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Semistable periods of finite slope families

Ruochuan Liu

We introduce the notion of finite slope families to encode the local properties
of the p-adic families of Galois representations appearing in the work of Harris,
Lan, Taylor and Thorne on the construction of Galois representations for (non-
self-dual) regular algebraic cuspidal automorphic representations of GL(n) over
CM fields. Our main result is to prove the analytic continuation of semistable
(and crystalline) periods for such families.
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Introduction and notation

Skinner and Urban [2006], in their ICM talk, outlined a program to connect the
order of vanishing of the L-functions of certain polarized regular motives with the
rank of the associated Bloch—Kato Selmer groups. Their strategy is to deform those
motives along certain p-adic families, the so-called eigenfamilies, to construct the
expected extensions. To this end, they introduced the notion of finite slope families
of p-adic representations to encode the local properties of the Galois representations
arising from those p-adic families. One may view the finite slope families as a
generalization of the p-adic families of Galois representations arising from the
Coleman—Mazur eigencurve. Bellaiche and Chenevier [2009] introduced the notion
of weakly refined families of p-adic representations to encode the local properties
of the latter. More precisely, a family of weakly refined p-adic representations is
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a family of p-adic representations! over a rigid analytic space with a Zariski-dense
subset of crystalline points which have crystalline periods of a prescribed Frobenius
eigenvalue and constant Hodge—Tate weight. Moreover, this constant weight is
the largest one? of all Hodge—Tate weights, and the difference of this constant
weight with any other weight is unbounded over the base. For example, in the
case of the eigencurve, one can take the subset of all classical eigenforms, and the
prescribed Frobenius eigenvalue and constant Hodge—Tate weight are the function
of Up-eigenvalues and O respectively. On the other hand, finite slope families gen-
eralize weakly refined families in the way that allows multiple prescribed Frobenius
eigenvalues and constant Hodge—Tate weights. Skinner and Urban then used the (un-
proven) analytic continuation of crystalline periods of finite slope families to deduce
that the extensions constructed by p-adic deformations lie in the Selmer groups.

Most recently, Harris, Lan, Taylor and Thorne [Harris et al. 2014] (and Scholze
independently) constructed Galois representations for (non-self-dual) regular al-
gebraic cuspidal automorphic representations of GL(n) over CM fields. It turns
out that these Galois representations emerge from certain p-adic families whose
local properties generalize Skinner and Urban’s finite slope families by allowing
prescribed semistable periods. Therefore, to show that the Galois representations
constructed by Harris, Lan, Taylor and Thorne have the expected properties at
p, one needs to show the analytic continuation of semistable periods for those
p-adic families.

In this paper, we make use of the notion of finite slope families to encode the
local properties of the p-adic families of Galois representations appearing in the
work of Harris, Lan, Taylor and Thorne; this generalizes the original definition
of Skinner and Urban. Our main result is then to prove the analytic continuation
of semistable periods for such families. This will provide a necessary ingredient
in Skinner and Urban’s ICM program. Besides, we recently learned from Taylor
that Ila Varma, as part of an ongoing project, will establish the expected properties
of those Galois representations based on the results of this paper. We also note
that recently Shah [2013] proved some results about interpolating Hodge—Tate and
de Rham periods in families of p-adic Galois representations which may be applied
to some related situations.

In the following, we state our main results precisely. We fix a finite extension K
of Qp. Let K¢ be the maximal unramified subextension of K, and let f =[Ko:Q,].
We also fix a finite extension F of Q, contained in @p such that Hom(K, F) =
Hom(K, @p); here Hom denotes the set of Q,-algebra homomorphisms.

IStrictly speaking, Bellaiche—Chenevier used pseudorepresentations rather than genuine represen-
tations in their definition of weakly refined families.

2We normalize the Hodge—Tate weight such that the p-adic cyclotomic character has Hodge—Tate
weight 1.
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Definition 0.1. Let X be a reduced rigid analytic space over F. A finite slope
Sfamily of p-adic representations of dimension d over X is a locally free coherent
Ox-module Vx of rank d equipped with a continuous G g-action, together with the
following data:

(1) Positive integers b, c.
(2) A monic polynomial Q(T) € Ox (X)[T] of degree m with unit constant term.

(3) A subset Z of X such that, for all z in Z, V7 is semistable with nonpositive
Hodge-Tate weights, and, for all B € Z, the set of z in Z such that V, has
d — ¢ Hodge-Tate weights less than B is Zariski-dense in X .

(4) Forz € Z, a Ko ®q,, k(z)-direct summand %, of DS}L(VZ) which is free of
rank ¢ and stable under ¢ and N such that ¢/ has characteristic polynomial
Q(2)(T) and all Hodge-Tate weights of %, lie in [—b, 0].

We also need to extend the functors Dctys and D to families of p-adic represen-

tations over rigid analytic spaces.
Definition 0.2. Let X be a rigid analytic space over Q,, and let Vx be locally free
coherent Oy -module equipped with a continuous G g-action. Define D;';YS(VX) and
D (Vx) to be the presheaves
M(S) = D& (Vs) = (Vs ®a, BE,)*
and
M(S) = DI (Vs) = (Vs ®a, BI)°,

respectively, where M (.S) runs through all admissible affinoid subdomain of X;
here Vy is the restriction of Vx on M(S).

Now we can state our main result precisely:

Theorem 0.3. Let Vx be a finite slope family over X. Then there exists a surjec-
tive proper morphism X' — X so that (K ®k, D;(VX/))Q(“’j)zo has a rank-c
locally free coherent Ko ®q, Ox’-submodule which specializes to a rank-c free
Ko ®q, k(x)-submodule in D;tL(Vx)for any x € X'. As a consequence, for any
xeX, D;tL(Vx)Q(x)(“"/)=0 has a free Ko ®q,, k(x)-submodule of rank c.

The next result follows immediately:

Corollary 0.4. Let Vy be a finite slope family over X. If V; is crystalline for
any z € Z, then there exists a surjective proper morphism X' — X so that

(K ®k, Dc"r'ys(VX/))Q(‘pf)zo has a rank-c locally free coherent Ko ®q, Ox’-

submodule which specializes to a rank-c free Ko ®q,, k(x)-submodule in Dc";ys(Vx)
for every x € X'. As a consequence, D, (Vx)Q(x)(wf)zo has a free Ko ®q,, k(x)-

crys
submodule of rank c for every x € X.
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Since the families of p-adic representations arising from the Coleman—-Mazur
eigencurve are special cases of finite slope families, Theorem 0.3 generalizes the
famous result of Kisin [2003] on the analytic continuation of crystalline periods
over the eigencurve. However, even in the case that the prescribed periods are
crystalline, our method is completely different from his. In fact, in the work of
Kisin as well as our recent enhancement [Liu 2014], one crucially uses the fact that
the families of p-adic representations arising from the eigencurve have only one
constant Hodge—Tate weight. On the other hand, our strategy and techniques are
largely inspired by the work of Berger and Colmez [2008] on families of de Rham
representations with bounded Hodge—Tate weights, and Kedlaya, Pottharst and
Xiao [Kedlaya et al. 2014] on the cohomology of families of (¢, I')-modules. In
fact, for a finite slope family, we first construct a subfamily of (¢, I')-modules
interpolating the prescribed semistable periods, after making a proper and surjective
base change. This is achieved by adapting some techniques of [Kedlaya et al. 2014].
This subfamily of (¢, I')-modules is expected to be semistable and produce the
desired semistable periods. However, we are unable to prove this directly due
to some technical obstacles. Instead, we first show that this subfamily of (¢, I')-
modules is de Rham, using the fact that it is de Rham at a Zariski-dense subset of
the base. To this end, we develop a theory of families of Hodge—Tate and de Rham
(¢, I')-modules with bounded Hodge—Tate weights, which generalizes the theory
of families of Hodge—Tate and de Rham representations with bounded Hodge—
Tate weights developed in [Berger and Colmez 2008]. Then we prove the p-adic
local monodromy for the restrictions of families of de Rham (¢, I')-modules with
bounded Hodge—Tate weights on their Shilov boundaries by mimicking the proof
for families of de Rham representations with bounded Hodge—Tate weights given
in [loc. cit.]. This implies that the de Rham periods of this subfamily of (¢, I')-
modules become potentially semistable after restricting on the Shilov boundary.
Finally, we use a key lemma due to Berger and Colmez [2008] to conclude that
these de Rham periods are actually semistable.

Notation

We choose a compatible sequence of primitive p-power roots of unity (£,),>0,
i.e., each ¢, € @p is a primitive p"-th root of 1, and they satisfy 85 11 = &n for
all n > 0. Fix ¢ = (&9, €1, .. .), and let t = log[e] be Fontaine’s p-adic 27i. For a
finite extension L of @, in Cp, let L, = L(gy) forn > 1, and let Loo =, ep Ln-
Let Ly, be the maximal unramified extension of Q@ in Leo. Let I'z = Gal(Loo/L)
and I'y, = Gal(Loo/Ly) for n > 1. For simplicity, denote I'x and I'g,, by I'
and I, respectively. Let y denote the p-adic cyclotomic character. For a p-
adic representation V of Gg and n € Z, we set V(n) =V ® x". Forn > 0, let
rn = p"1(p—1). For s > 0, let n(s) be the maximal integer n such that r,, < s.



Semistable periods of finite slope families 439

1. Families of (¢, I')-modules

In this section we recall the notion of families of (¢, I")-modules over rigid analytic
spaces. For the period rings involved in this paper, we follow the notation introduced
in [Berger 2002], and we refer the reader to that paper for precise definitions. Note
that this is different from the “Robba ring” type notation used in [Kedlaya et al. 2014].
A good dictionary for these two types of notation is given in [Berger 2008a, §1].

Definition 1.1. Let A be a Banach algebra over Q,. For s > 0, a ¢-module
over Bnés K ®o , A is a finite projective B;E’g K ®o , A-module D% equipped with
an isomorphism

~ T.ps &
% DA —DA ®BIgYK® ABrlg,K ®@p A.

A p-module DA over Brlg K®@ A is the base change to BJr K®@ A of a p-module

D over B tig, K ®@,,TA for some s > 0. A (¢, I')- module over BT g,K ®@p Aisa

- module D¢ over Brlg K ®o , A equipped with a commuting B 1’ K -semilinear and

A-linear continuous action of I'. A (¢, I')-module D 4 over B;E K®@ , A is the base

change to BJr oK ®aq, A of a (¢, I')-module D¥ over BT’SK ®@p A for some s > 0.

Notation 1.2. For a morphism A — B of Banach algebras over Q,, we denote by
D3 and Dp the base changes of D4 and Dy to BT’SK ®aq, B and BJr oK ®a, B
respectlvely When A = S is an afﬁno1d algebra over Q, and x € M (S ) we denote
D]sc(x) and Dy (x) by D3 and Dy instead.

To define (¢, I')-modules over general rigid analytic spaces, one needs to show
that ¢-modules over affinoid spaces satisfy the gluing property. To this end, we recall
the notion of p-bundles introduced in [Kedlaya et al. 2014]. Let S be an affinoid
algebra over Q. For 0 < 51 < s, which are sufficiently large, a vector bundle
over B[Sl s2] & [s1,52] [s1,52] & ®a, S. By
the 1dent1ﬁcat10n of By Ls:52] \ith the ring of rigid analytlc functlons over the closed
annulus 51 < v, (T) < < s over K|), one may identify D[sl 521 \yith a locally free co-
herent sheaf over the product of the annulus s; < v, (T) <5 over K with M(S) in
the category of rigid analytic spaces over Q. It then follows that vector bundles over

[Sl 2] & ®q, S satisfy the gluing property for the weak G-topology of M(S). For
sufﬁ01ently large s, a vector bundle over B T o K ®o ,» S consists of one vector bundle
D[SS1 2] gver each ring B [sios2 g »S w1th s <s1 <57, together with isomorphisms

®q,, S is a finite projective module D¢ over By

D[Slasz] ® [3] A2]® S BE]’SZ] ® S ~ [Sl’sz]

forall s <s] <s1 <52 <5} satlsfymg the cocycle condltlons A ¢@-bundle over
B:[;K ®aq, S is a vector bundle &Dgl 52 )s<s<s, OVEr Brlg K ®@p S equipped with
isomorphisms ¢ D[SI’SZ] =~ Dy PSUPS2) gor all s < 51 < 82 satisfying the obvi-
ous compatibility condltlons When s is sufficiently large, by [Kedlaya et al.
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2014, Proposition 2.2.7], the natural functor from the category of ¢-modules over
B;[gs K Ra , S to the category of ¢-bundles over B::gs K ®o , S is an equivalence
of categories. Note that by the gluing property of vector bundles, one can glue
@-bundles B;ri;; K Ro , S over M(S). Therefore this equivalence of categories
enables us to glue g-modules over affinoid spaces.

Definition 1.3. Let X be arigid analytic space over Q,,. A family of (<p I')-modules
Dy over X is a compatible family of (¢, I')-modules Dg over B! rig, K Ra , S for
each affinoid subdomain M (S) of X. By the gluing property of ¢-modules over
affinoid spaces, one may view Dy as a sheaf over X for the weak G-topology
(which hence extends uniquely to the strong G-topology).

Theorem 1.4. Let A be a Banach algebra over Qp, and let V4 be a ﬁmte locally
free A-linear representation of Gg. Then there is a (¢, I')-module D (VA) over
B;E oK ®ao , A functorially associated to V4. The rule V4 > DI] g(VA) is fully faithful
and exact, and it commutes with base change in A.

Proof. See [Kedlaya and Liu 2010, Theorem 3.11], which generalizes [Berger and
Colmez 2008, Théoreme 4.2.9]. Note that both the results do not really verify the
¢-module condition. This gap is fixed by [Liu 2014, Theorem 1.1.4]. (|

Let A be a Banach algebra over K. Recall that one has a canonical decomposition

A®g, Ko= [ Ao
o€Gal(Ko/Qp)

where each Ay is the base change of A by the automorphism o. Furthermore, the
Gal(K/Qp)-action permutes all the Ay such that t(Ay) = A¢y. Forany a € A%,
we equip 4 ®q, Ko with a 1 ® ¢-semilinear action ¢ by setting

P((X1,Xg, -+ o, X r—1)) = (@Xpr—1,X1, o, Xy r-2),

where g is the geometric Frobenius and x,,; € A, foreach0 <i < f —1; we denote
this ¢-module by D,. It is clear that the ©- actlon on D, satisfies (pf =1®a.
We fix a uniformizer g of K.

Definition 1.5. For any continuous character § : K* — A, we define a rank-1
(¢, T')-module (ng’K ®a, A)(8) over B;Eg,K@@p Aas follows. If §|¢x = 1, we set

(B}, x ®a, A)(6) = (B x ®a, 4) ®4@a, Ko Ds(rx)-

where we equip D, With the trivial I'-action. For general §, we write § = §'§”
such that §'(rg) = 1 and §”|¢x = id. We view §" as an A-valued character of
Wk via the local reciprocity map, and extend it to a character of Gg continuously.
We then set

(Bng K ®@p A)(S) rlg(8 ) ®BT @ A (Bng K ®@p A)(SH)
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For any (¢, I')-module D4 over B:Eg K ®@p A, put

_ il S
Da(8) = D4 BB (B4 (Big x ®0, A)(0).

Let X be arigid analytic space over Q. For a continuous character § : K* —
O(X)* and a family of (¢, I')-module Dx over X, we define the families of (¢, I')-
modules (B:;g,K ®@p Ox)(8) and Dx (§) by gluing (B:Eg,K ®@p S)(8) and Dg(5)
for all affinoid subdomains M (), respectively.

2. Cohomology of families of (¢, I')-modules

Let Ak be the p-torsion subgroup of I'. Choose yx in 'y whose image in '/ Ak
is a topological generator.

Definition 2.1. For a (¢, I')-module Dg over BJr oK ®o » S, we define the Herr

complex C; ., (Ds) of Dg concentrated in degree [0,2] as

plx _4 A Ag
Coyx(Ds) =[Dg* — Dg* & Dg* —

A
Dg*].
with di(x) = ((yk — Dx. (¢ — Dx) and da(x, y) = (¢ — )x — (yg — 1)y. One
shows that this complex is independent of the choice of yx up to canonical S-
linear isomorphisms: the isomorphism C; , (Ds) => C ° (DS) is given by
[1 1® (v —D/(vk =1, (yg — 1)/ (v — 1)]. We will denote the cohomology of

Coyi(Ds) by H*(Ds).

By the main result of [Kedlaya et al. 2014], one knows that H'(Dg) is a
finitely generated S-module. It therefore follows that H' (Dg) commutes with
flat base change in S. That is, if S — S’ is flat, then H! (Ds) ®s S’ =~ H! (Dg).
This enables a cohomology theory for families of (¢, I')-modules over general
rigid analytic spaces.

Definition 2.2. Let X be a rigid analytic space over Q,, and let Dx be a family of
(¢, I')-modules over X. We define H*(Dyx) to be the cohomology of the complex
of sheaves

Ax 4 A Ax 92 A
Coyx (Dx) =[Dy* > Dy® @ Dy® —— Dy "]

in the category of presheaves over X, with di(x) = ((yg — 1)x, (¢ — 1)x) and
da(x,y) = (¢ — 1)x — (yx — 1)y. For each affinoid subdomain M(S) of X and
0 <i <2, the module of sections of H’(Dx) on M(S) is canonically isomorphic
to H' (Dgs). Hence H' (D) forms a coherent Ox-module by the flat base change
property of H'(Dyg).
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As a consequence of finiteness of the cohomology of families of (¢, I")-modules,
by a standard argument we see that, locally on X, the complex Cg ,, (Dx) is quasi-
isomorphic to a complex of locally free coherent sheaves concentrated in degree
[0,2]. This enables us to flatten the cohomology of families of (¢, I')-modules by
blowing up the base X . The following lemma is a rearrangement of some arguments
in [Kedlaya et al. 2014, §6.3]:

Lemma 2.3. Let X be a reduced and irreducible rigid analytic space over F,
and let Dx be a family of (¢, I')-modules of rank d over X. Then the following
Statements are true:

(1) There exists a proper birational morphism v : X' — X of reduced rigid analytic
spaces over F so that H®(Dyx) is flat and H' (D) has Tor-dimension < 1
foreachi =1,2.

(2) Suppose that DY is a family of (¢, T")-modules over X of rank d’, and that
A D& — Dy is a morphism between them so that for any x € X the image
of Ay is a (¢, I)-submodule of rank d of Dy. Then there exists a proper
birational morphism 7 : X' — X of reduced rigid analytic spaces over F so
that the cokernel of w* A has Tor-dimension < 1.

Proof. The upshot is that for a bounded complex (C*, d*) of locally free coherent
sheaves on X, there exists a blow-up 7 : X" — X, which depends only on the quasi-
isomorphism class of (C*, d*), so that 7*d ! has flat image for each i. Furthermore,
the construction of X’ commutes with dominant base change in X (see [Kedlaya
et al. 2014, Corollary 6.3.6] for more details). Thus for (1), we can construct
X’ locally and then glue. For (2), let Qx denote the cokernel of A. For any
x € X, since the image of Ay is a (¢, [')-submodule of rank d, by [Liu 2014,
Lemma 5.3.1], we get that O is killed by a power of z. Now let M(S) be an
affinoid subdomain of X, and suppose that D'g and Dgf are defined for some suitable
s > 0. For r > s, set QS I'to be D[s r]//\(D/[S r]) Since for any x € M(S) the
fiber of Q S Vat x is killed by a power of ¢, we get that Qg "1is killed by 1k for
some k > 0. This yields that Q s Vis a finite S-module. Now we apply [Kedlaya
et al. 2014, Corollary 6.3.6] to a ﬁnrte presentatlon of Q[ 28] o get a blow-up Y
of M(S) so that the pullback of Q¢ [5:75] has Tor-dimension < 1. Using the fact
that (¢")* Q5 Ls.ps] Q[p s:p" s , we see that Y is also the blow-up obtained by
applying [Kedlaya et al. 2014, Corollary 6.3.6] to a finite presentation of Q[S’p 's]
for any positive integer n. It therefore follows that for any r > s the pullback of
Qg’r] has Tor-dimension < 1; hence the pullback of Qg has Tor-dimension < 1.
Furthermore, the blow-ups for all affinoid subdomains M (S) glue to form a blow-up
X’ of X which satisfies the desired condition. O
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Lemma 2.4. Let X be a reduced and irreducible rigid analytic space over F. Let
DS( and Dy be families of (¢, I')-modules over X of ranks d' and d respectively,
and let A : Dy — Dy be a morphism between them. Suppose that for any x € X
the image of A is a (¢, I')-submodule of rank d of D. Then there exists a proper
birational morphism 7w : X' — X of reduced rigid analytic spaces over F such that
the kernel of w* A is a family of (¢, I')-modules of rank d' — d over X', and there
exists a Zariski-open dense subset U C X' such that (ker(wr*1)), = ker((w*1)y)
forany x € U.

Proof. Let Qx be the cokernel of A. By Lemma 2.3, we may suppose that Oy
has Tor-dimension < 1 after adapting X. Now let Px denote the kernel of A. For
any x € X, the Tor spectral sequence computing the cohomology of the complex
[Dx T> D] ®é‘x k(x) gives rise to a short exact sequence

0 — Py —> ker(Ax) —> Tor1(Qx, k(x)) — 0.

Since the image of Ay is a (¢, I')-module of rank d, ker(Ay) is a (¢, I')-module of
rank d’ —d. Since Qy is killed by a power of ¢ locally on X, we get that the last
term of the exact sequence is killed by a power of ¢. This yields that Py isa (¢, I')-
module of rank d’—d. We therefore conclude that Py is a family of (¢, I')-modules
of rank d’ —d over X by [Kedlaya et al. 2014, Corollary 2.1.9]. Furthermore, since
QOyx has Tor-dimension < 1, by [Kedlaya et al. 2014, Lemma 6.3.7] we get that the
set of x € X for which Tor; (Qyx, k(x)) # 0 forms a nowhere-dense Zariski-closed
subset of X; this yields the rest of the lemma. O

The following proposition modifies part of [Kedlaya et al. 2014, Theorem 6.3.9]:

Proposition 2.5. Let X be a reduced and irreducible rigid analytic space over F.
Let Dx be a family of (¢, I')-modules of rank d over X, and let § : K* — O(X)*
be a continuous character. Suppose that there exists a Zariski-dense subset Z
of closed points of X and a positive integer ¢ < d such that, for every z € Z,
H%(DY (8)) is a c-dimensional k(z)-vector space. Then there exists a proper
birational morphism 7 : X' — X of reduced rigid analytic spaces over F and
a morphism A : Dyr — My = (Bzg’K ®a, 0x/)(8) ®ay, L of (¢.T)-modules,
where L is a locally free coherent Ox:-module of rank c equipped with trivial
(¢, I')-actions, such that:

(1) Forany x € X', the image of Ay is a (¢, I')-submodule of rank c.

(2) The kernel of A is a family of (¢, T')-modules of rank d — ¢ over X', and there
exists a Zariski-open dense subset U C X' such that (ker A)x = ker(Ay) for
any x € U.
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Proof. Using Lemma 2.3, we first choose a proper birational morphism 7 : X’ — X
with X’ reduced such that Ny, = n*(D (8)) satisfies the conditions that H®(Ny-)
is flat and H' (Nx-) has Tor-dimension < 1 for each i = 1, 2. Then, for any x € X "
the base change spectral sequence Ey”’ = Tor_; (H/(Nx/),k(x)) = H*/(Ny)
gives a short exact sequence (using that H 1 (Nx/) has Tor-dimension < 1 and Nx-
is flat)

0 — H®(Nx’) ®qy, k(x) — H(Ny) —> Tory (H'(Nx'), k(x)) —> 0.

Since H!(Nx+) has Tor-dimension < 1, by [Kedlaya et al. 2014, Lemma 6.3.7]
the set of x € X’ for which the last term of the above exact sequence does not
vanish forms a nowhere-dense Zariski-closed subset V. For any z € 7~ 1(Z)\ V,
we deduce that H%(Ny/) ®oy, k(z) is a c-dimensional k(z)-vector space. Since
HO9(Ny-) is flat and 7~1(Z) \ V is a Zariski-dense subset of X', we get that
HO(Ny) is locally free of constant rank c. Let L be its dual coherent Ox-module.
Then the natural map (ng e ®@p Ox/)H°(Nx/) — Nx- gives rise to a map

A:Dxr— My = (Brig,K ®a, O0x/)(8) ®ay, L

For any x € X', since the map H%(Ny-) R0y k(x) — HO(Ny) is injective, we get
that the image of Ay is a rank-¢ (¢, I')-submodule of M. We thus conclude the
proposition using Lemma 2.4. O

3. Families of Hodge-Tate (¢, I')-modules

From now on, let S be an affinoid algebra over F. Recall that for any n > n(s)
there is a continuous I'-equivariant injective map

. BT

e K Ku[t].

It is defined as the composite
Bl c Bt L Bt c B+ c By,

and it factors through K, [[#]] (see [Berger 2002, §2] for more details about ¢5). In par-
ticular, we have ¢, 41 o = ;. The map ¢, induces a continuous I'-equivariant map

B:E’g K®@p S — Ku[t] ®@p S

Definition 3.1. Let Dg be a (¢, [')-module of rank d over B! rig, K ®o , 5. For any
positive integer n, if D" g 1s defined, then for any 0 <s < r, we set

,Kn
DIf (Ds) = Dy ®Bji—é;YK®Qp S,tn (Knlt] ®@p S)
and
Kﬂ Kn
Dy (Ds) = D;:t (Ds)[1/1].
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We also denote the natural map
D% — DK (Dy)

by tx, and call it the localization map. Define Dy en(D s) = D:‘:fK” (Dg)/(t). For
Ds= DJr (VS) commg from a finite locally free S- lmear representation Vg, we write

dlfK” (VS) and DSen(VS) for D;:f’ "(Dg) and DSen (Dg) respectively. When the
base field is clear from the context, we write DJr (Dg) and D?_ (Dg) instead of
DL Ko (Dgs) and pk "(Dgs) for simplicity.

Definition 3.2. We call Dg Hodge-Tate with Hodge—Tate weights in [a, b] if there
exists a positive integer n such that the natural map

Sen

Sen

( @ DSen(DS(_i))) ®K®QPS(K ®@p S) @DSen(DS(_i))
a<i<b i€z

3.2.1)
is an isomorphism. We denote by hyr(Dys) the smallest n which satlsﬁes this
condition, and we define Dyr(Dg) = (@a§z<b D HT(DS)(D (— z)))

Sen

Lemma 3.3. Let Ds be a Hodge-Tate (¢, I')-module over Bl rig, K ®a » S with
weights in [a,b]. Then for any n > hgr(Dg) (3.2.1) is an isomorphism and

D, (Ds(— z))F ];;T(DS (D ( iN foranyi € [a,b). As a consequence, we

Proof. Tensormg with K, ®q,, S[t,1/t] on both sides of the map

r
h . _
(@ Ds;‘J(DS’(Ds<—z>>) ®k®a,S (Kh(Ds) ®a, S 17']

a<i<b
<i< hur(D .
— PP (Dg(—i)),
ieZ

we get that the natural map

T
( %) Dg:J(DS)(DS(—i))) ®K®a,s (Kn ®a, S)t,17"]
= — P Den(Ds (=)
iez

is an isomorphism. Taking I'-invariants on both sides, we get

r
hur(D . .
(GB Dgin S)(DS(—I))) (GD Ds6n<Ds(—z>)) . O
a<i<b a<i<b
Remark 3.4. If Dg is Hodge-Tate with weights in [a, b], then, by taking I'-
invariants on both sides of (3.2.1), we see that DG, (Ds(—i NI = 0 for any
n>hyr(Dg) and i ¢ [a,b].
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Lemma 3.5. If Dg is a Hodge—Tate (¢, I')-module over B:Zg K ®@p S with weights

in [a, b], then for any morphism S — R of affinoid algebras over K, D g is Hodge—
Tate with weights in [a, b] and hyr(DR) < hur(Dys). Furthermore, the natural map

gen(DS(i))F ®s R — Dgen(DR(i))F

is an isomorphism for any i € Z and n > hyr(Dg). As a consequence, the natural
map Dyr(Ds) ®s R — Dyr(DR) is an isomorphism.

Proof. Let n > hyr(Dg). Tensoring with R over S on both sides of (3.2.1), we get
that the natural map

( @ DSen(DS(_i))F Qs R) ®K®@pR (Kn ®@p R)[l, Z_l]

a<i<b
— P DL (Dr(—i))

ieZ

is an isomorphism. Comparing I'-invariants on both sides, we get that the natural
map

Dfen(Ds (=)' ®s R — Di,(Dr(—i)"

is an isomorphism for any ¢ <i < b. This implies that the natural map

( @ DSen(DR(_i))F) ®K®@pR (K ®@p R) _> @DSen(DR(_i))~

a<i<b i€z
is an isomorphism. O

Corollary 3.6. If Dg is a Hodge-Tate (¢, T")-module of rank d over B I oK Ra, S,
then Dyr(Dys) is a locally free coherent K ®q,, S-module of rank d.

Proof. By the previous lemma, it suffices to treat the case that S is a finite extension
of K; this is clear from the isomorphism (3.2.1). O

Definition 3.7. Let X be a rigid analytic space over F, and let Dy be a family of
(¢, I')-modules of rank d over X. We call Dx Hodge-Tate with weights in [a, b]
if for some (hence any) admissible cover {M(S;)};er of X, Dg, is Hodge—-Tate
with weights in [a, b] for any i € I. We define Dyr(Dyx) to be the gluing of all
the DHT(DSi)-

Lemma 3.8. Let Dg be a (¢, I')-module over B!

rig, K ®aq, S. Then (3.2.1) is an

isomorphism if and only if the natural map

D DL, (Ds)"=* — DL, (Ds) (3.8.1)

a<i<b

is an isomorphism. Furthermore, if this is the case, then (3.2.1) holds for n.
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Proof. For the “=" part, since (3.2.1) is an isomorphism, we deduce that

aDs)= @ 1D (Ds(—i) ®koq,s (Kn®a, ).  (3.82)

a<i<b

Note that 11 -D2_ (D (—i))T €D _(Dgs)T=X". Hence (3.8.2) implies that (3.8.1)
is surjective. On the other hand, it is clear that (3.2.1) is injective; hence it is an

isomorphism. Conversely, suppose that (3.8.1) is an isomorphism. Note that

Cea(Ds)T =X =7 DY, (Ds (i)
= (' ' Di(Ds(=i)") ®k@q,s (Kn ®a,, S).

where the latter equality follows from [Berger and Colmez 2008, Proposition 2.2.1].
This implies that Dg satisfies (3.8.2), yielding that Dg satisfies (3.2.1). O

Proposition 3.9. Let S be reduced, and let Dg be a (¢, I')-module over B;rig, K ®S.
Suppose that there exists a Zariski-dense subset Z C M(S) such that D, is Hodge—
Tate with weights in [a, b] for any z € Z and sup,c z{hur(Dz)} < oo. Then Dg is
Hodge-Tate with weights in [a, b].

Proof. Letn > sup, ¢z {thur(D7)} such that D is defined, and let y be a topological
generator of [',. For any a <i < b, let p; denote the operator

B V= X’ )

a<jzp i X =1/ )

and let M; = p; (DSen(DS)) It is clear that p; is the identity on Dg (DS)F”:X';
hence D’S’en(DS)F" X' C M;. On the other hand, for any z € Z, since D is Hodge—
Tate with welghts in [a, b] and hHT(D z) < n, we deduce from Lemma 3.8 that
pi(Dg.,(Dz)) =D¢., (D, )F»=X"_ This implies that M; maps onto Dg (DZ)F" X'

under the specialization Dg, (Ds) — DSen(DZ) Since S is reduced and Z is
Zariski-dense, we obtain M; C D¢, (D)F" X' hence M; = Dg’en(D)F" X Let
M = @,<j<p Mi. We claim that the natural inclusion M C Dg, (Dgs) is an
isomorphism. In fact, for any z € Z, since Dg, (Dz) = @, <; <p Dgen (D yon=x",

we have that M maps onto Dg_ (D). Thus DSen(DS)/M vanishes at z. We
therefore conclude that D¢, (Ds)/M = 0 because S is reduced and Z is Zariski-
dense. By Lemma 3.8 and the claim, we conclude that D¢ is Hodge-Tate with

weights in [a, b]. O

4. Families of de Rham (¢, I')-modules

Definition 4.1. Let Dg be a (¢, I')-module of rank d over Brlg K ®@p S. For any
positive integer n, if D" g' is defined, then we equip Dfj;(Dg) with the filtration
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Fil’ Dl.(Dg) =1t Ddlf (Ds). We call Dg de Rham with weights in [a, b] if there
exists a positive integer n such that:

(1) The natural map

ne(Ds)T ®K®a,s (Kn ®a, S)[t][1/t] — Dge(Ds) (4.1.1)
is an isomorphism.
(2) Fil™2(D%(Ds)T) = Dg and Fil=*+1 (D2 (D s)T) =0, where Fil' (D (D s)")
is the induced filtration on D7;:(D L.

We denote the smallest n satisfying these conditions by hgr(Dys), and we set
Dar(Ds) = Dy S (Ds)T.

Lemma 4.2. Let D be a de Rham (¢, I')-module over Bng e ®@p S. Then, for any
n > har(Ds), Dj(Ds)" = Dar(Ds).

Proof. We tensor with Ky +1 ®q,, S[z][1/7] on both sides of the map

har (D har(D
DI (D) @k oy, s (Knw(ps) ®a, SHIF[L/1] — DI (D),
yielding that the map

h
DErP9 (D) @k gy, s (Kn ®a, S)I[1/1] — Di(Ds)

is an isomorphism. Comparing ['-invariants on both sides, we get the desired
result. O

Lemma 4.3. If D is a de Rham (@, I')-module of rank d over Brl K ®@p S with
weights in [a, b], then D is Hodge—Tate with weights in [a, D] and hyt(Dgs) <
har(Ds). Furthermore, we have Gr' Dgr(Dg) = Sen(DS(l))F under the identifi-
cation GriDgif(DS) =Dg,,(Ds(i)) foranyn > har(Dy).

Proof. Let n > hgr(Dg). Since (4.1.1) is an isomorphism, we deduce that the
natural map of graded modules

P G Dar(Ds) ®k o4, s (Kn ®a, S)t.17']— @D Deey(Ds())  (43.1)

i€z i€z

is surjective. On the other hand, since ¢’ -Gr~  Dgr(Ds) C Dg.,(Ds), we have that
the natural map
P -G Dar(Ds) —> DE,(Ds)

a<i<b
is injective. This implies that (4.3.1) is injective; hence it is an isomorphism.
Comparing TI'-invariants on both sides, we get Gr! Dgr(Dg) = D¢, (Ds (i Nk
for each i € Z. U
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Lemma 4.4. If Ds is a de Rham (¢, I')-module over B:;g,K ®@p S, then, for any
morphism S — R of affinoid algebras over K, DR is de Rham with weights in [a, b]
and haqr(DR) < har(Dgs). Furthermore, the natural maps Fil' Dgr(Dg) ® s R —
Fil' D4r(DR) are isomorphisms for all i € 7.

Proof. Let n > hgr(Dys). Tensoring with (K ®g, R)[[¢][[1/¢] on both sides of
(4.1.1), we get that the natural map

(Di(Ds)T ®s R) ®K®0, R (Kn ®a, R[t][1/t] — Dge(Dr).  (4.4.1)

is an isomorphism. Comparing I"-invariants on both sides of (4.4.1), we get that
the natural map Dg‘if(DS)F ®s R — Dgif(DR)F is an isomorphism; hence Dg
is de Rham. Then, by Lemmas 3.5 and 4.3, we deduce that the natural map
Gr' (Dgr(Ds)) ®s R — Gr' (Dgr(DR)) is an isomorphism. This implies the rest
of the lemma. O

Corollary 4.5. If Dg is a de Rham (¢, I')-module of rank d over B;{g K ®o » S,
then Dar(Dy) is a locally free coherent K ®q,, S-module of rank d.

Proof. We first note that, for each i € Z, Gr' (Dgr(Dyg)), which is isomorphic to
D¢, (Ds(i )T by Lemma 4.3, is a coherent K ®q , S-module. We then deduce
that Dgr(Dys) is a coherent K ®q,, S-module. Using Lemma 4.4, it then suffices
to treat the case that S is a finite extension of K; this follows easily from the
isomorphism (4.1.1). O

Definition 4.6. Let X be a rigid analytic space over F, and let Dy be a family of
(¢, T')-modules of rank d over X. We call Dx de Rham if for some (hence any)
admissible cover {M(S;)}ies of X, Dg, is de Rham with weights in [a, b] for any
i € I. We define Dgr(Dyx) to be the gluing of all the Dgr(Dss; ).

Lemma 4.7. If Dg is a de Rham (¢, I')-module over B;Eg K ®o » S of rank d with
weights in [a, b], then

7D (Ds) C Dar(Ds) ®k®q, s (Kn ®a, $)[H] Ct7DF" (D)
forany n > hqr(Dg).

Proof. Since Gr 2 Dar(Dg) = Dgr(Ds), we get Dgr(Ds) C t_bD:ﬁf’” (Dg); hence
Dir(Ds) ®k®q,s (Kn ®a, S)[t] C t_bDIf’"(DS). By the proof of Lemma 4.3,
we know that the natural map (4.3.1) is an isomorphism of graded modules. By the
facts that Gr’ Dgr(Dg) = 0 for i > —a + 1 and Fil’ Dj;(Ds) is t-adically complete,
we thus deduce that ¢ D" (D) C Dr(Ds) ®k@q,s (Kn ®a, S[t]. O

Lemma 4.8. Let Ds be a Hodge-Tate (¢, I')-module over B;Eg K ®o » S with

weights in [a, b]. Then, foranyk >b—a+1,i €[a,b],n > hur(Ds) andy € I'y,

the map y — y' (y) : tkD:gf’" (Dg) — tkDLfn (Dg) is bijective.
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Proof. Since Ddlf (Dy) is t-adically complete, it suffices to show that
—1:*D5"(Dg)/t* T IDE" (Ds) — *DE (D) /DL (Ds)

is bijective for any k > b —a + 1. Note that t*D" (Ds)/t** D" (D) is
isomorphic to D, (Ds (k)) asa I'-module. Furthermore, note that Dg, (Ds(k)) =
@a<J<b(DSen(DS))F" =x/* by Lemma 3.8. Since j +k >b+1forall j €a, b],
we deduce that y — y*(y) is bijective on Dg_ (Ds(k)). O

Lemma 4.9. Let Ds be a Hodge-Tate (¢, I')-module over B:{g K ®a » S with
weights in [a,b]. Then Dg is de Rham if and only if there exists a positive inte-
ger n > hyp(Dgs) such that ]_[l_a (y — x(y) )DL"(DS) c tb- “‘HDdlf (Dgs).
Furthermore, if this is the case, then (4.1.1) holds for n.

Proof. Suppose that Dg is de Rham. Let n > hgr(Dg), and put
N = Di(Ds) ®k®q,s (Kn ®a, S)[t].

Since D has weights in [a, b], by Lemma 4.7 we have t_“D;qf’n (Ds) C N C
1 DL"(DS). On the other hand, by the construction of N, it is clear that
(y —=1)N C tN. It therefore follows that

2b—a 2b—a
H v —xHDG"(Ds) € ] (y—x(y)’d(r“zv)

Now suppose ]_[Zb Yy —x(y) )DL"(DS) c tb- "+1D;:f"(DS) for some n >
hur(Dg). We claim that for any j € [a bl and a € (DSen(DS))F"_XJ we can lift
a to an element in (D" (Ds))T7=%" In fact, let @ be any lift of a in D" (Ds),
and let ;
= ] jy —X (g) .
a<izapa X=X @)

i#]
where y is a topological generator of I'y; it is clear that b is also a lift of a. Further-
more, by assumption, we have (y — y/ (j/))(b) € ]_[Zb Yy —x(y) )Dc-l';f"(DS) C
tb=a+1DE" (D). By the previous lemma, we choose some & € 12~ a“Ddlf (Ds)
satisfying (y — x/ (»))(0) = (y — x/ ())(©). It is then clear that b — ¢ is a
desired lift of a. Since D¢ (Ds) = EBa<l<b(Dsen(Ds))F”_Xl, we have that
(DSeH(DS))F” s locally free for each i € [a, b]. By shrinking M(S), we may
further suppose that each (DSen(DS))F” X' is free. We then deduce from the
claim that there exists a free K, ®q, S-module M C (Ddlf(DS))F" such that the

natural map

M ®k,8q,s (Kn ®a, S)[t][1/1] — Dg¢(Ds)
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is an isomorphism. It follows that the natural map
mr ®K®a,s (Kn ®a, S)[t][1/t] — Dge(Ds)

is an isomorphism because M = MT ®K®a,s (Kn ®a, S) by [Berger and
Colmez 2008, Proposition 2.2.1]. Taking I'-invariants on both sides, we get
MT = (D.(Ds))'. This implies that D is de Rham. O

Proposition 4.10. Let S be reduced, and let D g be a (¢, I')-module over B ;E o K@S .
Suppose that there exists a Zariski-dense subset Z C M(S) such that D is de Rham
with weights in [a,b] for any z € Z and sup,cz{har(Dz)} < 0o. Then Dy is

de Rham with weights in [a, b].

Proof. By Proposition 3.9, we first have that Dg is Hodge—Tate with weights in
[a,b]. Let n > max{hyr(Dys), sup,cz{har(D;)}}. By Lemma 4.9, we have

2b—a
[] - x»HDg (D) c P~ 'D3" (D2)

i=a

for any z € Z. This implies ]_[?i;a(y — X(y)i)D$;"(DS) C tb_“"‘lDIf’" (Ds)
because S is reduced and Z is Zariski-dense. Hence Dg is de Rham by Lemma 4.9

again. O

Remark 4.11. The work presented in this paper was finished in the summer of
2012 and made public at the beginning of 2013. Later that year came the preprint
of [Bellovin 2015], in which the author built up a more robust theory of families
of Hodge—Tate and de Rham representations over rigid analytic spaces. First of
all, she generalized Berger’s dictionary, which relates Fontaine’s functors to (¢, I')-
modules, to families of p-adic representations [Bellovin 2015, Theorem 1.1.1].
This result implies that our theory of families of Hodge—Tate and de Rham (¢, I')-
modules with bounded Hodge-Tate weights developed in §3 and §4 can be viewed
as a generalization of Berger and Colmez’s theory of families of Hodge—Tate
and de Rham representations with bounded Hodge—Tate weights. Moreover, she
developed a theory of families of “partial” Hodge—Tate and de Rham representations
with bounded Hodge—Tate weights. That is, the periods of the fibers are assumed to
be of some constant rank which is not necessarily equal to the rank of the family.
In addition, she removes the “reduced” assumption on the base by considering all
artinian points. We refer the reader to [Bellovin 2015] for more results and details.

5. p-adic local monodromy for families of de Rham (¢, I')-modules

The main goal of this section is to prove the p-adic local monodromy for the
restrictions of families of de Rham (¢, I')-modules with bounded Hodge—Tate
weights on their Shilov boundary. The proof is modeled on Berger and Colmez’s
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proof of the p-adic local monodromy for families of de Rham representations
with bounded Hodge—-Tate weights [Berger and Colmez 2008, §6]. Recall that

=log(y)/log(x(y)), which is independent of the choice of y € I". This gives
rise to an action of the Lie algebra of " on (¢, [')-modules and their localizations.
In the following, we fix E to be a finite extension of the products of the complete
residue fields of the Shilov boundary of M (.S).

Proposition 5.1. Let Dg be a de Rham (¢, I')-module of rank d over B:Eg K ®@p S
with weights in [a, b]. For any s > 0 such that n(s) > hgqr(Dys), let
NS(DE) = {y € t_stE such that tn(y) € DdR(DS) ®K®@PS (Kn ®@p E)[[I]]

for eachn > n(s)}.

Then the following are true:

(1) The B;ngK ®@p E-module Ny(DEg) is free of rank d and stable under T.

(2) For eachn > n(s), we have

Ns(DE) ®BI By Eon (Kn ®a, E)[1] = Dar(Ds) ®k®q,s (Kn ®a, E)[1].

Furthermore, if we put Nqr(DEg) = Ns(DE) ®BT s B, E Bng,K ®@ E, then the
following are true: g

(3) The Brig K ®@p E-module Nqr(DE) is free of rank d, stable under T", and
independent of the choice of s.
(4) We have *(Nar(DEg)) = Nar(D ) and V(Ngr(DE)) Ct - Nar(DE).
Proof. First, note that the sequence of K, ®q, E[[t]]-modules

{DdR(DS) ®K®@pS (Kn ®@p E)[[t]]}nzn(s)

is p-compatible in the sense of [Berger 2008b, Définition II.1.1]. Then by the proof
of [Berger 2008b, Théoréme II1.1.2] (using the fact that E is a finite product of p-
adic local fields which are endowed with discrete valuations extending the standard
one on Qp), we see that Ngr(D g ) is the unique (¢, I')-module Mg contained in
D g[1/¢] such that

Mg ®Brls By Eoin (Kn ®a, E)1] = Dar(Ds) ®k®q, s (Kn ®a, E)[t]

for any n > n(s). Furthermore, the proof of [Berger 2008b, Théoreme II.1.2] implies
all of the proposition except the second half of (4). To see that part, note that

tn(V(Ns(DE))) = V(i (Ns(DE))) CtDar(Ds) ®k®q,s (Kn ®a, E)[].

This yields that V(Ng(DEg)) CtNs(DEg) forall s. Thus V(Ngr(DE)) CtNar(DE),
as Nqr(DE) is equal to the union of all Ny(DEg). O
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Proposition 5.2. Keep the notation of Proposition 5.1. Then there exists a finite
extension L over K such that

M = (Nar(DE) ®Bjig_K(§,@pE B, 1 ®a, E)

is a free Ly ®q,, E-module of rank d and the natural map

s i

M ®L;®q,E By 1 ®0, E— Nar(DE) ®B§g'K¢§)@pE B, ®c, E
is an isomorphism.
Proof. Let f’ = [K{, : Qp]. Note that there is a canonical decomposition
S
~ @ )
Bng K ®@p E >~ l_[ % !
where each 9{( D s 1som0rphlc to R g and stable under 'y, and satisfies (p(?R(l)) C
RUTY (define QR(f )= Oy Let
N&(Dg) = Nar(D A 971(”
ar (DE) = Nw(Dg) ®pr i

It follows that each N d(R)(D £) is stable under d = V/7 and ¢/ "; hence it is a p-adic
differential equation with a Frobenius structure. By the versions of the p-adic local
monodromy theorem proved by André [2002] or Mebkhout [2002], we conclude
that each NdR (DE) is potentially unipotent. This yields the proposition using the
argument of Proposition 6.2.2 and Corollaire 6.2.3 of [Berger and Colmez 2008].

O
Lemma 5.3. Keep notation as in Proposition 5.2, and let
1
M = (Ns(DE)®p1s &,k By x 80, F)
for sufficiently large s. Then, for any n > n(s), we have
~ 1
L®Lotn(M) = (Dair(PE ®pr 5, Bl &o, E))". (5.3.1)

Proof. By the previous proposition, the left side of (5.3.1) is a free L®1,, L{ ®a, E-
module of rank d. On the other hand, since ((L, ®q, E) [eQ /i = L ®Lo
Ly ®aq, E, we deduce that the right side of (5.3.1), which obviously contains the
left side, is an L ®7,, L ®q,, E-module generated by at most d elements. Using the
fact that L ®,, Ly ®q,, E is a product of fields, we deduce the desired identity. []
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6. Proof of the main theorem

Now let Vx be a finite slope family of dimension d over a reduced rigid analytic
space X over F. We start by making some preliminary reductions. After a finite
surjective base change of X, we may assume that Q(7') factors as [[/—, (T — F}).
By reordering the F; and throwing away some points of Z, we may further assume
that, for all z € Z, vp(F, (2)) = vp(F; (Z)) ifi > jand F;(z) # F;j(z) if F; # F}.
We then set &; ; = =Dl (V, )(<"f_Fl (@)-(9” =Fi(ZD=0 for 4]l z € Z and 1 <i<m.
Using Definition 0.1(3), we may suppose that F; ; C %, forallze Zand1<i <m
by shrinking Z. Furthermore, by the fact that No = ppN and the condition
that v, (Fj(z)) > vp(Fj(z)) if i > j, we see that N = 0 on each graded piece
Fiz/Fi—1,z. Let ¢; ; be the rank of F; ;/F;_1 ; over Ko ® k(z), and partition Z
into finitely many subsets according to the sequence c¢; ;. Note that at least one
of these subsets of Z has to be Zariski-dense. Replace Z by this subset, and set
ci =ciyforzeZ.

For z € Z, we will 1nduct1vely define (¢, I')-submodules Fil; ; C Dng(Vz) for
1 <i < m such that DSt (Fil; ;) = &, ;. Fori = 1, since V; has nonpositive
Hodge-Tate weights and N(%;, ;) = 0, we have

f= - f= f=
g,fl’Z:Ds-:-(Vz)w Fi(z),N=0 _ crys(VZ)w Fi(z) _ rlg(V)F Lo/ =F:(z)

using Berger’s dictionary [2002, Théoréme 3.6]. Let Fil; , be the saturation of the
(¢, I')-submodule of DT (VZ) generated by &1 ;. It is then clear that D i (Fily z) =

cryq(Fﬂl z) =F1,z. Now suppose we have defined Fil;,_; ,; for some i > 2 such
that Dgt (Fil;—1,7) = %i—1,z. It follows that

DI Df,(V2)/ Fili1.2) = DI (V) /Fi-.2.
Note that
S=
9;!',2/931'—1,2 = (D (Vz) /JPZ 1 )‘/7 =F;(z),N= 0

Hence

Fiz/Fio1.c = Dby (DL, (Vo) / Fili )" =@ < (Y (v2)/ Fili 1 )T

We set Fil; ; to be the preimage of the saturation of the (¢, I')-submodule of
Dng(Vz)/Flll_],Z generated by &F; ,/%F;_1 ;. Now, for each 1 <i <m, we define
the character §; : K* — O(X)* by setting §; (p) = Fl._1 and §;(0g) = 1. Let

Dy = Dig(vx)v

Lemma 6.1. Suppose that X is irreducible. Then, for each 0 <i < m, there exists
a proper birational morphism 7t : X' — X and a subfamily of (¢, I')-modules
D(Z) C Dy over X' of rank d — ¢y — - -+ — ¢; such that:

(1) For any x € X', the natural map D)(Ci) — Dy is injective.
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(2) There exists a Zariski-open dense subset U of X' such that for any z € Z' =
_I(Z) N U, the natural map D;l) — D, is the dual of the projection

Dr,g(Vn(z)) — DrTig(Vn(z))/ Fil; 7 (z).

Proof. We proceed by induction on i. The initial case is trivial. Suppose that, for
some 1 <i < m, the lemma is true for i — 1. Note that F; ;/F;_1 ; maps into
D:lg(VZ)/ Fil;, Z for anyz € Z. Since F; 7 /Fi_1,; = (DCWS(VZ)/JPZ 1, )‘/’ =Fi(2)
we get that (D )V(n*(S )(z)) has k(z)-dimension ¢; for any z € Z'. Since Z’ is
Zariski-dense in X', by Proposition 2.5 after adapting X’ and U, we may find a

subfamily of (¢, I')-modules D§(,) of D)((l, D with rank d — c1 —---—c¢; such that:

(1) D)(f) — D)(f_l) is injective for any x € X'.
(2’) Forany z e =Y (Z)N U, Dg) is the kernel of the dual of the map

(Bng k ®a, k(z))- (%i,n(z)/gzi—l,n(z)) - D:ig(VT[(Z))/ Fili,:r(z) .

It is clear that (1’) and (2°) imply (1) and (2), respectively; this finishes the inductive
step. O

To prove Theorem 0.3, we also need the following lemma.

Lemma 6.2. Let Vg be a free S-linear representation of Gk of rank d. Then there
exists a positive integer m(Vs) such that for any x € M(S) and a € Ddlf(Vx)’ if

a is T-invariant, then a € D;ltfm ) ().

Proof. This is a consequence of the Tate—Sen method. Using [Berger and Colmez
2008, Théoreme 4.2.9], we first choose a finite extension L over K and some
positive integer m so that DE:;”Z(VS) is a free B J:grf ®o » S-module with a basis
e =(e1,...,eq). Let y be a topological generator of I'z,,, and write y(e) = eG
for some G € GLd(BZ’gr’Z ®ao » ). Recall that by the classical work [Tate 1967]
we know that there exists a constant ¢ > 0 such that v, ((y —1)x) < vp(x) + ¢ for
any nonzero x € (1 — RL,m)Zoo, where Ry, : Zoo — Ly, is Tate’s normalized
trace map. Since the localization map s, : B::gr’z — Ly, [[t] is continuous, by
enlarging m we may suppose that the constant term of t,,(G) — 1 has norm less
than p~¢. We fix some mg € N such that Koo N Ly, = Ko N L.

Now }(et ae DJr K"(Vx)r for some x € X and n > m. We will show that
a €Dy - mO(Vx)F. Since (,, (e) forms a basis of DIISL” (Vs), we may write a =
lm (e)(x)A for some

A €Mgx1((Ln ®a, k()]

The I-invariance of a implies (,,, (G (x))y(A) = A; thus

(I = RLm)tm(G(x))y(4) = (1 - RLm)A.



456 Ruochuan Liu

Note that t,,, (G(x)) has entries in (L, ®q, k(x))[[t]]. It follows that (G(x)—1)B =
(1—y~ 1B, where B = (1 — Rp.m)A. Let By be the constant term of B. If By # 0,
then the constant term of (i, (G(x)) — 1) B has valuation

= v(tm(G(x)) —1) + v(Bo) > v(Bo) +c.

whereas the constant term (1—y 1) By of (1—y 1) B has valuation < v(Byg)~+c; this
yields a contradiction. Hence By = J(r).KIterating this argument, we get B = 0. Hence
ae D:lrﬁiL’” (V)N D;E;K” (Vx) C Dy " (V). Thus we may choose m(Vs) = my.

O

Remark 6.3. Although we do not need it in this paper, it is worthwhile to point
out that the argument of Lemma 6.2 works equally well for families of (¢, I')-
modules and even a sequence of ¢-compatible K, [[t] ®q, S-modules {M,}, in
the vein of [Berger 2008b, Définition II.1.1]. That is, each M, is a finite projective
K, [[t] ®q, S-module equipped with a continuous K, [[]-semilinear and S-linear
I'-action, and satisfies My ® D Kni1[1] ®a, S = Myy1.

Proof of Theorem 0.3. We retain the notation above. By passing to irreducible
components, we may suppose that X is irreducible. We then apply Lemma 6.1
to Vx. Note that Vx- is again a finite slope family over X’ with the Zariski-
dense set of semistable points 7~ 1(Z). We may suppose that X’ = X. Let
A:Df (Vx) = Dy — (DY”)" be the dual of DY — Dy, and let Py = ker(A).
For any x € X, since D,(Cm) — Dy is injective, we get that the image of A, is a
(¢, T')-submodule of rank d —c1 —- - - — ¢s,. Thus, by Lemma 2.4, after adapting
X we may assume that Py is a family of (¢, [')-modules of rank c; + --- + ¢y,
and there exists a Zariski-open dense subset U C X such that P, = ker(A,) for
any x € U. Note that ker(A;) = Fil; ; for any z € Z. Thus, by replacing Z
with Z N U, we may assume that P, = Fil; , for any z € Z. We claim that Px
is de Rham with weights in [—b,0]. To do so, we set Y to be the set of x € X
for which Py is de Rham with weights in [a, b]. By the previous lemma, we see
that for any affinoid subdomain M(S) C X, there exists an integer m(Vs) such
that if Py is de Rham for some x € M(S), then hqr(Pyx) < m(Vs). We then
deduce from Proposition 4.10 that Y N M (S) is a Zariski-closed subset of M(S).
Hence Y is a Zariski-closed subset of X. On the other hand, since P, is de Rham
with weights in [—b, 0], we get Z C Y; thus ¥ = X by the Zariski density of Z.
Furthermore, using Proposition 4.10 and the previous lemma again, we deduce that
Px is de Rham with weights in [—b, 0]. As a consequence, we obtain a locally free
coherent Ox ®q, K-module Dyr(Px) of rank ¢y + -+ + cp.

The next step is to show that Dyr(Py) is contained in D;{ (Vx) ®k, K for any
x € X. Let Y be the set of x € X satisfying this condition. We first show that Y is a
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Zariski-closed subset of X . For this, it suffices to show that Y N M (S) is a Zariski-
closed subset of M(S) for any affinoid subdomain M (S) of X. To show this, we
employ the p-adic local monodromy for families of de Rham (¢, I')-modules. As
in §5, let E be the product of the complete residue fields of the Shilov boundary of
M(S). Since Pg is a family of de Rham (¢, I')-modules with weights in [—b, 0],
by Lemma 5.3 there exists a finite extension L of K such that for sufficiently large
s and n > n(s), we have

I
L®Lytn(M) = (Ddlf(PE ® gt k

T A
rig, k®apE Brig,L ®@p E))
for M = (Ns(Pg) Qpts G, E lOgK ®a, E) I, furthermore, Ns(Pg) C Ps.
rig, P

Thus
ts o
(M) Ctn(PE®p Bl 8oy E B, x ®a, E)

i s & + 35
C tn(Dng(VE) ®BI',SK‘§’@;)E BlogK R, E) C By ®ao, VE.

Note that Dgr(PEg) C Ddlf(PE) cDh f(VE) C B : ®a,, VE. This yields
Dar(PE) C (B ®q, VE)®L, LN B ®a, VE = (B ®a, VE)®L, L

We therefore deduce from [Berger and Colmez 2008, Lemme 6.3.1] that
Dar(Ps) C (B ®q, VE) ®L, LN B ®q, Vs = (BS ®a, Vs) ®L, L

It follows that ¥ N M(S), which is the set of x € M(S) such that Dgr(Py) C
(B ®a, Vx) ®k, K, is Zariski-closed in M(S).

To conclude the proof of the theorem, it then suffices to show that, for any x € X,
DdR(Px) c(DF (Vx)®k, K)Q(‘pf)(x) 0: here, we K -linearly extend the ¢/ -action
to DSt (Vx) ®k, K. Note that Fil,, , is semistable with D (Fily,, ;) = % ;. This
implies that Q((pf)(DdR(PX)) vanishes at z, yielding that Q((pf)(DdR(PX)) =0
by the Zariski density of Z. O
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