Vol. 9, No. 3, 2015

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Fano schemes of determinants and permanents

Melody Chan and Nathan Ilten

Vol. 9 (2015), No. 3, 629–679
Abstract

Let Dm,nr and Pm,nr denote the subschemes of mn1 given by the r × r determinants (respectively the r × r permanents) of an m × n matrix of indeterminates. In this paper, we study the geometry of the Fano schemes Fk(Dm,nr) and Fk(Pm,nr) parametrizing the k-dimensional planes in mn1 lying on Dm,nr and Pm,nr, respectively. We prove results characterizing which of these Fano schemes are smooth, irreducible, and connected; and we give examples showing that they need not be reduced. We show that F1(Dn,nn) always has the expected dimension, and we describe its components exactly. Finally, we give a detailed study of the Fano schemes of k-planes on the 3 × 3 determinantal and permanental hypersurfaces.

Keywords
Fano schemes, determinantal varieties, permanent
Mathematical Subject Classification 2010
Primary: 14M12
Secondary: 14N20, 14C05, 15A15, 14B10
Milestones
Received: 10 June 2014
Revised: 15 January 2015
Accepted: 23 February 2015
Published: 17 April 2015
Authors
Melody Chan
Department of Mathematics
Harvard University
Cambridge, MA 02138
United States
Nathan Ilten
Department of Mathematics
Simon Fraser University
Burnaby BC V5A1S6
Canada