Vol. 9, No. 7, 2015

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Calculabilité de la cohomologie étale modulo $\ell$

David A. Madore and Fabrice Orgogozo

Vol. 9 (2015), No. 7, 1647–1739
Abstract

Soient X un schéma algébrique sur un corps algébriquement clos et un nombre premier inversible sur X. D’après le théorème 1.1 de (SGA 41 2, Th. finitude), les groupes de cohomologie étale Hi(X, ) sont de dimension finie. Utilisant une variante -adique des bons voisinages d’Artin et des résultats élémentaires sur la cohomologie des pro- groupes, on exprime la cohomologie de X comme colimite bien contrôlée de celle de topos construits sur des BG, où les G sont des -groupes finis calculables. On en déduit que les nombres de Betti modulo  de X sont algorithmiquement calculables (au sens de Church–Turing). La première partie du texte est consacrée à la démonstration de ce fait et de quelques compléments naturels. Elle s’appuie sur les outils de la seconde partie, dédiée à la géométrie algébrique effective.

Let X be an algebraic scheme over an algebraically closed field and a prime number invertible on X. According to Theorem 1.1 of (SGA 41 2, Th. finitude), the étale cohomology groups Hi(X, ) are finite-dimensional. Using an -adic variant of Artin’s good neighborhoods and elementary results on the cohomology of pro- groups, we express the cohomology of X as a well controlled colimit of that of toposes constructed on BG where the G are computable finite -groups. From this, we deduce that the Betti numbers modulo  of X are algorithmically computable (in the sense of Church and Turing). The proof of this fact, along with certain related results, occupies the first part of this paper. This relies on the tools collected in the second part, which deals with computational algebraic geometry.

Keywords
cohomologie étale, cohomologie galoisienne, descente cohomologique, suite spectrale, schéma simplicial, groupe profini, espace d'Eilenberg–MacLane, voisinage d'Artin, champ algébrique, gerbe, géométrie algébrique effective, calculabilité, étale cohomology, Galois cohomology, cohomological descent, spectral sequence, simplicial scheme, profinite group, Eilenberg–MacLane space, Artin's neighborhood, stack, effective algebraic geometry, computability
Mathematical Subject Classification 2010
Primary: 14F20
Secondary: 03D99, 12G05, 12Y05, 13P10, 14A20, 14F35, 18G30, 20E18, 55P20, 55T05
Milestones
Received: 16 October 2014
Revised: 16 April 2015
Accepted: 28 April 2015
Published: 22 September 2015
Authors
David A. Madore
INFRES/CNRS LTCI
Institut Mines-Télécom, Télécom ParisTech
75013 Paris
France
Fabrice Orgogozo
Centre de mathématiques Laurent Schwartz
CNRS, École polytechnique
91128 Palaiseau
France