 |
 |
Recent Issues |
Volume 12, 10 issues
Volume 12
Issue 10, 2237–2514
Issue 9, 2033–2235
Issue 8, 1823–2032
Issue 7, 1559–1821
Issue 6, 1311–1557
Issue 5, 1001–1309
Issue 4, 751–999
Issue 3, 493–750
Issue 2, 227–492
Issue 1, 1–225
Volume 11, 10 issues
Volume 11
Issue 10, 2213–2445
Issue 9, 1967–2212
Issue 8, 1739–1965
Issue 7, 1489–1738
Issue 6, 1243–1488
Issue 5, 1009–1241
Issue 4, 767–1007
Issue 3, 505–765
Issue 2, 253–503
Issue 1, 1–252
Volume 10, 10 issues
Volume 10
Issue 10, 2053–2310
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214
Volume 9, 10 issues
Volume 9
Issue 10, 2197–2415
Issue 9, 1955–2196
Issue 8, 1741–1954
Issue 7, 1515–1739
Issue 6, 1293–1514
Issue 5, 1035–1292
Issue 4, 767–1034
Issue 3, 511–765
Issue 2, 267–509
Issue 1, 1–265
Volume 8, 10 issues
Volume 8
Issue 10, 2297–2572
Issue 9, 2027–2295
Issue 8, 1787–2026
Issue 7, 1539–1786
Issue 6, 1297–1538
Issue 5, 1045–1296
Issue 4, 781–1044
Issue 3, 513–779
Issue 2, 257–511
Issue 1, 1–256
Volume 7, 10 issues
Volume 7
Issue 10, 2369–2592
Issue 9, 2059–2368
Issue 8, 1781–2057
Issue 7, 1535–1779
Issue 6, 1281–1534
Issue 5, 1019–1279
Issue 4, 765–1018
Issue 3, 507–763
Issue 2, 243–506
Issue 1, 1–242
Volume 6, 8 issues
Volume 6
Issue 8, 1579–1868
Issue 7, 1289–1577
Issue 6, 1061–1288
Issue 5, 833–1059
Issue 4, 611–832
Issue 3, 405–610
Issue 2, 195–404
Issue 1, 1–194
Volume 5, 8 issues
Volume 5
Issue 8, 1001–1143
Issue 7, 849–1000
Issue 6, 693–848
Issue 5, 567–691
Issue 4, 431–566
Issue 3, 289–429
Issue 2, 131–288
Issue 1, 1–129
Volume 4, 8 issues
Volume 4
Issue 8, 969–1114
Issue 7, 821–967
Issue 6, 649–820
Issue 5, 493–648
Issue 4, 357–491
Issue 3, 231–356
Issue 2, 111–229
Issue 1, 1–109
Volume 3, 8 issues
Volume 3
Issue 8, 847–990
Issue 7, 729–846
Issue 6, 611–727
Issue 5, 489–609
Issue 4, 367–487
Issue 3, 255–365
Issue 2, 121–254
Issue 1, 1–119
Volume 2, 8 issues
Volume 2
Issue 8, 859–1000
Issue 7, 721–858
Issue 6, 613–720
Issue 5, 501–611
Issue 4, 369–499
Issue 3, 249–368
Issue 2, 121–248
Issue 1, 1–120
Volume 1, 4 issues
Volume 1
Issue 4, 349–488
Issue 3, 239–346
Issue 2, 119–238
Issue 1, 1–117
|
|
 |
 |
|
This article is available for purchase or by subscription. See below.
Abstract
|
In 1968 Tate introduced a new approach to residues on algebraic curves, based on a
certain ring of operators that acts on the completion at a point of the function field
of the curve. This approach was generalized to higher-dimensional algebraic varieties
by Beilinson in 1980. However, Beilinson’s paper had very few details, and his
operator-theoretic construction remained cryptic for many years. Currently there
is a renewed interest in the Beilinson–Tate approach to residues in higher
dimensions.
Our paper presents a variant of Beilinson’s operator-theoretic construction. We consider an
-dimensional topological
local field
, and define
a ring of operators
that acts on
,
which we call the ring of
local Beilinson–Tate operators. Our definition
is of an analytic nature (as opposed to the original geometric
definition of Beilinson). We study various properties of the ring
. In particular we
show that
has
an
-dimensional
cubical decomposition, and this gives rise to a
residue functional in the style of
Beilinson and Tate. Presumably this residue functional coincides with the
residue functional that we had constructed in 1992; but we leave this as a
conjecture.
|
PDF Access Denied
Warning: We have not been able to recognize your IP address
54.226.23.160
as that of a subscriber to this journal.
Online access to the content of recent issues is by
subscription, or purchase of single articles.
Please contact your institution's librarian suggesting a subscription, for example by using our journal-recommendation form.
Or, visit our
subscription page
for instructions on purchasing a subscription.
You may also contact us at
contact@msp.org
or by using our contact form.
Or, you may purchase this single article for
USD 40.00:
Keywords
topological local fields, residues, Tate residue, Beilinson
adeles
|
Mathematical Subject Classification 2010
Primary: 12J25
Secondary: 32A27, 13J05, 11R56, 46A13, 46H30
|
Milestones
Received: 25 June 2014
Revised: 20 October 2014
Accepted: 25 December 2014
Published: 18 February 2015
|
|