Relative cohomology of cuspidal forms on PEL-type Shimura varieties

Kai-Wen Lan and Benoît Stroh
Relative cohomology of cuspidal forms on PEL-type Shimura varieties

Kai-Wen Lan and Benoît Stroh

We present a short proof that, for PEL-type Shimura varieties, subcanonical extensions of automorphic bundles, whose global sections over toroidal compactifications of Shimura varieties are represented by cuspidal automorphic forms, have no higher direct images under the canonical morphism to the minimal compactification, in characteristic zero or in positive characteristics greater than an explicitly computable bound.

1. Introduction

The main goal of this article is to present a short proof of Theorem 1.1 below, as an application of a certain vanishing theorem of automorphic bundles in mixed characteristics. (We refer to [Lan 2013; Lan and Suh 2012; 2013] for the precise definitions and descriptions of smooth integral models of PEL-type Shimura varieties and their various compactifications, and of the automorphic bundles and their canonical and subcanonical extensions.)

Let \(\pi : M_{\Sigma}^{\text{tor}} \rightarrow M_{\Sigma}^{\text{min}} \) denote the canonical proper morphism from any projective smooth toroidal compactification to the minimal compactification of a \(p \)-integral model \(M_{\Sigma} \) of a PEL-type Shimura variety at a neat level \(\mathcal{H} \subset G(\hat{\mathbb{Z}}^p) \), where \(p \) is good for the integral PEL datum \((\mathcal{O}, \ast, L, \langle \cdot, \cdot \rangle, h_0)\) defining \(M_{\Sigma} \), as in [Lan...]

1787
and Suh 2013, §4.1] (and the references there). Let \(W_{v_0, R} := W_{v_0, Z} \otimes Z R \) be a representation of \(M_1 \) of weight \(v_0 \in X^+_M \) over a coefficient ring \(R \), where \(W_{v_0, Z} \) denotes a Weyl module of weight \(v_0 \) of a split model \(M_{\text{split}} \) of \(M_1 \) over \(Z \), as in [Lan and Suh 2012, §2.6]. Let \(\bar{W}_{v_0, R} := \bar{E}_{M_1, R}(W_{v_0, R}) \) be the corresponding automorphic bundle over \(M_\mathcal{H} \), as in [Lan and Suh 2012, Definition 1.16 and §6.3], and let \(W_{\text{sub}, v_0, R} := \bar{E}_{M_1, R}(W_{v_0, R}) \) be its subcanonical extension over \(M_{\mathcal{H}, R}^{\text{min}} \), as in [Lan and Suh 2013, Definition 4.12 and §7]. (We similarly define \(W_{v, R} \), \(W_{v, R} \), and \(W_{\text{sub}, v, R} \) for all \(v \in X^+_M \).)

Theorem 1.1. With the setting as above, there exists a bound \(C(v_0) \) depending only on the integral PEL datum \((\mathcal{O}, *, L, (\cdot, \cdot), h_0)\) and the weight \(v_0 \), such that

\[
R^i \pi_* W_{\text{sub}, v_0, R} = 0 \tag{1.2}
\]

for all \(i > 0 \) when the residue characteristics of \(R \) are zero or \(p \) greater than \(C(v_0) \). (See Lemma 3.3 below for an explicit choice of \(C(v_0) \).)

To help the reader understand the restriction imposed by \(C(v_0) \), let us spell out the bound in some simple special cases. If \(v_0 = 0 \), then we can take \(C(v_0) \) to be the relative dimension \(d \) of \(M_{\mathcal{H}} \) over the base scheme \(S_0 \) (see Example 3.9 below).

If \(M_{\mathcal{H}} \) is a \(p \)-integral model of the Siegel modular variety of genus three, then the weight \(v_0 \) is of the form \((k_1, k_2, k_3; k_0)\) for some integers \(k_0 \) and \(k_1 \geq k_2 \geq k_3 \), and we can take \(C(v_0) \) to be \(6 + (k_1 - k_3) + (k_2 - k_3) \) (see Example 3.10 below with \(r = 3 \) there). If \(M_{\mathcal{H}} \) is a \(p \)-integral model of a Picard modular surface, then the weight \(v_0 \) is of the form \((k_1, k_2, k_3; k_0)\) for some integers \(k_0, k_1 \), and \(k_2 \geq k_3 \), and we can take \(C(v_0) \) to be \(2 + (k_2 - k_3) \) (see Example 3.12 below with \((r - q, q) = (2, 1)\) there). (In all cases, \(C(v_0) \) is insensitive to shifting the weight \(v_0 \) by a “parallel weight”. See Section 3C below for more examples.)

We note that, when \(R = \mathbb{C} \), global sections of \(W_{\text{sub}, v_0, R} \), over \(M_{\mathcal{H}, \Sigma}^{\text{tor}} \), can be represented by holomorphic cuspidal automorphic forms. (See, e.g., [Harris 1990b, Proposition 5.4.2]; see also [Harris 1990a] for a survey on how the higher cohomology of \(W_{\text{sub}, v_0, R} \) can be represented by nonholomorphic automorphic forms. See [Lan 2012] for the comparison between algebraic and analytic constructions hidden behind this.)

Combined with the Leray spectral sequence, Theorem 1.1 allows one to identify the cohomology of \(W_{\text{sub}, v_0, R} \), over \(M_{\mathcal{H}, \Sigma}^{\text{tor}} \), with the cohomology of \(\pi_* W_{\text{sub}, v_0, R} \) over \(M_{\mathcal{H}}^{\text{min}} \). Although the coherent sheaf \(\pi_* W_{\text{sub}, v_0, R} \) is not locally free in general, there are reasons for \(M_{\mathcal{H}}^{\text{min}} \) to be useful for the construction of \(p \)-adic modular forms and \(p \)-adic Galois representations.

Special cases of Theorem 1.1 have been independently proved in [Andreatta et al. 2013a; 2013b] (in the Siegel and Hilbert cases, for trivial weight \(v_0 \)) and in [Harris et al. 2013] (in the unitary case, for all weights \(v_0 \)), without any assumption on the residue characteristic \(p \). The idea in [Harris et al. 2013] has also been carried out for
all PEL-type cases in [Lan 2014]. Such results have played crucial roles in positive characteristics in [Andreata et al. 2013a; 2013b; Emerton et al. 2013; Pilloni and Stroh 2013], and in characteristic zero in [Harris et al. 2013; Tian and Xiao 2013]. The proofs in [Andreata et al. 2013a; 2013b] and [Harris et al. 2013; Lan 2014] directly used the toroidal and minimal boundary structures, and hence can be considered more elementary, which is why they work for all residue characteristics p; but they are lengthier and arguably more complicated. It is not easy to see from their proofs why Theorem 1.1 should be true. (It is not even clear how the two strategies in [Andreata et al. 2013a; 2013b] and [Harris et al. 2013; Lan 2014] are related to each other.) Thus it is desirable to find a proof more closely related to other vanishing statements, at least when the residue characteristics are zero or sufficiently large.

It was first observed by the second author that this is indeed possible — in characteristic zero, the trivial weight case can be deduced from Grauert and Remmenschneider’s vanishing theorem [1970]; in positive characteristics, under suitable assumptions (involving choices of projective but generally nonsmooth cone decompositions Σ for the toroidal compactification $M_{H, \Sigma}^{\text{tor}}$, whose existence is not very clearly documented in the literature), it is also possible to deduce the statement from Deligne and Illusie’s [1987] and Kato’s [1989] vanishing theorems. Then the first author made the observations that the assumption on cone decompositions can be relaxed by using Esnault and Viehweg’s [1992] vanishing theorem as in [Lan and Suh 2011], and that (along similar lines) cases of nontrivial weights can be treated using stronger vanishing theorems in [Lan and Suh 2013]. (In the Siegel case, one can also use [Stroh 2010; 2013].)

In Section 2, we will present the proof of Theorem 1.1 and highlight the main inputs. In Section 3, we will carry out some elementary computations needed in the proof of Theorem 1.1, and find an explicit choice of $C(v_0)$. In Section 4, we sketch a logically simpler proof for the trivial weight case.

2. Proof of the theorem

Let $\pi : M_{H, \Sigma}^{\text{tor}} \to M_{H, \Sigma}^{\min}$, $v_0 \in X_{M_1}^+$, and $W_{v_0, R}^{\text{sub}}$ be as in Section 1. Since $M_{H, \Sigma, 1}^{\text{tor}}$ and $M_{H, \Sigma, 1}^{\min}$ are proper over $S_1 = \text{Spec}(R_1)$ (see [Lan and Suh 2013, §4.1] and the references there for the notation), which are in particular separated and of finite type, for the purpose of proving Theorem 1.1 we may write R as an inductive limit over its sub-R_1-algebras and assume that R is of finite type over R_1, which is in particular noetherian. Then we may base change to R and abusively denote $M_{H, \Sigma, 1}^{\text{tor}} \to M_{H, \Sigma, 1}^{\min}$ by the same notation π. Our goal is to show that $R^i \pi_* W_{v_0, R}^{\text{sub}} = 0$ for all $i > 0$.

As in [Lan and Suh 2012, §2.6], we shall denote by $X_{M_1}^{+ < p}$ the subset of $X_{M_1}^+$ consisting of p-small weights, namely the weights $v \in X_{M_1}^+$ such that $(v + \rho_{M_1}, \alpha) \leq p$ for all roots $\alpha \in \Phi_{M_1}$, where ρ_{M_1} is the usual half sum of positive roots.
2A. Application of Serre’s fundamental theorem. By [Lan and Suh 2013, Proposition 7.13], there exists some weight \(v_1 \in X^+_{M_1} \) such that \(W_{v_1,R} \) is free of rank one as an \(R \)-module, and such that there exists an ample line bundle \(\omega_{v_1} \) over \(M_{\mathcal{H},R}^{\text{min}} \) such that

\[
\pi^* \omega_{v_1} \cong W_{v_1,R}^{\text{can}},
\]

the canonical extension \(W_{v_1,R}^{\text{can}} \) of \(W_{v_1,R} \). Since (by definition)

\[
W^\text{sub}_{v_0+Nv_1,R} \cong W^\text{sub}_{v_0,R} \otimes_{\mathcal{M}_{\mathcal{H},R}^{\text{tor}}} (W_{v_1,R}^{\text{can}})^{\otimes N}
\]

for all integers \(N \), by the projection formula [EGA 1960, 0, (5.4.10.1), p. 52] we have

\[
R^j \pi_* W^\text{sub}_{v_0+Nv_1,R} \cong (R^j \pi_* W^\text{sub}_{v_0,R}) \otimes_{\mathcal{M}_{\mathcal{H},R}^{\text{tor}}} \omega_{v_1}^{\otimes N}.
\]

Then we have the following:

Lemma 2.4. There exists some integer \(N_1 \geq 0 \) such that, for all integers \(N \geq N_1 \) and all \(i \geq 0 \), the sheaves \(R^i \pi_* W^\text{sub}_{v_0+Nv_1,R} \) over \(M_{\mathcal{H},R}^{\text{min}} \) are generated by their global sections and satisfy \(H^j(M_{\mathcal{H},R}^{\text{min}}, R^i \pi_* W^\text{sub}_{v_0+Nv_1,R}) = 0 \) for all \(j > 0 \).

Proof. Since \(\pi \) is proper and \(M_{\mathcal{H},R}^{\text{min}} \) is noetherian, by the theorem of finiteness [EGA 1961, III, Théorème (3.2.1), p. 116], the sheaves \(R^i \pi_* W^\text{sub}_{v_0,R} \) are coherent over \(M_{\mathcal{H},R}^{\text{min}} \) for all \(i \geq 0 \), and are nonzero only for finitely many \(i \). Since \(\omega_{v_1} \) is ample over \(M_{\mathcal{H},R}^{\text{min}} \), the lemma follows from (2.3) and Serre’s fundamental theorem for projective schemes [EGA 1961, III, Théorème (2.2.1), p. 100]. \(\square \)

2B. Shifting weights into the holomorphic chamber. Let \(w_0 \) (resp. \(w_1 \)) be the longest Weyl element in \(W_{M_1} \) (resp. \(W_{M_1}^{\text{tor}} \)) (see [Lan and Suh 2012, §2.4]), so that \((-w_0) \Phi_{M_1}^+ = \Phi_{M_1}^+ \) and \(W_v \cong W_{w_0(v)}^\nu \) for all \(v \in X^+_{M_1} \) and \(l(w_1) = d = \dim_{S_1}(M_{\mathcal{H},1}) \).

Remark 2.5. When \(R = \mathbb{C} \), for any \(\mu \in X^+_{G_1} \), sections in \(H^0(M_{\mathcal{H},\Sigma,R}^{\text{tor}}, (W_{w_1+\mu,R}^\nu)^{\text{sub}}) \) are represented by holomorphic cusp forms of weight \((-w_0)(w_1 \cdot \mu) \in X^+_{M_1} \), which contribute via the dual BGG spectral sequence to

\[
H^d_{\log-dR}(M_{\mathcal{H},R}^{\text{tor}}, (V_{\mu,R}^\nu)^{\text{sub}}) \cong H^d_{dR,c}(M_{\mathcal{H},R}, V^\nu_{[\mu,R]})
\]

(compact supported of middle degree), compatible with their contribution to the better-understood \(L^2 \) cohomology of \(M_{\mathcal{H},R} \). (For more explanations see [Faltings 1983, Theorem 9; Harris 1990a, §2; 1990b, Proposition 5.4.2]; see also the comparisons with transcendental results in [Lan and Suh 2012; 2013] and the references there.) Thus we consider weights of the form

\[
(-w_0)(w_1 \cdot \mu) = (-w_0 w_1)(\mu) + (-w_0)(w_1 \cdot 0)
\]

holomorphic; these holomorphic weights form a translation of the dominant chamber \(X^+_{G_1} \), because \((-w_0 w_1)\) preserves \(X^+_{G_1} \).
Proposition 2.6. There exists an integer N_2, a positive parallel weight $\nu_2 \in X^+_{M_1}$, and a weight $\mu_0 \in X^+_{G_1}$, all of which can be explicitly determined, such that

$$v_0 + N_2 v_1 - \nu_2 = -w_0(w_1 \cdot \mu_0) \quad (2.7)$$

This proposition is elementary in nature. One can prove Proposition 2.6 using general principles that also work for all reductive groups defining Shimura varieties. However, we shall spell out a (less elegant) case-by-case argument, which has the advantage of giving explicit choices of N_2, ν_2, and μ_0 of small sizes.

We will assume Proposition 2.6 in the remainder of this section, and postpone its proof until Section 3A. In Lemma 3.3, we will give an explicit choice of $C(\mu_0)$, depending only on $(\mathcal{O}, \star, L, \langle \cdot, \cdot \rangle, h_0)$ and the weight v_0, such that $C(v_0) \geq |\mu_0|_{\text{re}}$ (see [Lan and Suh 2012, Definition 3.9]) for some triple (N_2, ν_2, μ_0) as in Proposition 2.6.

2C. Application of automorphic vanishing.

Corollary 2.8. Let (N_2, v_2, μ_0) be any triple as in Proposition 2.6. Suppose that $p > |\mu_0|_{\text{re}}$ and that N is any integer satisfying $N \geq N_2$. Then we have

$$H^i(M_{\text{tor}}^\Sigma, R^\nu_2 \mathcal{W}_{\text{sub}}^{v_0 + N v_1, R}) = 0 \quad \text{for every } i > 0.$$

Proof. By definition, the subset $X^+_{M_1} \subset X^+_{M_1}$ is preserved by translations by parallel weights. Moreover, by [Lan and Suh 2012, Remark 2.30], by the same argument as in the proof of [Lan and Suh 2012, Lemma 7.20], we have $v_0 \in X^+_{M_1}$ under the assumption that $p > |\mu_0|_{\text{re}}$. Then the assertion $H^i(M_{\text{tor}}^\Sigma, R^\nu_2 \mathcal{W}_{\text{sub}}^{v_0 + N v_1, R}) = 0$ follows from [Lan and Suh 2013, Theorem 8.13(2)], because $v := v_0 + N v_1$ and $v_+ := (N - N_2) v_1 + v_2$ satisfy the condition there, with $\mu(v + v_+) = \mu_0 \in X^+_{G_1}$ and $w(v) = w_1$ (so that $d - I(w(v)) = d - I(w_1) = 0$).

Remark 2.9 (erratum). There are typos in [Lan and Suh 2013, Theorem 8.13]: both instances of $X^+_{G_1}$ there should be $X^+_{G_1}$, which is what was used in [Lan and Suh 2013, Corollary 7.24], on which the theorem depends.

2D. End of the proof of Theorem 1.1. Let N_1 be as in Lemma 2.4, and let (N_2, v_2, μ_0) be any triple as in Proposition 2.6 satisfying $C(v_0) \geq |\mu_0|_{\text{re}}$ for some $C(v_0)$ (which will be given in Lemma 3.3 below). Suppose that $p > C(v_0)$ and that N is any integer satisfying $N \geq N_1$ and $N \geq N_2$. By Lemma 2.4 and by the Leray spectral sequence, and by Corollary 2.8, we have

$$H^i_0(M^\Sigma_{\text{tor}}, R^i \pi_* \mathcal{W}_{\text{sub}}^{v_0 + N v_1, R}) \cong H^i(M_{\text{tor}}^\Sigma, R^\nu_2 \mathcal{W}_{\text{sub}}^{v_0 + N v_1, R}) = 0 \quad (2.10)$$

for all $i > 0$. Since $R^i \pi_* \mathcal{W}_{\text{sub}}^{v_0 + N v_1, R}$ is generated by its global sections (by Lemma 2.4) it follows that

$$R^i \pi_* \mathcal{W}_{\text{sub}}^{v_0 + N v_1, R} = 0 \quad (2.11)$$
for all $i > 0$. By combining (2.3) and (2.11), we obtain the desired vanishing (1.2) for all $i > 0$ (under the assumption that $p > C(v_0) \geq |\mu_0|_{\text{re}}$).

Suppose that the residue characteristics of R are all zero. By shrinking R and enlarging R by flat descent, we may replace the setup with a different one in which $p > C(v_0) \geq |\mu_0|_{\text{re}}$, and obtain the desired vanishing from the above.

Thus, Theorem 1.1 follows.

\section{3. Elementary computations}

We shall freely use the notation in \cite[\S 2 and \S 7]{LanSuh2012}. The material in this section can be read without any knowledge of algebraic geometry or Shimura varieties.

3A. \textbf{Proof of Proposition 2.6.} We can rewrite (2.7) as

\[v_0 + N_2 v_1 - v_2 = -w_0(w_1 \mu_0 + w_1 \rho - \rho) = \mu'_0 + (-w_0)(w_1 \cdot 0), \]

where $\mu'_0 = -(w_0 w_1)(\mu_0) \in X^+_{G_1}$ satisfies $V_{[\mu'_0]} \cong V_{[\mu_0]}^\vee$, because $w_0 w_1$ is the longest Weyl element in W_{G_1}. Hence it suffices to find N_2 and v_2 such that

\[\mu'_0 = v_0 + N_2 v_1 - v_2 - (-w_0)(w_1 \cdot 0) \in X^+_{G_1}. \] \hfill (3.1)

Let us write $v_j = ((v_j, \tau)_{\tau \in \gamma/c}; v_j, 0) = (((v_{j, \tau, i, \tau})_{1 \leq i, \rho_\tau \leq \rho_\tau})_{\tau \in \gamma/c}; v_j, 0) \in X^+_{M_{1,\tau}}$ for $j = 0, 1, 2$. We shall also denote by ρ_τ (resp. ρ_0, ρ_1, ρ_2) the corresponding factors of ρ (resp. w_0, w_1, w_1). Then we need

\[\mu'_{0,\tau} = v_{0,\tau} + N_2 v_{1,\tau} - v_{2,\tau} - (-w_{0,\tau})(w_{1,\tau} \cdot 0) \in X^+_{G_\tau} \] \hfill (3.2)

for each factor G_τ of G_1. There are two cases:

(1) If $\tau = \tau \circ c$, then $G_\tau \cong \text{Sp}_{2\rho_\tau} \otimes_{\Z} R_1$ or $G_\tau \cong \text{O}_{2\rho_\tau} \otimes_{\Z} R_1$, and $M_\tau \cong \text{GL}_{2\rho_\tau} \otimes_{\Z} R_1$.

If $G_\tau \cong \text{Sp}_{2\rho_\tau} \otimes_{\Z} R_1$, set $d_\tau = 1/2(r_\tau - 1)$ and $r'_\tau = r_\tau + 1$. If $G_\tau \cong \text{O}_{2\rho_\tau} \otimes_{\Z} R_1$, set $d_\tau = 1/2(r_\tau - 1)$ and $r'_\tau = r_\tau$. Set $e_\tau = (1, 1, \ldots, 1)$. If $d_{[\tau]} = \sum_{\tau' \in [\tau]} d_{\tau'} = 0$, then we must have $G_\tau \cong \text{O}_{2\rho_\tau} \otimes_{\Z} R_1$ and $r_\tau \leq 1$, in which case (3.2) is trivially true if we take $\mu'_{0,\tau} = v_{0,\tau}$, any $N_2 \in \Z$, and $v_{2,\tau} = N_2 v_{1,\tau} - (-w_{0,\tau})(w_{1,\tau} \cdot 0)$. Hence we may assume that $d_{[\tau]} > 0$. By assumption, we know that $v_{0,\tau,1} \geq v_{0,\tau,2} \geq \cdots \geq v_{0,\tau,\tau}$, and that $v_{1,\tau} = k_{1,\tau} e_\tau$, where $k_{1,\tau} > 0$ depends only on the equivalence class $[\tau]_0$ of τ (see \cite[Definition 7.12]{LanSuh2012}). Also, we have $\rho_\tau = (r'_\tau, r'_\tau - 1, \ldots, r'_\tau - r_\tau)$ and $(-w_{0,\tau})(w_{1,\tau} \cdot 0) = r'_\tau e_\tau$. Thus, in order for (3.2) to hold, we need

\[v_{0,\tau,1} + N k_{1,\tau} - k_{2,\tau} \geq r_\tau + 1 = r'_\tau \quad \text{if} \quad G_\tau \cong \text{Sp}_{2\rho_\tau} \otimes_{\Z} R_1, \]

or

\[v_{0,\tau,1} - 1 + N k_{1,\tau} - k_{2,\tau} - r_\tau \geq |v_{0,\tau,1} + N k_{1,\tau} - k_{2,\tau} - r_\tau| \quad \text{if} \quad G_\tau \cong \text{O}_{2\rho_\tau} \otimes_{\Z} R_1. \]

We may take:
Relative cohomology of cuspidal forms on PEL-type Shimura varieties

(a) $\mu'_{0,\tau} := v_{0,\tau} - v_{0,[\tau]_0} e_\tau$, where $v_{0,[\tau]_0} := \min_{\tau' \in [\tau]_0} (v_{0,\tau',r_\tau});$

(b) $\mu_{0,\tau} := -(w_{0,\tau} w_{1,\tau})(\mu'_{0,\tau}) = \mu'_{0,\tau}$; and

(c) N_τ to be any integer satisfying $v_{0,[\tau]_0} + N_\tau k_{1,\tau} > r'_\tau$, so that

$$v_{0,\tau} + N v_{1,\tau} - \mu'_{0,\tau} = (-w_{0,\tau})(w_{1,\tau} \cdot 0) = (v_{0,[\tau]_0} + N k_{1,\tau} - r'_\tau) e_\tau,$$

with a positive coefficient $v_{0,[\tau]_0} + N k_{1,\tau} - r'_\tau > 0$ for every $N \geq N_\tau$.

(2) If $\tau \neq \tau \circ c$, then $G_\tau \cong \text{GL}_{p_\tau} \otimes \mathbb{Z} R_1$ and $M_\tau \cong (\text{GL}_{q_\tau} \times \text{GL}_{p_\tau}) \otimes \mathbb{Z} R_1$. Set $d_\tau = p_\tau q_\tau$.

$$e_\tau = (1, 1, \ldots, 1, 0, 0, \ldots, 0), \quad \text{and} \quad e'_\tau = (0, 0, \ldots, 0, -1, -1, \ldots, -1).$$

If $d_{[\tau]_0} = \sum_{\tau' \in [\tau]_0} d_{\tau'} = 0$, then we must have $p_\tau q_\tau = 0$ for all $\tau \in [\tau]_0$, in which case (3.2) is trivially true if we take $\mu'_{0,\tau} = v_{0,\tau}$, any $N_2 \in \mathbb{Z}$, and $v_{2,\tau} = N_2 v_{1,\tau} - (-w_{0,\tau})(w_{1,\tau} \cdot 0)$. Hence we may assume that $d_{[\tau]_0} > 0$. By assumption, we know that

$$v_{0,\tau,1} \geq v_{0,\tau,2} \geq \cdots \geq v_{0,\tau,q_\tau} \quad \text{and} \quad v_{0,\tau,q_\tau+1} \geq v_{0,\tau,q_\tau+2} \geq \cdots \geq v_{0,\tau,r_\tau},$$

and that $v_{1,\tau} = k_{1,\tau} e_\tau + k_{1,\tau o} e'_\tau$, where $[k_{1}]_{\tau} = k_{1,\tau} + k_{1,\tau o} > 0$ depends only on the equivalence class $[\tau]_0$ of τ (see [Lan and Suh 2012, Proposition 7.15]). Also, we have $v_{1,\tau} = \frac{1}{2} (r_{\tau} - 1, r_{\tau} - 3, \ldots, -r_{\tau} + 1)$ and $(-w_{0,\tau})(w_{1,\tau} \cdot 0) = p_\tau e_\tau + q_\tau e'_\tau$.

Thus, in order for (3.2) to hold, we need

$$v_{0,q_\tau} + N k_{1,\tau} - k_{2,\tau} - p_\tau \geq v_{0,q_\tau+1} - N k_{1,\tau o} + k_{2,\tau o} + q_\tau,$$

or equivalently

$$(v_{0,q_\tau} - v_{0,q_\tau+1}) + N [k_{1}]_{\tau} - [k_{2}]_{\tau} \geq p_\tau + q_\tau = r_{\tau}.$$

We may take:

(a) $\mu'_{0,\tau} := v_{0,\tau} - v_{0,[\tau]_0} e_\tau - (v_{0,\tau,1} - v_{0,[\tau]_0})(e_\tau - e'_\tau)$, where

$$v_{0,[\tau]_0} := \min_{\tau' \in [\tau]_0, d_{\tau'} \neq 0} (v_{0,\tau',q_{\tau'}} - v_{0,\tau',q_{\tau'}+1}),$$

$$v_{0,\tau,1} := \begin{cases} v_{0,\tau,1} & \text{if } q_\tau > 0, \\ v_{0,\tau,1} + v_{0,[\tau]_0} & \text{if } q_\tau = 0. \end{cases}$$

(b) $\mu_{0,\tau} := -(w_{0,\tau} w_{1,\tau})(\mu'_{0,\tau})$, which ends with $\mu_{0,\tau,r_\tau} = 0$ because $\mu'_{0,\tau}$ starts with $\mu'_{0,\tau,1} = 0$; and

(c) N_τ to be any integer satisfying $v_{0,[\tau]_0} + N_\tau [k_{1}]_{\tau} > r_{\tau}$, so that

$$v_{0,\tau} + N v_{1,\tau} - \mu'_{0,\tau} = (-w_{0,\tau})(w_{1,\tau} \cdot 0) = (v_{0,\tau,1} + N k_{1,\tau} - p_\tau) e_\tau + (v_{0,[\tau]_0} - v_{0,\tau,1} + N k_{1,\tau o} - q_\tau) e'_\tau.$$
with sum of coefficients, for every $N \geq N_{\tau}$,

$$(v_{0,\tau,1} + Nk_{1,\tau} - p_{\tau}) + (v_{0,[\tau]_Q} - v_{0,\tau,1} + Nk_{1,\tau \circ c} - q_{\tau}) = v_{0,[\tau]_Q} + N[k_{1}]_{\tau} - r_{\tau} > 0.$$

Now set:

$$N_2 := \max_{\tau \in \mathcal{Y}/c} (N_{\tau});$$

$$\mu_0 := ((\mu_{0,\tau})_{\tau \in \mathcal{Y}/c}; \mu_{0,0}) \text{ with any value of } \mu_{0,0};$$

$$\mu_0' := (-w_0 w_1)(\mu_0);$$

$$v_2 := v_0 + N_2 v_1 - \mu_0' - (-w_0)(w_1 \cdot 0).$$

Then the triple (N_2, v_2, μ_0) satisfies (3.1) and hence also (2.7), as desired, because each of its factors $(N_2, v_{2,\tau}, \mu_{0,\tau})$ satisfies (3.2) by the above. \hfill \Box

3B. Explicit choice of $C(v_0)$.

Lemma 3.3. The minimal size $|\mu_0|_{\text{re}}$ (see [Lan and Suh 2012, Definition 3.9]) among all μ_0 appearing in some (N_2, v_2, μ_0) satisfying (2.7) in Proposition 2.6 is smaller than or equal to

$$C(v_0) := \sum_{\tau \in \mathcal{Y}/c} C_\tau(v_{0,\tau}),$$

where each $C_\tau(v_{0,\tau})$ is defined as follows:

1. If $\tau = \tau \circ c$, then we set $d_{\tau} := \frac{1}{2} r_{\tau}(r_{\tau} + 1)$ (resp. $d_{\tau} := \frac{1}{2} r_{\tau}(r_{\tau} - 1)$) if $G_{\tau} \cong \text{Sp}_{2r_{\tau}} \otimes \mathbb{Q} R_1$ (resp. $G_{\tau} \cong \text{O}_{2r_{\tau}} \otimes \mathbb{Q} R_1$), $v_{0,[\tau]_Q} := \min_{i_{\tau} \in [\tau]_Q} (v_{0,\tau,i_{\tau}})$, and

$$C_\tau(v_{0,\tau}) := d_{\tau} + \sum_{1 \leq i_{\tau} \leq r_{\tau}} (v_{0,\tau,i_{\tau}} - v_{0,[\tau]_Q}).$$

2. If $\tau \neq \tau \circ c$, then we set $d_{\tau} := p_{\tau} q_{\tau},$

$$v_{0,[\tau]_Q} := \min_{i_{\tau} \in [\tau]_Q, d_{\tau}
eq 0} (v_{0,\tau,i_{\tau}} - v_{0,\tau,i_{\tau}} + 1),$$

$$v_{0,\tau,i_{\tau}}' := \begin{cases} v_{0,\tau,1} & \text{if } q_{\tau} > 0, \\ v_{0,\tau,1} + v_{0,[\tau]_Q} & \text{if } q_{\tau} = 0, \end{cases}$$

and

$$C_\tau(v_{0,\tau}) := d_{\tau} + \sum_{1 \leq i_{\tau} \leq q_{\tau}} (v_{0,\tau,i_{\tau}}' - v_{0,\tau,i_{\tau}}) + \sum_{q_{\tau} < i_{\tau} \leq r_{\tau}} (v_{0,\tau,i_{\tau}}' - v_{0,[\tau]_Q} - v_{0,\tau,i_{\tau}}).$$

Proof. These follow from the definition of $|\mu_0|_{\text{re}} = d + \sum_{\tau \in \mathcal{Y}/c} (\sum_{1 \leq i_{\tau} \leq r_{\tau}} \mu_{0,\tau,i_{\tau}})$ and the explicit choices of $\mu_{0,\tau}$ in the proof of Proposition 2.6. \hfill \Box

Remark 3.7. By using [Lan and Suh 2013, (7.9) and (7.11)], it is possible to reduce the proof of Theorem 1.1 to the case where the integral PEL datum is \mathbb{Q}-simple,
We leave the details to the interested readers.

3C. Some examples. To help the reader understand the notation and formulas, we include some examples of familiar special cases.

Example 3.9 (trivial weight). If \(v_0 = 0 \), then (2.7) holds for \(\mu_0 = 0 \) and any sufficiently large \(N_2 \), and we have

\[
C(v_0) = \sum_{\tau \in \Upsilon/c} C_\tau(v_0, \tau) = \sum_{\tau \in \Upsilon/c} d_\tau = d
\]

in (3.4).

Example 3.10 (Siegel case). Suppose \((\mathcal{O}, \star, L, \langle \cdot, \cdot \rangle, h_0)\) is given with \(\mathcal{O} = \mathbb{Z} \) with trivial \(\star \), with \((L, \langle \cdot, \cdot \rangle)\) given by \(\mathbb{Z}^{\oplus 2r} \) with some standard self-dual symplectic pairing, and with any conventional choice of \(h_0 \). Then we are in the so-called Siegel case. There is a unique \(\tau \in \Upsilon \) with \(\tau = \tau \circ c \), which we can suppress in our notation, and each \(v_0 \in X^+_{M_1} \) can be represented by a tuple \((v_{0,1}, v_{0,2}, \ldots, v_{0,r}; v_{0,0})\), where \(v_{0,1} \geq v_{0,2} \geq \cdots \geq v_{0,r} \) are integers. Then \(\mu_0 \) can be chosen to be

\[
v_0 - v_{0,r}((1, 1, \ldots, 1, 1); 0) = ((v_{0,1} - v_{0,r}, \ldots, v_{0,r-1} - v_{0,r}, 0); v_{0,0})
\]

(see (3.5)).

Example 3.11 (“\(\mathbb{Q} \)-similitude Hilbert case”). Suppose \((\mathcal{O}, \star, L, \langle \cdot, \cdot \rangle, h_0)\) is given with \(\mathcal{O} = \mathcal{O}_F \) with trivial \(\star \), where \(F \) is a totally real number field, with \((L, \langle \cdot, \cdot \rangle)\) given by \(\mathcal{O}_F^{\oplus 2} \) with some standard symplectic pairing defined by trace, and with any conventional choice of \(h_0 \); and suppose \(p \) is any prime number unramified in \(\mathcal{O}_F \). Then we are essentially in the so-called Hilbert case, although we only consider elements in \(\text{Res}_{F/\mathbb{Q}} \text{GL}_2 \) with similitudes in \(\mathbb{G}_m \) (rather than \(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_m \)). There are \(d \) elements \(\tau \in \Upsilon \) corresponding to the \(d = [F : \mathbb{Q}] \) homomorphisms from \(\mathcal{O}_F \) to an algebraic closure of \(\mathbb{Q}_p \), which all satisfy \(\tau = \tau \circ c \) and determine a unique equivalence class \([\tau]_{\mathbb{Q}}\) (of Galois orbits of \(\tau \)), and our coefficient ring \(R \) is chosen to contain the images of all these homomorphisms, over which all linear algebraic data are split. Each \(v_0 \in X^+_{M_1} \) can be represented by a tuple \((v_{0,\tau})_{\tau \in \Upsilon}; v_{0,0})\), where each \(v_{0,\tau} = (v_{0,\tau,1}) \) consists of just one integer \(v_{0,\tau,1} \). Then \(v_{0,[\tau]_{\mathbb{Q}}} = \min_{\tau \in \Upsilon} (v_{0,\tau,1}) \), and \(\mu_0 \) can be chosen to be \(v_0 - v_{0,[\tau]_{\mathbb{Q}}}((1)_{\tau \in \Upsilon}; 0) = ((v_{0,\tau,1} - v_{0,[\tau]_{\mathbb{Q}}})_{\tau \in \Upsilon}; v_{0,0}) \), and we have \(C(v_0) = d + \sum_{\tau \in \Upsilon} (v_{0,\tau,1} - v_{0,[\tau]_{\mathbb{Q}}}) \) (see (3.5)).

and replace (3.4) with

\[
C'(v_0) := \max_{[\tau]_{\mathbb{Q}}} (C_{[\tau]_{\mathbb{Q}}} (v_{0,[\tau]_{\mathbb{Q}}}))
\]

where:

1. \(C_{[\tau]_{\mathbb{Q}}} (v_{0,[\tau]_{\mathbb{Q}}}) = 0 \) if \(d_{[\tau]_{\mathbb{Q}}} = \sum_{\tau' \in [\tau]_{\mathbb{Q}}/c} d_{\tau} \leq 1 \);
2. \(C_{[\tau]_{\mathbb{Q}}} (v_{0,[\tau]_{\mathbb{Q}}}) = \sum_{\tau' \in [\tau]_{\mathbb{Q}}/c} C_{\tau'}(v_{0,\tau}) \), where \(C_{\tau'}(v_{0,\tau}) \) are as in (3.5) and (3.6), otherwise.

We leave the details to the interested readers.
Example 3.12 (simplest unitary case). Suppose $(\mathcal{O}, \ast, L, (\cdots), h_0)$ is given with $\mathcal{O} = \mathcal{O}_F$, where F is an imaginary quadratic extension of \mathbb{Q} with an embedding $F \hookrightarrow \mathbb{C}$, with \ast given by complex conjugation, with $(L, (\cdot, \cdot))$ given by a Hermitian module over $\mathcal{O}_F^{\text{or}}$ with signature $(r - q, q)$ at ∞ (using the given $F \hookrightarrow \mathbb{C}$), and with any conventional choice of h_0 (respecting the signature); and suppose p is any prime number unramified in \mathcal{O}_F. Then we obtain the simplest (nontrivial) unitary case. There is a unique representative τ of orbits in Υ / c such that $\tau \neq \tau \circ c$ and $(p_\tau, q_\tau) = (r - q, q)$, matching the signatures at ∞ and at p; hence we shall always choose this τ and suppress τ from the notation. Each $v_0 \in X_{\text{M}^1}$ can be represented by a tuple $((v_{0,1}, v_{0,2}, \ldots, v_{0,q}, v_{0,q+1}, \ldots, v_{0,r}); v_0, 0)$, where $v_{0,1} \geq v_{0,2} \geq \ldots \geq v_{0,q}$ and $v_{0,q+1} \geq \ldots \geq v_{0,r}$ are integers. If $q > 0$, then μ_0 can be chosen to be $(v_{0,1} - v_{0,q} + v_{0,q+1} - v_{0,r}, \ldots, v_{0,1} - v_{0,q}, v_{0,1} - v_{0,q}, \ldots, v_{0,1} - v_{0,2}, 0; v_0, 0)$ (note the reversed order and the repeated term $v_{0,1} - v_{0,q}$), and we have

$$C(v_0) = (r - q)q + \sum_{1 \leq i \leq q} (v_{0,1} - v_{0,i}) + \sum_{q < i \leq r} (v_{0,1} - v_{0,q} + v_{0,q+1} - v_{0,i}).$$

If $q = 0$, then μ_0 can be chosen to be $(v_{0,1} - v_{0,r}, \ldots, v_{0,1} - v_{0,2}, 0; v_0, 0)$ and we have $C(v_0) = \sum_{1 \leq i \leq r} (v_{0,r+1} - v_{0,i})$; but $d = 0$ and the map π is trivial — $C(v_0) = 0$ suffices. (See (3.6) and Remark 3.7.)

4. Simpler proof for the trivial weight case

In this final section, we sketch a logically simpler proof for the trivial weight case $v_0 = 0$, which does not require the various advanced technical inputs in [Lan and Suh 2013, §§1–3] (such as the theory of F-spans in [Ogus 1994]). The key is to give a simpler proof of the vanishing statement in Corollary 2.8 when $v_0 = 0$ (with a suitable choice of (N_2, v_2, μ_0)). By standard arguments, as in the proof of [Lan and Suh 2013, Theorem 8.2], we may and we shall assume that R is a perfect field extension of the residue field of R_1.

Using the extended Kodaira–Spencer isomorphism — see [Lan 2013, Theorem 6.4.1.1(4)] — and the very construction of canonical extensions of automorphic bundles using the relative Lie algebra of the universal abelian scheme, one can show that

$$W_{\text{can}}^{\text{can}}(\cdot w_0(w_{1,0}^{-1}) \cong (W_{\text{can}}^{\text{can}}(\cdot w_1^{-1}) \cong \Omega_{M_{\text{tor}, \Sigma, 1}^d}^d(S_1, 0, \log \infty) \cong \Omega_{M_{\text{tor}, \Sigma, 1}^d}^d(S_1, 0, \log \infty))$$

as line bundles over $M_{\text{tor}, \Sigma, 1}^d$ (ignoring Tate twists). (The proof is left to the interested readers.) Moreover, the proof of Proposition 2.6 in Section 3A shows that we can take $\mu_0 = 0$ in Proposition 2.6, with some integer N_2 such that the weight $v_2 = N_2 v_1 - (-w_0)(w_1 \cdot 0)$ is positive and parallel. Then we have

$$W_{\text{can}}^{\text{can}}(\cdot w_0(w_{1,0}^{-1}) \cong (W_{\text{can}}^{\text{can}}(\cdot w_1^{-1}) \cong \Omega_{M_{\text{tor}, \Sigma, 1}^d}^d(S_1, 0, \log \infty).$$
where \(D \) is the boundary divisor \(M^\text{tor}_{H, \Sigma, 1} - M_{H, 1} \) (with reduced subscheme structure).

By [Lan and Suh 2013, Proposition 4.2(5) and Corollary 7.14], there exists a (usually nonreduced) divisor \(D' \) with \(D'_\text{red} = D \), and some \(r_0 > 0 \), such that the line bundle \((W^{\text{can}}_{\nu_2})^\otimes r (−D') \) is ample for all integers \(r \geq r_0 \). (This follows from [Lan 2013, Theorem 7.3.3.4], which implies that there exists some \(D' \) as above such that \(\mathcal{O}_{M^\text{tor}_{H, \Sigma, 1}} (−D') \) is relatively ample over \(M^\text{tor}_{H, \Sigma, 1} / S \).) By base change from \(R_1 \) to \(R \), this is exactly the condition (*) needed in [Esnault and Viehweg 1992, Theorem 11.5]. Then, by [Esnault and Viehweg 1992, Theorem 11.5] and by Serre duality, we obtain

\[
H^i(M^\text{tor}_{H, \Sigma, R}, W^{\text{sub}}_{N\nu_1, R}) = H^i(M^\text{tor}_{H, \Sigma, R}, W^{\text{sub}}_{N\nu_1, R} \otimes \mathcal{O}_{M^\text{tor}_{H, \Sigma, 1}}(\mathcal{O}_{M^\text{tor}_{H, \Sigma, 1}/S_1}(\log D))) = 0
\]

for all \(i > 0 \). (This is the same approach taken in [Lan and Suh 2011,]). This gives the desired vanishing statement in Corollary 2.8 when \(\nu_0 = 0 \), and we can conclude as in Section 2D. This argument does not depend on [Lan and Suh 2013, Theorem 8.13(2)], and hence not on the various advanced technical inputs in [Lan and Suh 2013, §§1–3].

Acknowledgements

The authors would like to thank the anonymous referee for valuable suggestions. Stroh would like to thank Esnault for very helpful discussions, and to thank Scholze for pointing out an error in an earlier approach.

References

Communicated by Richard Taylor
Received 2013-08-23 Revised 2014-08-03 Accepted 2014-10-08

kwlan@math.umn.edu School of Mathematics, University of Minnesota,
 127 Vincent Hall, 206 Church Street SE,
 Minneapolis, MN 55455, United States

stroh@math.univ-paris13.fr C.N.R.S, Université Paris 13, LAGA, 99 avenue J.B. Clément,
 93430 Villetaneuse, France
Relative cohomology of cuspidal forms on PEL-type Shimura varieties
KAI-WEN LAN and BENOÎT STROH 1787

ℓ-modular representations of unramified p-adic $U(2,1)$
ROBERT JAMES KURINCIUK 1801

McKay natural correspondences on characters
GABRIEL NAVARRO, PHAM HUU TIEP and CAROLINA VALLEJO 1839

Quantum matrices by paths
KAREL CASTEELS 1857

Twisted Bhargava cubes
WEE TECK GAN and GORDAN SAVIN 1913

Proper triangular G_2-actions on \mathbb{A}^4 are translations
ADRIEN DUBOULOZ, DAVID R. FINSTON and IMAD JARADAT 1959

Multivariate Apéry numbers and supercongruences of rational functions
ARMIN STRAUB 1985

The image of Carmichael’s λ-function
KEVIN FORD, FLORIAN LUCA and CARL POMERANCE 2009