
Algebra &
Number
Theory

msp

Volume 9

2015
No. 6

Bivariant algebraic cobordism
José Luis González and Kalle Karu



msp
ALGEBRA AND NUMBER THEORY 9:6 (2015)

dx.doi.org/10.2140/ant.2015.9.1293

Bivariant algebraic cobordism
José Luis González and Kalle Karu

We associate a bivariant theory to any suitable oriented Borel–Moore homology
theory on the category of algebraic schemes or the category of algebraic G-
schemes. Applying this to the theory of algebraic cobordism yields operational
cobordism rings and operational G-equivariant cobordism rings associated to
all schemes in these categories. In the case of toric varieties, the operational
T -equivariant cobordism ring may be described as the ring of piecewise graded
power series on the fan with coefficients in the Lazard ring.
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1. Introduction

The purpose of this article is to study the operational bivariant theory B� associated
to a refined oriented Borel–Moore prehomology theory B�, and the equivariant
versions of these theories. We apply this to the algebraic cobordism theory �� of
Levine and Morel [2007] to construct the operational bivariant cobordism theory��.
As an application, we describe the operational T -equivariant cobordism ��T .X�/

for a quasiprojective toric variety X�.
Bivariant theories were defined in [Fulton and MacPherson 1981; Fulton 1998]. A

bivariant theory assigns a groupB�.X!Y / to every morphismX!Y of schemes.
The theory contains both a covariant homology theory B�.X/D B�.X ! pt/ and
a contravariant cohomology theory B�.X/D B�.IdX WX !X/, but the bivariant
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theory can be more general in the sense that there may be invariants of the theory that
are not determined by homology and cohomology alone [Fulton and MacPherson
1981]. It was also shown in [Fulton and MacPherson 1981; Fulton 1998] how
to extend a given homology theory B� to a bivariant theory. Bivariant classes in
this theory are certain compatible operators on the homology groups B�; hence
the bivariant theory is called the operational bivariant theory. The only bivariant
theories we consider in this paper are the operational ones. An operational bivariant
theory can be viewed as a method of constructing a cohomology theory B� out of a
homology theory B�. The cohomology theory takes values in rings, hence there is a
well-defined intersection product in this theory. The Chern class operators naturally
lie in the cohomology B�.

The operational cohomology theory B� at first seems very intractable. A single
element ofB�.X/ is defined by an infinite set of homomorphisms. However, Kimura
[1992] has shown that, in case of Chow theory A�, the bivariant cohomology groups
A�.X/ for an arbitrary variety X can often be computed if one knows the homology
groups A�.Y / for smooth varieties Y . Payne [2006] carried out this computation for
the equivariant Chow cohomology A�T of toric varieties. By a result of Brion [1997],
the T -equivariant Chow ringA�T .X�/ of a smooth toric varietyX� can be identified
with the group of integral piecewise polynomial functions on the fan �. Payne
showed that the ring of such functions on an arbitrary fan � gives the operational
T -equivariant Chow cohomology A�T .X�/. A similar computation in the case of
K-theory is done by Anderson and Payne [2015]. Brion and Vergne [1997] (see
also [Vezzosi and Vistoli 2003]) proved that the T -equivariant K-theory ring of a
smooth toric variety X� is isomorphic to the ring of integral piecewise exponential
functions on the fan �. Anderson and Payne show that for an arbitrary fan � this
ring gives the operational T -equivariant K-cohomology of the variety X�.

One of the goals of this article is to extend Anderson and Payne’s results to the
case of algebraic cobordism. The T -equivariant algebraic cobordism of smooth toric
varieties was computed by Krishna and Uma [2013]. Using the same terminology as
in the case of Chow theory andK-theory, the equivariant cobordism ring��T .X�/ of
a smooth quasiprojective toric varietyX� can be identified with the ring of piecewise
graded power series on the fan �, with coefficients in the Lazard ring L. We prove
below that, for any quasiprojective toric variety X�, the ring of piecewise graded
power series on � gives the operational T -equivariant cobordism ring ��T .X�/.

We start by constructing the operational bivariant theoryB� for a suitably general
class of homology theories B�. To carry out the construction of the operational
bivariant theory, it suffices to assume that B� is a refined oriented Borel–Moore
prehomology theory (ROBM prehomology theory). This is a weakening of the
notion of oriented Borel–Moore homology theory [Levine and Morel 2007, Def-
inition 5.3.1] with refined Gysin homomorphisms, where we do not require the
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projective bundle, extended homotopy and the cellular decomposition properties.
The various constructions can be summarized by a diagram as follows:

BG�
// B�G

B� //

OO

B�

OO

Each horizontal arrow associates to an ROBM prehomology theory its operational
bivariant theory. This step can be applied to an arbitrary ROBM prehomology
theory B�, including its equivariant version BG� for a linear algebraic group G.
The vertical arrows associate to a theory its G-equivariant version using Totaro’s
[1999] algebraic approximation of the Borel construction from topology. For these
constructions to be well-defined, we need to assume that the ROBM prehomology
theory B� has the localization and homotopy properties. The construction of BG� is
a direct generalization of similar constructions in Chow theory by Totaro [1999] and
by Edidin and Graham [1998], and in algebraic cobordism by Deshpande [2009],
Krishna [2012] and Heller and Malagón-López [2013]. Note that, unlike equivariant
Chow and algebraic cobordism theories, the equivariant K-theory is constructed
not by the Borel construction, but using equivariant sheaves.

We will prove that the above square commutes; more precisely, the two ways
to construct B�G agree if we assume that the original theory B� has certain exact
descent sequences for envelopes. Such sequences were first proved by Gillet [1984]
in K-theory and Chow theory, and they were used by Edidin and Graham [1998] to
prove the commutativity of the square above for Chow theory. The Edidin–Graham
proof can be generalized to an arbitrary ROBM prehomology theory, but the descent
property depends on the theory. The descent property for the algebraic cobordism
theory was proved in [González and Karu 2015].

The descent property in the Chow theory was used by Kimura [1992] to give an
inductive construction of operational Chow cohomology classes. We will generalize
Kimura’s proofs to arbitrary ROBM prehomology theories that satisfy the descent
property.

Levine and Morel [2007] showed that the algebraic cobordism theory is universal
among all oriented Borel–Moore homology theories. We do not know any similar
universality statement for the operational cobordism theory. In any bivariant theory,
multiplication with a bivariant class defines an operation on homology. This gives
a functor from the bivariant theory to the operational theory constructed from its
homology. Hence the operational theory is the universal target of all bivariant
theories with a fixed homology theory. Yokura [2009] has proposed a geometric
method for constructing a bivariant algebraic cobordism theory z��, which would
be universal among a class of oriented bivariant theories. The homology of this
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bivariant theory z�� is expected to be the algebraic cobordism ��. By universality,
there should exist a natural transformation from Yokura’s bivariant z�� to the
operational ��, restricting to an isomorphism between the homology theories. To
relate these two theories would then be an interesting problem.

We state our result describing the operational T -equivariant cobordism of a
toric variety only in the quasiprojective case since this assumption is used in the
development of equivariant cobordism in our references [Deshpande 2009; Krishna
2012; Heller and Malagón-López 2013]. However, for torus actions one could
define a version of equivariant cobordism without the quasiprojectivity assumption,
and our description would still hold in that setting. More precisely, the required
GIT quotients for the Borel construction exist for torus actions even in the non-
quasiprojective case because T is a special group (see Proposition 23 in [Edidin
and Graham 1998]); in addition in the case of T -equivariant cobordism one has
induced pushforwards for proper morphisms, and then the argument provided in
Section 7 goes through without the quasiprojectivity assumption.

Dependence on the refined Gysin homomorphisms for cobordism. Following Ful-
ton and MacPherson, we associate an operational bivariant theory to any ROBM
prehomology theory, which in particular must have refined Gysin homomorphisms
as in Definition 2.5. Constructing the refined Gysin homomorphisms in the theory
of algebraic cobordism is the most delicate part of [Levine and Morel 2007]. A
reader with the case of algebraic cobordism in mind may therefore wonder how
much our results depend on these homomorphisms. Refined Gysin homomorphisms
appear in our definition of operational theories B� in Section 3C (in axiom .C3/),
in the definition of equivariant theories BG� in Sections 4B–4C (as the maps in
a directed system used to define BG� ), in the definition of the ring structure on
B� in the smooth case in Section 2C (as a pullback along the diagonal), in the
proof of the Poincaré duality isomorphism Proposition 3.2 (as a pullback along
a graph morphism), and in the proof of the commutativity of the square above in
Proposition 5.2 using Poincaré duality. Finally, Gysin homomorphisms appear in
the theorem of Krishna and Uma, Theorem 7.2, that describes the cobordism ring
of a smooth toric variety via pullback to the fixed-point set.

The paper is organized as follows. We define refined oriented Borel–Moore
prehomology theories in Section 2. In Section 3 we define bivariant theories and
associate the operational bivariant theory B� to any ROBM prehomology theory B�
in the categories Schk and G-Schk , which among other properties has the original
theoryB� as its associated homology theory (see Proposition 3.1) and has a Poincaré
duality isomorphism between homology and cohomology in the nonsingular case
(see Proposition 3.2). In Section 4 we start from any ROBM prehomology theory
B� on Schk that satisfies the localization and homotopy properties and construct
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the G-equivariant ROBM prehomology theory BG� on G-Schk by taking a limit
over successively better approximations of the Borel construction. In Section 5
we show that if B� has exact descent sequences (5-1), then the computation of
bivariant classes can be inductively reduced to the nonsingular case (see Theorem 5.6
and Theorem 5.3), and that furthermore the operational equivariant theory B�G
can alternatively be computed by applying the limit construction directly to the
operational theory B� (see Proposition 5.2).

In Section 6 we overview the theory of algebraic cobordism��. We conclude this
article in Section 7 by showing in Theorem 7.3 that the operational T -equivariant
cobordism ring of a quasiprojective toric variety can be described as the ring of
piecewise graded power series on the fan with coefficients in the Lazard ring.

2. Refined oriented Borel–Moore prehomology theories

2A. Notation and conventions.

2A.1. Throughout this article all of our schemes will be defined over a fixed field k.
We denote by Schk the category of separated finite-type schemes over Spec k and by
Sch0k the subcategory of Schk with the same objects but whose morphisms are the
projective morphisms. We denote by Smk the full subcategory of Schk of smooth
and quasiprojective schemes. By a smooth morphism we always mean a smooth and
quasiprojective morphism. Ab� will denote the category of graded abelian groups.

2A.2. Let G be a linear algebraic group. A G-linearization of a line bundle
f W L!X over the G-scheme X is a G-action ˆ WG �L! L on L such that f
is G-equivariant and for every x 2X and g 2G the action map ˆg W Lx! Lgx
is linear. We denote by G-Schk the category whose objects are the separated finite-
type G-schemes over Spec k that admit an ample G-linearizable line bundle and
whose morphisms are G-equivariant morphisms. We denote by G-Sch0k the sub-
category of G-Schk with the same objects but whose morphisms are the projective
G-equivariant morphisms. Note that all schemes in G-Schk are assumed to be
quasiprojective; this is needed in the construction of equivariant theories using the
GIT quotients.

2A.3. In Sections 5–7 we will assume that k has characteristic zero and in Sections
4B–4D we will assume that k is infinite. The assumption on the characteristic
of k is only meant to guarantee the existence of smooth projective envelopes
in the categories Schk and G-Schk and to provide the setting for the use of the
Levine–Pandharipande version of algebraic cobordism, which requires resolution
of singularities by projective morphisms, weak factorization for birational maps
and some Bertini-type theorems that hold in characteristic zero. The assumption on
the cardinality of k is only used explicitly in the proof of Proposition 4.3.
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2A.4. We call a morphism f W Z ! X in one of the categories C D Schk or
C D G-Schk a locally complete intersection morphism in C, or simply an lci
morphism in C, if there exist a regular embedding i W Z ! Y and a smooth
morphism g W Y !X , with g and i in C such that f D gi . When we work in the
category G-Schk and we say that a morphism f is an equivariant lci morphism,
or simply an lci morphism, we mean that f is an lci morphism in G-Schk . We
follow the convention that smooth morphisms, and more generally lci morphisms,
are assumed to have a relative dimension. If f W X ! Y is an lci morphism of
relative dimension d (or relative codimension �d ) and Y is irreducible, then X is
a scheme of pure dimension equal to dimY C d .

2B. ROBM prehomology theories.

2B.1. For simplicity, we unify the treatment of the cases when the ambient category
is Schk or G-Schk for some algebraic group G. Therefore, through the rest of this
section we fix the category C, which is either Schk or G-Schk , and we assume
that all the schemes and morphisms are in C (e.g., the statement for any morphism
should be interpreted as for any morphism in C). Likewise, when C D G-Schk ,
by an lci morphism we mean an equivariant lci morphism. The category C0 is
defined to be Sch0k or G-Sch0k , depending on whether C is equal to Schk or G-Schk ,
respectively.

Let us start by recalling the definition of a Borel–Moore functor on C, and several
extra structures on it, from [Levine and Morel 2007].

Definition 2.1. A Borel–Moore functor on C is given by:

� .D1/ An additive functor H� W C0! Ab�, i.e., a functor H� W C0! Ab� such
that, for any finite family .X1; : : : ; Xr/ of schemes in C0, the morphism

rM
iD1

H�.Xi /!H�

� ra
iD1

Xi

�
induced by the projective morphisms Xi �

`r
iD1Xi is an isomorphism.

� .D2/ For each smooth equidimensional morphism f W Y !X of relative dimen-
sion d in C, a homomorphism of graded groups

f � WH�.X/!H�Cd .Y /:

These data satisfy the following axioms:

� .A1/ For any pair of composable smooth equidimensional morphisms .f WY !X ,
g WZ! Y / of relative dimensions d and e respectively, one has

.f ıg/� D g� ıf � WH�.X/!H�CdCe.Z/:

In addition, Id�X D IdH�.X/ for any X 2 C.
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� .A2/ For any projective morphism f WX !Z and any smooth equidimensional
morphism g W Y !Z, if one forms the fiber diagram

W

f 0

��

g 0
// X

f
��

Y
g
// Z

then

g�f� D f
0
�g
0�:

Notation 2.2. For each projective morphism f the homomorphism H�.f / is
denoted by f� and is called the pushforward along f . For each smooth equi-
dimensional morphism g the homomorphism g� is called the pullback along g.

Definition 2.3. A Borel–Moore functor with exterior product on C consists of a
Borel–Moore functor H� on C, together with:

� .D3/ An element 1 2H0.Spec k/, and for each pair .X; Y / of schemes in C a
bilinear graded pairing (called the exterior product)

� WH�.X/�H�.Y /!H�.X �Y /;

.˛; ˇ/ 7! ˛�ˇ

which is (strictly) commutative, associative, and admits 1 as unit.

These satisfy:

� .A3/ Given projective morphisms f WX !X 0 and g W Y ! Y 0, one has that for
any classes ˛ 2H�.X/ and ˇ 2H�.Y /

.f �g/�.˛�ˇ/D f�.˛/�g�.ˇ/ 2H�.X
0
�Y 0/:

� .A4/ Given smooth equidimensional morphisms f W X ! X 0 and g W Y ! Y 0,
one has that for any classes ˛ 2H�.X 0/ and ˇ 2H�.Y 0/

.f �g/�.˛�ˇ/D f �.˛/�g�.ˇ/ 2H�.X �Y /:

Remark 2.4. Given a Borel–Moore functor with exterior product H�, the axioms
give H�.Spec k/ a commutative, graded ring structure, give to each H�.X/ the
structure of H�.Spec k/-module, and imply that the operations f� and f � preserve
the H�.Spec k/-module structure.

Definition 2.5. A Borel–Moore functor with intersection products on C is a Borel–
Moore functor H� on C, together with:
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� .D4/ For each lci morphism f W Z ! X of relative codimension d and any
morphism g W Y !X giving the fiber diagram

W

g 0

��

f 0
// Y

g

��

Z
f
// X

a homomorphism of graded groups

f Šg WH�.Y /!H��d .W /:

These satisfy:

� .A5/ If f1 WZ1!X and f2 WZ2!Z1 are lci morphisms and g W Y !X any
morphism giving the fiber diagram

W2

��

f 02
// W1

g 0

��

f 01
// Y

g

��

Z2
f2
// Z1

f1
// X

one has .f1 ıf2/Šg D .f2/
Š
g 0 ı .f1/

Š
g .

� .A6/ If f1 WZ1!X1 and f2 WZ2!X2 are lci morphisms of relative codimen-
sions d and e, respectively, and h1 W Y ! X1 and h2 W Y ! X2 are arbitrary
morphisms giving the fiber diagram

W

��

// W2

f 02
��

// Z2

f2
��

W1

��

f 01
// Y

h1
��

h2
// X2

Z1
f1
// X1

one has .f1/Šh1f 02
ı .f2/

Š
h2
D .f2/

Š
h2f

0
1
ı .f1/

Š
h1
W B�Y ! B��d�eW .

� .A7/ For any smooth morphism f W Y !X one has f ŠIdX D f
�.
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For any lci morphism f WZ!X , any morphism g W Y !X and any morphism
h W Y 0! Y , if one forms the fiber diagram

W 0

h0

��

f 00
// Y 0

h
��

W

g 0

��

f 0
// Y

g

��

Z
f
// X

then:

� .A8/ If g and f are Tor-independent in Schk (i.e., if TorOX
j .OY ;OZ/D 0 for all

j > 0) then
f Šgh D .f

0/Šh:

� .A9/ If h is projective then f Šg ı h� D h
0
� ıf

Š
gh

.

� .A10/ If h is smooth equidimensional then f Š
gh
ı h� D h0� ıf Šg .

Notation 2.6. Given a Borel–Moore functor with intersection products H�, for any
lci morphism f W Z ! X of relative codimension d , the map f ŠIdX W H�.X/!
H��d .Z/ is called the lci pullback along f and denoted by f �. For each lci
morphism f W Z ! X and each morphism g W Y ! X we call the morphism
f Šg the refined lci pullback along f associated to g. We will usually denote f Šg
simply by f Š with an indication of where it acts. When the lci morphism f is
a regular embedding then f Šg is called a refined Gysin homomorphism. Refined
Gysin homomorphisms and smooth pullbacks can be composed to construct all
refined lci pullbacks.

Definition 2.7. A Borel–Moore functor with compatible exterior and intersection
products on C consists of a Borel–Moore functor H� on C endowed with exterior
products and intersection products that in addition satisfy:

� .A11/ If, for i D 1 and i D 2, fi WZi !Xi is an lci morphism and gi W Yi !Xi
is an arbitrary morphism, and one forms the fiber diagram

Wi

g 0
i

��

f 0
i
// Yi

gi
��

Zi
fi
// Xi

one has that for any classes ˛1 2H�.Y1/ and ˛2 2H�.Y2/

.f1 �f2/
Š
g1�g2

.˛1 �˛2/D .f1/
Š
g1
.˛1/� .f2/

Š
g2
.˛2/ 2H�.W1 �W2/:
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Notation 2.8. We will call a Borel–Moore functor with compatible exterior and
intersection products a refined oriented Borel–Moore prehomology theory (ROBM
prehomology theory, for short).

Examples of ROBM prehomology theories are Chow theory A� (see [Fulton
1998]), K-theory (i.e., the Grothendieck K-group functor G0 of the category of
coherent OX -modules, graded by G0˝ZZŒˇ; ˇ�1�— see [Levine and Morel 2007,
Example 2.2.5]), and algebraic cobordism �� (see [Levine and Morel 2007]) on
the category Schk; and equivariant Chow theory AG� and equivariant algebraic
cobordism �G� on the category G-Schk constructed as in Section 4 (see [Edidin
and Graham 1998; Krishna 2012; Heller and Malagón-López 2013]).

Levine and Morel [2007] considered the notion of an oriented Borel–Moore
homology theory, which is an ROBM prehomology theory but with lci pullbacks
only instead of refined lci pullbacks, and with additional axioms called projective
bundle, extended homotopy and cellular decomposition properties. Because of the
refined lci pullbacks, an oriented Borel–Moore homology theory is not necessarily
an ROBM prehomology theory. However, one can construct refined lci pullbacks
from ordinary lci pullbacks by the deformation to the normal cone argument of
Fulton and MacPherson, provided that the theory additionally satisfies the homotopy
and localization properties (see Section 4 for these properties). We will need the
homotopy and localization properties when working with equivariant theories;
hence an alternative theory that is sufficient for the constructions below would be a
Borel–Moore functor with compatible lci pullbacks and exterior products, which
additionally satisfies the homotopy and localization properties.

Definition 2.9. IfH� is an ROBM prehomology theory, for any line bundle L! Y

in C with zero section s WY !L one defines the operator Qc1.L/ WH�.Y /!H��1.Y /

by Qc1.L/D s�s�, and calls it the first Chern class operator of L.

2C. Cohomology theory. LetH� be an ROBM prehomology theory. For a smooth
scheme X of pure dimension n, define

H�.X/DHn��.X/:

For an arbitrary smooth scheme we extend this notion by taking the direct sum over
pure-dimensional parts of X .

The groupsH�.X/ are commutative graded rings with unit, with product defined
by

H�.X/�H�.X/!H�.X/;

.a; b/ 7!��X .a� b/;
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where�X WX!X�X is the diagonal map and��X is the lci pullback. Associativity
of the product follows from .A5/ and .A11/ applied to two different ways to construct
the diagonal X !X �X �X by composing �X .

Let � WX!Spec k be the structure morphism, and define 1X D��.1/2H 0.X/,
where 1D 1Speck 2H

0.Spec k/ is the element specified in .D3/. Then 1X is the
multiplicative identity in the ring H�.X/.

Axioms .A5/ and .A11/ imply that, if f WX ! Y is an lci morphism between
smooth schemes, then f � WH�.Y /!H�.X/ is a homomorphism of graded rings
with unit. Thus, we may view H� as a contravariant functor from the category of
smooth schemes and lci morphisms in C to the category of commutative graded
rings with unit. In the next section we extend this functor to the whole category C.

3. Operational bivariant theories

In this section we consider a refined oriented Borel–Moore prehomology theory B�
on one of the categories CD Schk or CDG-Schk , and associate to it a bivariant
theory B� on C. We present a unified treatment of these two cases. Therefore
throughout this section we fix one of these two categories and denote it by C, and
we assume that all the schemes and morphisms are in C following the conventions
described in Section 2B.1.

Operational theories were defined for general homology theories by Fulton and
MacPherson [1981]. The constructions that we present in this section follow [Fulton
1998, Chapter 17] where the operational theory A� is constructed for the Chow the-
oryA�. Some definitions and proofs have been modified to adapt them to our setting.

3A. Bivariant theories. A bivariant theory B� on C assigns to each morphism
f WX! Y in C a graded abelian group B�.X! Y /. The groups B�.X! Y / are
endowed with three operations called product, pushforward and pullback, which
are mutually compatible and admit units:

� .P1/ Product. For all morphisms f WX ! Y and g W Y !Z, and all integers p
and q, there is a homomorphism

Bp
�
X

f
���! Y

�
˝Bq

�
Y

g
��!Z

� �
�! BpCq

�
X

gf
���!Z

�
:

The image of c˝ d is denoted c � d .

� .P2/ Pushforward. If f W X ! Y is a projective morphism, g W Y ! Z is any
morphism and p is an integer, there is a homomorphism

f� W B
p
�
X

gf
���!Z

�
�! Bp

�
Y

g
��!Z

�
:
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� .P3/ Pullback. If f WX! Y and g W Y 0! Y are arbitrary morphisms, f 0 WX 0D
X �Y Y

0! Y 0 is the projection and p is an integer, there is a homomorphism

g� W Bp
�
X

f
���! Y

�
�! Bp

�
X 0

f 0

���! Y 0
�
:

� .U/ Units. For each X there is an element 1X 2 B0
�
X

Id
��! X

�
such that

˛ �1X D ˛ and 1X �ˇD ˇ for all morphisms W !X and X! Y and all classes
˛ 2 B�.W ! X/ and ˇ 2 B�.X ! Y /. These unit elements are compatible
with pullbacks, i.e., g�.1X /D 1Z for all morphisms g WZ!X .

These operations are required to satisfy seven compatibility properties:

� .B1/ Associativity of products. If c 2 B�.X ! Y /, d 2 B�.Y ! Z/ and
e 2 B�.Z!W /, then

.c � d/ � e D c � .d � e/ 2 B�.X !W /:

� .B2/ Functoriality of pushforwards. If c 2 B�.X ! Y /, then IdX�c D c 2

B�.X! Y /. Moreover, if f WX! Y and g W Y !Z are projective morphisms,
Z!W is arbitrary, and d 2 B�.X !W /, then

.gf /�d D g�.f�d/ 2 B
�.Z!W /:

� .B3/ Functoriality of pullbacks. If c2B�.X!Y /, then Id�Y cDc2B
�.X!Y /.

Moreover, if f WX ! Y , g W Y 0! Y and h W Y 00! Y 0 are arbitrary morphisms,
X 00 DX �Y Y

00! Y 00 is the projection, and d 2 B�.X ! Y /, then

.gh/�d D h�.g�d/ 2 B�.X 00! Y 00/:

� .B12/ Product and pushforward commute. If f WX ! Y is projective, Y !Z

and Z!W are arbitrary, and c 2 B�.X !Z/ and d 2 B�.Z!W /, then

f�.c/ � d D f�.c � d/ 2 B
�.Y !W /:

� .B13/ Product and pullback commute. If c2B�
�
X

f
��!Y

�
and d 2B�

�
Y

g
��!Z

�
,

and h WZ0!Z is arbitrary, and one forms the fiber diagram

X 0

h00

��

f 0
// Y 0

h0

��

g 0
// Z0

h
��

X
f
// Y

g
// Z

then

.h/�.c � d/D h0�.c/ � h�.d/ 2 B�.X 0!Z0/:
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� .B23/ Pushforward and pullback commute. If f WX!Y is projective, g WY !Z

and h WZ0!Z are arbitrary morphisms, and c 2 B�.X !Z/, and one forms
the fiber diagram

X 0

h00

��

f 0
// Y 0

h0

��

g 0
// Z0

h
��

X
f
// Y

g
// Z

then
h�.f�c/D f

0
�.h
�c/ 2 B�.Y 0!Z0/:

� .B123/ Projection formula. If f WX! Y and g W Y !Z are arbitrary morphisms,
h0 W Y 0! Y is projective and c 2 B�.X ! Y / and d 2 B�.Y 0! Z/, and one
forms the fiber diagram

X 0

h00

��

f 0
// Y 0

h0

��

X
f
// Y

g
// Z

then
c � h0�.d/D h

00
�.h
0�.c/ � d/ 2 B�.X !Z/:

The group Bp
�
X

f
���!Y

�
may be denoted by simply by Bp.X!Y / or Bp.f /.

We will denote by B�
�
X ���!

f
Y
�
, B�.X ! Y / or B�.f / the direct sum of all

Bp
�
X ���!

f
Y
�
, for p 2 Z.

3B. Homology and cohomology. A bivariant theory B�.X ! Y / contains both a
covariant homology theory B�.X/ and a contravariant cohomology theory B�.X/.

The homology is defined by Bp.X/D B�p.X ! Spec k/. For any projective
morphism f WX! Y , the pushforward in the bivariant theory defines the functorial
pushforward map in homology f� W B�.X/! B�.Y /.

The cohomology is defined by Bp.X/ D Bp.IdX W X ! X/. The product
operation in the bivariant theory turns B�.X/ into a graded ring with unit 1X
and turns B�.X/ into a graded left module over B�.X/. The product operation
B�.X/�B�.X/! B�.X/ is called the cap product and denoted .˛; ˇ/ 7! ˛\ˇ.
For any morphism f W X ! Y , the pullback in the bivariant theory defines a
functorial pullback f � W B�.Y /! B�.X/. The pullback map is a homomorphism
of graded rings. When f is a projective morphism, the projection formula relates
the pullback, pushforward, and cap product as follows:

f�.f
�.˛/\ˇ/D ˛\f�.ˇ/:
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3C. Operational bivariant theories. We now fix an ROBM prehomology theory
B� on C, and associate a bivariant theory B� to it.

Let f W X ! Y be any morphism. For each morphism g W Y 0! Y , form the
fiber square

X 0

g 0

��

f 0
// Y 0

g

��

X
f
// Y

with induced morphisms as labeled. An element c in Bp
�
X

f
���! Y

�
, called a

bivariant class, is a collection of homomorphisms

c.m/g W BmY
0
! Bm�pX

0

for all g W Y 0! Y and all m 2 Z, compatible with projective pushforwards, smooth
pullbacks, intersection products and exterior products, that is:

� .C1/ If h W Y 00! Y 0 is projective and g W Y 0! Y is arbitrary, and one forms the
fiber diagram

X 00

h0

��

f 00
// Y 00

h
��

X 0

g 0

��

f 0
// Y 0

g

��

X
f
// Y

then, for all ˛ 2 Bm.Y 00/,

c.m/g .h�˛/D h
0
�c
.m/

gh
.˛/

in Bm�p.X 0/.

� .C2/ If h WY 00!Y 0 is smooth of relative dimension n and g WY 0!Y is arbitrary,
and one forms the fiber diagram

X 00

h0

��

f 00
// Y 00

h
��

X 0

g 0

��

f 0
// Y 0

g

��

X
f
// Y
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then, for all ˛ 2 Bm.Y 0/,

c
.mCn/

gh
.h�˛/D h0�c.m/g .˛/

in BmCn�p.X 00/.

� .C3/ If g W Y 0! Y and h W Y 0! Z0 are morphisms, and i W Z00! Z0 is an lci
morphism of codimension e, and one forms the fiber diagram

X 00

i 00

��

f 00
// Y 00

i 0

��

h0
// Z00

i
��

X 0

g 0

��

f 0
// Y 0

g

��

h
// Z0

X
f
// Y

then for all ˛ 2 Bm.Y 0/,

c
.m�e/
g i 0 .i Š˛/D i Šc.m/g .˛/

in Bm�e�p.X 00/.

� .C4/ If g W Y 0! Y is arbitrary, and h W Y 0 �Z! Y 0 and h0 WX 0 �Z!X 0 are
the projections, and one forms the fiber diagram

X 0 �Z

h0

��

f 00
// Y 0 �Z

h
��

X 0

g 0

��

f 0
// Y 0

g

��

X
f

// Y

then, for all ˛ 2 Bm.Y 0/ and ˇ 2 Bl.Z/,

c
.mCl/

gh
.˛�ˇ/D c.m/g .˛/�ˇ

in BmCl�p.X 0 �Z/.

The three operations are defined as follows:
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� Product: Let c 2 Bp
�
X

f
���! Y

�
and d 2 Bq

�
Y

g
��!Z

�
. Given any morphism

h WZ0!Z, form the fiber diagram

X 0

h00

��

f 0
// Y 0

h0

��

g 0
// Z0

h
��

X
f
// Y

g
// Z

and for each integer m define .c �d/.m/
h
D c

.m�q/

h0
ıd

.m/

h
WBmZ

0!Bm�p�qX
0.

� Pushforward: Given c 2 Bp
�
X

f
���! Y

g
��!Z

�
and any morphism h WZ0!Z,

form the fiber diagram

X 0

h00

��

f 0
// Y 0

h0

��

g 0
// Z0

h
��

X
f
// Y

g
// Z

and for each integer m define .f�c/
.m/

h
D f 0� ı c

.m/

h
W BmZ

0! Bm�pY
0.

� Pullback: Given c 2Bp
�
X

f
���!Y

�
and morphisms g WY 0!Y and h WY 00!Y 0,

form the fiber diagram

X 00

h0

��

f 00
// Y 00

h
��

X 0

g 0

��

f 0
// Y 0

g

��

X
f
// Y

and for each integer m define .g�c/.m/
h
D c

.m/

gh
W BmY

00! Bm�pX
00.

It is straightforward to verify that these three operations are well-defined (i.e., that
c � d , f�c and g�c satisfy .C1/–.C4/, so that they define classes in the appropriate
bivariant groups). For each X , unit elements 1X 2 B0.X ! X/ satisfying the
property .U/ are defined by letting them act by identity homomorphisms. It is also
straightforward to check that the three operations satisfy properties .B1/–.B123/. In
conclusion, the operational theory is a bivariant theory.

The only bivariant theories we will consider are the operational ones. By a
bivariant theory we will mean an operational bivariant theory associated to an
ROBM prehomology theory.
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3D. Homology and cohomology for operational bivariant theories. Recall that
any bivariant theory B�.X ! Y / contains both a covariant homology theory
B��.X! Spec k/ and a contravariant cohomology theory B�.IdX WX!X/. We
claim that if the bivariant theory B�.X! Y / is the operational theory associated to
an ROBM prehomology theory B�, then the homology theory B��.X ! Spec k/
is isomorphic to the original theory B�.X/. Similarly, the cohomology theory
B�.X!X/ agrees with the cohomology theory B�.X/ constructed in Section 2C
for smooth schemes X . The proofs in this section are adapted from the proofs in
[Fulton 1998] for the Chow theory.

Proposition 3.1. For any X and each integer p, the homomorphism

' W B�p.X ! Spec k/! Bp.X/

taking a bivariant class c to c.1/ is an isomorphism. Here 1D 1Speck 2B0.Spec k/
is the element specified by .D3/ in Definition 2.3. The isomorphism ' is natural
with respect to pushforwards along projective morphisms.

Proof. Define a homomorphism  WBp.X/!B�p.X! Spec k/ as follows: given
any a 2 Bp.X/, any morphism f W Y ! Spec k and a class ˛ 2 Bm.Y /, we set
 .a/.˛/D a�˛ 2BmCp.X �Y /. It follows at once that  .a/ satisfies .C1/–.C4/,
and  is a well-defined homomorphism.

For each a2Bp.X/, one has '. .a//D .a/.1/D a�1D a2Bp.X/, so 'ı 
is the identity. Given any c 2 B�p.X ! Spec k/, any morphism Y ! Spec k and
any class ˛ 2Bm.Y /, one has  .'.c//.˛/D .c.1//.˛/D c.1/�˛D c.1�˛/D
c.˛/ 2 BmCp.X �Y /, so  ı' is also the identity.

Naturality of ' with respect to projective pushforwards follows from the definition
of pushforward in the operational bivariant theory. �

Let us now consider the cohomology theory B�.X !X/. Note that an element
c 2 Bp.X !X/ is a collection of homomorphisms c.m/

f
W BmX

0! Bm�pX
0, for

all morphisms f WX 0!X and all integers m, that are compatible with projective
pushforwards, smooth pullbacks, and exterior and intersection products. Using the
previous proposition, we identify B�.X/ with B��.X ! Spec k/, and thus give
B�.X/ the structure of a module over B�.X !X/.

Proposition 3.2 (Poincaré duality). Let X be a smooth purely n-dimensional
scheme and let B�.X/DBn��.X/ be the cohomology theory defined in Section 2C.
The homomorphism defined by cap product with 1X 2 B0.X/,

' W B�.X
IdX
����!X/

\1X
����! B�.X/;

is an isomorphism of graded rings that takes 1X 2 B0.X ! X/ to 1X 2 B0.X/.
The isomorphism ' is natural with respect to pullbacks by lci morphisms.
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Proof. Let us fix an integerp and define a homomorphism WBp.X/DBn�p.X/!

Bp.X ! X/ as follows: given any a 2 Bn�p.X/, any morphism f W Y !X and
a class ˛ 2 Bm.Y /, we set  .a/.˛/D  .a/.m/

f
.˛/D 
�

f
.a�˛/ 2 Bm�pY , where


f D .f; IdY / W Y !X �Y is the transpose of the graph of f , which in this case
is a regular embedding of codimension n. It is straightforward to check that  .a/
is a bivariant class and  is a group homomorphism.

For each a 2Bn�pX , one has '. .a//D .a/.1X /D 
�IdX .a�1X /D Id�X aD
a 2 Bn�pX , so ' ı is the identity. Given any c 2 Bp.X !X/, any morphism
f W Y ! X and any class ˛ 2 BmY , one has  .'.c//.˛/ D  .c.1X //.˛/ D


�
f
.c.1X / � ˛/ D 


�
f
.c.1X � ˛// D c.


�
f
.1X � ˛// D c.˛/ 2 Bm�pY , so  ı '

is also the identity.
To verify the compatibility with multiplication, we show that for arbitrary classes

a 2Bn�p.X/ and b 2Bn�q.X/ we have  .a �b/D .a/ � .b/2BpCq.X!X/.
Indeed, given any morphism f W Y !X and any class � 2 BmY , we have

 .a � b/.�/D 
�f .

�
IdX .a� b/� �/D .f; f; IdY /

�.a� b � �/

D 
�f ..IdX ; 
f /
�.a� b � �//D 
�f .a� 


�
f .b � �//

D  .a/. .b/.�//D . .a/ � .b//.�/ 2 Bm�p�qY:

The element 1X 2 B0.X ! X/ acts as multiplicative identity, hence the cap
product with it maps 1X 2 B0.X/ to itself.

Let f WX ! Y be an lci morphism between pure-dimensional smooth schemes.
Naturality of ' with respect to pullback by f is equivalent to the identity

f �.c/\ 1X D f
�.c \ 1Y /

for any c 2 B�.Y ! Y /, which holds by .C3/ since 1X D f �.1Y /. �

Notation 3.3. We will set B�.X/D B�.IdX WX !X/ for an arbitrary scheme X
in C. Proposition 3.2 shows that this contravariant functor on C, when restricted to
the category of smooth schemes and lci morphisms, is isomorphic to the functor
B� defined in Section 2C.

Remark 3.4. In his construction of a bivariant theory associated to Chow theory,
Fulton [1998, Chapter 17] used the Chow theory versions of our axioms .C1/, .C2/

and .C3/, namely, compatibility of the bivariant classes with proper pushforwards,
flat pullbacks and refined Gysin homomorphisms, but there is no explicit requirement
of our axiom .C4/, compatibility with exterior products. This axiom .C4/ does not
appear explicitly in Fulton’s construction because, in the case of Chow theory A�,
axioms .C1/ and .C2/ imply axiom .C4/. More generally, this is true for any ROBM
prehomology theory B� for which, for every X in C, the group B�.X/ is generated
by the projective pushforward images of the classes 1Y for all smooth varieties Y
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with a projective map to X . Indeed, using .C1/, one reduces .C4/ to the case where
both Y 0 and Z are smooth varieties, and ˛ D 1Y 0 and ˇ D 1Z . In that case, from
.C2/ one obtains that c.mCl/

gh
.1Y 0 � 1Z/ D c

.mCl/

gh
.1Y 0�Z/ D c

.mCl/

gh
.h�1Y 0/ D

h0�c
.m/
g .1Y 0/D c

.m/
g .1Y 0/� 1Z , and then .C4/ holds in general for B�.

4. The equivariant version of an ROBM prehomology theory

In this section we fix an ROBM prehomology theory B� on the category Schk ,
and construct its equivariant version BG� , which is an ROBM prehomology theory
on G-Schk . The construction of BG� generalizes to arbitrary ROBM prehomology
theories similar constructions in Chow theory by Totaro [1999] and Edidin and
Graham [1998], and in algebraic cobordism by Krishna [2012] and Heller and
Malagón-López [2013].

We will need to assume throughout this section that the field k is infinite and the
theory B� satisfies the homotopy property .H/ and the localization property .L/:

� .H/ Let p W E ! X be a vector bundle of rank r over X in Schk . Then p� W
B�.X/! B�Cr.E/ is an isomorphism.

� .L/ For any closed immersion i W Z ! X with open complement j W U D
X nZ!X , the following sequence is exact:

B�.Z/
i�
���! B�.X/

j�

���! B�.U / �! 0:

4A. Algebraic groups, quotients and good systems of representations. Let G be
a linear algebraic group. If X is a scheme with a G-action � WG �X !X and the
geometric quotient of X by the action of G exists, it will be denoted by X!X=G.
When the geometric quotient � WX!X=G exists, it is called a principal G-bundle
if the morphism � is faithfully flat and the morphism  D .�; prX / W G �X !
X �X=GX is an isomorphism. By [Mumford et al. 1994, Proposition 0.9], if G acts
freely on U 2 G-Schk and the geometric quotient � W U ! U=G exists in Schk ,
for some quasiprojective scheme U=G, then � WU !U=G is a principal G-bundle.
Moreover, by [Mumford et al. 1994, Proposition 7.1], for any X 2 G-Schk the
geometric quotient � 0 WX �U ! .X �U/=G also exists in Schk , it is a principal
G-bundle and .X �U/=G is quasiprojective. In this case we denote the scheme
.X �U/=G by X �G U .

Definition 4.1. We say that f.Vi ; Ui /gi2ZC is a good system of representations of
G if each Vi is a G-representation, Ui � Vi is a G-invariant open subset and they
satisfy the following conditions:

(1) G acts freely on Ui and Ui=G exists as a quasiprojective scheme in Schk .

(2) For each i there is a G-representation Wi so that ViC1 D Vi ˚Wi .
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(3) Ui˚f0g�UiC1 and the inclusion factors as Ui DUi˚f0g�Ui˚Wi �UiC1.

(4) codimVi .Vi nUi / < codimVj .Vj nUj / for i < j .

For any algebraic group G there exist good systems of representations (see
[Totaro 1999, Remark 1.4]). The following lemma lists some basic facts regarding
the properties of morphisms induced on geometric quotients:

Lemma 4.2. Let f W X ! Y be a G-equivariant morphism in G-Schk , and let
f.Vi ; Ui /g be a good system of representations of G.

(1) For each i the quotient X �G Ui D .X � Ui /=G exists in Schk and it is
quasiprojective. The induced morphisms �ij W X �G Ui ! X �G Uj are lci
morphisms for j � i . If X is smooth then X �G Ui is also smooth.

(2) Let P be one of the following properties of morphisms: open immersion, closed
immersion, regular embedding, projective, smooth, lci. If f WX ! Y satisfies
the property P in the category G-Schk , then the induced maps fi WX �G Ui!
Y �G Ui satisfy property P in the category Schk .

(3) For any morphisms g W Y ! X and f W Z! X in G-Schk and any indices
j � i , the square diagrams

W �Ui

��

// Y �Uj

��

Z �Ui // X �Uj

W �G Ui

��

// Y �G Uj

g 0

��

Z �G Ui
f 0
// X �G Uj

induced by the Cartesian product W D Y �X Z are fiber squares, and further-
more they are Tor-independent if f and g are Tor-independent.

Proof. For proofs of the assertions in .1/ and .2/ see [Edidin and Graham 1998,
Proposition 2] and [Heller and Malagón-López 2013, 2.2.2, Lemma 9]. For .3/,
given any T 2 Schk and morphisms g00 WT !Y �GUj and f 00 WT !Z�GUi such
that f 0ıf 00Dg0ıg00, we let G act on zT DT �.X�GUj / .X�Uj / via the morphism
G� zT ! zT induced by the product of the trivial action ofG on T and the action ofG
on X �Uj . By [Mumford et al. 1994, Amplification 7.1], G-equivariant morphisms
from zT to each of X�Uj , Y �Uj , Z�Ui andW �Ui correspond to the morphisms
induced on the quotients from T to X �G Uj , Y �G Uj , Z �G Ui and W �G Ui ,
respectively. The assertion that the squares in .3/ are Cartesian follows easily from
these observations. If f and g are Tor-independent, then TorOX

m .OY ;OZ/D 0 for
all m > 0, and clearly TorOUj

m .OUj ;OUi / D 0 for all m > 0. Hence, by applying
locally the spectral sequence associated to the double complex obtained as the
tensor product of two complexes, we obtain that TorOX�Uj

m .OY�Uj ;OZ�Ui / D 0

for all m > 0. Since Y � Uj D .Y �G Uj / �.X�GUj / .X � Uj / and Z � Ui D
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.Z �G Ui /�.X�GUj / .X �Uj /, by faithfully flat base change for Torm we have
that Tor

O
X�GUj
m .OY�GUj ;OZ�GUi /D 0 for all m> 0. Therefore, in this case the

given squares are also Tor-independent. �

4B. Construction of BG
� .X/. Fix a good system of representations f.Vi ; Ui /g

of G. For any scheme X 2G-Schk , define BG� .X/D
L
n2ZB

G
n .X/, where

BGn .X/D lim
 ��i

BnCdimUi�dimG.X �
G Ui /:

To simplify notation, we will often write

BG� .X/D lim
 ��i

B�.X �
G Ui /;

where the limit is taken in each degree separately. Equivalently, the limit is taken in
the category of graded abelian groups, with B�.X �G Ui / having grading shifted
so that the maps in the inverse system are homogeneous of degree zero.

To see that BG� is independent of the choice of a good system of representations,
one can formally follow the argument presented in the case of algebraic cobordism
in [Heller and Malagón-López 2013, Proposition 15 and Theorem 16], which we
outline below for the reader’s convenience. The proof of the next proposition
requires the field k to be infinite (this is used in the proof to construct a local section
of the projection �jU W U !X ).

Proposition 4.3. Assume that the ROBM prehomology theoryB� satisfies properties
.H/ and .L/. Let � W E ! X be a vector bundle over a scheme X of rank r . Let
U �E be an open subscheme with closed complement S DE nU .

(1) If X is affine and codimE S > dimX then �j�U W Bm.X/! BmCr.U / is an
isomorphism for all m.

(2) For X arbitrary, there is an integer n.X/ depending only on X , such that
�j�U WBm.X/!BmCr.U / is an isomorphism for allm whenever codimE S >
n.X/.

Proof. The case when B� is algebraic cobordism is [Heller and Malagón-López
2013, Proposition 15]. The proof given there only uses the formal properties of
algebraic cobordism as an ROBM prehomology theory satisfying .H/ and .L/, so it
translates formally to the present setting. �

Proposition 4.4. For any X 2 G-Schk , BG� .X/ is independent of the choice of a
good system of representations of G up to canonical isomorphism.

Proof. We use Bogomolov’s double filtration argument. Assume that f.Vi ; Ui /g
and f.V 0i ; U

0
i /g are good systems of representations of G. For a fixed index i , since

G acts freely on Ui , it also acts freely on Ui � V 0j and Ui �U 0j for all j . Hence
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X �G .Ui �V
0
j /!X �G Ui is a vector bundle. By Proposition 4.3(2) there is an

integer Ni such that the lci pullbacks induce canonical isomorphisms

B�.X �
G Ui /Š B�.X �

G .Ui �U
0
j //

for each j �Ni . Therefore, there is a canonical isomorphism

lim
 ��i

B�.X �
G Ui /D lim

 ��i
lim
 ��j

B�.X �
G .Ui �U

0
j //: (4-1)

Similarly, exchanging the role of the good systems of representations we obtain a
canonical isomorphism

lim
 ��j

B�.X �
G U 0j /D lim

 ��j
lim
 ��i

B�.X �
G .Ui �U

0
j //: (4-2)

To obtain the conclusion, we only need to observe that the right-hand sides of
(4-1) and (4-2) are canonically isomorphic to the inverse limit of the system
fB�.X �

G .Ui �U
0
j //gi;j , where the maps

B�.X �
G .Ui �U

0
j //! B�.X �

G .Ui 0 �U
0
j 0//

are the corresponding lci pullbacks for all i � i 0 and j � j 0. �

4C. The induced ROBM prehomology theory structure on BG
� . We now show

that the ROBM prehomology structure of the theory B� induces an ROBM pre-
homology structure on BG� . We use functoriality of the inverse limit to construct
projective pushforwards, smooth pullbacks, and exterior and intersection products
on BG� . To define a homomorphism between two inverse limits, we construct a
map between the two inverse systems.

Fix a good system of representations f.Vi ; Ui /g of G. Given any projective
G-equivariant morphism f WX ! Y , the morphisms ffi WX �G Ui ! Y �G Uig

are projective. The fiber square on the left in (4-3) is Tor-independent for any j � i ,

X �G Ui

��

// Y �G Ui

��

X �G Uj // Y �G Uj

B�.X �
G Ui /

fi�
// B�.Y �

G Ui /

B�.X �
G Uj /

OO

fj �
// B�.Y �

G Uj /

OO

(4-3)

hence the square on the right in (4-3) is commutative for any j � i . Hence, the
maps fi� induce a homomorphism between the limits f� W BG� .X/! BG� .Y /.

Smooth pullbacks are defined in a similar way. For intersection products, given
a G-equivariant lci morphism f WZ!X of codimension d and any G-equivariant
morphism g W Y ! X , with W D Z �X Y , first we apply the operation �GUi to
the whole intersection product diagram. The result is again an intersection product
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diagram. The two fiber squares on the first line of (4-4) are Tor-independent for
any j � i :

Z �G Ui

��

fi
// X �G Ui

��

Z �G Uj
fj
// X �G Uj

W �G Ui

��

// Y �G Ui

��

W �G Uj // Y �G Uj

B��d .W �
G Ui / B�.Y �

G Ui /
f Š
i

oo

B��d .W �
G Uj /

OO

B�.Y �
G Uj /

OO

f Š
j

oo

(4-4)

hence the square on the bottom line of (4-4) is commutative for any j � i . Hence,
the maps f Ši induce a homomorphism between the limits f Š WBG� .Y /!BG

��d
.W /.

To define the exterior product, note that the morphisms

�i W .X �Y /�
G .Ui �Ui /! .X �G Ui /� .Y �

G Ui /

are smooth (see [Borel 1991, Theorem 6.8]). We compose the associated smooth
pullback and the exterior product of B� to get

�i W B�.X �
G Ui /�B�.Y �

G Ui /! B�..X �
G Ui /� .Y �

G Ui //

! B�..X �Y /�
G .Ui �Ui //:

The morphisms �i are compatible with maps in the inverse systems, and hence
they define the exterior product map between limits:

� W BG� X �B
G
� Y ! BG� .X �Y /:

The elements 1Ui=G 2 B�.Spec k �G Ui / define 1 2 BG� .X/.
It remains to prove that the theory BG� with the operations defined above satisfies

the axioms of an ROBM prehomology theory. Each axiom amounts to a statement
about the commutativity of a diagram of homomorphisms. One can check that in
each case the commutativity holds at each level i , and hence it also holds in the
limit. Using the double filtration argument as before, one can also check that these
projective pushforwards, smooth pullbacks, exterior and intersection products are
independent of the good system of representations.

The conclusions of this section can then be summarized as:
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Theorem 4.5. The functor BG� with the projective pushforwards, smooth pullbacks,
and exterior and intersection products constructed above is a refined oriented Borel–
Moore prehomology theory on the category G-Schk . We call BG� the equivariant
version of B�.

4D. Operational equivariant theory. For a given ROBM prehomology theory B�
on Schk , we constructed an associated equivariant version BG� as an ROBM pre-
homology theory on G-Schk . The construction of Section 3 applied to B� and to
BG� produces operational bivariant theories B� on Schk and .BG/� on G-Schk
respectively. We denote .BG/� by B�G and call it the operational equivariant
version of B�

One can switch the order of the two steps in the construction of B�G and define
an “equivariant operational” theory

zB�G.X/D lim
 ��i

B�.X �G Ui /:

The two theories B�G.X/ and zB�G.X/ turn out to be isomorphic if we assume that
B� satisfies the descent property .D/ described in the next section. This property
was first proved by Gillet [1984] in the case of Chow groups and K-theory. It has
several other consequences for ROBM prehomology theories that are studied in the
next section.

5. Descent sequences

We assume in this section that the field k has characteristic zero, or, more generally,
we assume that every scheme X in Schk or in G-Schk has a smooth projective
(equivariant) envelope � W zX ! X as defined in Section 5A. We fix an ROBM
prehomology theory B� on one of the categories Schk or G-Schk and consider the
following property .D/:

� .D/ For any envelope � W zX !X , with � projective, the sequence

B�. zX �X zX/
p1��p2�
��������! B�. zX/

��
���! B�.X/ �! 0; (5-1)

is exact, where pi W zX �X zX! zX is the projection on the i -th factor for i D 1; 2.

5A. Envelopes. An envelope of a scheme X in Schk is a proper morphism � W
zX ! X such that for every subvariety V of X there is a subvariety zV of zX that

is mapped birationally onto V by � . If G is an algebraic group, a G-equivariant
envelope of a scheme X in G-Schk is a proper G-equivariant morphism � W zX!X

such that for every G-invariant subvariety V of X there is a G-invariant subvariety
zV of zX that is mapped birationally onto V by � .
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In the following, an envelope in the category Schk means an ordinary envelope
and an envelope in the category G-Schk means a G-equivariant envelope. If
� W zX !X is an envelope, we say that it is a smooth envelope if zX is smooth, and
we say that it is a projective envelope if � is a projective morphism. Likewise, we
say that the envelope � W zX ! X is birational if, for some dense open subset U
of X , � induces an isomorphism �j W ��1.U /!U . The composition of envelopes
is again an envelope and the fiber product of an envelope by any morphism is again
an envelope.

The domain zX of an envelope is not required to be connected; hence, if we
assume that varieties over k admit (equivariant) resolutions of singularities via a
projective morphism, then by induction on the dimension it follows easily that for
every scheme X in Schk (respectively in G-Schk) there exists a smooth projective
birational (equivariant) envelope � W zX !X .

Notice that if � W zX ! X is an envelope in G-Schk and if zU 2 G-Schk has a
free G-action such that zU=G exists as a quasiprojective scheme in Schk , then the
induced morphism �G W zX �

G zU !X �G zU is an envelope in Schk . Furthermore
if � is either a smooth, projective or birational envelope, then �G is a smooth,
projective or birational envelope, respectively. Moreover, if �j W ��1.U /!U is an
isomorphism for some G-invariant open subset U of X and fZig are G-invariant
closed subschemes of X such that X nU D

S
Zi , then �G maps the open subset

��1G .U �G zU/D ��1.U /�G zU of zX �G zU isomorphically onto the open subset
U �G zU of X �G zU , and the closed subschemes fZi �G zU g of X �G zU satisfy
that .X nU/�G zU D .X �G zU/ n .U �G zU/D

S
.Zi �

G zU/.

5B. Operational equivariant versus equivariant operational. Assume now that
the theory B� on Schk satisfies properties .H/ and .L/, and we can thus define the
operational equivariant theory B�G as well as the “equivariant operational” theory
zB�G as in Section 4D. We show that if B� also satisfies property .D/, then these
two bivariant theories are isomorphic. For simplicity, we prove this isomorphism
only for the bivariant cohomology theory B�G.X/.

Lemma 5.1. Let B� be an ROBM prehomology theory on Schk that satisfies .H/,
.L/ and .D/. Then, for any scheme X 2 G-Schk and any projective envelope
� W zX !X , the pushforward homomorphism �� W B

G
� .
zX/! BG� .X/ is surjective.

Proof. Recall that the inverse limit lim
 ��

is a left exact functor from the category
of inverse systems of (graded) abelian groups. Given a short exact sequence of
inverse systems

0 �! .Ei / �! .Fi / �! .Gi / �! 0;

the sequence of limits

0 �! lim
 ��

Ei �! lim
 ��

Fi �! lim
 ��

Gi �! 0
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is exact if the system .Ei / satisfies the Mittag-Leffler condition. This condition is
satisfied, for example, if the maps Ei ! Ej for i > j in the inverse system are
all surjective.

Given an exact sequence

.Ei / �! .Fi / �! .Gi / �! 0;

one may replace the system .Ei / with its image .Ii / in .Fi / to get a short exact
sequence. If all maps in the inverse system .Ei / are surjective, then they are also
surjective in .Ii /, and it follows that the map of limits lim

 ��
Fi! lim

 ��
Gi is surjective.

We apply the previous discussion to the sequence of inverse systems

B�.. zX �X zX/�
G Ui / �! B�. zX �

G Ui / �! B�.X �
G Ui / �! 0:

This sequence is exact by property .D/: the map zX �G Ui ! X �G Ui is an
envelope and

. zX �X zX/�
G Ui Š . zX �

G Ui /�X�GUi .
zX �G Ui /:

For any scheme Y in G-Schk , the lci pullbacks

B�.Y �
G Ui /! B�.Y �

G Uj /

are surjective for all i > j . This follows from properties .H/ and .L/ because
the inclusion Y �G Uj ! Y �G Ui can be factored as the inclusion of the zero
section of a vector bundle followed by an open immersion. Applying this to the
case Y D zX �X zX gives the statement of the lemma. �

Proposition 5.2. If the ROBM prehomology theory B� on Schk satisfies properties
.H/, .L/ and .D/, then for any X in G-Schk there exists an isomorphism

B�G.X/Š lim
 ��i

B�.X �G Ui /:

The isomorphism is natural with respect to pullback by any morphism f WX 0!X

in G-Schk .

Proof. Given X in G-Schk we define a homomorphism

'X W lim ��i B
�.X �G Ui /! B�G.X/

as follows: given c D .ci / 2 lim
 ��i

B�.X �G Ui /, where ci 2 B�.X �G Ui / for
each i , and given any G-equivariant morphism f W Y ! X and a class ˛ D
.˛i / 2B

G
� .Y /D lim

 ��i
B�.Y �

G Ui /, where ˛i 2B�.Y �G Ui / for each i , one sets
'X .c/.˛/D .ci .˛i // 2 lim

 ��i
B�.Y �

G Ui /DB
G
� .Y /. It is straightforward to verify

that 'X .c/ is well-defined and is indeed a bivariant class in BG� .X/, so that 'X is a
well-defined homomorphism.

It is clear from the definitions that 'X is natural with respect to pullbacks.
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We prove that 'X is an isomorphism. First, we consider the case when X
is smooth. In this case, each X �G Ui is smooth as well. By Poincaré duality
(Proposition 3.2) we have isomorphisms

B�G.X/
\1X
����! BG� .X/ and B�.X �G Ui /

\1
X�GUi

��������! B�.X �
G Ui /

for each i . Passing to the component-wise inverse limit and composing appropriately,
one obtains the isomorphism

lim
 ��i

B�.X �G Ui /
.\1

X�GUi
/i
//

'X

33lim
 ��i

B�.X �
G Ui /D B

G
� .X/

.\1X /
�1

// B�G.X/

which can be verified directly to be 'X .
For the general case, given X we choose a G-equivariant envelope � W zX!X so

that � is projective and zX is smooth. Let �i W zX �G Ui !X �G Ui be the induced
morphisms. We get a commutative diagram

lim
 ��i

B�.X �G Ui /

'X

��

� �
.��
i
/
// lim
 ��i

B�. zX �G Ui /

Š ' zX
��

B�G.X/
� � ��

// B�G.
zX/

We claim that �� and .��i / are injective. To see this, assume that ��cD 0 for some
c 2 B�G.X/. Given a G-equivariant map f W Y !X and a class ˛ 2 BG� .Y /, form
the fiber product

zY

f 0

��

� 0
// Y

f

��

zX
�
// X

with morphisms as indicated. Since � 0 is an envelope, by Lemma 5.1 there exists
Q̨ 2 BG� .

zY / such that � 0�. Q̨ / D ˛. We have c.˛/ D c.� 0�. Q̨ // D � 0�.c. Q̨ // D

� 0�..�
�c/. Q̨ // D 0, and it follows that �� is injective. Since each �i is also an

envelope, the same argument proves that the ��i are injective, and then so is the
component-wise inverse limit homomorphism .��i /. In particular, it follows that
'X is injective, as ' zX is an isomorphism by the smooth case.

To prove the surjectivity of 'X , we consider c 2B�G.X/, and construct an element
mapping to '�1

zX
.��c/ by .��i /. Let

pj W zX �X zX ! zX and p0j W .
zX �G Ui /�X�GUi .

zX �G Ui /! zX �G Ui
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be the projections on the corresponding j -th factor for j D 1; 2. Let . Qci / 2
lim
 ��i

B�. zX �G Ui / be the image of c under '�1
zX
ı��, where Qci 2B�. zX �G Ui / for

all i . Now, using that ' zX�X zX is injective and that .p�1�p
�
2 /.�

�c/D0, it follows that
.p01
�
�p02

�
/. Qci /D0 for each i . We define a class .ci /2 lim

 ��i
B�.X�GUi / as follows:

given a morphism f W Y !X �G Ui and a class ˛ 2B�.Y /, form the fiber product

zY

f 0

��

� 0
i

// Y

f
��

zX �G Ui
�i
// X �G Ui

with morphisms as indicated, and set ci .˛/D � 0i �. Qci . Q̨ //, where Q̨ 2B�. zY / is any
class satisfying � 0i �. Q̨ / D ˛ (which exists since � 0i is an envelope). To see that
ci .˛/ is independent of the choice of Q̨ , it is enough to see that � 0i �. Qci .ˇ// D 0
for each class ˇ 2 B�. zY / such that � 0i �ˇ D 0. By property .D/, given such a class
ˇ there exists a class 
 2 B�. zY �Y zY / such that ˇ D g1�.
/ � g2�.
/, where
gj W zY �Y zY ! zY are the projections for j D 1; 2. Since � 0i ıg1D�

0
i ıg2, it follows

that � 0i �. Qci .ˇ//D�
0
i �

�
Qci .g1�.
/�g2�.
//

�
D ..� 0i ıg1/��.�

0
i ıg2/�/. Qci .
//D0,

and then ci is well-defined. It is straightforward to verify that each ci satisfies
conditions .C1/–.C4/, so they define bivariant classes ci 2B�.X�GUi /. Moreover,
it is clear that the classes ci agree under the bivariant pullbacks B�.X �G Uj /!
B�.X �G Ui / for each j � i , so they define a class .ci / 2 lim

 ��i
B�.X �G Ui /. To

prove that 'X is surjective, it is enough to see that ��i ci D Qci for each i . For this,
let f W Y ! zX �G Ui be any morphism and form the fiber diagram

zY

f 0

��

� 0
i

// Y

f
��

. zX �G Ui /�X�GUi .
zX �G Ui /

p01
��

p02
// zX �G Ui

�i
��

zX �G Ui
�i

// X �G Ui

with morphisms as indicated. Consider a class ˛ 2B�.Y / and any class Q̨ 2B�. zY /
such that � 0i �. Q̨ /D ˛. Since p0�1 . Qci /D p

0�
2 . Qci /, we have that

.��i ci /f .˛/D �
0
i �.. Qci /p01ıf 0

. Q̨ //D � 0i �..f
0�p0�1 Qci /. Q̨ //

D � 0i �..f
0�p0�2 Qci /. Q̨ //D �

0
i �.. Qci /f ı� 0i

. Q̨ //D . Qci /f .˛/:

Hence ��i ci D Qci for each i , and the proof is complete. �
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5C. Kimura-type descent sequence for bivariant theories and inductive compu-
tation of bivariant groups. Theorem 5.3 and Theorem 5.6 below were proved by
Kimura [1992] in the case of Chow theory A�. We generalize his proofs to arbitrary
ROBM prehomology theories.

Theorem 5.3. Let B� be an ROBM prehomology theory on C D Schk or C D

G-Schk that satisfies property .D/. Let � W zX !X be a projective envelope in C,
Y !X a morphism in C, and zY D zX �X Y . Then the following sequence is exact:

0�!B�.Y !X/
��

���!B�. zY ! zX/
p�1�p

�
2

������!B�. zY �Y zY ! zX �X zX/: (5-2)

Proof. Assume that ��c D 0 for some c 2 B�.Y ! X/. Given a morphism
f WX 0!X and a class ˛ 2 B�.X 0/, form the fiber diagram on the left in (5-3):

zY 0

��

� 00

~~

// zX 0

��

� 0~~

Y 0

��

// X 0

��

zY //

~~

zX

�}}

Y // X

zY 0

��

� 00

zz

// zX 0

f 0

��

� 0zz

Y 0

��

// X 0

f

��

zY �Y zY

��

{{

// zX �X zX

p1

��

p2zz
zY

��

// zX

�

��

zY //

zz

zX

�zz
Y // X

(5-3)

with morphisms labeled as indicated. Since � 0 is an envelope, there exists Q̨ 2
B�. zX 0/ such that � 0�. Q̨ / D ˛. We have that c.˛/ D c.� 0�. Q̨ // D � 00�.c. Q̨ // D

� 00�..�
�c/. Q̨ // D 0, and it follows that �� is injective. By the functoriality of

pullbacks it follows that .p�1 �p
�
2 / ı�

� D 0.
Now, let Qc 2 B�. zY ! zX/ be a bivariant class such that .p�1 �p

�
2 /. Qc/D 0. We

define a class c 2B�.Y !X/ as follows: given a morphism f WX 0!X and a class
˛ 2B�.X

0/, form once again the fiber diagram on the left in (5-3), with morphisms
as indicated, and set c.˛/D � 00�. Qc. Q̨ //, where Q̨ 2 B�. zX 0/ is any class satisfying
� 0�. Q̨ /D ˛ (which exists since � 0 is an envelope). To see that c.˛/ is independent
of the choice of Q̨ , it is enough to see that � 00�. Qc.ˇ//D 0 for each class ˇ 2B�. zX 0/
such that � 0�ˇ D 0. Let gj W zX 0 �X 0 zX 0 ! zX 0 and g0j W zY

0 �Y 0
zY 0 ! zY 0 be the

projections for j D 1; 2. By property .D/, given such a class ˇ there exists a class

 2B�. zX 0�X 0 zX 0/ such that ˇDg1�.
/�g2�.
/. Since � 00ıg01D�

00ıg02, it follows
that � 00�. Qc.ˇ//D �

00
�

�
Qc.g1�. 
/�g2�.
//

�
D ..� 00 ıg01/�� .�

00 ıg02/�/. Qc.
//D 0,



1322 José Luis González and Kalle Karu

and then c is well-defined. It is straightforward to verify that c satisfies the conditions
.C1/–.C4/, so this construction yields a bivariant class c 2 B�.Y !X/. To finish
the proof we show that ��c D Qc. For this, let f W X 0 ! zX be any morphism
and consider a class ˛ 2 B�.X 0/ and any class Q̨ 2 B�. zX 0/ such that � 0�. Q̨ /D ˛.
Form the fiber diagram on the right in (5-3) with morphisms as indicated. Since
p�1 . Qc/D p

�
2 . Qc/, we have that

.��c/f .˛/D �
00
�. Qcp1ıf 0. Q̨ //D �

00
�..f

0�p�1 Qc/. Q̨ //

D � 00�..f
0�p�2 Qc/. Q̨ //D �

00
�. Qcf ı� 0. Q̨ //D Qcf .˛/:

Hence ��c D Qc, and the proof is complete. �

Corollary 5.4. Let B� be an ROBM prehomology theory on C D Schk or C D

G-Schk that satisfies property .D/. Then for any projective envelope � W zX !X in
C the following sequence is exact:

0 �! B�.X/
��

���! B�. zX/
p�1�p

�
2

������! B�. zX �X zX/:

The following lemma is a simple consequence of the localization property .L/
or of the property .D/.

Lemma 5.5. LetB� be an ROBM prehomology theory on CDSchk or CDG-Schk
that satisfies either property .L/ or property .D/. If X D

Sr
iD1Zi , where each

fi WZi !X is a closed subscheme of X , then

B�.X/D

rX
iD1

fi �.B�.Zi //

Proof. The general case follows at once from the case r D 2, so we assume that
X DZ1[Z2. If B� satisfies .L/, we have that the sequence

B�.Z1/
f1�
����! B�.X/

f2j
�

����! B�.X nZ1/ �! 0:

is exact. By the compatibility of pullbacks and pushforwards and using localization,
it is clear that f2j� maps f2�.B�.Z2// onto B�.X n Z1/. It is clear now that
B�.X/D f1�.B�.Z1//Cf2�.B�.Z2//, as desired. If B� satisfies .D/, the result
follows since B� is additive and the projective morphism from the disjoint union
Z1

`
Z2!X induced by the inclusions is an envelope. �

The following result can be proved as a corollary of Theorem 5.3. It gives an
inductive method for computing bivariant groups:
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Theorem 5.6. Let B� be an ROBM prehomology theory on C D Schk or C D

G-Schk . Let � W zX !X be a projective and birational envelope in C. Let Y !X

be a morphism in C and zY D zX �X Y . Assume that B� satisfies the conclusion of
Lemma 5.5 and that the sequence (5-2) in Theorem 5.3 is exact (e.g., it is enough to
assume that B� satisfies .D/). Let � W ��1.U / �!� U for some open dense U �X .
Let Si �X be closed subschemes such that X nU D

S
Si . Let Ei D ��1.Si /, and

let �i W Ei ! Si be the induced morphism. Then for a class Qc 2 B�. zY ! zX/ the
following are equivalent:

(1) Qc D ��.c/ for some c 2 B�.Y !X/.

(2) For all i , QcjEi D �
�
i .ci / for some ci 2 B�.Y �X Si ! Si /.

Proof. If QcD��.c/ for some c 2B�.Y !X/, then by the functoriality of pullbacks
QcjEi D�

�
i .cjSi / for all i , and then (2) holds if we take ciDcjSi 2B

�.Y�XSi!Si /.
Reciprocally, assume that there are classes ci as in (2). Let p1; p2 W zX �X zX ! zX

be the projections. By Theorem 5.3 it is enough to show that p�1 Qc D p
�
2 Qc, i.e.,

that for any morphism f WZ! zX �X zX and for any class ˛ 2 B�Z we have that
.p�1 Qc/.˛/D .p

�
2 Qc/.˛/. Let f 0i WEi �X Ei ! zX �X zX be the corresponding closed

embeddings and let � W zX ! zX �X zX be the diagonal morphism which is also a
closed embedding. Notice that zX �X zX is the union the closed subschemes �. zX/
and f 0i .Ei �X Ei / for all i . Let Z0D f �1.�. zX// and Zi D f �1.f 0i .Ei �X Ei //,
with inclusions �0 WZ0!Z and f 00i WZi !Z for each i . Then, by Lemma 5.5, in
order to prove that .p�1 Qc/.˛/D .p

�
2 Qc/.˛/, we can assume that either ˛ D f 00i �.˛i /

for some i and some ˛i 2 B�.Zi / or ˛ D�0�.˛0/ for some ˛0 2 B�.Z0/. In the
first case, for j D 1 and j D 2 consider the fiber diagram

Ei �X Ei

pj j

��

f 0
i
// zX �X zX

pj
��

Ei

�i

��

Qfi
// zX

�

��

Si
fi

// X

with morphisms as labeled. Let�00 WZ0�XY !Z�XY and g00i WZi�XY !Z�XY

be the morphisms obtained from �0 and f 00i by base change. We have

.p�j Qc/.˛/D .p
�
j Qc/.f

00
i �.˛i //D g

00
i �..p

�
j Qc/.˛i //D g

00
i �. Qc.˛i //

D g00i �..
Qfi
�
Qc/.˛i //D g

00
i �..�i

�ci /.˛i //D g
00
i �..pj j

��i
�ci /.˛i //

D g00i �
�
..�i ıpj j/

�ci /.˛i /
�
:
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Since �i ıp1j D �i ıp2j, it follows that in the first case .p�1 Qc/.˛/D .p
�
2 Qc/.˛/. In

the second case, for j D 1 and j D 2 we have

.p�j Qc/.˛/D .p
�
j Qc/.�

0
�.˛0//D�

00
�..p

�
j Qc/.˛0//D�

00
�..�

�p�j Qc/.˛0//

D�00�
�
..pj ı�/

�
Qc/.˛0/

�
D�00�..Id zX

�
Qc/.˛0//D�

00
�. Qc.˛0//:

Therefore, in the second case .p�1 Qc/.˛/D .p
�
2 Qc/.˛/, and the proof is complete. �

5D. Kimura-type descent sequence for bivariant equivariant theories and induc-
tive computation of bivariant equivariant groups. Theorem 5.3 and Theorem 5.6
proved above can be applied to the equivariant theory BG� , provided that it satisfies
property .D/. We cannot prove property .D/ for BG� assuming that it holds for
B�. We will therefore give a different proof of the statements of Theorem 5.3 and
Theorem 5.6 for BG� that depends only on B� satisfying property .D/. We give
proofs for the bivariant cohomology groups B�G.X/ only.

Theorem 5.7. Let B� be an ROBM prehomology theory on Schk that satisfies
properties .H/, .L/ and .D/. Let � W zX ! X be a projective envelope in G-Schk ,
and let the terminology be as in Theorem 5.6.

(a) The following sequence is exact:

0 �! B�G.X/
��

���! B�G.
zX/

p�1�p
�
2

������! B�G.
zX �X zX/:

(b) If � is also birational, then for a class Qc 2B�G. zX/ the following are equivalent:

(1) Qc D ��.c/ for some c 2 B�G.X/.
(2) For all i , QcjEi D �

�
i .ci / for some ci 2 B�G.Si /.

Proof. (a) Since for each i the map zX �G Ui ! X �G Ui is an envelope, by
Corollary 5.4 the sequence

0 �! B�.X �G Ui / �! B�. zX �G Ui / �! B�.. zX �X zX/�
G Ui /

is exact. Applying the left exact functor lim
 ��

and using Proposition 5.2 gives the
desired result.

(b) In view of part .a/, the conclusion follows from Theorem 5.6 if we show that
the ROBM prehomology theory BG� satisfies the conclusion of Lemma 5.5.

For this, it is enough to consider the case r D 2, so we let X DZ1[Z2 and let
Z DZ1 tZ2. The projective morphism Z!X induced by the inclusions is an
envelope; hence BG� .Z/! BG� .X/ is surjective by Lemma 5.1 �
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6. An overview of algebraic cobordism theory

In this section we recall the definition and main properties of algebraic cobordism
��. This theory was constructed by Levine and Morel [2007]. Later, Levine and
Pandharipande [2009] found a geometric presentation of the cobordism groups.
We will use the construction of [Levine and Pandharipande 2009] as the definition,
but refer to [Levine and Morel 2007] for its properties. This construction and the
proofs of some of the facts stated below use resolution of singularities, factorization
of birational maps and some Bertini-type theorems; thus, we will assume for the
remainder of this article that the field k has characteristic zero.

The equivariant algebraic cobordism�G� was constructed first by Krishna [2012]
and by Heller and Malagón-López [2013]. Krishna and Uma [2013] showed how to
compute the equivariant and ordinary cobordism groups of smooth toric varieties;
we will recall their result in Section 7.

For X in Schk , let M.X/ be the set of isomorphism classes of projective mor-
phisms f W Y !X for Y 2 Smk . This set is a monoid under disjoint union of the
domains; let MC.X/ be its group completion. The elements of MC.X/ are called
cycles. The class of f W Y ! X in MC.X/ is denoted Œf W Y ! X�. The group
MC.X/ is free abelian, generated by the cycles Œf W Y !X� where Y is irreducible.

A double point degeneration is a morphism � W Y ! P1, with Y 2 Smk of pure
dimension, such that Y1 D ��1.1/ is a smooth divisor on Y and Y0 D ��1.0/
is a union A[B of smooth divisors intersecting transversely along D D A\B .
Define

PD D P.OD.A/˚OD/D ProjOD .Sym�OD .OD.A/˚OD//;

where OD.A/ denotes OY .A/jD . (Notice that P.OD.A/˚OD/Š P.OD.B/˚OD/

because OD.ACB/Š OD .)
Let X 2 Schk , and let Y 2 Smk have pure dimension. Let p1; p2 be the two

projections of X �P1. A double point relation is defined by a projective morphism
� W Y !X �P1 such that p2 ı� W Y ! P1 is a double point degeneration. Let

ŒY1!X�; ŒA!X�; ŒB!X�; ŒPD!X�

be the cycles obtained by composing with p1. The double point relation is

ŒY1!X�� ŒA!X�� ŒB!X�C ŒPD!X� 2MC.X/:

Let R.X/ be the subgroup of MC.X/ generated by all the double point relations.
The cobordism group of X is defined to be

��.X/DMC.X/=R.X/:
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The group MC.X/ is graded so that Œf W Y !X� lies in degree dimY when Y has
pure dimension. Since double point relations are homogeneous, this grading gives
a grading on ��.X/. We write �n.X/ for the degree-n part of ��.X/.

There is a functorial pushforward homomorphism f� W ��.X/! ��.Z/ for
f W X ! Z projective, and a functorial pullback homomorphism g� W��.Z/!

��Cd .X/ for g W X ! Z a smooth morphism of relative dimension d . These
homomorphisms are both defined on the cycle level; the pullback does not preserve
grading. The exterior product on ��.X/ is also defined on the cycle level:

ŒY !X�� ŒZ!W �D ŒY �Z!X �W �:

Levine and Morel [2007] presented a construction of functorial pullbacks g� along
lci morphisms g, and, more generally, of refined lci pullbacks.

The groups ��.X/ with these projective pushforward, lci pullback and exterior
products form an oriented Borel–Moore homology theory (see [Levine and Morel
2007]). Moreover, with those refined lci pullbacks it is also an ROBM prehomology
theory (see [Levine and Morel 2007]).

As in the case of a general ROBM prehomology theory, ��.Spec k/ is a ring,
��.X/ is a module over ��.Spec k/ for general X , and ��.X/ is an algebra over
��.Spec k/ for smooth X . When X is smooth and has pure dimension, we also
use the cohomological notation

��.X/D�dimX��.X/:

Then ��.X/ is a graded algebra over the graded ring ��.Spec k/. The class
1X D ŒIdX W X ! X� is the identity of the algebra. Similar conventions are used
for the equivariant cobordism groups.

Remark 6.1. Algebraic cobordism satisfies the homotopy property .H/ and the
localization property .L/ [Levine and Morel 2007], as well as the descent property
.D/ [González and Karu 2015]. It follows that everything proved in the previous
sections for general ROBM prehomology theories can be applied to the algebraic
cobordism theory. This includes the construction of the equivariant cobordism theory
�G� , the operational cobordism theory�� and the operational equivariant cobordism
theory ��G . This also includes the descent exact sequences for the operational
theories�� and��G and the inductive method for their computation using envelopes.

The following part of Theorem 5.7 applied to ��G.X/ will be used in the next
section:

Theorem 6.2. Assume that � W zX!X is a projective birational envelope inG-Schk ,
with � W��1.U /�!� U for some open nonemptyG-equivariant U �X . Let Si �X
be closed G-equivariant subschemes, such that X nU D

S
Si . Let Ei D ��1.Si /,
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and let �i W Ei ! Si be the induced morphism. Then �� W ��G.X/! ��G.
zX/ is

injective, and for a class Qc 2��G. zX/ the following are equivalent:

(1) Qc D ��.c/ for some c 2��G.X/.

(2) For all i , QcjEi D �
�
i .ci / for some ci 2��G.Si /.

6A. Formal group law. Algebraic cobordism is endowed with first Chern class
operators associated to line bundles, whose definition agrees with the one in
Definition 2.9. We recall the formal group law satisfied by these operators.

A formal group law on a commutative ringR is a power seriesFR.u; v/2RŒŒu; v��
satisfying:

(a) FR.u; 0/D FR.0; u/D u.

(b) FR.u; v/D FR.v; u/.

(c) FR.FR.u; v/; w/D FR.u; FR.v; w//.

Thus
FR.u; v/D uC vC

X
i;j>0

ai;ju
ivj ;

where the ai;j 2R satisfy ai;j D aj;i and some additional relations coming from
property (c). We think of FR as giving a formal addition

uCFR v D FR.u; v/:

There exists a unique power series �.u/ 2 RŒŒu�� such that FR.u; �.u//D 0. Set
Œ�1�FRuD �.u/. Composing FR and �, we can form linear combinations

Œn1�FRu1CFR Œn2�FRu2CFR � � � CFR Œnr �FRur 2RŒŒu1; : : : ; ur ��

for ni 2 Z and ui variables.
There exists a universal formal group law FL, and its coefficient ring L is called

the Lazard ring. This ring can be constructed as the quotient of the polynomial ring
ZŒAi;j �i;j>0 by the relations imposed by the three axioms above. The images of
the variables Ai;j in the quotient ring are the coefficients ai;j of the formal group
law FL. It is shown in [Levine and Morel 2007] that ��.Spec k/ is isomorphic as
a graded ring to L with grading induced by letting Ai;j have degree �i � j C 1.
The power series FL.u; v/ is then homogeneous of degree 1 if u and v both have
degree 1.

The formal group law on L describes the first Chern class operators of tensor
products of line bundles:

Qc1.L˝M/D FL.Qc1.L/; Qc1.M//

for any line bundles L and M on any scheme X in Schk .
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7. Operational equivariant cobordism of toric varieties

Let X� be a smooth quasiprojective toric variety corresponding to a fan �. Krishna
and Uma [2013] showed that the T -equivariant cobordism ring of X� is isomorphic
to the ring of piecewise graded power series on the fan �. Our goal here is to show
that, for any fan �, the ring of piecewise graded power series on � is isomorphic
to the operational T -equivariant cobordism ring of X�. When X� is smooth, this
follows from the result of Krishna and Uma by Poincaré duality. For singular X�
we follow the argument of [Payne 2006] in the case of Chow theory to reduce to
the smooth case.

We use the standard notation for toric varieties [Fulton 1993]. Let N Š Zn be
a lattice. It determines a split torus T with character lattice M D Hom.N;Z/. A
toric variety X� is defined by a fan � in N .

Every quasiprojective toric variety X� with torus T is in the category T -Schk ,
since each line bundle on such variety admits a T -linearization. We will write
�T� .X�/ for the T -equivariant cobordism group of X�. For a smooth X� we also
use the cohomological notation ��T .X�/D�

T
dimX���

.X�/. The operational T -
equivariant cobordism ring is denoted��T .X�/. For smoothX�, the two definitions
of ��T .X�/ are identified via Poincaré duality.

7A. Graded power series rings. We start by recalling some notions from [Krishna
and Uma 2013].

LetAD
L
i2ZAi be a commutative graded ring. The graded power series ring is

AŒŒt1; t2; : : : ; tn��gr D
M
d2Z

Sd :

Here Sd is the group of degree-d homogeneous power series
P
I aI t

I , where
the sum runs over multi-indices I D .i1; : : : ; in/ 2 Zn

�0, tI D t
i1
1 � � � t

in
n , and

aI 2 Ad�i1�����in . This ring can be viewed as the inverse limit in the category of
commutative graded rings

AŒŒt1; t2; : : : ; tn��gr Š lim
 ��j

AŒt1; : : : ; tn�=.t
j
1 ; : : : ; t

j
n /:

Let us also recall the topological tensor product. Given two inverse limits of
graded A-modules B D lim

 ��j
Bj and C D lim

 ��j
Cj , define

B y̋A C D lim
 ��j

.Bj ˝A Cj /:

(All limits are in the category of graded A-modules, hence the tensor product is
again a graded A-module.) Consider now the case where C D AŒŒt1; t2; : : : ; tn��gr

and B is a limit of graded A-algebras. We may then identify

B y̋AAŒŒt1; t2; : : : ; tn��gr D BŒŒt1; t2; : : : ; tn��gr:
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Let T be a torus determined by a lattice N , and let �1; : : : ; �n be a basis for the
dual lattice M . It is shown in [Krishna 2012] that the equivariant cobordism ring
of a point with trivial T -action is isomorphic to

��T .Spec k/Š LŒŒt1; : : : ; tn��gr; (7-1)

with ti corresponding to the first Chern class transformation QcT1 .L�i / of the equi-
variant line bundle L�i . Since this ring depends on the lattice M only, we will
write it as LŒŒM ��gr (see Section 7D for a presentation of ��T .Spec k/ Š LŒŒM ��gr

functorial in M and independent of the choice of a basis for M ).
We will need a slight generalization of the isomorphism (7-1). First recall that,

given a closed subgroupH �G, there is a natural change of groups homomorphism
� W��G.X/!��H .X/ for any smooth X in G-Schk .

Lemma 7.1. Let X be a smooth scheme in G-Schk , and let T act trivially on X .
Then there is an isomorphism

��G�T .X/Š�
�
G.X/ y̋ L LŒŒM ��gr D�

�
G.X/ŒŒM ��gr:

This isomorphism is compatible with lci pullbacks and change of groups in the follow-
ing sense. Let f W Y !X be an lci morphism between smooth schemes in G-Schk
and let H �G be a closed subgroup. Then the following diagrams commute:

��G�T .X/
f �

//

Š

��

��G�T .Y /

Š

��

��G.X/ŒŒM ��gr // ��G.Y /ŒŒM ��gr

��G�T .X/
�

//

Š

��

��H�T .X/

Š

��

��G.X/ŒŒM ��gr // ��H .X/ŒŒM ��gr

Here the lower horizontal maps are the maps induced on the tensor product by
the identity on LŒŒM ��gr and the maps f �, � on the other factor. (Equivalently, the
maps are f � and � applied to the coefficients of power series.)

Proof. We may assume that dimT D 1. Let

��G.X/D lim
 ��j

��.X �G Uj /;

where f.Vj ; Uj /g is a good system of representations of G. Let T act on Aj D kj

diagonally. Then we may choose f.Aj ;Aj n f0g/g as a good system of representa-
tions for T . Now,

��G�T .X/D lim
 ��j

��.X �G�T .Uj �Aj n f0g//

D lim
 ��j

��..X �G Uj /�Pj�1/

D lim
 ��j

��.X �G Uj /˝L LŒt �=.tj /

D��G.X/ y̋ L LŒŒt ��gr:
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In the third equality we used the projective bundle formula [Levine and Morel 2007]

��.Z �Pn/Š��.Z/Œt �=.tnC1/;

for any smooth scheme Z. The compatibility of each step with the change of group
homomorphisms and the compatibility of the projective bundle isomorphism with
lci pullbacks W !Z give the compatibility statement of the lemma. �

7B. Piecewise graded power series on �. Consider now a toric varietyX�. There
is a one-to-one correspondence between cones � 2� and T -orbits in X�. Let O�
be the orbit corresponding to a cone � . Then the stabilizer (of a point) of O� is
the subtorus T� � T corresponding to the sublattice N� D Span � \N �N . The
Morita isomorphism [Krishna and Uma 2013] then gives

��T .O� /D�
�
T .T �

T� Spec k/Š��T� .Spec k/:

We set S� D��T .O� /Š�
�
T�
.Spec k/. When � is a face of � , we have the inclusion

of latticesN� �N� , giving rise to the inclusion of tori T� �T� ; the change of groups
homomorphism then defines the restriction map S� ! S� . Let S D��T .Spec k/.
The rings S� and S� are graded S-algebras and the restriction map S� ! S� is a
morphism of graded S -algebras.

A piecewise graded power series on � is a collection .a� 2 S� /�2� such that
a� restricts to a� whenever � � � . Let PPS.�/ be the graded S-algebra of all
piecewise graded power series on �. Similarly, let PPS.St �/ be the graded S-
algebra of piecewise graded power series on St � D f� 2 � j � � �g, that is,
collections .a� 2 S� /�2St� such that a� restricts to a� for � � � 2 St �.

7C. Operational equivariant cobordism of toric varieties. The inclusion map i� W
O� ,!X� is an lci morphism whenX� is smooth; hence there exists a pullback map

i�� W�
�
T .X�/!��T .O� /D S� :

Theorem 7.2 [Krishna and Uma 2013]. Let X� be a smooth quasiprojective toric
variety. Then the morphism of S -algebras

��T .X�/
.i�� /
����!

Y
�2�

S�

is injective and the image is equal to the S-algebra PPS.�/ of piecewise graded
power series on �.

In the proof of Krishna and Uma, the group ��T .X�/ stands for the cohomologi-
cal notation of �TdimX���

.X�/ and the maps i�� are lci pullbacks. We claim that
the same statement is true for general X� when ��T .X�/ stands for the operational
cobordism ring and i�� is the pullback morphism in the operational theory.
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Theorem 7.3. Let X� be a quasiprojective toric variety. Then the morphism of
S -algebras

��T .X�/
.i�� /
����!

Y
�2�

S�

is injective and the image is equal to the S-algebra PPS.�/ of piecewise graded
power series on �.

Proof. We prove the theorem by induction on dimX�. In the inductive proof we
will need a slightly stronger statement. Let zT be another torus and zT ! T a split
surjective group homomorphism zT Š T � T 0 from some torus T 0. Let zT act on
X� via the homomorphism zT ! T . Replacing T with zT , we define as above
zS D ��

zT
.Spec k/, zS� D ��zT .O� /, and the restriction maps zS� ! zS� for � � �

(note that T and zT have the same orbits). We let ePPS.�/ denote the zS algebra of
piecewise graded power series on � defined using the rings zS� . The zS algebra
ePPS.St �/ is defined similarly.

Instead of the theorem, we prove the following stronger statement:

Claim. The morphism

��
zT
.X�/

.i�� /
����!

Y
�2�

zS�

is injective and the image is equal to the graded zS -algebra ePPS.�/.

Let us first check the claim for smooth X�. The statement of Theorem 7.2 can
be restated as saying that the following sequence is exact:

0 �!��T .X�/
.i�� /
����!

Y
�2�

S� �
Y
�;�2�

S�\� :

Here the last two maps are constructed from restrictions S�!S�\� and S�!S�\� .
Let us write zT ŠT �T 0, where T 0 has character latticeM 0. Tensoring the sequence
with LŒŒM 0��gr, we get the exact sequence

0!��T .X�/ŒŒM
0��gr

.i�� /
����!

Y
�2�

S� ŒŒM
0��gr �

Y
�;�2�

S�\� ŒŒM
0��gr:

The maps in this sequence are the old maps applied to coefficients of power series.
From Lemma 7.1 we know that this sequence is isomorphic to the sequence

0!��
zT
.X�/

.i�� /
����!

Y
�2�

zS� �
Y
�;�2�

zS�\� ;

where the maps are again lci pullbacks and change of group homomorphisms. This
proves the claim in the case of smooth X�.
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When X� is singular, we resolve its singularities by a sequence of star subdivi-
sions of �:

X� �X�0  � � � �  �X�00 :

We may assume by induction on the number of star subdivisions that the claim
holds for X�0 . The morphism f WX�0 !X� is the blowup of X� along a closed
subscheme C �X� with support jC j equal to the orbit closure V� DO� , where
� 2� is the cone containing the subdivision ray in its relative interior. Let � 2�0

be the new ray. Then the exceptional divisor E D f �1.C / has support jEj D V�.
The morphism f is a birational envelope. In order to use Theorem 6.2, we need to
identify ��

zT
.C /;��

zT
.E/ and the pullback map between them.

Lemma 7.4. For any 0¤ � 2�, the map

��
zT
.V�/

.i�� /
����!

Y
�2St.�/

zS�

is injective and the image is equal to the graded zS -algebra ePPS.St�/.

Proof. The orbit closure V� is again a toric variety corresponding to the fan ��
that is the image of St� in N=.Span� \N/. There is a split surjection from the
torus T (and hence also from zT ) to the big torus in V� . The result now follows by
induction on the dimension of the toric variety. �

We can also apply the previous lemma to �2�0, to get that��
zT
.V�/ is isomorphic

to ePPS.St �/. Moreover, since by assumption we know the claim for X�0 , the
pullback map ��

zT
.X�0/! ��

zT
.V�/ is the restriction of piecewise power series

ePPS.�0/ ! ePPS.St �/.
Next we describe the pullback morphism ��

zT
.V�/!��

zT
.V�/. Note that every

cone � 2 St � lies in some cone of � 2 St� , and hence we have the restriction map
zS� ! zS� . These maps combine to give a well-defined pullback map of piecewise
graded power series ePPS.St�/!ePPS.St �/.

Lemma 7.5. The pullback morphism

��
zT
.V�/ŠePPS.St�/!��

zT
.V�/ŠePPS.St �/

is the pullback of piecewise graded power series.

Proof. Define a map � W�0!� so that �.�/ is the smallest cone in� containing � .
Then the map f WX�0 !X� takes O� onto O�.�/. The pullback morphism

��
zT
.O�.�//D zS�.�/!��

zT
.O� /D zS�

is the restriction of power series.
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Consider the commutative diagram

��
zT
.V�/ //

Q
�2St��

�
zT
.O� /

��
zT
.V�/

OO

//
Q
�2St� �

�
zT
.O� /

OO

where all maps are pullback morphisms. The right vertical map sends .a� / to
.b� / such that b� is the restriction of a�.�/; this map restricts to the pullback of
piecewise power series ePPS.St�/!ePPS.St �/, which proves the lemma. �

To finish the proof of the claim, we apply Theorem 6.2 with S1 D C red D V�
and E1 D Ered D V�. Since the pullback map ��

zT
.V�/! ��

zT
.V�/ is injective,

Theorem 6.2 implies that we have a Cartesian diagram, with all maps pullbacks:

��
zT
.X�/

��

// ��
zT
.V�/

��

��
zT
.X�0/ // ��

zT
.V�/

The following diagram of piecewise power series and pullback maps is clearly
Cartesian:

ePPS.�/ //

��

ePPS.St�/

��

ePPS.�0/ // ePPS.St �/

The first diagram maps to the second one by the pullback maps i�� . This implies
that ��

zT
.X�/ŠePPS.�/. �

7D. Piecewise graded exponential power series. We give in this subsection a
canonical presentation of the ring

��T .Spec k/Š LŒŒM ��gr

that is functorial in M and independent of the choice of a basis for M . This leads
to the description of ��T .X�/ as the algebra of piecewise graded exponential power
series, similar to the case of equivariant K-theory [Anderson and Payne 2015]. An
even more general construction of the formal group ring RŒŒM��F was given in
[Calmès et al. 2013] for an arbitrary ring R with a formal group law F .
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Let M be the character lattice of a torus T , and define

LŒŒM ��gr D
M
d

Y
k

Ld�k˝SymkM:

This ring is (noncanonically) isomorphic to the graded power series ring in rank.M/

variables.
For any formal group law F on a ring R there exists a unique power series

eF .x/D xC b2x
2
C b3x

3
C � � � 2RŒŒx��gr˝Q;

called the exponential series, such that

F.eF .u/; eF .v//D eF .uC v/:

The series eF .x/ is homogeneous of degree 1. (See [Levine and Morel 2007,
Lemma 4.1.29] for the construction of the inverse power series lF .x/.) For the
additive group law F.u; v/D uC v, we have eF .x/D x. For the multiplicative
group law F.u; v/D uC vC buv,

eF .x/D xC b
x2

2Š
C b2

x3

3Š
C � � � :

We consider the exponential power series e.x/ for the formal group law FL on L.
The map

e WM ! LŒŒM ��gr˝Q

that sends u to e.u/ satisfies the equality FL.e.u/; e.v// D e.uC v/. We get a
canonical isomorphism

LŒŒM ��gr˝QŠ�T .Spec k/˝Q;

identifying e.u/ with the first Chern class transformation QcT1 .Lu/. The integral
cobordism ring �T .Spec k/ is then canonically isomorphic to the subring of
LŒŒM ��gr˝Q consisting of graded power series in e.u/ for u 2M and coefficients
in L. (Here we need the fact that the additive group L is a free abelian group and
hence embeds in L˝Q.)

The construction of the ring of graded exponential power series is functorial inM .
Indeed, a homomorphism of lattices M !M 0 gives rise to the ring homomorphism
LŒŒM ��gr! LŒŒM 0��gr, such that the diagram

M
e
//

��

LŒŒM ��gr˝Q

��

M 0
e
// LŒŒM 0��gr˝Q
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is commutative. It follows that graded exponential power series are mapped to
graded exponential power series. This corresponds to the pullback map

�T .Spec k/!�T 0.Spec k/:

Theorem 7.3 now states that the equivariant operational cobordism ring of X�
is canonically isomorphic to the ring of piecewise graded exponential power series
on �.
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