gerstenhaber
[1964], adapted to our graded setting as in [Braverman and Gaitsgory 1996].

Definition 1.5 (At , A( j)). Let A be an associative algebra and let t be an indeter-
minate. A deformation of A over k[t] is an associative k[t]-algebra At over k[t]
which is isomorphic to A[t] as k-vector spaces, with multiplication given by

a1 ∗ a2 = µ0(a1⊗ a2)+µ1(a1⊗ a2)t +µ2(a1⊗ a2)t2
+ · · ·

for all a1, a2 ∈ A. Here, µi : A⊗ A→ A is a k-linear map, referred to as the i -th
multiplication map. Moreover, µ0(a1⊗ a2)= a1a2 is the usual product in A.

Now assume that A is graded by N. A graded deformation of A over k[t] is an
algebra At as above, which is itself graded by N, setting deg(t)= 1. The map µi is
homogeneous of degree −i in this case. A j -th-level graded deformation of A is a
graded associative algebra A( j) over k[t]/(t j+1) that is isomorphic to A[t]/(t j+1)

as k-vector spaces, with multiplication given by

a1 ∗ a2 = µ0(a1⊗ a2)+µ1(a1⊗ a2)t + · · ·+µ j (a1⊗ a2)t j .

The maps µi : A⊗ A→ A are extended to be linear over k[t]/(t j+1).

The associativity of ∗ for the deformation At imposes conditions on the maps µi .
Specifically, for each degree i , the following equation must hold for all a1, a2, a3∈ A:

(1-6)
i∑

j=0

µ j (µi− j (a1⊗ a2)⊗ a3)=

i∑
j=0

µ j (a1⊗µi− j (a2⊗ a3)).

We use Hochschild cohomology to study these equations.

Definition 1.7 (B•(A)). Let A be a k-algebra and let M be an A-bimodule, or
equivalently, an Ae-module. Here, Ae

:= A⊗ Aop. The Hochschild cohomology
of M is HHn(A,M) := ExtnAe(A,M). Moreover, this cohomology may be derived
from the bar resolution B•(A) of the Ae-module A:

B•(A) : · · ·
δ3
−−→ A⊗4 δ2

−−→ A⊗3 δ1
−−→ A⊗ A

δ0
−−→ A −→ 0,

where

δn(a0⊗ · · ·⊗ an+1) :=

n∑
i=0

(−1)i a0⊗ · · ·⊗ ai ai+1⊗ · · ·⊗ an+1

for all n ≥ 0 and a0, . . . , an+1 ∈ A. When M = A, write HHn(A) for HHn(A, A).
Moreover, if A is (N-)graded, then HHn(A) inherits the grading of A: If A=

⊕
i Ai ,

then HHn(A)=
⊕

i HHn,i (A).
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Note that Homk(A⊗n, A)∼= HomAe(A⊗(n+2), A), since the Ae-module A⊗(n+2)

is induced from the k-module A⊗n . We will identify these two Hom spaces often
without further comment. Now we make some remarks about the multiplication
maps µi .

Remark 1.8. Using (1-6) for i = 1, we see that

(1-9) µ1(a1⊗ a2)a3+µ1(a1a2⊗ a3)= a1µ1(a2⊗ a3)+µ1(a1⊗ a2a3)

for all a1, a2, a3 ∈ A. In other words, µ1 is a Hochschild 2-cocycle on the bar
resolution of A; that is, δ∗3(µ1) := µ1 ◦ δ3 vanishes. (Here we have identified the
input a1⊗a2⊗a3 with 1⊗a1⊗a2⊗a3⊗ 1 to apply δ3, under the identification of
Hom spaces described above.)

Next, using (1-6) for i = 2, we see that

µ2(a1⊗ a2)a3+µ1(µ1(a1⊗ a2)⊗ a3)+µ2(a1a2⊗ a3)

= a1µ2(a2⊗ a3)+µ1(a1⊗µ1(a2⊗ a3))+µ2(a1⊗ a2a3).

Therefore

(1-10) δ∗3(µ2)(a1⊗ a2⊗ a3)= µ1(µ1(a1⊗ a2)⊗ a3)−µ1(a1⊗µ1(a2⊗ a3))

for all a1, a2, a3 ∈ A. In other words, µ2 is a cochain on the bar resolution of A
whose coboundary is given by the right-hand side of (1-10).

For all i ≥ 1, (1-6) is equivalent to

(1-11) δ∗3(µi )(a1⊗a2⊗a3)=

i−1∑
j=1

µ j (µi− j (a1⊗a2)⊗a3)−µ j (a1⊗µi− j (a2⊗a3)).

That is, µi is a cochain on the bar resolution of A whose coboundary is given by
the right-hand side of (1-11).

Definition 1.12. The right-hand side of (1-11) is the (i − 1)-th obstruction of the
deformation At of A from Definition 1.5. An (i − 1)-th-level graded deformation
(defined by maps µ1, . . . , µi−1) lifts to an i-th-level graded deformation if there
exists a map µi for which µ1, . . . , µi−1, µi define an i-th-level graded deformation.

The next proposition makes clear the choice of terminology in the above definition.
Ultimately, one is interested in a deformation of A over k[t] and its specializations at
particular values of t . The i-th-level graded deformations are steps in this direction.

Proposition 1.13 [Braverman and Gaitsgory 1996, Proposition 1.5]. All obstruc-
tions to lifting an (i − 1)-th-level graded deformation to the next level lie in
HH3,−i (A). An (i − 1)-th-level deformation lifts to the i-th-level if and only if
its (i − 1)-th obstruction cocycle is zero in cohomology, i.e., there is a map µi such
that (1-11) holds for all a1, a2, a3 in A.
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The connection between graded deformations and PBW deformations is well
known; the following statement is a consequence of the canonical embedding of A as
a k-linear direct summand of A[t], with splitting map given by specialization at t=0.

Proposition 1.14 [Braverman and Gaitsgory 1996, Remark 1.4]. Given a graded
algebra A and a graded deformation At of A, then At specialized at t = 1 is a PBW
deformation of A. �

Now we explain that the two notions of deformation of B # H coincide; recall
Notations 0.2 and 0.3. The following result is well known in related contexts, but
we include some details for the reader’s convenience.

Proposition 1.15. The following statements are equivalent.
• The algebra DB,κ := (Tk(V )# H)/(r−κ(r))r∈I is a PBW deformation of B# H.

• The algebra DB,κ,t := (Tk(V ) # H)[t]/(r − κL(r)t − κC(r)t2)r∈I is a graded
deformation of B # H over k[t].

Proof. Assume that DB,κ is a PBW deformation of B # H . By its definition, DB,κ,t

is an associative algebra, and so we need only see that it is isomorphic to B # H [t]
as a vector space. To this end, use the PBW property to define a k-linear map
π : B # H → Tk(V ) # H whose composition with the quotient map onto DB,κ is an
isomorphism of filtered vector spaces. Extend π to a k[t]-linear map from B # H [t]
to Tk(V )# H [t]. Its composition with the quotient map to DB,κ,t is an isomorphism
of k-vector spaces; one sees this by a degree argument.

Conversely, assume that DB,κ,t is a graded deformation of B # H over k[t]. We
may specialize to t = 1 to obtain DB,κ . Now apply Proposition 1.14 to conclude
that DB,κ is a PBW deformation of B # H . �

2. Resolutions for smash product algebras

In this section, let A denote the smash product B # H , which is an N-graded algebra:
A =

⊕
j≥0(B j ⊗ H). Thus A0 ∼= H . The aim is to construct a free Ae-resolution

X• of the Ae-module A from resolutions of H and of B (denoted by C• and D•,
respectively). This construction simultaneously generalizes results of Guccione and
Guccione [2002] and of Shepler and Witherspoon [2012b, Section 4]. A similar
resolution was constructed independently by Negron [2014].

Definition 2.1 (C•, Ci , C ′i ). For i ≥ 0, let Ci denote the H e-module H⊗(i+2). The
left H -comodule structure ρ : Ci → H ⊗Ci is given by

ρ(h0
⊗ h1
⊗ · · ·⊗ hi+1) :=

∑
h0

1 · · · h
i+1
1 ⊗ h0

2⊗ · · ·⊗ hi+1
2 ∈ H ⊗Ci

for all h0, . . . , hi+1
∈ H . For h ∈ H , the left and right h-actions on an element

x ∈ Ci are given respectively by left and right multiplication by h in the leftmost
and rightmost factors of x . Now, let
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C• : · · · −→ C1 −→ C0 −→ H −→ 0

be the bar resolution B•(H) of H (Definition 1.7), which is an H e-free resolution
of H .

There is an isomorphism of free H e-modules Ci ∼= H⊗C ′i⊗H , where C ′i = H⊗i

if i ≥ 1 and C ′0 = k. We give each C ′i the H -comodule structure inducing that on
Ci under the usual tensor product of comodules.

Remark 2.2. The resolution C• satisfies the following conditions:

(i) The right H -action and left H -coaction on Ci commute in the sense that for
all x ∈ Ci and h ∈ H∑

(x · h)−1⊗ (x · h)0 =
∑

x−1h1⊗ (x0 · h2).

That is, each Ci is a Hopf module (for which the action is a left action and the
coaction is a right coaction).

(ii) The differentials are left H -comodule homomorphisms.

Definition 2.3 (D•, Di , D′i ). Recall that B is a Koszul algebra. Let

· · · −→ D1 −→ D0 −→ B −→ 0

be the Koszul resolution of B as a Be-module: D0 = B ⊗ B, D1 = B ⊗ V ⊗ B,
D2 = B⊗ I ⊗ B, and for each n ≥ 3, Di = B⊗ D′i ⊗ B, where

D′i =
i−2⋂
j=0

(V⊗ j
⊗ I ⊗ V⊗(i−2− j)).

Each Di is a subspace of B⊗(i+2), and the differential on the Koszul resolution is
the one induced by the canonical embedding of the Koszul resolution into the bar
resolution of B.

Remark 2.4. The resolution D• satisfies the following conditions:

(i) Each Be-module Di is a left H -module and the differentials are H -module
homomorphisms.

(ii) The left actions of B and H on Di are compatible in the sense that they induce
a left action of A = B # H on Di .

(iii) In addition, the right B-action on Di is compatible with the left H -action on
Di in the sense that for all h ∈ H , y = b0

⊗ y′ ⊗ b1
∈ Di for y′ ∈ D′i and

b0, b1, b ∈ B,

h · (y · b)=
∑

(h1 · y) · (h2 · b)=
[∑

(h1 · b0)⊗ (h2 · y′)⊗ (h3 · b1)
]
· (h4 · b)

=

∑
(h1 · b0)⊗ (h2 · y′)⊗ (h3 · b1)b = (h · y) · b.
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(iv) Each Di is considered to be a left H -comodule in a trivial way by requiring
that it be H -coinvariant; that is, the comodule structure is given by maps
ρi : Di → H ⊗ Di , where ρi (y)= 1⊗ y for all y ∈ Di . The maps ρi are maps
of left H -modules, if we give H ⊗ Di the tensor product H -module structure,
where the factor H has the adjoint H -module structure. See Section 1A.

Construction 2.5 (X•). We wish to combine the two resolutions, C• and D• from
Definitions 2.1 and 2.3, to form a resolution X• of A = B # H by A-bimodules, via
a tensor product. To that end, we first apply (A⊗H −) to C•. Note that A is free
as a right H -module (under multiplication) and that A⊗H H ∼= A. The following
sequence of A⊗ H op-modules is therefore exact:

· · · −→ A⊗H C1 −→ A⊗H C0 −→ A −→ 0.

Similarly, we apply (−⊗B A) to D•. Note that A is free as a left B-module, and
that B⊗B A ∼= A. The following sequence of B⊗ Aop-modules is therefore exact:

· · · −→ D1⊗B A −→ D0⊗B A −→ A −→ 0.

We will next extend the actions on the modules in each of these two sequences so
that they become Ae-modules. Then, we will take their tensor product over A.

We extend the right H -module structure on A⊗H C• to a right A-module structure
by defining a right action of B on A⊗H C•: for all a ∈ A, x ∈ Ci , b ∈ B, we set

(2-6) (a⊗H x) · b :=
∑

a(x−1 · b)⊗H x0.

This does indeed make A⊗H Ci into a right B-module, and, by combining with
the right action of H , gives a right action of A on A ⊗H Ci . Note that for
x = x0

⊗ · · ·⊗ x i+1
∈ Ci (with x0, . . . , x i+1

∈ H ),

ρ(hx)=
∑

(hx)−1⊗ (hx)0 =
∑

h1x0
1 · · · x

i+1
1 ⊗ h2x0

2 ⊗ · · ·⊗ x i+1
2

=

∑
h1x−1⊗ h2x0.

The action is well-defined: If h ∈ H , then

(ah⊗H x)·b
(2-6)
=

∑
ah(x−1 ·b)⊗H x0=

∑
a(h1x−1 ·b)⊗H h2x0

(2-6)
= (a⊗H hx)·b.

Since the differentials on C• are H -comodule homomorphisms (Remark 2.2(ii)),
this action commutes with the differentials.

We extend the left B-module structure on Di ⊗B A to a left A-module structure
by defining a left action of H by

(2-7) h · (y⊗B a) :=
∑

(h1 · y)⊗B h2a
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for all h ∈ H , y ∈ Di , a ∈ A. It is well-defined, since for all h ∈ H , b ∈ B, we have
by the definitions in Section 1A that

h · (yb⊗B a)
(2-7)
=

∑
(h1 · (yb))⊗B (h2aS(h3))=

∑
(h1 · y)(h2 · b)⊗B h3aS(h4)

=

∑
(h1 · y)⊗B (h2 · b)h3aS(h4)=

∑
(h1 · y)⊗B (h2 · (ba))

(2-7)
= h · (y⊗B ba).

The left H -action on Di is compatible with the right B-action on Di by Remark
2.4(iii). Again, this action commutes with the differentials, since the differentials
on D• are H -module homomorphisms (Remark 2.4(i)).

We may now consider A⊗H C• and D•⊗B A to be complexes of Ae-modules
via the A-bimodule structure defined above. We take their tensor product over A,
letting X•,• := (A⊗H C•)⊗A (D•⊗B A); that is, for all i, j ≥ 0,

(2-8) X i, j := (A⊗H Ci )⊗A (D j ⊗B A),

with horizontal and vertical differentials

dh
i, j : X i, j → X i−1, j and dvi, j : X i, j → X i, j−1

given by dh
i, j := dC•

i ⊗ id and dvi, j := (−1)i id⊗d D•
j .

Finally, let X• be the total complex of X•,•:

(2-9) · · · −→ X2 −→ X1 −→ X0 −→ A −→ 0,

with Xn =
⊕

i+ j=n X i, j .

Theorem 2.10. We have the following statements:

(a) For each i, j , the Ae-module X i, j is isomorphic to A⊗C ′i ⊗ D′j ⊗ A.

(b) The complex X• given in (2-9) is a free resolution of the Ae-module A.

Proof. (a) Write Ci ∼= H ⊗C ′i ⊗ H and D j ∼= B⊗ D′j ⊗ B for vector spaces C ′i and
D′j , as in Definitions 2.1 and 2.3. Then

X i, j ∼= (A⊗H H ⊗C ′i ⊗ H)⊗A (B⊗ D′j ⊗ B⊗B A)
∼= (A⊗C ′i ⊗ H)⊗A (B⊗ D′j ⊗ A).

We will show that this is isomorphic to A⊗C ′i ⊗ D′j ⊗ A as an Ae-module. First,
define a map as follows:

(2-11)
(A⊗C ′i ⊗ H)× (B⊗ D′j ⊗ A)→ A⊗C ′i ⊗ D′j ⊗ A,

(a⊗ x ⊗ h, b⊗ y⊗ a′) 7→
∑

a(x−1h1 · b)⊗ x0⊗ (h2 · y)⊗ h3a′
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for all a, a′ ∈ A, x ∈ C ′i , y ∈ D′j , h ∈ H , b ∈ B. This map is k-bilinear by
definition, and we will check that it is A-balanced. First, let b′ ∈ B. We rewrite
(a⊗x⊗h) ·b′ as follows. First, using A⊗C ′i⊗H ∼= A⊗H Ci , identify this element
with a⊗H (1⊗ x ⊗ h) ∈ A⊗H Ci . By (2-6),

(a⊗H (1⊗ x ⊗ h)) · b′ =
∑

a((1⊗ x ⊗ h)−1 · b′)⊗H (1⊗ x ⊗ h)0.

By Definition 2.1, and by identifying x ∈ C ′i with x1
⊗ x2
⊗ · · ·⊗ x i , we have that

ρ(1⊗ x ⊗ h)=
∑

(1⊗ x ⊗ h)−1⊗ (1⊗ x ⊗ h)0

=

∑
(x1

1 x2
1 · · · x

i
1h1)⊗ (1⊗ x1

2 ⊗ x2
2 ⊗ · · ·⊗ x i

2⊗ h2).

So, (1⊗ x ⊗ h)−1 = x−1h1 and (1⊗ x ⊗ h)0 = x0⊗ h2. Now Ci ∼= H ⊗C ′i ⊗ H as
an H -comodule, so

((a⊗ x⊗h) ·b′, b⊗ y⊗a′)=
∑

(a(x−1h1 ·b′)⊗ x0⊗h2, b⊗ y⊗a′)

7→

∑
a(x−2h1 ·b′)(x−1h2 ·b)⊗ x0⊗ (h3 · y)⊗h4a′.

On the other hand,

((a⊗ x ⊗ h, b′ · (b⊗ y⊗ a′))= (a⊗ x ⊗ h, b′b⊗ y⊗ a′)

7→

∑
a(x−1h1 · (b′b))⊗ x0⊗ (h2 · y)⊗ h3a′),

which is the same as the previous image since B is an H -module algebra. Now let
` ∈ H . Then

((a⊗ x ⊗ h) · `, b⊗ y⊗ a′)= (a⊗ x ⊗ h`, b⊗ y⊗ a′)

7→

∑
a(x−1h1`1 · b)⊗ x0⊗ (h2`2 · y)⊗ h3`3a′.

On the other hand,

(a⊗ x ⊗ h, ` · (b⊗ y⊗ a′))=
∑

(a⊗ x ⊗ h, (`1 · b)⊗ (`2 · y)⊗ `3a′)

7→

∑
a(x−1h1`1 · b)⊗ x0⊗ (h2`2 · y)⊗ h3`3a′,

which is the same as the previous image. Therefore, there is an induced map

(A⊗C ′i ⊗ H)⊗A (B⊗ D′j ⊗ A)→ A⊗C ′i ⊗ D′j ⊗ A.

Now, we verify that the map below is an inverse map of (2-11):

(2-12) a⊗ x ⊗ y⊗ a′ 7→ (a⊗ x ⊗ 1)⊗A (1⊗ y⊗ a′).

It is clear that first applying (2-12) and then (2-11) yields the identity map on
A⊗C ′i ⊗ D′j ⊗ A. On the other hand, the image of first applying (2-11) then (2-12)
to (a⊗ x ⊗ h, b⊗ y⊗ a′) is
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(a(x−1h1 · b)⊗ x0⊗ 1)⊗A (1⊗ (h2 · y)⊗ h3a′)

=

∑
(a(x−1h1 · b)⊗ x0⊗ 1)⊗A (ε(h2)⊗ (h3 · y)⊗ h4a′)

=

∑
(a(x−1h1 · b)⊗ x0⊗ 1)⊗A (h2 · (1⊗ y⊗ a′))

=

∑
(a(x−1h1 · b)⊗ x0⊗ h2)⊗A (1⊗ y⊗ a′)

(2-6)
= ((a⊗ x ⊗ h) · b)⊗A (1⊗ y⊗ a′)

= (a⊗ x ⊗ h)⊗A (b⊗ y⊗ a′).

Therefore the two Ae-modules X i j and A⊗C ′i⊗D′i⊗ A are isomorphic, as claimed.

(b) We wish to apply the Künneth theorem to show that the complex X• is a
free resolution of the Ae-module A. To that end, we check that each term in the
complex D•⊗B A is a free left A-module and that the image of each differential
in the complex is also projective as a left A-module. First, write each Di ⊗B A ∼=
(B⊗D′i⊗B)⊗B A∼= B⊗D′i⊗A. Define a k-linear map f : A⊗D′i⊗B→ B⊗D′i⊗A
by

f (rh⊗ y⊗ b)=
∑

r ⊗ (h1 · y)⊗ h2b

for h ∈ H , y ∈ D′i , and r, b ∈ B. Give A⊗ D′i ⊗ B the structure of a left A-module
by requiring A to act by left multiplication on the leftmost factor. Clearly this is
a free left A-module. The map f is an A-module homomorphism by the definition
of the left A-action on B ⊗ D′i ⊗ A; see (2-7). We claim that the following map
is an inverse map, so that f is an isomorphism of A-modules: let S−1 denote the
(composition) inverse of the antipode S of H . Let g : B⊗ D′i ⊗ A→ A⊗ D′i ⊗ B
be the k-linear map defined by

g(r ⊗ y⊗ hb)=
∑

rh2⊗ (S−1(h1) · y)⊗ b.

Since for each h ∈ H we have
∑

h2S−1(h1) = ε(h) =
∑

S−1(h2)h1 (see, e.g.,
[Radford 2012, Proposition 7.1.10]), the function g is indeed the inverse of f . Thus,
each term in the complex D•⊗B A is a free left A-module.

That the image of each differential is projective as a left A-module may be proved
inductively, starting on one end of the complex

· · · −→ D1⊗B A
d1⊗id
−−−−−→ D0⊗B A

d0⊗id
−−−−−→ A −→ 0,

as follows. Since A is a projective left A-module and d0⊗ id is surjective, the map
splits, implying that Ker(d0⊗ id)= Im(d1⊗ id) is a direct summand of the free left
A-module D0⊗B A. Therefore it is projective. Again, since Im(d1⊗id) is projective,
the map d1⊗ id from D1⊗B A to its image splits so that Ker(d1⊗ id)= Im(d2⊗ id)
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is a direct summand of the free left A-module D1⊗B A. Continuing in this way,
we see that Im(di ⊗ id) is a free left A-module for each i .

The Künneth theorem [Weibel 1994, Theorem 3.6.3] then gives for each n an
exact sequence

0−→
⊕

i+ j=n

Hi (A⊗H C•)⊗A H j (D•⊗B A)−→ Hn((A⊗H C•)⊗A (D•⊗B A))

−→

⊕
i+ j=n−1

TorA
1 (Hi (A⊗H C•),H j (D•⊗B A))→ 0.

Now A⊗H C• and D•⊗B A are exact except in degree 0, where their homologies
are each A; that is, H0(A⊗H C•)= A and H0(D•⊗B A)= A. Therefore the only
potentially nonzero Tor term is when i = 0= j , or TorA

1 (A, A), yet this equals 0
since A is flat over A. So for each n, we have

Hn((A⊗H C•)⊗A (D•⊗B A))∼=
⊕

i+ j=n

H j (A⊗H C•)⊗A Hi (D•⊗B A).

Again the right side is only nonzero when i = 0= j , so we have

H0((A⊗H C•)⊗A (D•⊗B A))∼= H0(A⊗H C•)⊗A H0(D•⊗B A)∼= A⊗A A ∼= A

and Hn((A⊗H C•)⊗A (D•⊗B A))= 0 for all n > 0. Thus we have proven that X•
is an Ae-free resolution of A. �

We next relate the resolution X• of A (from Construction 2.5) to the bar resolution
B•(A) of A:

Lemma 2.13. There exist degree-preserving chain maps between X• and the bar
resolution B•(A) of A,

φ• : X• −→ B•(A) and ψ• : B•(A)−→ X•,

such that ψnφn is the identity map on the Ae-submodule X0,n of Xn for each n ≥ 0.

Proof. Recall by Notation 0.2 that B is generated by the vector space V , with
quadratic relations I ⊆ V ⊗ V . First we prove by induction on n that there are
degree-preserving maps φn : Xn → A⊗(n+2) and ψn : A⊗(n+2)

→ Xn commuting
with the differentials. For clarity, we denote the differential on the bar resolution of
A by δ. We have the diagram

X• : · · · // X3
d3
//

φ3
��

X2
d2
//

φ2
��

X1
d1

//

φ1
��

X0
d0

//

φ0

��

A // 0

B•(A) : · · · // A⊗5 δ3
//

ψ3

OO

A⊗4 δ2
//

ψ2

OO

A⊗3 δ1
//

ψ1

OO

A⊗ A
δ0

//

ψ0

OO

A // 0

where Bn(A) = A⊗(n+2) and Xn =
⊕

i+ j=n X i, j , with X i, j defined in (2-8); see
also Theorem 2.10(a).
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Define φ0 = id⊗ id = ψ0, the identity map from A⊗ A to itself. We wish to
define φ• so that when restricted to X0,• it corresponds to the standard embedding
of the Koszul complex into the bar complex: for n = 1, this is the embedding of
A⊗ V ⊗ A into A⊗ A⊗ A via the containment of V in A. We may define φ1 on
X1 = X0,1⊕ X1,0 ∼= (A⊗V ⊗ A)⊕ (A⊗H⊗ A) by φ1(1⊗v⊗1)= 1⊗v⊗1 and
φ1(1⊗ h⊗ 1)= 1⊗ h⊗ 1 for all v ∈ V , h ∈ H . Note that for n ≥ 2,

(2-14) X0,n ∼= A⊗
(n−2⋂

i=0

V⊗i
⊗ I ⊗ V⊗(n−i−2)

)
⊗ A,

which is a free Ae-submodule of A⊗(n+2). For each i, j with i + j = n, choose a
basis of the vector space C ′i⊗D′j (whose elements are homogeneous of degree j , as
H is declared to have degree 0). By hypothesis, φn−1 is degree-preserving, and dn

is degree-preserving by construction. So, applying φn−1dn to these basis elements
of C ′i ⊗ D′j produces elements of degree j in the kernel of δn−1, that is, the image
of δn . We define φn by choosing (arbitrary) corresponding elements in the inverse
image of Im(δn). If we start with an element in X0,n , we may choose its image in
A⊗(n+2) under the canonical embedding of X0,n into A⊗(n+2) (see (2-14)). Given
X i, j and X i ′, j ′ with i + j = i ′ + j ′ = n and i 6= 0, i ′ 6= 0, elements of X i, j have
degree j and elements of X i ′, j ′ have degree j ′. So their images under φn may be
chosen independently, and in particular, independently of those of X0,n . Thus, we
have the maps φn , as desired.

Now we show that ψn may be chosen so that ψnφn is the identity map on X0,n .
In degree 1, we have summands X0,1 ∼= A⊗ V ⊗ A and X1,0 ∼= A⊗ H ⊗ A. Note
that V ⊕ H is a direct summand of A as a vector space. We may therefore define
ψ1(1⊗ v⊗ 1)= 1⊗ v⊗ 1 in X0,1 for all v ∈ V , and ψ1(1⊗ h⊗ 1)= 1⊗ h⊗ 1 in
X1,0 for all h ∈ H . We also have that ψ1 is the identity map on elements of the form
1⊗ z⊗ 1, for z ranging over a basis of a chosen complement of V ⊕ H as a vector
subspace of A. This complement may be chosen arbitrarily, subject to the condition
that d1ψ1(1⊗ z⊗1)=ψ0δ1(1⊗ z⊗1). Since ψ0, d1, δ1 all have degree 0 as maps,
one may also choose ψ1 to have degree 0. In particular, note that ψ1φ1 is the identity
map on X0,1. Now let n ≥ 2 and assume that ψn−2 and ψn−1 have been defined to
be degree-0 maps for which dn−1ψn−1 = ψn−2δn−1 and ψn−1φn−1 is the identity
map on X0,n−1. To define ψn , first note that A⊗(n+2) contains the space X0,n as an
Ae-submodule (see (2-14)) and the image of each X i, j under φn (n = i + j , i ≥ 1).
By construction, their images intersect in 0, the image of X0,n under φn is free and,
moreover, φn is injective on restriction to X0,n . Choose a set of free generators of
φn(X0,n), and choose a set of free generators of its complement in A⊗(n+2). For
each chosen generator x of X0,n , we define ψn(φn(x)) to be x . On the complement
of φn(X0,n), define ψn arbitrarily, subject to being a chain map of degree 0. Thus,



PBW deformations of smash product algebras from Hopf actions 1715

ψnφn is the identity map on X0,n . Now for all x ∈ X0,n , since dn(x) ∈ X0,n−1,
we have that ψn−1φn−1dn(x) = dn(x), by induction. As δnφn(x) = φn−1dn(x), it
follows that dnψnφn(x) = ψn−1δnφn(x). So ψn also extends the chain map from
degree n− 1 to degree n, as desired. �

3. Poincaré–Birkhoff–Witt theorem for Hopf algebra actions

Consider the algebra DB,κ from Notation 0.3. The goal of this section is to prove
our main result, Theorem 3.1. We provide necessary and sufficient conditions for
DB,κ to be a PBW deformation of B # H (Definition 0.1) as follows:

Theorem 3.1. The algebra DB,κ is a PBW deformation of B # H if and only if the
following conditions hold:

(a) κ is H-invariant (Definition 1.4);

If dimk V ≥ 3, then the following equations hold for the maps κC
⊗ id− id⊗κC

and κL
⊗ id− id⊗κL , which are defined on the intersection (I ⊗ V )∩ (V ⊗ I ):

(b) Im(κL
⊗ id− id⊗κL)⊆ I ;

(c) κL
◦ (κL

⊗ id− id⊗κL)=−(κC
⊗ id− id⊗κC);

(d) κC
◦ (id⊗κL

− κL
⊗ id)≡ 0.

Recall Notation 0.2: B is generated by the k-vector space V with quadratic
relations I ⊂ V ⊗ V , so B = Tk(V )/(I ). Moreover, consider:

Notation 3.2 (U , TH (U ), R, P). Let U := V ⊗ H , which is an H -bimodule under
the actions defined in Section 1A. Set R = I ⊗H , similarly an H -bimodule, and an
H -subbimodule of U ⊗H U . Let P = {r ⊗ 1− κ(r) | r ∈ I } be the relation space
of DB,κ , generating an H -submodule of H ⊕U ⊕ (U ⊗H U ) in the tensor algebra

TH (U )= H ⊕U ⊕ (U ⊗H U )⊕ (U ⊗H U ⊗H U )⊕ · · · .

Note that U⊗
n
H ∼= V⊗n

⊗ H as k-vector spaces. We see that π(P)= R, where the
map π is the projection onto the homogeneous quadratic part of P .

Consider the following preliminary results:

Lemma 3.3. Since TH (U ) is canonically isomorphic to Tk(V ) # H , we have that

TH (U )/(P)∼= DB,κ and TH (U )/(R)∼= (Tk(V ) # H)/(I )∼= B # H,

where (I ) is identified with the ideal of Tk(V ) # H generated by I .
Hence, DB,κ is a PBW deformation of B # H if and only if TH (U )/(P) is a PBW

deformation of TH (U )/(R). �
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Lemma 3.4 [Shepler and Witherspoon 2012b, Lemma 5.2]. If TH (U )/(P) is a
PBW deformation of TH (U )/(R), then the following conditions hold for maps
α : R→U and β : R→ H for which P = {x −α(x)−β(x) | x ∈ R}:

(i) Im(α⊗H id− id⊗Hα)⊆ R.

(ii) α ◦ (α⊗H id− id⊗Hα)=−(β⊗H id− id⊗Hβ).

(iii) β ◦ (id⊗Hα−α⊗H id)≡ 0.

Here, the maps α⊗H id− id⊗Hα and β⊗H id− id⊗Hβ are defined on the subspace
(R⊗H U )∩ (U ⊗H R) of TH (U ). �

Remark 3.5. Given the maps κL
: I → V ⊗ H and κC

: I → H as in Notation 0.2,
we see that α = κL

⊗ idH and β = κC
⊗ idH .

Lemma 3.6. Consider the algebra

(TH (U )/(P))t :=
TH (U )[t]

(x −α(x)t −β(x)t2)x∈R
.

We have that (TH (U )/(P))t is a PBW deformation of TH (U )/(R) over k[t] if and
only if DB,κ,t (of Proposition 1.15) is a PBW deformation of B # H over k[t].

Proof. This follows from Lemma 3.3 and Remark 3.5. �

Now we provide the proof of Theorem 3.1. A somewhat shorter proof would
suffice in case H is semisimple: The first proof of [Shepler and Witherspoon 2012a,
Theorem 3.1] may be generalized from semisimple group algebras to semisimple
Hopf algebras. In that context, one has on hand a much smaller resolution than that
which we will use below.

Proof of Theorem 3.1. Note that we will employ the identifications given in the
lemmas and remark above, sometimes without comment. Namely, results from
Section 2 will be used here where, for instance, I is identified so that R = I ⊗ H
and B # H is identified with TH (U )/(R).

Necessity of conditions (a)–(d). Let us first show that conditions (a)–(d) are necessary.
Assume that DB,κ is a PBW deformation of B#H , and take Q to be the relation space
of DB,κ . Then, for all h ∈ H and r ∈ I , we have that h ·r−h · (κ(r))∈ Q. (Refer to
Section 1A for the definition of these actions.) We also have that h ·r−κ(h ·r)∈ Q,
so h · (κ(r))− κ(h · r) ∈ Q. This implies that h · (κ(r))= κ(h · r) in DB,κ , since Q
cannot contain nonzero elements in degree less than two. Thus, condition (a) holds.
Moreover, by Lemma 3.3, TH (U )/(P) satisfies the PBW property.

Now by applying Lemma 3.4, we see that conditions (i), (ii), (iii) hold for
TH (U )/(P). These conditions are equivalent to conditions (b), (c), (d) in Theorem
3.1 for the algebra DB,κ by Notation 3.2 and Remark 3.5. Thus, if DB,κ is a PBW
deformation of B # H , then conditions (a)–(d) of Theorem 3.1 must hold.
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Sufficiency of conditions (a)–(d). Conversely, let us assume that conditions (a)–(d) of
Theorem 3.1 hold for the algebra DB,κ . Equivalently, by Notation 3.2, Lemma 3.3,
and Remark 3.5, we assume the following for the algebra TH (U )/(P):

• The maps α and β are H -invariant.

• Conditions (i), (ii), (iii) of Lemma 3.4 hold.

The goal is to show that DB,κ is a PBW deformation of B # H , which, by Proposition
1.15, is equivalent to showing that DB,κ,t (of Proposition 1.15) is a graded defor-
mation of B # H over k[t]. Hence, by Lemma 3.6, the goal is then equivalent to
verifying that the algebra (TH (U )/(P))t is a graded deformation of TH (U )/(R)
over k[t]. We thus have the following strategy:

• Let A denote TH (U )/(R).

• Construct multiplication maps, µi : A⊗ A→ A, as in Definition 1.5, subject
to the restraints listed in Remark 1.8.

• Form the graded deformation At of A as in Definition 1.5.

• Conclude that A′ := TH (U )/(P) ∼= (At)|t=1 is a PBW deformation of A by
Proposition 1.15.

We generalize the proof in [Shepler and Witherspoon 2012b] from group actions
to Hopf algebra actions. Namely, we use the free resolution X• of the Ae-module A
in Construction 2.5 to define the maps µi . Recall that X• is constructed from
C• = B•(A), the bar resolution of H , and from D•, the Koszul resolution of B.

Extending α and β to be maps on X•. We first extend α and β to be maps on
X• as follows. In degree 2, X2 contains as a direct summand X0,2 ∼= A⊗ I ⊗ A;
see (2-14). As α, β are H -bilinear by H -invariance, we may extend them to
Ae-module maps from A⊗ R ⊗H A ∼= A⊗ I ⊗ A to A by composing with the
multiplication map. By abuse of notation, denote these extended maps by α, β
as well. Extend α and β yet further by setting them equal to 0 on the summands
X2,0 and X1,1 of X2 so that they become maps α, β : X2 → A. More precisely,
α, β ∈ HomAe(X2, A)∼= Homk(X ′2, A) for X2 ∼= A⊗ X ′2⊗ A.

Construction of the multiplication map µ1. To build µ1 ∈ Homk(A ⊗ A, A) ∼=
HomAe(A⊗4, A), recall that it must be a Hochschild 2-cocycle as in (1-9). We will
show that α : X2→ A is a Hochschild 2-cocycle on X•, that is, d∗3 (α)= 0. Recall
the chain maps of Lemma 2.13. We set µ1 = ψ

∗

2 (α), which will be a Hochschild
2-cocycle on B•(A), that is, δ∗3(µ1)= 0.

To show that d∗3 (α) : X3 → A is the zero map, first note that X3 = X0,3 ⊕

X1,2⊕ X2,1⊕ X3,0 from (2-9) and that the images of X2,1 and X3,0 under d3 lie in
X1,1⊕ X2,0. Since α|X1,1⊕X2,0 ≡ 0 by the extension above, it suffices to show that
d∗3 (α)|X0,3 and d∗3 (α)|X1,2 are zero maps.
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Rewriting condition (i) of Lemma 3.4, we see that it implies that α is 0 on
the image of the differential on X0,3 as follows: let

∑
i 1⊗ xi ⊗ yi ⊗ zi ⊗ 1 ∈

A⊗ ((I ⊗ V )∩ (V ⊗ I ))⊗ A = X0,3; see (2-14). Then

α

(
d3

(∑
i

1⊗ xi ⊗ yi ⊗ zi ⊗ 1
))

= α

(∑
i

xi ⊗ yi ⊗ zi ⊗ 1−
∑

i

1⊗ xi yi ⊗ zi ⊗ 1

+

∑
i

1⊗ xi ⊗ yi zi ⊗ 1−
∑

i

1⊗ xi ⊗ yi ⊗ zi

)
=

∑
i

(xiα(yi ⊗ zi )−α(xi ⊗ yi )zi ).

(To see this, note that applying the multiplication map of A to elements in I
yields 0.) Thus d∗3 (α)= id⊗α−α⊗ id on X0,3; here, we identify id⊗α−α⊗ id
with m ◦ (id⊗α− α⊗ id), where m is the multiplication map on A. We see that
condition (i) indeed implies (in fact, is equivalent to) d∗3 (α)|X0,3 ≡ 0.

Next, we claim that α being H -invariant implies that α is also 0 on the image of
the differential on X1,2. Let a, b ∈ A, h ∈ H , and r ∈ I , and consider a⊗h⊗ r ⊗b
as an element of X1,2 ∼= A⊗ H ⊗ I ⊗ A by Theorem 2.10(a). By the definition of
the differential on X1,2,

d(a⊗ h⊗ r ⊗ b)= d((a⊗ h⊗ 1)⊗ (1⊗ r ⊗ b))

= d(a⊗ h⊗ 1)⊗ (1⊗ r ⊗ b)− (a⊗ h⊗ 1)⊗ d(1⊗ r ⊗ b).

The second term lies in X1,1, but α is 0 on X1,1 by definition. Therefore,

(3-7) α(d(a⊗ h⊗ r ⊗ b))= α((ah⊗ 1− a⊗ h)⊗ (1⊗ r ⊗ b))

= α
(

ah⊗ r ⊗ b−
∑

a⊗ (h1 · r)⊗ h2b
)

= ahα(r)b−
∑

aα(h1 · r)h2b.

Since α is H -invariant, we have that

hα(r)=
∑

h1ε(h2)α(r)=
∑

h1α(r)ε(h2)=
∑

h1α(r)S(h2)h3=
∑

α(h1·r)h2,

where the last equality used the fact that α is H -invariant. Thus, α is zero on the
image of d = d3 on X1,2 by (3-7). It follows that α is a Hochschild 2-cocycle on X•.

Now, let µ1 = ψ
∗

2 (α), where ψ• is a chain map satisfying the conditions of
Lemma 2.13. We conclude that

δ∗3(µ1)= δ
∗

3(ψ
∗

2 (α))= ψ
∗

3 (d
∗

3 (α))≡ 0,
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as desired. So, we have a first-level graded deformation A(1) of A with first
multiplication map µ1 : A⊗ A→ A.

As an aside, we also get that φ∗2(µ1)= α as cochains. To see this, first note that
since α is homogeneous of degree −1 by its definition, so is µ1. Let x ∈ X0,2. By
Lemma 2.13, ψ2φ2(x)= x , and thus

µ1φ2(x)= αψ2φ2(x)= α(x).

Now let y be a free generator of X1,1 or of X2,0, which may always be chosen to have
degree 1 or 0, respectively. Then ψ2φ2(y) has degree 1 or 0 respectively, implying
that its component in X0,2 is 0. It follows that µ1φ2(y)= αψ2φ2(y)= 0= α(y);
the last equation follows from the extension of α to X•. Therefore φ∗2(µ1)= α.

Construction of the multiplication map µ2. Given µ1 as above, note that the map
µ2 must satisfy (1-10); that is, δ∗3(µ2) = µ1 ◦ (µ1⊗ id− id⊗µ1) as cochains on
the bar resolution B•(A) of A. We will show that a modification of ψ∗2 (β) is such
a map, as follows:

First, note that β = φ∗2(ψ
∗

2 (β)) as cochains, by an argument similar to that above
for α. Moreover, condition (ii) implies that d∗3 (β) = α ◦ (α ⊗H id− id⊗Hα) as
cochains on X0,3. Let

(3-8) γ = δ∗3ψ
∗

2 (β)−µ1 ◦ (µ1⊗ id− id⊗µ1).

Then φ∗3(γ ) is zero on X0,3: φ∗3δ
∗

3ψ
∗

2 (β)=d∗3 (β) and φ∗3(µ1◦(µ1⊗id− id⊗µ1))=

α ◦ (α ⊗ id− id⊗α) by Lemma 3.4(ii). To see the last statement, note that the
image of φ3 on X0,3 is contained in A⊗ ((I ⊗V )∩ (V ⊗ I ))⊗ A with φ∗(µ1)= α.
We also see that φ∗3(γ ) is 0 on X2,1 and X3,0 since it is a map of degree −2. We
claim it is also 0 on X1,2 as follows. As an Ae-module, the image of X1,2 under φ3

is generated by elements of degree 2. Since µ1 = ψ
∗

2 (α), it is zero on elements of
degree less than two, and so the map µ1◦(µ1⊗id− id⊗µ1)must be 0 on the image
of X1,2 under φ3. Since β is H -invariant, and thus β is a cocycle (see the argument
following (3-7)) and φ∗2ψ

∗

2 (β)=β, we have that φ∗3δ
∗

3ψ
∗

2 (β)= d∗3φ
∗

2ψ
∗

2 (β)= d∗3 (β)
is 0 on X1,2. Therefore φ∗3(γ ) is 0 on X1,2.

We have shown that φ∗3(γ ) is 0 on all of X3, and so γ must be a coboundary on
the bar resolution B•(A) of A. Thus there is a 2-cochain µ of degree −2 on the bar
resolution with

(3-9) δ∗3(µ)= γ.

Consider ψ∗2 (β)−µ, yet note that φ∗2(ψ
∗

2 (β)−µ) may not agree with β on X2.
We need such a statement for the next step of constructing µ3. Now,

d∗3φ
∗

2(µ)= φ
∗

3δ
∗

3(µ)= φ
∗

3(γ )= 0,
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so the 2-cochain φ∗2(µ) is a cocycle on the complex X•. Thus, φ∗2(µ) lifts to a cocycle
µ′ of degree −2 on the bar complex B•(A). In other words, φ∗2(ψ

∗

2 (β)−µ+µ
′)

agrees with β on X2.
Moreover, δ∗3(µ

′) = 0, and by (3-8) and (3-9), we have that δ∗3(ψ
∗

2 (β)−µ) =

µ1 ◦ (µ1⊗ id− id⊗µ1). So,

(3-10) δ∗3(ψ
∗

2 (β)−µ+µ
′)−µ1 ◦ (µ1⊗ id− id⊗µ1)= 0

on the bar resolution B•(A) of A.
Thus, setting µ2 equal to ψ∗2 (β)− µ+ µ

′, we have maps µ1, µ2 to obtain a
second-level graded deformation A(2) of A extending A(1).

Construction of the multiplication map µ3. Recall the restraint on µ3 given in (1-11):
µ3 is a cochain on B•(A) whose coboundary is given by µ1 ◦ (µ2⊗ id− id⊗µ2)+

µ2 ◦ (µ1⊗ id− id⊗µ1). We construct µ3 as follows.
By (3-10) and condition (iii) of Lemma 3.4, we have that µ2◦(µ1⊗ id− id⊗µ1)

is 0 on the image of φ. By degree considerations, µ1◦(µ2⊗id− id⊗µ2) is always 0
on the image of φ. Therefore, the obstruction

µ2 ◦ (µ1⊗ id− id⊗µ1)+µ1 ◦ (µ2⊗ id− id⊗µ2)

is a coboundary. Thus there exists a 2-cochain µ3, necessarily having degree −3,
satisfying the restraint given above, and the deformation lifts to the third level.

Construction of the multiplication maps µi for i ≥ 4. The obstruction for a third-
level graded deformation A(3) of A to lift to the fourth level lies in HH3,−4(A)
by Proposition 1.13. We apply φ∗3 to this obstruction to obtain a cochain on X3.
Since there are no cochains of degree −4 on X3 by definition (as it is generated by
elements of degree 3 or less), φ∗3 applied to the obstruction is automatically zero.
Therefore, the deformation may be continued to the fourth level. Similar arguments
show that it can be continued to the fifth level, and so on.

Construction of At . Let At be the graded deformation of A that we obtain in this
manner (Definition 1.5). Then, At is the k-vector space A[t] with multiplication
defined for all a1, a2 ∈ A by

a1 ∗ a2 = a1a2+µ1(a1⊗ a2)t +µ2(a1⊗ a2)t2
+µ3(a1⊗ a2)t3

+ · · · ,

where a1a2 is the product in A and each µi : A ⊗ A→ A is a k-linear map of
homogeneous degree −i . Now for any r in R, µ1(r) = (ψ∗2α)(r) and µ2(r) =
(ψ∗2 (β)−µ+µ

′)(r) by construction, and µi (r)= 0 for i ≥ 3 since deg(r)= 2.

Conclusion that A′ := TH (U )/(P) is a PBW deformation of A = TH (U )/(R).
Now we show that A′ := TH (U )/(P) is isomorphic, as a filtered algebra, to the
fiber of the deformation At at t = 1 as follows. Let A′′ = (At)|t=1. Then A′′ is
generated by V and H and one thus obtains a surjective algebra homomorphism
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TH (U )∼= Tk(V )# H→ A′′. The elements of P lie in the kernel (by definition of A′′),
and thus this map induces a surjective algebra homomorphism A′ = TH (U )/(P)�
A′′. This map is in fact an isomorphism of filtered algebras by a dimension argu-
ment in each degree. Therefore A′ is a PBW deformation of A, since A′′ is one
(Proposition 1.14). �

4. Examples

For our examples, we restrict k to be an algebraically closed field of characteristic
zero. There are many interesting examples, both known and new, in this setting. Less
is known about Hopf actions on Koszul algebras and corresponding deformations
in positive characteristic.

As an application of Theorem 3.1, we provide various examples of PBW defor-
mations DB,κ of smash products B # H ; recall Notations 0.2 and 0.3. We do this by
describing deformation parameter(s) κ = κC

+ κL below. In particular, Examples
4.1, 4.2, and 4.4 involve semisimple Hopf actions, and Examples 4.13, 4.16, and 4.18
involve nonsemisimple Hopf actions on (skew) polynomial rings. Recall that skew
polynomial rings are Koszul by [Polishchuk and Positselski 2005, Example 4.2.1
and Theorem 4.3.1].

4A. Semisimple Hopf actions. We begin by revisiting the well-known PBW de-
formations of Crawley-Boevey and Holland [1998].

Example 4.1. Take H = k0, for 0 a finite subgroup of SL2(k), and B = k[u, v].
For g =

(a
b

c
d

)
∈ 0, let the action of g on B be given by g · u = au + cv and

g · v = bu+ dv.
By [Crawley-Boevey and Holland 1998], the deformation parameter κ of the

PBW deformation DB,κ of B # H must be in the center of 0, which we verify again
with Theorem 3.1. We assume here that κL

≡ 0, as in that work.
Since dimk V = 2, only condition (a) of Theorem 3.1 applies. So we have for all

g ∈ 0 that g · (κ(uv−vu))= κ(g · (uv−vu)). Now since the determinant of g is 1,
g · (κ(uv− vu))= κ(uv− vu), and the image of κ lies in the center of k0. That is,

DB,κ =
k〈u, v〉 # k0
(uv− vu− λ)

is a PBW deformation of k[u, v] # k0 if and only if λ ∈ Z(k0).

It is worth pointing out that there are analogues of Crawley-Boevey–Holland
algebras when working in positive characteristic; see the work of Emily Norton
[2013] for some examples that are quite different from those in characteristic zero.

The following two Hopf actions were produced by Walton in joint work with
Kenneth Chan, Ellen Kirkman, and James Zhang [Chan et al. 2012]. We thank
them for permitting us to use these results.
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Example 4.2. Let H := H8 be the unique noncommutative noncocommutative
semisimple 8-dimensional Hopf algebra [Kac and Paljutkin 1966; Masuoka 1995],
and let B = k〈u, v〉/(u2

+ v2) (which is isomorphic to the skew polynomial ring
k〈u, v〉/(uv+vu)). The Hopf algebra H8 is generated by x , y, z, and the relations are

x2
= y2
= 1, xy = yx, zx = yz, zy = xz, z2

=
1
2(1+ x + y− xy).

The rest of the structure of H8 and the left H8-action on B are given by

1(x)= x⊗ x, 1(y)= y⊗ y, 1(z)= 1
2(1⊗1+1⊗ x+ y⊗1− y⊗ x)(z⊗ z),

ε(x)= ε(y)= ε(z)= 1, S(x)= x, S(y)= y, S(z)= z,

x · u =−u, x · v = v, y · u = u, y · v =−v, z · u = v, z · v = u.

Let r := u2
+ v2 and note that

x · r = r, y · r = r, z · r = r,

so the ideal of relations of B, I = 〈r〉, is H -stable.
Since dimk V = 2, only condition (a) of Theorem 3.1 applies. We begin by

computing κC . Let

κC(r)= γ0+ γ1x + γ2 y+ γ3xy+ γ4z+ γ5xz+ γ6 yz+ γ7xyz

for some scalars γi ∈k. Since h·(κC(r))=
∑

h1(κ
C(r))S(h2) (see Section 1A), both

x ·(κC(r))=κC(r) and y·(κC(r))=κC(r) imply that γ7=γ4 and γ6=γ5. Moreover,

z · (κC(r))= γ0+ γ2x + γ1 y+ γ3xy+ γ4z+ γ5xz+ γ5 yz+ γ4xyz = κC(r),

which implies that γ2 = γ1. Thus,

(4-3) κC(r)=: g(γ0, γ1, γ3, γ4, γ5)

= γ0+ γ1(x + y)+ γ3xy+ γ4(z+ xyz)+ γ5(xz+ yz).

On the other hand, let κL(r)= u⊗ f + v⊗ f ′ ∈ V ⊗ H with

f = δ0+ δ1x + δ2 y+ δ3xy+ δ4z+ δ5xz+ δ6 yz+ δ7xyz,

f ′ = δ′0+ δ
′

1x + δ′2 y+ δ′3xy+ δ′4z+ δ′5xz+ δ′6 yz+ δ′7xyz,

for some scalars δi , δ
′

i ∈ k. Note that h · (κL(r)) =
∑

h1 · u ⊗ h2 f S(h3) +∑
h1 · v⊗ h2 f ′S(h3) (see Section 1A). Since x · (κL(r))= κL(r), it follows that:

δ0 = δ1 = δ2 = δ3 = 0, δ4 =−δ7, δ5 =−δ6 δ′4 = δ
′

7, and δ′5 = δ
′

6.

By considering the coefficient of u in the equation y · (κL(r)) = κL(r), we now
find that f = 0. Similarly, by considering the coefficient of v in the equation
y · (κL(r))= κL(r), we find that f ′ = 0. Hence, κL(r)= 0.
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Thus the deformation parameter κ of DB,κ equals its constant part κC , which
depends on five scalar parameters as described above. In short,

DB,κ =
k〈u, v〉 # H8

(u2+ v2− κ(u2+ v2))

is a PBW deformation of (k〈u, v〉/(u2
+ v2)) # H8 if and only if κ(u2

+ v2) =

g(γ0, γ1, γ3, γ4, γ5) as given in (4-3). This yields a five-parameter family of PBW
deformations of B # H8.

Example 4.4. Let H be Ha:1, one of the 16-dimensional semisimple Hopf algebras
classified in [Kashina 2000], and let B be the skew polynomial ring

B =
k〈t, u, v, w〉(

rtu := tu− ut, rtv := tv− vt, rtw := tw+wt
ruv := uv− vu, ruw := uw+wu, rvw := vw−wv

) .
The Hopf algebra Ha:1 is generated by x , y, z, subject to the relations

x4
= y2
= z2
= 1, yx = xy, zx = xyz, zy = yz.

The rest of the structure of Ha:1 and the left Ha:1-action on B are given by

1(x)= x⊗x, 1(y)= y⊗ y, 1(z)= 1
2(1⊗1+1⊗x2

+ y⊗1− y⊗x2)(z⊗z),

ε(x)= ε(y)= ε(z)= 1, S(x)= x3, S(y)= y, S(z)= 1
2(1+x2

+ y−x2 y)z,

x · t = i t, y · t =−t, z · t = u, x · u =−iu, y · u =−u, z · u = t,

x · v = v, y · v =−v, z · v = w, x ·w =−w, y ·w =−w, z ·w = v,

where i is a primitive fourth root of unity in k. Note that

x · rtu = rtu, x · rtv = irtv, x · rtw =−irtw,

x · ruv =−iruv, x · ruw = iruw, x · rvw =−rvw,

y · rtu = rtu, y · rtv = rtv, y · rtw = rtw,

y · ruv = ruv, y · ruw = ruw, y · rvw = rvw,

z · rtu = rtu, z · rtv = ruw, z · rtw = ruv,

z · ruv = rtw, z · ruw = rtv, z · rvw =−rvw.

So, the ideal of relations I = 〈rtu, rtv, rtw, ruv, ruw, rvw〉 of B is H -stable.
Now we compute the possible values κC(r)∈ H for all r ∈ I , under condition (a)

of Theorem 3.1. Take κC(r)= g(γ ) ∈ H given by

g(γ )= γ0+ γ1x + γ2x2
+ γ3x3

+ γ4 y+ γ5xy+ γ6x2 y+ γ7x3 y

+γ8z+ γ9xz+ γ10x2z+ γ11x3z+ γ12 yz+ γ13xyz+ γ14x2 yz+ γ15x3 yz,
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where γi ∈ k. Note that h · g(γ )=
∑

h1g(γ )S(h2). With the assistance of Affine, a
subpackage of Maxima, we have the following computations:

x ·g(γ )= xg(γ )x3
= γ0+γ1x+γ2x2

+γ3x3
+γ4 y+γ5xy

+γ6x2 y+γ7x3 y+γ8 yz+γ9xyz+γ10x2 yz

+γ11x3 yz+γ12z+γ13xz+γ14x2z+γ15x3z;

(4-5)

y ·g(γ )= yg(γ )y = g(γ );(4-6)

z ·g(γ )= 1
2(zg(γ )S(z)+ zg(γ )S(x2z)+ yzg(γ )S(z)− yzg(γ )S(x2z))

= γ0+γ1xy+γ2x2
+γ3x3 y+γ4 y+γ5x

+γ6x2 y+γ7x3
+γ8z+γ9xyz+γ10x2z

+γ11x3 yz+γ12 yz+γ13xz+γ14x2 yz+γ15x3z.

(4-7)

For rtu , let κC(rtu)= g(γ ). We have that x ·κC(rtu)= κ
C(rtu) and y ·κC(rtu)=

κC(rtu) imply that γ8= γ12, γ9= γ13, γ10= γ14, γ11= γ15. Moreover, z ·κC(rtu)=

κC(rtu) implies that γ1 = γ5, γ3 = γ7, γ9 = γ13, γ11 = γ15. Therefore,

(4-8) κC(rtu)= g(γ0, γ1, γ2, γ3, γ4, γ6, γ8, γ9, γ10, γ11)

= γ0+γ1(x+xy)+γ2x2
+γ3(x3

+x3 y)+γ4 y+γ6x2 y

+γ8(z+yz)+γ9(xz+xyz)+γ10(x2z+x2 yz)+γ11(x3z+x3 yz).

For rvw, let κC(rvw) = g(γ ′). We have that x · κC(rvw) = −κC(rvw) and
y · κC(rvw) = κC(rvw) implies that γ ′0 = · · · = γ

′

7 = 0, γ ′8 = −γ
′

12, γ ′9 = −γ
′

13,
γ ′10 =−γ

′

14, and γ ′11 =−γ
′

15. Moreover, we have that z · κC(rvw)=−κC(rvw). So
the conditions on γ ′i in (4-7) then imply that γ ′i = 0 for i = 0, . . . , 7, 8, 10, 12, 14
with γ ′9 =−γ

′

13, γ
′

11 =−γ
′

15. Thus,

(4-9) κC(rvw)= g(γ ′9, γ
′

11)= γ
′

9(xz− xyz)+ γ ′11(x
3z− x3 yz).

For r 6= rtu, rvw, we have that x · κC(r)=±iκC(r) implies that κC(r)= 0.
We compute κL(r) under condition (a) of Theorem 3.1. Fix r ∈ I and let

κL(r)= t ⊗ ft + u⊗ fu + v⊗ fv +w⊗ fw ∈ V ⊗ H

for some ft , fu, fv, fw ∈ H . Since y is central in H and y ·r = r for each relation r ,
we have that

κL(r)= y · κL(r)

= y · t ⊗ y ft S(y)+ y · u⊗ y fu S(y)+ y · v⊗ y fvS(y)+ y ·w⊗ y fwS(y)

=−t ⊗ ft − u⊗ fu − v⊗ fv −w⊗ fw =−κL(r).

Thus, κL(r)= 0.



PBW deformations of smash product algebras from Hopf actions 1725

To finish, we apply to κ conditions (b)–(d) of Theorem 3.1. Since κL(r) = 0
for all r ∈ I , only condition (c) is pertinent. Namely, we only need to impose
κC
⊗id= id⊗κC as maps on (I⊗V )∩(V⊗ I ). This intersection is a 4-dimensional

k-vector space with basis

stuv := tuv− tvu− utv+ uvt + vtu− vut,

stuw := tuw+ twu− utw− uwt +wtu−wut,

stvw := tvw− twv− vtw+ vwt +wtv−wvt,

suvw := uvw− uwv− vuw− vwu−wuv+wvu.

Since κC(rtv)= κ
C(ruv)= 0, we get that

(4-10) (κC
⊗ id− id⊗κC)(stuv)= κ

C(ruv)t − κC(rtv)u+ κC(rtu)v

− tκC(ruv)+ uκC(rtv)− vκ
C(rtu)

= κC(rtu)v− vκ
C(rtu).

Identify b ∈ V with b # 1 ∈ A and h ∈ H with 1 # h ∈ A. Recall that in A we have
(1 # h)(b # 1)=

∑
(h1 ·b)# h2. Now by using (4-8) and by setting (4-10) equal to 0,

we get that

(4-11) κC(rtu)= g(γ0, γ2)= γ0+ γ2x2.

Moreover,

(κC
⊗ id− id⊗κC)(stuw)=−κ

C(ruw)t + κC(rtw)u+ κC(rtu)w

− tκC(ruw)+ uκC(rtw)−wκ
C(rtu)

= κC(rtu)w−wκ
C(rtu)= 0

imposes no new restrictions on κC(rtu), nor do (κC
⊗ id− id⊗κC)(stvw) = 0,

(κC
⊗ id− id⊗κC)(suvw)= 0. Therefore, κC(rtu) is given by (4-11).

To compute κC(rvw), consider the calculation

(4-12) (κC
⊗ id− id⊗κC)(stvw)= κ

C(rvw)t − κC(rtw)v+ κ
C(rtv)w

− tκC(rvw)+ vκC(rtw)−wκ
C(rtv)

= κC(rvw)t − tκC(rvw).

Now by using (4-9) and by setting (4-12) equal to 0, we get that κC(rvw)= 0.
Therefore, the filtered algebra DB,κ is a PBW deformation of B # Ha:1 if and only

if the deformation parameter κ = κC of DB,κ is defined by (4-11) for the relation
rtu , and κC(r) = 0 for r 6= rtu . Hence, we have a two-parameter family of PBW
deformations of B # Ha:1.
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4B. Nonsemisimple Hopf actions. Here, we consider nonsemisimple Hopf actions
to illustrate Theorem 3.1. We begin with an example of a Taft algebra action.

Example 4.13. Let H = T (n), the n2-dimensional nonsemisimple Taft algebra.
We take n ≥ 3 here and we consider the (slightly different) case n= 2 (the Sweedler
algebra) in Example 4.16 below. Let B = k[u, v]. The Hopf algebra T (n) is
generated by g, x and the relations are gn

= 1, xn
= 0, and xg = ζgx , for ζ ∈ k×

a primitive n-th root of unity. The rest of the structure of T (n) and the left T (n)-
action on B are given by

1(g)= g⊗ g, 1(x)= g⊗ x + x ⊗ 1, ε(g)= 1, ε(x)= 0,

S(g)= g−1
= gn−1, S(x)=−gn−1x,

g · u = u, g · v = ζ−1v, x · u = 0, x · v = u.

Let r := uv − vu and note that g · r = ζ−1r and x · r = 0. Hence, the ideal of
relations I = 〈r〉 of B is H -stable.

Since dimk V = 2, only condition (a) of Theorem 3.1 applies. Now, we compute
κC . Let κC(r)=

∑n−1
i, j=0 γi j gi x j . Since h ·(κC(r))=

∑
h1(κ

C(r))S(h2) for h ∈ H ,
we have that the equality g · (κC(r))= ζ−1κC(r) implies that all terms equal zero
except when j = 1; hence

κC(r)= γ0x + γ1gx + · · ·+ γn−1gn−1x

for γi ∈ k. Also, the equality x · (κC(r))= 0 implies that all terms equal zero except
for i = n− 1, so

(4-14) κC(r)= γ gn−1x

for γ ∈ k.
On the other hand, let κL(r)= u⊗ f +v⊗ f ′ ∈ V ⊗H for f =

∑n−1
i, j=0 λi j gi x j

and f ′ =
∑n−1

i, j=0 λ
′

i j g
i x j . Notice that h · (κL(r)) =

∑
h1 · u ⊗ h2 f S(h3) +∑

h1 · v⊗ h2 f ′S(h3) (see Section 1A). Since g · (κL(r)) = ζ−1κL(r), all terms
equal zero except possibly those in the first sum for which j = 1 and those in the
second sum for which j = 0. Therefore κL(r)= u⊗ f + v⊗ f ′ for

f = λ0x + λ1gx + · · ·+ λn−1gn−1x and f ′ = λ′0+ λ
′

1g+ · · ·+ λ′n−1gn−1

with λi , λ
′

i ∈ k. Applying x , we obtain

0= x · κL(r)= (g · u)⊗ (g f S(x)+ x f S(1))+ (x · u)⊗ f

+ (g · v)⊗ (g f ′S(x)+ x f ′S(1))+ (x · v)⊗ f ′

= u⊗ (−g f gn−1x + x f + f ′)+ ζ−1v⊗ (−g f ′gn−1x + x f ′).
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It follows that

−g f gn−1x + x f + f ′ = 0 and − g f ′gn−1x + x f ′ = 0.

Since f ′ is in the group algebra kG(T (n))∼= kZn and gn
= 1, the second equation

implies that x f ′= f ′x , and so f ′= λ0 is constant. The first equation further implies
that f ′ = 0 and that all terms of f are equal to zero except for i = n− 1. Thus,

(4-15) κL(r)= u⊗ λgn−1x

for λ ∈ k.
In summary,

DB,κ =
k〈u, v〉 # T (n)

(uv− vu− κ(uv− vu))

is a PBW deformation of k[u, v]# T (n) if and only if the deformation map κ equals
κC
+κL as given in (4-14) and (4-15). So, we have a two-parameter family of PBW

deformations of k[u, v] # T (n).

Example 4.16. Let H be HSw = T (2), the 4-dimensional nonsemisimple Sweedler
algebra, which is a Taft algebra with n = 2. Let B = k[u, v]. Retaining the notation
from Example 4.13, the Hopf algebra HSw is generated by g, x and acts on B by
g ·u = u, g ·v =−v, x ·u = 0, x ·v = u. Similar to Example 4.13, let r := uv−vu
and note that g · r =−r and x · r = 0. So, I = 〈r〉 is H -stable.

Let κC(r)= γ0+γ1g+γ2x+γ3gx . We have that g · (κC(r))=−κC(r) implies
that γ0= γ1= 0. Moreover, x ·(κC(r))= 0 does not yield new restrictions on κC(r).
Thus, for γ, γ ′ ∈ k, we get that κC(r) = γ x + γ ′gx . In the same fashion as
Example 4.13, we also get that κL(r)= u⊗ (λx + λ′gx) for λ, λ′ ∈ k.

In summary,

DB,κ =
k〈u, v〉 # HSw

(uv− vu− κ(uv− vu))

is a PBW deformation of k[u, v]# HSw if and only if the deformation map κ equals
κC
+ κL , where

κC(uv− vu)= γ x + γ ′gx and κL(uv− vu)= u⊗ (λx + λ′gx)

for γ, γ ′, λ, λ′ ∈ k. Thus, we have a four-parameter family of PBW deformations
of k[u, v] # HSw.

Remark 4.17. The invariant ring resulting from the action of HSw on k[u, v] is
isomorphic to the polynomial ring k[u, v2

], that is to say, k[u, v]HSw is regular.
Recall that the Shephard–Todd–Chevalley theorem states that when given a finite
group (G-) action on a commutative polynomial ring R that is linear and faithful, RG

is regular if and only if G is a reflection group. Our results would then suggest that
HSw is a “reflection Hopf algebra”. Ram and Shepler [2003] showed that there are
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no nontrivial PBW deformations of k[v1, . . . , vn]# kG for many complex reflection
groups G; such deformations are referred to as graded Hecke algebras. Now by
broadening their setting to Hopf actions on (possibly noncommutative) regular
algebras, we consider new objects in representation theory: Hopf analogues of
graded Hecke algebras. Nontrivial examples of these objects exist as we showed in
the example above. Further examples and a general explanation of this phenomenon
are worthy of further investigation.

Now we consider the well-known Hopf action of Uq(sl2) on k〈u, v〉/(uv−qvu),
where q ∈ k× with q2

6= 1. A PBW deformation of (k〈u, v〉/(uv−qvu)) # Uq(sl2)

was studied by Gan and Khare [2007]; we recover their result below. Such algebras
are known as quantized symplectic oscillator algebras of rank 1.

Example 4.18. Fix q ∈ k×, with q2
6= 1. Let H be the Hopf algebra Uq(sl2), and

B = k〈u, v〉/(uv−qvu). As in [Brown and Goodearl 2002, I.6.2], we take Uq(sl2)

to be generated by E, F, K , K−1 with relations:

E F − F E = (q − q−1)−1(K − K−1), K E K−1
= q2 E,

K F K−1
= q−2 F, K K−1

= K−1K = 1.

So, Uq(sl2) has a k-vector space basis {E i F j K m
}i, j∈N;m∈Z. The rest of the structure

of Uq(sl2) and the left Uq(sl2)-action on B is given by:

1(E)= E ⊗ 1+ K ⊗ E, 1(F)= F ⊗ K−1
+ 1⊗ F,

1(K )= K ⊗ K , 1(K−1)= K−1
⊗ K−1,

ε(E)= 0, ε(F)= 0, ε(K )= 1, ε(K−1)= 1,

S(E)=−K−1 E, S(F)=−F K , S(K )= K−1, S(K−1)= K ,

E · u = 0, F · u = v, K · u = qu, K−1
· u = q−1u,

E · v = u, F · v = 0, K · v = q−1v, K−1
· v = qv.

Let r := uv− qvu and note that E · r = F · r = 0 and K · r = K−1
· r = r . Hence,

the ideal of relations I = 〈r〉 of B is H -stable.
Since dimk V = 2, only condition (a) of Theorem 3.1 applies. Let us compute

κC(r). Since K · κC(r)= κC(K · r)= κC(r), we have that KκC(r)S(K )= κC(r)
(see Section 1A). Hence, KκC(r)= κC(r)K . Moreover,

0= κC(E · r)= E · κC(r)= EκC(r)S(1)+ KκC(r)S(E),

so EκC(r)= κC(r)E . Likewise, F ·κC(r)= 0 implies that FκC(r)= κC(r)F . So,
κC(r) is in the center of Uq(sl2). For q not a root of unity, the center of Uq(sl2) is
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generated by the quantum Casimir element [Kassel 1995, Theorem VI.4.8],

Cq = E F +
q−1K + q K−1

(q − q−1)2
= F E +

q K + q−1K−1

(q − q−1)2
,

whereas for q a root of unity, the elements Ee, Fe, K e also belong to the center of
Uq(sl2), where e = ord(q2).

To compute κL(r), let κL(r)= u⊗
∑
γi jm E i F j K m

+ v⊗
∑
γ ′i jm E i F j K m for

γi jm, γ
′

i jm ∈ k. Then,

κL(r)= κL(K · r)

=

∑
K · u⊗ γi jm K (E i F j K m)K−1

+

∑
K · v⊗ γ ′i jm K (E i F j K m)K−1

=

∑
qu⊗ γi jmq2(i− j)E i F j K m

+

∑
q−1v⊗ γ ′i jmq2(i− j)E i F j K m

=

∑
q2(i− j)+1u⊗ γi jm E i F j K m

+

∑
q2(i− j)−1v⊗ γ ′i jm E i F j K m .

Thus, given m ∈ Z/nZ, define the subspace Vm ⊂ Uq(sl2) to be the k-span of
all monomials E i F j K ` such that j − i ≡ m mod n. Then κL(uv − qvu) ∈
u⊗V2−1+v⊗V−2−1 if q is a primitive root of unity of odd order, and κL(uv−qvu)=
0 otherwise.

Therefore,

DB,κ =
k〈u, v〉 # Uq(sl2)

(uv− qvu− κ(uv− qvu))

is a PBW deformation of (k〈u, v〉/(uv−qvu))#Uq(sl2) if and only if κ = κC
+κL ,

where κC(uv−qvu) is in the center of Uq(sl2) and κL(uv−qvu) is given as above.

More generally, there is a standard Uq(sln)-action on a q-polynomial ring B in
n variables.

Question 4.19. Are there nontrivial PBW deformations of the resulting smash
product algebra B # Uq(sln)?

These would be quantized symplectic oscillator algebras of rank n− 1, and merit
further investigation.
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Highly biased prime number races
Daniel Fiorilli

Chebyshev observed in a letter to Fuss that there tends to be more primes of the
form 4nC3 than of the form 4nC1. The general phenomenon, which is referred
to as Chebyshev’s bias, is that primes tend to be biased in their distribution among
the different residue classes mod q. It is known that this phenomenon has a strong
relation with the low-lying zeros of the associated L-functions, that is, if these
L-functions have zeros close to the real line, then it will result in a lower bias.
According to this principle one might believe that the most biased prime number
race we will ever find is the Li.x/ versus �.x/ race, since the Riemann zeta
function is the L-function of rank one having the highest first zero. This race has
density 0:99999973 : : : , and we study the question of whether this is the highest
possible density. We will show that it is not the case; in fact, there exist prime
number races whose density can be arbitrarily close to 1. An example of a race
whose density exceeds the above number is the race between quadratic residues
and nonresidues modulo 4849845, for which the density is 0:999999928 : : : . We
also give fairly general criteria to decide whether a prime number race is highly
biased or not. Our main result depends on the generalized Riemann hypothesis and
a hypothesis on the multiplicity of the zeros of a certain Dedekind zeta function.
We also derive more precise results under a linear independence hypothesis.

1. Introduction and statement of results

The study of prime number races started in 1853, when Chebyshev noted in a letter
to Fuss that there seemed to be more primes of the form 4nC 3 than of the form
4nC 1. More precisely, Chebyshev claimed without proof that as c! 0, we have

�

X
p

�
�4

p

�
e�pc

D e�3c
� e�5c

C e�7c
C e�11c

� e�13c
� � � � !1:

However, as Hardy and Littlewood [1916] and Landau [1918a; 1918b] have shown,
this statement is equivalent to the Riemann hypothesis for L.s; ��4/, where ��4

denotes the primitive character modulo 4.
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Chebyshev’s observation created a new area of research which goes under the
names of either comparative prime number theory, Chebyshev’s bias or, more
colloquially, prime number races. This rich research area has a long history, en-
compassing authors such as Chebyshev, Littlewood, Wintner, Shanks, Knapowski,
Turan and Kaczorowski, to name a few, and more recently Rubinstein, Sarnak,
Schlage-Puchta, Ng, Martin, Ford, Konyagin and Lamzouri. For a good account of
the history of the subject as well as recent developments, the reader is encouraged
to consult the great expository paper [Granville and Martin 2006].

The modern way to study Chebyshev’s observation is to look at the set of
integers n for which �.nI 4; 3/ > �.nI 4; 1/, which we denote by P4I3;1. One
would like to understand the size of this set; however, it is known that its natural
density does not exist [Kaczorowski 1995]. To remedy this problem we define the
logarithmic density of a set P � N by

ı.P / WD lim
N!1

1

log N

X
n�N
n2P

1

n
;

if the limit exists. In general we define ı.P / and ı.P / to be the lim inf and lim sup
of this sequence. If P D P4I3;1, then this last limit exists under the assumption of
the generalized Riemann hypothesis (GRH) and the linear independence hypothesis
(LI), and equals 0:9959 : : : (see [Rubinstein and Sarnak 1994]).

The generalized Riemann hypothesis states that for every primitive character
� mod q, all nontrivial zeros of L.s; �/ lie on the line <.s/D 1

2
.

The linear independence hypothesis states that for every fixed modulus q, the set[
� mod q
� primitive

f=.��/ WL.��; �/D 0; 0<<.��/ < 1; =.��/� 0g

is linearly independent over Q.
Rubinstein and Sarnak developed a framework to study this question and more

general prime number races. Assuming GRH and LI, they have shown that for any
r-tuple .a1; : : : ; ar / of admissible residue classes mod q (that is, .ai ; q/D 1), the
logarithmic density of the set

PqIa1;:::;ar
WD fn W �.nI q; a1/ > �.nI q; a2/ > � � �> �.nI q; ar /g;

which we denote by ı.qI a1; : : : ; ar /, exists and is not equal to 0 or 1 (we call this
an r-way prime number race). Moreover, they have shown that if r is fixed, then as
q!1,

max
1�a1;:::;ar�q
.ai ;q/D1

ˇ̌̌̌
ı.qI a1; : : : ; ar /�

1

r !

ˇ̌̌̌
! 0:
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In other words, the bias dissolves as q!1. For r D 2, this phenomenon can be
readily seen in [Fiorilli and Martin 2013], where the authors exhibited the list of
the 117 densities which are greater than or equal to 9

10
. By the trivial inclusion

PqIa1;:::;ar
� PqIa1;a2

;

we see that the most biased r-way prime number race is the two-way race appearing
on top of the list in that article, that is,

ı.24I 5; 1/D 0:999988 : : : :

Only one race is known to be more biased: it is the race between Li.x/ and �.x/,
for which the density is

ı.1/ WD ı.fn W Li.n/ > �.n/g/D 0:99999973 : : : :

One can also combine different residue classes mod q to make prime number
races. For two subsets A;B � .Z=qZ/�, we consider the inequality

1

jAj

X
a2A

�.nI q; a/ >
1

jBj

X
b2B

�.nI q; b/; (1)

and denote by ı.qIA;B/ the logarithmic density of the set of n for which it is
satisfied, if the density exists. An example of such race was given by Rubinstein
and Sarnak, who studied the race between

�.xI q;NR/D #fp � x W p is not a quadratic residue mod qg

and
�.xI q;R/D #fp � x W p is a quadratic residue mod qg;

for moduli q having a primitive root. This race appears naturally in their work,
since, as they have shown, it is the property of the competitors being a quadratic
residue or not which determines whether a two-way prime number race is biased or
not. These are good candidates for biased races, however, it can be shown that as
q!1, ı.qINR;R/! 1

2
(but at a much slower rate than two-way races [Fiorilli

and Martin 2013]).
It is known [Bays et al. 2001; Fiorilli and Martin 2013] that under GRH and LI,

low-lying zeros of L.s; �/ have a significant effect on decreasing the bias, which
explains why races of high moduli are very moderately biased. Odlyzko [1990]
has shown that the Dedekind zeta function �K .s/ having the highest first zero in
the critical strip is the Riemann zeta function, which is �0 D

1
2
C i � 14:134725 : : : .

Subsequently, Miller [2002] generalized this result by showing that each member
of a very large class of cuspidal GLn L-functions of real archimedean type has the
property of either having a zero in the interval

�
1
2
�14:13472i; 1

2
C14:13472i

�
, or
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having a zero whose real part is strictly larger than 1
2

(violating GRH). In particular,
this class contains all Dirichlet, rational elliptic curve and modular form L-functions,
and possibly also contains all Artin and rational abelian variety L-functions.1 By
these considerations, one might conjecture that the highest density one will ever
find by doing prime number races with L-functions of real archimedean type is
ı.1/D 0:99999973 : : : .

As it turns out, this is false, and we can find races which are arbitrarily biased.
This is achieved by considering races between linear combinations of prime counting
functions, and we will see in Section 5 that the key to finding such biased races is
to take a very large number of residue classes.

The first (and most extreme) example we give is a quadratic residue versus
quadratic nonresidue race as in [Rubinstein and Sarnak 1994], but for a general
modulus q. We take A D NR WD fa 2 .Z=qZ/� W a 6� � mod qg and B D R WD

fb 2 .Z=qZ/� W b �� mod qg in (1). An elementary argument using the Chinese
remainder theorem shows that jBjD�.q/=�.q/ and jAjD�.q/.1�1=�.q//, where
for G D .Z=qZ/�,

�.q/ WD ŒG WG2�D

8̂̂̂<̂
ˆ̂:

2!.q/ if 2 − q;

2!.q/�1 if 2 j q but 4 − q;

2!.q/ if 4 j q but 8 − q;

2!.q/C1 if 8 j q;

and !.q/ denotes the number of distinct prime factors of q.

Theorem 1.1. Assume GRH and LI. Then for any � > 0 there exists q such that

1� � < ı.qINR;R/ < 1: (2)

Moreover, for any fixed 1
2
���1 there exists a sequence of moduli fqng such that

lim
n!1

ı.qnINR;R/D �: (3)

In concise form,
fı.qINR;R/g D

�
1
2
; 1
�
:

To prove the existence of highly biased races we do not need the full strength
of LI; in fact, we only need a much weaker hypothesis on the multiplicity of the
elements of the multiset of all nontrivial zeros of quadratic Dirichlet L-functions
modulo q, which we will denote by Z.q/. Note that LI implies that the elements
of this set have multiplicity one.

1The restriction to L-functions of real archimedean type is crucial here, since Bober et al. [2014]
have given an example of an L-function having a first zero whose imaginary part is t0 � 14:496. They
have also shown that under certain conditions, all L-functions have a zero in the interval .�t2; t2/,
with t2 � 22:661.
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Theorem 1.2. Assume GRH, and assume that there exists an increasing sequence
of moduli q such that log q D o.�.q// and such that each element of Z.q/ has
multiplicity o.�.q/= log q/. Then for any � > 0 there exists q such that

1� � < ı.qINR;R/� ı.qINR;R/ < 1: (4)

Remark 1.3. The difference between (2) and (4) is explained by the fact that it is
not known whether ı.qINR;R/ exists under GRH alone.

Remark 1.4. For a fixed modulus q � 2, write

q D 2e
Y
p jq
p¤2

pep and ` WD
Y
p jq
p¤2

p:

One can show that under GRH,2 ı.qINR;R/D ı.2min.3;e/`INR;R/: Therefore,
when studying ı.qINR;R/ one can assume without loss of generality that q is of
the form 2m`, where ` is an odd squarefree integer and m� 3.

Remark 1.5. We will see that what controls the bias in these races is the number
of prime factors of q and the size of q. More precisely, under GRH and LI the two
following statements are equivalent:X

p jq

log p D o.2!.q//; (5)

ı.qINR;R/D 1� o.1/: (6)

Using this, we can show that the set of moduli q�x such that ı.qINR;R/D1�o.1/

has density .log x/��Co.1/, where �D 1� .1C log log 2/= log 2D 0:086071 : : : .
It is an interesting coincidence that the integers satisfying (5) also appear in the
Erdös multiplication table (see Ford’s work [2008a; 2008b] on integers having a
divisor in a given interval).

In terms of random variables, Theorem 1.2 can be explained by saying that the
extreme examples we are considering correspond to random variables whose mean
is much larger than their standard deviation. The easy way to show that this implies
a very large bias is to use Chebyshev’s inequality; however this approach is quite
imprecise when the ratio E ŒX �=

p
Var ŒX � is large. Instead, one should study the large

deviations of X � E ŒX �. The theory of large deviations of remainder terms arising
from prime counting functions was initiated by Montgomery [1980], and has since

2First note that there are no real primitive characters modulo pe with p ¤ 2 and e � 2, and there
are no real primitive characters modulo 2e for e � 4. That is, the conductor of any real character
modulo q divides 2min.3;e/`. The claimed equality follows from Lemma 2.1, since L.s; ��/ and
L.s; �/ have the same nontrivial zeros, and thus Eq.x/DE2min.3;e/`.x/C o.1/.
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q !.q/ �.q/= log q0 ı.qINR;R/

3 1 1:82 0:999063

15 2 1:47 0:999907

105 3 1:71 0:999928

1155 4 2:26 0:999877

15015 5 3:33 0:999950

255255 6 5:14 0:9999946

4849845 7 8:31 0:999999928

111546435 8 13:81 0:999999999954

Table 1. First few values of ı.qINR;R/ for half-primorial moduli.

then been developed by Monach [1980], Montgomery and Odlyzko [1988], Rubin-
stein and Sarnak [1994], and more recently Ng [2004] and Lamzouri [2012]. Exploit-
ing the results of Montgomery and Odlyzko we are able to be more precise in (2).

Theorem 1.6. Assume GRH and LI, and define q0 WD
Q

p jq

p. If �.q/= log q0 is large
enough, then we have

exp
�
�a1

�.q/

log q0

�
� 1� ı.qINR;R/� exp

�
�a2

�.q/

log q0

�
;

where a1 and a2 are positive absolute constants.

This last theorem shows that the convergence in (2) can be quite fast. It is
actually possible to explicitly compute a density which exceeds ı.1/, namely
ı.4849845INR;R/ D 0:999999928 : : : . In Table 1 we list the first few values
of ı.qINR;R/ for half-primorial moduli (that is, for q the product of the first k

primes excluding pD 2). These values were computed using Myerscough’s method
[2013] and Rubinstein’s lcalc package.

Remark 1.7. As remarked in [Rubinstein and Sarnak 1994], these densities can
theoretically be computed to any given level of accuracy under GRH alone. Indeed,
using the B2 almost-periodicity of these races, this amounts to computing a finite
number of zeros of Dirichlet L-functions to a certain level of accuracy.

Remark 1.8. One can summarize Remark 1.5, Theorem 1.1 and Theorem 1.6 by
the statement

ı.qINR;R/�
1
p

2�

Z 1
�
p

2!.q/�1= log q0
e�

x2

2 dx:
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Remark 1.9. Using our analysis, one can show under GRH and LI that for almost
all squarefree integers q,

ı.qINR;R/� 1
2
D .log q/

log 2�1

2
Co.1/:

That is to say, most such races have a very moderate bias.

It is possible to analyze highly biased races in a more general setting, and to
determine which features are needed for this bias to appear. To do this we take EaD
.a1; : : : ; ak/ a vector of invertible reduced residues modulo q and Ę D .˛1; : : : ; ˛k/

a nonzero vector of real numbers such that
Pk

iD1 ˛i D 0. We will be interested in
the race between positive and negative entries of Ę; that is, we define

ı.qI Ea; Ę/ WD ı.fn W ˛1�.nI q; a1/C � � �C˛k�.nI q; ak/ > 0g/:

Moreover, we define

�i WD

(
1 if ai �� mod q;

0 if ai 6�� mod q;

and we assume without loss of generality that

kX
iD1

�i˛i < 0:

(By Lemma 5.1, this will force ı.qI Ea; Ę/> 1
2

. If
Pk

iD1�i˛iD 0, then ı.qI Ea; Ę/D 1
2

.
If
Pk

iD1�i˛i>0, then we multiply Ę by�1 and study the complementary probability
ı.qI Ea;�Ę/D 1� ı.qI Ea; Ę/.)

There are many choices of vectors Ea and Ę which yield highly biased races.
We give some examples with constant coefficients, which we believe are the most
natural.

Theorem 1.10. Assume GRH and LI, and let

kR �
�.q/

�.q/
and kN �

�
1�

1

�.q/

�
�.q/

be two positive integers. Take a1; : : : ; akN
to be any distinct quadratic nonresidues

mod q, with coefficients ˛1 D � � � D ˛kN
D kR , and akNC1; : : : ; akNCkR

to be any
distinct quadratic residues mod q, with ˛kNC1 D � � � D ˛kNCkR

D �kN . There
exists an absolute constant c > 0 such that if for some 0< � < 1=.2c/ we have

1

kN

C
1

kR

< �
�.q/2

�.q/ log q
; (7)

then
ı.qI Ea; Ę/ > 1� c�:
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Remark 1.11. Fix 0< � < 1=.2c/ and define N�.q/ to be the number of positive
integers kN , kR for which kN � .1� 1=�.q//�.q/, kR � �.q/=�.q/ and

1

kN

C
1

kR

< �
�.q/2

�.q/ log q
:

Then, for values of q for which �.q/ � ��2 log q, we have that N�.q/ tends to
infinity as q !1. Hence, for values of q for which log q D o.�.q//, (7) has a
large number of solutions.

Remark 1.12. Theorem 1.10 shows the existence of highly biased races with the
same number of residue classes on each side of the inequality. Indeed, for moduli q

with log qDo.�.q//, taking kRDkN with �.q/ log q=�.q/2Do.kR/ and choosing
any residue classes a1; : : : ; akNCkR

gives a race with ı.qI Ea; Ę/D 1� o.1/.

Remark 1.13. In Theorem 1.1, we have

kN D

�
1�

1

�.q/

�
�.q/ and kR D

�.q/

�.q/
;

which explains why we obtained a highly biased race when �.q/was large compared
to log q.

Here is our most general class of highly biased races.

Theorem 1.14. Assume GRH and LI. There exists an absolute constant c > 0 such
that if for some 0< � < 1=.2c/ we have

kP
iD1

˛2
i� kP

iD1

�i˛i

�2 < � �.q/2

�.q/ log q
; (8)

then
ı.qI Ea; Ę/ > 1� c�:

Remark 1.15. Trivially, one has

kP
iD1

˛2
i� kP

iD1

�i˛i

�2 � 1

kR

;

where kR WD

kP
iD1

�i . Hence, for (8) to be satisfied, one needs kR to be larger than

��1�.q/ log q

�.q/2
:
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Since kR � �.q/=�.q/, this imposes the condition on q

�.q/� ��1 log q:

Remark 1.16. The goal of Theorem 1.14 is to give a large class of biased races,
without necessarily being precise on the value of ı.qI Ea; Ę/. One can use the
Montgomery–Odlyzko bounds [1988] to obtain more precise estimates in some
particular cases.

The previous examples of highly biased races all have the property that the number
of residue classes involved is very large in terms of q (it is at least q1�o.1/). In the
next theorem we show that this condition is necessary, and that moreover highly
biased races are very particular, in the sense that they must satisfy precise conditions.

Theorem 1.17. Assume GRH and LI. There exist absolute positive constants K1, K2

and 0< � < 1
2

such that if k �K1�.q/ and� kP
iD1

�i˛i

�2
kP

iD1

˛2
i

�K2

�.q/ log
3�.q/

k
�.q/2

; (9)

then
ı.qI Ea; Ę/� 1� �: (10)

(Hence this race cannot be too biased.)

Remark 1.18. Applying the Cauchy–Schwarz inequality and using that kR WDPk
iD1�i � �.q/=�.q/, one sees that if �.q/�K2 log.3�.q/=k/, then whatever Ea

and Ę are, (9) holds. Moreover, in the range �.q/ >K2 log.3�.q/=k/ we have that
if kR �K2�.q/=�.q/

2, then (9) holds. We conclude that a necessary condition to
obtain a highly biased race is that kR� �.q/=�.q/2.

An interesting feature of prime number races is Skewes’ number. It is by
definition the smallest x0 for which

�.x0/ > Li.x0/:

This number has been extensively studied since Skewes’ paper [1933] in which he
showed under the Riemann hypothesis that

x0 < 10101034

:

The Riemann hypothesis has since then been removed and the upper bound greatly
reduced; we refer the reader to [Bays and Hudson 2000] for the list of such im-
provements. The current record is due to the authors of that work, who showed that
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x0 < 1:3983� 10316, and moreover this bound is believed to be close to the true
size of x0.

One could also study the generalized Skewes’ number

xqIa;b WD inffx W �.xI q; a/ < �.xI q; b/g:

However, two-way prime number races become less and less biased as q grows;
that is, ı.qI a; b/! 1

2
uniformly in a and b coprime to q. Hence, for large q we

expect this generalized Skewes number to be small and uninteresting.
The situation is quite different with the highly biased race we constructed; in fact,

we expect the Skewes number

xq WD inffx W �.xI q;NR/ < .�.q/� 1/�.xI q;R/g

to tend to infinity as �.q/= log q0 tends to infinity (q0 is the radical of q). Using
similar arguments to those of [Montgomery 1980; Ng 2000], we can speculate on
the exact growth rate of xq .

Conjecture 1.19. As �.q/= log q0 tends to infinity we have

log log xq �
�.q/

log q0
:

2. Results without the linear independence hypothesis

The goal of this section is to prove Theorem 1.2 (from which the first part of
Theorem 1.1 clearly follows). We first note that if ADNR and B DR, then (1) is
equivalent to

�.xI q;NR/ > .�.q/� 1/�.xI q;R/:

Lemma 2.1. Fix q � 3. Assuming GRH, we have that

Eq.x/W D
�.xI q;NR/� .�.q/� 1/�.xI q;R/

p
x= log x

D �.q/� 1C
X
�mod q

�2D�0

� ¤�0

X

�

xi
�

��
C ox!1.1/:

Proof. Let b be an invertible reduced residue mod q. We will use the orthogonality
relation X

�mod q

�2D�0

� ¤�0

�.b/D

�
�.q/� 1 if b �� mod q;

�1 if b 6�� mod q:
(11)
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The explicit formula gives

X
�mod q

�2D�0

� ¤�0

 .x; �/D�
X
�mod q

�2D�0

� ¤�0

X
��

x��

��
COq.log x/; (12)

where �� runs over the nontrivial zeros of L.s; �/. The left side of (12) is equal toX
�mod q

�2D�0

� ¤�0

X
p�x

�.p/ log pC
X
�mod q

�2D�0

� ¤�0

X
p2�x

�.p/2 log pCOq

�
x

1
3

�

D .�.q/� 1/
X
p�x

p��mod q

log p �
X
p�x

p 6��mod q

log pC .�.q/� 1/
p

xC oq.
p

x /;

by (11) and the prime number theorem. Combining this with a standard summation
by parts we get that

�.xI q;NR/� .�.q/� 1/�.xI q;R/
p

x= log x
D�.q/�1C

X
�mod q

�2D�0

� ¤�0

X

�

xi
�

��
Cox!1.1/: �

Lemma 2.2. Assuming GRH, the quantity Eq.x/ defined in Lemma 2.1 has a
limiting logarithmic distribution; that is, there exists a Borel measure �q on R such
that for any bounded Lipschitz continuous function f W R! R we have

lim
Y!1

1

Y

Z Y

2

f .Eq.e
y// dy D

Z
R

f .t/ d�q.t/:

Proof. This follows from analysis in [Rubinstein and Sarnak 1994; Akbary et al.
2013]. �

Remark 2.3. By the Portmanteau theorem, the Lipschitz assumption in the last
lemma can be removed.

Remark 2.4. As Schlage-Puchta has pointed out to me, it is possible to show under
GRH that for all but a countable set of values of c, the density

Fq.c/ WD lim
Y!1

1

Y
measfy � Y WEq.e

y/� cg



1744 Daniel Fiorilli

exists. Moreover, one can show that in the domain where F is defined,

sup
x<c

Fq.x/� lim inf
Y!1

1

Y
measfy � Y WEq.e

y/� cg

� lim sup
Y!1

1

Y
measfy � Y WEq.e

y/� cg � inf
x>c

Fq.x/;

and so in particular if Fq.x/ is continuous at xD c, then the set fy�Y WEq.e
y/� cg

has a density.

Let Xq be the random variable associated to�q . We will show that Xq can be very
biased, in the sense that Prob ŒXq > 0� can be very close to 1. To do so we will com-
pute the first two moments of Eq.e

y/, which we relate to the random variable Xq .

Lemma 2.5. Under GRH, we have that

lim
Y!1

1

Y

Z Y

2

Eq.e
y/ dy D

Z
R

t d�q.t/;

lim
Y!1

1

Y

Z Y

2

Eq.e
y/2 dy D

Z
R

t2 d�q.t/:

Proof. We will only prove the second statement, as the first follows along the same
lines. Similarly as in [Schlage-Puchta 2000], we can compute that

lim
Y!1

1

Y

Z Y

0

jEq.e
y/j4 dy D

X
�1C�2C�3C�4D0

1

�1�2�3�4

<1;

where the last sum runs over quadruples of nontrivial zeros of quadratic Dirichlet
L-functions modulo q. This implies that as M !1,

lim sup
Y!1

1

Y

Z
0�y�Y

jEq.e
y/j>M

jEq.e
y/j2 dy! 0: (13)

Indeed, if this was not the case then we would have that for all M >M0,

lim sup
Y!1

1

Y

Z
0�y�Y

jEq.e
y/j>M

jEq.e
y/j2 dy � � > 0;

and so

lim sup
Y!1

1

Y

Z
0�y�Y

jEq.e
y/j>M

jEq.e
y/j4 dy � �M 2;
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which would contradict the fact that the fourth moment is finite. We now define the
bounded Lipschitz function

HM .t/ WD

8<:
t2 if jt j �M;

M 2.M C 1� jt j/ if M < jt j �M C 1;

0 if jt j �M C 1:

We then have

1

Y

Z Y

2

Eq.e
y/2 dy

D
1

Y

Z
2�y�Y

HM .Eq.e
y// dy �

1

Y

Z
2�y�Y

M<jEq.e
y/j�MC1

HM .Eq.e
y// dy

C
1

Y

Z
2�y�Y

jEq.e
y/j>M

Eq.e
y/2 dyI

therefore by (13) and Lemma 2.2 we get that

lim sup
Y!1

1

Y

Z Y

2

Eq.e
y/2 dy D

Z
R

HM .t/ d�q.t/C �M ;

where �M tends to zero as M !1. Using the bound

�q..�1;�M �[ ŒM;1//� exp.�c2

p
M /

(see [Rubinstein and Sarnak 1994, Theorem 1.2]), we get by taking M !1 that

lim sup
Y!1

1

Y

Z Y

2

Eq.e
y/2 dy D

Z
R

t2 d�q.t/:

The same reasoning applies to the lim inf, and thus the proof is finished. �

The following calculation is similar to that of Schlage-Puchta [2000], who
computed the moments of e�t=2 .et I�/.

Lemma 2.6. Assume GRH. Then,

E ŒXq �D �.q/� 1C z.q/ and Var ŒXq �D
X�


¤0

m2



1
4
C 
 2

;

where the last sum runs over the imaginary parts of the nontrivial zeros of

Zq.s/ WD
Y

�2D�0

� ¤�0

L.s; �/;
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m
 denotes the multiplicity of the zero 1
2
C i
 , the star means that we count the

zeros without multiplicity, and z.q/ denotes the multiplicity of the (possible) real
zero 
 D 0.

Proof. By Lemma 2.1 we have thatZ Y

2

Eq.e
y/ dy D .�.q/� 1C z.q//.Y � 2/

C

X
�mod q

�2D�0

� ¤�0

X

�¤0

1
1
2
C i
�

Z Y

2

ei
�y dyC oY!1.Y /

D .�.q/� 1C z.q//.Y � 2/COq.1/C oY!1.Y /;

by absolute convergence. Taking Y !1 and applying Lemma 2.5 gives that

E ŒXq �D lim
Y!1

1

Y

Z Y

2

Eq.e
y/ dy D �.q/� 1C z.q/:

The calculation of the variance follows from Lemma 2.1 and from Parseval’s
identity for B2 almost-periodic functions [Besicovitch 1926]. (An alternative way
to compute the variance is to argue as in [Schlage-Puchta 2000].) �

Remark 2.7. It is a general fact that Besicovitch almost-periodic functions [1955]
always have a mean value. Moreover, Parseval’s identity [Besicovitch 1955; 1926]
shows that Besicovitch B2 almost-periodic functions f .y/ have a second moment,
given by

lim
Y!1

1

Y

Z Y

0

f .y/2 dy D
X
n�1

A2
n;

where the An are the Fourier coefficients of f .

Lemma 2.8. Let � mod q be a Dirichlet character. We have for k � 1 that

bk.�/ WD
X

�

1�
1
4
C 
 2

�

�k �k log q�;

where the sum is counted with multiplicity.

Remark 2.9. One has an exact formula for bk.�/, in terms of the values of the
derivatives of log L.s; �/ evaluated at sD 1 [Fiorilli and Martin 2013, Lemma 3.15].
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Proof. This follows from applying the Riemann–von Mangoldt formula and sum-
mation by parts:

bk.�/D
X
j
�j<1

1�
1
4
C 
 2

�

�k C Z 1
1

dN.t; �/�
1
4
C t2

�k
�k N.1; �/C 2k

Z 1
1

tN.t; �/�
1
4
C t2

�kC1
dt �k log q�: �

Lemma 2.10. Assume GRH. If

B.q/ WD
E ŒXq �p
Var ŒXq �

is large enough, then

ı.qINR;R/� 1� 2
Var ŒXq �

E ŒXq �2
:

Proof. It is clear from Lemmas 2.6 and 2.8 that Var ŒXq �� log q0, and therefore
our assumption that B.q/ is large enough implies that E ŒXq � is also large enough,
say at least 4. Now let

H.x/ WD

�
0 if x < 0;

1 if x � 0;
f .x/ WD

8<:
0 if x < 0;

x if 0� x < 1;

1 if x � 1:

Clearly, f .x/ is bounded Lipschitz continuous and f .x/�H.x/. Therefore,

ı.qINR;R/D lim inf
Y!1

1

Y

Z Y

2

H.Eq.e
y// dy � lim inf

Y!1

1

Y

Z Y

2

f .Eq.e
y// dy;

which by Lemma 2.2 is equal toZ
R

f .t/ d�q.t/D 1�

Z
R

.1�f .t// d�q.t/

D 1�

Z 1

�1

.1�f .t// d�q.t/� 1��q.�1; 1�:

We now apply Chebyshev’s inequality:

�q.�1; 1�D Prob ŒXq � 1�D Prob ŒXq � E ŒXq �� 1� E ŒXq � �

� Prob ŒjXq � E ŒXq �j � E ŒXq �� 1��
Var ŒXq �

.E ŒXq �� 1/2
� 2

Var ŒXq �

E ŒXq �2
;

since E ŒXq �� 4, and therefore

ı.qINR;R/� 1� 2
Var ŒXq �

E ŒXq �2
: �
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Proof of Theorem 1.2. By Lemma 2.6, our hypothesis implies that for the sequence
of moduli q under consideration,

Var ŒXq ��max


.m
 /

X



� m


1
4
C 
 2

�

D o

�
�.q/

log q
�.q/ log q

�
D o

�
�.q/2

�
;

by Lemma 2.8. Lemma 2.6 also implies that E ŒXq �� �.q/, and hence Lemma 2.10
implies that

ı.qINR;R/� 1� o.1/:

The last inequality to show, that is, ı.qINR;R/< 1, follows from a lower bound on
�E.�1;�1� similar to that in [Rubinstein and Sarnak 1994, Theorem 1.2], which
holds in greater generality [Akbary et al. 2013]. Using this lower bound, one does an
analysis similar to that in the proof of Lemma 2.10, replacing the function f .x/with

g.x/ WD

8<:
1 if x < �1;

�x if � 1� x < 0;

0 if x � 0;

in order to obtain a lower bound for

1� ı.qINR;R/D lim sup
Y!1

1

Y

Z 1
2

.1�H.Eq.e
y/// dy: �

3. A central limit theorem

The goal of this section is to show a central limit theorem under GRH and LI, from
which the second part of Theorem 1.1 will follow. We first translate our problem
to questions on sums of independent random variables, which can be done thanks
to LI. Recall that we are interested in the set of n such that

�.nI q;NR/ > .�.q/� 1/�.nI q;R/:

Lemma 3.1. Assume GRH and LI. Then the logarithmic density of the set of n for
which �.nI q;NR/ > .�.q/� 1/�.nI q;R/ exists and is equal to

Prob ŒXq > 0�;

where Xq is the random variable defined in Section 2. Moreover, we have

Xq � �.q/� 1C
X
�mod q

�2D�0

� ¤�0

X

�>0

2<.Z
�/q
1
4
C 
 2

�

; (14)

where the Z
� are independent identically distributed random variables following
a uniform distribution on the unit circle in C.
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Proof. By Lemma 2.1, we have that

�.xI q;NR/� .�.q/� 1/�.xI q;R/
p

x= log x
D �.q/� 1C

X
�mod q

�2D�0

� ¤�0

X

�

xi
�

��
C o.1/;

since LI implies that there are no real zeros. It follows by the work of Rubinstein
and Sarnak that ı.qINR;R/ exists and equals Prob ŒXq > 0� (their analysis shows
that the distribution function of Xq is continuous). Moreover, an argument similar
to the proof of [Fiorilli and Martin 2013, Proposition 2.3] shows that (14) holds. �

One can show that the random variables in (14) have variance Var Œ<.Z
�/�D
1
2

and have mean E ŒZ
� �D 0. Using this and the fact that they are mutually indepen-
dent, we recover Lemma 2.6:

E ŒXq �D �.q/� 1; Var ŒXq �D
X
�mod q

�2D�0

� ¤�0

X

�

1
1
4
C 
 2

�

; (15)

since the zeros come in conjugate pairs (� is real). We will see in the following
lemma that Var ŒXq �� �.q/ log q0 (recall that q0 WD

Q
p jq

p), and this is a crucial fact
in our analysis.

Lemma 3.2. Assume GRH and LI, and let Xq be the random variable defined
in (14). We have that

Var ŒXq �D 2!.q/�1��q log q0
�
1CO

�
log log q0

log q0

��
;

where �q D 1 if 2 j q, and �q D 0 otherwise. In particular,

Var ŒXq �� �.q/ log q0:

Proof. By Remark 1.4, we have that

Var ŒXq �D Var ŒX2e`�;

where e � 3, 2e k q and ` WD
Q

p jq;p¤2 p. Therefore we assume from now on
(without loss of generality) that qD 2e`, with e� 3 and ` an odd squarefree integer.

Lemma 3.5 of [Fiorilli and Martin 2013] gives thatX

�

1
1
4
C 
 2

�

D log q�� log� � 
 � .1C�.�1// log 2C 2<
L0

L
.1; ��/

D log q�CO.log log q�/; (16)
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by Littlewood’s GRH bound on .L0=L/.1; �/. Plugging this into (15), we get

Var ŒXq �D
X

� mod q

�2D�0

log q�CO
�
2!.q/ log log q

�
:

If q is odd, then there is exactly one primitive real character mod d for every d j q,
henceX
� mod q

�2D�0

log q� D
X
d jq

log d D
X
d jq

X
p jd

log p D
X
p jq

.log p/2!.q/�1
D 2!.q/�1 log q:

If 2 k q, then there are no primitive characters modulo even divisors of q, soX
�mod q

�2D�0

log q� D
X
d j q

2

log d D 2!.q/�2 log
q

2
:

If 4 k q, then there is exactly one primitive real character modulo divisors which
are multiples of 4, soX

� mod q

�2D�0

log q� D
X
d j q

4

log d C
X

4jd jq

log d D 2!.q/�2 log.2q/:

If 8 k q, then there are exactly two primitive real characters modulo divisors which
are multiples of 8, soX

�mod q

�2D�0

log q� D
X
d j q

8

log d C
X

4jd jq
8−d

log d C 2
X

8jd jq

log d D 2!.q/�2 log.8q/: �

Let Xq be the random variable defined in (14), and define

B.q/ WD
E ŒXq �p
Var ŒXq �

:

It is B.q/ which dictates the behavior of the race we are considering: if B.q/ is
small, then the race will not be very biased, whereas if B.q/ is large, then the race
will have a significant bias. By Lemma 3.2, we have under GRH and LI the estimate

B.q/D

s
2!.q/C1C�q

log q0

�
1CO

�
2�!.q/C

log log q0

log q0

��
: (17)

To prove the second part of Theorem 1.1 we will need a sequence of moduli for
which B.q/ is very regular.
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Lemma 3.3. For any fixed 0 < c < 1, there exists an increasing sequence of
squarefree odd integers fqng such that

2!.qn/C1
D .cC o.1// log qn:

Proof. Fix 0 < c <1, and define ec WD minfe � 1 W 2�ec < 2=log 4g and c1 WD

2�ec c < 2=log 4. Define for `D 1; 2; : : : the intervals

I` WD
�
exp.c�1

1 2`/; 2 exp.c�1
1 2`/

�
; J` WD

�
2 exp.c�1

1 2`/; 4 exp.c�1
1 2`/

�
:

Since c1 < 2=log 4, we have that for all `� 1,

4 exp.c�1
1 2`/ < exp.c�1

1 2`C1/I

hence our intervals are all disjoint. We define p` to be any prime in the interval I`,
and similarly for p0

`
2J

`
. The existence of such primes is granted by Bertrand’s pos-

tulate (note that exp.c�1
1

21/>4). Now, the sequence of moduli we are looking for is

qn WD

Y
1�`�ec

p0`

Y
1�`�n

p`;

since

2!.qn/C1

log qn
D

2nCecC1

Oc.1/C
X

1�`�n

�
c�1

1 2`CO.1/
� D 2nCecC1

c�1
1

2nC1COc.n/

D 2ec c1

�
1COc

�
n

2n

��
D c.1C o.1//;

by definition of c1. �

Before proving the second part of Theorem 1.1, we give some information
about the characteristic function of the random variables we are interested in. The
following lemma implies a central limit theorem.

Lemma 3.4. Assume GRH and LI. Let Xq be the random variable defined in (14),
and define

Yq WD
Xq � E ŒXq �p

Var ŒXq �
D

1p
Var ŒXq �

X
�mod q

�2D�0

� ¤�0

X

�>0

2<.Z
�/q
1
4
C 
 2

�

:

The characteristic function of Yq satisfies, for j�j � 3
5

p
Var ŒXq �,

yYq.�/D�
�2

2
CO

�
�4

�.q/ log q0

�
:
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Moreover, in the same range, we have

yYq.�/� �
�2

2
: (18)

Proof. The proof is very similar to that of [Fiorilli and Martin 2013, Theorem 3.22].
Using the additivity of the cumulant-generating function of Xq , one can show that

log yXq.�/D iE ŒXq ��C
X
�mod q

�2D�0

� ¤�0

X

�>0

log

 
J0

 
2�q

1
4
C 
 2

�

!!
; (19)

where J0.x/ is the Bessel function of the first kind:

J0.x/D

1X
nD0

.�1/n.x=2/2n

n!2
:

We will use the following Taylor expansion, which is valid for j�j � 12
5

(see [Fiorilli
and Martin 2013, Section 2.2]):

log J0.�/D�
�2

4
CO.�4/: (20)

Plugging this estimate into (19), we get that for j�j � 3
5

,

log yXq.�/D iE ŒXq �� � �
2
X
�mod q

�2D�0

� ¤�0

X

�>0

1
1
4
C 
 2

�

CO

 
�4

X
�mod q

�2D�0

� ¤�0

X

�>0

1�
1
4
C 
 2

�

�2
!
:

Applying Lemma 2.8 givesX
�mod q

�2D�0

� ¤�0

X

�>0

1�
1
4
C 
 2

�

�2 � �.q/ log q0:

Moreover, by Lemma 3.2 we have Var ŒXq �� �.q/ log q0. Putting these together
and using (15), we get that

log yYq.�/D log yXq

�
�p

Var ŒXq �

�
� iE ŒXq �

�p
Var ŒXq �

D�
�2

2
CO

�
�4

�.q/ log q0

�
;
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showing the first assertion. For the second we use the same argument, but we
replace the estimate (20) with the following inequality, valid in the range j�j � 12

5
:

log J0.�/� �
�2

4
: �

Lemma 3.5 (Berry–Esseen inequality). Assume GRH and LI. Denote by Fq the
distribution function of

Yq WD
Xq � E ŒXq �p

Var ŒXq �
;

and by F that of the Gaussian distribution. We have that

sup
x2R

jFq.x/�F.x/j �
1

�.q/ log q0
:

Remark 3.6. One could get a more precise estimate using the Feuerverger–Martin
formula [2000]. However, the estimate of Lemma 3.5 is sufficient for our purposes.

Proof. Since the statement is trivial if �.q/ log q0 is bounded, we can assume without
loss of generality that Var ŒXq �� 1 (by Lemma 3.2).

The Berry–Esseen inequality in the form of [Esseen 1945, Theorem 2a] gives
that for any T > 0,

sup
x2R

jFq.x/�F.x/j �

Z T

�T

yYq.�/� e�
�2

2

�
d�C

1

T
: (21)

We take T WDVar ŒXq �. By Lemma 3.4, the part of the integral with j�j� 3
5

Var ŒXq �
1
4

is at most

Z 3
5

VarŒXq �
1
4

� 3
5

VarŒXq �
1
4

e�
�2

2 .e
O
�

�4

�.q/ log q0

�
� 1/

�
d�

�
1

�.q/ log q0

Z
R

�3e�
�2

2 d��
1

�.q/ log q0
:

We now bound the remaining part of the integral using an argument analogous to
[Fiorilli and Martin 2013, Proposition 2.14]. Fix 0� �� 5

6
. By the properties of

the Bessel function J0.x/, we have that if j�j> �=2, then whatever 
� 2 R is,ˇ̌̌̌
ˇJ0

 
2�q

1
4
C 
 2

�

!ˇ̌̌̌
ˇ� J0

 
�q

1
4
C 
 2

�

!
:
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By (19), this shows that in the range j�j > 5
12

Var ŒXq �
1
4 we have j yXq.�/j �

j yXq.
5

12
Var ŒXq �

1
4 /j (since Var ŒXq �� 1), and so

Z
3
5

VarŒXq �
1
4<j�j�VarŒXq �

yYq.�/� e�
�2

2

�
d�

� yYq

�
5

12
Var ŒXq �

1
4

�
log Var ŒXq �C

Z
j�j> 3

5
VarŒXq �

1
4

e�
�2

2

�
d�

� exp.� 25
577

Var ŒXq �
1
2 /C exp.� 9

51
Var ŒXq �

1
2 /;

by (18). Applying Lemma 3.2, we conclude that the right-hand side of (21) is at
most a constant times .�.q/ log q0/�1. �

Proof of Theorem 1.1, second part. Fix � 2
�

1
2
; 1
�
. We wish to find a sequence of

moduli fqng such that ı.qn;NR;R/! �. The case � D 1 was already covered
in part (1), and the case � D 1

2
follows from taking prime values of q, by the

central limit theorem [Rubinstein and Sarnak 1994]. Therefore we can assume that
1
2
< � < 1.
Let � > 0 be the unique real solution of the equation

1
p

2�

Z 1
��

e�
t2

2 dt D �:

Moreover, let fqng be the sequence of squarefree odd integers from Lemma 3.3 for
which

2!.qn/C1
D log q0n.�

2
C o.1//:

By (17), this gives that as n!1,

B.qn/ WD
E ŒXqn

�p
Var ŒXqn

�
! �:

Define

Yqn
WD

Xqn
� E ŒXqn

�p
Var ŒXqn

�
D

Xqnp
Var ŒXqn

�
�B.qn/:

We will use the central limit theorem of Lemma 3.4, as well as the Berry–Esseen
inequality (21). Denoting by Fqn

the distribution function of Yqn
and by F that of

the Gaussian distribution, we have that
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jı.qn;NR;R/� �j D j Prob ŒXqn
> 0�� �j D j Prob ŒXqn

� 0�� .1� �/j

D jFqn
.�B.qn//�F.��/j

� jFqn
.�B.qn//�F.�B.qn//jC jF.�B.qn//�F.��/j

�
1

�.qn/ log q0n
Cj� �B.qn/j;

by Lemma 3.5 and by the fact that the probability density function of the Gaussian
is bounded on R. Looking at the proof of Lemma 3.3, we see that �.qn/!1,
hence this last quantity tends to zero as n!1, concluding the proof. �

4. A more precise estimation of the bias using the theory of large deviations

To give a more precise estimate for the bias we are interested in under LI, we use
the theory of large deviations of independent random variables. The fundamental
estimate of this section is given in the following theorem.

Theorem 4.1 [Montgomery and Odlyzko 1988, Theorem 2]. For n D 1; 2; : : : ,
let Yn be independent real-valued random variables such that E ŒYn� D 0 and
jYnj � 1. Suppose that there is a constant c > 0 such that E ŒY 2

n �� c for all n. Put
Y D

P
rnYn where

P
r2
n <1.

If
P
jrnj�˛

jrnj � V =2 then

Prob ŒY � V �� exp
�
�

1

16
V 2

� X
jrnj<˛

r2
n

��1�
:

If
P
jrnj�˛

jrnj � 2V then

Prob ŒY � V �� a1 exp
�
�a2V 2

� X
jrnj<˛

r2
n

��1�
:

Here a1 > 0 and a2 > 0 depend only on c.

To make use of these bounds we need to give estimates on sums over zeros.

Lemma 4.2. For T � 1, we haveX
j
�j<T

1q
1
4
C 
 2

�

D
1

�
log.q�

p
T / log T CO.log.q�T //:

Proof. We start from the Riemann–von Mangoldt formula,

N.T; �/D
T

�
log

q�T

2�e
CO.log q�T /:
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With a summation by parts we getX
j
�j<T

1q
1
4
C 
 2

�

DO.log q�/C

Z T

1

dN.t; �/q
1
4
C t2

D
N.T; �/q

1
4
CT 2

C

Z T

1

tN.t; �/�
1
4
C t2

� 3
2

dt CO.log q�/

D

Z T

1

t2

�
log

q�t

2�e�
1
4
C t2

� 3
2

dt CO.log.q�T //

D
1

�
log
�
q�
p

T
�

log T CO.log q�T /: �

Lemma 4.3. Assume LI, and let F.q/ be a subset of the group of Dirichlet charac-
ters mod q such that � 2 F.q/) � 2 F.q/. Define the random variable

Y WD
X

�2F.q/

X

�>0

2<.Z
�/q
1
4
C 
 2

�

;

where the Z
� are i.i.d. uniformly distributed on the unit circle. Then, we have for q

large enough that

a1 exp
�
�a2

jF.q/j

L.q/

�
� Prob ŒY � jF.q/j�� exp

�
�a3

jF.q/j

L.q/

�
;

where the ai are absolute constants and

L.q/ WD

P
�2F.q/ log q�

jF.q/j
�

log 2

2
:

Proof. This is a direct application of Theorem 4.1. Taking the sequence frig to be
the 2=

p
1
4
C
2

� ordered by size, and denoting by C the constant
p

4=˛2� 1=4, we
have for 0< ˛ � 4 thatX

jrnj�˛

jrnj D

X
�2F.q/

X
0<
��C

2q
1
4
C 
 2

�

;

X
jrnj>˛

jrnj
2
D

X
�2F.q/

X

�>C

4
1
4
C 
 2

�

:

For the upper bound we take ˛D 4, then we trivially have
P
jrnj�˛

jrnj � jF.q/j=2, so

Prob ŒY � jF.q/j�� exp
�
�

1
16
jF.q/j2

�
c1

X
�2F.q/

log q�
��1�
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for some absolute constant c1. For the lower bound we take ˛ D 2=
p

1
4
CT 2

0
, where

T0 > 1 is a fixed large real number (independent of q and F.q/) such thatX
�2F.q/

X
j
�j�T0

1q
1
4
C 
 2

�

�
4

log 2
L.q/jF.q/j � 2jF.q/j;

whose existence is granted by Lemma 4.2 (we grouped together conjugate charac-
ters). Then Theorem 4.1 gives the bound

Prob ŒY � jF.q/j�� c2 exp
�
�c3jF.q/j

2

� X
�2F.q/

X

�>T0

4
1
4
C 
 2

�

��1�

� c2 exp
�
�c3jF.q/j

2

�
c4

X
�2F.q/

log q�
��1�

for q large enough and some absolute constants c2, c3 and c4, since if we choose
T1 > T0 independent of � and large enough such that N.2T1; �/�N.T1; �/�

log q� (this is possible by the Riemann–von Mangoldt formula), then we haveX
�2F.q/

X

�>T0

4
1
4
C 
 2

�

�

X
�2F.q/

X
T1<
�<2T1

4
1
4
C 
 2

�

�

X
�2F.q/

4
1
4
C .2T1/2

.N.2T1; �/�N.T1; �//

�

X
�2F.q/

log q�: �

Proof of Theorem 1.6. Let Xq be the random variable in (14) and define the
symmetric random variable

Yq WDXq � E ŒXq �:

By Lemma 3.1,

ı.qINR;R/D Prob ŒXq > 0�D Prob ŒYq > �E ŒXq � �

D Prob ŒYq < E ŒXq � �D 1�Prob ŒYq � E ŒXq � �:

The proof follows by taking F.q/ WD f� mod q W �2 D �0; �¤ �0g in Lemma 4.3
and by estimating L.q/ as in the proof of Lemma 3.2. �

5. A more general analysis

In this section we do a more general analysis by studying arbitrary linear combina-
tions of prime counting functions.
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Throughout the section, EaD .a1; : : : ; ak/ will be a vector of invertible reduced
residues mod q and Ę D .˛1; : : : ; ˛k/ will be a nonzero vector of real numbers such
that

Pk
iD1 ˛i D 0. Recall that

�i D

�
1 if ai �� mod q;

0 if ai 6�� mod q;

and we assume without loss of generality that

kX
iD1

�i˛i < 0:

To prove Theorems 1.10, 1.14 and 1.17, we need a few lemmas.

Lemma 5.1. Assume GRH and LI. Then the quantity

E.yI q; EaI Ę/ WD �.q/
˛1�.e

y I q; a1/C � � �C˛k�.e
y I q; ak/

ey=2=y

has the same distribution as the random variable

XqIEa; Ę WD��.q/

kX
iD1

�i˛iC

X
�¤�0

j˛1�.a1/C� � �C˛k�.ak/j
X

�>0

2<.Z
�/q
1
4
C 
 2

�

; (22)

where the Z
� are independent random variables following a uniform distribution
on the unit circle in C.

Remark 5.2. If we take a1; : : : ; a�.q/.1��.q/�1/ to be the set of all quadratic
nonresidues mod q with ˛1 D � � � D ˛�.q/.1��.q/�1/ D 1=�.q/, and we take
a�.q/.1��.q/�1/C1; : : : ; a�.q/ to be the set of all quadratic residues mod q with
˛�.q/.1��.q/�1/C1D � � � D ˛�.q/D .1��.q//=�.q/, then we recover formula (14).

Proof. In the same way as in the proof of Lemma 3.1, we get by the explicit formula
and by applying GRH that

F.yI q; Ea; Ę/ WD �.q/
˛1 .e

y I q; a1/C � � �C˛k .e
y I q; ak/

ey=2

D �

X
�¤�0

.˛1�.a1/C � � �C˛k�.ak//
X

�

ei
�y

��
C oq.1/

(the main terms are canceled since
Pk

iD1 ˛iD 0). By [Rubinstein and Sarnak 1994],
F.yI q; Ea; Ę/ has the same distribution as XqIEa; Ę � E ŒXqIEa; Ę �, since LI implies that
there are no real zeros. The second step is to use summation by parts and to remove
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squares and other prime powers; this gives that

E.yI q; Ea; Ę/C �.q/

kX
iD1

�i˛i C o.1/D F.yI q; Ea; Ę/;

completing the proof. �

Before we give a bound on the variance of this distribution, we prove a lemma
about conductors.

Lemma 5.3. Let 1�L� �.q/. Then,

#f� mod q W q� �Lg �minfL�.q/;L2
g:

Proof. Denoting by ��.d/ the number of primitive characters modulo d , we haveX
d jq

d�L

��.d/�min
�X

d�L

d; L
X
d jq

1

�
: �

Lemma 5.4. Assume LI. Let V .qI Ea; Ę/ WDVar ŒXqIEa; Ę �, where XqIEa; Ę is the random
variable defined in (22). Then,

�.q/kEak22 log
3�.q/

k
� V .qI Ea; Ę/� �.q/kEak22 log q; (23)

where

kEak22 WD

kX
iD1

˛2
i :

Remark 5.5. The upper bound in (23) is attained when q is prime by Lemma 5.8. As
for the lower bound, if we take moduli q with a fixed set of distinct prime factors (for
instance powers of a fixed prime) and consider the race between residues and non-
residues with the weights of Remark 5.2, we obtain by Lemma 3.2 that V .qI Ea; Ę/D

O.1/, and this is of the same order of magnitude as the lower bound in (23).

Proof. Since the Z
� in (22) are independent and have variance 1
2

, we have that

Var ŒXqIEa; Ę �D
X
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2
X

�

1
1
4
C 
 2

�

(24)

(LI implies there are no real zeros). Combining this with Lemma 2.8 gives

V .qI Ea; Ę/�
X
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2 log q�: (25)
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Now, ˛1�0.a1/C � � �C˛k�0.ak/D 0, soX
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2
D

X
� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2

D

X
1�i;j�k

˛i j̨

X
� mod q

�.aia
�1
j /

D �.q/

kX
iD1

˛2
i : (26)

Using this and (25), the upper bound follows from the fact that log q� � log q.
This also gives the lower bound V .qI Ea; Ę/ � .log 3/�.q/kĘk2

2
, which proves

the claim for bounded values of �.q/=k. Hence we assume from now on that
�.q/=k � 576. We fix a parameter 1 < L < �.q/ and discard the characters of
conductor at most L:

V .qI Ea; Ę/� log L
X

� mod qW
q�>L

j˛1�.a1/C � � �C˛k�.ak/j
2

D log L
X

1�i;j�k

˛i j̨

X
� mod qW
q�>L

�.aia
�1
j /

D log L

� kX
iD1

˛2
i

X
� mod q
q�>L

1C
X

1�i¤j�k

˛i j̨

X
� mod qW
q�>L

�.aia
�1
j /

�
;

which by Lemma 5.3 and the orthogonality relations is

� log L

� kX
iD1

˛2
i .�.q/�minfL�.q/;L2

g/�
X

1�i¤j�k

j˛i j̨ jminfL�.q/;L2
g

�
� log LkĘk22Œ�.q/� .kC 1/minfL�.q/;L2

g�

by the Cauchy–Schwarz inequality. Taking L WD .3�.q/=k/
1
3 gives the result, since

then �.q/=k � 576 implies that .kC 1/L2 � �.q/=2. �

Remark 5.6. In the last proof, we did not lose a lot by discarding the characters of
conductor at most .3�.q/=k/

1
3 , since by (26) their contribution is

� �.q/kĘk22 log
3�.q/

k
:
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Proof of Theorem 1.14. We have by Lemma 5.4 that there exists an absolute constant
c > 0 such that

B.qI Ea; Ę/ WD
E ŒXqIEa;Ea�p
Var ŒXqIEa;Ea�

�
�.q/

ˇ̌Pk
iD1 �i˛i

ˇ̌q
c�.q/ log q

Pk
iD1 ˛

2
i

;

a quantity which is greater or equal to .c�/�
1
2 by the condition of the theorem. We

conclude that 1� ı.qI Ea; Ę/� c� by using Chebyshev’s bound in the same way as
in the proof of Theorem 1.1. �

Proof of Theorem 1.10. It is a particular case of Theorem 1.14. �

We now prove our negative results. To do so, we need to provide a central limit
theorem, analogous to Lemma 3.4.

Lemma 5.7. Assume LI, and let

YqIEa; Ę WD
XqIEa; Ę � E ŒXqIEa; Ę �p

Var ŒXqIEa; Ę �
:

The characteristic function of YqIEa; Ę satisfies

log yYqIEa; Ę.�/D�
�2

2
CO

�
�4

log.3�.q/=k/
min

�
1;

k2 log q

�.q/ log.3�.q/=k/

��
in the range j�j � 3=.5kĘk1/, where kĘk1 WD

Pk
iD1 j˛i j.

Proof. As in Lemma 3.4, we compute

log yXqIEa; Ę.�/

D iE ŒXqIEa; Ę ��C
X
�¤�0

X

�>0

log

 
J0

 
2j˛1�.a1/C � � �C˛k�.ak/j�q

1
4
C 
 2

�

!!
:

We now use the Taylor expansion (20), which is valid as soon as j�j � 3=.5kĘk1/,
since under this condition we have

2j˛1�.a1/C � � �C˛k�.ak/jj�jq
1
4
C 
 2

�

�
2kĘk1

1
2

3

5kĘk1
D

12

5
:

Applying Lemma 2.8, we obtain that
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log yYqIEa; Ę.�/

D�
�2

2
CO

 
�4

P
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
4 log q��P

�¤�0
j˛1�.a1/C � � �C˛k�.ak/j

2 log q�
�2
!
: (27)

If �.q/=k is bounded, then the statement trivially follows from the boundP
ia

4
i �

�P
i a2

i

�
2. Therefore we assume from now on that �.q/=k � 576.

We now use two different approaches to bound the error term. The first idea is
to “factor out

p
log q�” before applying the trivial inequality

P
ia

4
i �

�P
ia

2
i

�
2.

We have seen in Remark 5.6 that the main contribution to the variance is that of
the characters with q� � L WD .3�.q/=k/

1
3 . We use the same idea here. Setting

‚� WD j˛1�.a1/C � � �C˛k�.ak/j
2, we haveX

�¤�0

‚� log q� �
X
�¤�0

q�>L

‚� log q�

�
p

log L
X
�¤�0

q�>L

‚�
p

log q�

�
p

log L

� X
�¤�0

‚�
p

log q�� kL2
p

log LkĘk22

�
(28)

by Lemma 5.3 and the Cauchy–Schwarz inequality. Now, by our choice of L,
the fact that �.q/=k � 576 and the equality

P
�¤�0

‚� D �.q/kĘk
2
2

(see (26)),
we have

kL2
p

log LkĘk22 �
1

2

p
log L

h
�.q/kĘk22� kL2

kĘk
2
2

i
�

1

2

X
�¤�0

q��L

‚�
p

log q� �
1

2

X
�¤�0

‚�
p

log q�;

hence (28) gives thatX
�¤�0

‚� log q��
p

log L
X
�¤�0

‚�
p

log q�:

Plugging this into (27) and using the trivial bound

X
�¤�0

‚2
� log q� �

� X
�¤�0

‚�
p

log q�
�2

;

we get that the error term is� �4= log L.
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For the second upper bound we use Lemma 5.4 and the Cauchy–Schwarz in-
equality:P

�¤�0
j˛1�.a1/C � � �C˛k�.ak/j

4 log q��P
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2 log q�

�2
�

log q

log.3�.q/=k/2

P
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
4

.�.q/kĘk2
2
/2

D
log q

log.3�.q/=k/2

P
i;j ;i0;j 0

ai ai0�ajaj 0 mod q

˛i˛i0 j̨ j̨ 0

�.q/kĘk4
2

�
log q

log.3�.q/=k/2

�qPk
iD1 ˛

2
i

qPk
jD1 1

�4
�.q/kĘk4

2

;

which gives the claimed bound. �

Proof of Theorem 1.17. Let K � 1 and define c > 0 to be the constant implied in
the lower bound in Lemma 5.4. Assume that k � e�e4K

�.q/ and that (9) holds
with K2D cK. Define the vector Ě WD

�
e�K=kĘk1

�
Ę, so that k Ěk1D e�K , which

will allow us to apply Lemma 5.7. Clearly,

ı.qI Ea; Ę/D ı.qI Ea; Ě/;

since multiplying Ę by a positive constant does not affect the inequality

˛1�.nI q; a1/C � � �C˛k�.nI q; ak/ > 0:

We have by Lemma 5.4 and by the definition of c that

B.qI Ea; Ě/ WD
E ŒX

qIEa; Ě
�p

Var ŒX
qIEa; Ě

�
�

�.q/
ˇ̌Pk

iD1 �iˇi

ˇ̌q
c�.q/ log.3�.q/=k/

Pk
iD1 ˇ

2
i

D c�
1
2

�.q/
ˇ̌Pk

iD1 �i˛i

ˇ̌q
�.q/ log.3�.q/=k/

Pk
iD1 ˛

2
i

;

a quantity which is at most
p

K by (9). Defining

Y
qIEa; Ě

WD

X
qIEa; Ě
� E ŒX

qIEa; Ě
�p

Var ŒX
qIEa; Ě

�
;
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we have by Lemma 5.7 and by our condition on k that in the range j�j � 3
5
eK ,

log yY
qIEa; Ě

.�/D�
�2

2
CO

�
�4

e4K

�
:

Combining this with the Berry–Esseen inequality (21) and taking W to be a standard
Gaussian random variable with mean 0 and variance 1, we get

Prob ŒY
qIEa; Ě

> �B.qI Ea; Ě/��Prob ŒW > �B.qI Ea; Ě/�

�

Z 3
5

eK

� 3
5

eK

yY
qIEa; Ě

.�/� e�
�2

2

�
d�C 5

3
e�K

�

Z 3
5

eK

� 3
5

eK

�3e�
�2

2

e4K
d�C e�K

� e�K : (29)

However, since B.qI Ea; Ě/�
p

K, we have that

Prob ŒW � �B.qI Ea; Ě/�� c1

e�
K
2

K

for some absolute constant c1. Therefore, applying (29) gives

ı.qI Ea; Ě/D Prob ŒY
qIEa; Ě

> �B.qI Ea; Ě/�

D Prob ŒW > �B.qI Ea; Ě/�CO.e�K /

� 1� c1e�
K
2 =KC c2e�K ;

a quantity which is less than the right-hand side of (10) for K large enough. The
proof is finished since ı.qI Ea; Ę/D ı

�
qI Ea; Ě

�
. �

To end this section we give an estimate for the variance V .qI Ea; Ę/. While we
have not explicitly made use of this expression, we include it for its intrinsic interest,
and for its ability to give a precise evaluation of the variance V .qI Ea; Ę/ for values
of q having prescribed prime factors.

Lemma 5.8. Assuming GRH and LI, we have that

V .qIEa; Ę/

D �.q/kĘk2.log qCO.log log q//��.q/
X
i¤j

˛i j̨

ƒ
�

q

.q;ai a�1
j
�1/

�
�
�

q

.q;ai a�1
j
�1/

� : (30)
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Proof. Using [Fiorilli and Martin 2013, Proposition 3.3], we obtain thatX
� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2 log q�

D

X
1�i;j�k

˛i j̨

X
� mod q

�.aia
�1
j / log q�

D �.q/

�
log q�

X
p jq

log p

p� 1

� kX
iD1

˛2
i ��.q/

X
i¤j

˛i j̨

ƒ
�

q

.q;ai a�1
j
�1/

�
�
�

q

.q;ai a�1
j
�1/

� :
We have X

p jq

log p

p� 1
�

!.q/X
iD1

log pi

pi � 1
� log log q;

where pi denotes the i -th prime. The claimed estimate then follows by combining
this with the formula

V .qI Ea; Ę/D
X

� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2
X

�

1
1
4
C 
 2

�

(see (24)) and with (16). Note that by the Littlewood bound .L0=L/.1; �/ �
log log q�, the implied error term is

�

X
� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2 log log q D �.q/kĘk2 log log q: �

It might seem like the second term of (30) is an error term; however, this is not
necessarily true for large values of k (see Lemma 3.2). Nevertheless, we expect
many cancellations to occur since

X
i¤j

˛i j̨ D

� kX
iD1

˛i

�2

�

kX
iD1

˛2
i D�

kX
iD1

˛2
i :

Acknowledgements

I would like to thank my former advisor Andrew Granville for his very interesting
question which motivated this work, and for his comments and encouragement. I
would also like to thank Enrico Bombieri and Peter Sarnak for their advice and
their encouragement, and the Institute for Advanced Study for providing excellent
research conditions. I thank Kevin Ford, Youness Lamzouri and the people at
the University of Illinois at Urbana–Champaign for their hospitality and for very
fruitful conversations which led me to consider general linear combinations of
prime counting functions. I thank Jan-Christoph Schlage-Puchta for Remark 2.4



1766 Daniel Fiorilli

and for suggesting the current proof of Lemma 2.5. I also thank Carl Pomerance
for suggesting Remark 1.9, and Greg Martin for suggesting Remark 1.12. I thank
Barry Mazur for motivating me to weaken the linear independence hypothesis. I
thank Byungchul Cha, Ke Gong, Peter Humphries, Chen Meiri, Nathan Ng and
Anders Södergren for helpful conversations and for their comments. Finally I thank
the anonymous referees for their careful reading of the manuscript and their very
useful comments. This work was supported by an NSERC Postdoctoral Fellowship,
as well as NSF grant DMS-0635607.

References

[Akbary et al. 2013] A. Akbary, N. Ng, and M. Shahabi, “Limiting distributions of the classical error
terms of prime number theory”, preprint, 2013. arXiv 1306.1657

[Bays and Hudson 2000] C. Bays and R. H. Hudson, “A new bound for the smallest x with �.x/ >
li.x/”, Math. Comp. 69:231 (2000), 1285–1296. MR 2001c:11138 Zbl 1042.11001

[Bays et al. 2001] C. Bays, K. Ford, R. H. Hudson, and M. Rubinstein, “Zeros of Dirichlet L-functions
near the real axis and Chebyshev’s bias”, J. Number Theory 87:1 (2001), 54–76. MR 2001m:11148
Zbl 1009.11057

[Besicovitch 1926] A. S. Besicovitch, “On generalized almost periodic functions”, Proc. London
Math. Soc. S2-25:1 (1926), 495–512. MR 1575297 JFM 52.0263.01

[Besicovitch 1955] A. S. Besicovitch, Almost periodic functions, Dover, New York, 1955. MR 16,817a
Zbl 0065.07102

[Bober et al. 2014] J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S. Koutsoliotas, S. Lemurell,
M. Rubinstein, and H. Yoshida, “The highest lowest zero of general L-functions”, preprint, 2014.
arXiv 1211.5996

[Esseen 1945] C.-G. Esseen, “Fourier analysis of distribution functions: A mathematical study of the
Laplace–Gaussian law”, Acta Math. 77 (1945), 1–125. MR 7,312a Zbl 0060.28705

[Feuerverger and Martin 2000] A. Feuerverger and G. Martin, “Biases in the Shanks–Rényi prime
number race”, Experiment. Math. 9:4 (2000), 535–570. MR 2002d:11111 Zbl 0976.11041

[Fiorilli and Martin 2013] D. Fiorilli and G. Martin, “Inequities in the Shanks–Rényi prime number
race: An asymptotic formula for the densities”, J. Reine Angew. Math. 676 (2013), 121–212.
MR 3028758 Zbl 1276.11150

[Ford 2008a] K. Ford, “The distribution of integers with a divisor in a given interval”, Ann. of Math.
.2/ 168:2 (2008), 367–433. MR 2009m:11152 Zbl 1181.11058

[Ford 2008b] K. Ford, “Integers with a divisor in .y; 2y�”, pp. 65–80 in Anatomy of integers, edited
by J.-M. De Koninck et al., CRM Proc. Lecture Notes 46, Amer. Math. Soc., Providence, RI, 2008.
MR 2009i:11113 Zbl 1175.11053

[Granville and Martin 2006] A. Granville and G. Martin, “Prime number races”, Amer. Math. Monthly
113:1 (2006), 1–33. MR 2006h:11112 Zbl 1139.11037

[Hardy and Littlewood 1916] G. H. Hardy and J. E. Littlewood, “Contributions to the theory of
the Riemann Zeta-function and the theory of the distribution of primes”, Acta Math. 41:1 (1916),
119–196. MR 1555148 JFM 46.0498.01

[Kaczorowski 1995] J. Kaczorowski, “On the distribution of primes (mod 4)”, Analysis 15:2 (1995),
159–171. MR 96h:11095 Zbl 0826.11042

http://msp.org/idx/arx/1306.1657
http://dx.doi.org/10.1090/S0025-5718-99-01104-7
http://dx.doi.org/10.1090/S0025-5718-99-01104-7
http://msp.org/idx/mr/2001c:11138
http://msp.org/idx/zbl/1042.11001
http://dx.doi.org/10.1006/jnth.2000.2601
http://dx.doi.org/10.1006/jnth.2000.2601
http://msp.org/idx/mr/2001m:11148
http://msp.org/idx/zbl/1009.11057
http://dx.doi.org/10.1112/plms/s2-25.1.495
http://msp.org/idx/mr/1575297
http://msp.org/idx/jfm/52.0263.01
http://msp.org/idx/mr/16,817a
http://msp.org/idx/zbl/0065.07102
http://msp.org/idx/arx/1211.5996
http://dx.doi.org/10.1007/BF02392223
http://dx.doi.org/10.1007/BF02392223
http://msp.org/idx/mr/7,312a
http://msp.org/idx/zbl/0060.28705
http://dx.doi.org/10.1080/10586458.2000.10504659
http://dx.doi.org/10.1080/10586458.2000.10504659
http://msp.org/idx/mr/2002d:11111
http://msp.org/idx/zbl/0976.11041
http://dx.doi.org/10.1515/crelle.2012.004
http://dx.doi.org/10.1515/crelle.2012.004
http://msp.org/idx/mr/3028758
http://msp.org/idx/zbl/1276.11150
http://dx.doi.org/10.4007/annals.2008.168.367
http://msp.org/idx/mr/2009m:11152
http://msp.org/idx/zbl/1181.11058
http://msp.org/idx/mr/2009i:11113
http://msp.org/idx/zbl/1175.11053
http://dx.doi.org/10.2307/27641834
http://msp.org/idx/mr/2006h:11112
http://msp.org/idx/zbl/1139.11037
http://dx.doi.org/10.1007/BF02422942
http://dx.doi.org/10.1007/BF02422942
http://msp.org/idx/mr/1555148
http://msp.org/idx/jfm/46.0498.01
http://dx.doi.org/10.1524/anly.1995.15.2.159
http://msp.org/idx/mr/96h:11095
http://msp.org/idx/zbl/0826.11042


Highly biased prime number races 1767

[Lamzouri 2012] Y. Lamzouri, “Large deviations of the limiting distribution in the Shanks–Rényi
prime number race”, Math. Proc. Cambridge Philos. Soc. 153:1 (2012), 147–166. MR 2943671
Zbl 1286.11143

[Landau 1918a] E. Landau, “Über einige ältere Vermutungen und Behauptungen in der Primzahltheo-
rie, I”, Math. Z. 1 (1918), 1–24. JFM 46.0263.02

[Landau 1918b] E. Landau, “Über einige ältere Vermutungen und Behauptungen in der Primzahltheo-
rie, II”, Math. Z. 1:2-3 (1918), 213–219. MR 1544293 JFM 46.0263.02

[Miller 2002] S. D. Miller, “The highest lowest zero and other applications of positivity”, Duke Math.
J. 112:1 (2002), 83–116. MR 2003b:11047 Zbl 1014.11036

[Monach 1980] W. R. Monach, Numerical investigation of several problems in number theory, Ph.D.
thesis, University of Michigan, 1980, Available at http://search.proquest.com/docview/302978421.

[Montgomery 1980] H. L. Montgomery, “The zeta function and prime numbers”, pp. 1–31 in
Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, ON, 1979), edited by
P. Ribenboim, Queen’s Papers in Pure and Appl. Math. 54, Queen’s Univ., Kingston, ON, 1980.
MR 82k:10047 Zbl 0451.10023

[Montgomery and Odlyzko 1988] H. L. Montgomery and A. M. Odlyzko, “Large deviations of
sums of independent random variables”, Acta Arith. 49:4 (1988), 427–434. MR 89m:11075
Zbl 0641.60032

[Myerscough 2013] C. Myerscough, “Application of an accurate remainder term in the calculation of
residue class distributions”, preprint, 2013. arXiv 1301.1434

[Ng 2000] N. Ng, Limiting distributions and zeros of Artin L-functions, Ph.D. thesis, University of
British Columbia, 2000, Available at http://www.cs.uleth.ca/~nathanng/RESEARCH/phd.thesis.pdf.

[Ng 2004] N. Ng, “The distribution of the summatory function of the Möbius function”, Proc. London
Math. Soc. .3/ 89:2 (2004), 361–389. MR 2005f:11215 Zbl 1138.11341

[Odlyzko 1990] A. M. Odlyzko, “Bounds for discriminants and related estimates for class numbers,
regulators and zeros of zeta functions: A survey of recent results”, Sém. Théor. Nombres Bordeaux
.2/ 2:1 (1990), 119–141. MR 91i:11154 Zbl 0722.11054

[Rubinstein and Sarnak 1994] M. Rubinstein and P. Sarnak, “Chebyshev’s bias”, Experiment. Math.
3:3 (1994), 173–197. MR 96d:11099 Zbl 0823.11050

[Schlage-Puchta 2000] J.-C. Puchta, “On large oscillations of the remainder of the prime number
theorems”, Acta Math. Hungar. 87:3 (2000), 213–227. MR 2001g:11146 Zbl 0963.11051

[Skewes 1933] S. Skewes, “On the difference �.x/� li.x/, (I)”, J. Lond. Math. Soc. S8-4:4 (1933),
277–283. Zbl 0007.34003

Communicated by Andrew Granville
Received 2014-03-26 Revised 2014-03-26 Accepted 2014-05-23

daniel.fiorilli@uottawa.ca Department of Mathematics and Statistics,
University of Ottawa, 585 King Edward Avenue,
Ottawa, Ontario, K1N 6N5, Canada

mathematical sciences publishers msp

http://dx.doi.org/10.1017/S030500411200014X
http://dx.doi.org/10.1017/S030500411200014X
http://msp.org/idx/mr/2943671
http://msp.org/idx/zbl/1286.11143
https://eudml.org/doc/167445
https://eudml.org/doc/167445
http://msp.org/idx/jfm/46.0263.02
http://dx.doi.org/10.1007/BF01203613
http://dx.doi.org/10.1007/BF01203613
http://msp.org/idx/mr/1544293
http://msp.org/idx/jfm/46.0263.02
http://dx.doi.org/10.1215/S0012-9074-02-11213-7
http://msp.org/idx/mr/2003b:11047
http://msp.org/idx/zbl/1014.11036
http://search.proquest.com/docview/302978421
http://msp.org/idx/mr/82k:10047
http://msp.org/idx/zbl/0451.10023
http://matwbn.icm.edu.pl/ksiazki/aa/aa49/aa4948.pdf
http://matwbn.icm.edu.pl/ksiazki/aa/aa49/aa4948.pdf
http://msp.org/idx/mr/89m:11075
http://msp.org/idx/zbl/0641.60032
http://msp.org/idx/arx/1301.1434
http://www.cs.uleth.ca/~nathanng/RESEARCH/phd.thesis.pdf
http://dx.doi.org/10.1112/S0024611504014741
http://msp.org/idx/mr/2005f:11215
http://msp.org/idx/zbl/1138.11341
http://dx.doi.org/10.5802/jtnb.22
http://dx.doi.org/10.5802/jtnb.22
http://msp.org/idx/mr/91i:11154
http://msp.org/idx/zbl/0722.11054
http://dx.doi.org/10.1080/10586458.1994.10504289
http://msp.org/idx/mr/96d:11099
http://msp.org/idx/zbl/0823.11050
http://dx.doi.org/10.1023/A:1006711604010
http://dx.doi.org/10.1023/A:1006711604010
http://msp.org/idx/mr/2001g:11146
http://msp.org/idx/zbl/0963.11051
http://dx.doi.org/10.1112/jlms/s1-8.4.277
http://msp.org/idx/zbl/0007.34003
mailto:daniel.fiorilli@uottawa.ca
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 8:7 (2014)

dx.doi.org/10.2140/ant.2014.8.1769

Bounded gaps between primes
with a given primitive root

Paul Pollack

Fix an integer g 6= −1 that is not a perfect square. In 1927, Artin conjectured that
there are infinitely many primes for which g is a primitive root. Forty years later,
Hooley showed that Artin’s conjecture follows from the generalized Riemann
hypothesis (GRH). We inject Hooley’s analysis into the Maynard–Tao work on
bounded gaps between primes. This leads to the following GRH-conditional
result: Fix an integer m ≥ 2. If q1 < q2 < q3 < · · · is the sequence of primes
possessing g as a primitive root, then lim infn→∞(qn+(m−1)− qn) ≤ Cm , where
Cm is a finite constant that depends on m but not on g. We also show that the
primes qn, qn+1, . . . , qn+m−1 in this result may be taken to be consecutive.

1. Introduction

The following conjecture was proposed by Emil Artin in the course of a September
1927 conversation with Helmut Hasse:

Artin’s primitive root conjecture. Fix an integer g 6= −1 that is not a square.
There are infinitely many primes p for which g is a primitive root modulo p. In fact,
the number of such p≤ x is (as x→∞) asymptotically cgπ(x) for a certain cg > 0.

While there is a substantial literature surrounding Artin’s conjecture (lovingly
catalogued in the survey [Moree 2012]), we still know infuriatingly little. In
particular, there is no specific value of g which is known to occur as a primitive
root for infinitely many primes. However, thanks to work of Heath-Brown [1986]
(refining earlier results of Gupta and Murty [1984]), we know that at least one of
2, 3, and 5 has this property. In fact, one can replace “2, 3, and 5” with any three
multiplicatively independent integers satisfying mild conditions.

In a seminal paper, Hooley [1967] (see also his exposition in [Hooley 1976,
Chapter 3]) showed that the Chebotarev density theorem with a sufficiently sharp
error term would imply the quantitative form of Artin’s conjecture. Moreover, he
showed that such a variant of Chebotarev’s density theorem — at least for the cases
relevant for this application — follows from the generalized Riemann hypothesis

MSC2010: primary 11A07; secondary 11N05.
Keywords: primitive root, Artin’s conjecture, bounded gaps, Maynard–Tao theorem.

1769

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2014.8-7
http://dx.doi.org/10.2140/ant.2014.8.1769


1770 Paul Pollack

(GRH) for Dedekind zeta functions. Thus, under GRH, we have a complete proof
of Artin’s conjecture.

In this paper, we combine Hooley’s work on Artin’s conjecture with recent
methods used to study gaps between primes. In sensational work of Maynard
[2013] and Tao, it is shown that lim infn→∞(pn+m−1− pn) <∞ for every m. Here
p1 < p2 < p3 < · · · is the sequence of all primes, in the usual order. Our main
theorem is an analogous bounded gaps result for primes possessing a prescribed
primitive root.

Theorem 1.1 (conditional on GRH). Fix an integer g 6= −1 and not a square. Let
q1 < q2 < q3 < · · · denote the sequence of primes for which g is a primitive root.
Then, for each m,

lim inf
n→∞

(qn+m−1− qn)≤ Cm,

where Cm is a finite constant depending on m but not on g.

In the last section of the paper, we show how to modify the proof of Theorem 1.1
to impose the additional restriction that the m primes qn, qn+1, . . . , qn+m−1 are in
fact consecutive (Theorem 4.1).

We remark that other recent work producing bounded gaps between primes in
special sets has been done by Thorner [2014], who handles primes restricted by
Chebotarev conditions, and by Li and Pan [2014], who work with primes p for
which p+ 2 is an “almost prime”.

Notation. The letters p and q always denote primes. We use the Bachmann–Landau
O and o notations, as well as the associated Vinogradov symbols� and�, with
their usual meanings.

2. Technical preparation

Configurations of quadratic residues and nonresidues. We will use that certain
configurations of residues and nonresidues are guaranteed to appear for all large
enough primes. This is a fairly standard consequence of the Riemann Hypothesis
for curves, as proved by Weil, but we give the argument for completeness. The
following lemma is a special case of [Wan 1997, Corollary 2.3].

Lemma 2.1. Let p be a prime. Suppose that f (T ) is a monic polynomial in Fp[T ]
of degree d and that f (T ) is not a square in Fp[T ]. Then∣∣∣∣ ∑

a mod p

(
f (a)

p

)∣∣∣∣≤ (d − 1)
√

p.

Lemma 2.2. Let p be a prime, and let k be a positive integer. Suppose that
h1, . . . , hk are integers, no two of which are congruent modulo p. Suppose
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ε1, . . . , εk ∈ {±1}. The number of mod p solutions n to the system of equations(
n+ hi

p

)
= εi for all 1≤ i ≤ k (2-1)

is at least p/2k
− (k− 1)

√
p− k.

Proof. For each n, let ι(n) = (1/2k)
∏k

i=1
(
1 + εi

( n+hi
p

))
. If we suppose that

n 6≡ −h1, . . . ,−hk (mod p), then ι(n) equals 1 when (2-1) holds, and 0 otherwise.
Since |ι(n)|≤1 for all n, the number of solutions to (2-1) is at least−k+

∑
n mod p ι(n).

For each subset S ⊂ {1, 2, 3, . . . , k}, put fS(T )=
∏

i∈S(T + hi ) ∈ Fp[T ]. Then

∑
n mod p

ι(n)=
1
2k

∑
S⊂{1,2,...,k}

(∏
i∈S

εi

) ∑
n mod p

(
fS(n)

p

)
.

If S = ∅, then fS = 1, and we get a contribution of p/2k . In all other cases,
fS is a nonsquare polynomial of degree at most k. By Lemma 2.1, the total
contribution from all nonempty subsets of {1, 2, . . . , k} is bounded in absolute value
by ((2k

−1)/2k)(k−1)
√

p≤ (k−1)
√

p. Thus,
∑

n mod p ι(n)≥ p/2k
−(k−1)

√
p,

and the lemma follows. �

Effective Chebotarev. The next result is due in essence to Lagarias and Odlyzko
[1977], although the precise formulation we give is due to Serre [1981, §2.4]:

Theorem 2.3 (conditional on GRH). Let L be a finite Galois extension of Q with
Galois group G, and let C be a conjugacy class of G. The number of unramified
primes p ≤ x whose Frobenius conjugacy class (p, L/Q) is C is given by

#C
#G

Li(x)+ O
(#C

#G
x1/2(log |1L | + [L :Q] log x

))
for all x ≥ 2. Here1L denotes the discriminant of L and the O-constant is absolute.

To apply Theorem 2.3, we require an upper bound for the term log |1L |. The
following result, which is contained in [Serre 1981, Proposition 6], suffices for our
applications.

Lemma 2.4. For every Galois extension L/Q, we have

log |1L | ≤ ([L :Q] − 1)
∑
p|1L

log p+ [L :Q] log [L :Q].

3. Proof of Theorem 1.1

The Maynard–Tao strategy. We begin by recalling the strategy of [Maynard 2013]
for producing bounded gaps between primes. Let k ≥ 2 be a fixed positive integer,
and let H = {h1 < h2 < · · · < hk} denote a fixed admissible k-tuple, i.e., a set of
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k distinct integers that does not occupy all of the residue classes modulo p for
any prime p. With N a large positive integer, we seek values of n belonging to
the dyadic interval [N , 2N ) for which the shifted tuple n+ h1, n+ h2, . . . , n+ hk

contains several primes.
Let W :=

∏
p≤log log log N p. Choose an integer ν so that gcd(ν+ hi ,W )= 1 for

all 1 ≤ i ≤ k; the existence of such a ν is implied by the admissibility of H. We
restrict attention to integers n ≡ ν (mod W ). This has the effect of pre-sieving the
values of n to ensure that none of the n + hi have any small prime factors. Let
w(n) denote nonnegative weights (to be chosen momentarily), and let χP denote
the characteristic function of the set P of prime numbers. One studies the sums

S1 :=
∑

N≤n<2N
n≡ν (mod W )

w(n) and S2 :=
∑

N≤n<2N
n≡ν (mod W )

( k∑
i=1

χP(n+ hi )

)
w(n).

The ratio S2/S1 is a weighted average of the number of primes among n+ h1, . . . ,

n+ hk , as n ranges over [N , 2N ). Consequently, if S2 > (m− 1)S1 for the positive
integer m, then at least m of the numbers n+ h1, . . . , n+ hk are primes. So, if the
inequality S2 > (m− 1)S1 is achieved for a sequence of n tending to infinity, then
lim inf(pn+m−1− pn)≤ hk − h1 <∞.

As we have described it so far, this strategy goes back to Goldston, Pintz, and
Yıldırım. The key innovation in the approach of Maynard and Tao is the choice of
congenial weights w(n). The following result, which is a restatement of [Maynard
2013, Proposition 4.1], is crucial.

Proposition 3.1. Let θ be a real number, 0< θ < 1
4 . Let F be a piecewise differen-

tiable function supported on the simplex {(x1, . . . , xk) : each xi ≥ 0,
∑k

i=1xi ≤ 1}.
With R := N θ , put

λd1,...,dk :=

( k∏
i=1

µ(di )di

) ∑
r1,...,rk
di |ri ∀i

(ri ,W )=1∀i

µ
(∏k

i=1 ri
)2∏k

i=1 ϕ(ri )
F
(

log r1

log R
, . . . ,

log rk

log R

)

whenever gcd
( k∏

i=1
di ,W

)
= 1, and let λd1,...,dk = 0 otherwise. Let

w(n) :=
( ∑

di |n+hi ∀i

λd1,...,dk

)2

.

Then, as N →∞,

S1 ∼
ϕ(W )k

W k+1 N (log R)k Ik(F) and

S2 ∼
ϕ(W )k

W k+1

N
log N

(log R)k+1
k∑

m=1

J (m)k (F),
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provided that Ik(F) 6= 0 and J (m)k (F) 6= 0 for each m, where

Ik(F) : =
∫
· · ·

∫
[0,1]k

F(t1, . . . , tk)2 dt1 dt2 · · · dtk,

J (m)k (F) : =
∫
· · ·

∫
[0,1]k−1

(∫ 1

0
F(t1, . . . , tk) dtm

)2

dt1 · · · dtm−1 dtm+1 · · · dtk .

From our interpretation of S2/S1 as a weighted average, we know that there is
an n ∈ [N , 2N ) for which at least S2/S1 of the numbers n + h1, . . . , n + hk are
prime. Proposition 3.1 shows that S2/S1→ (θ/Ik(F))

∑k
m=1 J (m)k (F) as N →∞.

For each F satisfying the conditions of Proposition 3.1, put

Mk(F) :=
1

Ik(F)

k∑
m=1

J (m)k (F), and set Mk := sup
F

Mk(F). (3-1)

Upon choosing θ close to 1
4 and F so that Mk(F) is close to Mk , we find that,

infinitely often, at least
⌈ 1

4 Mk
⌉

of the numbers n+ h1, . . . , n+ hk are prime. The
following lower bound on Mk is due to Maynard [2013, Proposition 4.3].

Proposition 3.2. Mk→∞ as k→∞. In fact, for all sufficiently large values of k,

Mk > log k− 2 log log k− 2.

Consequently, once k is a little larger than e4m , we have
⌈ 1

4 Mk
⌉
> m− 1. From

the above discussion, lim infn→∞(pn+m−1− pn)≤hk−h1<∞ for every admissible
k-tuple H. Choosing H carefully, this argument gives lim infn→∞(pn+m−1− pn)�

m3e4m ; see the proof of [Maynard 2013, Theorem 1.1] for details.

Modifying Maynard–Tao. For the rest of the paper, we fix an integer g 6= −1 that
is not a square. Let P̃ denote the set of primes having g as a primitive root. Fix an
integer k ≥ 2, and let

K := 9k2
· 4k .

We fix H as the admissible k-tuple having hi = (i − 1)K ! for all 1≤ i ≤ k; that is,

H := {0, K !, 2K !, . . . , (k− 1)K !}. (3-2)

We work below with a fixed function F satisfying the conditions of Proposition 3.1.
For the rest of the argument, implied constants may depend on g, k, and F without
further mention.

In what follows, we think of N as very large, in particular much larger than g.
We use the Maynard–Tao strategy to detect integers n ∈ [N , 2N ) for which the
list n+ h1, . . . , n+ hk contains several primes belonging to P̃ . Let g0 denote the
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discriminant of the quadratic field Q(
√

g). Set

W := lcm
[
g0,

∏
p≤log log log N

p
]
.

Once again, we pre-sieve values of n by putting n in an appropriate residue class
ν mod W . Whereas Maynard could choose any ν with gcd(ν+ hi ,W )= 1 for all
1≤ i ≤ k, we must tread more carefully. We choose ν so that the primes detected
by the sieve are heavily biased towards having g as a primitive root.

Lemma 3.3. We can choose an integer ν with all of the following properties:

(i) ν+ hi is coprime to W for all 1≤ i ≤ k.

(ii) ν+ hi − 1 is coprime to
∏

2<p≤log log log N p for all 1≤ i ≤ k.

(iii) The Kronecker symbol
( g0
ν+hi

)
equals −1 for all 1≤ i ≤ k.

Proof. Factor g0 as a product D1 D2 . . . D` of coprime prime discriminants, where
the prime discriminants are the numbers −4,−8, 8, and (−1)(p−1)/2 p for odd
primes p. Reordering the factorization if necessary, we can assume all of the
following:

• If all |Di | ≤ K and g0 is even, then D1 ∈ {−4,−8, 8}.

• If all |Di | ≤ K , g0 is odd, and ` > 1, then |D1| ≥ 5.

• If some |Di |> K , then |D1|> K .

We start by choosing any odd integer ν1 that avoids the residue classes−h1, . . . ,−hk ,
1−h1, . . . , 1−hk modulo p for each odd prime p ≤ log log log N not dividing D1.
Note that when p≤ K the only requirement on ν1 is that it avoids the residue classes
0 and 1 mod p, while when p > K we are to avoid at most 2k of the p > K > 2k
residue classes modulo p. So such a choice of ν1 certainly exists by the Chinese
remainder theorem. We choose ν to satisfy

ν ≡ ν1 (mod [W/D1, 2]).

To ensure (i), (ii), and (iii), it suffices to impose a further condition on ν guaranteeing

(i′) ν+ hi is coprime to all odd p dividing D1 for all 1≤ i ≤ k,

(ii′) ν+ hi − 1 is coprime to all odd p dividing D1 for all 1≤ i ≤ k,

(iii′)
( D1
ν+hi

)
=−

(D2 · · · D`

ν1+hi

)
for all 1≤ i ≤ k.

Notice that for all 1≤ i ≤ k we have
(D2 · · · D`

ν1+hi

)
6= 0, by the choice of ν1.
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Case I: all |Di | ≤ K . In this case, (i′) and (ii′) are satisfied as long as ν 6≡ 0 or 1
(mod p) for any odd p dividing D1, while (iii′) is satisfied as long as(D1

ν

)
=−

(D2 · · · D`

ν1

)
.

Assume first that g0 is even. Then D1 ∈ {−4,−8, 8} and (i′) and (ii′) hold
vacuously. Choose ν2 so that

( D1
ν2

)
=−

( D2···D`

ν1

)
. We ensure (iii′) by selecting ν as

any solution to the simultaneous congruences

ν ≡ ν1 (mod [W/D1, 2]) and ν ≡ ν2 (mod D1). (3-3)

While the moduli here share a factor of 2, it is clear that these congruences still
admit a simultaneous solution, since the only 2-adic information encoded by the
first congruence is that ν is odd, which is certainly compatible with the second!

Now assume instead that g0 is odd, so that |D1| is an odd prime. Either |D1| = 3
and `= 1, or |D1| ≥ 5. If the former, then (i′), (ii′), and (iii′) hold upon selecting
ν2 = 2 and choosing ν to satisfy (3-3). If the latter, choose ν2 6≡ 1 (mod D1) with( D1
ν2

)
=−

( D2···D`

ν1

)
(possible since that equality of Kronecker symbols holds for a

total of 1
2(|D1| − 1) > 1 residue classes ν2 mod D1). Once again, choosing ν to

satisfy (3-3) completes the proof.

Case II: some |Di | > K . In this case, |D1| > K . Since K > 8, we see that |D1|

is an odd prime. To satisfy (i′), (ii′), and (iii′), it suffices to show that there is an
integer ν2 6≡ 1− h1, . . . , 1− hk (mod D1) with(

ν2+ hi

|D1|

)
=−

(
D2 · · · D`

ν1+ hi

)
for all 1≤ i ≤ k, (3-4)

for then we can choose as ν any solution to (3-3). (We used here that
( D1
ν+hi

)
=
(
ν+hi
|D1|

)
.)

The integers h1, . . . , hk are incongruent modulo D1, as each nonzero difference
h j−hi = ( j−i)K ! has only prime factors smaller than K . So Lemma 2.2 gives that
the number of ν2 mod D1 satisfying (3-4) is at least |D1|/2k

− (k− 1)
√
|D1| − k.

Since |D1|> K = 9k2
· 4k , this count of solutions exceeds k. In particular, we can

satisfy (3-4) with ν2 6≡ 1− h1, . . . , 1− hk (mod D1). �

Assume that ν has been chosen to satisfy the conditions of Lemma 3.3. We
let R = N θ , with θ to be specified momentarily, and we define the weights w(n)
exactly as in the statement of Proposition 3.1. We let

S̃1 :=
∑

N≤n<2N
n≡ν (mod W )

w(n) and S̃2 :=
∑

N≤n<2N
n≡ν (mod W )

( k∑
i=1

χP̃(n+ hi )

)
w(n).

Theorem 1.1 is a consequence of the following result, established in the next section.
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Proposition 3.4 (assuming GRH). Fix a positive real number θ < 1
4 . As N →∞,

we have the same asymptotic estimates for S̃1 and S̃2 as those for S1 and S2 given
in Proposition 3.1.

Once Proposition 3.4 has been established, the earlier analysis we applied to
Maynard’s Proposition 3.1 applies, and we immediately obtain Theorem 1.1.

Proof of Proposition 3.4. The S̃1 estimate is established in precisely the same
way as Maynard’s S1 estimate in Proposition 3.1; see the proofs of Lemmas 5.1
and 6.2 in [Maynard 2013]. So we describe only the estimation of S̃2. We write
S̃2 =

∑k
m=1 S̃(m)2 , where

S̃(m)2 :=

∑
N≤n<2N

n≡ν (mod W )

χP̃(n+ hm)w(n).

This is precisely analogous to Maynard’s decomposition of S2 as
∑k

m=1 S(m)2 , where

S(m)2 :=

∑
N≤n<2N

n≡ν (mod W )

χP(n+ hm)w(n).

Maynard’s proof of Proposition 3.1 gives that each

S(m)2 ∼
ϕ(W )k

W k+1

N
log N

(log R)k+1
· J (m)k (F).

So, to prove Proposition 3.4, it suffices to show that for each m we have

S(m)2 − S̃(m)2 = o
(
ϕ(W )k

W k+1 N (log N )k
)

(3-5)

as N →∞. From now on, we think of m as fixed, and we focus our energies on
proving (3-5).

To prepare for the proof of (3-5), for each prime q we let P(0)
q denote the set of

all primes p satisfying

p ≡ 1 (mod q) and g(p−1)/q
≡ 1 (mod p). (3-6)

Let
Pq :=P(0)

q \
⋃

q ′<q

P(0)
q ′ .

Provided that the argument is not a prime divisor of g,

0≤ χP −χP̃ ≤

∑
q

χPq . (3-7)

Indeed, if p is a prime not dividing g, then either g is a primitive root mod p or g
is a q-th power residue mod p for some prime q dividing p− 1. From (3-7), it
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follows immediately that

0≤ S(m)2 − S̃(m)2 ≤

∑
q

∑
N≤n<2N

n≡ν (mod W )

χPq (n+ hm)w(n). (3-8)

We claim that the primes q ≤ log log log N make no contribution to the right-
hand side of (3-8). Indeed, suppose p := n+ hm is prime with N ≤ n < 2N and
n ≡ ν (mod W ). By Lemma 3.3(ii), the number p− 1 has no odd prime factors up
to log log log N ; it follows trivially that χPq (p)= 0 for odd q ≤ log log log N . By
Lemma 3.3(iii), χP2(p)= 0, since, modulo p,

g(p−1)/2
≡

( g
p

)
=

( g
n+hm

)
=

( g0
n+hm

)
=−1.

Thus, the right-hand side of (3-8) can be rewritten as 61+62+63+64, where
each 6i represents a partial sum of (3-8) over values of q in the following ranges:

61: log log log N < q ≤ (log N )100k ,

62: (log N )100k < q ≤ N 1/2(log N )−100k ,

63: N 1/2(log N )−100k < q ≤ N 1/2(log N )100k ,

64: q > N 1/2(log N )100k .

We treat these ranges of q separately.

Estimation of 62 and 64. We need the following lemma, which facilitates later
applications of Cauchy–Schwarz.

Lemma 3.5.
∑

N≤n<2N
n≡ν (mod W )

w(n)2�
N
W
(log R)19k .

Proof. Let d= (d1, . . . ,dk), e= (e1, . . . , ek), f = ( f1, . . . , fk), and g= (g1, . . . , gk)

represent k-tuples of positive integers. Expanding the sum using the definition of
w(n) gives∑

N≤n<2N
n≡ν (mod W )

∑
d,e, f ,g

[di ,ei , fi ,gi ]|n+hi ∀i

λdλeλ f λg =
∑

d,e, f ,g

λdλeλ f λg
∑

N≤n<2N
n≡ν (mod W )

[di ,ei , fi ,gi ]|n+hi ∀i

1.

Remembering that λd1,...,dk vanishes unless d1 · · · dk is prime to W , we see that
a quadruple d, e, f , g makes no contribution to the right-hand side unless the
numbers [di , ei , fi , gi ], for 1≤ i ≤ k, are pairwise coprime and all coprime to W .
In that case, the conditions on n in the inner sum put n in a uniquely determined
congruence class modulo W

∏k
i=1[di , ei , fi , gi ]. It follows that our sum is bounded
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above by ∑
d,e, f ,g

|λdλeλ f λg|

(
N

W
∏k

i=1 [di , ei , fi , gi ]
+ 1

)
.

Let

r :=
k∏

i=1

[di , ei , fi , gi ]. (3-9)

Since λd1,...,dk vanishes unless d1 · · · dk is a squarefree integer smaller than R, we
may restrict attention to squarefree r < R4. Given r , there are τ15k(r) choices of
d, e, f , and g giving (3-9). Hence, writing λmax = maxd1,...,dk |λd1,...,dk |, we find
that∑
d,e, f ,g

|λdλeλ f λg|

(
N

W
∏k

i=1[di ,ei , fi ,gi ]
+1
)

≤ λ4
max

∑
r<R4

µ2(r)τ15k(r)
(

N
Wr
+1

)
≤ λ4

max

(
N
W
+ R4

)∑
r<R4

µ2(r)τ15k(r)
r

. (3-10)

The remaining sum on r is bounded above by
∏

p<R4(1+ 15k/p)� (log R)15k .
Since R = N θ with θ < 1

4 fixed, we get that R4
� N/W . Finally, we note that

λmax� (log R)k (see [Maynard 2013, equations (5.9) and (6.3)], and recall that our
implied constants may depend on F). Inserting these estimates into (3-10) gives
the lemma. �

Proof that 62 = o
(
(ϕ(W )k/W k+1)N (log N )k

)
. Let Q be the union of the sets Pq

for (log N )100k < q ≤ N 1/2(log N )−100k . Then

62 =
∑

N≤n<2N
n≡ν (mod W )

χQ(n+ hm)w(n).

Applying Cauchy–Schwarz and Lemma 3.5, we see that

62�W−1/2 N 1/2(log R)9.5k
( ∑

N≤n<2N
n≡ν (mod W )

χQ(n+ hm)

)1/2

. (3-11)

The remaining sum on n is certainly bounded above by the total number of
primes p ∈ [N , 3N ] belonging to Q. For each such p, we may select a q with
(log N )100k < q ≤ N 1/2(log N )−100k for which (3-6) holds. Given q , we count the
number of corresponding p using effective Chebotarev.

Since g is fixed and q is large, we see that g 6∈ (Q×)q . So, by a theorem of Capelli
on irreducible binomials, the extension Q( q

√
g)/Q has degree q. For later use, we

note that the discriminant of Q( q
√

g) divides (gq)q — so the only ramified primes
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divide gq . By a theorem of Dedekind and Kummer, a prime p ∈ [N , 3N ] satisfies
(3-6) precisely when p splits completely in L :=Q(ζq , q

√
g). To continue, we need

to know the degree of L/Q. Now q
√

g is not contained in Q(ζq)— otherwise, q
√

g
would generate a Galois extension of Q, contradicting that Q( q

√
g) contains only a

single q-th root of unity (since it can be viewed as a subfield of R). So, by another
application of Capelli’s theorem,

[L :Q] = [L :Q(ζq)] · [Q(ζq) :Q] = q(q − 1).

Moreover, since q is the only ramified prime in Q(ζq)/Q, the only primes that may
ramify in L/Q all divide gq . By Lemma 2.4, log |1L | � q2 log (|g|q)� q2 log N .
We plug this estimate into Theorem 2.3, taking C as the conjugacy class of the
identity. We find that the number of p ∈ [N , 3N ] for which (3-6) holds for a given q
is

1
q(q−1)

∫ 3N

N

dt
log t
+ O(N 1/2 log N ).

Summing this upper bound over primes q with (log N )100k < q ≤ N 1/2(log N )−100k ,
we get that the total number of these p is O(N (log N )−100k).

Now, referring back to (3-11), we see that 62�W−1/2 N (log N )−40k . But this
is o(N ), and so certainly also o

(
(ϕ(W )k/W k+1)N (log N )k

)
. �

Proof that 64 = o
(
(ϕ(W )k/W k+1)N (log N )k

)
. We proceed as above, but now

with Q equal to the union of the sets Pq for q > N 1/2(log N )100k . We will
show that #Q ∩ [N , 3N ] � N (log N )−200k . By the previous Cauchy–Schwarz
argument, this is (more than) enough. If p ∈ Q ∩ [N , 3N ], then the order of g
modulo p, call it `, divides (p− 1)/q for some q > N 1/2(log N )100k . In particular,
` < 3N 1/2(log N )−100k . Since g` − 1 has only O(`) prime factors, summing on
` < 3N 1/2(log N )−100k shows there are O(N (log N )−200k) possibilities for p. �

Estimation of 63. For each prime q, we let Aq denote the set of natural numbers
n ≡ 1 (mod q). We estimate 63 using the trivial bound χPq ≤ χAq . To save space,
write I := (N 1/2(log N )−100k, N 1/2(log N )100k

]. Then

63 ≤
∑
q∈I

∑
N≤n<2N

n≡ν (mod W )

χAq (n+ hm)w(n).

Expanding out the right-hand side yields∑
q∈I

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek

∑
N≤n<2N

n≡ν (mod W )
[di ,ei ]|n+hi ∀i

χAq (n+ hm). (3-12)

We can assume d1 · · · dk is a squarefree integer coprime to W and not exceeding R,
since otherwise λd1,...,dk = 0. A similar assumption can be made for e1 · · · ek . Since
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q ∈I, it follows that q is coprime to each di and each ei , and W . Now the innermost
sum in (3-12) vanishes unless [d1, e1], [d2, e2], . . . , [dk, ek], and W are pairwise
coprime. Using a ′ to denote this restriction on the di and ei , we get that∑
q∈I

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek

∑
N≤n<2N

n≡ν (mod W )
[di ,ei ]|n+hi ∀i

χAq (n+ hm)

=

∑
q∈I

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek

(
N

qW
∏k

i=1[di , ei ]
+ O(1)

)
.

The error here is

�

(∑
q∈I

1
)( ∑

d1,...,dk

|λd1,...,dk |

)2

� N 1/2(log N )100k λ2
max

(∑
r<R

µ2(r)τk(r)
)2

.

Recalling that λmax� (log R)k and that
∑

r<R τk(r)� R(log R)k−1, our final O
error term is O(N 1/2 R2

· (log N )104k). Since R = N θ with θ < 1
4 , this error is o(N )

and so is negligible for us.
We now turn to the main term, which has the form(∑

q∈I

1
q

)(
N
W

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏k
i=1[di , ei ]

)
.

The first factor here is O(log log N/log N ), and so in particular is o(1). Maynard’s
analysis (see the proofs of [Maynard 2013, Lemmas 5.1, 6.2]) shows that the second
factor here satisfies the asymptotic formula asserted for S1 in Proposition 3.1. Hence,
63 = o

(
(ϕ(W )k/W k+1)N (log N )k

)
, as desired.

Estimation of 61. For this case, let I := (log log log N , (log N )100k
]. Using the

bound χPq ≤ χP(0)
q

, we get that

61 ≤
∑
q∈I

∑
N≤n<2N

χP(0)
q
(n+ hm)w(n).

Expanding out the right-hand side gives∑
q∈I

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek

∑
N≤n<2N

n≡ν (mod W )
[di ,ei ]|n+hi ∀i

χP(0)
q
(n+ hm). (3-13)

The inner sum can be written as a sum over a single residue class modulo
f :=W

∏k
i=1[di , ei ], provided that W , [d1, e1], . . . , [dk, ek] are pairwise coprime;

otherwise we get no contribution. We also need that n+ hm lies in a residue class
coprime to f , which happens precisely when dm = em = 1. Also, χP(0)

q
(n+ hm)
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vanishes unless q | n+hm−1, and this implies that the inner sum in (3-13) vanishes
unless q is coprime to each di and ei . Indeed, if q divides di or ei without the inner
sum vanishing, then q | hm − hi − 1. But that divisibility cannot hold for q ∈ I,
since 0< |hm − hi − 1|< k · K !.

Thus, we only see a contribution to (3-13) if [d1, e1], [d2, e2], . . . , [dk, ek], W ,
and q are pairwise coprime. Under these conditions, we claim that∑

N≤n<2N
n≡ν (mod W )
[di ,ei ]|n+hi ∀i

χP(0)
q
(n+ hm)

=
1

q(q − 1)ϕ(W )
∏k

i=1 ϕ([di , ei ])

∫ 2N+hm

N+hm

dt
log t
+ O(N 1/2 log N ). (3-14)

To see this, let p := n + hm . Then the prime p ∈ [N + hm, 2N + hm) makes a
contribution to the left-hand sum precisely when Frobp is a certain element of
Gal(Q(ζ f )/Q)— determined by the congruence conditions modulo the [di , ei ] and
W — and when p splits completely in Q(ζq , q

√
g). Now Q( q

√
g) 6⊂ Q(ζq f ), since

Q( q
√

g) is not a Galois extension of Q. Thus, letting L :=Q(ζq f , q
√

g), we find that

[L :Q] = [L :Q(ζq f )][Q(ζq f ) :Q] = q ·ϕ(q f )= q(q − 1)ϕ(W )

k∏
i=1

ϕ([di , ei ]).

Hence, Q(ζ f ) and Q(ζq , q
√

g) are linearly disjoint extensions of Q with com-
positum L . Our conditions on p amount to placing Frobp in a certain uniquely
determined conjugacy class of size 1 in Gal(L/Q). Since the only primes that
ramify in L divide q f g, Lemma 2.4 gives that

log |1L | � [L :Q](log (q f g)+ log[L :Q])� [L :Q] log N .

Inserting this estimate into Theorem 2.3 yields (3-14).
Returning now to (3-13), we see that the error term in (3-14) yields a total error

of size

� N 1/2 log N
(∑

q∈I

1
)( ∑

d1,...,dk

|λd1,...,dk |

)2

� N 1/2(log N )100k+1λ2
max

(∑
r<R

τk(r)
)2

� N 1/2 R2(log N )104k+1 .

This is o(N ) and so is again negligible for us. Letting

X N :=

∫ 2N+hm

N+hm

dt
log t

,
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the main term has the shape

∑
q∈I

1
q(q − 1)

(
X N

ϕ(W )

∑′

d1,...,dk
e1,...,ek

dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ([di , ei ])

)
. (3-15)

Here the ′ on the sum indicates that W , [d1, e1], . . . , [dk, ek], and q are pairwise
coprime. Owing to the support of the λ’s, this restriction on the sum has the same
effect as requiring that (di , e j )= 1 for all i 6= j and that (di , q)= (e j , q)= 1 for
all 1 ≤ i, j ≤ k. We incorporate the restrictions that (di , e j ) = 1 by multiplying
through by

∑
si, j |di ,e j

µ(si, j ) for i 6= j . Similarly, we incorporate the restrictions that
(di , q)= (e j , q)= 1 by multiplying through by

∑
δi |di ,q µ(δi ) and

∑
ε j |e j ,q µ(ε j ),

for all pairs of i and j .
Let g be the completely multiplicative function defined by g(p)= p− 2 for all

primes p, and note that

1
ϕ([di , ei ])

=
1

ϕ(di )ϕ(ei )

∑
ui |di ,ei

g(ui )

for squarefree di and ei . This allows us to rewrite the parenthesized portion of
(3-15) as

X N

ϕ(W )

∑
u1,...,uk

( k∏
i=1

g(ui )

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i, j≤k

i 6= j

µ(si, j )

) ∑
δ1,...,δk |q
ε1,...,εk |q

( k∏
i=1

µ(δi )

k∏
j=1

µ(ε j )

)

×

∑
d1,...,dk
e1,...,ek

ui |di ,ei ∀i
si, j |di ,e j ∀i 6= j
δi |di ,ε j |e j ∀i, j

dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ(di )ϕ(ei )

, (3-16)

where the ∗ on the sum indicates that si, j is restricted to be coprime to ui , u j , si,a ,
and sb, j for all a 6= j and b 6= i . (The other values of si, j make no contribution.)
Introducing the new variables

y(m)r1,...,rk
:=

( k∏
i=1

µ(ri )g(ri )

) ∑
d1,...,dk
ri |di ∀i
dm=1

λd1,...,dk∏k
i=1 ϕ(di )

,

we may rewrite (3-16) as



Bounded gaps between primes with a given primitive root 1783

X N

ϕ(W )

∑
u1,...,uk

( k∏
i=1

g(ui )

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i, j≤k

i 6= j

µ(si, j )

) ∑
δ1,...,δk |q
ε1,...,εk |q

( k∏
i=1

µ(δi )

k∏
j=1

µ(ε j )

)

×

( k∏
i=1

µ(ai )

g(ai )

)( k∏
j=1

µ(b j )

g(b j )

)
y(m)a1,...,ak

y(m)b1,...,bk
,

where ai = lcm
[
ui
∏

j 6=i si, j , δi
]

and b j = lcm
[
u j
∏

i 6= j si, j , ε j
]
. Define δ′i ∈ {1, q}

and ε′j ∈ {1, q} by the equations

ai =

(
ui

∏
j 6=i

si, j

)
δ′i , b j =

(
u j

∏
i 6= j

si, j

)
ε′j .

Exploiting coprimality, we can write µ(ai )=
(
µ(ui )

∏
j 6=i µ(si, j )

)
µ(δ′i ), and simi-

larly for µ(b j ), g(ai ), and g(b j ). This transforms (3-16) into

X N

ϕ(W )

∑
u1,...,uk

( k∏
i=1

µ(ui )
2

g(ui )

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i, j≤k

i 6= j

µ(si, j )

g(si, j )2

)

×

∑
δ1,...,δk |q
ε1,...,εk |q

( k∏
i=1

µ(δi )µ(δ
′

i )

g(δ′i )

k∏
j=1

µ(ε j )µ(ε
′

j )

g(ε′j )

)
y(m)a1,...,ak

y(m)b1,...,bk
.

Let y(m)max = maxr1,...,rk

∣∣y(m)r1,...,rk

∣∣. From [Maynard 2013, equation (6.10)], we have
y(m)max� (ϕ(W )/W ) log R. Inserting these bounds into the previous display, we find
that (3-16) is

�
X N

ϕ(W )

( ∑
u<R

gcd(u,W )=1

µ(u)2

g(u)

)k−1(∑
s

µ(s)2

g(s)2

)k(k−1)

y(m)max
2

�
X N

ϕ(W )

(
ϕ(W )

W

)k+1

(log R)k+1
�

(
ϕ(W )k

W k+1

)
N (log N )k .

We used here that there are only O(1) possibilities for the δi and ε j , and that for
each of these,

∏
i (1/g(δ′i ))

∏
j (1/g(ε′j ))≤ 1. Referring back to (3-15), we see that

our original main term contributes

�

(
ϕ(W )k

W k+1

)
N (log N )k

∑
q∈I

1
q(q − 1)

= o
(
ϕ(W )k

W k+1 N (log N )k
)
,

as desired.



1784 Paul Pollack

Remark. The truth of Theorem 1.1 could also have been predicted on heuristic
grounds. Indeed, there are well-known heuristics for Artin’s primitive root con-
jecture, suggesting even the “correct” value of cg (see [Moree 2012, §§2–5]), as
well as heuristics for the prime k-tuples conjecture (see, for instance, [Crandall and
Pomerance 2005, pp. 14–15]), and these can be fitted together. As an example, this
combined heuristic suggests that the count of twin prime pairs p, p+ 2 with p ≤ x
and with 2 a primitive root of both p and p+ 2 should be approximately

S

∫ x

2

dt
(log t)2

, where S :=
1
4

∏
p>3

(
1−

3
(p− 1)2

)
.

Quantitative conjectures of this kind, but in the context of primes represented by a
single irreducible polynomial rather than primes produced by linear forms, appear
in recent work of Moree [2007] and of Akbary and Scholten [2013].

4. Concluding remarks

We conclude with a proof of the following result, which seems of independent
interest:

Theorem 4.1 (conditional on GRH). Fix an integer g 6= −1 and not a square. For
every positive integer m, there are m consecutive primes all of which possess g as a
primitive root.

Theorem 4.1 might be compared with Shiu’s celebrated result [2000] that each
coprime residue class a mod q contains arbitrarily long runs of consecutive primes.
Our proof of Theorem 4.1 is similar in spirit to a short proof of Shiu’s theorem
recently given by Banks, Freiberg, and Turnage-Butterbaugh [Banks et al. 2013].

It will be useful to first translate the proof of Theorem 1.1 into probabilistic
terms. Let k be a fixed positive integer, and let h1, . . . , hk be given by (3-2). We
view the set of n ∈ [N , 2N ) with n≡ ν (mod W ) as a finite probability space where
the probability mass at each n0 is given by

w(n0)
/ ∑

N≤n<2N
n≡ν (mod W )

w(n).

Here the weights w(n) are assumed to be of the form specified in Proposition 3.1.
Introduce the random variables

X :=
k∑

i=1

χP(n+ hi ) and Y :=
k∑

i=1

χP\P̃(n+ hi ).

Then E[X ] = S2/S1. Given suitable parameters F and θ , Proposition 3.1 gives us
the limiting value of E[X ] as N→∞. Combining Propositions 3.1 and 3.2, we see
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that for k large enough in terms of m, we can choose parameters so this limiting
value exceeds m− 1. On the other hand, it was shown in Section 3 that (with the
same choice of parameters) E[Y ] = o(1) as N →∞. Thus, E[X − Y ] > m − 1
for all large N . But X − Y =

∑m
i=1 χP̃(n + hi ). Hence, for some n ∈ [N , 2N ),

the list n+ h1, . . . , n+ hk contains at least m primes having g as a primitive root.
Theorem 1.1 follows, with Cm = hk − h1.

We now present the minor variation of this argument needed to establish
Theorem 4.1.

Proof of Theorem 4.1. Given m, we fix a large enough value of k (and parameters
F and θ ) so that the limiting value of E[X ] exceeds m− 1. Then, for all large N ,

Pr(X ≥ m)≥ E
[ X−(m−1)

k

]
=

1
k
(E[X ] − (m− 1))� 1.

Note that Pr(Y > 0)≤ E[Y ] = o(1), as N→∞. So, for large N , there is a positive
probability that both X ≥ m and Y = 0. This allows us to select n ∈ [N , 2N ) with
n ≡ ν (mod W ) satisfying

(i) at least m of n+ h1, . . . , n+ hk are prime,

(ii) all of the primes among n+ h1, . . . , n+ hk possess g as a primitive root.

We will argue momentarily that we can also assume

(iii) the only primes in the interval [n + h1, n + hk] are the primes in the list
n+ h1, . . . , n+ hk .

From (i), (ii), and (iii), we see that the set of primes in [n+ h1, n+ hk] contains at
least m elements, all of which have g as a primitive root. Theorem 4.1 follows.

In order to show we may assume (iii), we tweak the choice of the residue class
ν mod W from which n is sampled. In the proof of Lemma 3.3, we chose ν1 as
any odd integer avoiding −h1, . . . ,−hk , 1− h1, . . . , 1− hk modulo p, for all odd
p ≤ log log log N not dividing D1. We now add an extra condition on ν1. Choose
distinct primes p(h) ∈ [12 log log log N , log log log N ) for all even h ∈ [h1, hk] \H.
We add the requirement that ν1 ≡ −h (mod p(h)) for each such h. This is con-
sistent with our earlier restrictions, since h is not congruent modulo p(h) to any
of h1, . . . , hk (since h 6∈ H) or to any of h1 − 1, . . . , hk − 1 (since h and the hi

are all even). Using the resulting value of ν from Lemma 3.3, we see that for
even h ∈ [h1, hk] \H, we have ph | n+ h whenever n ≡ ν (mod W ). For all odd
h ∈ [h1, hk], we have trivially that 2 | n+h whenever n ≡ ν (mod W ). Thus, n+h
is composite if h ∈ [h1, hk] \H, and so (iii) holds. �
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