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We give conditions for the monodromy group of a Hurwitz space over the config-
uration space of branch points to be the full alternating or symmetric group on
the degree. Specializing the resulting coverings suggests the existence of many
number fields with surprisingly little ramification — for example, the existence of
infinitely many Am or Sm number fields unramified away from f2; 3; 5g.
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1. Introduction

1A. Overview. Hurwitz spaces are defined as moduli spaces of branched covers of
the complex projective line P1 satisfying certain conditions. A given Hurwitz space
is canonically presented as a finite-degree covering of the configuration space of
possible branching divisors. An important problem is to characterize those Hurwitz
spaces for which the monodromy group of this covering is the full alternating
or symmetric group on the fiber. Our main result, Theorem 5.1, gives such a
characterization in an asymptotic setting when the covers of P1 being parametrized
have suitably many branch points.

Our interest in fullness of Hurwitz monodromy arises from applications to
constructing number fields with large Galois group and little ramification, and in
particular from an open problem posed in [Malle and Roberts 2005]: Say that a
degree-m number field K is full if its associated Galois group is either Am or Sm.
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For a given fixed set of primes P , are there infinitely many full fields K for which
the discriminant of K is divisible only by primes in P? Our Theorem 5.1, together
with experimental data to be presented in a sequel paper [Roberts � 2015], strongly
suggests that the answer to the question is yes, whenever P contains the set of
primes dividing the order of a finite nonabelian simple group. This expectation is
particularly interesting because the mass heuristic of [Bhargava 2007] predicts no
for all P .

Sections 2, 3 and 4 provide short summaries of large theories and serve to
establish our setting. Section 5 states our main theorem, which we call the full-
monodromy theorem. It has the form that two statements, I and II, about data .G; C /
defining a multiindexed collection of Hurwitz covers are equivalent. Statement I
is an explicit condition on .G; C / and Statement II is an asymptotic statement
about the monodromy of the covers in the collection. Sections 6 and 7 prove
the theorem by establishing I D) II and II D) I, respectively. Section 8 con-
cludes the paper with a discussion of the application to the construction of full
number fields.

1B. The full-monodromy theorem. This subsection provides an introductory de-
scription of the full-monodromy theorem. Define a Hurwitz parameter to be a triple
hD .G; C; �/, where G is a finite group, C D .C1; : : : ; Cr/ is a list of conjugacy
classes whose union generates G, and � D .�1; : : : ; �r/ is a list of positive integers,
with � allowed in the sense that

Q
ŒCi �

�i D 1 in the abelianization Gab. A Hurwitz
parameter determines an unramified covering of complex algebraic varieties

�h W Hurh! Conf� : (1-1)

Here, the cover Hurh is a Hurwitz variety parameterizing certain covers of the
complex projective line P1, where the coverings are “of type h”. The base Conf�
is the variety whose points are tuples .D1; : : : ;Dr/ of disjoint divisors Di of P1,
with deg.Di /D �i . The map �h sends a cover to its branch locus.

In complete analogy with the use of the term for number fields, we say that a
cover of connected complex algebraic varieties X!Y is full if its monodromy group
is the entire alternating or symmetric group on the degree. There are two relatively
simple obstructions to (1-1) being full. One is associated to G having a nontrivial
outer automorphism group, and we deal with it by replacing Hurh by a quotient
variety Hur�

h
also covering Conf� . The other is associated to G having a nontrivial

Schur multiplier, and we deal with it by a decomposition Hur�
h
D
F
`Hur

�
h;`

. Here
` runs over the Schur multiplier modulo a certain equivalence relation, and each
Hur�

h;`
is a union of connected components of Hur�

h
.

The more important direction of the full-monodromy theorem is I D) II. When
G is nonabelian and simple, this direction is as follows:
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Fix a nonabelian simple group G and a list C D .C1; : : : ; Cr/ of conjugacy
classes whose union generates G. Consider varying allowed � and thus varying
Hurwitz parameters hD .G; C; �/. Then as soon as mini �i is sufficiently large, the
covers Hur�

h;`
! Conf� are full and pairwise nonisomorphic.

The complete implication I D) II is similar, but G is allowed to be “pseudo-
simple”, and therefore groups such as Sd are included. There are considerable
complications arising from nontrivial abelianizationsGab, even in the case jGabjD2.
The extra generality is required for obtaining the natural converse II D) I.

Our proof of I D) II in general starts from the Conway–Parker theorem about
connectivity of Hurwitz covers [Conway and Parker 1988; Ellenberg et al. 2013;
Fried and Völklein 1991; Malle and Matzat 1999]. We deal with complications
from nontrivial Gab in the framework of comparing two Hochschild–Serre five-term
exact sequences. We upgrade connectivity to fullness by using a Goursat lemma
adapted to our current situation and the explicit classification of finite 2-transitive
groups. Our general approach has much in common with the proof of Theorem 7.4
in [Dunfield and Thurston 2006], which is in a different context.

While there is a substantial literature on Hurwitz covers, our topic of asymptotic
fullness has not been systematically pursued before. In related directions there
are the papers [Eisenbud et al. 1991; Kluitmann 1988; Magaard et al. 2003].
We will indicate relations with some of this literature at various points in the
present paper.

2. Hurwitz covers

In this section we summarize the theory of Hurwitz covers, taking the purely
algebraic point of view necessary for the application to number field construction.
We consider Hurwitz parameters hD .G; C; �/, with G assumed centerless to avoid
technical complications. The central focus is an associated cover �h W HURh!

CONF� and related objects. A more detailed summary can be found in [Romagny
and Wewers 2006], and a comprehensive reference in [Bertin and Romagny 2011].
Note that throughout this paper we use a sans serif font for complex analytic spaces,
as in P1.C/D P1 or CONF�.C/D Conf� .

2A. Configuration spaces CONF�. Let � D .�1; : : : ; �r/ be a vector of positive
integers; we write j�j D

P
�i . For k a field, let CONF�.k/ be the set of tuples

.D1; : : : ;Dr/ of disjoint k-rational divisors on P1
k

with Di consisting of �i distinct
geometric points.

Explicitly, we may regard

CONF� � P�1 � � � � �P�r ;
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where we regard P�i as the projectivized space of binary homogeneous forms
q.x; y/ of degree �i , and CONF� is then the open subvariety defined by nonvan-
ishing of the discriminant disc.q1 � � � qr/. The divisor Di associated to an r-tuple
.q1; : : : ; qr/ of such forms is simply the zero locus of qi .

2B. Standard Hurwitz varieties HURh. Let k be an algebraically closed field of
characteristic zero. Consider pairs .†; f / consisting of a proper smooth connected
curve † over k together with a Galois covering f W†! P1.

Such a pair has the following associated objects:

� An automorphism group Aut.†=P1/ of size equal to the degree of f .

� A branch locus Z � P1.k/.

� For every t 2 Z, a local monodromy element gt 2 Aut.†=P1/ defined up
to conjugacy. (To define this requires a compatible choice of roots of unity,
i.e., an element of lim

 ��n
�n.k/; we assume such a choice has been made.)

Consider triples .†; f; �/ with � WG! Aut.†=P1/ a given isomorphism. We say
that such a triple has type h if

P
�i D jZj and for each i there are exactly �i

elements t 2Z such that gt 2 Ci . The branch locus Z then defines an element of
CONF�.k/ in a natural way.

The theory of Hurwitz varieties implies that there exists a Q-variety HURh,
equipped with an étale map

�h W HURh! CONF� ; (2-1)

with the following property holding for all k: For any u 2 CONF�.k/, the fiber
��1
h
.u/ is Aut.k=Q.�1//-equivariantly in bijection with the set of isomorphism

classes of covers of P1 of type h, with branch locus equal to u.

2C. Quotiented Hurwitz varieties HUR�
h

. If .†; f; �/ is as above, we can modify
� by an element ˛ 2Aut.G/, to obtain a new triple .†; f; �ı˛�1/. If ˛ is inner, the
resulting triple is actually isomorphic to .†; f; �/. As a results we obtain actions by
groups of outer automorphisms.

Let Aut.G; C / be the subgroup of Aut.G/ consisting of those elements which
fix every Ci . Then Out.G; C / D Aut.G; C /=G acts naturally on HURh, giving
a quotient

HUR�h D HURh=Out.G; C /;

still lying over CONF� . This quotient parameterizes pairs .†; f / equipped with an
element .D1; : : : ;Dr/ of CONF�.k/ so that the branch locus is precisely

F
Di , and

there exists an isomorphism � WG!Aut.†=P1/ so that the monodromy around each
point of Di is of type �.Ci /. Our main theorem focuses on HUR�

h
rather than HURh.



Hurwitz monodromy and full number fields 515

2D. Descent to Q. The discussion that follows is not used in the body of the paper,
but it is relevant to the application to full number fields, sketched in Section 8.

The abelianized absolute Galois group Gal.Q=Q/ab D yZ� acts on the set of
conjugacy classes in any finite group by raising representing elements to powers.
In particular, one can talk about rational classes, i.e., conjugacy classes fixed by
this action. We say that h is strongly rational if all Ci are rational. In this case,
(2-1) and its starred version ��

h
W HUR�

h
! CONF� canonically descend to covers

over Q. This statement can be deduced from the corresponding statement for the
“large” Hurwitz space, parameterizing coverings without any restrictions on branch
monodromy; for that statement see [Fried and Völklein 1991, Theorem 1] and
[Romagny and Wewers 2006, Theorems 2.1 and 4.11]. The rationality of the Ci
enters because of the dependence on choice of element of lim

 ��
�n, as above.

More generally, we say that h is rational if conjugate classes appear with equal
associated multiplicities. In the main case when all the classes are different, this
just means �i D �j whenever Ci and Cj lie in the same Galois orbit. Rationality
is a substantially weaker condition than strong rationality. For example, any finite
group G has rational h, but only when Gab is trivial or of exponent 2 can G have
strongly rational h.

For rational h, there is again canonical descent to Q, although now the maps take
the form HURh! HUR�

h
! CONF

�
� , with � indicating a suitable Galois twisting.

The subtlety of twisting is not seen in the rest of this paper. Our purpose in briefly
discussing twisting here is to make clear that many Hurwitz covers are useful for
the construction of full number fields.

3. Braid groups

In this section we switch to a group-theoretic point of view, describing the mon-
odromy of Hurwitz covers �h W Hurh! Conf� and ��

h
W Hur�

h
! Conf� in terms of

braid groups and their actions on explicit sets. General references for braid groups
and their monodromy actions include [Malle and Matzat 1999, Chapter 3] and
[Eisenbud et al. 1991, §2].

Our main theorem concerns these monodromy representations only, i.e., it is a
theorem in pure group theory. The map of Q-varieties HURh! CONF� underlying
the map of complex analytic spaces Hurh! Conf� will return in Section 8.

3A. Braid groups Br�. The Artin braid group on n strands is defined by the
generators and relations

Brn D
�
�1; : : : ; �n�1 W

�i�j D �j�i if ji � j j> 1

�i�j�i D �j�i�j if ji � j j D 1

�
:
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The rule �i 7! .i; i C 1/ extends to a surjection Brn� Sn. For every subgroup of
Sn, one gets a subgroup of Brn by pullback. In particular, from the last component
� D .�1; : : : ; �r/ of a Hurwitz parameter one gets a subgroup S� WD S�1

�� � ��S�r
.

We denote its pullback by Br� . The extreme Brn above and the other extreme Br1n

play particularly prominent roles in the literature, the latter often being called the
colored or pure braid group.

3B. Fundamental groups. Let ?D .1; : : : ; n/ 2 Conf1n . We will use it as a base-
point. We use the same notation ? for its image in Conf� for any �. There is a
standard surjection Brn� �1.Confn; ?/, with kernel the smallest normal subgroup
containing �1 � � � �n�2�2n�1�n�2 � � � �1 [Malle and Matzat 1999, Theorem III.1.4].
This map identifies �i with a small loop in Confn that swaps the points i and i C 1.
Because of this very tight connection, the group �1.Confn; ?/ is often called the
spherical braid group or the Hurwitz braid group.

Similarly, we have surjections

Br�� �1.Conf� ; ?/: (3-1)

Let Fh and F�
h

be the fibers of Hurh and Hur�
h

over ?. To completely translate into
group theory, we need group-theoretical descriptions of these fibers as Br�-sets.
The remainder of this section accomplishes this task.

3C. Catch-all actions. We use the standard notational convention gh D h�1gh.
If G is any group then Brn acts on Gn by means of a braiding rule, whereby �i
substitutes gi ! giC1 and giC1! g

giC1

i :

.: : : ; gi�1; gi ; giC1; giC2; : : : /
�i D .: : : ; gi�1; giC1; g

giC1

i ; giC2; : : : /: (3-2)

Also any ˛ 2 Aut.G/ acts on Gn diagonally by

.g1; : : : ; gn/
˛
D .g˛1 ; : : : ; g

˛
n/: (3-3)

The braiding action and the diagonal action commute, so one has an action of the
product group Brn �Aut.G/ on Gn.

3D. The Br�-sets Fh and F�
h

. Next we replace Gn by a smaller set appropriate
to a given Hurwitz parameter h. This smaller set is

Gh D
˚
.g1; : : : ; gn/ 2G

n
W g1 � � �gn D 1; hg1; : : : ; gni DG;

first �1 of the gi lie in C1, next �2 lie in C2, etc.
	
: (3-4)
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The subset Gh is not preserved by all of Brn �Aut.G/, but it is preserved by
Br� �Aut.G; C /. The fibers then have the following group-theoretic description:

Fh D Gh= Inn.G/' (fiber of Hurh! Conf� above ?); (3-5)

F�h D Gh=Aut.G; C /' (fiber of Hur�
h
! Conf� above ?): (3-6)

Here in both cases the isomorphisms ' are isomorphisms of Br�-sets. A clear
exposition of the relationship of Hurwitz spaces to braiding is given in [Eisenbud
et al. 1991, §1], and the isomorphisms (3-5) and (3-6) are a consequence of this
relationship; see also [Fried and Völklein 1991, §1]. Note that F�

h
DFh=Out.G; C /.

3E. The asymptotic mass formula. Character theory gives mass formulas [Serre
2008, Theorem 7.2.1]. These formulas, applied both to G and to subgroups inter-
secting all the Ci , can be used to exactly determine the degrees Fh and F�

h
. We need

only the asymptotic versions of the mass formulas for G, which are very simple:

jFhj �
Qr
iD1 jCi j

�i

jG0jjInn.G/j
; jF�h j �

Qr
iD1 jCi j

�i

jG0jjAut.G; C /j
: (3-7)

Here the meaning in each case is standard: the left side over the right side
tends to 1 for any sequence of allowed � with mini �i tending to 1. The struc-
ture of the products on the right directly reflects the descriptions of the sets in
Section 3D.

4. Lifting invariants

In this section we summarize the theory of lifting invariants, which plays a key role
in the study of connected components of Hurwitz spaces. Group homology appears
prominently, and as a standing convention we abbreviate Hi .�;Z/ by Hi .�/.

In brief summary, the theory being reviewed goes as follows. Let hD .G; C; �/
be a Hurwitz parameter. The group G determines its Schur multiplier H2.G/.
In turn, C determines a quotient group H2.G; C / of H2.G/, and finally � deter-
mines a certain torsor Hh D H2.G; C; �/ over H2.G; C /. The Conway–Parker
theorem says that the natural map �0.Hurh/!Hh is bijective whenever mini �i is
sufficiently large.

4A. The Schur multiplierH2.G/. A stem extension of G is a central extension
G� such that the kernel of G�!G is in the derived group of G�. A stem extension
of maximal order has kernel canonically isomorphic to the cohomology group
H2.G/. This kernel is by definition the Schur multiplier. A stem extension of
maximal order is called a Schur cover. A given group can have nonisomorphic
Schur covers, but this ambiguity never poses problems for us here.
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4B. The reduced Schur multiplierH2.G;C /. If x; y are commuting elements of
G, they canonically define an element hx; yi 2H2.G/: the commutator of lifts of
x; y to a Schur cover. (In the context of this paper, there should be no confusion
of this symbol with the group generated by x; y). This pairing is independent of
the choice of Schur cover. In fact, a more intrinsic description is that hx; yi is the
pushforward of the fundamental class of H2.Z2/ under the map Z2!G given by
.m; n/ 7! xmyn.

Fix a stem extension of maximal order zG!G. For a conjugacy class Ci and a
list of conjugacy classes C D .C1; : : : ; Cr/ respectively, define subgroups of the
Schur multiplier

H2.G/Ci
D fhg; zi W g 2 Ci and z 2Z.g/g; (4-1)

H2.G/C D
X

H2.G/Ci
: (4-2)

Here Z.g/ denotes the centralizer of g in G. The reduced Schur multiplier is then
the corresponding quotient group H2.G; C /DH2.G/=H2.G/C .

A choice of Schur cover zG determines a reduced Schur cover zGC D zG=H2.G/C .
The corresponding short exact sequence

H2.G; C / ,! zGC�G

plays an essential role in our study.
In a degree-d central extension � WG�!G, the preimage of a conjugacy class

D consists of a certain number s of conjugacy classes, all of size .d=s/jDj. Always
s divides d . If s D d then D is called split. By construction, all the Ci are split in
zGC , and zGC is a maximal extension with this property. For more information on
reduced Schur multipliers, see [Ellenberg et al. 2013, §7, v1].

4C. TorsorsH2.G;C; �/. For iD1, . . . , r , letH2.G; C; i/ be the set of conjugacy
classes of zGC that lie in the preimage of the class Ci . If Qz and Qg are lifts to zGC of
the identity z D 1 and g 2 Ci respectively, then one can multiply Qz 2H2.G; C /
and Œ Qg� 2H2.G; C; i/ to get Œ Qz Qg� 2H2.G; C; i/. This multiplication operator turns
each H2.G; C; i/ into a torsor over H2.G; C /.

One can multiply torsors over an abelian group: if T1 and T2 are torsors over
an abelian group Z, then their product is .T1�T2/=Z, where all .zt1; z�1t2/ have
been identified. In our setting, one has a torsor

Hh WDH2.G; C; �/D
Y
i

H2.G; C; i/
�i : (4-3)

Note that Hh is naturally identified with the trivial torsor if all �i are multiples of
the exponent of H2.G; C /. Namely the product

Q
a
�i

i is independent of choices
ai 2H2.G; C; i/, and gives a distinguished element of H2.G; C; �/. In particular,
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this distinguished element is fixed under Aut.G; C / (see Section 4E for a more
detailed discussion of functoriality).

4D. The lifting map. Suppose we are given .g1; : : : ; gn/ 2 Gh. Lift each gi to an
element Qgi 2 zGC arbitrarily, subject to the unique condition that the product of the
Qgi is the identity:

Qg1 � � � Qgn D 1 2 zGC :

Then each Qgi determines an element Œ Qgi � 2 H2.G; C; i/. Their product is an
element

Q
Œ Qgi � 2H2.G; C; �/, independent of choices. This product is moreover

unchanged if we replaced .g1; : : : ; gn/ by another element in its Br�-orbit, or if we
replace .g1; : : : ; gn/ by a G-conjugate. Thus, keeping in mind the identification
�0.Hurh/D Fh=Br� from (3-5), we have defined a function

invh W �0.Hurh/!Hh: (4-4)

We refer to invh as the lifting invariant. It has been extensively studied by Fried
and Serre; see [Bailey and Fried 2002; Serre 1990]. When a set decomposes
according to lifting invariants, we indicate this decomposition by subscripts. Thus,
e.g., Fh D

F
Fh;` and Gh D

F
Gh;`.

The map (4-4) is equivariant with respect to the natural actions of Out.G; C /
and so we can pass to the quotient. Writing H�

h
DHh=Out.G; C /, we obtain

inv�h W �0.Hur
�
h/!H�h : (4-5)

Again we denote lifting invariants by subscripts, so that F�
h;`
D Fh;`=Out.G; C /`

for example, where Out.G; C /` is the stabilizer of ` inside Out.G; C /.
Note that algebraic structure is typically lost in the process of passing from

objects to their corresponding starred objects. Namely, at the unstarred level one
has a group H2.G; C / and its many torsors Hh. At the starred level, H�2 .G; C / is
typically no longer a group, the sets H�

h
are no longer torsors, and the cardinality

of H�
h

can depend on �. Our main theorem makes direct reference only to H�
h

.
However in the proof we systematically lift from H�

h
to Hh, to make use of the

richer algebraic properties.
We finally note for later use that there are asymptotic mass formulas for Fh;`

and F�
h;`

that are very similar to (3-7). Indeed, they are derived simply by applying
(3-7) to zGC together with liftings of the conjugacy classes Ci :

jFh;`j �
jFhj

jH2.G; C /j
; jF�h;`j �

jFh;`j
jOut.G; C /`j

: (4-6)

4E. Functoriality. Suppose we are given a surjection f W G ! H of groups,
together with conjugacy classes Ci in G, and set Di D f .Ci /. This clearly induces
a map H2.G; C /! H2.H;D/. The functoriality of the torsors is less obvious,
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because of the lack of uniqueness in a Schur cover. For this, we use a more
intrinsic presentation:

Amongst central extensions zG!G equipped with a lifting zCi of each Ci , there
is a universal one zG�, unique up to unique isomorphism [Ellenberg et al. 2013,
Theorem 7.5.1]. Now consider the central extension G � Zr ! G, where we
lift Ci to Ci � ei , with ei the i-th coordinate vector. This gives a canonical map
˛ W zG�!G�Zr , and we defineH2.G; C; �/univ to be the preimage of e�� 2G�Zr .

This is closely related to the previous definition. Note that if we fix lifts C �i � zGC
of each Ci , we get an induced map ˇ W zG�! zGC from the universal property. This
induces a bijection of H2.G; C; �/univ with H2.G; C /; indeed, the canonical map

ˇ�G ˛ W zG
�
! zGC �G .G �Zr/ (4-7)

is an isomorphism (again, [Ellenberg et al. 2013, Theorem 7.5.1]).
So a choice of lifts C �i gives a distinguished element c� 2H2.G; C; �/univ — the

preimage of the identity in H2.G; C /. Moreover, if we replace C �i by ziC �i , where
zi 2H2.G; C /, then the associated map zG�! zGC is multiplied by the composite
map zG�! Zr ! zGC , where the second map sends ei 2 Zr to zi . Thus, with this
replacement, the identification H2.G; C; �/ �!� H2.G; C / has been multiplied by
z�i ; in other words, the distinguished element is replaced by

Q
z
��i

i c� .
This construction exhibits an identification of torsors

H2.G; C; �/univ 'H2.G; C; �/
�1; (4-8)

where we write T1 ' T �12 for two A-torsors if there is an identification of T1 and
T2 transferring the A-action on T1 to the inverse of the A-action on T2.

In fact, with respect to the identification (4-8), our lifting invariant corresponds
to the lifting invariant of [Ellenberg et al. 2013]: In that paper, the authors take
.g1; : : : ; gr/ and associate to it the lifting invariant …D

Q
Qgi 2H2.G; C; �/univ,

where Qg is the lift to a universal central extensions equipped with lifting. Fix zGC ,
C �i and a morphism zG� ! zGC as above. Choose zi 2 H2.G; C / such that the
image of … in H2.G; C / coincides with

Q
z
�i

i . Then
Q
Qgi is carried to

Q
z
�i

i

multiplied by the distinguished element of H2.G; C; �/univ. On the other hand, the
lifting invariant as we have defined it above equals ŒC �i z

�1
i � 2H2.G; C; �/, which

equals
Q
z
��i

i times the corresponding element of H2.G; C; �/.
Now — returning to the surjectionG!H — take a universal extension zH�!H

equipped with a lifting of the Di , and consider G �H zH� ! G; it’s a central
extension and it is equipped with a lifting of Ci , namely Ci �H D�i . There is thus
a canonical map zG�! zH�. Taking fibers above � 2 Zr gives the desired map

f� WH2.G; C; �/univ!H2.H;D; �/univ;
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and by inverting one obtains the desired map H2.G; C; �/ ! H2.H;D; �/. In
particular, one easily verifies that if H DG and G!H is an inner automorphism,
the induced map on H2.G; C; �/ is trivial.

Finally, suppose � is chosen to be simultaneously divisible by the order of
H2.G; C / and H2.H;D/ (i.e., each �i is so divisible). Then in fact the map
H2.G; C; �/!H2.H;D; �/ respects the natural identifications of both sides with
H2.G; C / and H2.H;D/ (see after (4-3)). In fact, one has natural identifications

H2.G; C; �1C �2/'H2.G; C; �1/�H2.G; C; �2/=H2.G; C /;

where the action of z 2 H2.G; C / on the right is as z W .t1; t2/ 7! .t1z; z
�1t2/.

These identifications are easily seen to be compatible with the map H2.G; C; �/!
H2.H;D; �/. Now choose C �i and D�i as above, giving rise to corresponding
elements c� 2H2.G; C; �/ and d� 2H2.H;D; �/. Write f�c� D 
�d� for some

� 2 H2.H;D/; then our comments show that 
�1C�2

D 
�1

�2

, and the claim
follows: if � is divisible by the order of H2.H;D/, then 
� will be trivial.

4F. The Conway–Parker theorem. We will use a result due to Conway and Parker
[1988] in the important special case where H2.G; C / is trivial. This result is also
described in [Fried and Völklein 1991, Appendix] and [Malle and Matzat 1999,
III.6.3]. We need the following generalization to nontrivial H2.G; C /:

Proposition 4.1. Consider Hurwitz parameters hD .G; C; �/ for .G; C / fixed and
� varying. Suppose that all the Ci are distinct. For sufficiently large mini �i , the
lifting invariant map invh W �0.Hurh/!Hh is bijective.

The generalization is proved in [Ellenberg et al. 2013, §7, Theorem 7.5.1].
Because of the importance of Proposition 4.1 to this paper, we give an overview of
the proof here:

Overview of proof of Proposition 4.1. First we reprise, with a few more details, the
setting of Section 4E. Consider pairs .f WG�!G; s/ of a central extension of G
together with a section s of f over each Ci , equivariant under conjugation, i.e.,

s.f .x/gf .x/�1/D xs.g/x�1

for x 2G�; g2
S
Ci . There is an initial object .f � W zG�!G; s�/ in the category of

such pairs, i.e., a “universal central extension with section over each Ci”; in fact, we
describe this initial object explicitly in the penultimate paragraph of this overview.

As discussed before (4-7), there is a natural homomorphism zG� ! G � Zr .
Consider the sets Fh;Gh described in Section 3D; the map sending gi to Œgi � gives
a well-defined map Gh=Br�! zG�, and in fact

Fh=Br�
I
�! fiber of zG� above .e; �/:
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As we explained in Section 4E, this map is the lifting invariant, up to the identifica-
tion discussed around (4-8). We must verify that I is a bijection when all of the �i
are large enough. The remainder of the argument is close to the argument in the
appendix to [Fried and Völklein 1991]:

Consider the monoid given by S D
F
n�0

�S
Ci
�n
=Brn, with multiplication

given by concatenation. For each g 2 Ci let Œg� be the corresponding element of S
(corresponding to nD 1). Consider inside this monoid the element

U D .x1; x1; : : : ; x1„ ƒ‚ …
jGj

; x2; x2; : : : ; x2„ ƒ‚ …
jGj

; x3; : : : /

given by taking each element of each Ci exactly jGj times in succession, after
fixing any ordering of such elements. Then U is central, i.e., commutes with all
of S . Therefore, we may formally invert U , i.e., form the group SŒU�1�. Note
that U is “divisible” by each Œg�, and therefore each Œg� is invertible; consequently,
SŒU�1� is a group. Then f W Œg� 7! g defines a homomorphism SŒU�1�!G with
central kernel; moreover, s W g 7! Œg� gives a section of this homomorphism overS
Ci . Then it is easily verified that .f W SŒU�1�! G; s/ is a universal central

extension.
Suppose that aD .g1; : : : ; gn/; b D .g01; : : : ; g

0
n/ 2 Fh have the same image in

zG�. The above construction of zG� shows that .g1; : : : ; gn/�U kD .g01; : : : ; g
0
n/�U

k

inside the semigroup S , i.e., a and b become braid-equivalent after concatenating
sufficiently many copies ofU . However, an elementary group-theoretic computation
(see the appendix of [Fried and Völklein 1991]) shows that this implies — if mini �i
is large enough — that a and b are themselves braid-equivalent. �

Various comments on Proposition 4.1 are in order. First, the condition that mini �i
is sufficiently large carries on passively to many of our later considerations. We
will repeat it explicitly several times but also refer to it by the word asymptotically.

Second, there are a number of equivalent statements. The direct translation of
the bijectivity of �0.Hurh/!Hh into group theory is that each fiber of Fh!Hh
is a single orbit of Br� . Alternatively, one could compose the cover Hurh! Conf�
with the cover Conf� ! Confn and state the result in terms of actions of the full
braid group Brn; this is the viewpoint of both [Fried and Völklein 1991, Appendix]
and [Malle and Matzat 1999, III.6.3]

Third, quotienting by Out.G; C / one gets a similar statement: the resulting map
inv�h W �0.Hur

�
h
/! H�

h
is asymptotically bijective. This is the version that our

full-monodromy theorem refines for certain .G; C /. Note that a complication not
present in Proposition 4.1 itself appears at this level: the cardinality of H�

h
D

Hh=Out.G; C / can be dependent on �.
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5. The full-monodromy theorem

In this section, we state the full-monodromy theorem. Involved in the statement is
a homological condition. We clarify the nature of this condition by giving instances
when it holds and instances when it fails.

5A. Preliminary definitions. In this section, we define the notions of pseudosimple,
unambiguous, and quasifull. All three of these notions figure prominently in the
statement of the full-monodromy theorem.

We say that a centerless finite group G is pseudosimple if its derived group G0

is a power of a nonabelian simple group and any nontrivial quotient group of G is
abelian. Thus, there is an extension

G0!G!Gab; (5-1)

whereG0'T w , with T nonabelian simple, and the action ofGab on T w is transitive
on the w simple factors. (Our terminology is meant to be reminiscent of similar
standard terms for groups closely related to a nonabelian simple group T : almost
simple groups are extensions T:A contained in Aut.T / and quasisimple groups are
quotients M:T of the Schur cover zT .)

We say that a conjugacy class Ci in a group G is ambiguous if the G0 action
on Ci by conjugation has more than one orbit. If it has exactly one orbit we say
that Ci is unambiguous. These are standard notions and for many G the division
of classes into ambiguous and unambiguous can be read off from an Atlas page
[Conway et al. 1985].

Essentially repeating a definition from the introduction, we say that the action of
a group � on a set X is full if the image of � in Sym.X/ contains the alternating
group Alt.X/. Generalizing now, we say the action is quasifull if the image contains
Alt.X1/� � � � �Alt.Xs/, where the Xi are the orbits of � on X . Again we transfer
the terminology to a topological setting. Thus a covering X of a connected space
Y is quasifull if for any y 2 Y, the monodromy action of �1.Y; y/ on the fiber Xy
is quasifull.

5B. Fiber powers of Hurwitz parameters. This subsection describes how a Hur-
witz parameter hD .G; C; �/ and a positive integer k give a triple hkD .GŒk�; C k; �/.
Part of this notion, in the special case k D 2, appears in the statement of the main
theorem. The general notion plays a central role in the proof.

In general, if G is a finite group with abelianization Gab, we can consider its
k-fold fiber power

GŒk� DG �Gab � � � �Gab G:

Note that even whenGDT w:Gab is pseudosimple, the fiber powersGŒk�DT wk:Gab

for k � 2 are not, because Gab does not act transitively on the factors.
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If Ci is a conjugacy class in a group G, we can consider its Cartesian powers
C ki �G

Œk�. In general, C ki is only a union of conjugacy classes. However, if Ci is
unambiguous then C ki is a single class.

If C D .C1; : : : ; Cr/ is a list of conjugacy classes, we can consider the corre-
sponding list .C k1 ; : : : ; C

k
r /. Generation of G by the Ci does not imply generation

of GŒk� by the C ki . However, if G is pseudosimple then this implication does hold.
(This can be easily deduced, for example, using the Goursat lemma, in the form
of Lemma 6.1.) Thus if G is pseudosimple and C consists only of unambiguous
classes, the triple hk is a Hurwitz parameter.

Suppose, then, that G is pseudosimple and C consists of unambiguous classes.
The natural map (Section 4E)

H2.G
Œk�; C k; �/!H2.G; C; �/

k

is surjective. This surjectivity can be seen by interpreting both sides in terms
of connected components (in the large � limit) via the Conway–Parker theorem.
Surjectivity can also be seen because the map is equivariant with respect to the
natural map H2.GŒk�; C k/ ! H2.G; C /

k , which is surjective by homological
algebra, as we explain after (5-2).

5C. Statement. With our various definitions in place, we can state the main result
of this paper:

Theorem 5.1 (full-monodromy theorem). Let G be a finite centerless nonabelian
group, let C D .C1; : : : ; Cr/ a list of distinct nonidentity conjugacy classes gen-
erating G, and consider Hurwitz parameters h D .G; C; �/ for varying allowed
� 2 Zr

�1. Then the following two statements are equivalent:

I: 1. G is pseudosimple,
2. the classes Ci are all unambiguous, and
3. jH2.GŒ2�; C 2/j D jH2.G; C /j2.

II: All covers Hur�
h
! Conf� are quasifull whenever mini �i is sufficiently large.

Note that Statement II can equivalently be presented in terms of fullness: for
mini �i sufficiently large, the covers Hur�

h;`
! Conf� are full and pairwise noniso-

morphic as ` ranges over H�
h

. Note also that a pseudosimple group G is simple if
and only if Gab is trivial. In this case, Conditions 2 and 3 of Statement I are trivially
satisfied and the direction I D) II becomes the statement highlighted in Section 1B.

For the more important direction ID) II, the condition that mini �i is sufficiently
large is simply inherited from the Conway–Parker theorem. Calculations suggest
that the covers Hur�

h
! Conf� tend to be quasifull even when all �i are small.

We are not pursuing the important question of effectivity here, but we note that
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effective statements of fullness are obtained for certain classical Hurwitz parameters
in [Kluitmann 1988].

Given .G; C /, whether or not Conditions 1 and 2 hold is immediately deter-
minable in practice. Evaluating Condition 3 is harder in general, and the next two
subsections are devoted to giving an easily checkable reformulation applicable in
many cases (Proposition 5.2) and showing (Corollary 5.3) that it sometimes fails.

5D. The homological condition for G of split-cyclic type. We say that a pseu-
dosimple groupG has split type if the canonical surjection � WG!Gab has a homo-
morphic section s WGab!G. Inspecting individual Atlas pages [Conway et al. 1985]
shows that this a priori strong condition is actually commonly satisfied. Similarly,
we say that a pseudosimple group has cyclic type if Gab is cyclic. Again this strong-
seeming condition is commonly satisfied, as indeed for a simple group T all of
Out.T / is often cyclic [Conway et al. 1985, Chapter 1, Table 1; Chapter 3, Table 5].
When both of these conditions are satisfied, we say that G is of split-cyclic type.

For G of split-cyclic type, the following proposition says that Condition 3 of
Theorem 5.1 is equivalent to an apparent strengthening O3. Moreover, these two
conditions are both equivalent to a more explicit condition E which makes no
reference to either fiber powers or powers. For E, we modify the notions defined in
Section 4B as follows:

H 02.G/Ci
D fhg; zi W g 2 Ci and z 2Z.g/\G0g;

H 02.G/C D
X

H 02.G/Ci
:

These are straightforward variants, as indeed if one removes every 0 one recovers
the definitions (4-1) and (4-2) of the previous notions.

Proposition 5.2. Let G be a pseudosimple group of split-cyclic type, and let
C D .C1; : : : ; Cr/ be a list of distinct unambiguous conjugacy classes. Then
the following are equivalent:

3. jH2.GŒ2�; C 2/j D jH2.G; C /j2.
O3. jH2.GŒk�; C k/j D jH2.G; C /jk for all positive integers k.

E. H2.G/C DH 02.G/C .

Moreover, if jGabj is relatively prime to jH2.G/j then all three conditions hold.

Proof. All three conditions involve the list C of conjugacy classes. We begin how-
ever with considerations involving G only. The k different coordinate projections
GŒk�! G together induce a map fk WH2.GŒk�/!H2.G/

k . We first show that
the assumption that G has split-cyclic type implies all the fk are isomorphisms.
We present this deduction in some detail because we will return to parts of it in
Section 6E.
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The map fk is part of a morphism of five-term exact sequences (see [Eckmann
and Stammbach 1970, Theorem 5.2], noting that H1.G0/D 0)

H3.G
Œk�/

�
Œk�
3 //

��

H3.G
ab/

�3��

ıŒk�
// H2.G

0k/Gab

i
Œk�
2 //

'
��

H2.G
Œk�/

�
Œk�
2 // //

fk��

H2.G
ab/

�2��

H3.G/
k

�k
3 // H3.G

ab/k
ık
// H2.G

0/k
Gab

ik2 // H2.G/
k

�k
2 // // H2.G

ab/k

(5-2)

Each five-term sequence arises from the Hochschild–Serre spectral sequence as-
sociated to an exact sequence of groups. The top sequence comes from the k-th
fiber power of G0

i
,!G

�
�Gab, while the bottom sequence comes from the k-th

ordinary Cartesian power.
We note that (5-2) actually shows that H2.GŒk�; C k/!H2.G; C /

k is surjective
whenever G is pseudosimple and C consists of unambiguous classes. The point
is that H2.G/C surjects onto H2.Gab/. That is because H2.Gab/ is generated by
symbols h˛; ˇi. But such a symbol belongs to the image of H2.G/C , since the
ŒCi � generate Gab and, for any g 2 Ci , the centralizer Z.g/ surjects to Gab because
Ci is unambiguous.

The assumption that � WG!Gab has a splitting s drastically simplifies (5-2).
From � ı s D IdGab , one obtains that � Œk�3 ı s

Œk�
3 and �k3 ı s

k
3 are the identity

on H3.Gab/ and H3.Gab/k , respectively. Thus � Œk�3 and �k3 are both surjective
and so the boundary maps ıŒk� and ık are both 0. Thus the part of (5-2) relevant
for us becomes

H2.G
0k/Gab

� � //

'
��

H2.G
Œk�/ // //

fk��

H2.G
ab/

�2��

H2.G
0/k
Gab
� � // H2.G/

k // // H2.G
ab/k

(5-3)

We have suppressed some notation, since we have no further use for it.
The assumption thatGab is cyclic is equivalent to the assumption thatH2.Gab/ is

the zero group. Thus exactly in this situation one gets the independent simplification
of (5-2) where the last column becomes the zero map between zero groups. Applied
to (5-3) it says that fk WH2.GŒk�/!H2.G/

k is an isomorphism. We henceforth
use fk to identify H2.GŒk�/ with H2.G/k .

We now bring in the list C of conjugacy classes. We have a morphism of short
exact sequences

� D

H2.G
Œk�/C

� � // H2.G
Œk�/ // // H2.G

Œk�; C k/

����

H2.G/
k
C
� � // H2.G/

k // // H2.G; C /
k

(5-4)
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Since the map in the right column is surjective, Conditions 3 and O3 become that it
is an isomorphism for k D 2 and all k respectively. So they are equivalent to the
inclusion in the left column being equality, again for k D 2 and all k respectively.
We work henceforth with these versions of Conditions 3 and O3.

Trivially

jH2.G/C j D jH
0
2.G/C j � jH2.G/C =H

0
2.G/C j: (5-5)

But also the image of H2.GŒk�/Ck in .H2.G/=H 02.G/C /
k is exactly the diagonal

image of H2.G/C =H 02.G/C . To see this, note that H2.GŒk�/Ck is generated by

.hg; z1i; : : : ; hg; zki/;

where g 2
S
Ci , each zi 2 Z.g/, and z1 � � � � � zk modulo G0. In partic-

ular, it certainly contains the diagonal image of H2.G/C . On the other hand,
the images of hg; zi i inside H2.G/C =H 02.G/C are equal to each other, since
hg; ziz

�1
j i 2H

0
2.G/C .

Moreover,H 02.G/
k
C �H2.G

Œk�/Ck . This inclusion holds because, for any g2Ci
and z 2Z.g/\G0, we have

.hg; zi; 0; 0; : : : / 2H2.G
Œk�/Ck ;

since we can regard the left-hand side as .hg; zi; hg; ei; hg; ei; : : : /, and similarly
for any other “coordinate”. Therefore,

jH2.G
Œk�/Ck j D jH 02.G/C j

k
� jH2.G/C =H

0
2.G/C j: (5-6)

Dividing the k-th power of (5-5) by (5-6), one gets

jH2.G/C j
k

jH2.GŒk�/Ck j
D jH2.G/C =H

0
2.G/C j

k�1: (5-7)

Condition 3 says the left side is 1 for k D 2. Condition O3 says the left side is 1 for
all k. Equation (5-7) says that each of these is equivalent to H2.G/C DH 02.G/C ,
which is exactly Condition E.

For the final statement, jH2.G/Ci
=H 02.G/Ci

j clearly divides jH2.G/j. It also
divides jGabj, because Z.g/=.Z.g/\G0/ surjects onto H2.G/Ci

=H 02.G/Ci
via

z 2 Z.g/ 7! hg; zi, for any fixed g 2 Ci . So, if jH2.G/j and jGabj are relatively
prime then H2.G/Ci

DH 02.G/Ci
always, and so Condition E holds. �

5E. The homological condition for G of split-p-p type. For p a prime, we say
that a pseudosimple group G has split-p-p type if G!Gab is split and

jGab
j D jH2.G/j D p:
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Even this seemingly very special case is common. For example, taking p D 2, it
includes

� all six extensions T:A of sporadic groups T with A and H2.T:A/ nontrivial,

� all Sd with d � 5, and

� all PGL2.q/ for odd q � 5.

To illustrate the tractability of Condition E of Proposition 5.2, we work it out
explicitly for groups G of split-p-p type. Explicating Condition E for the full
split-cyclic case would be similar but combinatorially more complicated.

For G of split-p-p type, we divide its unambiguous classes into three types. Let
zG be a Schur cover ofG. An unambiguous class C is split if its preimage zC consists
of p conjugacy classes in zG. It is mixed if zC is p different zG0 conjugacy classes
but just one zG class. Otherwise a class C is inert. Mixed classes are necessarily in
the derived group, but split and inert classes can lie above any element of Gab.

Corollary 5.3. Let G be a pseudosimple group of split-p-p type and let C D
.C1; : : : ; Cr/ be a list of unambiguous classes. Then Condition E fails exactly when
there are no inert classes and at least one mixed class among the Ci .

Proof. We are considering subgroups of the p-element Schur multiplier H2.G/.
The subgroups have the following form:

Ci split mixed inert

H 02.G/Ci
0 0 H2.G/

H2.G/Ci
0 H2.G/ H2.G/

Thus H 02.G/C D
P
i H
0
2.G/Ci

is a proper subgroup of H2.G/C D
P
i H2.G/Ci

exactly under the conditions stated in the corollary. �

For a group T:p, the types of classes can be determined from an Atlas-style
character table, including its lifting row and fusion column. For example, for the
six sporadic T mentioned above, the mixed classes in T:2 are exactly as follows:

Mathieu12 Mathieu22 Hall–Janko Higman–Sims Suzuki Fischer22

10A 8A 8A 4A, 6A, 12A 12D, 12E, 24A (15 classes)

In the sequences Sd and PGL2.q/, the patterns evident from character tables in the
first few instances can be proved to hold in general. Namely for Sd , conjugacy
classes are indexed by partitions of d . The type of a class C� can be read off from
two features of the indexing partition �, the number e of even parts and whether or
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not all parts are distinct:

e D 0 e 2 f2; 4; 6; : : : g e 2 f1; 3; 5; : : : g

all distinct ambiguous mixed split
not all distinct split inert inert

Thus S5 has no mixed classes while C42 and C421 are the unique mixed classes of
S6 and S7 respectively. For PGL2.q/ with q odd, the division is even easier: the
two classes of order the prime dividing q are ambiguous, the two classes of order 2
are inert, and all other classes are split. Thus for these PGL2.q/, the homological
condition always holds.

6. Proof of I D) II

In this section we prove the implication ID) II of Theorem 5.1. Thus we consider
Hurwitz parameters hD .G; C; �/ for fixed .G; C / satisfying Conditions 1–3 and
varying �. We then prove that the action of Br� on F�

h
is quasifull whenever mini �i

is sufficiently large.

6A. A Goursat lemma. The classical Goursat lemma classifies certain subgroups
of powers of a simple group. We state and prove a generalized version here. As
usual, if one has groups G1, G2 endowed with homomorphisms �1, �2 to a third
group Q, we say that G1 and G2 are isomorphic over Q if there is an isomorphism
i WG1!G2 satisfying �2i D �1.

Lemma 6.1 (generalized Goursat lemma). Suppose that G is pseudosimpleand
H �GŒk� is a “Goursat subgroup” in the sense that it surjects onto each coordinate
factor. Then:

(1) H is itself isomorphic over Gab to GŒw� for some w � k.

(2) There is a surjection f W Œ1; k�! Œ1; w� and automorphisms '1, . . . , 'k of G
over Gab such that H is the image of GŒw� under

.g1; : : : ; gw/ 7! .'1.gf .1//; : : : ; 'k.gf .k///:

Proof. We first prove (1) by induction, the base case k D 1 being trivial. Note that
the projection H D �2.H/ of H to the second factor in

GŒk� DG �Gab GŒk�1�

is also a Goursat subgroup. By induction, it isGab-isomorphic toGŒv� for suitable v.
The kernel K D ker.�2/ of the projection H !H maps, under the first projection
�1, to a subgroup K �G0 that is invariant under conjugation by G. In particular,
either K is trivial, and we’re done by induction, or K D G0. In the latter case,
we will show that H D G �Gab H : Take any element .m�; �/ 2 G �Gab H . By
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assumption, there exists m in G such that .m;�/ 2H , but then m and m� have the
same projection to Gab, and so

.m�; �/D .m�m�1; 1/ � .m;�/

lies in H also. This concludes the proof of the first assertion: H is isomorphic to
GŒw� over Gab for some w.

Now we deduce (2) from (1). Let ‚DGŒw�!H be any isomorphism and write
‚.g/ D .�1.g/; : : : ; �k.g//. We need to show that, for each i , one can express
�i .g/ in the form 'i .gf .i// as in (2). In other words, letting �j WGŒw�!G be the
j -th projection, we need to show that any surjective morphism � WGŒw�!G over
Gab factors as '�j for some j 2 f1; : : : ; wg and some automorphism ' WG!G

over Gab.
So let � W GŒw� ! G be any surjective morphism over Gab. Its kernel K is a

normal subgroup of .G0/w , invariant under GŒw�, and with index jG0j. Now, via the
isomorphism G0 ' T u for some nonabelian simple group T , the normal subgroups
of .G0/w ' T uw are of the form TI D

Q
.i;j /2I T.i;j /, where I is a subset of

P D f1; : : : ; ug�f1; : : : ; wg. The normal subgroups which are invariant under Gw

are those for which the indexing set I is invariant under the natural action of Gab.
The orbits of Gab on P are the sets Pj D f1; : : : ; ug � fj g. So the kernel K of
� necessarily has the form TP�Pj

for some j . Thus K is also the kernel of the
coordinate projection �j . The unique bijection ' WG!G satisfying � D '�j is
then an automorphism of G over Gab. �

6B. Identifying braid orbits. For F a set and k a positive integer we let

F k D f.x1; : : : ; xk/ W all xi are differentg:

If F has cardinality N then F k has cardinality N k WDN.N � 1/ � � � .N � kC 1/.
In this subsection we assume Conditions 1 and 2 of Statement I in Theorem 5.1
and identify the quotient set .F�

h
/k=Br� asymptotically.

Begin with x1; : : : ; xk 2 F�
h

. Choose a set of representatives g1; : : : ; gk 2 Gh.
Writing each gi as a column vector, we get a matrix

.g1; : : : ; gk/D

0BBBBB@
g11 g21 : : : gk1
g12 g22 � � � gk2
g13 g23 � � � gk3
:::

:::
: : :

:::

g1n g2n � � � gkn

1CCCCCA : (6-1)

So, simply recalling our context:
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� All the gij in a given row are in the same conjugacy class of G.

� These conjugacy classes are

C1; : : : ; C1„ ƒ‚ …
�1

I : : : ICr ; : : : ; Cr„ ƒ‚ …
�r

as one goes down the rows, so that a given row is in some C ki .

� Each column in its given order multiplies to 1.

� Each column generates all of G.

All entries in a given row certainly have the same projection to Gab, and so each
row defines an element of GŒk�. Consider now the subgroup H of GŒk� generated
by the rows of this matrix. We are going to show that

H DGŒk� () all xi are different: (6-2)

First of all, note that the condition that H DGŒk� is independent of the choice of
lifting from F�

h
to Gh. For example, if we modify g1, the first column of (6-1), by

an element ˛ 2Aut.G; C /, then the subgroup generated by the rows simply changes
by the automorphism .˛; 1; 1; 1 : : : ; 1/ of GŒk�. Note that ˛ is automatically an
isomorphism of G over Gab because it preserves each Ci and they generate Gab.

Now the D) direction of (6-2) is easy: if xi D xj for some i ¤ j , then we could
lift so that gi D gj , and then certainly H ¨GŒk�.

Now suppose that xi ¤ xj for all i ¤ j ; we’ll show that H DGŒk�. Since each
column generates G, the subgroup H is a Goursat subgroup of GŒk�. Accordingly
we may apply Lemma 6.1, and see that H can be constructed from a surjective
function f W Œ1; k�! Œ1; w� together with a system of isomorphisms 'j WG!G

over Gab, for 1 � j � k. In particular, we may find .y1; : : : ; yw/ 2 GŒw� which
maps to the first row .g11; g21; : : : ; gk1/, so that

'j .yf .j //D gj1; 1� j � k:

In particular, whenever f .j /D f .j 0/, the map

'j 0'
�1
j

carries gj1 to gj 01 and so preserves C1. By similar reasoning, applied to the second
row, third row and so on, this map preserves every conjugacy class, so

'j 0'
�1
j 2 Aut.G; C /

whenever f .j /D f .j 0/. But 'j 0'�1j carries gj i to gj 0i ; that means that actually
xj D x

0
j , and so j D j 0. In other words, f is injective, and so H 'GŒk�, as desired.
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Each matrix of the form (6-1) with H all of GŒk� defines an element of Ghk .
Now, the group Aut.G; C /k acts on GŒk�; its image in the outer automorphism
group will be called Out.G; C /Œk�. This latter group maps onto Out.G; C /k , with
kernel isomorphic to .Gab/k�1. These considerations give a bijective map

Fhk=Out.G; C /Œk� �!� F�k
h
: (6-3)

This bijection is purely algebraic in nature and is valid for all �.
Lifting invariants give a map Fhk=Br�!H2.G

Œk�; C k; �/. For any fixed k, the
Conway–Parker theorem says that this map is asymptotically a bijection. Taking
the quotient by Out.G; C /Œk� and incorporating the Goursat conclusion (6-3), we
get the desired description of braid orbits:

F�k
h
=Br� �!�

a
H2.G

Œk�; C k; �/=Out.G; C /Œk�: (6-4)

The map of (6-4) is defined for all allowed � and, as indicated by the notation �!�
a

,
is asymptotically a bijection.

There is, of course, a map F�k
h
=Br� ! .F�

h
=Br�/k; on the right-hand side of

(6-4), this corresponds to the natural map

H2.G
Œk�; C k; �/=Out.G; C /Œk�! .H2.G; C; �/=Out.G; C //k : (6-5)

Note that the action of Out.G; C /Œk� on H2.GŒk�; C k; �/ factors, under the co-
ordinate projection H2.GŒk�; C k; �/! H2.G; C; �/, through the corresponding
coordinate projection Out.G; C /Œk�! Out.G; C /.

6C. End of the proof of I D) II in the split-cyclic case. We now assume not only
Conditions 1 and 2 of I, but also Condition 3. In this subsection, we complete the
proof of ID) II under the auxiliary assumption that the surjection G!Gab is split
and Gab is cyclic. Some of the notions introduced here are used again in Section 6E,
where we complete the proof without auxiliary assumptions.

Consider the canonical surjectionsH2.GŒk�; C k; �/�H2.G; C; �/
k . Under our

auxiliary assumption that G has split-cyclic type, Condition 3 and Proposition 5.2
show that

jH2.G
Œk�; C k/j D jH2.G; C /j

k

for all k. Thus, since cardinality does not change when one passes from groups
to torsors, the surjections are bijections. Moreover, because inner automorphisms
act trivially on H2.G; C; �/, the action of Out.G; C /Œk� on H2.G; C; �/k actually
factors through Out.G; C /k .

Taking the quotient by Out.G; C /Œk�, we can rewrite (6-4) as

F�k
h
=Br� �!�

a
H�2 .G; C; �/

k : (6-6)
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Then standard group theory shows that the action of Br� on F�
h

is quasifull for
sufficiently large mini �i :

In general, consider a permutation group B � Sym.F / with orbit decomposition
F D

F
s
iD1Fi . Suppose each orbit Fi has size at least k. Then the induced action

of B on F k has at least sk orbits. If equality holds, then the images Bi � Sym.Fi /
of B are each individually k-transitive. If k � 6, then the classification of finite
simple groups says that Bi contains Alt.Fi /. Still assuming that B has exactly sk

orbits on F k , it is then elementary that B contains Alt.F1/�� � ��Alt.Fs/. In other
words, B is quasifull, as desired.

6D. A lemma on 2-transitive groups. For the general case, Condition 3 gives us
control over Br�-orbits only on pairs .x1; x2/ of distinct elements in F�

h
, not tuples

of larger length. To deal with this problem, we replace the classification of multiply
transitive groups by a statement derived from the classification of 2-transitive groups.
The exact formulation of our lemma is inessential; its import is that full groups
are clearly separated out from other 2-transitive groups in a way sufficient for our
purpose.

Lemma 6.2. Fix an odd integer j � 5 and a finite set X . Suppose a 2-transitive
group � � Sym.X/ satisfies jX2j =�j � 2j

2�4j . If jX j is sufficiently large, then �
is full.

Proof. To prove the statement, we use the classification of nonfull 2-transitive
groups, as presented in [Dixon and Mortimer 1996, §7.7], thereby breaking our
argument into a finite number of cases. For fixed j , we discard in each case a finite
number of � and establish jX2j =�j> 2j

2�4j for all other � .
It suffices to restrict attention to maximal nonfull 2-transitive groups � . Besides

a small number of examples involving seven of the sporadic groups [Dixon and
Mortimer 1996, pp. 252–253], every such maximal � occurs in the following table:

# type � degree N WD jX j order j�j

1 affine AGLd .p/ pd

2 projective P�Ld .q/ .qd � 1/=.q� 1/

3 OS2 O2dC1.2/ 2d .2d ˙ 1/=2

4 unitary U3.q/ q3C 1 q3.q2� 1/.q3C 1/

5 Suzuki Sz.q/ q2C 1 .q2C 1/q2.q� 1/

6 Ree R.q/ q3C 1 .q3C 1/q3.q� 1/

The six series are listed in the order they are treated in [Dixon and Mortimer 1996,
pp. 244–252], with d � 1 and d � 2 in Cases 1 and 2 respectively. Throughout,
p is a prime number and q D pe is a prime power. These numbers are arbitrary,
except in Cases 5 and 6, where the base is p D 2 and p D 3 respectively and the
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exponent e is odd. The orders j�j in Cases 1–3 are not needed in our argument and
so are omitted from the table.

Cases 4–6. In these cases, the order j�j grows only polynomially in the degree N ,
with j�j<N 3 holding always. One has

jX2j =�j �N 2j =j�j>N 2j =N 3:

For j � 5 fixed and N !1, the right side tends to 1. So, with finitely many
exceptions, jX2j =�j> 2j

2�4j .

Case 1. In this case, the affine general linear group AGLd .Fp/ acts on the affine
space Fdp . Let wDmin.j; dC1/. Fix x1, . . . , xw in Fdp spanning an affine subspace
A of dimension w� 1. The set A�fx1; : : : ; xwg has pw�1�w elements. There
are .pw�1�w/2j�w ways to successively choose xwC1, . . . , x2j in A so that all
the xi are distinct. The tuples .x1; : : : ; x2j / 2 .Fdp /

2j so obtained are in different
AGLd .Fp/-orbits. Thus

j.Fdp /
2j =AGLd .Fp/j � .p

w�1
�w/2j�w :

For fixed d < j , so that w D d C 1, the right side tends to1 with p, and so with
finitely many exceptions j.Fdp /

2j =AGLd .Fp/j>2j
2�4j . For d � j , so that wD j ,

one gets no exceptions, as

.pw�1�w/2j�w D .pj�1� j /j � .2j�1� j /j � .2j�1� 2j C 1/j > 2j
2�4j :

(Case 1 is the only case where there is a complicated list of nonmaximal 2-transitive
groups. Some large ones are AGLd=e.Fpe /� A�Ld=e.Fpe /� AGLd .p/, for any
e properly dividing d .)

Cases 2 and 3 are very similar to Case 1, but are sufficiently different to require
separate treatments.

Case 2. Here � D P�Ld .Fq/ D PGLd .Fq/:Gal.Fq=Fp/ acts on the projective
space X D Pd�1.Fq/. Again let w Dmin.j; d C 1/. Fix x1, . . . , xw in Pd�1.Fq/

spanning a projective subspace P of dimension w� 1. Similarly to Case 1, there
are ..qw � 1/=.q� 1/�w/2j�w ways to successively choose xwC1, . . . , x2j in P
so that all the xi are distinct. The tuples .x1; : : : ; x2j / 2 Pd�1.Fq/

2j so obtained
are in different PGLd .Fq/-orbits. However one P�Ld .Fq/-orbit can consist of up
to e different PGLd .Fq/-orbits. Thus our lower bound in this case is

jPd�1.Fq/
2j =P�Ld .Fq/j �

1

e

�
qw � 1

q� 1
�w

�2j�w
:
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Again, the subcase d < j , where w D d C 1, is simple: the right side tends to1
with q and so jPd�1.Fq/2j =P�Ld .Fq/j > 2j

2�4j holds with only finitely many
exceptions. For d � j , so that w D j again, one has no further exceptions since

1

e

�
qw � 1

q� 1
�w

�2j�w
>
1

e
.qj�1� 2j C 1/j > .2j�1� 2j C 1/j > 2j

2�4j :

Case 3. Here the group in question, in its most familiar guise, is � D Sp2d .F2/ for
d � 2. It is better in our context to view � D O2dC1.F2/, as from this point of
view the 2-transitive actions appear most naturally. In fact, the orbit decomposition
of the natural action of O2dC1.F2/ is

F2dC12 �f0g DX�1 tX1 tX0:

Here X0 is the set of isotropic vectors. The pair .O2dC1.F2/; X0/ is a copy of the
more standard pair .Sp2d .F2/; F

2d
2 �f0g/, and so in particular jX0j D 22d � 1. A

nonisotropic vector is in X1 if its stabilizer is the split orthogonal group OC
2d
.F2/

and is in X�1 if its stabilizer is the nonsplit orthogonal group O�
2d
.F2/. From the

order of the stabilizers, one gets that jX�j D 2d�1.2d C �/. While the action of �
on X20 has two orbits, the actions on the other two X� are 2-transitive. (Familiar
examples forO2dC1.F2/DSp2d .F2/ come from d D 2 and d D 3. Here the groups
are S6 and W.E7/, respectively. The orbit sizes on .X�1; X1; X0/ are .6; 10; 15/
and .28; 36; 63/ respectively.)

By discarding a finite number of � , we can assume d � j . For � 2 f˙1g, fix
x1, . . . , xj in X� spanning a j -dimensional vector space V � F2dC12 on which
the quadratic form remains nondegenerate and with each xi having type � in this
smaller space. Let V� D V \X� . Writing j D 2uC1, one has jV�j D 2u�1.2uC�/.
There are .jV�j � j /j ways to successively choose xjC1, . . . , x2j in V� so that all
the xi are distinct. One has

jX
2j
� =O2dC1.F2/j � .2

u�1.2uC �/� j /j � .2u�1.2uC �/�2j C1/j > 2j
2�4j :

Thus there are no further exceptional � from this case. �

6E. End of the proof of I D) II in general. We now end the proof without the
split-cyclicity assumption, by modifying the standard argument of Section 6C.

Consider again the diagram (5-2) relating two five-term exact sequences. The
last three terms of the top sequence and the last four terms of the bottom sequence
give respectively

jH2.G
Œk�/j � jH2.G

0/Gab j
k
jH2.G

ab/j;

jH2.G
0/Gab j

k
�
jH3.G

ab/jkjH2.G/j
k

jH2.Gab/jk
:
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Combining these inequalities and replacingH2.GŒk�/ by its quotientH2.GŒk�; C k/
yields

jH2.G
Œk�; C k/j � jH2.G/�H3.G

ab/jk : (6-7)

As described in Section 6C, Condition 3 implies that for min �i sufficiently large,
the action of Br� on F�

h
is 2-transitive when restricted to each orbit. We will use

this 2-transitivity and the exponential bound (6-7) to conclude that the action of
Br� on F�

h
is asymptotically quasifull.

Consider Sm in its standard full action on Ym D f1; : : : ; mg. The induced action
on Xm D Ym t Ym is not quasifull. Let ak;m be the number of orbits of Sm on
Y
k
m. As m increases, the sequence ak;m stabilizes at a number ak . The sequence
ak appears in [Sloane 1991] as A000898. There are several explicit formulas and
combinatorial interpretations. The only important thing for us is that ak grows
superexponentially, as indeed ak=ak�1 �

p
2k.

From (6-7) we know that there exists an odd number j with

jH2.G
Œ2j �; C 2j ; �/=Out.G; C /Œ2j �j � jH2.GŒ2j �; C 2j /j<min.2j

2�4j ; a2j /:

By (6-4), the left-hand set is identified with jF�2j
h

=Br� j for sufficiently large
mini �i . Lemma 6.2 above says that, at the possible expense of making mini �i
even larger, each orbit of the action of Br� on F�

h
is full. Our discussion of the

action of Sm on Ym says that the constituents are pairwise nonisomorphic, again
for sufficiently large mini �i . The classical Goursat lemma then says the action
is quasifull. �

A consequence of the results of this section is that in fact the equivalence 3() O3
of Proposition 5.2 holds without the assumption of split-cyclicity. Condition E
is also meaningful in general, and it would be interesting to identify the class of
.G; C / for which the equivalence extends to include E.

7. Proof of II D) I

In this section, we complete the proof of Theorem 5.1 by proving that (not I) implies
(not II). Accordingly, we fix a centerless group G and a list C D .C1; : : : ; Cr/ of
conjugacy classes, and consider consequences of the failure of Conditions 1, 2,
and 3 in turn. In all three cases, we show more than is needed for Theorem 5.1.

7A. Failure of Condition 1. The failure of the first condition requires a somewhat
lengthy analysis, because it breaks into two quite different cases. The conclusion
of the following lemma shows more than that asymptotic quasifullness of Hur�

h
!

Conf� fails; it shows that asymptotically each individual component Hur�
h;`
!Conf�

fails to be full.
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Lemma 7.1. Let G be a centerless group which is not pseudosimple. Let C D
.C1; : : : ; Cr/ be a list of conjugacy classes. Consider varying allowed � 2 Zr

�1 and
thus varying Hurwitz parameters hD .G; C; �/. Then for mini �i sufficiently large
and any ` 2H�

h
, the action of Br� on F�

h;`
is not full.

Proof. A group is pseudosimple exactly when it satisfies two conditions: (A), it has
no proper nonabelian quotients, or (B), its derived group is nonabelian. We assume
first that (A) fails. Then we assume that (A) holds but (B) fails.

Assume (A) fails. LetG be a proper nonabelian quotient and hD .G;.C 1;: : :;C r/;�/
the corresponding quotient Hurwitz parameter. Consider the natural map Hh!H

h

from Section 4E, and let Ǹ be the image of `.
By the definition of Hurwitz parameters, the classes Ci generate G. At least

one of the surjections Ci ! C i has to be noninjective, as otherwise the kernel of
G!G would be central inG andG is centerless. So jCi j � 2jC i j for at least one i .
Similarly, since G is nonabelian and generated by the C i , one has jC i j � 2 for at
least one i .

We now examine the induced map Gh;`!G
h; Ǹ

. Let Ih;` be its image and �h;` the
size of its largest fiber. We will use the two inequalities of the previous paragraph
to show that both �h;` and jIh;`j grow without bound with mini �i .

From jCi j � 2jC i j and two applications of the asymptotic mass formula (3-7),
one gets jGh;`j � 1:5mini �i jG

h; Ǹ
j, and hence �h;` � 1:5mini �i .

To show the growth of jIh;`j, we assume without loss of generality that jC 1j � 2,
and choose y1 ¤ y2 2 C 1. Let M be the exponent of a reduced Schur cover zGC
of G. Let k be a positive integer and let a1, . . . , ak be a sequence with ai 2 f1; 2g.
Then for mini �i large enough, we claim that Ih;` contains an element of the form

.ya1
; : : : ; ya1„ ƒ‚ …
M

; : : : ; yak
; : : : ; yak„ ƒ‚ …
M

; x1; : : : ; x�1�Mk„ ƒ‚ …
all in C1

; : : : ; xn�kM��rC1; : : : ; xn�kM„ ƒ‚ …
all in C r

/:

(7-1)
To see the existence of such an element, fix a lift C �i of the conjugacy class Ci
to zGC and choose Qy1; Qy2 2 C �1 mapping (under zGC ! G ! G) to y1; y2 2 C 1
respectively.

Let z 2 H2.G; C / be chosen so that z�1 �
Q
i ŒCi �

�i D ` inside H2.G; C; �/.
Consider the equation

. QyMa1
� � � QyMak

/ Qx1 � � � Qx�1�kM„ ƒ‚ …
all in C�1

� � � Qxn�kM��rC1 � � � Qxn�kM„ ƒ‚ …
all in C�r

D z; (7-2)

where Qxi 2 C �i . By our choice of M , the powers QyMai
are all the identity in

zGC . One has ŒC �1 �
�1�kM � � � ŒC �r �

�r D Œz� in zGab
C D Gab, both sides being the

identity. The asymptotic mass formula then applies to say that (7-2) in fact has
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many solutions . Qx1; : : : ; Qxn�kM / where moreover the Qxi generate zGC . Now, the
image of . Qya1

; : : : ; Qyak
; Qx1; : : : ; Qxn�kM / actually defines an element of Gh;`, and

its image in G is an element of Ih;` of the form (7-1). Varying .a1; : : : ; ak/ now,
always taking mini �i sufficiently large, we conclude jIh;`j � 2k .

For large enough mini �i , the action of Br� on Gh;` is transitive, by the Conway–
Parker theorem. This action preserves a partition of Gh;` into b D jIh;`j blocks,
each of size f D �h;`. Thus the image of Br� on Gh;` is contained in the wreath
product Sf oSb . Hence the image of Br� on F�

h;`
is contained in a subquotient of

Sf oSb . But we have established that f and b increase indefinitely with mini �i .
Let a D jAut.G; C /`j and m D jF�

h;`
j, so that jGh;`j D ma D f b. As soon as

min.f; b/ > a, one has m > max.f; b/ and the alternating group Am is not a
subquotient of Sf oSb . So the action of Br� on F�

h;`
is not full.

Assume (A) holds but (B) fails. The assumptions force G0 to be isomorphic to the
additive group of Fwp for some prime p and some power w. Moreover, consider the
action of Gab on G0. Now G0, considered as an Fp-vector space, is an irreducible
representation of FpŒG

ab�. The order of Gab must be coprime to p, as otherwise the
fixed subspace for the p-primary part of Gab would be a proper subrepresentation.
So FpŒG

ab� is isomorphic to a sum of finite fields and the action on G0 D Fwp is
through a single summand Fq . We can thus identify G0 with the additive group
of a finite field Fq and Gab with a subgroup of F�q in such a way that G itself is
a subgroup of the affine group Fq:F

�
q . Moreover, Gab � F�q acts irreducibly on Fq

as an Fp-vector space.
We think of elements of G as affine transformations x 7!mxC b. Since braid

groups act on the right in (3-2), we compose these affine transformation from left
to right, so that the group law is�m1

b1

��m2
b2

�
D

� m1m2
m2b1Cb2

�
:

We think of elements .g1; : : : ; gn/ 2 Gh with gi D
�mi

bi

�
in terms of the matrix�

m1 : : : mi miC1 : : : mn
b1 : : : bi biC1 : : : bn

�
: (7-3)

The top row is determined by C , via mi D ŒCi �. Thus, via the bottom row, we
have realized Gh as a subset of Fnq . We can assume without loss of generality that
none of the Ci are the identity class. Then the requirement gi 2Ci for membership
in Gh gives jGabj choices for bi if mi D 1. If mi ¤ 1 then gi 2 Ci allows all q
choices for bi .

Now briefly view .g1; : : : ; gn/ as part of the larger catch-all setGn of Section 3C,
on which the standard braid operators �i act. The braiding rule (3-2) in our current
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setting becomes�
: : : ;

�mi
bi

�
;
�miC1
biC1

�
; : : :

��i

D

�
: : : ;

�miC1
biC1

�
;
� mi
biC1CmiC1bi�mibiC1

�
; : : :

�
:

Thus the action of �i corresponds to the bottom row of (7-3), viewed as row vector
of length n, being multiplied on the right by an n-by-n matrix in GLn.Fq/.

Returning now to the set Gh itself, any element of Br� can be written as a product
of the �i and their inverses. Accordingly, image of Br� in Sym.Gh/ lies inGLn.Fq/.

To prove nonfullness, it suffices to bound the sizes of groups. On the one hand,

jimage of Br� in Sym.F�
h;`
/j � jimage of Br� in Sym.Gh/j � jGLn.Fq/j< qn

2

:

On the other hand, let b D jH2.G; C /jjOut.G; C /j C 1. Then, using (3-7), (4-6)
and the fact that jCi j 2 fjGabj; qg, one has

jF�h;`j>
Q
i jCi j

�i

jGjjG0jb
�
jGabjn�3

q2b

for all sufficiently large n. Certainly qn
2

< 1
2
..an�3/=.q2b//Š for any fixed a, b,

q > 1 and sufficiently large n. Thus the image of Br� in Sym.F�
h;`
/ cannot contain

Alt.F�
h;`
/. �

The paper [Eisenbud et al. 1991] calculates monodromy in cases with G D S3
and G D S4, providing worked-out examples. Another illustration of the case with
affine monodromy is [Malle and Matzat 1999, Proposition 10.4].

7B. Failure of Condition 2. Our next lemma has the same conclusion as the
previous lemma:

Lemma 7.2. Let G be a centerless group. Let C D .C1; : : : ; Cr/ be a list of
conjugacy classes with at least one Ci ambiguous. Consider varying allowed
� 2 Zr

�1 and thus varying Hurwitz parameters h D .G; C; �/. Then for mini �i
sufficiently large and any ` 2H�

h
, the action of Br� on F�

h;`
is not full.

Proof. Introduce indexing sets Bi by writing

Ci D
F
b2Bi

Cib;

where each Cib is a single G0-orbit. Our hypothesis says that at least one of the
Bi — without loss of generality, B1 — has size larger than 1. On the other hand,
at least one of the Bi has size strictly less than Ci ; otherwise G0 would centralize
each element of each Ci , and then all of G, which is impossible for G center-free.

Define
Gamb
h D B1 � � � � �B1„ ƒ‚ …

�1

� � � � �Br � � � � �Br„ ƒ‚ …
�r

:
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The group G acts transitively through its abelianization Gab on each Bi . For a
lifting invariant ` 2Hh, consider the natural map Gh;`! Gamb

h
. The action of the

braid group Br� on Gh;` descends to an action on Gamb
h

.
Now we let mini �i !1 and get the following consequences, by arguments

very closely paralleling those for the first case of Lemma 7.1. First, the image of
the map Gh;` ! Gamb

h
has size that goes to 1. Second, the mass formula again

shows that jGh;`j=jGamb
h
j !1 with mini �i . By the last paragraph of the first case

of the proof of Lemma 7.1, the action of Br� on each orbit of F�
h;`

is forced to be
imprimitive, and hence not full. �

For a contrasting pair of examples, consider hD .S5; .C2111; C311; C5/; �/ for
� D .2; 2; 1/ and � D .2; 1; 2/. The monodromy group for the former is all of S125,
despite the presence of the ambiguous class C5. The monodromy group for the
latter is S85 oS2 and represents the asymptotically forced nonfullness.

7C. Failure of Condition 3. The last lemma of this section is different in structure
from the previous two, and its proof is essentially a collection of some of our
previous arguments. From the discussion of surjectivity after (5-2), one always has

jH2.G
Œ2�; C 2/j D ajH2.G; C /j

2 (7-4)

for some positive integer a. Condition 3 is that aD 1. The number a reappears as
the cardinality of every fiber of the map of torsors

H2.G
Œ2�; C 2; �/

�
�H2.G; C; �/

2

considered in Section 4E.
Now suppose that � is such that all �i are divisible by both the exponent of

H2.G; C / and the exponent of H2.GŒ2�; C 2/. In that case, we have identifications

H2.G
Œ2�; C 2; �/f

� //

��

H2.G; C; �/
2
g

��
H2.G

Œ2�; C 2/ // H2.G; C /
2

(7-5)

where the vertical bijections f; g come from Section 4C, and the fact that the diagram
commutes is also explained there. The set E WD ��1g�1.0/�H2.GŒ2�; C 2; �/ is
a fiber of � . It has size � 2 and f .E/�H2.GŒ2�; C 2/ is a subgroup.

The group Out.G; C /Œ2�, defined before (6-3), acts on H2.GŒ2�; C 2; �/ and also
(compatibly) on H2.GŒ2�; C 2/. It preserves E and acts on it with at least two
orbits, because it fixes the zero element of f .E/. Under the bijection (6-4), these
two orbits correspond to two different braid orbits O;O 0 on .F�

h
/2 which project

(in both coordinates) to the same braid orbit on F�
h

.
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Summarizing, we have proved:

Lemma 7.3. Let G be a pseudosimple group, let C D .C1; : : : ; Cr/ be a list of
unambiguous conjugacy classes, and suppose a > 1 in (7-4). Consider � with
each �i a multiple of the exponent of both H2.G; C / and H2.GŒ2�; C 2/ so that
H�
h
DH2.G; C; �/ contains a trivial lifting invariant 0 via f from (7-5). Then for

mini �i sufficiently large, the action of Br� on F�
h;0

is not 2-transitive and hence
not full.

8. Full number fields

The full-monodromy theorem gives us confidence in the following conjecture:

Conjecture 8.1. Suppose P contains the set of prime divisors of the order of a
nonabelian finite simple group. Then there exist infinitely many full fields unramified
outside P .

In this final section we briefly discuss this conjecture. In particular we give a
heuristic justification based on our results here. The sequel paper [Roberts � 2015]
will present a more comprehensive treatment.

8A. Specialization to number fields. Let h D .G; C; �/ be a Hurwitz parameter
with each Ci rational for simplicity. Then one has (see Section 2D) the cover
� W HUR�

h
! CONF� of Q-varieties. For every u 2 CONF�.Q/, the Galois group

Gal.Q=Q/ acts on the fiber ��1.u/� HUR�
h
.Q/. Let K�

h;u
be the corresponding

Q-algebra, so that K�
h;u

factors into fields indexed by the orbits of Gal.Q=Q/

on ��1.u/.

Controlling Galois groups. The Hilbert irreducibility theorem says that the Galois
groups associated to K�

h;u
coincide with the generic Galois group of the cover for

u outside a thin set. Thus, to take the example most relevant for us, if the cover is
full then one has many full specializations K�

h;u
.

Controlling ramification. For P a set of primes, let ZŒ1=P�D ZŒf1=pgp2P �. The
variety CONF� comes from a scheme over Z and so the set of P-integral points
CONF�.ZŒ1=P�/ is defined. Suppose now that P contains all primes dividing
jGj. Then the cover HUR�

h
! CONF� has bad reduction within P . The theory of

algebraic fundamental groups then implies that K�
h;u

is ramified within P whenever
u 2 CONF�.ZŒ1=P�/.

8B. Heuristic argument for Conjecture 8.1. Let P be as in the statement of the
conjecture. Let G be a simple group with all primes dividing jGj in P . Let
C1 � G be a class of involutions. Then .G; .C1// satisfies Statement I of the
full-monodromy theorem. By Statement II, there are infinitely many Hurwitz
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parameters hD .G; .C1/; .�1// such that Hur�
h
! Conf� has quasifull monodromy

with connected components indexed by the finite set H�
h

.
There is a natural action of Gal.Q=Q/ab on H�

h
. When �1 is divisible by the

exponent of HG;.C1/, there is an identity element 0 2 H�
h

fixed by Gal.Q=Q/ab.
Thus one gets infinitely many full covers HUR�

h;0
! CONF� defined over Q and

ramified within P . It is proved in [Roberts 2014, §7] that the number N.�1/ of
PGL2.Q/-orbits represented by points in CONF.�1/.ZŒ1=P�/ tends to1 with �1.

Thus, for each �1 in an infinite arithmetic progression, one has N.�1/ algebras
K�
h;u

ramified within P . To prove Conjecture 8.1, one not only has to control Galois
groups and ramification as in Section 8A, one has to control them simultaneously,
a difficult task. However if the thin set from Hilbert irreducibility intersects the
P-integral points at random, the K�

h;u
should have a strong tendency to be full

fields. On similar grounds, one would expect the K�
h;u

to be nonisomorphic. Direct
calculations, like those summarized in the next two subsections, confirm these
expectations very strongly. For Conjecture 8.1 to hold for P , there would just have
to be a subsequence of �1 for which one of the N.�1/ subalgebras was full.

8C. Specializing a sample cover. To illustrate concretely how Hurwitz covers
naturally lead to full number fields with controlled ramification, we summarize
here the introductory example of [Roberts � 2015]. In this example, let h D
.S5; .C2111; C5/; .4; 1//, with C2111 and C5 the class of involutions and 5-cycles
respectively. Then Hur�

h
D Hurh is a full cover of Conf4;1 of degree 25. The fiber

of Hurh! Conf4;1 over the configuration uD .D1;D2/D .fa1; a2; a3; a4g; f1g/
consists of all equivalence classes of quintic polynomials

g.y/D y5C by3C cy2C dyC e (8-1)

whose critical values are a1; a2; a3; a4. Here the equivalence class of g.y/ consists
of the five polynomials g.�y/, where � runs over fifth roots of unity.

Explicitly, consider the resultant r.t/ of g.y/� t and g0.y/. Then r.t/ equals

3125t4C1250.3bc�10e/t3

C.108b5�900b3dC825b2c2�11250bceC2000bd2C2250c2dC18750e2/t2

�2
�
108b5e�36b4cdC8b3c3�900b3deC825b2c2eC280b2cd2�315bc3d

�5625bce2C2000bd2eC54c5C2250c2de�800cd3C6250e3
�
t

C
�
108b5e2�72b4cdeC16b4d3C16b3c3e�4b3c2d2�900b3de2C825b2c2e2

C560b2cd2e�128b2d4�630bc3deC144bc2d3�3750bce3C2000bd2e2

C108c5e�27c4d2C2250c2de2�1600cd3eC256d5C3125e4
�
:

For fixed fa1; a2; a3; a4g, there are generically 125 different solutions .b; c; d; e/ to
the equation r.t/D 3125.t�a1/ � � � .t�a4/. Two solutions are equivalent exactly if
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they have the same e. Whenever D1 is rational, i.e.,
Q
.t �ai / 2QŒt �, the resulting

set of e forms the set of roots of a degree-25 polynomial with rational coefficients.
By taking u 2 CONF4;1.ZŒ1=30�/, one gets more than 10000 different fields with
Galois group A25 or S25 and discriminant of the form ˙2a3b5c .

8D. Comparison with the mass heuristic. Let FP.m/ be the number of full fields
ramified within P of degree m. The mass heuristic [Bhargava 2007, (3.3)] gives an
expected value �P.m/ for FP.m/ as an easily computed product of local masses.
This heuristic has had clear success in the setting of fixed degree and large dis-
criminant, being for example exactly right on average for mD 5 [Bhargava 2010].
In [Roberts 2007, §11], we considered the opposite regime of fixed ramifying
primes and increasing degree. We proved there that for any P the sequence �P.m/

ultimately decreases superexponentially with m.
The convergence of

P1
mD1 �P.m/ for any P argues against Conjecture 8.1.

However, our calculations confirming genericity of specialization make it clear
that the K�

h;u
we are considering here simply escape the influence of the mass

heuristic. For instance, one of many examples in [Roberts � 2015] comes from
the Hurwitz parameter h D .S6; .C21111; C321; C3111; C411/; .2; 1; 1; 1//. The
covering HURh ! CONF2;1;1;1 is full of degree 202. The specialization set
CONF2;1;1;1.ZŒ1=30�/ intersects exactly 2947 different PGL2.Q/-orbits on the set
CONF2;1;1;1.Q/ [Roberts 2014, §9.2]. The mass heuristic predicts

1X
mD202

�f2;3;5g.m/ < 10
�16

full fields in degree � 202. However specialization is as generic as it could be, as
the 2947 algebras Kh;u are pairwise nonisomorphic and all full.

8E. Concluding discussion. There are other aspects of the sequences FP.m/ that
are not addressed by Conjecture 8.1. For example, our belief is that Conjecture 8.1
still holds with the conclusion strengthened to FP.m/ being unbounded. Also
notable is that fields arising from full fibers of Hurwitz covers occur only in degrees
for which there is a cover. By the mass formula, these degrees form a sequence of
density zero. A fundamental question is thus the support of the sequences FP.m/,
meaning the set of degrees m for which FP.m/ is positive.

One extreme possibility, giving as much credence to the mass heuristic as is still
reasonable, is that FP.m/ has support on a sequence of density zero in general and
is eventually zero unless P contains the set of prime divisors of the order of a finite
simple group. This would imply that the classification of finite simple groups has
an unexpected governing influence on a part of algebraic number theory seemingly
quite removed from general group theory. If this extreme possibility does not hold,
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then there would have to be a broad and as yet unknown class of number fields
which is also exceptional from the point of view of the mass heuristic.
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