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Secant spaces and syzygies
of special line bundles on curves

Marian Aprodu and Edoardo Sernesi

On a special line bundle L on a projective curve C we introduce a geometric
condition called (1q). When L = KC , this condition implies gon(C) ≥ q + 2.
For an arbitrary special L , we show that (13) implies that L has the well-known
property (M3), generalising a similar result proved by Voisin in the case L = KC .

1. Introduction

In this paper we introduce some new geometric methods in the study of the Koszul
cohomology groups of a projective curve with coefficients in an invertible sheaf.
The basic set-up is as follows.

Let C be a smooth complex projective curve of genus g, and L a very ample line
bundle of degree d on C with h0(C, L)= r + 1. Consider a coherent sheaf F on C
and let V = H 0(C, L); one has natural complexes of vector spaces∧p+1V ⊗ H 0(F⊗ Lq−1)−→

∧pV ⊗ H 0(F⊗ Lq)−→
∧p−1V ⊗ H 0(F⊗ Lq+1),

whose cohomology K p,q(C,F; L) is called the (p, q) (mixed) Koszul cohomology
group of C with respect to F and L . These vector spaces give information about
the minimal resolution of the graded module

γ (C,F; L)=
⊕

k

H 0(F⊗ Lk)

over the symmetric (polynomial) algebra R = S∗V in a well-known way (see
[Aprodu and Nagel 2010]). The most important cases are obtained for F= OC ; the
corresponding graded R-module

⊕
k H 0(Lk) is denoted by γ (C; L) and its Koszul
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cohomology groups by K p,q(C; L). The choice L = KC is of central importance,
and its study is at the origin of several results and conjectures on this subject. The
guiding notions are the so-called properties (Np).

Definition 1.1. The line bundle L has property (N0) if and only if the natural
restriction map ρ : R −→ γ (C; L) is surjective, i.e., L is normally generated. For
p ≥ 1, we say that the bundle L satisfies the property (Np) if and only if it is
normally generated and Ki, j (C; L)= 0 for all j 6= 1 and all 1≤ i ≤ p.

Roughly speaking, (Np) holds if and only if the minimal resolution of γ (C; L)
behaves nicely up to the p-th step. These notions have provided an excellent
motivation on these problems in two important cases, namely in the case L = KC

and in the case deg(L)� 0. As an example, we recall the following:

Theorem 1.2 [Green and Lazarsfeld 1985]. If deg(L)≥2g+1+ p, then L has prop-
erty (Np). If deg(L)≥ 2g+ p, then L has property (Np) unless C is hyperelliptic
or L embeds C in Pg+p with a (p+ 2)-secant p-plane.

Property (Np) for special line bundles is also highly interesting; the study of
possible divisorial cases in the moduli space of pairs (C, L), for special line bundles
L with h1(C, L) > 1 and which fail property (Np), has revealed a whole class of
counterexamples for the slope conjecture [Farkas 2009]. However, the relations
between the properties (Np) and the geometry of the projective model ϕL(C)
when L is a special line bundle different from KC , especially if h1(C, L) > 1,
remain somewhat mysterious. Already (N0) and (N1) have escaped a systematic
classification for obvious reasons: normal generation and ideal generation of special
projective curves behave essentially wildly and it is therefore very difficult to
get even a conjectural picture of how the resolution of γ (C; L) might look like
(see [Aprodu and Nagel 2010, Section 4.4] for a short discussion).

A possible solution comes from the study of other properties of γ (C; L), called
(Mq), which were introduced in [Green and Lazarsfeld 1986] for q ≥ 1. We shall
work with a slightly weaker condition than there, in the spirit of [Ehbauer 1994].

Definition 5.3. The line bundle L has property (Mq) if Kn,1(C; L) = 0 for all
n ≥ r − q .

These are properties enjoyed by the tail of the resolution of γ (C; L); i.e., property
(Mq) holds for L if the resolution of γ (C; L) has a nice behaviour at the last q
steps. Another, perhaps more suggestive, point of view consists of considering the
resolution of the module γ (C, KC ; L). Since it is dual to γ (C; L), properties (Mq)

for L correspond to nice behaviour of the head of the resolution of γ (C, KC ; L).
In a landmark paper, Petri [1925] had already focused his attention on the module
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γ (C, KC ; L) when L is special. Arbarello and Sernesi [1978] showed that Petri’s
analysis contains a proof of (M1) for all L on a nonrational curve C and a charac-
terisation of the validity of (M2) when L is special. Note that when L = KC the
self-duality of the resolution of γ (C; KC) implies that property (Mq) is equivalent to
property (Nq−1), so the result discussed in [Arbarello and Sernesi 1978] generalises
Petri’s celebrated analysis of the ideal of the canonical model of a nonhyperelliptic
curve (see [Saint-Donat 1973]).

The present paper is devoted to the study of (M3) for a special L . This property
has been already studied and characterised for L=KC by Schreyer [1991], by Voisin
[1988] and when deg(L)� 0 by Ehbauer [1994]. The main issue in considering the
case of any special line bundle, not considered by them, is to find natural geometric
conditions on C and L . We introduce the following definition:

Definition 2.3. Assume that r ≥ 4, and let 2≤ q ≤ 1+ r/2. We say that a reduced
effective divisor D = x1+ · · ·+ xr−q+2 on C satisfies condition (1q) with respect
to L if the following conditions are satisfied:

(a) h0(L(−D))= q.

(b) L(−D) is basepoint-free.

(c) h0(L(−D+ xi ))= h0(L(−D)) for all i = 1, . . . , r − q + 2.

In the case L = KC , a divisor D satisfies condition (1q) if it defines a primitive
g1

g−q+1. In general, D defines an (r−q)-plane in Pr which is precisely (r−q+2)-
secant to ϕL(C)⊂ Pr . This condition has appeared in [Green and Lazarsfeld 1985]
in the case q = 2 and in [Voisin 1988], where it is called (H1), in the case q = 3.
In both cases they have proved to be the key for (M2) to hold for KC (equivalent to
Petri’s theorem) and for (M3) to hold for KC , respectively. More precisely, a divisor
D = x1+· · ·+ xg−1 satisfying condition (12) for KC defines a primitive g1

g−1, and
the existence of such a D can be seen to be equivalent to C being not exceptional,
i.e., to Cliff(C) ≥ 2: this is how Green and Lazarsfeld arrive at Petri’s theorem
involving (12) and using the Mumford–Martens theorem. On the other hand, via
an elaborate analysis, Voisin showed for g ≥ 11 that (13) plus Cliff(C)≥ 3 imply
that a general projection in P5 of the canonical model of C satisfies (M3). It is
interesting to note that this is achieved by excluding in particular that the projected
curve lies in certain surfaces that are intersection of quadrics in P5. Here one cannot
but observe the analogy with the way Ehbauer [1994] proved (M3) for L such
deg(L)� 0: while his method is different from Voisin’s, he is led to consider the
same list of surfaces.

Our main result involves condition (13) plus a transversality condition as the
key hypothesis. Specifically, we prove the following:
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Theorem 5.4. Assume g ≥ 14, r ≥ 5, that L is very ample and special of degree
≥ r + 13, that each component of the locus of (r − 1)-secant (r − 3)-planes has the
expected dimension r−4, and that the general such (r−3)-plane in each component
satisfies (13) with respect to L. Then L satisfies (M3) unless Cliff(C)≤ 2.

The relation between condition (13) and the vanishing of the Ki,1(C; L) for all
i ≥ r−3 is roughly the following: Nonzero elements of the Ki,1(C; L) can be seen
to correspond to certain subvarieties containing the curve ϕL(C)⊂ Pr and defined
by quadrics. On the other hand, the existence of divisors satisfying (13) plays the
role of a generality condition which prevents the curve from being contained in
such a variety. This simple contradiction works quite efficiently once the curve
is projected in P5, and that’s how we prove the theorem. Note that the condition
Cliff(C)≥ 3 cannot be removed, as easy examples show.

For higher q we have a similar contradiction. But the verification that (Mq)

holds once hypotheses similar to those of the theorem are satisfied becomes much
more involved as q ≥ 4, and would require a classification of certain classes of
varieties that is not yet available.

It is interesting to note that in Theorem 1.2 the existence of secant spaces is
related to the exceptions to the validity of (Np); hence, it is not satisfied in general.
On the other hand, in Theorem 5.4 the existence of secant spaces, implied by
condition (13), is satisfied in general.

A final note in the case L = KC . The condition Cliff(C)≥ 2 already implies the
existence of divisors satisfying (12). Similarly, the use of condition (13) made
by Voisin [1988] plays a role in the proof, but is not required for the validity of
(M3): all that is required is that Cliff(C) ≥ 3; in fact the main difficulty in that
work consists of proving that Cliff(C) ≥ 3 implies the existence of D satisfying
(13). This suggests, more generally, that Cliff(C)≥ q might imply the existence
of divisors D satisfying (1q) with respect to KC .

The paper is organised as follows. In Section 2 we introduce the main condition
(1q) and study its general properties. In Section 3 we specialise to the case of canon-
ical curves. In Section 4 we relate condition (1q) to the geometry of the curve in Pr ,
and in Section 5 we recall the definition of syzygy schemes and prove Theorem 5.4.

2. The condition (1q)

2A. Secant loci. For any n ≥ 1, we denote by Cn the n-th symmetric product of
C and by 4n ⊂ C ×Cn the universal divisor. Let

C C ×Cn
πoo

πn

��
Cn
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be the projections. For any globally generated line bundle L on C , the sheaf on Cn

EL := πn∗(π
∗L ⊗O4n )

is locally free of rank n and is called the secant bundle of L . We have a homomor-
phism of locally free sheaves on Cn

πn∗π
∗L

eL ,n // EL

H 0(L)⊗OCn

Note that eL ,n is generically surjective if n ≤ r .
We will denote by V k

n (L)⊂ Cn the closed subscheme defined by the condition

rank(eL ,n)≤ k.

Standard facts about determinantal subschemes (see, for example, [Arbarello et al.
1985]) imply that if nonempty, then V k

n (L) has dimension ≥ n− (r +1− k)(n− k),
which is the expected dimension.

Of special interest are the cases k = n− 1. The scheme V n−1
n (L) is supported

on the set of D ∈ Cn which do not impose independent conditions on L , and its
expected dimension is 2n− r − 2. If n = r , we can prove the following:

Lemma 2.1. If r ≥ 4 then V r−1
r (L) is nonempty and of pure dimension r − 2.

Proof. Let 6 be a nonempty component of V r−1
r (L) with codim(6)≤ 1, i.e., with

dim(6)≥ r − 1. Consider the morphisms

Cr−1×C

πr−1

��

σ // Cr

Cr−1

Then πr−1(σ
−1(6)) = Cr−1. This implies that if x1, . . . , xr−1 ∈ C are general

points then the pencil |L(−x1− · · ·− xr−1)| has basepoints, which is impossible.
Therefore V r−1

r (L) has pure dimension r − 2.
For the same reason, if A= x1+· · ·+xr−2 is a general effective divisor of degree

r − 2, then L(−A) is basepoint-free and not composed with an involution. The
plane curve 0 := ϕL(−A)(C)⊂P2 is singular and birational to C . Letting xr−1, xr ∈

C be such that ϕL(−A)(xr−1) = ϕL(−A)(xr ) is a singular point of 0, the divisor
x1+ · · ·+ xr−2+ xr−1+ xr belongs to V r−1

r (L), which shows nonemptiness. �

Let us record the following useful fact, which is a direct generalisation of
[Arbarello et al. 1985, Lemma 1.7, p. 163]:
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Lemma 2.2. Assume that q ≥ 2, r − q + 2 ≥ 4 and V r−q+1
r−q+2 (L) 6= ∅. Then no

irreducible component of V r−q+1
r−q+2 (L) is contained in V r−q

r−q+2(L).

Proof. Let D= x1+· · ·+xr−q+2 be a general element in a component of V r−q+1
r−q+2 (L).

Assume by contradiction that D ∈ V r−q
r−q+2(L). Then dim〈D〉 ≤ r − q − 1. We

may assume that 〈D〉 = 〈x1 + · · · + xr−q+1〉. Then for a general x ∈ C we have
dim〈x1+· · ·+xr−q+1+x〉≤ r−q and therefore x1+· · ·+xr−q+1+x ∈ V r−q+1

r−q+2 (L).
To conclude, note that x1+ · · ·+ xr−q+1+ x , D belong to the same component of
V r−q+1

r−q+2 (L) and dim〈D〉< dim〈x1+· · ·+ xr−q+1+ x〉, contradicting the generality
of D. �

A consequence of Lemma 2.2 is that the locally closed subscheme Sr−q+2(L)⊂
Cr−q+2 defined as

Sr−q+2(L) := V r−q+1
r−q+2 (L) \ V r−q

r−q+2(L)

is dense in any irreducible component of V r−q+1
r−q+2 (L). In particular, any property

which is satisfied by general divisors in any irreducible component of V r−q+1
r−q+2 (L)

is also valid for Sr−q+2(L). Note that the expected dimension is r − 2q + 2 in this
case. For the particular case q = 2, Lemma 2.1 shows that the dimension of Sr (L)
coincides with the expected dimension r − 2.

2B. Condition (1q). We introduce our basic condition:

Definition 2.3. Assume that r ≥ 4, and let 2≤ q ≤ 1+ r/2. We say that a reduced
effective divisor D = x1+ · · ·+ xr−q+2 on C satisfies condition (1q) with respect
to L if the following conditions are satisfied:

(a) h0(L(−D))= q.

(b) L(−D) is basepoint-free.

(c) h0(L(−D+ xi ))= h0(L(−D)) for all i = 1, . . . , r − q + 2.

In terms of projective geometry, the conditions defining (1q) can be rephrased
as follows:

(a) The linear span 〈D〉 ⊂ Pr is an (r − q)-plane.

(b) 〈D〉 ∩C = Supp(D).

(c) x1, . . . , xr−q+2 are in linearly general position in 〈D〉 (but not in Pr of course);
i.e., 〈D− xi 〉 = 〈D〉 for all i .

In terms of symmetric products, the conditions defining (1q) correspond to
the following:

(a) D ∈ Sr−q+2(L).

(b) {D}+C ⊂ Sr−q+3(L).
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(c) D 6∈ Im{V r−q
r−q+1(L)×C→ Cr−q+2}.

Note that, from Lemma 2.2, a general point in any irreducible component of
V r−q+1

r−q+2 (L) satisfies condition (a). Clearly, divisors D = x1+ · · · + xr−q+2 as in
Definition 2.3 fill an open subset of Sr−q+2(L).

Proposition 2.4. Assume that L is special and embeds C with a (r − q+ 2)-secant
(r − q)-plane 〈D〉 ⊂ Pr . Then h0(OC(D))≤ 2.

Proof. Assume that L = KC(−B), and set rB := h0(OC(B))−1= h1(L)−1. From
the Riemann–Roch theorem applied to L , we obtain deg(B)= rB − r + g− 1, and
hence deg(B+ D)= g− q + rB + 1. From Riemann–Roch applied to L(−D), we
obtain h0(OC(B+ D))= rB + 2. Since the addition map of divisors |B| × |D| →
|B+ D| is finite on its image, it follows that dim |D| ≤ 1. �

Remark 2.5. (i) A divisor D satisfies (1q) with respect to KC if and only if |D|
is a primitive g1

g−q+1. In particular, (12) is equivalent to |D| being a primitive
g1

g−1 on C , and such a D does not exist if and only if C is trigonal or a nonsingular
plane quintic (see [Green and Lazarsfeld 1985]). Note that hyperelliptic curves are
excluded automatically by our assumptions if L = KC . We shall treat the canonical
case in a separate section.

(ii) If L is nonspecial of degree d = g+r ≥ 2g, then there is no divisor D ∈Cr−g+1

satisfying condition (1g+1) with respect to L . In fact this would imply that L(−D)
is basepoint-free of degree (g+r)−(r−g+1)=2g−1 and dimension r−(r−g)=g,
and this is impossible. If g = 1, this means that no D ∈ Cr satisfies (12) with
respect to L: in fact, C ⊂ Pr has degree r + 1 and any r distinct points of C
are independent.

Terminology. Assume L to be special and very ample, h0(L) = r + 1, and let
2≤ q ≤ r − 1. It is convenient to introduce the following:

• We say that condition (1q) holds on a component V of V r−q+1
r−q+2 (L) if the

general element D ∈ V satisfies (1q) with respect to L . We say that (1q)

holds on C with respect to L if it holds on every component of V r−q+1
r−q+2 (L).

• We say that (1q) holds on C with respect to L in the strong sense if it holds,
and moreover all components of V r−q+1

r−q+2 (L) have dimension equal to the
expected dimension r − 2q + 2. A necessary condition for this to happen is
that r ≥ 2q − 2.

• When we say “dim(Z)= d”, we mean that each irreducible component of Z
has dimension d .

Most of our results are proved only under the assumption that (1q) holds in the
strong sense.
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Proposition 2.6. Assume that dim(V r−q+1
r−q+2 (L))= r − 2q + 2. Then (1q) holds on

C with respect to L in the strong sense if and only if the following conditions are
satisfied:

(1) dim(V r−q+1
r−q+3 (L))≤ r − 2q + 1.

(2) dim(V r−q
r−q+1(L))= r − 2q.

Proof. Note that the expected dimension of the locus V r−q+1
r−q+3 (L) is r − 3q + 3≤

r − 2q + 1.
The proof relies on the observation that any map defined by addition of divisors is

finite on its image. Assume dim(V r−q+1
r−q+3 (L))≤ r − 2q+ 1 and dim(V r−q

r−q+1(L))=
r − 2q. Let D ∈ Sr−q+2(L) be a general element in an irreducible component.
Then by definition h0(L(−D)) = q, hence condition (a) from Definition 2.3 is
satisfied. We prove that L(−D) has no basepoints, i.e., condition (b). Suppose
that x is a basepoint of L(−D); then D + x is in V r−q+1

r−q+3 (L) and depends on
r −2q+2 parameters, contradicting the assumption on dim(V r−q+1

r−q+3 (L)). We have
seen that condition (c) is equivalent to D /∈ Im{V r−q

r−q+1(L)×C→ Cr−q+2}. By the
dimensionality assumptions, the image of the addition map cannot fill a dense set
of a component of Sr−q+2(L).

Conversely, assume that (1q) hold on C with respect to L in the strong sense.
Suppose that V r−q

r−q+1(L) has a component Z with dim(Z) ≥ r − 2q + 1. Then
by the dimensionality hypothesis, the image of the set Z +C inside V r−q+1

r−q+2 (L)
must fill a component, and all its points violate (1q). If there is a component Y
of V r−q+1

r−q+3 (L) having dimension ≥ r − 2q + 2, then a general element D′ ∈ Y can
be written as D′ = D+ x , where, again by the dimensionality assumption, D must
fill a component of V r−q+1

r−q+2 (L). From the definition, D fails property (b) of (1q),
a contradiction. �

Remark 2.7. Recall that in the case q = 2 the dimension of the locus V r−1
r (L)

equals the expected dimension r − 2 (Lemma 2.1) but it can be reducible: when
L = KC and g ≥ 6 this happens precisely when C is either trigonal or bielliptic
(see [Teixidor i Bigas 1984]). In the trigonal case V g−2

g−1 (KC) has two components,
and in both of them (12) does not hold. In the bielliptic case (12) holds in one
component but not in the other. A characterisation of the pairs (C, L) for which
V r−1

r (L) is reducible is unknown to us when L is arbitrary.

Lemma 2.8. Assume r ≥ 5 and 2≤ q ≤ (r + 1)/2. Assume that (1q) holds on C
with respect to L in the strong sense. Then, for every general x ∈ C , (1q) holds on
C with respect to L(−x) in the strong sense.

Proof. As noted before, it suffices to prove the same statement for the locally closed
subschemes Sr−q+1. Let x ∈C be a point such that, for each irreducible component
of Sr−q+2(L), it is not in the support of all divisors of that component and it is in
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the support of some divisor in it that satisfies (1q) with respect to L . We have a
diagram of spaces and maps

Cr−q+1×{x}
φ // Cr−q+2

Sr−q+1(L(−x)) //

OO

Sr−q+2(L)

OO

where all the maps are inclusions. Let 6 ⊂ Sr−q+1(L(−x)) be an irreducible
component. Assume that dim(6) ≥ r − 2q + 2. Then φ(6) is a component of
Sr−q+2(L) and all divisors in φ(6) contain x in their support. This contradicts our
assumptions. The second possibility is that dim(6)= r−2q+1 and that all divisors
D ∈ 6 do not satisfy (1q) with respect to L(−x). Then φ(6) ⊂ Sr−q+2(L) and
all D + x ∈ φ(6) do not satisfy (1q) with respect to L . Since this condition is
satisfied for a general choice of x ∈ C , we deduce that there is a component of
Sr−q+2(L) with no elements satisfying (1q) with respect to L , a contradiction. �

3. The case L = KC

In this case the notation specialises as follows:

• V g−q
g−q+1(KC)= C1

g−q+1.

• Sg−q+1(KC)= C1
g−q+1 \C2

g−q+1.

• The expected dimension of V g−q
g−q+1(KC) is g− 2q + 1.

• A divisor D ∈C1
g−q+1 satisfies (1q) with respect to KC for some q ≥ 2 if and

only if it defines a primitive g1
g−q+1, i.e., it is complete, basepoint-free and the

residual is also basepoint-free.

For brevity, when in this section we say that a condition (1q) is satisfied, we
assume implicitly “with respect to KC ”.

The condition (1q) is well defined in the range 2≤q≤ g−1. When [(g−1)/2]<
q≤g−1, the existence of a D∈Cg−q+1 satisfying (1q) is equivalent to the existence
of a primitive g1

g−q+1 with g− q + 1< (g+ 3)/2, and therefore C becomes more
and more special as q grows, because its gonality decreases. On the other hand,
when 2≤ q ≤ [(g− 1)/2], the condition that there exists D satisfying (1q) should
imply that Cliff(C) ≥ q (this is true for q = 2, 3, see the Remark 3.4 below). In
this range, if this implication is true then the existence of a D ∈ Cg−q+1 satisfying
(1q) implies that C is more and more general as q grows. We are able to clarify
this, assuming only that C has Clifford dimension 1.
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Proposition 3.1. Assume g ≥ 2q+1 and q ≥ 2. Consider the following conditions:

(i) The condition (1q) holds on C in the strong sense.

(ii) C ⊂Pg−1 is not contained in a q-dimensional variety of minimal degree g−q.

(iii) For all 1≤ e ≤ q , there does not exist a D ∈ Ce+1 satisfying (1g−e).

(iv) gon(C)≥ q + 2.

We have (i) H⇒ (ii)⇐⇒ (iii)⇐⇒ (iv).

Proof. (iv)⇐⇒ (iii). gon(C) < q+2 if and only if there exists a primitive g1
e+1 for

some 1≤ e≤q , and this is equivalent to the existence of D∈Ce+1 satisfying (1g−e).

(ii)⇐⇒ (iii). The existence of a primitive g1
e+1 for some 1≤ e ≤ q is equivalent

to the existence of A ∈W 1
q+1 \W 2

q+1, possibly with basepoints. The union of the
linear spans 〈E〉 for E ∈ |A| is a q-dimensional variety of minimal degree.

(i) H⇒ (iii). If there exists D ∈ C1
e+1 satisfying (1g−e) for some 1≤ e ≤ q, then

the locus

W := {D+ x1+ · · ·+ xg−(q+e) : D ∈ C1
e+1 satisfying (1g−e), xi ∈ C} ⊂ Cg−q+1

consists of divisors not satisfying (1q) and has dimension

dim(W )≥ g− (q + e)+ 1≥ g− 2q + 1.

Therefore W is a component of C1
g−q+1, contradicting (i). �

Remark 3.2. The proof of the implication (i) H⇒ (iii) fails if g = 2q. In fact, a
general curve C of genus g = 2q has a primitive g1

q+1 and (1q) holds on C in the
strong sense. In this case V q

q+1(KC) = C1
q+1 is reducible in several components

of dimension 1: their number is given by Castelnuovo’s formula [Arbarello et al.
1985, p. 211].

Remark 3.3. The implication (ii) H⇒ (i) does not hold. In fact, if C is a bielliptic
curve then gon(C)= 4. On the other hand, C1

g−1 has two components [Teixidor i
Bigas 1984], both having dimension g− 3, equal to the expected dimension, but
(12) holds only on one of them. Therefore, in this case the implication holds only
in a weak sense.

Remark 3.4. If (12) holds then Cliff(C)≥ 2. This has been proved in [Green and
Lazarsfeld 1985] using Mumford–Martens. Note that they only assumed that (12)

holds on some component of C1
g−1. The implication (13) holdsH⇒ gon(C)≥ 5 has

been considered in [Voisin 1988]. In both cases q = 2, 3, the converse implication

Cliff(C)≥ q =⇒ (1q) holds on some component of C1
g−q+1

has also been proved.
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Remark 3.5. Assume g is odd. On a general curve C of Clifford dimension 1 there
is a D ∈C(g+3)/2 satisfying (1(g−1)/2). The reason is that C has gonality (g+3)/2,
and a pencil computing its gonality is necessarily primitive. Therefore a divisor D
in the pencil satisfies (1(g−1)/2).

In the case L = KC , Proposition 2.6 implies:

Proposition 3.6. Let C be a curve of genus g≥2q+2 such that the dimension of the
locus W 1

g−q(C) equals the expected dimension g− 2q − 2 and dim(W 2
g−q+2(C))≤

g− 2q − 2. Then (1q) holds on C in the strong sense.

Proof. Since dim(W 1
g−q(C))=g−2q−2, we obtain dim(V g−q−1

g−q (KC))=g−2q−1,
which is (2) of Proposition 2.6 in this case. From “excess linear series” it follows
that the dimension of W 1

g−q+1(C) also equals the expected dimension g− 2q , and
hence dim(V g−q

g−q+1(KC)) = g − 2q + 1. Finally, dim(W 2
g−q+2(C)) ≤ g − 2q − 2

implies that dim(V g−q
g−q+2(KC))≤ g−2q , as V g−q

g−q+2(KC)= C2
g−q+2. Hence all the

conditions required in Proposition 2.6 are satisfied. �

Remark 3.7. If the curve C is of gonality (q + 1) or less, then the hypotheses of
Proposition 3.6 are not satisfied. Indeed, if A is a g1

q+1, then W 1
g−q(C) contains the

variety {A}+Wg−2q−1(C), which is of dimension g− 2q − 1.
If the curve C is instead of gonality (q + 2), then the hypothesis that

dim(W 1
g−q(C))= ρ(g, 1, g− q)= g− 2q − 2

coincides with the linear growth condition on the dimension of Brill–Noether
loci, from [Aprodu 2005]. It was proved there that this condition implies Green’s
conjecture, i.e., condition (Mq).

Remark 3.8. If q = 2, and C is neither trigonal, bielliptic nor plane quintic, the
hypotheses of Proposition 3.6 are satisfied. Indeed, if one of the two fails, then we
obtain a contradiction with the Mumford–Martens dimension theorem. Likewise,
for q = 3 the failure of the hypotheses contradicts Keem’s dimension theorem
[Voisin 1988, Proposition II.0].

Corollary 3.9. Assume that g ≥ 2q+ 2, q ≥ 2, and that dim(C2
g−q+2)≤ g− 2q. If

(1q+1) holds on C in the strong sense then (1q) also holds on C in the strong sense.

Applying Proposition 3.6 and Lemma 2.8, we obtain the following existence
result:

Corollary 3.10. For a general triple (C, L , D), with L special and D∈V r−q+1
r−q+2 (L),

the condition (1q) is satisfied.

The meaning of generality in the statement is that L is a general projection
of the canonical bundle, and hence the speciality index equals 1. More precise
existence results are proved by Coppens and Martens, and by Farkas; see [Farkas
2008, Theorem 0.5] and the references therein.
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4. Condition (1q) and geometry

Proposition 4.1. Assume that r ≥max{4, 2q − 1}. Suppose that L is special and
condition (1q) holds on C with respect to L in the strong sense. Then ϕL(C)⊂ Pr

is not contained in a q-dimensional variety of minimal degree (r − q + 1) unless
r = 2q − 1 and C has a basepoint-free g1

q+1.

Proof. Assume that r ≥ 2q . We note that C has no g1
q+1. Indeed, if we have a g1

q+1,
then A+Cr−2q+1, with A ∈ |g1

q+1|, fill up a component of V r−q+1
r−q+2 (L), and any

element of this locus fails condition (c) of the definition of (1q).
Assume by contradiction that ϕL(C)⊂ X , a q-dimensional variety of minimal

degree r−q+1. Then X is ruled by a one-dimensional family of (q−1)-planes. Let
3 be a general such (q−1)-plane, and let E =3∩ϕL(C) and n= deg(3∩ϕL(C)).
Then n ≥ q + 2 by what we have just shown. Decompose E = A + B with
deg(A)= q + 1. Let D = A+ y1+ · · ·+ yr−2q+1 with the yi general points of C .
Then D ∈ V r−q+1

r−q+2 (L), but it does not satisfy (1q). On the other hand, the divisor
D depends on 1+ (r − 2q + 1)= r − 2q + 2 parameters. Therefore it is a general
point of a component of V r−q+1

r−q+2 (L), a contradiction.
In the case r = 2q − 1, the only possibility for C to be on a variety of minimal

degree is that C have a basepoint-free g1
q+1, and, in this case, Sq+1(L) will have a

rational component. The case when X is a cone over the Veronese surface can be
treated similarly, by general projection to P2q−1 using Lemma 2.8. �

Note that if C is contained in an e-dimensional variety of minimal degree
(r − e + 1) with e ≤ q, then it is contained also in a q-dimensional variety of
minimal degree (r − q + 1) [Harris 1981].

As we will see, the validity of property (M3) is tightly connected with properties
of surfaces of low degree in P5. As an illustration of the geometric content of
Definition 2.3, we study surfaces of degree n ≤ 6.

Proposition 4.2. Assume that r = 5, L is special and (13) holds on C with respect
to L in the strong sense. Then ϕL(C)⊂P5 is not contained in a nonsingular surface
of degree ≤ 6 unless it has a g1

4 .

Proof. Assume that C ⊂ S, a nonsingular surface of degree n≤ 6. Consider the case
n = 6. The possibilities for a nonsingular surface of degree 6 in P5 are described
in [Ionescu 1984], and are the following: (i) an elliptic scroll with sectional genus
g = 1 and e = 0; (ii) a Castelnuovo surface with sectional genus g = 2 defined by
the embedding in P5 of the blow-up X = Blp1,...,p6,q(P

2) of P2 at seven general
points via the very ample linear system |L| = |4H − E1 − E2 − · · · − E6 − 2A|
(with the obvious notation) corresponding to the system of plane quartics passing
simply through p1, . . . , p6 and doubly through q .
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In case (i), let `⊂ S be a general line of the ruling, and let k = deg(OC(`)). Then
k ≥ 2, and if k = 2 then C is bielliptic, so it has a g1

4 . If k ≥ 3, then adding a general
p ∈ C to a subdivisor of degree 3 of OC(`) we obtain an element of S4(L) which
does not satisfy (13) and which depends on two parameters, a contradiction.

In case (ii), the system |H − A| is a pencil of conics on the surface S. The
divisors D ∈ |OC(H − A)| have degree say m ≥ 3 and dim |D| ≥ 1. If m ≤ 4 then
C has a g1

4 . Otherwise the divisors D contain subdivisors of degree 4 contradicting
the other conditions.

If n = 5, then S is a Del Pezzo surface. Let |γ | be a pencil of conics on S and
let N = OC(γ ). Then N gives a g1

4 or contradicts (13), depending on whether
deg(N )≤ 4 or deg(N )≥ 5.

If n = 4, the conclusion follows from Proposition 4.1. �

5. Condition (13) and Koszul cohomology

In this section, we briefly recall the relation between Koszul cohomology and vector
bundles, as well as the definition of syzygy schemes.

Consider X a smooth projective variety, and let L be a globally generated line
bundle on X . We let

ϕL : X→ P(H 0(L)∨)∼= Pr , r + 1= h0(L)

be the morphism defined by L .
We have an exact sequence

0−→ ML −→ H 0(L)⊗OX −→ L −→ 0, (1)

where ML = ϕ
∗(�Pr (1)) is locally free of rank r . If r = 1, i.e., if |L| is a basepoint-

free pencil, then ML = L−1. Taking the n-th exterior power (1≤ n ≤ r ) we obtain
the exact sequence

0−→
∧n ML −→

∧n H 0(L)⊗OX −→
∧n−1 ML ⊗ L −→ 0. (2)

For any coherent sheaf F on X , twisting the sequence above with F, with powers
of L and taking global sections, we obtain isomorphisms

Kn,m(X,F; L)∼=Coker
{∧n+1 H 0(L)⊗H 0(F⊗Lm−1)→ H 0(∧n ML⊗F⊗Lm)}.

The syzygy schemes were introduced and studied in [Green 1984; Ehbauer 1994].
The idea behind the definition of syzygy schemes is that one reason for which a
linearly normal curve C in Pr has some nonvanishing Kn,1 is that C lies on a variety
of special type. The varieties under question are cut out by quadrics; more precisely,
by the quadrics involved in syzygies.
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The general set-up is the following. Let C be a smooth curve, L a globally
generated (preferably very ample) line bundle on C and set V = H 0(L). Start with
the short exact sequence of sheaves on the projective space

0−→ IC −→ OPr −→ OC −→ 0.

Note that for any n and m we have Kn,m(P
r ,OC ;OPr (1))∼= Kn,m(C; L).

Taking Koszul cohomology with respect to OPr (1), and using the vanishing of
Koszul cohomology on the projective space, we obtain isomorphisms

Kn,m(C; L)∼= Kn−1,m+1(P
r ,IC ;OPr (1)),

for any n and m except for the cases (n,m)= (0, 0) or (n,m)= (1,−1). On the
other hand, from the general description of mixed Koszul cohomology, we know that

Kn−1,m+1(P
r ,IC ;OPr (1))

∼= Coker
{∧nV ⊗ H 0(IC(m))→ H 0(�n−1

Pr (n+m)⊗IC)
}
.

Observe that for the case m = 1 we have H 0(IC(m))= 0, and hence we obtain
an isomorphism

Kn,1(C; L)∼= H 0(�n−1
Pr (n+ 1)⊗IC);

in particular, any nonzero Koszul cohomology class α ∈ Kn,1(C; L) corresponds to
a section in H 0(�n−1

Pr (n+ 1)) vanishing along C . The zero-scheme of this section
is called the syzygy scheme associated to α, and is denoted by Syz(α). Note that a
syzygy scheme is cut out by quadrics, as the sheaf �n−1

Pr (n+ 1) is a subsheaf of∧n−1V ⊗OPr (2). The scheme-theoretic intersection of all the syzygy schemes is
denoted by Syzn(C). It contains C and is cut out by quadrics as well.

We record next two remarkable classification results concerning syzygy schemes,
due to Green and Ehbauer.

Theorem 5.1 (Green’s K p,1). If Kr−1,1(C, L) 6= 0, then C is a rational normal
curve and Syzr−1(C) = C. If C is of degree ≥ r + 2 and Kr−2,1(C, L) 6= 0, then
Syzr−2(C) is a surface of minimal degree (r − 1).

Theorem 5.2 (Ehbauer). If C has degree ≥ r + 13 and Kr−3,1(C, L) 6= 0, then
Syzr−3(C) is either a surface of minimal degree (r − 1), a surface of degree r or a
threefold of minimal degree (r − 2).

We recall the following:

Definition 5.3. The line bundle L has property (Mq) if Kn,1(C; L) = 0 for all
n ≥ r − q .

We prove:
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Theorem 5.4. Assume g≥ 14, r ≥ 5, L is very ample and special of degree≥ r+13,
and (13) holds on C with respect to L in the strong sense. Then L satisfies (M3)

unless gon(C)≤ 4.

Proof. Applying Ehbauer’s characterisation of syzygy schemes, if L fails prop-
erty (M3), then C lies either on a surface of minimal degree, on a threefold of
minimal degree or on a surface of degree r . The first two cases are excluded
by Proposition 4.1. Projecting generically to P5 and applying Lemma 2.8 and
Proposition 4.2, we see that C cannot lie on a smooth surface of degree 5. If it lies
on a singular surface of degree 5 in P5, then, projecting from a singular point, the
curve in P4 lies on a surface of minimal degree. In particular, since the curve is of
gonality ≥ 5, the image of C in P4 has a k-secant line for some k ≥ 5, and hence
the image of C in P5 has a one-dimensional family of k-secant 2-planes with k ≥ 5,
which contradicts the assumptions. �

Remark 5.5. The same argument together with Green’s K p,1-theorem gives a
similar statement for the weaker property (M2).
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