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On the normalized arithmetic
Hilbert function

Mounir Hajli

Let X C ﬂj’g be a subvariety of dimension 7, and let Hom (X; ) be the normal-
ized arithmetic Hilbert function of X introduced by Philippon and Sombra. We
show that this function admits the asymptotic expansion

7'[norm(X; D) = ﬂ

=t 1)‘D"+' +o(D"Y, VD> 1,

where /4 (X) is the normalized height of X. This gives a positive answer to a
question raised by Philippon and Sombra.

1. Introduction

In [Philippon and Sombra 2008], the authors introduce an arithmetic Hilbert function
defined for any subvariety in PV, the projective space of dimension N over Q.
This function measures the binary complexity of the subvariety. In the case of
toric subvarieties, a result of Philippon and Sombra shows that the asymptotic
behavior of the associated normalized arithmetic Hilbert function is related to the
normalized height of the subvariety considered; see [Philippon and Sombra 2008,
Proposition 0.4]. This result is an important step toward the proof of the main
theorem of the same paper, which is an explicit formula for the normalized height of
projective translated toric varieties; see [Philippon and Sombra 2008, Théoréme 0.1].

In [Philippon and Sombra 2008, Question 2.2], the authors ask if the normalized
arithmetic Hilbert function admits an asymptotic expansion similar to the toric case.
More precisely, given X a subvariety of dimension n in PV, the projective space of
dimension N over @, can we find a real ¢(X) > 0 such that

c(X)
(n+ 1)

If so, do we have ¢(X) = h(X), where h(X) is the normalized height of X?
In this article, we give an affirmative answer to this question.

Huorm(X; D) = D" +o(D")?

MSC2010: primary 14G40; secondary 11G50, 11G35.
Keywords: arithmetic Hilbert function, height.

2293


http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2015.9-10
http://dx.doi.org/10.2140/ant.2015.9.2293

2294 Mounir Hajli

Theorem 1.1. Let X C PN be a subvariety of dimension n in PN. Then the normal-
ized arithmetic Hilbert function associated to X admits the asymptotic expansion

h(X)
(n+1)!

The notion of normalized height plays an important role in the diophantine
approximation on tori, particularly in Bogomolov’s and generalized Lehmer’s
problems; see [David and Philippon 1999; Amoroso and David 2003]. A result
of Zhang [1992] shows that a subvariety X with a vanishing normalized height is
necessarily a union of toric subvarieties.

Gillet and Soulé [1992] proved an arithmetic Hilbert—Samuel formula as a
consequence of the arithmetic Riemann—Roch theorem. Roughly speaking, this
formula describes the asymptotic behavior of the arithmetic degree of a hermitian
module defined by the global sections of the tensorial power of a positive hermitian
line bundle on an arithmetic variety. Moreover, the leading term is given by the
arithmetic degree of the hermitian line bundle. Later Abbes and Bouche [1995] gave
a new proof for this result without using the arithmetic Riemann—Roch theorem.
Randriambololona [2006] extended the result Gillet and Soulé to the case of coherent
sheaf provided as a subquotient of a metrized vector bundle on an arithmetic variety.

Huorm(X; D) = D" 4 o(D™, VD> 1.

Notation. Let Q be the field of rational numbers, Z the ring of integers, K a
number field and Ok its ring of integers. For N and D two integers in N we

define NN*! := {a e NN*+1 1 gy + ... + ay = D}, and we let Clxo, ..., xy1p
(resp. K[xg, ..., xn]p) denote the complex vector space (resp. K-vector space) of
homogeneous polynomials of degree D in Clxy, ..., xy] (resp. in K[xg, ..., xn]).

For any prime number p we denote by |- |, the p-adic absolute value on Q such
that |p|, = p~!and by |- |c0, Or simply |- |, the standard absolute value. Let Mg be
the set of these absolute values. We denote by My the set of absolute values of K
extending the absolute values of Mg, and by M¢° the subset in Mk of archimedean
absolute values.

We denote by PV the projective space over @ of dimension N. A variety is
assumed reduced and irreducible.

2. The proof of Theorem 1.1

We keep the same notation as in [Philippon and Sombra 2008]. Let w be the Fubini—
Study form on PY(C). For any k € Nx>; U {oo}, we denote by &y the hermitian
metric on O(1) given by

BE BE

h )= and h ty ) = )
S (102 - - - + | x| ) 1/2K () max(|xol, ..., [xn])?
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and we let O(1); := (O(1), hy) and wy = c1(O(1), hy) for any k € NU {oo}. Note
that wy = (1/k)[k]*, where [k] : PN(C) — PN(C), [xo:- - xn]> [xf - ixh].
Observe that the sequence (wi)ken,, converges weakly to the current wo,. We
consider the normalized volume form

Qi i=aopN, VkeNs;U{oo}.

For any k € N> U {oo}, the metrics of (Tl)k and €2, define a scalar product
Clxo, ..., xn]p denoted by (-, - ) and given by

(gl = / 1P (£, )% ()
PN(C)

forany f =3, fax®, §=)_,8ax* inClxo, ..., xy]p With f,, g, € C. We denote
by || - [lx the associated norm for any k € Nx; U {oo}. Note that (f, &)oc = D, fu&a
and ||[x?||cc = 1 for any a € NIL\)’Jrl and D € N.

Let X C PV be a subvariety defined over a number field K. Define an embedding
oy : K — C, where v € Mg°. For any py, ..., py € K[xo, ..., xn]p, we set

Pt A Apilly = llow(p) A Now(pD)llk, Yk € NU {oo}.

Define O(D) := O(1)®P. We let M :=T'(Z, O(D)|5) be the Og-module of
global sections of O(D);, where X is the Zariski closure of X in I]j’gk. For
any v € Mg°, we set I'(2, O(D); )6, :=T'(Z, O(D)|5) ®,, C. We consider the
following restriction map:

m:T(PY,, O(D))g, = T (X, O(D);)s, — 0.

The space F([P’NK, O(D)),, is identified canonically to K, [xo, ..., xy]p. For any
k € N> U {oo}, this space can be endowed by the scalar product induced by €2
and hy and denoted by (-, - )¢, where

(fs 8w = (0u(f), 0v())k

for any f, g € F(I]:ng, O(D)),,. Since O(1) is ample, there exists a Dy € N such
that, for any D > Dy, the restriction map is surjective. Let D > Dy. For any
k € NU {oo}, we denote by || - [|x,v,quot the quotient norm induced by 7 and || - [I,.
Following [Philippon and Sombra 2008, p. 348], we endow I'(X2, O(D));),, With
Il - I, v,quot> for any k € N> U {oo}. By this construction, M can be equipped with
a structure of a hermitian Og-module, denoted by M. If fio..., fs €M, is a
K-basis for M ®@o, K, then

deg(M;) = deg(T' (T, O(D) 1, k)

(log Card(NM/(fin--Af))— > logllfin--- fsnk,v).

v:K—C

1
K :Q]
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The normalized arithmetic Hilbert function. Let X C PV be a subvariety defined
over a number field K and let I := I(X) C K[xg, ..., xy] be its ideal of definition.
We set
. D+N .
Hageom (X: D) = dim (K [xo, ... xn1/1) = (7 " ) = dimi (o).

The function Hgeom(X; ) is known as the classical geometric Hilbert function.
Philippon and Sombra [2008] introduced an arithmetic analogue of this function.
Define m := Hgeom(X; D), [ :=dimg (Ip) and let

NKlxo, ..., xnlp

be the /-th exterior power product of K[xg,...,xy]p. For f € /\IK[xo, ..., xnlD
and v € Mg we denote by | f|, the sup-norm of the coefficients of f at the place v,
with respect to the standard basis of /\ZK [x0, ..., xNn]D-

Definition 2.1 [Philippon and Sombra 2008, Définition 2.1]. Let py, ..., p; be a
K-basis of Ip. We set
(K, : Q]
Hnorm(X; D) = Zﬁ 10g |P1 AR /\pm|v-

veMg

By the product formula, this definition does not depend on the choice of the
basis; also it is invariant under finite extensions of K. We call Hyorm(X; -) the
normalized arithmetic Hilbert function of X.

Following Philippon and Sombra, this arithmetic Hilbert function measures, for
any D € N, the binary complexity of the K-vector space of forms of degree D
in K[xg,...,xy] modulo /. As pointed out by Philippon and Sombra [2008,
Proposition 0.4], when X is a toric variety, the asymptotic behavior of its associated
normalized arithmetic Hilbert function is related to fz(X ), the normalized height
of X. The authors ask the following question:

Given X a subvariety in PV of dimension n, can we find a real c(X) > 0 such that

c(X)

— (n " 1)‘Dn+1 +0(Dn+l)?

Hiorm (X5 D)

If so, do we have ¢(X) = ﬁ(X)?
We recall the following proposition, which gives a dual formulation for Hpop-

Proposition 2.2. Let q, ..., qn € K[xo, ..., xN]Y) be a K-basis of Ann(Ip). Then
[K,: Q]
Hnorm (X5 D) = Z# loglgi A=+ Agmlv-
[K : Q]
UEMK

Proof. See [Philippon and Sombra 2008, Proposition 2.3]. U
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For any k& € N> U {oo}, we consider the arithmetic function

Haritn (X5 D, k)

(K, : Q]
= ZWIOg”plA “A Dillkw

ve Mg
1
+ Z B o]0 1y A A pily + Log (N, DB, (@)
N [K @
ve Mg \Mpg
where py, ..., p; is a K-basis of Ip and
y(N;: D, k)= [] (e a)". 3)
aEN%Jrl

For k =1, notice that H 1 (X; -, 1) corresponds, up to a constant, to the arithmetic
function Hapim (X; -) considered in [Philippon and Sombra 2008, p. 346].

Similarly to Hporm, the function Hyp admits a dual formulation. The scalar
product (-, - )x induces the following linear isomorphism:

nk: Clxo, ..., xy]— Clxo, ..., xn1¥, fr= (-,

Thus C[xo, ..., xy]" can be endowed with the dual scalar product, given by

() (@i = ([, &k V[, g €Clxo, ..., xnlp.
We can check easily that, for any k£ € NU {oco}, we have

16(g)]
g€Clxo,...xx1\(0} 1811k

161} := = [1f Ik

where f € C[xg, ..., xn] is such that 8 = ni(f). Then ||¢9||;{2 = (0, 0); for any
0 € Clxo, ..., xn]". It follows that

(0. 00 =Y _(x". x"); 0,7 )

b
This product extends to A" (C[x, ..., xn1}) as follows:
(LA A, SE A A )i = det((0;, &) i) 1<i, j<m-
Proposition 2.3. Let g, ..., qn € K[xo, ..., xN]Y) be a K-basis of Ann(Ip). Then
Harith (X D k)

—Z e @ Dioglgin- - naulyu+ 3 L ) e @] Doglgi A+ Aduls.
veMg \Mg
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Proof. The proof is similar to [Philippon and Sombra 2008, Proposition 2.5]. [

Lemma 2.4. There exists a Dy such that, for any D > Dy and any k € N, we have

D+N>

Hain(X: D, k) = deg(T(, O )) — SHgeom (X: D) log(*~

Proof. The proof is similar to [Philippon and Sombra 2008, Lemme 2.6]. Let Z be
the ideal sheaf of X and let F([P’NK , ZO(D)) be the Og-module of global sections
of ZO(D), endowed with the scalar products induced by the scalar product (-, - ).
We claim that there exists an integer D1, which does not depend on k, such that,
for any D > D;, we have

deg(T(Z, O(D)}, i) = deg(T' (B, O(D))i) — deg(T'(PY, . ZO(D))).

Indeed, we can find a D € N such that, for all D > Dy, the following sequence
1s exact:

0— I'(P) . ZO(D),) — T'(P5 , O(D)) — I'(T, O(D);5) — 0.

Then by [Randriambololona 2001, Lemme 2.3.6], the sequence of hermitian Ok -
modules

0— (RS, ZO(D)),)k = TPy . O(D)y — ['(Z, O(D) ;)i — 0

is exact, where the metrics of F(IPNK, ZO(D)|s)k and I'(2, O(D))5 )« are induced
by the metric of I'(P5_, O(D));.

We have
— D+N N+D
dea(C @Y, 0D = Hlogy(V; D,k +3(7 1 Jog(" 7). 6

As in the proof of [Philippon and Sombra 2008, Lemme 2.6], and keeping the same
notation, we have

deg(T' (T, O(D) k)
N+D
= 110g(/(N; D, ) + L Hgeom(X; DY log (" 1)
(K, :Q,] y
77
+ ZOO K ap gl Ap,
veMK

[
T ra e Card(A o)/ (pra--Ap). )
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The last term in (6) does not depend on the metric. It is computed in [Philippon
and Sombra 2008, p. 349]; we have

log Card(A'(Io,)/(p1 A+ -+ A p1))

[Ky: Qy]
=- Z mlogml/\'“/\mh}- O

UGMK\MI?O

[K : Q]

By [Randriambololona 2006, Théoreme A], we have

hmk X)

n+1 n+1
(n+1)!D +o(D"), VD> 1, @)

deg(T(Z, O(D) o)) =

where h g, (X) denotes the height of the Zariski closure of X in [P’gK with respect
to O()g. Since 1 Hgeom(X; D) log (") = o(D"*!) for D >> 1, by Lemma 2.4,
we get

ham, (X)

Dl D"t VD> 1. 8
nt D + o( ) > (8)

Harith(X; D, k) =

Letgqi,...,qm € K[xo, ..., xy]" be a K-basis of Ann(Ip). For any finite sub-
set M in Ng“ of cardinal m, we set gy := (qjp)1<j<mbem € K™ where the g;;
are such that ¢; = ZbeNg+l gjp(x?)Y. For any v € M, we have

g1 A+ Agmly = max{|det(gm)], : M CNJT!, Card(M) = m)

1/2
5( > (1‘[<b,b>;,t>|det<qm|%). )

M ;Card(M)=m beM

(We use the inequality (x?, x%); = fPN(@)h(TD)k (x*, x4)Q <1foranya € Ng“,
which follows from h@k (x4, x%) < h(TD)m(x“, x%) <1 on P¥(C) and the facts
that ; > 0 on PY(C) and Jove =1

Then

|q1/\”'/\CIm|v§”q1/\"’/\q:n”]\</,va Vk € N. (10)
By Propositions 2.2 and 2.3, we get
Hnorm(X; D) < Harin (X5 D, k),  VkeN. (11)

By (8), the previous inequality gives

. (n+1)! _ N 1
hlr)n_f;lop Wﬂnorm(X, D) <hpy, (X),  VkeN. (12)
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We know that (/;)zen converges uniformly to /s, on PV(C). Fix 0 < ¢ < 1.
Then there exists a kg € N such that, for any k£ > ko, we have

2D < (max(|x0|v, L] |xN|U))2D <

< <(1+¢)?P, vxePMC), VD eN.
(|x0|2K + - - - + |xn|2K)P/K ( ) ©

(I-e)

Thus, for any k > ko, D e N>j anda € NIL\)’“, we get

(% x = (1—e)’P | h2P (x4 x ey (13)
00 k
PN(©)
We have
/ hg%D(x“,x“)a),iv
PO N N
_/ il N1z 1z P4V TS dzi A dz
cvmax(1, |z, ..., |zn)?P (1 +Z£V:1 |Zl.2k|)NJrl
B e MY, dn
- 2D N N+1
@y max(l, ry, ..., ry) (1+Zi:1 rlk)
_2N/ ra/k l'L-Nzldri
(RN max; (1, r, ..., }"N)D/k (1 _|_ZIN:1 rik)NJ"l
=N XN:f ra/k H,N:ldri
- . D/k N+1°
=0 Ejmaxl(larla""rN) / (1—'-21]\/:1]’[) +
where E; :={x € RN :x; > 1, xy <xjfor/=1,...,N}forj=1,..., N and

E:={xe®"HV:x; <1, forl=1,..., N}. Using the function

X xi—1 1 X
(R*—F)N%(R*—’_)N’ x:(x17"'1xN)H (_1"“’1_17 _7"'1_n)’
Xj Xjo X Xj
for j =1,..., N, we can show that there exists a b = (bij), .. .,bg\{)) e NV
such that
ra/k [T, dri _/ Ok [T, dri
B maxi(l o 0P (e )Y e (e D )

(14)
We set b© := . Then

/ hP (x, xM 2N2N:/ b /k nthld”i (15)
x*, xNey = r .
PYO) j=0YE (1+X0L, ri)NH
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LetO<dé<1,andset Es:={xeE:x;>6§forl=1,..., N}. From (13) and (15),
we obtain

N
N dr,
(2 = (1 - e)ZDzNZ / i A A (e 4157
N N+1
(1+X5 )

N+1
where us 1= [ T, dri/(0+ XN, )
Thus,

(x4 x < (1—e)2Ps Pk s Yk > ko, VD € Nsy, Ya e NN (16)

Then, for any k > kg and D > Dy,

1/2
||q1A---Aqm||,Z,vs( > (H(b,b>;,£)) g1 A Al

M ;Card(M)=m beM
< Card{M c N}*': Card(M) = }1/2

x (1 —&) PPl gy A Al
< Card(Np ™) (1= &) " P8~ PIEus™ g A+ A gl
N+ D\1/2
=(" N ) A= gy A A gl (1T)
where the second line follows by (16).
Therefore,
Haritn (X5 D, k)

N+D
< Hporm(X; D) + % 10g< N ) - Dngom(X§ D) 10g(1 —€)

_ Dngom(X; D)

. log § — Heeom(X; D) log pus. (18)

By (8), we obtain that

O(l) (X) <hm1nf( +1) Hnorm(X D)+0( )+TO(1) Vk ZkO- (19)

Gathering (12) and (19), we conclude that, for any 0 < ¢ < 1, there exists a
ko € N such that

. (n+ )
lim sup ———— Dot ——7 Hnom (X D) < hgy, (X)

D—o00
|
§liminf(D+ )Hnorm(x D)+0(5)+%0(1) Vk = ko (20)

D—o0
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Since limy_; oo hmk (X) = hmm (X) (see for instance [Zhang 1995]) and since
hmm (X) = fz(X ) (see [Philippon and Sombra 2008, p. 342]), we get

NGRS , (D) _ .

lim inf = Haom (X D) = lim sup == Haom (X D) = A(X). - @D)

Thus, we have proved Theorem 1.1. (]
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