Vol. 9, No. 10, 2015

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Equivariant torsion and base change

Michael Lipnowski

Vol. 9 (2015), No. 10, 2197–2240
Abstract

What is the true order of growth of torsion in the cohomology of an arithmetic group? Let D be a quaternion algebra over an imaginary quadratic field F. Let EF be a cyclic Galois extension with ΓEF = σ. We prove lower bounds for “the Lefschetz number of σ acting on torsion cohomology” of certain Galois-stable arithmetic subgroups of DE×. For these same subgroups, we unconditionally prove a would-be-numerical consequence of the existence of a hypothetical base change map for torsion cohomology.

Keywords
torsion, cohomology, Reidemeister torsion, analytic torsion, Ray–Singer torsion, locally symmetric space, trace formula, base change, equivariant, twisted
Mathematical Subject Classification 2010
Primary: 11F75
Secondary: 11F72, 11F70
Milestones
Received: 13 May 2014
Revised: 21 July 2015
Accepted: 6 October 2015
Published: 16 December 2015
Authors
Michael Lipnowski
Mathematics Department
Duke University
Duke University, Box 90320
Durham, NC 27708-0320
United States