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Multivariate Apéry numbers and
supercongruences of rational functions

Armin Straub

One of the many remarkable properties of the Apéry numbers A(n), introduced
in Apéry’s proof of the irrationality of ζ(3), is that they satisfy the two-term
supercongruences

A(pr m)≡ A(pr−1m) (mod p3r )

for primes p > 5. Similar congruences are conjectured to hold for all Apéry-like
sequences. We provide a fresh perspective on the supercongruences satisfied
by the Apéry numbers by showing that they extend to all Taylor coefficients
A(n1, n2, n3, n4) of the rational function

1
(1− x1− x2)(1− x3− x4)− x1x2x3x4

.

The Apéry numbers are the diagonal coefficients of this function, which is simpler
than previously known rational functions with this property.

Our main result offers analogous results for an infinite family of sequences,
indexed by partitions λ, which also includes the Franel and Yang–Zudilin numbers
as well as the Apéry numbers corresponding to ζ(2). Using the example of
the Almkvist–Zudilin numbers, we further indicate evidence of multivariate
supercongruences for other Apéry-like sequences.

1. Introduction

The Apéry numbers

A(n)=
n∑

k=0

(n
k

)2(n+k
k

)2
(1)

played a crucial role in R. Apéry’s proof [Apéry 1979; van der Poorten 1979]
of the irrationality of ζ(3), and have inspired much further work. Among many
other interesting properties, they satisfy congruences with surprisingly large moduli,
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referred to as supercongruences, a term coined by F. Beukers [1985]. For instance,
for all primes p > 5 and all positive integers r ,

A(pr m)≡ A(pr−1m) (mod p3r ). (2)

The special case m = 1, r = 1 was conjectured by S. Chowla, J. Cowles and
M. Cowles [Chowla et al. 1980], who established the corresponding congruence
modulo p2. The case r = 1 was subsequently shown by I. Gessel [1982] and
Y. Mimura [1983], while the general case was proved by M. Coster [1988]. The
proof is an adaption of Beukers’ [1985] proof of the related congruence

A(pr m− 1)≡ A(pr−1m− 1) (mod p3r ), (3)

again valid for all primes p> 5 and all positive integers r . That congruence (3) can
be interpreted as an extension of (2) to negative integers is explained in Remark 1.3.
For further congruence properties of the Apéry numbers, we refer to [Cowles 1980;
Beukers 1987; Ahlgren and Ono 2000; Kilbourn 2006].

Given a series

F(x1, . . . , xd)=
∑

n1,...,nd>0

a(n1, . . . , nd)x
n1
1 · · · x

nd
d , (4)

its diagonal coefficients are the coefficients a(n, . . . , n) and the diagonal is the
ordinary generating function of the diagonal coefficients. For our purposes, F
will always be a rational function. It is well-known (see, for instance, [Lipshitz
and van der Poorten 1990, Theorem 5.2]) that the diagonal of a rational function
satisfies a Picard–Fuchs linear differential equation, and as such “comes from
geometry”. In particular, the diagonal coefficients satisfy a linear recurrence with
polynomial coefficients.

Many sequences of number-theoretic interest can be represented as the diagonal
coefficients of rational functions. In particular, it is known [Christol 1984; Lipshitz
and van der Poorten 1990] that the Apéry numbers are the diagonal coefficients of
the rational function

1
(1− x1)

[
(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3

] . (5)

Several other rational functions of which the Apéry numbers are the diagonal
coefficients are given in [Bostan et al. 2013], where it is also discussed how these
can be obtained from the representation of the Apéry numbers as the binomial
sum (1). However, all of these rational function involve at least five variables and,
in each case, the polynomial in the denominator factors. Our first result shows
that in fact the Apéry numbers are the diagonal coefficients of a simpler rational
function in only four variables.
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Theorem 1.1. The Apéry numbers A(n), defined in (1), are the diagonal coefficients
of

1
(1− x1− x2)(1− x3− x4)− x1x2x3x4

. (6)

Representing a sequence as the diagonal of a rational function has certain benefits.
For instance, asymptotic results can be obtained directly and explicitly from this
rational function. This is the subject of multivariate asymptotics, as developed
in [Pemantle and Wilson 2002]. For details and a host of worked examples we
refer to [Pemantle and Wilson 2008]. As a second example, the rational generating
function provides a means to compute the sequence modulo a fixed prime power.
Indeed, the diagonal of a rational function with integral Taylor coefficients, such
as (6), is algebraic modulo pα for any α [Lipshitz and van der Poorten 1990]. A
recent demonstration that this can be done very constructively is given in [Rowland
and Yassawi 2013], where the values modulo pα of sequences such as the Apéry
numbers are, equivalently, encoded as finite automata.

We note that a statement such as Theorem 1.1 is more or less automatic to prove
once discovered. For instance, given a rational function, we can always repeatedly
employ a binomial series expansion to represent the Taylor coefficients as a nested
sum of hypergeometric terms. In principle, creative telescoping [Petkovšek et al.
1996] will then obtain a linear recurrence satisfied by the diagonal coefficients, in
which case it suffices to check that the alternative expression satisfies the same
recurrence and agrees for sufficiently many initial values.

For the rational function F(x) given in (6), we can gain considerably more
insight. Indeed, for all the Taylor coefficients A(n), defined by

F(x1, x2, x3, x4)=
∑

n1,n2,n3,n4>0

A(n1, n2, n2, n4)x
n1
1 xn2

2 xn3
3 xn4

4 , (7)

we find, for instance by applying MacMahon’s master theorem [1915, pp. 93–98]
as detailed in Section 4, the explicit formula

A(n)=
∑
k∈Z

(n1
k

)(n3
k

)(n1+n2−k
n1

)(n3+n4−k
n3

)
, (8)

of which Theorem 1.1 is an immediate consequence.
An instance of our main result is the observation that the supercongruence (2)

for the Apéry numbers generalizes to all coefficients (8) of the rational function (6)
in the following sense:

Theorem 1.2. Let n = (n1, n2, n3, n4) ∈ Z4. The coefficients A(n), defined in (7)
and extended to negative integers by (8), satisfy, for primes p > 5 and positive
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integers r , the supercongruences

A(pr n)≡ A(pr−1n) (mod p3r ). (9)

Note that the Apéry numbers are A(n)= A(n, n, n, n), so that (9) indeed gen-
eralizes (2). Our reason for allowing negative entries in n is that by doing so, we
also generalize Beukers’ supercongruence (3). Indeed, as explained in Remark 1.3
below, A(n−1)= A(−n,−n,−n,−n). Theorem 1.2 is a special case of our main
result, Theorem 3.2, in which we prove such supercongruences for an infinite family
of sequences. This family includes other Apéry-like sequences such as the Franel
and Yang–Zudilin numbers, as well as the Apéry numbers corresponding to ζ(2).

We therefore review Apéry-like sequences in Section 2. Though no uniform
reason is known, each Apéry-like sequence appears to satisfy a supercongruence
of the form (2), some of which have been proved [Beukers 1985; Coster 1988;
Chan et al. 2010; Osburn and Sahu 2011; 2013; Osburn et al. 2014] while others
remain open [Osburn et al. 2014]. A major motivation for this note is to work
towards an understanding of this observation. Our contribution to this question is
the insight that, at least for several Apéry-like sequences, these supercongruences
generalize to all coefficients of a rational function. Our main result, which includes
the case of the Apéry numbers outlined in this introduction, is given in Section 3.
In that section, we also record two further conjectural instances of this phenomenon.
Finally, we provide proofs for our results in Sections 4 and 5.

Remark 1.3. Let us indicate that congruence (3) can be interpreted as the natural
extension of (2) to the case of negative integers m. To see this, generalize the
definition (1) of the Apéry numbers A(n) to all integers n by setting

A(n)=
∑
k∈Z

(n
k

)2(n+k
k

)2
. (10)

Here, we assume the values of the binomial coefficients to be defined as the (limiting)
values of the corresponding quotient of gamma functions, that is,(

n
k

)
= lim

z→0

0(z+ n+ 1)
0(z+ k+ 1)0(z+ n− k+ 1)

.

Since 0(z+ 1) has no zeros, and poles only at negative integers z, one observes
that the binomial coefficient

(n
k

)
is finite for all integers n and k. Moreover, the

binomial coefficient with integer entries is nonzero only if k > 0 and n− k > 0, or
if n < 0 and k > 0, or if n < 0 and n− k > 0. Note that in each of these cases k > 0
or n−k > 0, so that the symmetry

(n
k

)
=
( n

n−k

)
allows us to compute these binomial

coefficients in the obvious way. For instance,
(
−3
−5

)
=
(
−3
2

)
= (−3)(−4)/2! = 6. As

carefully shown in [Sprugnoli 2008], for all integers n and k, we have the negation
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rule (n
k

)
= sgn(k)(−1)k

(
−n+k−1

k

)
, (11)

where sgn(k)= 1 for k > 0 and sgn(k)=−1 for k < 0. Applying (11) to the sum
(10), we find that

A(−n)= A(n− 1).

In particular, the congruence (3) is equivalent to (2) with −m in place of m.

Remark 1.4. The proof of formula (8) in Section 4 shows that the coefficients can
be expressed as

A(n1, n2, n3, n4)= ct
(x1+ x2+ x3)

n1(x1+ x2)
n2(x3+ x4)

n3(x2+ x3+ x4)
n4

xn1
1 xn2

2 xn3
3 xn4

4
,

representing them as the constant terms of Laurent polynomials. In particular,
the Apéry numbers (1) are the constant term of powers of a Laurent polynomial.
Namely,

A(n)= ct
[
(x1+ x2)(x3+ 1)(x1+ x2+ x3)(x2+ x3+ 1)

x1x2x3

]n

.

Since the Newton polyhedron of this Laurent polynomial has the origin as its
only interior integral point, the results of [Samol and van Straten 2009; Mellit and
Vlasenko 2013] apply to show that A(n) satisfies the Dwork congruences

A(pr m+ n)A(bn/pc)≡ A(pr−1m+bn/pc)A(n) (mod pr )

for all primes p and all integers m, n > 0, r > 1. In particular,

A(pr m)≡ A(pr−1m) (mod pr ), (12)

which is a weaker version of (2) that holds for the large class of sequences repre-
sented as the constant term of powers of a Laurent polynomial, subject only to the
condition on the Newton polyhedron. This gives another indication why congruence
(2) is referred to as a supercongruence. It would be of considerable interest to find
similarly well-defined classes of sequences for which supercongruences of the form
(12) but modulo pkr for k > 1 hold. Let us note that the case r = 1 of the Dwork
congruences implies the Lucas congruences

A(n)≡ A(n0)A(n1) · · · A(n`) (mod p),

where n0, . . . , n`∈{0, 1, . . . , p−1} are the p-adic digits of n=n0+n1 p+· · ·+n` p`.
It is shown in [Rowland and Yassawi 2013] that Lucas congruences hold for all
Taylor coefficients of certain rational functions. Additional divisibility properties in
this direction are obtained in [Delaygue 2013] for Apéry-like numbers as well as
for constant terms of powers of certain Laurent polynomials. Finally, we note that
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an extension of Dwork congruences to the multivariate setting has been considered
in [Krattenthaler and Rivoal 2011]. In contrast to our approach, where, for instance,
the Apéry numbers appear as the diagonal (multivariate) Taylor coefficients of
a multivariate function F(x), the theory developed in [Krattenthaler and Rivoal
2011] is concerned with functions G(x)= G(x1, . . . , xd) for which, say, the Apéry
numbers are the (univariate) Taylor coefficients of the specialization G(x, . . . , x).

2. Review of Apéry-like numbers

The Apéry numbers A(n) are characterized by the 3-term recurrence

(n+ 1)3un+1 = (2n+ 1)(an2
+ an+ b)un − n(cn2

+ d)un−1, (13)

where (a, b, c, d)= (17, 5, 1, 0), together with the initial conditions

u−1 = 0, u0 = 1. (14)

As explained in [Beukers 2002], the fact that in the recursion (13) we divide
by (n + 1)3 at each step means that we should expect the denominator of un to
grow like (n!)3. While this is what happens for generic choice of the parameters
(a, b, c, d), the Apéry numbers have the, from this perspective, exceptional property
of being integral. Initiated by Beukers [2002], systematic searches have therefore
been conducted for recurrences of this kind, which share the property of having an
integer solution with initial conditions (14). This was done by D. Zagier [2009] for
recurrences of the form

(n+ 1)2un+1 = (an2
+ an+ b)un − cn2un−1, (15)

by G. Almkvist and W. Zudilin [2006] for recurrences of the form (13) with d = 0
and, more recently, by S. Cooper [2012] for recurrences of the form (13). In
each case, apart from degenerate cases, only finitely many sequences have been
discovered. For details and a possibly complete list of the sequences, we refer to
[Zagier 2009; Almkvist and Zudilin 2006; Almkvist et al. 2011; Cooper 2012].

Remarkably, and still rather mysteriously, all of these sequences, often referred
to as Apéry-like, share some of the interesting properties of the Apéry numbers.
For instance, they all are the coefficients of modular forms expanded in terms of
a corresponding modular function. In the case of the Apéry numbers A(n), for
instance, it was shown by Beukers [1987] that∑

n>0

A(n)
(
η(τ)η(6τ)
η(2τ)η(3τ)

)12n

=
η7(2τ)η7(3τ)
η5(τ )η5(6τ)

, (16)

where η(τ) is the Dedekind eta function η(τ)= eπ iτ/12 ∏
n>1
(1−e2π inτ ). The modular
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function and the modular form appearing in (16) are modular with respect to the
congruence subgroup 00(6) of level 6 (in fact, they are modular with respect to
a slightly larger group). While this relation with modular forms can be proven in
each individual case, no conceptual explanation is available, in the sense that if
an additional Apéry-like sequence was found we would not know a priori that its
generating function has a modular parametrization such as (16).

As a second example, it is conjectured and in some cases proven [Osburn et al.
2014] that each Apéry-like sequence satisfies a supercongruence of the form (2).
Again, no uniform explanation is available and, the known proofs [Gessel 1982;
Mimura 1983; Beukers 1985; Coster 1988] of the supercongruences (2) and (3) all
rely on the explicit binomial representation (1) of the Apéry numbers. However,
not all Apéry-like sequences have a comparably effective binomial representation
so that, for instance, for the Almkvist–Zudilin numbers [Almkvist et al. 2011,
Sequence (4.12)(δ); Chan and Zudilin 2010; Chan et al. 2010]

Z(n)=
n∑

k=0

(−3)n−3k
( n

3k

)(n+k
n

)(3k)!
k!3

, (17)

which solve (13) with (a, b, c, d)= (−7,−3, 81, 0), the supercongruence

Z(pr m)≡ Z(pr−1m) (mod p3r ) (18)

for primes p > 3 is conjectural only.
It would therefore be of particular interest to find alternative approaches to proving

supercongruences. In this paper, we provide a new perspective on supercongruences
of the form (18) by showing that they hold, at least for several Apéry-like sequences,
for all coefficients C(n) of a corresponding rational function, which has the sequence
of interest as its diagonal coefficients. In such a case, one may then hope to use
properties of the rational function to prove, for some k > 1, the supercongruence

C(pr n)≡ C(pr−1n) (mod pkr ).

For instance, for fixed pr , these congruences can be proved, at least in principle,
by computing the multivariate generating functions of both C(pr n) and C(pr−1n),
which are rational functions because they are multisections of a rational function,
and comparing them modulo pkr .

Let us note that, in Example 3.9 below, we give a characterization of the Almkvist–
Zudilin numbers (17) as the diagonal of a surprisingly simple rational function,
and conjecture that the supercongruences (18), which themselves have not been
proved yet, again extend to all coefficients of this rational function. We hope
that the simplicity of the rational function might help inspire a proof of these
supercongruences.
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3. Main result and examples

We now generalize what we have illustrated in the introduction for the Apéry
numbers A(n) to an infinite family of sequences Aλ,ε(n), indexed by partitions
λ and ε ∈ {−1, 1}, which includes other Apéry-like numbers such as the Franel
and Yang–Zudilin numbers as well as the sequence used by Apéry in relation
with ζ(2). Our main theorem is Theorem 3.2, in which we prove (multivariate)
supercongruences for this family of sequences, thus unifying and extending a number
of known supercongruences. To begin with, the sequences we are concerned with
are introduced by the following extension of formula (8). Here, xn is short for
xn1

1 xn2
2 · · · x

nd
d .

Theorem 3.1. Let α ∈ C and λ= (λ1, . . . , λ`) ∈ Z`>0 with d = λ1+ · · ·+ λ`, and
set s( j)= λ1+ · · ·+ λ j−1. Then the Taylor coefficients of the rational function(∏̀

j=1

[
1−

λ j∑
r=1

xs( j)+r

]
−αx1x2 · · · xd

)−1

=

∑
n∈Zd

>0

Aλ,α(n)xn (19)

are given by

Aλ,α(n)=
∑
k∈Z

αk
∏̀
j=1

(ns( j)+1+· · ·+ns( j)+λ j−(λ j−1)k
ns( j)+1−k, . . . , ns( j)+λ j−k, k

)
. (20)

The proof of this elementary but crucial result will be given in Section 4. Observe
that the multivariate Apéry numbers A(n), defined in (8), are the special case
A(2,2),1(n).

Our main result, of which Theorem 1.2 is the special case λ= (2, 2) and ε = 1,
follows next. Note that, if n ∈ Zd

>0, then the sum (20) defining Aλ,α(n) is finite and
runs over k=0, 1, . . . ,min(n1, . . . , nd). On the other hand, if max(λ1, . . . , λ`)>2,
then Aλ,α(n) is finite for any n ∈ Zd .

Theorem 3.2. Let ε ∈ {−1, 1}, λ = (λ1, . . . , λ`) ∈ Z`>0, and assume that n ∈ Zd ,
d = λ1+ · · ·+ λ` is such that Aλ,ε(n), as defined in (20), is finite.

(a) If `> 2, then, for all primes p > 3 and integers r > 1,

Aλ,ε(pr n)≡ Aλ,ε(pr−1n) (mod p2r ). (21)

If ε = 1, then these congruences also hold for p = 2.

(b) If `> 2 and max(λ1, . . . , λ`)6 2, then, for primes p > 5 and integers r > 1,

Aλ,ε(pr n)≡ Aλ,ε(pr−1n) (mod p3r ). (22)

A proof of Theorem 3.2 is given in Section 5. One of the novel features of the
proof, which is based on the approach of [Gessel 1982] and [Beukers 1985], is that it
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proceeds in a uniform fashion for all n ∈Zd . As outlined in Remark 1.3, this allows
us to also conclude, and to a certain extent explain, the shifted supercongruences (3),
which, among Apéry-like numbers, are special to the Apéry numbers as well as their
version (23) related to ζ(2). In cases where n has negative entries, the summation
(20), while still finite, may include negative values for k (see Remark 1.3). We
therefore extend classical results, such as Jacobsthal’s binomial congruences, to the
case of binomial coefficients with negative entries.

Example 3.3. For λ= (2), the numbers (20) specialize to the Delannoy numbers

A(2),1(n)=
∑
k∈Z

(n1
k

)(n1+n2−k
n1

)
,

which, for n1, n2 > 0, count the number of lattice paths from (0, 0) to (n1, n2) with
steps (1, 0), (0, 1) and (1, 1). The Delannoy numbers do not satisfy (21) or (22),
thus demonstrating the necessity of the condition `> 2 in Theorem 3.2. They do
satisfy (21) modulo pr , by virtue of Remark 1.4.

Example 3.4. The Apéry-like sequence

B(n)=
∑
k∈Z

(n
k

)2(n+k
k

)
, (23)

which satisfies recurrence (15) with (a, b, c) = (11, 3,−1), was introduced by
Apéry [Apéry 1979; van der Poorten 1979] along with (1) and used to (re)prove the
irrationality of ζ(2). By Theorem 3.1 with λ= (2, 1) and ε = 1, the numbers B(n)
are the diagonal coefficients of the rational function

1
(1− x1− x2)(1− x3)− x1x2x3

=

∑
n∈Z3

>0

B(n)xn. (24)

In addition to the binomial sum for B(n) given by Theorem 3.1, MacMahon’s master
theorem (Theorem 4.1) shows that B(n1, n2, n3) is the coefficient of xn1

1 xn2
2 xn3

3 in
the product (x1+ x2+ x3)

n1(x1+ x2)
n2(x2+ x3)

n3 . An application of Theorem 3.2
shows that, for n ∈ Z3 and integers r > 1, the supercongruences

B(pr n)≡ B(pr−1n) (mod p3r ) (25)

hold for all primes p > 5. In the diagonal case n1 = n2 = n3, this result was first
proved by Coster [1988].

Proceeding as in Remark 1.3, and using the curious identity

n∑
k=0

(n
k

)2(n+k
k

)
=

n∑
k=0

(−1)n+k
(n

k

)(n+k
k

)2
, (26)
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we find that B(−n)= (−1)n−1 B(n− 1) for n > 0. Consequently, (25) implies the
shifted supercongruences B(pr m− 1)≡ B(pr−1m− 1), which hold modulo p3r

for all primes p > 5 and were first proved in [Beukers 1985], along with (3). We
observe that, among the known Apéry-like numbers, the sequence B(n) and the
Apéry numbers (1) are the only ones to satisfy shifted supercongruences of the
form (3) in addition to the supercongruences of the form (2).

Example 3.5. As a result of Theorem 3.1 with λ= (3, 1) and ε = 1, the numbers

C(n)=
n∑

k=0

(n
k

)2(n+k
k

)(n+2k
k

)
are the diagonal coefficients of the rational function

1
(1− x1− x2− x3)(1− x4)− x1x2x3x4

.

By Theorem 3.2, it follows that C(pr n)≡ C(pr−1n) modulo p2r , for all primes p.
We note that this congruence does not, in general, hold modulo a larger power of
p, as is illustrated by C(5)= 4,009,657 6≡ 7= C(1) modulo 53. This demonstrates
that in Theorem 3.2(a) the modulus p2r of the congruences cannot, in general, be
replaced with p3r , even for p > 5.

Example 3.6. Next, we consider the sequences

Yd(n)=
n∑

k=0

(n
k

)d
. (27)

The numbers Y3(n) satisfy the recurrence (15) with (a, b, c)= (7, 2,−8) and are
known as Franel numbers [1894], while the numbers Y4(n), corresponding to
(a, b, c, d) = (6, 2,−64, 4) in (13), are sometimes referred to as Yang–Zudilin
numbers [Chan et al. 2010]. It follows from Theorem 3.1 with λ = (1, 1, . . . , 1)
and ε = 1 that

1
(1− x1)(1− x2) · · · (1− xd)− x1x2 · · · xd

=

∑
n∈Zd

>0

Yd(n)xn, (28)

where
Yd(n)=

∑
k>0

(n1
k

)(n2
k

)
· · ·

(nd
k

)
. (29)

It is proved in [Chan et al. 2010] that Yd(pn)≡Yd(n)modulo p3 for primes p> 5 if
d>2. These congruences are generalized to the multivariate setting by Theorem 3.2,
which shows that, if d > 2, then, for n ∈ Zd

>0 and integers r > 1,

Yd(pr n)≡ Yd(pr−1n) (mod p3r ) (30)
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for primes p > 5. Note that

Y2(n)=
∑
k∈Z

(n1
k

)(n2
k

)
=

(n1+n2
n1

)
.

Hence, congruence (30) includes, in particular, the appealing binomial congruence( pa
pb

)
≡

(a
b

)
(mod p3),

which is attributed to W. Ljunggren [Granville 1997] and which generalizes the
classical congruences by C. Babbage, J. Wolstenholme and J. W. L. Glaisher. It
is further refined by E. Jacobsthal’s binomial congruence, which we review in
Lemma 5.1 and which the proof of Theorem 3.2 crucially depends on.

Let us conclude this section with two conjectural examples, which suggest that
our results are not an isolated phenomenon.

Example 3.7. As noted in the introduction for the Apéry numbers, there is no
unique rational function of which a given sequence is the diagonal. For instance,
the Franel numbers Y3(n) are also the diagonal coefficients of the rational function

1
1− (x1+ x2+ x3)+ 4x1x2x3

. (31)

A rational function F(x) is said to be positive if its Taylor coefficients (4) are all
positive. The Askey–Gasper rational function (31), whose positivity is proved in
[Askey and Gasper 1977] and [Gillis et al. 1983], is an interesting instance of a
rational function on the boundary of positivity (if the 4 is replaced by 4+ ε, for any
ε > 0, then the resulting rational function is not positive). The present work was, in
part, motivated by the observation [Straub and Zudilin 2014] that for several of the
rational functions, which have been shown or conjectured to be on the boundary
of positivity, the diagonal coefficients are arithmetically interesting sequences
with links to modular forms. Note that the Askey–Gasper rational function (31)
corresponds to the choice λ= (3) and α=−4 in Theorem 3.1, which makes its Taylor
coefficients G(n)= A(3),−4(n) explicit. We also note that an application of MacMa-
hon’s master theorem (Theorem 4.1) shows that G(n1, n2, n3) is the coefficient of
xn1

1 xn2
2 xn3

3 in the product (x1− x2− x3)
n1(x2− x1− x3)

n2(x3− x1− x2)
n3 . Although

it is unclear how one might adjust the proof of Theorem 3.2, numerical evidence
suggests that the coefficients G(n) satisfy supercongruences modulo p3r as well.

Conjecture 3.8. The coefficients G(n) of the rational function (31) satisfy, for
primes p > 5 and integers r > 1,

G(pr n)≡ G(pr−1n) (mod p3r ).
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Example 3.9. Remarkably, the previous example has a four-variable analog, which
involves the Almkvist–Zudilin numbers Z(n), introduced in (17). Namely, the
numbers Z(n) are the diagonal coefficients of the unexpectedly simple rational
function

1
1− (x1+ x2+ x3+ x4)+ 27x1x2x3x4

, (32)

as can be deduced from Theorem 3.1 with λ= (4) and α =−27. Again, numerical
evidence suggests that the coefficients Z(n) of (32) satisfy supercongruences modulo
p3r . This is particularly interesting, since even the univariate congruences (18) are
conjectural at this time.

Conjecture 3.10. The coefficients Z(n) of the rational function (32) satisfy, for
primes p > 5 and integers r > 1,

Z(pr n)≡ Z(pr−1n) (mod p3r ).

Remark 3.11. The rational functions (31) and (32) involved in the previous exam-
ples make it natural to wonder whether supercongruences might similarly exist for
the family of rational functions given by

1
1− (x1+ x2+ · · ·+ xd)+ (d − 1)d−1x1x2 · · · xd

.

This does not, however, appear to be the case for d > 5. In fact, no value b 6= 0 in

1
1− (x1+ x2+ · · ·+ xd)+ bx1x2 · · · xd

appears to give rise to supercongruences (by computing coefficients, we have ruled
out supercongruences modulo p2r for integers |b|< 100,000 and d 6 25).

4. The Taylor coefficients

This section is devoted to proving Theorem 3.1. Before we give a general proof,
we offer an alternative approach based on MacMahon’s master theorem, to which
we refer at several occasions in this note and which offers additional insight into
the Taylor coefficients by expressing them as coefficients of certain polynomials
(see also Remark 1.4). This approach, which we apply here to prove formula (8), is
based on the following result of P. MacMahon [1915], coined by himself “a master
theorem in the Theory of Permutations”. Here, [xm

] denotes the coefficient of
xm1

1 · · · x
mn
n in the expansion of what follows.
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Theorem 4.1. For x= (x1,. . .,xn), matrices A∈Cn×n and m= (m1,. . .,mn)∈Zn
>0,

[xm
]

n∏
i=1

( n∑
j=1

Ai, j x j

)mi

= [xm
]

1
det(In − AX)

,

where X is the diagonal n× n matrix with entries x1, . . . , xn .

Proof of formula (8). We note that

1
(1− x1− x2)(1− x3− x4)− x1x2x3x4

=
1

det(I4−M X)
,

where M and X are the matrices

M =


1 1 1 0
1 1 0 0
0 0 1 1
0 1 1 1

 , X =


x1

x2

x3

x4

 .
An application of MacMahon’s master theorem therefore shows that the coefficients
A(n), with n= (n1, n2, n3, n4), are given by

A(n)= [xn
](x1+ x2+ x3)

n1(x1+ x2)
n2(x3+ x4)

n3(x2+ x3+ x4)
n4 .

In order to extract the requisite coefficient, we expand the right-hand side as

(x1+ x2+ x3)
n1(x1+ x2)

n2(x3+ x4)
n3(x2+ x3+ x4)

n4

=

∑
k1,k4

(n1
k1

)(n4
k4

)
xn4−k4

2 xn1−k1
3 (x1+ x2)

k1+n2(x3+ x4)
n3+k4

=

∑
k1,k2,k3,k4

(n1
k1

)(n4
k4

)(k1+n2
k2

)(n3+k4
k3

)
xk1+n2−k2

1 xn4−k4+k2
2 xn1−k1+k3

3 xn3+k4−k3
4 .

The summand contributes to xn1
1 xn2

2 xn3
3 xn4

4 if and only if ni − ki = n j − k j for all
i, j = 1, . . . , 4. Writing k = ni − ki for the common value, we obtain

A(n1, n2, n3, n4)=
∑
k∈Z

(n1
k

)(n4
k

)(n1−k+n2
n2−k

)(n3+n4−k
n3−k

)
,

which is equivalent to the claimed (8). �

Proof of Theorem 3.1. Recall the elementary formula

1
(1− x)k+1 =

∑
n>0

(
n+ k

k

)
xn,
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for integers k > 0. Combined with an application of the multinomial theorem, it
implies that

1
(1− x1− · · ·− xρ)k+1 =

∑
n1>0

· · ·

∑
nρ>0

(n1+· · ·+nρ+k
n1, . . . , nρ, k

)
xn1

1 · · · x
nρ
ρ ,

and hence

(x1 · · · xρ)k

(1− x1− · · ·− xρ)k+1 =
∑
n1>0

· · ·

∑
nρ>0

(n1+· · ·+nρ−(ρ−1)k
n1−k, . . . , nρ−k, k

)
xn1

1 · · · x
nρ
ρ . (33)

Here, we used that the multinomial coefficient vanishes if k > min(n1, . . . , nρ).
Geometrically expanding the left-hand side of (19), we find that(∏̀

j=1

[
1−

λ j∑
r=1

xs( j)+r

]
−αx1x2 · · · xd

)−1

=

∑
k>0

αk
∏̀
j=1

(xs( j)+1 · · · xs( j)+λ j )
k[

1−
∑λ j

r=1 xs( j)+r
]k+1 ,

which we further expand using (33) to get

∑
k>0

αk
∑

n∈Zd
>0

xn
∏̀
j=1

(ns( j)+1+· · ·+ns( j)+λ j−(λ j−1)k
ns( j)+1−k, . . . , ns( j)+λ j−k, k

)
=

∑
n∈Zd

>0

Aλ,α(n)xn,

with Aλ,α(n) as in (20). �

5. The supercongruences

Our proof of Theorem 3.2, which generalizes the supercongruence in Theorem 1.2,
builds upon the respective proofs in [Gessel 1982] and [Beukers 1985].

We need a number of lemmas in preparation. To begin with, we prove the follow-
ing extension of Jacobsthal’s binomial congruence [Gessel 1983; Granville 1997] to
binomial coefficients which are allowed to have negative entries (see Remark 1.3).

Lemma 5.1. For all primes p and all integers a, b,(ap
bp

)/(a
b

)
≡ ε (mod pq), (34)

where q is the power of p dividing p3ab(a− b)/12 and where ε = 1, unless p = 2
and (a, b)≡ (0, 1) modulo 2, in which case ε =−1.

Proof. Congruence (34), for nonnegative a, b, is proved in [Gessel 1983] (alterna-
tively, a proof for p > 5 is given in [Granville 1997]). We therefore only indicate
how to extend (34) to negative values of a or b. Note that, for all a, b ∈ Z with
b 6= 0, (a

b

)
=

a
b

(a−1
b−1

)
,
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and hence (ap
bp

)/(a
b

)
=

(ap−1
bp−1

)/(a−1
b−1

)
.

We claim that the extension of (34) to the case a<0 and b<0 therefore follows from(a
b

)
=

(
−b−1
−a−1

)
(−1)a−b sgn(a− b), (35)

where sgn is defined as in Remark 1.3. This is clear for p> 3. Write ε(a, b)=−1 if
(a, b)≡ (0, 1)modulo 2 and ε(a, b)=1 otherwise. It is straightforward to check that

(−1)a−bε(−b,−a)= ε(a, b),

which shows the case p = 2.
Similarly, if a < 0 and b > 0, then we may apply(a

b

)
=

(b−a−1
−a−1

)
(−1)b+1 sgn(a− b) sgn(−a− 1)

as well as

(−1)bε(b− a,−a)= ε(a, b).

A derivation of the above binomial identities, which are valid for all a, b ∈ Z, may
be found in [Sprugnoli 2008]. �

Much simpler and better known is the following congruence:

Lemma 5.2. Let p > 5 be a prime, and ε ∈ {−1, 1}. Then, for all integers r > 0,

pr
−1∑

k=1, p-k

εk

k2 ≡ 0 (mod pr ). (36)

Proof. Let α be an odd integer, not divisible by p, such that α2
6≡ 1 modulo p (take,

for instance, α = 3). Then,

1
α2

pr
−1∑

k=1, p-k

εk

k2 =

pr
−1∑

k=1, p-k

εk

(αk)2
≡

pr
−1∑

k=1, p-k

εk

k2 (mod pr ),

since the second and third sum run over the same residues modulo pr (note that
εαk
= εk since α is odd). As α2 is not divisible by p, the congruence (36) follows. �

The next lemmas establish properties of the summands of the numbers Aλ,ε(n) as
introduced in (20), which will be needed in our proof of Theorem 3.2. Throughout
this section, we fix the notation of Theorem 3.2, letting λ = (λ1, . . . , λ`) ∈ Z`>0
with d = λ1+ · · ·+ λ`, and setting s( j)= λ1+ · · ·+ λ j−1.
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Lemma 5.3. Let n ∈ Zd , k ∈ Z, and define

Aλ(n; k)=
∏̀
j=1

(
ns( j)+1+ · · ·+ ns( j)+λ j − (λ j − 1)k

ns( j)+1− k, . . . , ns( j)+λ j − k, k

)
. (37)

(a) If `> 2, then, for all primes p and integers r > 1,

Aλ(pr n; pk)≡ Aλ(pr−1n; k) (mod p2r ). (38)

(b) If `> 2 and max(λ1, . . . , λ`)6 2, then, for primes p > 5 and integers r > 1,

Aλ(pr n; pk)≡ Aλ(pr−1n; k) (mod p3r ). (39)

Proof. We show (38) and (39) by proving that for integers r, s > 1 and k such
that p - k,

Aλ(pr n; psk)≡ Aλ(pr−1n; ps−1k) (mod pαr ), (40)

where α = 2 or α = 3 depending on whether max(λ1, . . . , λ`)6 2.
Let us first consider the case `> 2 and max(λ1, . . . , λ`)6 2. Then each factor

of (37) is a single binomial, if λ j = 1, or of the form(m1
k

)(m1+m2−k
m1

)
,

if λ j = 2. Let p be a prime such that p> 5. It follows from Jacobsthal’s congruence
(34) that ( pr m1

psk

)/( pr−1m1
ps−1k

)
≡ 1 (mod pr+s+min(r,s))

as well as( pr (m1+m2)− psk
pr m1

)/( pr−1(m1+m2)− ps−1k
pr−1m1

)
≡ 1 (mod pr+2 min(r,s)).

Consequently,
Aλ(pr n; psk)= cAλ(pr−1n; ps−1k) (41)

with c ≡ 1 modulo pr+2 min(r,s). If s > r , this proves congruence (40) with α = 3.
On the other hand, suppose s 6 r . Since p - k, we have( pr n

psk

)
= pr−s n

k

( pr n−1
psk−1

)
≡ 0 (mod pr−s).

Since `>2, it follows that p2(r−s) divides Aλ(pr n; psk). Since (r+2s)+2(r−s)=
3r , the congruence (40), with α = 3, now follows from (41). This shows (b).

Let us now turn to the proof of (a). Assume that `> 2. For any positive integer ρ,(m1+· · ·+mρ−(ρ−1)k
m1−k, . . . ,mρ−k, k

)
=

(m1
k

)(m1+(m2−k)+· · ·+(mρ−k)
m1,m2−k, . . . ,mρ−k

)
,
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so that, as in the previous case, p`(r−s) divides Aλ(pr n; psk) if r > s.
Initially, assume that p > 3. By further unraveling the multinomial coefficient

as a product of binomial coefficients and applying Jacobsthal’s congruence (34) as
above, we find that

Aλ(pr n; psk)= cAλ(pr−1n; ps−1k)

with c ≡ 1 modulo p3 min(r,s)−δ, and δ = 0 if p > 5 and δ = 1 if p = 3. In light of
p2(r−s) dividing Aλ(pr n; psk) if r > s, we conclude congruence (40) with α = 2.

Now, consider p = 2. If r > 2 and s > 2, then the sign ε in Jacobsthal’s
congruence (34) is always +1 when applying the above approach, and we again
find that (40) holds with α = 2. On the other hand, if r = 1, then it suffices to use
the (combinatorial) congruence( pa

pb

)
≡

(a
b

)
(mod p2),

which holds for all primes p. It remains to consider the case r > 2 and s = 1.
Applying the approach employed for p > 3, we find that

Aλ(pr n; psk)= cAλ(pr−1n; ps−1k), (42)

where c ≡ ±1 modulo p3 min(r,s)−2
= 2. If max(λ1, . . . , λ`) 6 2, then we, in fact,

have c ≡ (−1)` modulo pr+2 min(r,s)−2
= 2r . Since Aλ(pr n; psk) is divisible by

p`(r−1), congruence (40) trivially holds with α= 2 if `> 3. Hence, we may assume
that `= 2. If max(λ1, λ2)6 2, then c ≡ 1 modulo 2r in (42) and, since both sides
of (42) are divisible by 22r−2, congruence (40) with α = 2 again follows. Finally,
suppose that there is j such that λ j > 3. Then the factor corresponding to j in (37)
is of the form(m1

k

)(m1+m2−k
m1

)(m1+m2+m3−2k
m3−k

)( m1+· · ·+mρ−(ρ−1)k
m1+m2+m3−2k,m4−k, . . .

)
.

Note that for even m1,m2,m3 and odd k, the third binomial in this product is even.
Hence, Aλ(pr n; psk) is divisible by 22(r−1)+1

= 22r−1. In light of (42), this proves
congruence (40) with α = 2. �

The next congruence, with k > 0, has been used in [Beukers 1985]. For our
present purpose, we extend it to the case of negative k.

Lemma 5.4. For primes p, integers m, k and integers r > 1,( pr m−1
k

)
(−1)k ≡

( pr−1m−1
[k/p]

)
(−1)[k/p] (mod pr ). (43)
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Proof. First, assume that k > 0. Following [Beukers 1985, Lemma 2], we split
the defining product of the binomial coefficient, according to whether the index is
divisible by p or not, to obtain( pr m−1

k

)
=

k∏
j=1

pr m− j
j
=

k∏
j=1,p- j

pr m− j
j

[k/p]∏
λ=1

pr−1m− λ
λ

=

( pr−1m−1
[k/p]

) k∏
j=1, p- j

pr m− j
j

.

Congruence (43), with k > 0, follows upon reducing modulo pr .
On the other hand, assume k < 0. Since (43) is trivial if m > 0, we let m 6 0.

We use the basic symmetry relation( pr m−1
k

)
=

( pr m−1
pr m−k−1

)
and note that, since k < 0, the binomials are zero unless pr m− k− 1> 0. Observe
that for all integers k,m,

[(pr m− k− 1)/p] = pr−1m+ [−(k+ 1)/p] = pr−1m− [k/p] − 1. (44)

Thus, assuming pr m− 1− k > 0, we may apply (43) to find( pr m−1
k

)
(−1)k =

( pr m−1
pr m−k−1

)
(−1)k

≡

( pr−1m−1
pr−1m−[k/p]−1

)
(−1)[k/p](−1)pr m+pr−1m

=

( pr−1m−1
[k/p]

)
(−1)[k/p](−1)pr m+pr−1m (mod pr ).

It only remains to note that pr m + pr−1m = pr−1(p+ 1)m is even unless p = 2
and r = 1. Hence, in all cases, (−1)pr m+pr−1m

≡ 1 modulo pr . �

Lemma 5.5. For primes p, integers m1,m2, k and integers r > 1,( pr m1+ pr m2−k−1
pr m1

)
≡

( pr−1m1+ pr−1m2−[k/p]−1
pr−1m1

)
(mod pr ).

Proof. By an application of (11),(m1+m2−k−1
m1

)
= sgn(m2− k− 1)(−1)m2−k−1

(
−m1−1

m2−k−1

)
.

Since for all a ∈ Z, sgn(a)= sgn([a/p]), the claimed congruence therefore follows
from (44) and Lemma 5.4. �

The following generalizes [Beukers 1985, Lemma 3] to our needs:
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Lemma 5.6. Let p be a prime and n ∈ Zd .

• Let ak ∈ Zp, with k ∈ Z, be such that, for all l, s ∈ Z with s > 0,∑
[k/ps ]=l

ak ≡ 0 (mod ps).

• Let C(n; k) be such that, for all k, r ∈ Z with r > 0,

C(pr n; k)≡ C(pr−1n; [k/p]) (mod pr ). (45)

Then, for all r, l ∈ Z with r > 0,∑
[k/pr ]=l

akC(pr n; k)≡ 0 (mod pr ). (46)

Proof. The claim is trivial for r = 0. Fix r > 0 and assume, for the purpose of
induction on r , that the congruence (46) holds for the exponent r − 1 in place of r .
By the assumption (45) on C(n; k), we have that, modulo pr ,∑

[k/pr ]=l

akC(pr n; k)≡
∑
[k/pr ]=l

akC(pr−1n; [k/p])

=

∑
[m/pr−1]=l

( ∑
[k/p]=m

ak

)
C(pr−1n;m)

= p
∑

[m/pr−1]=l

bmC(pr−1n;m),

where bm is the sequence

bm =
1
p

∑
[k/p]=m

ak .

We note that, for all s, l ∈ Z with s > 0,∑
[m/ps ]=l

bm =
1
p

∑
[m/ps ]=l

∑
[k/p]=m

ak =
1
p

∑
[k/ps+1]=m

ak ≡ 0 (mod ps),

so that we may apply our induction hypothesis (46) with r − 1 to conclude∑
[k/pr ]=l

akC(pr n; k)= p
∑

[m/pr−1]=l

bmC(pr−1n;m)≡ 0 (mod pr ).

The claim therefore follows by induction. �

We are now in a comfortable position to prove Theorem 3.2.
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Proof of Theorem 3.2. In terms of the numbers Aλ,ε(n; k), defined in (37), we have

Aλ,ε(n)=
∑
k>0

εk Aλ(n; k)=
∑
s>0

Gs(n),

where
Gs(n)=

∑
p-k

ε psk Aλ(n; psk).

Suppose that ` > 2. Further, suppose that p > 3, or that p = 2 and ε = 1. Then
ε psk
= ε ps−1k , and it follows from Lemma 5.3 that, for s > 1,

Gs(pr n)≡ Gs−1(pr−1n) (mod p2r ).

In order to prove that Aλ,ε(pr n)≡ Aλ,ε(pr−1n) modulo p2r , it therefore remains
only to show that G0(pr n)≡ 0 modulo p2r . This, however, is immediate because,
as observed in the proof of Lemma 5.3, Aλ(pr n; k), with p - k, is divisible by p`r .
This proves congruence (21).

Now, suppose that `> 2 and max(λ1, . . . , λ`)6 2. Let p be a prime such that
p > 5. It again follows from ε psk

= ε ps−1k and Lemma 5.3 that, for s > 1,

Gs(pr n)≡ Gs−1(pr−1n) (mod p3r ).

To prove Aλ,ε(pr n)≡ Aλ,ε(pr−1n)modulo p3r , we have to show that G0(pr n)≡ 0
modulo p3r . As in the previous case, this is trivial if `> 3. We thus assume `= 2.

Note that, since max(λ1, . . . , λ`)6 2, each factor of Aλ(n; k) is of the form(m1
k

)
or

(m1
k

)(m1+m2−k
m1

)
.

Using the basic identity (m1
k

)
=

m1

k

(m1−1
k−1

)
,

it is clear that the numbers

Bλ(n; k)=
k2

n1n1+λ1

Aλ(n; k)

are integers. Moreover, it follows from Lemmas 5.4 and 5.5, and the fact that `= 2,
that the integers Cλ(n; k)= Bλ(n; k+ 1) satisfy, for all k, r ∈ Z with r > 0,

C(pr n; k)≡ C(pr−1n; [k/p]) (mod pr ).

If p - k then [(k− 1)/p] = [k/p] so that, in particular,

C(pr n, k− 1)≡ C(pr n, [k/p])≡ C(pr n; k) (mod pr ).
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By construction,

G0(pr n)= p2r n1n1+λ1

∑
p-k

εk

k2 C(pr n; k− 1),

so that in order to show that G0(pr n)≡ 0 modulo p3r , it suffices to prove∑
p-k

εk

k2 C(pr n; k)≡ 0 (mod pr ). (47)

Define ak = ε
k/k2, if p - k, and ak = 0 otherwise. Since p > 5, it follows from

Lemma 5.2 that, for all l, s ∈ Z with s > 0,

∑
[k/ps ]=l

ak =

ps
−1∑

k=1,p-k

εlps
+k

(lps + k)2
≡ εl

ps
−1∑

k=1,p-k

εk

k2 ≡ 0 (mod ps).

Hence, the conditions of Lemma 5.6 are met, allowing us to conclude that∑
p-k

εk

k2 C(pr n; k)=
∑

l

∑
[k/pr ]=l

akC(pr n; k)≡ 0 (mod pr ).

This shows (47) and completes our proof. �
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