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G-valued crystalline representations
with minuscule p-adic Hodge type

Brandon Levin

We study G-valued semistable Galois deformation rings, where G is a reductive
group. We develop a theory of Kisin modules with G-structure and use this to
identify the connected components of crystalline deformation rings of minus-
cule p-adic Hodge type with the connected components of moduli of “finite flat
models with G-structure”. The main ingredients are a construction in integral
p-adic Hodge theory using Liu’s theory of (¢, é)-modules and the local models
constructed by Pappas and Zhu.
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1. Introduction

1.1. Overview. One of the principal challenges in the study of modularity lifting
or, more generally, automorphy lifting via the techniques introduced in [Taylor and
Wiles 1995] is understanding local deformation conditions at £ = p. Kisin [2009]
introduced a ground-breaking new technique for studying one such condition, flat
deformations, which led to better modularity lifting theorems. Kisin [2008] ex-
tended those techniques to construct potentially semistable deformation rings with
specified Hodge—Tate weights. In this paper, we study Galois deformations valued
in a reductive group G and extend Kisin’s techniques to this setting. In particular,
we define and prove structural results about “flat” G -valued deformations.

Let G be a reductive group over a Z ,-finite flat local domain A with connected
fibers. Let [ be the residue field of A and F := A[l1/p]. Let K/Q, be a finite ex-
tension with absolute Galois group ['x and fix a representation 7 : 'y — G(F). The

MSC2010: primary 11S20; secondary 14L.15, 14F30.
Keywords: Galois representation, p-adic Hodge theory, finite flat group scheme, local model.
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(framed) G-valued deformation functor is represented by a complete local Noether-
ian A-algebra R . For any geometric cocharacter p of Res( K®q, F)/F G, there
exists a quotient RSt I (resp. Rcm’”“ ) of RY 7 Whose points over finite extensions

F’/F are semistable (resp. crystallme) representations with p-adic Hodge type u
(see [Balaji 2012, Theorem 3.0.12]).

When G = GL, and p is minuscule, R it appears the thesis changed is
a quotient of a flat deformation ring. For modularity lifting, it is important to
know the connected components of Spec Rcm **[1/p]. Intuitively, Kisin’s [2009]
technique is to resolve the flat deformation rmg by “moduli of finite flat models”
of deformations of 7. When K /Q, is ramified, the resolution is not smooth, but its
singularities are relatively mild, which allowed for the determination of the con-
nected components in many instances when G = GL, [Kisin 2009, Propositions
2.5.6 and 2.5.15]. Kisin’s technique extends beyond the flat setting (for w arbi-
trary), where one resolves deformation rings by moduli spaces of integral p-adic
Hodge theory data called G-modules of finite height, also known as Kisin modules.

In this paper, we define a notion of Kisin module with G-structure or, as we call
them, G-Kisin modules (Definition 2.2.7) and we construct a resolution

cris,

CF X%ris’”’ — Spec Rc-m

where O is a projective morphism and ®[1/ p] is an isomorphism (see Propositions
2.3.3 and 2.3.9). The same construction works for R “ as well. The goal then
is to understand the singularities of X IS The natural generalization of the flat
condition for GL;, to an arbitrary group G is minuscule p-adic Hodge type u. A
cocharacter u of a reductive group H is minuscule if its weights when acting on
Lie H lie in {—1,0, 1} (see Definition 4.1.1 and discussion afterward). Our main
theorem is a generalization of the main result of [Kisin 2009] on the geometry
of X ;HS’“ for G reductive and p minuscule:

Theorem 4.4.1. Assume p 1 (G), where G is the derived subgroup of G.
Let j be a minuscule geometric cocharacter of Res(kgq , F)/F GFr. Then XEm’M

is normal and X crisi & A F) is reduced, where Ay, is the ring of mtegers of
the reflex field of .

When G = Gszg, this is a result of Broshi [2008]; also, this is a stronger result
than in [Levin 2013], where we placed a more restrictive hypothesis on p (see
Remark 1.1.1). The significance of Theorem 4.4.1 is that it allows one to identify
the connected components of Spec Rcm’”“ [1/p] with the connected components
of the fiber in X S over the closed. point of Spec RC-rls , a projective scheme
over [, (see Corollary 4.4.2). This identification led to the successful determina-
tion of the connected components of Spec RC-HS’M [1/ p] in the case when G = GL,
[Kisin 2009; Gee 2006; Imai 2010; 2012; Hellmann 2011]. Outside of GL,,
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relatively little is known about the connected components of these deformations
rings without restricting the ramification in K.
When K /Q, is unramified, we have a stronger result:

Theorem 4.4.6. Assume K /Q is unramified, p > 3, and p4m1(G™). Then the
cris, (b
n
[1/p] is connected.

universal crystalline deformation ring R
cris, b
]

is formally smooth over Ay, . In
particular, Spec R

Remark 1.1.1. In [Levin 2013], we made the assumption on the cocharacter  that
there exists a representation p : G — GL(V') such that pou is minuscule. This extra
hypothesis on @ excluded most adjoint groups like PGL,, as well as exceptional
types like E¢ and E7, both of which have minuscule cocharacters. One can weaken
the assumptions in Theorem 4.4.6 if one assumes this stronger condition on u.

Remark 1.1.2. The groups 71 (G%") and 71(G?) appearing in Theorems 4.4.1
and 4.4.6 are the fundamental groups in the sense of semisimple groups. Note that
71(G%") is a subgroup of 71 (G). The assumption that p 4 1 (G%") insures that
the local models we use have nice geometric properties. The stronger assumption
in Theorem 4.4.6 that p } 71 (G) is probably not necessary and is a byproduct of
the argument, which involves reduction to the adjoint group.

There are two main ingredients in the proof of Theorem 4.4.1 and its appli-
cations, one coming from integral p-adic Hodge theory and the other from local
models of Shimura varieties. In Kisin’s original construction, a key input was an
advance in integral p-adic Hodge theory, building on work of Breuil, which allows
one to describe finite flat group schemes over Ok in terms of certain linear algebra
objects called Kisin modules of height in [0, 1] [Kisin 2006; 2009]. More precisely,
then, X ;HS’“ is a moduli space of G-Kisin modules with “type” w. Intuitively, one
can imagine X ™" as a moduli of finite flat models with additional structure.

The proof of Theorem 4.4.1 uses a recent advance of Liu [2010] in integral
p-adic Hodge theory to overcome a difficulty in identifying the local structure
of X ;m’u . Heuristically, the difficulty arises because for a general group G one
cannot work only in the setting of Kisin modules of height in [0, 1], where one
has a nice equivalence of categories between that category and the category of
finite flat group schemes. Beyond the height-in-[0, 1] situation, the Kisin mod-
ule only remembers the Galois action of the subgroup I'os C 'y which fixes
the field K(z'/?, 7Y/ 1’2, ...) for some compatible system of p-power roots of
a uniformizer w of K.

Liu [2010] introduced a more complicated linear algebra structure on a Kisin
module, called a (¢, 6)-m0dule, which captures the action of 'k, the full Galois
group. We call them (¢, f‘)—modules to avoid confusion with the group G. Let
A be a finite local A-algebra which is either Artinian or flat. Our principal result
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(Theorem 4.3.6) says roughly that, if p : I'ee — G(A) has “type” wu, i.e., comes
from a G-Kisin module (P4, ¢4) over A of type u with  minuscule, then there
exists a canonical extension p : 'y — G(A) and, furthermore, if A4 is flat over Z,
then p[1/ p] is crystalline. This is rough in the sense that what we actually prove is
an isomorphism of certain deformation functors. As a consequence, we get that the
local structure of X <L at a point (P, grr) € X; ST (') is smoothly equivalent
to the deformation group01d D“ of Pr with type u.

To prove Theorem 4.4.1, one studles the geometry of DM Here, the key input
comes from the theory of local models of Shimura Varletles A local model is a
projective scheme X over the ring of integers of a p-adic field F such that X is sup-
posed to étale-locally model the integral structure of a Shimura variety. Classically,
local models were built out of moduli spaces of linear algebra structures. Rapoport
and Zink [1996] formalized the theory of local models for Shimura varieties of PEL
type. Subsequent refinements of these local models were studied mostly on a case
by case basis by Faltings, Gortz, Haines, Pappas, and Rapoport, among others.

Pappas and Zhu [2013] define, for any triple (G, P, t), where G is a reductive
group over I (which splits over a tame extension), P is a parahoric subgroup,
and p is any cocharacter of G, a local model M(u) over the ring of integers of
the reflex field of . Their construction, unlike previous constructions, is purely
group-theoretic, i.e., it does not rely on any particular representation of G. They
build their local models inside degenerations of affine Grassmannians extending
constructions of Beilinson, Drinfeld, Gaitsgory, and Zhu to mixed characteristic.
The geometric fact we will use is that M (u) is normal with special fiber reduced
[Pappas and Zhu 2013, Theorem 0.1].

The significance of local models in this paper is that the singularities of X cris,
are smoothly equivalent to those of a local model M(u) for the Weil- restrlcted
group Res(g g, F)/F GF. This equivalence comes from a diagram of formally
smooth morphisms (3-3-9-2):

~ (c0),
D([F)M

/ \ (1-1-2-1)

Dy, Do,
which generalizes constructions from [Kisin 2009, Proposition 2.2.11; Pappas and
Rapoport 2009, §3]. The deformation functor D ’“QLE is represented by the completed
local ring at an F-point of M(w). Intuitively, the above modification corresponds
to adding a trivialization to the G-Kisin module and then taking the “image of
Frobenius”. We construct the diagram (1-1-2-1) in Section 3 with no assumptions

on the cocharacter u (to be precise, D%F is deformations of type less than or equal
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to wu in general). It is intriguing to wonder whether D%F and diagram (1-1-2-1)
have any relevance to studying higher-weight Galois deformation rings, i.e., when
M is not minuscule.

As a remark, we usually cannot apply [Pappas and Zhu 2013] directly, since the
group Res(x g, , F)/F G will generally not split over a tame extension. In [Levin
2013], we develop a theory of local models following Pappas and Zhu’s approach
but adapted to these Weil-restricted groups (for maximal special parahoric level).
These results are reviewed in Section 3.2 and are studied in more generality in
[Levin 2014].

We now a give brief outline of the article. In Section 2, we define and develop
the theory of G-Kisin modules and construct resolutions of semistable and crys-
talline G-valued deformation rings (Propositions 2.3.3 and 2.3.9). This closely
follows the approach of [Kisin 2008]. The proof that “semistable implies finite
height” (Proposition 2.3.13) requires an extra argument not present in the GL,, case
(Lemma 2.3.6). In Section 3, we study the relationship between deformations of
G-Kisin modules and local models. We construct the big diagram (Theorem 3.3.3)
and then impose the p-type condition to arrive at the diagram (3-3-9-2). We also
give an initial description of the local structure of X Crisl in Corollary 3.3.15.
Section 4.2 develops the theory of (¢, F) modules with G structure and Section 4.3
is devoted to the proof of our key result (Theorem 4.3.6) in integral p-adic Hodge
theory. In the last section, Section 4.4, we prove Theorems 4.4.1 and 4.4.6, which
follow relatively formally from the results of Sections 3.3 and 4.3.

1.2. Notations and conventions. We take F to be our coefficient field, a finite
extension of @,. Let A be the ring of integers of F with residue field F. Let
G be a reductive group scheme over A with connected fibers and / Rep A(G) the
category of representations of G on finite free A-modules. We will use V' to denote
a fixed faithful representation of G, i.e., V € / Rep A(G) such that G — GL(V) is
a closed immersion. The derived subgroup of G will be denoted by G and its
adjoint quotient by G4,

All G-bundles will be with respect to the fppf topology. If X is a A-scheme, then
GBun(X) will denote the category of G-bundles on X. We will denote the trivial
G-bundle by €°. For any G-bundle P on a A-scheme X and any W € / Rep A(G),
P (W) will denote the pushout of P with respect to W (see the discussion be-
fore Theorem 2.1.1). Let F be an algebraic closure of F. For a linear algebraic
F-group H, X, (H) will denote the group Hom(Gy,, H ) of geometric cocharac-
ters. For 1 € X«(H), [u] will denote its conjugacy class. The reflex field Fj,) of
[1] is the smallest subfield of F over which the conjugacy class [] is defined.

If " is a profinite group and B is a finite A-algebra, then f Repp (I") will be
the category of continuous representations of I' on finite projective B-modules
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where B is given the p-adic topology. More generally, GRepp (I") will denote the
category of pairs (P, n) where P is a G-bundle over Spec B and n: I' — Autg(P)
is a continuous homomorphism.

Let K be a p-adic field with ring of integers Og and residue field k. Denote its
absolute Galois group by I'x. We furthermore take W := W (k) and Ko := W[1/ p].
We fix a uniformizer 7 of K and let E (1) the minimal polynomial of & over Kj.
Our convention will be to work with covariant p-adic Hodge theory functors, so
we take the p-adic cyclotomic character to have Hodge—Tate weight —1.

For any local ring R, we let m g denote the maximal ideal. We will denote the

~

completion of B with respect to a specified topology by B.

2. Kisin modules with G -structure

In this section, we construct resolutions of Galois deformation rings by moduli
spaces of Kisin modules (i.e., G-modules) with G-structure. For GL,, this tech-
nique was introduced in [Kisin 2009] to study flat deformation rings. In [Kisin
2008], the same technique is used to construct potentially semistable deformation
rings for GL,,. Here we develop a theory of G-Kisin modules (Definition 2.2.7).
In particular, in Section 2.4, we show the existence of a universal G-Kisin module
over these deformation rings (Theorem 2.4.2) and relate the filtration defined by
a G-Kisin module to p-adic Hodge type. One can construct G-valued semistable
and crystalline deformation rings with fixed p-adic Hodge type without G-Kisin
modules [Balaji 2012]. However, the existence of a resolution by a moduli space
of Kisin modules allows for finer analysis of the deformation rings; see Section 4.

2.1. Background on G-bundles. All bundles will be for the fppf topology. For
any G-bundle P on a A-scheme X and any W € / Rep A(G), define

PW):=PxO W =(PxW)/~

to be the pushout of P with respect to W. This is a vector bundle on X. This
defines a functor from / Rep, (G) to the category Vecy of vector bundles on X.

Theorem 2.1.1. Let G be a flat affine group scheme of finite type over Spec A
with connected fibers. Let X be a A-scheme. The functor P — {P(W)} from the
category of G-bundles on X to the category of fiber functors (i.e., faithful exact
tensor functors) from f Rep, (G) to Vecy is an equivalence of categories.

Proof. When the base is a field, this is a well-known result [Deligne and Milne
1982, Theorem 3.2] in Tannakian theory. When the base is a Dedekind domain,
see [Broshi 2013, Theorem 4.8] or [Levin 2013, Theorem 2.5.2]. O

We will also need the following gluing lemma for G -bundles:
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Lemma 2.1.2. Let B be any A-algebra. Let f € B be a non-zero-divisor and G be
a flat affine group scheme of ﬁmte type over A. The category of triples (Py, P, Q),
where Py € GBun(Spec Bf) Pe GBun(Spec B) and o is an isomorphism be-
tween Py and P over Spec B 75 1S equivalent to the category of G-bundles on B.

Proof. This is a generalization of the Beauville-Laszlo formal gluing lemma for
vector bundles. See [Pappas and Zhu 2013, Lemma 5.1] or [Levin 2013, Theo-
rem 3.1.8]. O

Leti : H C G be a flat closed A-subgroup. We are interested in the “fibers” of

the pushout map
ix : HBun — GBun

carrying an H-bundle Y to the G-bundle ¥ x G. Let Q be a G-bundle on
a A-scheme §. For any S-scheme X, define Fibp(X) to be the category of
pairs (P,«), where P € HBun(X) and « : i«(P) = Qx is an isomorphism in
GBun(X). A morphism (P,«) — (P’,a’) isamap f : P — P’ of H-bundles
such that o’ 0 i4( f) oa™! is the identity.

Proposition 2.1.3. The category Fibgp (X) has no nontrivial automorphisms for
any S-scheme X. Furthermore, the underlying functor |Fibg| is represented by
the pushout Q xG (G/H). In particular, if G/H is affine (resp. quasiaffine) over S
then |Fibg | is affine (resp. quasiaffine) over X.

Proof. See [Serre 1958, Proposition 9] or [Levin 2013, Lemma 2.2.3]. O

Proposition 2.1.4. Let G be a smooth affine group scheme of finite type over
Spec A with connected fibers.

(1) Let R any A-algebra and I a nilpotent ideal of R. For any G-bundle P on
Spec R, P is trivial if and only if P @ g R/ 1 is trivial.

(2) Let R be any complete local A-algebra with finite residue field. Any G-bundle
on Spec R is trivial.

Proof. For (1), because G is smooth, P is also smooth. Thus, P(R) — P(R/I)
is surjective. A G-bundle is trivial if and only if it admits a section.
Part (2) reduces to the case of R = [ using part (1). Lang’s theorem says that
1 . . . . .
H_ (F, G) is trivial for any smooth connected algebraic group over [ (see [Springer
1998, Theorem 4.4.17]) O

2.2. Definitions and first properties. Let K be a p-adic field with ring of inte-
gers O and residue field k. Set W := W(k) and K¢ := W]1/p]. Recall Breuil
and Kisin’s ring & := Wu] and let E(u) € W[u] be the Eisenstein polynomial
associated to a choice of uniformizer = of K that generates K over Kg. Fix
a compatible system {Jrl/p,nl/pz, ...} of p-power roots of 7 and let Koo =
K(xl/P, zV/P* ). Set Too := Gal(K/Koo).
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Let O¢ denote the p-adic completion of &[1/u]. We equip both O¢ and S with
a Frobenius endomorphism ¢ defined by taking the ordinary Frobenius lift on W
and u — u”. For any Z p-algebra B, let O¢ p := O ®z, Band 6 :=6®z, B.
We equip both of these rings with Frobenii having trivial action on B. Note that
all tensor products are over Z, even though the group G may only be defined over
the A.

Definition 2.2.1. Let B be any A-algebra. For any G-bundle on Spec Og g, we let
¢*(P):= P ®q,_g,0 O¢,p be the pullback under Frobenius. An (O¢ g, ¢)-module
with G-structure is a pair (P,¢p), where P is a G-bundle on SpecO¢ p and
¢p 1 9*(P) = P is an isomorphism. Let GMod&qB be the category of such pairs.

Remark 2.2.2. When G = GL,, GModgg , 1s equivalent to the category of
rank-d étale (Og g, ¢)-modules via the usual equivalence between GL4-bundles
and rank-d vector bundles.

When B is Z -finite and Artinian, the functor 7 defined by
Ts(M,$) = (M @, Ogu)*~"

induces an equivalence of categories between étale (Og, g, ¢)-modules (which are
O, g-projective) and the category of representations of I's; on finite projective
B-modules (see [Kisin 2009, Lemma 1.2.7]). A quasi-inverse is given by

Mp(V):=(V ®z, Oz)".

%Ul‘l
This equivalence extends to algebras which are finite flat over Z,.

Definition 2.2.3. For any profinite group I" and A-algebra B, define GRepg(I")
to be the category of pairs (P, n) where P is a G-bundle over Spec B and, with B
given the p-adic topology, n: I' — Autg (P) is a continuous homomorphism.

In the G-setting, GRepp (I") will play the role of representation of I' on finite
projective B-modules. We have the following generalization of Tp:

Proposition 2.2.4. Let B be any A-algebra which is Z p-finite and either Artinian
or Zp-flat. There exists an equivalence of categories

T6,B : GModg% » — GRepp(I'o)

with a quasi-inverse M . g. Furthermore, for any finite map B — B’ and any
(P,¢p) € GModg}v » there is a natural isomorphism

Te,p'(P®p B') =T p(P)Qp B'.

Proof. Using Theorem 2.1.1, we can give Tannakian interpretations of GModg% »
and GRepp (I'so). The former is equivalent to the category

[/ Rep, (G). Mod4: |®
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of faithful exact tensor functors. The latter is equivalent to the category of faithful
exact tensor functors from 7 Rep,p (G) to f Repp(I'c). We define TG, g (P, ¢p)
to be the functor which assigns to any W € f Rep, (G) the I'no-representation
Tg(P(W),¢pw)). This is an object of GRepp (') because Tp is a tensor exact
functor (see [Broshi 2008, Lemma 3.4.1.6] or [Levin 2013, Theorem 4.1.3]). Sim-
ilarly, one can define M g g which is quasi-inverse to T, g. Compatibility with
extending the coefficients follows from [Kisin 2009, Lemma 1.2.7(3)]. O

Definition 2.2.5. Let B be any Z,-algebra. A Kisin module with bounded height
over B is a finitely generated projective Gp-module Mp together with an iso-
morphism @op, : @*(Mp)[1/E(u)] = Mp[1/E(u)]. We say that (Mg, ¢, ) has
height in [a, b] if

E(u)*Mp > dm, (¢* (M) O Ew)’Mp
as submodules of Mp[1/E (u)].

Let Mod‘é’zh (resp. Modé’t[}a’b]) be the category of Kisin modules with bounded
height (resp. height in [a, b]) with morphisms being & p-module maps respecting
Frobenii. Then Mod%’t[;o’h] is the usual category of Kisin modules with height at
most /1, as in [Brinon and Conrad 2009; Kisin 2006; 2009].

Example 2.2.6. Let S(1) be the Kisin module whose underlying module is G and
whose Frobenius is given by ¢’ VE(u)ps where E(0) = co p. For any Z ,-algebra,
we define G g (1) by base change from Z,, and define O¢ g(1) := &g (1) R@s, 0%, B,
an étale (O¢_ g, ¢)-module.

In order to reduce to the effective case (height in [0, /]), it is often useful to
“twist” by tensoring with Gg(1). For any Mip € Modé’gh and any n € Z, define
Mp (n) by n-fold tensor product with Sp (1) (negative n being tensoring with the
dual). It is not hard to see that if 9 p € Mod%’g"’b ] then Mg (n)e Modé’g""r"’b"r"].

Definition 2.2.7. Let B be any A-algebra. A G-Kisin module over B is a pair
(BB, ¢p), where Bp is a G-bundle on Sp and

by @ (Bp)[1/E@)] = Pp[1/E )]

is an isomorphism of G-bundles. Denote the category of such objects by GModé’zh.

Remark 2.2.8. Unlike the Kisin module for GL,,, G-bundles do not have endomor-
phisms. Additionally, there is no reasonable notion of effective G-Kisin module.
The Frobenius on a G-Kisin module is only ever defined after inverting E (u).
Later, we use auxiliary representations of G to impose height conditions.

The category Modé’zh is a tensor exact category, where a sequence of Kisin
modules
0— My — Mp — My —>0
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is exact if the underlying sequence of & p-modules is exact. For any representation
wel Rep (G), the pushout (P (W), ¢y (W)) is a Kisin module with bounded
height. Using Theorem 2.1.1, one can interpret GModw a5 the category of faith-
ful exact tensor functors from / Rep A(G) to Mod‘p bh

Since E(u) is invertible in Og, there is a natural map GB[1/E(u)] — O, p for
any Z p-algebra B. This induces a functor

Tc : GMod%™" — GModf,
for any A-algebra B.

Definition 2.2.9. Let B be any A-algebra and let Pg € GMod . A G-Kisin

lattice of Pp is a pair (Bp, ) where Pp € GMod‘p oM and a : TG (Bp) = Pp is
an isomorphism.

From the Tannakian perspective, a G-Kisin lattice of P is equivalent to Kisin
lattices My in P (W) for each W € / Rep A (G) functorial in W and compatible
with tensor products. Furthermore, we have the following, which says that the
bounded height condition can be checked on a single faithful representation.

Proposition 2.2.10. Let Pg € GMod(p . A G-Kisin lattice of Ppg is equivalent
to an extension ‘P of the bundle Pp to Spec Gp such that, for a single faithful
representation V € © Repp (G),

PBp(V) C Pp(V)
is a Kisin lattice of bounded height.

Proof. The only claim which does not follow from unwinding definitions is that,
if we have an extension Pp such that Pp (V) C Pp(V) is a Kisin lattice for a
single faithful representation V, then Pp (W) C Pp(W) is a Kisin lattice for all
representations W of G.

By [Levin 2013, Theorem C.1.7], any W € fRepA(G) can be written as a
subquotient of direct sums of tensor products of V' and the dual of V. It suffices
then to prove that bounded height is stable under duals, tensor products, quotients,
and saturated subrepresentations.

Duals and tensor products are easy to check. For subquotients, let

0—>Mp—>Np—>Lp—0

be an exact sequence of étale (O¢ g, ¢)-modules. Suppose that the sequence is
induced by an exact sequence

0—->Mp—>MNg —>Lg—>0

of projective Sp-lattices. Assume g has bounded height with respect to ¢ .
By twisting, we can assume 9ip has height in [0, A].
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Since Mp = Mp NNp, Mp is Ppr,-stable. Similarly, £p is ¢r ,-stable. Con-
sider the diagram

0—— @*Mp) — ¢*Np) —— ¢* (L) —— 0

l(bMB J/qﬁNB l¢LB

0 Mp Np LB 0.

All the linearizations are injective because they are isomorphisms at the level of
0%, g-modules. By the snake lemma, the sequence of cokernels is exact. If E (u)"
kills Coker(¢n ), then it kills Coker(¢as,) and Coker(¢p,) as well. Thus, Mp
and P both have height in [0, 4] whenever Mg does. O

Definition 2.2.11. For any B as in Proposition 2.2.4, define
To.65 : GMod%™" — GRepp(I'so)
to be the composition 7g,s, := Tg,B° YG-
We end this section with an important full faithfulness result:

Proposition 2.2.12. Assume B is finite flat over A. Then the natural extension
map

. ¢,bh %

Yo .GModGB — GMod@(&B

is fully faithful.

Proof. This follows from the full faithfulness of Y, for all n > 1 by considering
a faithful representation of G. When B = Z,,, this is [Brinon and Conrad 2009,
Proposition 11.2.7]. One can reduce to this case by forgetting coefficients, since
any finitely generated projective G p-module is finite free over G. O

2.3. Resolutions of G-valued deformations rings. Fix a faithful representation
V of G over A and integers a, b with a < b. We will use V and a, b to impose
finiteness conditions on our moduli space.

Definition 2.3.1. Let B be any A-algebra. We say that a G-Kisin lattice g in
(PB,¢py) € GModg% ,, has height in [a, b] if Bp (V) in Pp (V) has height in [a, D].

(4
Og.4°

For any finite local Artinian A-algebra A and any (P4, ¢p,) € GMod
sider the moduli problem over Spec A4, for any A-algebra B,

con-

X2 (B) := {GKisin lattices in P4 ®q,_, Og, 5 with height in [a. b]}/ = .

Theorem 2.3.2. Assume that P4 is a trivial bundle over Spec O¢ 4. The functor
X }fA’b] is represented by a closed finite-type subscheme of the affine Grassmannian
Grg over Spec A, where G' is the Weil restriction Reswe,,A)/A G.
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Proof. By Proposition 2.2.10, XI[fA’b] (B) is the set of bundles over Sp extending
Pp := P4 ®q,_ 4, O¢,p with height in [a, b] with respect to V. We want to identify
this set with a subset of Grg/(B).

Consider the diagram

6 ®z, B —— (W ®z, B)[u]

l l

Ocp —— (W ®z, B)()).

where the vertical arrows are localization at u and the top horizontal arrow is u-adic
completion. The Beauville-Laszlo gluing lemma, Lemma 2.1.2, says that the set
of extensions of Pp to Gp is in bijection with the set of extensions of ﬁB to
Wpg[[u]], where ﬁB is the u-adic completion. This second set is in bijection with
the B-points of the Weil restriction RCS(W@,ZP A)/A Grg, which is isomorphic to
Grg’ by [Richarz 2015, Lemma 1.16] or [Levin 2013, Proposition 3.4.2].

Set My := P4(V). By [Kisin 2008, Proposition 1.3], the functor X 1[;/’117] of
Kisin lattices in M4 with height in [a, b] is represented by a closed subscheme of
GrRes ®2, 4/ AGL(V)- Evaluation at V' induces a map of functors

XpoPl sy, (2-3-2-1)

By Proposition 2.2.10, the subset X 1[:; ’b](B) C Grg/(B) is exactly the preimage
of X377 (B). O

We now extend the construction beyond the Artinian setting by passing to the
limit. Let R be a complete local Noetherian A-algebra with residue field F. Let
n: I'soc = G(R) be a continuous representation.

Proposition 2.3.3. For any n > 1, let ny : I'eo — G(R/m'y) denote the reduction
modulo m'y. From {nn}, we construct a system Mg R/m, (Mn) =: (Py,,, ¢n) in
GModg% Ry Assume that Py, is a trivial G-bundle. There exists a projective
R-scheme  ®

O: X,[,a’b] — Spec R

whose reduction modulo m'y is XI[,‘;’b] foranyn > 1.
n

Proof. By Proposition 2.2.4, there are natural isomorphisms

P77n+1 ®©(

o R/msH] O¢,R/mry = Py

for all n > 1. Since Py, is a trivial G-bundle, all Py, are trivial, by Proposition
2.1.4(1), so we can apply Theorem 2.3.2. Consider then the system

e,
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of schemes over {R/m',}. Since G is reductive, the affine Grassmannian Grg is
ind-projective [Levin 2013, Theorem 3.3.11]. In particular, any ample line bundle
on Grg will restrict to a compatible system of ample line bundles on {X 1[;:, ’nb]}.
By formal GAGA [EGAIIIl; 1961, Théoreme (5.4.5)], there exists a projective
R-scheme X ,[,a’b] whose reductions modulo m’, are X 1[;1 b1, O

nn

Remark 2.3.4. Unlike for GL,, there are nontrivial G-bundles over Spec F((u)),
which is why we need the assumption in Proposition 2.3.3. If P, admits any
G-Kisin lattice 3;,, then by Proposition 2.1.4(2) the G-bundle ‘B, is trivial,
since Gf is a semilocal ring with finite residue fields. Thus, the assumption in
Proposition 2.3.3 is natural if you are interested in studying I'-representations of
finite height. By Steinberg’s theorem, one can always make Py, trivial by passing
to a finite extension ' of F.

We record for reference the following compatibility with base change:

Proposition 2.3.5. Let f : R — S be a local map of complete local Noetherian
A-algebras with finite residue fields of characteristic p. Let ns be the induced
map Tso — G(S). Then there is a natural map | : X,[I“S’b] — X,g“’b] which makes
the following diagram Cartesian:

Xl r Tyl

L, |

Spec S —— Spec R.

In particular, if R — S is surjective then f' is a closed immersion.

We will now study the projective F'-morphism

®[1/p]: X[#P1[1/p] — Spec R[1/p].

We show it is a closed immersion (this is essentially a consequence of Proposition
2.2.12) and that the closed points of the image are G-valued representations with
height in [a, b] in a suitable sense; see Proposition 2.3.9. Next, we show that, if
n is the restriction of n' : Ty — G(R), then the image of ®[1/p] contains all
semistable representations with n’(V') having Hodge-Tate weights in [a, b]. These
are generalizations of results from [Kisin 2008].

The following lemma will be useful at several key points:

Lemma 2.3.6 (extension lemma). Let G be a smooth affine group scheme over A.
Let C be a finite flat A-algebra and let U be the open complement of the finite set
of closed points of Spec G¢.
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(1) There is an equivalence of categories between G-bundles Q on U and the
category of triples (B*, P,y) where ‘B* is a G-bundle on Spec Sc[1/p],
P is a G-bundle on Spec Og c, and y is an isomorphism of their restrictions
to Spec O¢ c[1/ p].

(2) Assume G is a reductive group scheme with connected fibers. Let V be a faith-
ful representation of G over A. If Q is a G-bundle on U such that the locally
free coherent sheaf Q (V') on U extends to a projective G ¢ -module Mc, then
there exists a unique (up to unique isomorphism) G-bundle Q over Spec S¢
such that Q|U =~ Q and Q(V) =Mc.

Proof. Note that we can write U as the union of Spec S¢[1/u] and Spec S¢[1/ p].
Recall also that O¢ ¢ is the p-adic completion of S¢[1/u]. Since p is a non-
zero-divisor in S¢[l/u], we can apply the gluing lemma, Lemma 2.1.2, to P
and P*[1/u] to construct a G-bundle Q' on Spec S ¢ [1/u] which, by construction,
is isomorphic to P* along Spec Sc[1/u, 1/ p]. The G-bundles B* and Q' glue to
give a bundle Q over U. Each step in the construction is a categorical equivalence.

For part (2), consider the functor |Fibsy.|, which by Proposition 2.1.3 and
[Levin 2013, Theorem C.2.5] is represented by an affine scheme Y. 91¢c defines
a U-point of Fibgy.. Since I'(U, Oy ) = S¢, we deduce that

Homeg. (Spec S¢, Fibgy. ) = Homg. (U, Fibgy,. ).

A S -point of Fibgy. is exactly a bundle Q extending O and mapping to Mc.
A similar argument, using that the Isom-scheme between G-bundles is repre-

sentable by an affine scheme, shows that if an extension exists it is unique up to

unique isomorphism (without any reductivity hypotheses). O

Let B be any finite local F-algebra with residue field F’. Define B to be the
subring of elements which map to 0/ modulo the maximal ideal of B. Let Intp
denote the set of finitely generated O z/-subalgebras C of B such that C[1/p]= B.

Definition 2.3.7. A continuous homomorphism 7 : I'qc — G(B) has bounded
height if there exists a C € Intg and g € G(B) such that

D) ng = gng ! factors through G(C);
() Mg,cOngp) € GModg%, .. admits a G-Kisin lattice of bounded height.

We define height in [a, b] with respect to the chosen faithful representation V' by
replacing bounded height in (2) with height in [a, b].

Lemma 2.3.8. Let B be a finite local Qp-algebra and choose C € Intg and
Mc € Modgé‘.étc. If Mc, considered as an Og-module, has bounded height (resp.
height in [a, b)), then there exists some C' D C in Intg, such that M¢c ®c C’ has
bounded height (resp. height in [a, b]).
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Proof. This is the main content in the proof of part (2) of Proposition 1.6.4 in
[Kisin 2008]. If F' is the residue field of B, then one first constructs a Kisin lattice
Mo, in Mc ®c OF/. The Kisin lattice in M¢c ®c C " is constructed by lifting
Mo ., (the extension to C is required to insure that the lift is ¢-stable). O

Proposition 2.3.9. The morphism © becomes a closed immersion after invert-
ing p. Furthermore, if Spec R%a’b] C Spec R is the scheme-theoretic image of ®,
then, for any finite F-algebra B, a A-algebra map x : R — B factors through R,[f’b]
ifand only if n ® r x B has height in [a, b].

Proof. The map O is injective on C-points for any finite flat A-algebra C, by
Proposition 2.2.12. The proof of the first assertion is then the same as in [Kisin
2008, Proposition 1.6.4].

For the second assertion, say x : R — B factors through R[ b1 Because O[1/p]
is a closed immersion, x : R — B comes from a B-point y of X[ . Any such x
is induced by xc : R — C for some C € Intg. By properness of O, there exists
yc € X (C) such that ®(yc) = xc¢. This implies that n ® g x C has height
in [a, b] as a G-valued representation and hence 7 ® g x B also has height in [a, b]
(see Definition 2.3.7).

Now, let x : R — B be a homomorphism such that g := n® g x B has height in
[a, b] as a G-valued representation. Any homomorphism R — B factors through
some C € Intp, so that np has image in G(C); call this map nc. We claim that
there exists some C’ D C in Intg such that n¢r = n¢ ®¢ C’ has height in [a, b]
and hence x is in the image of X ,[]“’b](B). Essentially, we have to show that if one
Galois stable “lattice” in np has finite height then all “lattices” do. For GL,, this
is Lemma 2.1.15 in [Kisin 2006]. We invoke the GL,, result below.

Since np has height in [a, b], there exists C’ € Intg and g € G(B) such that
n = gnpg~! factors through G(C’) and has height in [a,b]. Enlarging C if
necessary, we assume both n¢ and 7 are valued in G(C). Let Py := M g,c(n)
and Py := M g,c(1'). Then g induces an isomorphism

Py [1/p] = Py [1/p].

Since Pj has a G-Kisin lattice with height in [a, b], we get a bundle Q¢ over
Sc[1/p] extending Py [1/p]. By Lemma 2.3.6(1), P, and Qc glue to give a
bundle Q¢ over the complement of the closed points of Spec Sc.

We would like to apply Lemma 2.3.6(2). Py (V) has height in [a, b] as an
O¢-module by [Kisin 2006, Lemma 2.1.15] since it corresponds to a lattice in
nC(V)[l/p] n'(V)[1/p]. By Lemma 2.3.8, there exists C>Cin Intp such that

Py (V)®c C has height in [a, b] as an @% &-module. Replace C by C. Then, if
M is the unique Kisin lattice in P; (V'), we have

c[1/p10 Py (V) =Mc.
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where 901/ is the unique Kisin lattice in Py(V'). This shows that Q¢ (V') extends
across the closed points, so we can apply Lemma 2.3.6(2) to construct a G-Kisin
lattice of Py.. d

Now, assume that 7 is the restriction to ', of a continuous representation of ',
which we continue to call . Recall the definition of semistable for a G-valued
representation:

Definition 2.3.10. If B is a finite F-algebra, a continuous representation 71p :
'k — GF(B) is semistable (resp. crystalline) if, for all representations W in
Repr (G F), the induced representation ng(W) on W @ r B is semistable (resp.
crystalline).

Note that because the semistable and crystalline conditions are stable under ten-
sor products and subquotients, it suffices to check these conditions on a single
faithful representation of G .

Remark 2.3.11. Since we are working with covariant functors, our convention will
be that the cyclotomic character has Hodge—Tate weight —1. This is, unfortunately,
opposite to the convention in [Kisin 2008].

The following theorem generalizes [Kisin 2008, Theorem 2.5.5]:

Theorem 2.3.12. Let R be a complete local Noetherian A-algebra with finite
residue field and n : Tk — G(R) a continuous representation. Given any a, b
integers with a < b, there exists a quotient R%a’b]’“ (resp. R;,a’b]’ms) of R,[7a’b] with
the property that, if B is any finite F-algebra and x : R — B a map of A-algebras,
then x factors through R%“’b]’“ (resp. R%a’b]’cns) if and only if nx : T'x — G(B) is
semistable (resp. crystalline) and nx (V') has Hodge-Tate weights in [a, b].

Since the semistable and crystalline properties can be checked on a single faith-
ful representation, the quotients R;a(’ll}])’“ and Rgla(’ll,j%’cm of R constructed by apply-
ing [Kisin 2008, Theorem 2.5.5] to n(V') satisfy the universal property in Theorem
2.3.12 with respect to maps x : R — B, where B is a finite F'-algebra. What remains
is to show that R%a’b]’“ = R'[;?II;])’“ is a quotient of R%“’b], i.e., that “semistable
implies finite height”.

Proposition 2.3.13. Let R and 1 be as in 2.3.12. For any map x : R — B with
B a finite local F-algebra, if the representation 1y is semistable and nx (V') has
Hodge-Tate weights in [a, b], then x factors through R£,“’b].

Proof. By Lemma 2.3.8, there exists C € Intg such that 7, factors through GL(V¢),
hence G(C), and that M¢c := Py (V) admits a Kisin lattice ¢ with height
in [a, b]. By Proposition 2.2.10, it suffices to extend the bundle P, to Spec S¢
such that 3, (V) = Mc.
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We will apply Lemma 2.3.6. Consider a candidate fiber functor §y, for B,
which assigns to any W € / Rep A (G) the unique Kisin lattice of bounded height
in My C Py, (W) = My (as an Og-module, not as an Og c--module). Such a
lattice exists since 1, (W) is semistable. The difficulties are that 21y may not
be Oy c/-projective and that it is not obvious whether § . is exact. It can happen
that a nonexact sequence of G-modules can map under T to an exact sequence
of I'so-representations (see [Liu 2012, Example 2.5.6]).

Let B=C][1/p]. By [Kisin 2008, Corollary 1.6.3], My [1/ p] is finite projective
over Sc[1/p] = &p for all W. We claim furthermore that §;, ®s. Sp is exact.
For any exact sequence 0 — W” — W — W’ — 0 in /Rep, (G), we have a
left-exact sequence

0— Mwr[1/p] = Mw(l/p] = Mw[1/p].

Exactness on the right follows from [Levin 2013, Lemma 4.2.22] on the behavior
of exactness for sequences of G-modules. Thus, §,, s G p defines a bundle P 5
over &p. Clearly, ‘B Qs O¢,p = Py, ®q, - O¢,p. By Lemma 2.3.6(1), we geta
bundle Q over U such that Q (W) =My |y. Since My is a projective S -module
by our choice of C, Q extends to a bundle 0 over S¢ by Lemma 2.3.6(2). O

2.4. Universal G-Kisin module and filtrations. For this section, we make a small
change in notation. Let Rp be a complete local Noetherian A-algebra with finite
residue field and let R = Ry[1/p].

Define & R, to be the m g,-adic coppletion of & ®z, Ro. The Frobenius on
& ®z,, Ro extends to a Frobenius on Sg,.

Definition 2.4.1. A (@ Rol1/ p], ¢)-module of bounded height is a finitely gener-
ated projective Sg,[1/ p]-module Mg together with an isomorphism

PR 1" (MR)[1/Eu)] = Mg[1/E(u)].

Let n: 'oo = G(Rp) be continuous representation. If @Cg ,Ro 18 the m g -adic
completion of @% ,Ro» then the inverse limit lim M g g, Imly, () defines a pair
(Py. dy) over Og.x, [Levin 2013, Corollary 2.3.5]. Assumé Ro = RESL. For
any finite F-algebra B and any homomorphism x : Ry — B, there is a unique
G-Kisin lattice in Py, ®g, o x 0%, by Proposition 2.2.12; call it (Px,Px). In
the following theorem, we construct a universal G-bundle over & Rol1/p] with a
Frobenius which specializes to (P, ¢ ) at every x.

Theorem 2.4.2. Assume that Ry = R[a b]. Let B be a ﬁnite F-algebra. The
pair (Py[1/p], ¢y[1/p]) extends to a G bundle ‘Bn over GRO[I/])] together with
a Frobenius

¢, @ (Bl E@)] = By[1/Ew)]
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such that, for any x : Ro[1/p] — B, the base change

(B0 ®& 11/ OB P, O, 11/p.1/E ) OB/ EW)))
is (mx, ¢x)

Proof. Let X, := Xj [a’b] be the projective Rg/ m’}zo—scheme as in Section 4.3.
Take Yy, := Xn Xgpec Ro/m", Spec GRO/m" a projective GRo/m" -scheme. Let
,[7a bl Spec R be the algebralzatlon of hm X, as before. The base change Y

of Xy [a.b] along the map Ry — S Ro has the property that
Y mod m’}eo =Y.

Furthermore, Y is a proper S Ro-SCheme.

Over each Y}, we have a universal G-Kisin lattice (33, ¢, ) with height in [a, b].
By [Levin 2013, Corollary 2.3.5], there exists a G-bundle 33, on Y such that
By, mod m’l’e = PB,. We would like to construct a Frobenius ¢ over Y [1/E (u)]
which reduces to ¢, modulo m’, for each n > 1. A priori, the Frobenius is only
defined over the m g,-adic completion of S Rol1/E(u)], which we denote by S.

We have a projective morphism

Y& — Spec S,

where Y is the base change of Y[1/E(u)] along Spec S - Spec GRO[I/E(M)]
Y is falthfully flat over Y [1/E(u)], since S Rol[1/E(u)] is Noetherian. Define
IsomG = Isomg (¢* (B5). Py) to be the affine finite-type ¥ -scheme of G-bundle
isomorphisms. The compatible system {¢y,} lifts to an element

95 € Isomg (Yg).

We would like to descend $ to a Y [1/E(u)]-point of Isomg. Leti : G — GL(V)
be our chosen faithful representation. Consider the closed immersion

ix : Isomg < IsomgL(y) (@™ (Fyn) (V), By (V).

The image i« (qg) descends toa Y [1/E (u)]-point of Isomgy (1) (@™ (1) (V), By (V)
(twist to reduce to the effective case). Since Y is faithfully flat over Y [1/E(u)],
for any closed immersion Z C Z’ of Y -schemes we have

Z(Y[I/Ew)]) =Z(Yg)NZ'(Y[1/Ew)]).

Applying this with Z’ =Isomg and Z = Isomgy () (@™ (B,)(V), Byp(V)), we get
a universal pair (B, ¢y) over Y and Y [1/E (u)], respectively. Since Rg = Rg’nb],
O[1/p]: X[” b][l/p] — Ryp[1/p] is an isomorphism and the pair ‘B,, =By[1/p]
and ¢, [1 / p] over S Ro[1/p] has the desired properties. O
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We now discuss the notion of p-adic Hodge type for G-valued representation
and relate this to a filtration associated to a G-Kisin module.

Let B be any finite F-algebra. For any representation of I'x on a finite free
B-module Vg, set

Dar(Vg) := (Vg ®q, Bir)'¥,

a filtered (K ®q, B)-module whose associated graded is projective (see [Balaji
2012, Definition 2.1.6, Lemma 2.4.2]). Furthermore, Dg4r defines a tensor exact
functor from the category of de Rham representations on projective B-modules to
the category Filg g, ,  of filtered (K ®q,, B)-modules (see [Balaji 2012, Lemma
2.4.2]). For any field «, Fil, will be the tensor category of Z-filtered vectors spaces
(V,{Fil' V}), where Fil' (V) D Fil' T1(V).

We recall a few facts from the Tannakian theory of filtrations:

Definition 2.4.3. Let H be any reductive group over a field «. For any exten-
sion k' Dk, an H -filtration over k' is a tensor exact functor from Rep, (H) to Fil,.

Associated to any cocharacter v : G, — H,- is a tensor exact functor from
Rep, (H) to graded «’-vector spaces which assigns to each representation W the
vector space W/, with its weight grading defined by the Gy-action through v,
which we denote by w,, (see [Deligne and Milne 1982, Example 2.30]).

Definition 2.4.4. For any H -filtration & over k', a splitting of % is an isomorphism
between gr(%) and w, for some v : Gy, — Hy .

By [Saavedra Rivano 1972, Proposition 1V.2.2.5], all H -filtrations over ' are
splittable. For any given %, the cocharacters v for which there exists an isomor-
phism gr(%) =~ w, lie in the common H (k’)-conjugacy class. If k' is a finite
extension of x contained in i, then the type [vg] of the filtration F is the geometric
conjugacy class of v for any splitting w,, over «’. For any conjugacy class [v] of
geometric cocharacters of H, there is a smallest field of definition, contained in a
chosen separable closure of «, called the reflex field of [v]. We denote this by k).

Let G be as before, so that G is a (connected) reductive group over F, and
let n : 'x — G(B) be a continuous representation which is de Rham. Then Dgr
defines a tensor exact functor from Rep (G r) to Fil K®q, B (see Proposition 2.4.2
in [Balaji 2012]), which we denote by F~.

Fix a geometric cocharacter i1 € X« ((Res K®q, F)/F G) ) and denote its con-
jugacy class by [u]. The cocharacter w is equivalent to a set. (,ul/,)w: xkF of
cocharacters j1y of Gz indexed by @ p-embeddings of K into F.

Definition 2.4.5. Let Fj;;) be the reflex field of [u]. For any embedding v : K — F
over Qp, let pry, : K ®q, F — F denote the projection. If F’ is a finite exten-
sion of Fy,, a G-filtration & over K ®q, F’ has type [u] if pry (F ®F,i F)



1760 Brandon Levin

has type [jiy] for any Fj,j-embedding i : F' — F. A de Rham representation
n:Tx — G(F’) has p-adic Hodge type ju if %%R has type [u].

Let A, denote the ring of integers of F[,}. For any u in the conjugacy class [u],
Gm acts on V ® o F through Wy for each v : K — F. We take a and b be the
minimal and maximal weights taken over all iy, .

Theorem 2.4.6. Let Ro be a complete local Noetherian Ay, -algebra with finite
residue field and n : 'k — G(Ro) a continuous homomorphzsm Let R[“ blst pe
as in Theorem 2.3.12. There exists a quotient R of R[a PLst Such that for any
finite extension F' of Fy,,), a homomorphism { : RO — F’ factors through R “ if
and only if the G(F")-valued representation corresponding to ¢ is semzstable wzth

p-adic Hodge type [].
Proof. See [Balaji 2012, Proposition 3.0.9]. O

Remark 2.4.7. One can deduce from the construction in [Balaji 2012, Proposi-
tion 3.0.9] or by other arguments [Levin 2013, Theorem 6.1.19] that the p-adic
Hodge type on the generic ﬁber of the semistable deformation ring R[anb] St

locally constant so that Spec R [1/ p] is a union of connected components of

Spec R([fnb]’bt[l/p].
Finally, we recall how the de Rham filtration is obtained from the Kisin module.

Definition 2.4.8. Let B be a finite 0 ,-algebra. Let (9, ¢p) be a Kisin module
over B with bounded height. Define

Fil' (p*(Mp)) := g5  (E() Mp) Np* (Mp).

SetDp :=¢*(Mp)/E(u)p™* (Mp), a finite projective (K ®q,, B)-module. Define
Fil' (D p) to be the image of Fil' (¢*(Mp)) in Dp.

Proposition 2.4.9. Let B be a finite Qp-algebra and Vg a finite free B-module
with an action of I'x which is semistable with Hodge—Tate weights in [a, b]. Any
Z p-stable lattice in Vg has finite height. If M p is the (&g, ¢)-module of bounded
height attached to Vg, then there is a natural isomorphism ®p =~ Daqr(VB) of
filtered (K ®q,, B)-modules.

Proof. The relevant results are in the proofs of Corollary 2.6.2 and Theorem 2.5.5(2)
in [Kisin 2008]. Since Kisin works with contravariant functors, one has to do
a small translation. Under Kisin’s conventions, )ip would be associated to the
B-dual Vg, and itis shown there that D g = D} (V) as filtered K ®g,, B-modules
in the case where [a, b] = [0, h]. By compatibility with duality [Balaji 2012, Propo-
sition 2.2.9], D3, (V) = D4r(VB). The general case follows by twisting. O



G-valued crystalline representations with minuscule p-adic Hodge type 1761

3. Deformations of G -Kisin modules

In this section, we study the local structure of the “moduli space” of G-Kisin
modules. This generalizes results of [Kisin 2009; Pappas and Rapoport 2009]. G-
Kisin modules may have nontrivial automorphisms and so it is more natural, as was
done in [Kisin 2009, §2.2], to work with groupoids. The goal of the section is to
smoothly relate the deformation theory of a G-Kisin module to the local structure
of a local model for the group ReS(K®@p F)FGF.
Intuitively, the smooth modification (a chain of formally smooth morphisms)
corresponds to adding a trivialization to the G-Kisin module and then taking the
“image of Frobenius™ similar to Proposition 2.2.11 of [Kisin 2009]. The target
of the modification is a deformation functor for the moduli space Grg W dis-
cussed in Section 3.3, which is a version of the affine Grassmannian that appears
in the work of Pappas and Zhu [2013] on local models. Finally, we show that
the condition of having p-adic Hodge type u is related to a (generalized) local
model M(u) C Grg(“)’W. In this section, there are no conditions on the co-
character . We will impose conditions on p only in the next section when we
study the analogue of flat deformations.

3.1. Definitions and representability results. Let [ be the residue field of A. De-
fine the categories

© A = {Artin local A-algebras with residue field F}

and
0 A = {complete local Noetherian A-algebras with residue field [}.

Morphisms are local A-algebra maps. Recall that fiber products in the category % A
exist and are represented by completed tensor products. A groupoid over €
(or @ A) will be in the sense of Definition A.2.2 of [Kisin 2009]; this is also known
as a category cofibered in groupoids over € (or % A)- Recall also the notion of a
2-fiber product of groupoids from (A.4) in [Kisin 2009]. See [Kim 2009, §10] for
more details related to groupoids.

Choose a bounded-height G-Kisin module (B, ¢r) € GModw *! Define Dy, =
Ua<p D [a %1 to be the deformation groupoid of P as a G-Kisin module of bounded
height over %A The morphisms Dg b1 Dy, are relatively representable closed
immersions, so intuitively Dy, is an ind-object built out of the finite-height pieces.

Let €° denote the trivial G-bundle over A. Throughout we will be choosing
various trivializations of the G-bundle ¥¥; and other related bundles. This is always
possible because Gy is a complete semilocal ring with all residue fields finite (see
Proposition 2.1.4(2)).
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Proposition 3.1.1. For any Pr with height in [a, b], the deformation groupoxd
D[" b1 admits a formally smooth morphism « : Spf R — D[a b] for some R € (€A
(i. e has a versal formal object in the sense of [SGA Ty 1972])

Proof. One can check the abstract Schlessinger’s criterion in [SGA 7y 1972, Theo-
rem 1.11]. However, it will be useful to have an explicit versal formal object. Fix
a trivialization B of Br mod E (u)" for any N > 1, and define

~[a,b b
DYPYNY () = ((Ba. Ba) | Ba € DPN(A), Pa:Pa =€, mod E@)V},
where 4 lifts Br. Since G is smooth, the forgetful morphism

(N) . pla.bl.(N) [a,b]
T : D‘ﬁm — D‘Br

is formally smooth for any N.

IftN>((b—a)/(p—1), then 5;[5[;1’]’(]\/) is prorepresentable by a complete local
Noetherian A-algebra. The proof uses Schlessinger’s criterion. The two key points
are that objects in ﬁg[l?[gb L.(N) (A) have no nontrivial automorphisms, for which one
inducts on the power of p which kills A (see [Levin 2013, Proposition 8.1.6]), and
that the tangent space of the underlying functor is finite-dimensional, which uses
a successive approximation argument (see [Levin 2013, Proposition 8.1.8]). [

It will also be useful to have an infinite version of D[a bL.(V) . Fix a trivialization
Br :Pr = %0 Define a groupoid on €5 by

DY) () = {(Ba. Ba) | Pa € DEPNA), Ba s Pa =2, ).
where B4 lifts Bf. Define D(°°) =Uy<p D [a b],(c0)

3.2. Local models for Weil-restricted groups. In this section, we associate to any
geometric conjugacy class [p] of cocharacters of Res, K®q, F)/F G r alocal model
M (i) (Definition 3.2.3) over the ring of integers A[,; of the reflex field Fj, of
[14] (the relevant parahoric here is Resg Kk ®2,A)/A G). By construction, M () is a
flat projective Ay, -scheme. The principal result (Theorem 3.2.4) says that M (u)
is normal and its special fiber is reduced.

The details of the proof of Theorem 3.2.4 are in [Levin 2013, §10], where we
follow the strategy introduced in [Pappas and Zhu 2013]. We cannot apply Pappas
and Zhu’s result directly because the group Res( K®q,F)/F G r usually does not
split over a tame extension of F. In [Levin 2014], we generalize [Levin 2013,
§10] and [Pappas and Zhu 2013] to groups of the form Res;,r H, where H is
reductive group over L which splits over a tame extension of L, and allow arbitrary
parahoric level structure. Here we recall the relevant definitions and results, leaving
the details to [Levin 2013; 2014].
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For any A-algebra R, set Ry := R ®z,, W. Our local models are constructed
inside the following moduli space:

Definition 3.2.1. For any A-algebra R, let W(E(u)) denote the FE(u)-adic
completion of Ryy[u]. Define

Grg(”)’W(R) := {isomorphism classes of pairs (¢, &)},

where € is a G-bundle on R/Wm( E(u)) and

€| >80 :
* |RW[u](E(u))[E(")_1] Rw [ul £y [Em)~!]
Proposition 3.2.2. The functor Grg(u)’W is an ind-scheme which is ind-projective
over \. Furthermore:

(1) The generic fiber Grg(u)’W[l / p] is naturally isomorphic to the affine Grass-

mannian ofRes(K®@pF)/F GF over the field F.

(2) If kg is the residue field of W, then the special fiber Grg(u)’W QAL is natu-

rally isomorphic to the affine Grassmannian of ReS(k()@[Fp r /5 (GF).
Proof. See §10.1 in [Levin 2013]. O

Let H be any reductive group over F' and Gry be the affine Grassmannian of H.
Associated to any geometric conjugacy class [u] of cocharacters, there is an affine
Schubert variety S(u) in (Grg) F,,;» where Fj;,) is the reflex field of [u]. These
are the closures of orbits for the positive loop group L™ H.

The geometric conjugacy classes of cocharacters of H can be identified with
the set of dominant cocharacters for a choice of maximal torus and Borel subgroup
over F. The dominant cocharacters have partial ordering defined by pu > A if
and only if 4 — A is a nonnegative sum of positive coroots. Then S(u)z is the
union of the locally closed affine Schubert cells for all ©’ < u [Richarz 2013,
Proposition 2.8].

Definition 3.2.3. Let Fj,,)/ F be the reflex field of [] with ring of integers A ;. If
S() C Grpes, K®q, )/ FGF ® F F[y, 18 the closed affine Schubert variety associated
to u, then the local model M (i) associated to p is the flat closure of S(u) in
Grg(”)’W ®A Aqy)- Itis a flat projective scheme over Spec Ay,

The main theorem on the geometry of local models is:

Theorem 3.2.4. Suppose that p }|1(G%)|, where G is the derived subgroup
of G. Then M () is normal. The special fiber M(j1) ® 4, F is reduced, irreducible,
normal, Cohen—Macaulay and Frobenius-split.



1764 Brandon Levin
For the next subsection, it will useful to recall a group which acts on GrE(u) W
and M (u). Define

LYEOG(R) = G(Ry [ £ yy) = lim G(Rw [u]/ (E(w)))

i>1

for all A-algebras R. L1E) G is represented by a group scheme that is the projec-
tive limit of the affine, flat, finite-type group schemes Res A®y, W)ul/E@))/ AG.

The group LHF G acts on GrE(") v by changing the trivialization. This
action is nice in the sense of [Galtsgory 2001, A.3],1i.e., GrE(") W~ =lim. Z;, where
Z; are L1TE0) G _stable closed subschemes on which L+ %k G acts through the

quotient Res (A g,  w)[ul/Ewu))/A G-

Corollary 3.2.5. For any [, the local model M() is stable under the action
of LTEMG,

Proof. Since everything is flat, it suffices to show that M(w)[1/p] is stable un-
der LT-E@G[1/p]. The functor LTE®G[1/p] on F-algebras is naturally iso-
morphic to the positive loop group L+Res( K®q,F)/F (G), so that the isomorphism
in Proposition 3.2.2(1) is equivariant. M (u)[1/p] is the closed affine Schubert
variety S(u) which is stable under the action of this group. O

3.3. Smooth modification. We begin by defining the deformation functor which
will be the target of our modification.

Definition 3.3.1. Choose a G-bundle Qf over & together with a trivialization g
of Qf over S¢[1/E(u)]. Define a deformation functor on € 5 by

EQ[F(A) := {isomorphism classes of triples (¢, &, ¥)},

where € is a G-bundle on &4, & : €|g,[E@)-1] = € and the map

0
i " ) SAEm)~']
V1€ ®ec, OF = OF is compatible with § and §o.

Example 3.3.2. Let G = GL(V). For any (Q4,684) € ISQ[F(A), 84 identifies Q4
with a “lattice” in (V ®x ©4)[1/E(u)], that is, a finitely generated projective
&4-module L4 such that Lg[1/Eu)] = (V ®a S4)[1/E(u)].

The main result of this section is the following:

Theorem 3.3.3. Let A be a Z ,-finite, flat, local domain with residue field F. Let G
be a connected reductive group over A and P a G-Kisin module with coefficients
in F. Fix a trivialization By of Br as a G-bundle. There exists a diagram of
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groupoids over € 5 ,
N (00)
D‘Bm

ny x
Dy, Doy,

where Qf := (¢*(Br). Be[1/ E (u)] o pop; ). Both 1° and ¥ are formally smooth.

Later in the section, we will refine this modification by imposing appropriate
conditions on both sides. Intuitively, the above modification corresponds to adding
a trivialization to the G-Kisin module and then taking the “image of Frobenius”.
The groupoid 5;330[?) is defined at the end of Section 3.1 and 7 ©* is formally smooth
since G is smooth. Next, we construct the morphism W and show that it is formally
smooth. To avoid excess notation, we sometimes omit the data of the residual
isomorphisms modulo m4. One can check that the everything is compatible with
such isomorphisms.

Definition 3.3.4. For any (P4, ¢4, Ba) € ﬁfﬁf)(A), we set
W((Bas P4 Ba)) = (@*(Ba), b4),

where 84 is the composite

o BN/ E] 2 pant/ Eao) 2 E 0 11/ Eq).

Proposition 3.3.5. The morphism \V of groupoids is formally smooth.

Proof. Choose A € € and an ideal I of A. Consider a pair (Q4,84) € EQ[F(A)
over a pair (Q4/7,84/1). Let (Ba/1.%a/1.Ba/1) be an element in the fiber over

(Qay1.64/1)- The triple (By/1.¢a/1.Ba/1) is isomorphic to a triple of the form
(%OGA/I , ¢1/4/I ,Id4/1). Let 4,1 be the isomorphism between ¢* (%%A/I yand Q7.
We want to construct a lift (P4, ¢4, B4) such that W (P4, 4, f4) =(04,64). Take
LBy = %%A to be the trivial bundle and B4 to be the identity.

Now, pick any lift y4 : (p*(%oeA) = (04, of y4/5 which exists since G is smooth.

We can define the Frobenius by
P4 =84 0y4[1/E(u)].

It is easy to check that W(*By4, ¢4, f4) = (04, 84). O

We would now like to relate D g, to Grg(")’W from the previous section.

Proposition 3.3.6. A pair (QF,80) as in Definition 3.3.1 defines a point xg in
Grg(")’W([F). Furthermore, for any A € € 5, there is a natural functorial bijection
between EQ[F(A) and the set of x4 € Grg(")’W(A) such that x4 modmy4 = Xx.
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Proof.  Recall that 64 = (W ®z, A)[[u]] because A is finite over Z,. Also,
Grg(“)’W(A) is the set of isomorphism classes of bundles on the E(u)-adic com-
pletion of (W ® 7, A)[u] together with a trivialization after inverting £ (u). Since
p is nilpotent in A, we can identify (W ®z, A)[[u] and the E(u)-adic com-
pletlon (W ®z, A)[ul(Ew))- This identifies DQ[F(A) with the desired subset of

E w),w (A). 0

For any Z ,-algebra A, let S4 denote the E (u)-adic completion of (W ®z,, A)[u].

Lemma 3.3.7. For any finite flat Z p-algebra N, there is a (W ®z,, A')[u]-algebra
isomorphism

GA— §A’-
Proof. For any n > 1, we have an isomorphism
S /p" = Sn/p"

since (E(u)) and u define the same adic topologies modulo p”. Passing to the
limit, we get an isomorphism of their p-adic completions. Both G5/ and S5+ are
already p-adically complete and separated. O

Fix a geometric cocharacter p of Res K®a,F)/F G, which we can write as
= (Uy) viK—>F where the (1, are cocharacters of G . Assume that F = F[,,}, so
that the generalized local model M () is a closed subscheme of GrE @V over A;
see Definition 3.2.3. Recall that V is a fixed faithful representation of G. For
each ¥, 1y induces an action of G, on V. Define a (resp. b) to be the smallest

(resp. largest) weight appearing in Vg over all (.

Definition 3.3.8. Define a closed subfunctor D ’é[F

D, (4):={(Q4.84) € Do, (A) | (Qa.84) € M(1)(A)}

under the identification in Proposition 3.3.6. Define ﬁ;;f)’“ to be the base change
of 5“ along W. It is a closed subgroupoid of D(°°).

of EQ[F by

The following proposition says that D( " descends to a closed subgroupoid

Dy, of D,

Proposition 3.3.9. Let a and b be as in the discussion before Definition 3.3.8.

There is a closed subgroupoid DM C D[a’ Ic Dep, such that %] peor.u factors

through DM and e
(00), 4 w 73 (00)
D‘B[F - D‘B[F XDy D‘B[F

is an equivalence of closed subgroupoids. Furthermore, " : D(Oo) L DM P is
formally smooth.
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Proof. For any A € €5 define DM (A) to be the full subcategory whose objects
are JT(OO)(D(OO) #(A)). Observe that for any x € D“ ,(4) the group G(&4) acts
transitively on the fiber (7)™ 1(x) C D%’o)(A) by changlng the trivialization.
The key point is that D(Oo) "*(A) is stable under G(Sy4), by Corollary 3.2.5. Hence,

(7 *) 7N (x) C Dog " (4). (3-3-9-1)

It is not hard to see then that the map to the fiber product is an isomorphism and
that 7w# is formally smooth.

It remains to show that D“ — Dy, is closed. Let By € Dy, (A) and choose
a trivialization B4 of Py, i. e a lift to D<°°)(A) We want a quotient A — A’
such that, for any f : A — B, B4 Q4. s B € D”“ _(B) if and only if f factors
through A’. Let A — A’ represent the closed condmon Dssgoo) e D;33°°’ Clearly,
Paeq A € D” _(4) and so any further base change is as well. Now, let f: 4 — B
be such that ‘BA ®q.7 B € D’“L . (B). The trivialization B4 induces a trivialization
B onPp. The pair (Pp, ,BB) hes in D(Oo) *(B) by (3-3-9-1). O

We have constructed a diagram of formally smooth morphisms

~ (00),
D%

7 % (3-3-92)

Dy, Do,
where E’éF is represented by the completed local ring at the [F-point of M(u)
corresponding to (Qr, ér). Next, we would like to replace 5;(5:)’“ by a “smaller”
groupoid which is representable.

Leta and b be as in the discussion before Definition 3.3.8 and choose N > b—a.
Recall the representable groupoid 5;[&’1)]’(1\’) (Proposition 3.1.1). Define a closed
subgroupoid

D(N)“ — pk

~la.bl,(N)
Br D‘B[F

XD‘JB[F
of 5;531’})]’(1\’). By Proposition 3.3.9, the morphism 555?’” D(N) " is formally
smooth.

Proposition 3.3.10. For any N > b—a, the morphism W* : D(Oo) s DM factors

through D( )1 . Furthermore, D( M formally smooth over D’é

Proof. By our assumption on N, D% )i representable, so it suffices to define the

factorization \IJ“ D(N) e D“ on underlying functors. For any x € D(N) H(4),
set
ML (x) = WH(F)
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for any lift X of x to 5;330[?)’“ (A). The image is independent of the choice of lift by
Corollary 3.2.5. The map WV)-# is formally smooth since W* is. O

In the remainder of this section, we discuss the relationship between D“ ;8 and
p-adic Hodge type w. For this, it will useful to work in a larger category than 0 A-
All of our deformation problems can be extended to the category of complete
local Noetherian A-algebras R with finite residue field. For any such R, we de-
fine D* (R) (and, similarly, D* (R) D (R)) to be the category of deformations
to R of ‘B[F ®r R/mp with condmon *, where * is any of our various conditions.
For any finite local A-algebra A’, the category % A’ 1s a subcategory of the category
of complete local Noetherian A-algebras with finite residue field.

The functors ﬁ%’b]’(m, 5531;’)’“ and E’éF are all representable on % A Itis
easy to check, using the criterion in [Chai et al. 2014, Proposition 1.4.3.6], that
these functors commute with change in coefficients, i.e., if Rla:b1.(N) represents
D[a bL.() over 6 then R[“ bL.(N) & A A’ represents the extension of D,% b1, (V)
restrlcted to the category % A7, and similarly for D;F) and D“

An argument as in Theorem 2.4. 2 shows that, in D[a bl (R), an ob]ect of Dla-b]
is the same as a G-bundle B g on S R together with a Frobenlus

by 1 @" BRI/ EM)] = Br[1/E )]

deforming Br @ R /m g and having height in [a, b]. The condition on the height is
essential in order to define the Frobenius over R. We would like to give a criterion
that says when (B r. ¢y, ) lies in D%F(R).

Choose (‘Br, Ppy) € D;E;F’b](R). For any finite extension F’ of F and any
homomorphism x : R — F’, denote the base change of Br to S’ by (Px, dx).
Associated to (B, ¢x) is a functor D, from Repr (G ) to filtered (K ®q, F')-
modules given by D (W) = ¢*(Bx)(W)/E(u)p*(Px)(W) with the filtration
defined as in Definition 2.4.8.

Lemma 3.3.11. For any finite extension F' of F and any x : R — F’, the func-
tor Dy is a tensor exact functor.

Proof. Any such x factors through the ring of integers A’ of F’, so that (By, Px)
comes from a pair (*By,, x,) over Sp-. Let §A/ and §F/ be the E(u)-adic com-
pletions of (W ®z, A")[u] and (W ®z, F')[u], respectively. By Lemma 3.3.7, we
can equivalently think of (P, , Px,) as a pair over Sp.

Choose a trivialization o of By, and set Qx, := ¢*(Px,) with trivialization
Oxo := PBoll/E(u)] o pyx,. Define (Qx,dx) to be (Qx,, bx,) ®S Sps and define a
filtration on Do . := Qx mod E(u) by

Fill @9, (W)= (Qx(W)NEW) (W®SF))/(Ew)Qx(W)NE ) (W®SF))
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for any W € Repp(GF). Since §A/[1/p]/(E(u)) = §F//(E(u)), there is an
isomorphism
@x = @Qx

of tensor exact functors to Modg g, £ identifying the filtrations.

It suffices then to show that ® o is a tensor exact functor to the category of fil-
tered (K ®q,, F ")-modules. Without loss of generality, we assume that F’ contains
a Galois closure of K. Then

Spr= H F'lu—y ()]

over embeddings ¢ : K — F’ (ﬁrst decompose W ®z, F' and then decompose
E(u) in each factor). Thus, (Qx,8x) decomposes as a product ]_[w(Q 51ﬁ)
where each pair defines a point zy, of the affine Grassmannian of G g-. The quotient
Do, decomposes compatibly as ]_[w DoV . We are reduced then to a computation
for a point zy € Grg,, (F’). Without loss of generality, we can assume G- is
split. Up to translation by the positive loop group (which induces an isomorphism
on filtrations), zy is the image [g] for some g € T(F'((¢))) where T is maximal
split torus of G /. Using the weight space decomposition for 7" on any represen-
tation W, one can compute directly that ® p¥ is a tensor exact functor. For more
details, see [Levin 2013, Proposition 3.5.11, Lemma 8.2.15]. O

Definition 3.3.12. Let F’ be any finite extension of F with ring of integers A’.
We say a G-Kisin module (Ba’, pas) over A’ has p-adic Hodge type u if the
G r-filtration associated to B3 o/[1/ p] as above has type u.

Theorem 3.3.13. Assume that F' = FJ,). Let R be any complete local Noe-
therian A-algebra with finite residue field which is A-flat and reduced. Then
LBr € D;E;F’b](R) lies in DgF(R) if and only if, for all finite extensions F'/F and
all homomorphisms x : R — F’, the G g -filtration © x has type less than or equal
1o [u].

Proof. Choose a lift § of Pr to Dy "™ (R). Clearly, p R € DY (R) if and only
if y € D ’”(R) which happens 1f and only W(y) € D (R) Let R be the
quotient of R representing the fiber product

Spr XD[a bl DQ[F

To show that R* = R, it suffices to show that Spec R*[1/ p] contains all closed
points of Spec R[1/ p], since R is flat and R[1/ p] is reduced and Jacobson.

The groupoid EZF is represented by a completed stalk on the local model
M(un) C Grg(”)’W, so that, for any x : R — F’, W(¥)[1/ p] defines an F’-point
(Qx.8x) of Grg ™V Since M(u)(F') = S()(F'), (Qx.8x) € S(u)(F') if and
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only if the filtration © g  has type less than or equal to 1] [Levin 2013, Proposition
3.5.11]. The proof of Lemma 3.3.11 shows that the two filtrations agree, i.e.,

@x EQQX

Thus, x factors through R* exactly when the type of the filtration © is less than
or equal to [u]. d

Fix a continuous representation 7 : 'y — G(F). Let R[a’b]’Cris be the universal
framed G-valued crystalline deformation ring with Hodge—Tate weights in [a, b],

and let ® : X la,bleris _, Spec R[-a Bleris be as in Proposition 2.3.3.

Definition 3.3.14. Assume F' = F[,}. Define R%HS’SM to be the flat closure of the
connected components of

Spec R[_a,b] ,Cl'iS [l/p]

with type less than or equal to 14 (see Theorem 2.4.6). Define X <ris:<H 5 be the
flat closure in X [a.b]eris ¢ the same connected components (smce O[1/p] is an
isomorphism).

Corollary 3.3.15. Let XErlg = be as in Definition 3.3.14. A point X € XSrlg =R (F)
corresponds to a G- Klsm lattice Py over Gp. The deformation problem Dcm’“
which assigns to any A € € A®z, W(F) the set of isomorphisms classes of trzples

{(7.Ba.64) | y: chs S A, P € DM (A), 84 :TG,6,(Ba) = nylre}

cris, <
=R gt X,

is representable. Furthermore, if @ is the completed local ring of X
then the natural map Spf @’“L — Dcm s a closed immersion which lS an isomor-

phism modulo p-power torsion.

Proof. Without loss of generality, we can replace A by A Q) W(F'). By con-
struction and Proposition 2.3.5, for any A € € 5, the deformation functor

DEIP(A) = {y: RES — A, Bg € DTN (A), 84 Tg 0, (Ba) =y} =

is representable. That is, D‘im’“ -be represents the completed stalk at a point of the

fiber product X ; La.beris . o ec RI-PLers Spec R™S=H_Since D%F C D,%Fb lis closed,
so is DM Dcr“ sesbe and hence D %K is representable by R$™H. To see that
the closed immersion Spf @” — DC”S’/’“ b¢ factors through DC”S’”“, it suffices to
show that the “universal” lattice ‘B@M € D‘[I?[Fb] (0%) lies in D“ (@“’ ).

By Proposition 2.3.9 and Theorem 2.3.12, ®[1/p] is an 1s0morphlsm Further-
more, by [Balaji 2012, Proposition 4.1.5], R [“ bleris[1 / p] and Rc-rls’su[l/p] are
formally smooth over F. Hence, @‘f satisfies the hypotheses of Theorem 3.3.13.

By Theorem 3.3.13, we are reduced to showing that for any finite F'/F and any
homomorphism x : @;f — F’ the filtration D, corresponding to the base change
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Py = ‘If@u ®y F’ has type less than or equal to . The homomorphism x corre-
sponds to a closed point of Spec RC-rls =K [1/p], i.e., a crystalline representation py
with p-adic Hodge type less than or equal to . Furthermore, P, is the unique
(& F, ¢)-module of bounded height associated to p,. By Proposition 2.4.9, the de
Rham 9?‘;5 filtration associated to py is isomorphic to the filtration © associated
to (Px, ¢x) Thus, ®4 has type less than or equal to u for all points x and so
Pou € Dy (%), by Theorem 3.3.13.

By the argument above, Spec @“ and Spec R " have the same F’-points for
any finite extension of F. Since Rcm =t/ p] is formally smooth over F, the

kernel of RC-HS’ — @’iL is p-power torswn O

cris

Remark 3.3.16. In fact, Corollary 3.3.15 holds as well for semistable deformation
rings with p-adic Hodge type less than or equal to p. To apply Theorem 3.3.13
and make the final deduction, we needed that the generic fiber of the crystalline
deformation ring was reduced (to argue at closed points). This is true for G-valued
semistable deformation rings by the main result of [Bellovin 2014].

4. Local analysis

In this section, we analyze finer properties of crystalline G-valued deformation
rings with minuscule p-adic Hodge type. The techniques in this section are in-
spired by [Kisin 2009; Liu 2013]. We develop a theory of (¢, f‘)—modules with
G -structure and our main result, Theorem 4.3.6, is stated in these terms. How-
ever, the idea is the following: given a G-Kisin module (34, ¢p4) over some finite
A-algebra A, we get a representation of I', via the functor 7 s ,. In general, this
representation need not extend (and certainly not in a canonical way) to a repre-
sentation of the full Galois group I'x. When G = GL,, and *J34 has height in [0, 1]
then, via the equivalence between Kisin modules with height in [0, 1] and finite
flat group schemes [Kisin 2006, Theorem 2.3.5], one has a canonical extension to
'k which is flat. We show (at least when A is a A-flat domain) that the same
holds for G-Kisin modules of minuscule type: there exists a canonical extension
to 'y which is crystalline. This is stated precisely in Corollary 4.3.8. We end by
applying this result to identify the connected components of G-valued crystalline
deformation rings with the connected components of a moduli space of G-Kisin
modules (Corollary 4.4.2).

4.1. Minuscule cocharacters. We begin with some preliminaries on minuscule
cocharacters and adjoint representations which we use in our finer analysis with
(o, f)-modules in the subsequent sections.
Let H be a reductive group over field k. The conjugation action of H on itself
gives a representation
Ad: H — GL(Lie(H)). (4-1-0-1)
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This is algebraic, so, for any k-algebra R, H(R) acts on Lie(Hg) = Lie H ®, R.
We will use Ad to denote these actions as well. We can define Ad for G over
Spec A in the same way.

Definition 4.1.1. Any cocharacter A : G, — H gives a grading on Lie H defined
by .
Lie H(i) :={Y € Lie H | Ad(A(a))Y =a'Y}.

A cocharacter A is called minuscule if Lie H(i) = 0 fori & {—1,0, 1}.

Minuscule cocharacters were studied by Deligne [1979] in connection with the
theory of Shimura varieties. A detailed exposition of their main properties can be
found in §1 of [Gross 2000].

Assume now that H is split and fix a maximal split torus T contained in a
Borel subgroup B. This gives rise to a set of simple roots A and a set of simple
coroots AY. In each conjugacy class of cocharacters, there is a unique dominant
cocharacter valued in 7. The set of dominant cocharacters is denoted by X (7).

Recall the Bruhat (partial) ordering on X4(7)™: given dominant cocharacters
ot G — T, wesay ' <pifu—p =3 cav ngo with ng > 0.
Proposition 4.1.2. Let v be a dominant minuscule cocharacter. Then there is no
dominant ' such that W' < ju in the Bruhat order.

Proof. See Exercise 24 from Chapter IV.1 of [Bourbaki 2002]. O

Proposition 4.1.3. If i is a minuscule cocharacter, then the (open) affine Schubert
variety SO(w) is equal to S(w). Furthermore, S(j) is smooth and projective. In
fact, S(u) = H/P(u), where P(u) is a parabolic subgroup associated to the
cocharacter [L.

Proof. Since the closure S(un) = J wep S O(u’) [Richarz 2013, Proposition 2.8],
the first part follows from Proposition 4.1.2. For the remaining facts, we refer to
discussion after [Pappas et al. 2013, Definition 1.3.5] and [Levin 2013, Proposi-
tion 3.5.7]. O

For any . : Gy, — T, we get an induced map G, (k (7)) — T (k ((2))) C H(k((2)))
on loop groups. We let 1(¢) denote the image of ¢ € «((¢))*.

Proposition 4.1.4. For any X € Lie H ® k[[t]], we have
Ad(L(1)(X) € %(Lie H & «[[1])-
Proof. As in Definition 4.1.1, we can decompose
Lie H = Lie H(—1) @ Lie H @ Lie H(1).

Then Ad(j(¢)) acts on Lie H(i) ® k((t)) by multiplication by /. The largest
denominator is then =1, O
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4.2. Theory of (¢, f)-modules with G-structure. We review Liu’s theory [2010;
Caruso and Liu 2011] of (¢, G) We call them (¢, f‘)—modules to avoid confusion
with the algebraic group G. The theory of (¢, f‘)—modules is an adaptation of the
theory of (¢, I')-modules to the non-Galois extension Ko, = K (7 1p gilp 2, cel).
The T refers to an additional structure added to a Kisin module which captures
the full action of 'y as opposed to just the subgroup I'eo := Gal(K/Koso). The
main theorem in [Liu 2010] is an equivalence of categories between (torsion-free)
(o, F) modules and I'g-stable lattices in semistable () ,-representations.
Let E* denote the perfection of O /(p). There is a unique surjective map

O:WE') - 0g

which lifts the projection Et>o0 &/ (p). The compatible system (rl/ P")nzo of
the p™-th roots of 7 defines an element w of E™. Let [xr] denote the Teichmiiller
representative in W(E T). There is an embedding

S W(E),

defined by u + [x], which is compatible with the Frobenii. If E is the fraction
field of E*, then W(E ) Cc W(E). The embedding & < W(E ) extends to an
embedding

0¢ < W(E).

As before, let Koo = | J K(1/P"). Set Kpoo := |J K(pn), where {pn is a
primitive p"-th root of unity. Denote the compositum of Ko, and Kpoe by Koo, poo;
Koo, poe 1s Galois over K.

Definition 4.2.1. Define
[ :=Gal(Koo poo/K) and Too := Gal(Koo,poo/Koo)-

There is a subring R C W(E *) which plays a central role in the theory of
(¢, I')-modules. The definition can be found on p. 5 of [Liu 2010]. The relevant
properties of R are

(1) R is stable by the Frobenius on W(E T);
2) R contains &;

3 R is stable under the action of the Galois group I'x and 'y acts through the
quotient T".

For any 7, algebra A, set Ry == R  ®2z, A with a Frobenius induced by the
Frobenius on R. Similarly, define W(E +)A W(E +) ®z, A and W(E )4 =
W(E) ®z, A. For any &4-module M4, define

My := Ry Rp.6, M4 = Ry @, 0™ (My)
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and
My = W(E ) Qpe, Ma=WET )4 ®z, Ma.

Recall that ¢* (M) := 64 Qy,s, M4 and that the linearized Frobenius is a map
dom, - @ (My) — My (When Ny has height in [0, 00)).

If 914 is a projective &4-module then, by Lemma 3.1.1 in [Caruso and Liu
2011], ¢*(My) C My C My. Although the map m +— 1 ® m from My to
9/5(14 is not G 4-linear, it is injective when 9y is G 4-projective. The image is a
¢ (6 4)-submodule of 9/52/1. We will think of 9Jt4 inside of 53\?,4 in this way. Finally,
for any étale (Og 4, ¢)-module Jil4, we define

Mg :=W(E)A ®p,0, 4 M4 =W(E )4 R, _, ¢*(Ma)

with semilinear Frobenius extending the Frobenius on 4. To summarize, for any
Kisin module (M4, ¢p4), we have the diagram

(M A, pa) ~~— Mg ~~~~r My

i ﬁ

(Ma, pa) ~rrrrmmnr (/"/IA’ QSA)

Now, let y € T and let 55?/1 be an ﬁA—module. A map g : 55@1 — §J\TA is
y-semilinear if

glam) = y(a)g(m)

foranya € Ry,me 9/51/1. A (semilinear) I-action on 9/5114 is a y-semilinear map g,
for each y € I" such that

8y’ °8y = 8y’y

as (y'y)-semilinear morphisms. A (semlhnear) [-action on ZUIA extends in the
natural way to a (semilinear) 'k -action on E)JTA and on Jl/LA

For any local Artinian Z p-algebra A, choose a Z,-module isomorphism A =~
B 7Z/p™iZ so that, as a W(E)-module, W(E ) =~ D Wi, (E). We equip W(E)4
with the product topology, where Wy, (E ) has a topology induced by the isomor-
phism W, (E)~ E"i given by Witt components (see §4.3 of [Brinon and Conrad
2009] for more details on the topology of E). We can similarly define a topology
on W(E *)4 using the topology on E™, and it is clear that this is the same as the
subspace topology from the inclusion W(E 4 C W(E )4. Finally, we give Ry4
the subspace topology from the inclusion Ry C W(E +)A The same procedure
works for A finite flat over Z .
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A T-action on 9/5?14 is continuous if, for any basis (equivalently for all bases)
of M4, the induced map I' — GL, (R4) is continuous, where r is the rank of 914
(such a basis exists by [Kisin 2009, Lemma 1.2.2(4)]).

Definition 4.2.2. Let A be a finite Z,-algebra. A (g, r )-module with height in
[a,b] over A is a triple (M4, pon,, I'), where

(1) (M4, dor,) € ModZ1);

2) [ is a continuous (semilinear) [-action on NMa;

(3) the I'k-action on 97?,4 commutes with (]Bm , (as endomorphisms of A7LA);

(4) regarding 94 as a (S 4)-submodule of E)/J\TA, we have iy C 53\2};‘”;
5 [ acts trivially on 9/5?A/I+ (9/51,4) (see §3.1 of [Caruso and Liu 2011] for the
definition of 14 (91y)).

We often refer to the additional data of a (¢, f‘)—module on a Kisin module as a
I-structure.

Remark 4.2.3. Although we allow arbitrary height [a b] (in particular, negative
height), the ring R is still sufficient for defining the [-action. This follows from
the fact that the I-action on S(1) is given by ¢ (see [Liu 2010, Example 3.2.3]),
which is a unit in R. See also [Levin 2013, Example 9.1.9].

Proposition 4.2.4. Choose (M4, pom,) € Mod(p La.b] of rank r. Fix a basis { f;}
of My. Let C' be the matrix for ¢op , with respect to{1®y fi}. Thena C-structure
on My is the same as a continuous map
B.:T — GL,(Ry)

such that

(i) C"-@(By) = By, -y(C') in Mat(W(E),) forall y € T';

(i) By =Idforall y € Lo
(iii) By =1Id mod I.,.(ié)A forall y € I
(iv) Byy = By -y(By) forally,y’ €T.

Let Mod‘p la.b).T denote the category of (¢, F) modules with height in [a, b]
over A. A morphlsm between (¢, F) modules is a morphism in Mod‘p La.] that is
I- -equivariant when extended to Ry4.

Let Mod%™ r. = Upso Modg; L=hALT g Modg, T has a natural tensor prod-

uct operation Wthh at the level of Mod(p bh is the tensor product of bounded height
Kisin modules. The ['-structure on the tensor product is defined via

RA ®(ﬂa6A (gﬁA ®GA sthA) = (RA ®(p,6A f.):nA) ®§A (RA ®¢96A S:nA) = mA ®§A {ftA.
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One also defines a ['-structure on the dual zmjl :=Homg , (74, &4) in the natural
way (see the discussion after [Levin 2013, Proposition 9.1.5]). Note that, unlike in
other references (for example [Ozeki 2013]), we do not include any Tate twist in
our definition of duals.

We will now relate these (¢, f‘)—modules to I'g-representations. For this, we
require that A be Zp-finite and either Z,-flat or Artinian. Define a functor Ta

from Mod(p b, T to Galois representations by

Ty(My) := (W(E) @ 5 Ma)P1=" = (f4)?=".

The semilinear I'gx-action on Ji7LA commutes with qu, SO fA (S?IA) is a 'k -stable
A-submodule of W(E) ®  My.
We now recall the basic facts we will need about YA”A:

Proposition 4.2.5. Let A be 7 p-finite and either Z p-flat or Artinian.
m If ijJ\lA € Modé’:h’r, then there is a natural A[l ]-module isomorphism

04 : To,, (Mg) — Ta(My).

Furthermore, 84 is functorial with respect to morphisms in Mod‘é’bh’F

2) TA is an exact tensor functor from Modé’;h’F to Rep4(I'x) which is compati-
ble with duals.

Proof. See [Levin 2013, Propositions 9.1.6 and 9.1.7]. O

We are now ready to add G-structure to (¢, f‘)—modules. Let G be a connected
reductive group over a Z ,-finite and flat local domain A as in previous sections.

Definition 4.2.6. Define GMod‘é r to be the category of faithful exact tensor func-
tors [/ Rep A(G),Modg) POT® “We will refer to these as (¢, T')-modules with
G -structure.

Recall the category GRep,4 (I'x) from Definition 2.2.3. By Proposition 4.2.5(2),
T4 induces a functor

7A1G,A : GModé’j — GRep,(I'k).

Furthermore, if wr_, : GRep,(I'x) — GRepy(I'so) is the forgetful functor then
there is an natural isomorphism

Tgey =0r, 071G,

The functor YA"G, 4 behaves well with respect to base change along finite maps
A — A’ by the same argument as in Proposition 2.2.4.
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We end this section by adding G-structure to the main result of [Liu 2010].
For A finite flat over A, an element (Py4, pq) of GRepy(I'k) is semistable (resp.
crystalline) if p4[1/ p]: Tk — Autg (P4)(A[1/ p]) is semistable (resp. crystalline).
For A a local domain and p4 semistable, we say pyq has p-adic Hodge type u if
p4[1/ p] does for any trivialization of P4 (see Definition 2.4.5).

Theorem 4.2.7. Let F'/ F be a finite extension with ring of integers A'. The func-
tor T, A induces an equivalence of categories between GMod%}; and the full
subcategory of semistable representations of GRep o/ (I'k).

Proof. Using the Tannakian description of both categories, it suffices to show that
T+ defines a tensor equivalence between Mod%’il}’r and semistable representations
of 'k on finite free A’-modules. When F = Q, and the Hodge-Tate weights are
negative (in our convention), this is Theorem 2.3.1 in [Liu 2010]. Note that Liu uses
contravariant functors, so that our T is obtained by taking duals. The restriction
on Hodge-Tate weights can be removed by twisting by @(1), the (¢, f)-module
corresponding to the inverse of the p-adic cyclotomic character.

To define a quasi-inverse to Tas, let L be a semistable 'gx -representation on a fi-
nite free A’-module. Forgetting the coefficients, Liu [2010] constructs a [-structure
71 (L) on the unique Kisin lattice in M (L). This (g, f‘)—module over Z, has an
action of A’, by functoriality of the construction. By an argument as in [Kisin
2008, Proposition 1.6.4(2)], the resulting & A/-module is projective, so this defines
an object of Mod%}\’l}’r, which we call T} (L).

Finally, we appeal to Proposition 1.4.4.2 in [Saavedra Rivano 1972] to conclude
that 7A"A/ and f&l define a tensor equivalence of categories given that 7A"A/ respects
tensor products (Proposition 4.2.5). O

4.3. Faithfulness and existence result. Fix anelement t € [ such that t(x)=¢m,
where ¢ is a compatible system of primitive p”-th roots of unity. If p # 2, then
7 is a topological generator for f‘poo = Gal(Koo,poe / Kpoo). If p =2, then some
power of t will generate f‘poo. In both cases, 7 together with Too topologically
generate r (see [Liu 2010, §4.1]). Given condition (4) in Definition 4.2.2, the
[-action is determined by the action of 7.

Recall the element t € W(E +), which is the period for G(1) in the sense that
pt) =cy LE (u)t. We will need a few structural results about W(E ).

Lemma 4.3.1. For any ¥ € I'g, we have the following divisibilities in W(E~ ):
vy lu, y(e®)|e®), and y(E))|Eu).

Proof. See [Levin 2013, Lemma 9.3.1]. O
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The (¢, f)—modules which give rise to crystalline representations satisfy an extra
divisibility condition on the action of t [Gee et al. 2014, Corollary 4.10; Levin
2013, Proposition 9.3.4]. We call this the crystalline condition.

Definition 4.3.2. An object DﬁA € Mod(p la BT | is crystalline if, for any x € 94,

there exists y € My such that T(x)—x = (p(t)upy.

Proposition 4.3.3. If 55?14 is crystalline then, for all x e M4 and y € T, there exists
y € My such that y(x) —x = p(H)uPy.

Proof. This is an easy calculation using that [ is topologically generated by Foo
and 7 [Levin 2013, Proposition 9.3.3]. O

Definition 4.3.4. We say an object ‘BA € GMod¢ labLT is crystalline if S}3,4(W) is
crystalline for all W € / Rep A(G). For an object ‘,B[F € GMod‘p Ja.b].T , define the
crystalline (¢, F) module deformation groupoid over € by

D%is’[“’b] (A) = {(Pa, Vo) € Dg"b] (A) | B4 is crystalline}
F F
for any A € €.

Proposition 4.3.5. Let F' be a finite extension of F with ring of integers A’
The equivalence from Theorem 4.2.7 induces an equivalence between the full sub-
category of crystalline objects in GModé’; with the category of crystalline repre-
sentations in GRep 5/ (I'k).

Proof. Tt suffices to show that if T4 (if?A(W)) is a lattice in a crystalline represen-
tation then ‘i\KA(W) satisfies the crystalline condition. This only depends on the
underlying (¢, f‘)—module so we can take A = Z,. When p > 2, this is proven in
Corollary 4.10 in [Gee et al. 2014]. The argument for p = 2 is essentially the same
and was omitted only because in [Gee et al. 2014] they need further divisibilities
on (t — 1)", for which p = 2 becomes more complicated. Details can be found in
[Levin 2013, Proposition 9.3.4]. O

Choose a crystalhne object ‘pr € GMod‘p fa.b].0 . If Pr is the underlying G-Kisin
module of ‘B[F, then we would like to study the forgetful functor

3 X Dcris,[a,b] N D[a,b]
' ‘3A3[F P -

More specifically, if u and a, b are as in the discussion before Definition 3.3.8,
and F = Fj,], we consider

AR . DS CAHS’[a’b]X w.n) DY — DE .
Pr Br Dy, Pr F

We can now state our main theorem:
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Theorem 4.3.6. Assume that p does not divide w1 (G%"), where G is the derived
group of G, and that F = FJ, . If u is a minuscule geometric cocharacter of
RCS(K®@pF)/F GF then
AW DS _, ph
TR Br

F
is an equivalence of groupoids over € 4.
Remark 4.3.7. This generalizes [Levin 2013, Theorem 9.3.13], where we worked

with G-Kisin modules with height in [0, 1]. See Remark 1.1.1 for more informa-
tion.

Corollary 4.3.8. Assume F = Fj,) and that ju is minuscule. Let F' be a finite
extension of F with ring of integers A'. There is an equivalence of categories be-
tween G -Kisin modules over & p» with p-adic Hodge type | and the subcategory of
GRep /(') consisting of crystalline representations with p-adic Hodge type [L.

Corollary 4.3.8 follows from the proof of Theorem 4.3.6. It generalizes the
equivalence between Kisin modules of Barsotti—Tate type and lattices in crys-
talline representations with Hodge—Tate weights in {—1, 0} [Kisin 2006, Theorem
2.2.7]. Note that we do not require p}|m(G%")| here. For the relevant defi-
nitions, see Definition 3.3.12 and the discussion before Theorem 4.2.7. Before
proving Theorem 4.3.6 and Corollary 4.3.8, we begin with some preliminaries on
crystalline (¢, f’)—modules with G-structure.

Definition 4.3.9. Define G(u? i) to be the kernel of the reduction map
GW(E™)) — GOV (E )4/ (p(u?)).

Proposition 4.3.10. Choose (. py,) € GMod%™. Fix a trivialization B4 of Ba.
Let C' € G(GA[I/A(p(E(u))]) be ¢z, with respect to the trivialization 1 ®¢ Ba.
Then a crystalline U -structure on 3 4 is the same as a continuous map
B.:T = G(Ry)

satisfying the following properties:

(@) C'-@(By) = B, -y(C") in G(W(E)4) for all y € T;

(b) By =1d forall y € Too;

(c) By € G(uP) forally €T

(d) Byy =By -y(By) forally,y' € L.
Proof. Everything follows directly from Proposition 4.2.4. The only point to note

is that (uPp(t)) C 1 +(§) 4 because u € 1 +(§). Hence, the crystalline condition,
which is equivalent to condition (c), implies condition (5) of Definition 4.2.2. [

Before we begin the proof of Theorem 4.3.6, we have two important lemmas.
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Lemma 4.3.11. Let By € D%F(A) and choose a trivialization B4 of the bun-
dle Pa. If C € G(S4[1/E()]) is the Frobenius with respect to B4 then, for
any Y € G(u?"), .
— i+1

P(C)p()p(C) ' e Gw? ),
where p(C) =C’ € G(W(E)A) is the Frobenius with respect to 1 ® ¢ Ba.
Proof. Let O denote the coordinate ring of G and let /. be the ideal defining the
identity, so that Og /I, = A and I,/12 =~ (Lie(G))". Then G(u”") is identified
with _

{Y € Homp (Og, W(E)4) | Y(Ie) C (p(Hu? )}
Conjugation by C induces an automorphism of Gg ,[1/E u)]- Let
Adgg (C)* : 06 ® A G4[1/E(u)] — O @A Sall/E(u))
be the corresponding map on coordinate rings. The key observation is that
Adog (C)* (e ® 1) C Y 1] @ E(u)™/ &4. (4-3-11-1)
izl

By successive approximation, one is reduced to studying the induced automorphism
of

D /1:7 ©a Sall/ E@))).

Jj=0
The j-th graded piece is Sym’ (Lie(G)Y) ® o S4[1/E (u)] as a representation of
G(S4[1/E(u)]). Since  is minuscule, Lie(G) ® A G4 has height in [—1, 1] and
so Sym’ (Lie(G)Y @ S4) has height in [—, j]. Thus,

Adog (C)* (Sym’ (Lie(G)" @4 G4)) C E(u) ™/ (Sym’ (Lie(G)") ®4 Ga).

from which one deduces (4-3-11-1).

Let Y € G?"). Then ¢(Y)(I.) C go(go(t)up ) C (go(E(u))w(t)up ) For
any x € I,

(@(C)p(X)e(C)™H(x) = (¢(¥) ® D((1 ® 9)(Adeg (C)*(¥))),

which is a priori only in W(E)A But since for any b € Ie], e(Y)(b) is divis-
ible by ¢(Eu))’g(t)/u?""", we have Ad(p(C)(¢(Y))(x) € (p(®u?"™") so
0(C)p(Y)e(C)7! lies in G(up ). O

By [Kisin 2006, Corollary 1.3.15], a I'so-representation coming from a finite-
height, torsion-free Kisin module 9T extends to a crystalline 'k -representation if
and only if the canonical Frobenius equivariant connection on 9t ®s O[1/A] has
at most logarithmic poles. Kisin [2006, Proposition 2.2.2] states furthermore that
if 91 has height in [0, 1] then the condition of logarithmic poles is always satisfied.
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The following lemma is a version of that proposition for G-Kisin modules with
minuscule type:

Lemma 4.3.12. Let F'/F be a finite extension containing F,, and let (B f+, ¢F-)
be a G-Kisin module over F'. Fix a trivialization of Br+; let C € G (GF/ [l/E(u)])
be the Frobenius with respect to this trivialization. If the G-filtration Dsg ., over
K ®q, F’ defined before Lemma 3.3.11 has type |i, then the right logarithmic
derivative (dC/du)-C 1 e (Lie G ® S p/[1/ E(u)]) has at most logarithmic poles
along E(u), i.e., lies in E(u) ' (Lie G ® G f-).

Proof. Choose an embedding o : Ko — F’. Without loss of generality, we
assume that o(E(u)) splits in F’ and write o (E(u)) = [[f_;(u — ¥; (7)) over
embeddings ¥; : K — F’ which extend 0. Let C, denote the o-component of C
under the decomposition of S/ [1/E(u)] asa W ®z, F' = [[g,_, s F'-algebra.
We can furthermore compute the “pole” at v; () by working in the completion
at u — ; (7r), which is isomorphic to F’[[¢]] with 1 = u — ; (7).

Let uy; € X«(GF) be the v;-component of w. Fix a maximal torus 7 of
G F/ such that py, factors through 7. The Cartan decomposition for G(F’((t)))
combined with the assumption that D ., has type w1 implies that

Co = Bipy, (t)D;,

where B; and D; are in G(F'[[t])) (see the discussion before Proposition 4.1.4 for
the definition of py, (¢)). Finally, we compute that (dCy/du)C; ! equals
dBi (dmm (1)

dD; _
rn +ad) Py 07 + Ad(B) (AdGug, 00 (5207,

We have (dB;/dt)B;” 1 ¢ (LieG ® F'[[t])). Using a faithful representation on
which T acts diagonally, we have (duwy, (1)/dt) iy, (1)1 € (1/1)(Lie G ® F'[t]).
Finally, since py, is minuscule, Ad(py,; (1))(X) € (1/1)(Lie G @ F'[t]) for any
X €LieG so in particular for (dD;/dt)D;*, by Proposition 4.1.4. O

Proof of Theorem 4.3.6. The faithfulness of A is clear. For fullness, let ‘BA
and ’, be in DS (4) and let ¥ : Py = P’ /4 be an isomorphism of underly-
ing G-Kisin modules. To show ¥ is equivariant for the [-actions, we can iden-
tify P4 and P, using ¢ and choose a trivialization of 4. Then it suffices to
show that (34, ¢yz,) has at most one crystalline [-structure. Let By and B! in
G(W(E )4) define the action of v with respect to the chosen trivialization of
©*(*B,) for the two [-structures. By the crystalline property, B;(B.)~! € G(uP).
By Proposition 4.2.4, if Frobenius is given by C’ with respect to the trivialization,
then
B.(B}) ™' = C'o(B.(B,) ™) (C)".

But then, by Lemma 4.3.11, B;(B.)™! = I since it is in G(upi) foralli > 1.
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We next attempt to construct a crystalline [-structure on any 4 € D%F(A).
Along the way, we will have to impose certain closed conditions on D%E to make
our construction work. In the end, we will reduce to A flat over Z, to show that
these conditions are always satisfied. Fix a trivialization 84 of 34. We want ele-
ments {B,} € G(ﬁA) forall y € r satisfying the conditions of Proposition 4.3.10.
Choose an element y € T. Let C denote the Frobenius with respect to B4 and let
C’ = ¢(C) be the Frobenius with respect to 1 ®, B4.

We use the topology on G(W(E )4) induced from the topology on W(E )4 (see
the discussion before Definition 4.2.2). Take By = I. For all i > 1, define

Bi := C'op(Bi—1)y(C")™! € G(W(E)a). (4-3-12-1)

If P4 admits a [-structure, then the B; converge to By in G(ﬁ 4) or, equivalently,
in G(IW(E)4).

Base case: B1 = C’y(C’)~! € G(uP). Let V be a faithful n-dimensional repre-
sentation of G such that 34 (V') has height in [a, b]. Set r = b —a. Consider C as
an element of GL, (6 All/E (u)]) such that

C":= E(u)™%C e Mat,(S4) and D”:=Em)’C~! € Mat,(&,)
with C” D" = E(u)" I. Working in Mat,,(W(E)4), we compute that

Cy( €)' —1= qo( % (C"y(D") - E(M)‘“V(E(u))bl))-

EQu)~¢y(E(u)
It would thus suffice to show u@(t) E (u)” ~! divides C"y(D")—E (u) "%y (E (u))?1
in Mat, (W(E T),), as then u t divides
1
E(u)~y(E(u))P
using Lemma 4.3.1.
Consider P(u1,u2) = C"”(u1)D"(uz), where we replace u by u; in C”, which
is in Mat,, (&4), and u by uz in D". Let P;j(u1,uz) = Zkzo c,lcj (ul)u]zc be the

(i, j)-th entry, where cg (u1) is a power series in 11 with coefficients in W ®z, A.
We have that P;j(u,u) = &;; E(u)". The (i, j)-th entry of C"y(D”) is

Py G felu) =Y [elfe oy,

k>0

(C"y(D") — E(w) ™ y(Ew))’I)

where & = ({,i)i>0 is the sequence of p"-th roots of unity such that y(@/P"y =
¢ pnj'[l/ P"  Note that ¢(t) divides [¢] — 1 since [¢] — 1 € I MW(E ) (see [Fontaine
1994, Proposition 5.1.3]) and ¢(t) is a generator for this ideal. Then

Pij(u. [elw) =Y ([elF — Dey o + 8 Eu)”
k>0
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Since u([e] — 1) E(u)" ! divides E(u)' E(u)_”)/(E(u))b, it suffices to show
that u([s] —1)E )" divides Zk([e — l)c (u)uk. Using the Taylor expansion
for x¥ — 1 at x = 1, we have

k

e 1= (5 ) -1,

{=1
from which we deduce that
k+4
S (e — 1 ek = u(le] - 1)(2([81 e S A L )
k=0 =1 k>0
Since E(u) divides [¢] — 1, we are reducing to showing that

W (7 et

k>0

E(u)r —£

for 1 <€ <r — 1 where the expression on the right is exactly

ut-1 (dEPij(MLuz) )
(u,u)

a
Let (x1) be the condition that E ()" ~¢ divides deP,j (uq, uz)/duz‘( for all
(i,j)and 1 <£ <r—1. This is a closed condition on D“

{
dus

Inductlon step: Let4 € D“ (A) satisfy (x1) with tr1v1ahzat10n as above, so that
=C'y(C)~ ! e GuP). We have

Bi+1B™' =Co(B;B})C.

AsC = (p(C/) we can apply Lemma 4.3.11 to conclude that B; 11 B ! € Gu?'™,

ie., B,+1B =] modgo(t)uleer(E"')A Since W(E"')A is separated and
complete, lim B; = By € G(W(E+)A) and By, satisfies B, y(C) = Cp(By). Itis
easy to see that Byy (By) = By, for any y and y’, by continuity, so we have a
[-action. If y € oo, then y acts trivially on GA and so on C as well, so B, = 1.

Let (x2) denote the condition that B, € G(RA) for all y € . We claim this is
also a closed condition on Dgﬁ. Since W(E Y RisZ p-flat, the sequence

0— Ry — W(E)4— (WET)/R)®7, 40

is exact for any A. Any flat module over an Artinian ring is free, so the vanishing
of an element f € (W(E+)/§) ®z, A is a closed condition on Spec A.

We have shown that any element 34 € D% (A) which satisfies (1) and (x2)
admits a crystalline [-structure and so lies in Dcm #(A). 1t suffices then to show
that the closed subgroupoid defined by the conditions (%1) and (%3) is all of D”
Recall that D% admits a formally smooth representable hull ng) H =Spf R‘(nN ) “
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where ng}] )+ is flat and reduced by Theorem 3.2.4 and Proposition 3.3.10. Since
R(]::) # is flat and R%N) **[1/ p] is reduced and Jacobson, any closed subscheme of
Spec R(N) " which contains Hom A(R N) " F’) for all F’/F finite is the whole
space. It sufﬁces then to show that, for any F'/F finite and A’ the ring of integers
of F’, every object of D“ (A ) satisfies (x1) and (*3).

First, for (%1), choose y e T'. Then set O¢(u) := (deP,] (uq, uz)/du2|(u )
which is in Mat, (S 4/) (we ignore u¢~1/£! since we are in the torsion-free set-
ting). We can check that E(u)" ¢ | Q,(u), working over F’ = A’[1/p] or any
finite extension thereof. In particular, we can put ourselves in the situation of
Lemma 4.3.12. We compute then that

Q¢u) = (E(u)‘”C) (E(u)b h

m b jl—m—
:(Ewyﬂc)Ej(i)d E@) dmC
m=0

du™ dut—m
¢ b l—mp—1
¢ _d™E(u) dt-mc
> () (o0 ) (¢ )
m=

Since E(u)" ™™ divides E(u)~% d™E(u)? /du™, it suffices to show that

dkc—1
Y = E(u)k(C ) € Mat, (S F-)
duk

for all k > 0 (applied with k = £ —m). The case k = 0 is trivial. By Lemma 4.3.12,
Xc:=Eu)(dC/du)C™' = —Eu)C d(C~1)/du is an element of Lie G ® S f/
considered as subset of Lie(GL(V)) ® & g/ so, in particular, Y, € Mat,, (& /). The
product rule applied to (d/du)(Eu)*C d¥=1C~'/du) implies that

dE(u)
du

so0, by induction on k, Y € Mat, (S F/) for all k > 0.

For (x3), recall that R= Rk, N W(E"‘) (see p. 5 of [Liu 2010]) so it suffices
to show that By, € G(Rg, ®z, A’) or, equivalently, B, € GL,(Rg, ®z, A’) with
respect to V. Denote by 91y the Kisin module B o/ (V) of rank n. Since p(E (1))
is invertible in Sk, C’ lies in GL, (Sk, ®z, A’) and defines a Frobenius on the
Breuil module My := Sk, @, My . Using a similar argument to above, one can
construct the monodromy operator Ny, on Jly inductively, taking No = 0 and
setting

d
Yk=%(E(u)Yk—1)—k Y1 +Y1Yr

Ni41:= pC'o(Ni)(C')~ 1+ud ¢ (4-3-12-2)
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The sequence {N;} converges to an element of Mat, (u”Sk,). For each N;, let
N; be the induced derivation on Jly over —u d /du which, on the chosen basis, is
given by N;. Equation (4-3-12-2) is equivalent to

Niv1iduy, = pduy Ni. (4-3-12-3)

Let &(y) := y([x])/[x]. Define a y-semilinear map B; on Rg, ®sg, My by

Bz( )_ZM@)(M)J'(X)

Jj=0

for all x € Jly. Equation (4-3-12-3) implies that
Ei—i—ld)ﬂ/tv = ¢A/LV El

By induction on i, one deduces that B; is exactly the y-semilinear morphism in-
duced by the matrix B; defined in (4-3-12-1).
If Ny, is the limit of the N; and By is the y-semilinear morphism induced

by By, then we have the formula

= (—loge(y))/ _ J

By(x):= Z I E—— Nﬂ(x)

j=0 )

for all x € My . Working with respect to the chosen basis for Jily, we deduce that
By € GL, (R, ®z, A'), as desired. O

4.4. Applications to G-valued deformation rings. Let 7 : 'x — G(F) be a con-
tinuous representation. As before, u is a minuscule geometric cocharacter of
Res( K®q, F)/F GF. Let Rcm’M be the universal G-valued framed crystalline de-
formation ring with p-adic Hodge type pu over Ap,. Let X crisl be the projective

eris:l_gcheme as in Corollary 3.3.15. The following theorem on the geometry of
X ,91”5’“ has a number of important corollaries. The proof uses the main results from
Sections 3.2 and 4.2. We can say more about the connected components when K
is unramified over Q, (see Theorem 4.4.6).

Theorem 4.4.1. Assume p t my (Gder) Let . be a minuscule geometric cocharacter

ofRes(K®@ F)/FGF. Then X(-ms’” is normal and XS”S’“ ® Ay Fru is reduced.

Corollary 4.4.2. Assume p }w1(G%). Let X; Cm’” denote the fiber of X; IS Hyer
the closed point of Spec Rcm . The connected components of Spec Rcm “1/ p]

are in bijection with the connected components of X crls o,

Proof. By Theorem 2.3.12, Spec Rms’”“[l/p] ;”s’”“[l/p] Since XC”S’“(X) Fis
reduced by Theorem 4.4.1, the bl]eCtIOIl between 7g (X IS p)) and o (X Sm’“ )
follows from the “reduced fiber trick” [Kisin 2009, Corollary (2.4.10)]. O
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Remark 4.4.3. Theorem 4.4.1 and Corollary 4.4.2 hold for unframed G-valued
crystalline deformation functors when they are representable, by exactly the same
arguments.

Before we begin the proof, we introduce a few auxiliary deformation groupoids.
The relationship between the various deformation spaces is described in (4-4-5-1).
Let D%:‘ be the deformation functor of 7, so D ,—‘]:'(A) is the set of homomorphisms
n: 'k — G(A) lifting 7. Let Pr be the G-Kisin module associated to a F-point x
of XS,

Definition 4.4.4. Define D )[-ca’b](A) to be the category of triples

{(14.4.64) | na € DS(A), PBa € DN A). 842 T6.6,(Ba) = nalrac .

Let ‘ﬁ[p denote a crystalline [-structure on Br together with an isomorphism
TG,r(Pr) = 1. Define D%ls’u ’D(A) to be the category of triples

{(4.9B4.84) | 14 € DI(A). PB4 eD“““(A), 84:T,4(B4) = 04}

Proposition 4.4.5. For any ‘JS[F, the forgetful functor from DA
Sfully faithful.

Proof. One reduces immediately to the case of GL, and then we have the following
more general fact: Choose any 90t/ B My € Mod&) oL e f M, — My be a
map of underlying Kisin modules such that T , ( f ) is 'k -equivariant (under the
identification Tg 4 = Ts,). Then f is a map of (¢, f‘)—modules. This is proven in
[Ozeki 2013, Corollary 4.3] when height is in [0, 4], but can be easily extended to
bounded height. The key input is a weak form of Liu’s comparison isomorphism
[2007, Proposition 3.2.1], which is also in [Levin 2013, Proposition 9.2.1]. O

cris, i, to D)[_Ca,b] is

The diagram below illustrates some of the relationships between the different
deformation problems. The diagonal maps on the left and the map labeled sm are
formally smooth. Maps labeled with ¢ ~ indicate that the complete stalk at a point
of the target represents that deformation functor. The horizontal equivalences are
consequences of Theorem 4.3.6 and the proof of Theorem 4.4.1, respectively.

D(oo) N7 crls Ly |:| CTIS S chs,u
n
/ \ \ [ [ (4-4-5-1)
Du, Dcrls N D[a b] X[a b]

Proof of Theorem 4.4.1. Let X be a point of the special fiber of X el defined over
a finite field . Since X; cris, (b [1/p] = Spec RCrls 11/ p]is formally smooth over F'
[Balaji 2012, Proposmon 4.1.5], it suffices to show that the completed stalk @M
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at x is normal and that @ ® Aryy Fiu 1s reduced. To accomplish this, we compare
@“ with D’é from Sectlon 3.3 and then use as input the corresponding results for
the local model M (). ‘

These properties can be checked after an €tale extension of A, %ﬂs’“ com-
mutes with changing coefficients using the abstract criterion in [Chai et al. 2014,
Proposition 1.4.3.6] as does the formation of X' : by Proposition 2.3.5. We can
assume then, without loss of generality, that A Apyy and F' = F. Let Py be
the G-Kisin module defined by Xx. Since u is minuscule, X cism = x flm =K (see
Proposition 4.1.3).

Since @56 is nonempty and A-flat (assuming that Rc-m is nonempty), it has
an F' —point for some finite extension F’/F. Any such point gives rise to a crys-
talline lift p of X to O/ such that the unique Kisin lattice in M G¢ ., (p) reduces
to Br ¢ F'. Replace F' by F. Then, by Proposmon 4.3.5, the corresponding
G(@ F)-valued representation is isomorphic to TG Opr (&B@ ) for some crystalline
(o, F) module with G-structure. Reducing modulo the maximal ideal, we obtain
a crystalline [-structure ‘ﬁ[p on Br. By Proposition 4.4.5, this is the unique such
structure.

Recall the deformation problem DC-HS’M from Corollary 3.3.15 and D)[-Ca’b] from
Definition 4.4.4. The natural map

cris, b [a,b]
D — D3

is a closed immersion (by Theorem 2.3.12). By Corollary 3.3.15, Spf @ - is closed
ln DCrlS,/J,

F1x the isomorphism S : TG [F(‘B[F) =~ 7. Consider the groupoid DA“S’“ D in
Definition 4.4.4. There is a natural morphism from DCHS’“ Hto D[a ], given by
forgetting the [-structure. By Proposition 4.4.5, this morphlsm is fully faithful,
hence a closed immersion by considering tangent spaces.

We claim that

cris, ., 0

- = Spf 0%

R PTVx
as closed subfunctors of D )[-Ca’b]. Since they are both representable, we look at their
F’-points for any finite extension F’ of F. By Theorem 4.2.7 and Corollary 3.3.15,

DEMER(F!) = DY (F!) = SprOg (F').
Since @g is A-flat and @g [1/ p] is formally smooth over F, we deduce that

Spfof c DgME.
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Finally, Dcr“ -5 is formally smooth over Dg by Theorem 4.3.6. By (3-3-9-2),
there is a dlagram

Spf S#

PN

cris, ., 5/1,
Pr ’

where S* €% A and both morphisms are formally smooth (Qr is as in Section 3.2).
The functor D’é is represented by a completed stalk R‘é on M(u). In particular,

R’é is A-flat so the same is true of D%ls’“ U Thus,
F

cris,u,0 L
% = SpfO%.

F

By Theorem 3.2 .4, R’é is normal and Cohen—Macaulay, and R“ L ®A [ is reduced,
so the same holds true for @M
O

Theorem 4.4.6. Assume K /Q,, is unramified, p > 3, and p } 71(G*). Then the
universal crystalline deformation ring R%ris’“ is formally smooth over Ay,).

Proof. First, replace A by Ap,). Without loss of generality, we can assume that
F contains all embeddings of K, since this can be arranged by a finite étale
base change. When K/Q, is unramified, Grg(”)’W is a product of [K : Qp]
copies of the affine Grassmannian Grg (see [Levin 2013, Proposition 10.1.11]). If

= (Ky)y:k—F then M(u)p = [y, S(iy), where S(uy) are affine Schubert
Varletles of Grg .. Under the assumption that p } 1 (G%), there is a flat closed
A-subscheme of Grg which, abusing notation, we denote by S(ty,), whose fibers
are the affine Schubert varieties for (1 (see Theorem 8.4 in [Pappas and Rapoport
2008], especially the discussions in §§8.e.3-8.e.4). Thus,

M= [T S@.
Vv:K—F
Since 4 is minuscule, S(i ) is isomorphic to a flag variety for G, hence M ()
is smooth (see Proposition 4.1.3). The proof of Theorem 4.4.1 shows that the local

structure of X crisi g smoothly equivalent to the local structure of M (). Thus,

crisf g formally smooth over A.

Finally, we have to show that
O: X;ris’” — Spec R%ris’”“

cris, i -

is A-flat, it suffices

cris /L

is an isomorphism. Since ®[1/ p] is an isomorphism and R
to show that ® is a closed immersion. Let m g be the max1mal ideal of R
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Consider the reductions

Op : X;”rf“ — Spec R%ris’“’ m'y.

We appeal to an analogue of Raynaud’s uniqueness result [1974, Theorem 3.3.3]
for finite flat models. For any Artin local Z p-algebra A and any finite A-algebra B,
let B and P, be two distinct points in the fiber of O, over x : R%”S’“ — A, ie.,
G -Kisin lattices in Px®4 B. Let V2 denote the adjoint representation of G. Under
the assumption that p > 3, [Liu 2007, Theorem 2.4.2] (which generalizes Ray-
naud’s result) implies that 4 (V) = pUA (V2d) as Kisin lattices in (Py®4B)(V9),
using that x is minuscule.

Since B is Artinian, without loss of generality we can assume it is local ring.
Choose a trivialization of Pp. There exists g € G(Og,p) such that Py = g -Pp
(working inside the affine Grassmannian as in Theorem 2.3.2). The results above
implies that Ad(g) € G*4(&4). By assumption, Z := ker(G — G) is étale
so, after possibly extending the residue field F, we can lift Ad(g) to an element
g€G(6,)suchthat g =gz, where z € Z (0%, 4). We want to show that z € Z(&,4).
We can write Z as a product Zys X (Gy)*® for some s > 0. Since Zos has order
prime to p by assumption, Ziors(0%¢,4) = Ziors(64), SO we can assume

2 € (Gm(0g,4))* = (A ®z, W)()*)*.

For any embedding v : W — OFf, we associate to z the s-tuple Ay of integers
of the degrees of the leading terms of each component base changed by . To
show that Ay, = 0, we can work over A/m,4 = F. We think of A, as a cocharacter
of Z. Consider the quotient of G by its derived group Z’ := G/G%". The map
X«(Z) - X«(Z') is injective. Any character y of Z’ defines a one-dimensional
representation L, of G so, in particular, we can consider P (Ly) and P'p(Ly)
as Kisin lattices in Px(L ). Writing &f = EBWW_,% Flluy ], a Kisin lattice of
Pyx(Ly) has type (hy) exactly when ¢p (e) = (ayu”")e for a basis element e
and ay € F. Since both Bp and P’ have type 1, B (L) and Pz (L ) both have
type hy := (1., pty). However, a direct computation shows that B’y (L ) has type
hy + (x. pAy’ — Ay), where ' = @ o . Thus, Ay, = pAys. We deduce that
plEQrly = Ay and so Ay = 0.

We are reduced to the following general situation: X — Spec A4 is proper mor-
phism which is injective on B-points for all A-finite algebras B, where A4 is a
local Artinian ring. By consideration of the one geometric fiber, X — Spec A is
quasifinite, hence finite. Thus, X = Spec A’. By Nakayama, it suffices to show
A/myg — A’ /(myq)A’ is surjective so we can assume A = k is a field. Surjectivity
follows from considering the two morphisms A" = A" ®; A’, which agree by
injectivity of X — Spec A on A-finite points. O
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Indicators of Tambara—Yamagami
categories and Gauss sums

Tathagata Basak and Ryan Johnson

We prove that the higher Frobenius—Schur indicators, introduced by Ng and
Schauenburg, give a strong-enough invariant to distinguish between any two
Tambara—Yamagami fusion categories. Our proofs are based on computation of
the higher indicators in terms of Gauss sums for certain quadratic forms on finite
abelian groups and rely on the classification of quadratic forms on finite abelian
groups, due to Wall.

As a corollary to our work, we show that the state-sum invariants of a Tambara—
Yamagami category determine the category as long as we restrict to Tambara—
Yamagami categories coming from groups G whose order is not a power of 2.
Turaev and Vainerman proved this result under the assumption that G has odd
order, and they conjectured that a similar result should hold for groups of even
order. We also give an example to show that the assumption that |G| is not a
power of 2 cannot be completely relaxed.

1. Introduction

Fusion categories (see [Etingof et al. 2005]) occur in various branches of mathe-
matics: low-dimensional topology, subfactors, and quantum groups, to name a few.
Classification of fusion categories, although currently out of reach in general, is
a main driving question in the area. A natural method for classifying objects in
mathematics is via numerical invariants. Ng and Schauenburg [2007b] introduced
a class of invariants of spherical pivotal fusion categories (to be simply called
spherical categories) called the higher Frobenius—Schur indicators. Let C denote
a spherical category. For each simple object V of C and each integer k > 1, Ng
and Schauenburg define a complex number v (V'), called the k-th indicator of V.
These build on and generalize many previous works, e.g., [Bantay 1997; Fuchs
et al. 1999; Fuchs and Schweigert 2003; Kashina et al. 2006; Linchenko and
Montgomery 2000; Mason and Ng 2005]; we refer the reader to the introduction
of [Ng and Schauenburg 2007b] for more details. For k = 2, these invariants

MSC2010: primary 18D10; secondary 15A63, 11L05, 57M27.
Keywords: fusion category, Tambara—Yamagami category, Frobenius—Schur indicator, discriminant
form, quadratic form, Gauss sum.
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generalize the classical Frobenius—Schur indicator of a finite group representation.
The Frobenius—Schur indicators of the simple objects of C can be used to define the
Frobenius—Schur exponent of C, denoted FSexp(C). When C is the representation
category of a quasi-Hopf algebra, FSexp(C) is equal to exp(C) or 2 exp(C) [Ng and
Schauenburg 2007a, Theorem 6.2] where exp(C) denotes the exponent of C in the
sense of Etingof et al. (see [Etingof 2002] and its references).

The higher indicators are powerful tools for studying pivotal categories. For
example, they were used in [Ng and Schauenburg 2010] to prove that the projective
representation of SL,(Z) obtained from a modular tensor category factors through
a finite quotient SL,(Z/nZ) for some n. In this article, we demonstrate that the
numbers v;(V), as k varies over natural numbers and V varies over the set of
simple objects of C, give a strong-enough numerical invariant of C that is able to
distinguish between any two spherical categories in an interesting class, known as
Tambara—Yamagami categories (TY-categories for short).

Susan Montgomery has asked whether the FS-indicators of a semisimple Hopf
algebra determine the tensor category of its representations. This was shown to
be true for the class of semisimple Hopf algebras of dimension 8 in [Ng and
Schauenburg 2008]. The representation categories of these Hopf algebras are TY-
categories. Kashina et al. [2012] showed that, for the class of nonsemisimple Hopf
algebras called Taft algebras, the second indicator can distinguish between the
finite tensor categories of their representations. Along similar lines, Siu-Hung Ng
(private communication) has asked whether a spherical fusion category generated
by a simple object is completely determined by its FS-indicators. Our results give
an affirmative answer to this question for the class of TY-categories.

Let G be a finite group. Let S be a finite set that contains G and one extra
element, denoted m. Consider the following fusion rule on S:

g®h=gh, m@g=g®@m=m, m@m=EPx forallg.heG.
xeG

Tambara and Yamagami [1998] classified all fusion categories that have the above
fusion rule; for a conceptual proof of this classification, see [Etingof et al. 2010,
Example 9.4]. Such fusion categories exist only if G is abelian and are classified by
pairs (x, T) where x : G x G — C* is a nondegenerate symmetric bicharacter on G
and T is a square root of |G|~!. For each tuple (G, x, T) as above, there exists a
spherical category, denoted TY (G, yx, t). Two TY-categories C =TY (G, x, t) and
C' =TY(G', x/, t’) are isomorphic as spherical categories if and only if T = 1’
and (G, x) >~ (G’, x/), that is, there exists an isomorphism f : G — G’ such that
X' (f(x), f() = x(x,y) forall x,y € G. Let Irr(C) = G U {m¢} be the simple
objects of C. There is a canonical (spherical) pivotal structure on C such that the
pivotal dimension of an object matches the Frobenius—Perron dimension. For an
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object V of C, let pdim(V) denote its pivotal dimension for this canonical pivotal
structure.
We shall prove the following theorem:

Theorem 1.1. Let C and C' be two TY -categories. If

doouy= ) wv),

Velr(C) Velr(C')
> pdim(V)u(V)= ) pdim(V)ve(V)
Velrr(C) Velrr(C)

forall k > 1, then C >~ C' as spherical fusion categories.

Now we shall describe our plan for the proof of this theorem and give a sum-
mary of contents of the sections. Let C = TY(G, x, t) and C' = TY(G', x’, /)
be two TY-categories. Assuming G and G’ are nontrivial groups, the assump-
tions of Theorem 1.1 are quickly seen to be equivalent to vi(m¢) = vk (me) and
Y e Vk(X) =) .5 vk(x). Based on work done in [Shimizu 2011], we can easily
conclude that G >~ G’ and t = 7’. Most of our work goes into showing that, if
vi(me) = vi(me) for all k, then (G, x) ~ (G, x’). Shimizu [2011, Theorems 3.3
and 3.4] calculated v (m¢) using an expression for the indicator in terms of the
twist of the Drinfeld center of C [Ng and Schauenburg 2007a, Theorem 4.1]. This
project started for us when Siu-Hung Ng asked us whether the 8-th root of unity in
[Shimizu 2011, Theorem 3.5] is related to the signature modulo 8 for some related
lattice. This indeed turns out to be the case. A simple restatement of Shimizu’s
result gives us a formula relating the indicators vy (m¢) to certain quadratic Gauss
sums; see Lemma 4.1. This formula is the starting point for our calculations, and
we want to explain it in precise terms. For this, we need some notation.

Let G be an abelian group, always written additively in this paper unless otherwise
stated. Let g : G — Q/Z be a quadratic form on G. Given a pair (G, ¢g), one defines
the associated quadratic Gauss sum

O(G, q) = |G|*1/22e(q(x)), where e(x) = 2. (1)
xeG

For k € Z, it will be also convenient to define the invariant
£(G, q) = O(G, 9)*O(G, —k - q). (2)

Let C =TY(G, yx, t) be a TY-category where (G, x, ) is a triple as above. We
choose a quadratic form ¢ on G such that x(x, y) = e(—dqg(x, y)) where dq :
G x G — Q/Z denotes the symmetric Z-bilinear form

dg(x,y)=qx+y)—qx)—q(y). 3)
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One can show that such a g always exists. In Lemma 4.1, we prove that for £ > 1

v (me) = sign(v)* & (G, q).

Much of the calculation in Sections 3 and 5 is geared towards finding explicit
formulae for & (G, g) by using the classification of the irreducible quadratic forms
and the known values of Gauss sums of these irreducible forms. The calculations
are more complicated when G is a 2-group, which is a well known feature in the
theory of quadratic forms on finite abelian groups. When G is a 2-group, and v, (k)
(the two-valuation of k) is at least 1, we relate & (G, ¢) to an invariant o, )(dq) of
the pair (G, dq) (see Lemma 3.8). The invariant o,,(dq) is a generalization of the
Kervaire-Brown—Peterson—Browder invariant [Brown 1972; Kawauchi and Kojima
1980, p. 33]. Detailed calculation of the values of the Gauss sums and properties of
the invariant o, (0¢q) lets us conclude that the bicharacter y can be recovered from
values of the Gauss sums, thus proving our theorem.

Sections 2 through 4 contain preparatory material. In Section 2, we collect the
background material necessary for quadratic and bilinear forms on finite abelian
groups and their classification. The results here are mostly due to C. T. C. Wall
[1963]; also see [Miranda 1984; Kawauchi and Kojima 1980; Nikulin 1979],
wherein the proofs can be found. However, we have chosen to include the proofs
of most of what we need in the detailed Appendix. In particular, we give a proof
of the existence part of Wall’s theorem (see Theorem 2.1) on the classification of
nondegenerate quadratic and bilinear forms on finite abelian groups. We have ex-
plained our reason for including the Appendix in Section 2, following the statement
of Theorem 2.1.

Section 3 contains the background on values of Gauss sums and calculation
of £&.(G, gq) in various cases. Section 4 introduces the TY-categories and relates
the indicator values vy (C) with Gauss sums. With these preparations, we prove
Theorem 1.1 in Section 5.

Finally, in Section 6, we apply Theorem 1.1 to address a recent conjecture
[Turaev and Vainerman 2012] regarding 3-manifold invariants constructed from
TY-categories. Given a compact 3-manifold M and a spherical category C, one
can define an invariant |M|¢, called the state-sum invariant in that paper. Turaev
and Virelizier [2013] showed that |M|c = tz)(M), where Z(C) is the Drinfeld
center of C and tz()(M) denotes the Reshetikhin—Turaev invariant. For k > 1,
let L1 = {(z1,22) € C? : |z11* + |221* = 1}/{(z1, 22) ~ €*/¥ (21, 22)) denote the
lens spaces. In Theorem 6.3, we show that a TY-category C = TY(G, x, 7) is
determined by the sequence of state-sum invariants {|Lg (|c : k > 1} as long as
we restrict to categories such that |G| has an odd factor. Turaev and Vainerman
proved this result assuming that |G| is odd and conjectured that a similar result
should hold for groups of even order. In Section 6, we exhibit two nonisomorphic
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tuples (G, x, 7) and (G', x', ©’) such that |L i|ty(G,x.,1) = |Lk,1lTv(G', 5,7 for
all k. In our example, both G and G’ have order 64. This example demonstrates
that one needs to put some hypothesis on the possible orders of G or else consider
state-sum invariants of other 3-manifolds if one has to recover the category from
the data of these invariants.

Quadratic and bilinear forms on finite abelian groups appear in various places in
topology and geometry. We give some examples:

 The “torsion linking pairing” on the torsion part of the n-th integral homology
of a (2n+ 1)-dimensional real compact manifold coming from Poincaré duality
and intersection pairing, for example [Kawauchi and Kojima 1980]. For 3-
manifolds, we get a pairing on the torsion 1-cycles related to the linking number.
For this reason, discriminant forms are called linking pairs in that paper.

o Intersection pairing on the torsion part of middle cohomology of a (4n + 2)-
dimensional manifold and computation of Kervaire—Arf invariants [Brown
1972].

« Study of integral lattices coming from algebraic geometry, for example study
of K3 surfaces [Nikulin 1979]. Let G be a finite abelian group and b be a
nondegenerate symmetric bilinear form on G. For each pair (G, b), there exists
apair (L, B), where L >~ 7" and B : L x L — Z is a nondegenerate symmetric
Z-bilinear form such that G = L’/L and b is the Q/Z valued form induced
on L'/L by B; here L’ denotes the dual lattice of L. For this reason, we have
borrowed the name “discriminant form” from [Nikulin 1979] for pairs (G, b).

We hope that the methods of calculation of Gauss sums will have other uses in
computations of Gauss sums coming from the above sources.

2. Bilinear and quadratic forms on finite abelian groups

Definitions. Let G be a finite abelian group (written additively). Let exp(G) denote
the exponent of G. A discriminant form is a pair (G, b) where G is a finite abelian
group and b : G x G — Q/Z is a symmetric bilinear form on G. As all the
bilinear forms considered in this article are symmetric, the adjective “symmetric”
will sometimes be dropped. Say that b or (G, b) is nondegenerate if for each
nonzero x € G there exists y € G such that b(x, y) # 0.

Let G be a finite abelian group and g be a quadratic form on G. We say that the
pair (G, q) is a premetric group. We say that g is nondegenerate and (G, ¢q) is a
metric group if the bilinear form dg (see (3)) is nondegenerate.

The morphisms in the categories of discriminant forms and premetric groups are
defined as usual. Isomorphisms are often called isometries. There is an obvious
notion of an orthogonal direct sum on discriminant forms and premetric groups.
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If (G1, q1) and (G, g2) are two premetric groups, we let (G, q1) L (G2, q2)
denote their orthogonal direct sum. The map (G, q) — (G, dq) defines a functor
from the category of premetric or metric groups to the category of discriminant or
nondegenerate discriminant forms, respectively.

Remark. Let G be a finite abelian group. Note that a bilinear form on G takes
values in exp(G)~'Z/Z. Let (G, q) be a premetric group. Let a € G. Note that
dq(a,a) =2g(a), and so g takes value in (2 exp(G))_IZ/Z. If G has odd order,
then a = 2(%(exp(G) +1))a. Sog(a) = %(exp(G) +1)dq(a, a). Hence, g actually
takes values in exp(G)~'Z/Z and dq determines ¢. But this fails for groups of
even order. For example, consider the nondegenerate bilinear form on Z/47Z given
by b(x, y) = xy/4. Then g (x) =x2/8 and ¢’(x) = 5x?/8 are two distinct quadratic
forms on Z/4Z such that dg = dq’ = b.

Definitions. Let p be a prime. If a is a rational number, v,(a) will denote the
p-valuation of a. It will be convenient to extend the definition of p-valuation as
follows. Let G be an abelian p-group. Define v, : G — Z<o U {00} by v, (x) =
— logp (order(x)) if x is a nonzero element of G, and v,(0) = co. We say that
v, (x) is the p-valuation of x.

This definition of p-valuation is useful to us because of the following example.
Let Q(,) be the ring of all rational numbers of the form m/p” where m € Z
and r € Zs¢. If (G, q) is a premetric p-group, then observe that ¢ and dq take
values in the Z-module Q(,)/Z. If « is a nonzero element of Q(,)/Z, then it can be

written as p~"a for some a € Z relatively prime to p. One has v, (a) = —n.

Let (G, b) be a discriminant form. Let ey,...,ex € G and b;; = b(e;, ¢;).
The matrix B = ((b;;)) is called the Gram matrix of ey, ..., e;. We shall write
Gramy(eq, ..., e;) = B. One has

b(Zg,-e,-,Zhjej> = (g1, 8B, .. b)Y, g1, g b, €L
i J

A discriminant form or premetric group is called irreducible if it cannot be written
as an orthogonal direct sum of two nonzero discriminant forms or premetric groups,
respectively. A finite abelian group is homogeneous if it is isomorphic to (Z/p"Z)"
for some prime p and positive integers » and n. For a p-group G, we let rk(G)
denote the minimum number of generators for G or equivalently dimg » (G/P(G))
where ®(G) is the Frattini subgroup of G. In particular,

k((Z/p"Z)") = n.

An element of (Z/p"Z)" will often be written as a vector whose entries come
from Z/p"Z. A discriminant form on a homogeneous finite abelian group will be
often written as ((Z/p"Z)", B) where B is an n X n matrix with entries in p~"Z/7
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name in [Miranda 1984] (G, q) (G, 3q)
Ay (z/prz, g(x) = #ﬁ) (Z/prZ, pi)
B (z/prz, g(x) = “"(p—fl)/zxz) (Z/p’Z, LI‘)—")
Ay (222,90 = 2r+1 x2> (2122 21)
By (222, 9(x) = R x2) (Z/Z’Z, ;—1)
Cor (Z/Z’Z, q(x) = ZerZ) (Z/2’Z, 23)
Dy (222,90 = er ) (2122 —rs)
Ex (@220 0=52) (@222 (%))
Fr ((Z/Z’Z)z, g1, x2) = xlﬂéﬂ) ((Z/M)Z, (2 2{’,))

Table 1. Irreducible quadratic and symmetric bilinear forms. In the
first two rows, p represents an odd prime. For the prime 2 and forr =1
or 2, some of the forms above are isometric. For example, A, >~ C».

such that b(x, y) = xBy" for all x,y € (Z/p"Z)". Let p be an odd prime and
u, denote a quadratic nonresidue modulo p. Table 1 lists the irreducible metric
groups (G, g) and corresponding irreducible discriminant forms (G, 9q).

Theorem 2.1 [Wall 1963; Miranda 1984; Nikulin 1979]. (a) Each nondegenerate
discriminant form is an orthogonal direct sum of the irreducible discriminant
forms listed in Table 1.

(b) Each metric group is an orthogonal direct sum of the irreducible metric groups
listed in Table 1.
It follows that, given any nondegenerate symmetric bilinear form b on a finite
abelian group G, there exists a quadratic form q on G such that dq = b.

A proof of Theorem 2.1 has been sketched in the Appendix. Here we shall only
give a brief indication of our argument. This argument seems to be different from
the proofs in the references above, and we believe it is simpler. It is probably well
known to experts, but we have not seen it in the literature.

Let (G, b) be a discriminant form. Write G = @, G() where G ) is the p-
Sylow subgroup of G. Let b(,) be the restriction of b to G(,) X G (). Clearly (G, b)
is an orthogonal direct sum of (G (), b(p)) as p varies over primes. So it suffices to
decompose (G, b) into irreducibles when G is a p-group for some prime p.
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Let G be a finite abelian p-group and b be a nondegenerate symmetric bilinear
form on G. The algorithm for decomposing (G, b) into irreducibles boils down
to diagonalizing symmetric matrices with entries in (,)/Z via conjugation. The
algorithm for diagonalization is the same as the well known algorithm for diagonal-
izing quadratic forms over p-adic integers; see for example [Conway and Sloane
1999, Chapter 15, §4.4]. This algorithm is the core of our argument. We repeat
that we could not find this argument in literature for bilinear forms on finite abelian
groups. This is our first reason for including the Appendix. A second reason is that
the argument is constructive, and so it can be useful in actually decomposing given
bilinear forms over finite abelian groups into irreducibles. A third reason is that part
(b) of Theorem 2.1 as well as Lemma 2.2 (which we need in our arguments) are not
explicitly stated in [Wall 1963]. They can probably be extracted from the arguments
in [Wall 1963] or [Miranda 1984; Nikulin 1979]. But this might require some work
mainly because each paper has its own rather complicated set of notations.

The following lemma, describing the nondegenerate quadratic forms on (Z /2" Z)?,
is essential to the proof of Theorem 2.1. It is stated here because we shall also use
it in the computation of some Gauss sums. It can be proved using Hensel’s lemma.
A proof is given in the Appendix.

Lemma 2.2. Set G =(Z/2"Z)? and let q be an irreducible nondegenerate quadratic
form on G. Then there exist integers A, B, C with B odd such that q(x, x2) =
277 (Ax? + Bx1x2 + Cx3). If AC is even, then (G, q) ~ ((Z/2"Z)?, x1x2/2").
Otherwise, (G, q) ~ (Z/2"Z)*, (x? + x1x2 +x3)/2").

3. Gauss sums and related invariants of a quadratic form

Let G be a finite abelian group and g : G — (Q/Z be a quadratic form on G. In
Section 1, we defined the quadratic Gauss sums ® (G, ¢g) and the related invariant
&(G, q); see (1) and (2). In this section, we shall compute the invariants @ (G, q)
and &, (G, q) for various pairs (G, ¢). One verifies that ® is multiplicative, that is,

O(G1,q1) L (G2, q2)) = O(G1, q1)O(G2, q2).

In the same sense, & is also multiplicative. We start with the following well known
result. The proof is omitted.

Theorem 3.1. (a) Let x : G — C* be a character on G. Then )_ . x (x) = |G|
ifx=1and ) _; x(x) =0 otherwise.

(b) If q is a nondegenerate quadratic form on G, then ©(G, q)O(G, —q) =1 and,
in particular, |®(G, q)|2 =1.

The next lemma gives the values of the Gauss sums of irreducible nondegenerate
forms.
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Lemma 3.2. (a) Let p be an odd prime and a be an integer relatively prime to p.
Then

O(Z/p'Z,a(p” + Dx?/2p") = (2?“) €,

where (27"‘) denotes the Legendre symbol and €,, = 1 if m = 1 mod 4 and
€n=11ifm=3 mod4.

(b) Let @ be an odd integer. Then
Q)2 7, ax? /21y = (= 1)@ =D/Be(q/8).
(c) Let «, B, and y be integers with B odd. Then
O(Z/2"Z), (ax] + Bxixa+yx3)/27) = (—1)*".

Proof. For part (a), see for example [Iwaniec and Kowalski 2004, p. 52]. Let G,
and G/, denote the left-hand sides of the formulae in parts (b) and (c), respectively.
Then one verifies that G, =2G,_; and G, = 4G/r_2 for r > 2. Parts (b) and (c)
now follow by induction once the formulae for » = 1 and 2 are verified. ([

Since ® is multiplicative, one can calculate the Gauss sums of arbitrary non-
degenerate forms by first decomposing the forms into orthogonal direct sums of
irreducible forms and using Lemma 3.2. We will also need to compute the Gauss
sums of some singular forms. This is the purpose of the lemma below.

Lemma 3.3. (a) Let p be a prime. Let G = (Z/p"Z)", and let ¢ be a p~"Z/Z-
valued quadratic form on G. Let 0 <s <r. Then p*q induces a quadratic
formon G/p"°G and

O(G, p’q) = p™*O(G/p" G, p*q).
(b) Let @ be an odd integer. Then one has
e 25/2(— 1)@ =D/8e(q/8) if0<s <,
o(zrz.r-3%) - 0 iFs=r.
2r/2 ifs>r.

Proof. (a) If x =x’ mod p"~*G, then p*q(x) = p*q(x’) since ¢ and dq take values
in p7"Z/Z. So p*q(x) induces a form on G/p"~*G. One has

GI'?O(G, p'g) =Y e(p'qN =1p""Gl Y e(p'a(r)
xeG yeG/p™—G

=|p"*G|IG/p"*G|'*O(G/p G, p*q).

Part (a) follows since |p"~*G| = p*".
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(b) First suppose r — s > 1. Note that, if y = x mod 2" %, then ay?/2" 5+ =
ax?/2" =t mod Z. So

2 27—1 2
r/2 r s, ox _ ox
2 ®(Z/2 Z,2 2r+1> - Z e<2r—s+1
x=0
s

ax’ (r+5)/2 g
_As r+s r—s
=2 E e(zr—sﬂ) =2 @(Z/Z Z, = s+1)

x=0

Part (b) now follows from Lemma 3.2 for 0 <s < r. Now let s = r. Note that, if
y =x mod 2, then «x?/2 = ay?/2 mod Z. So

2 2r—1
2”2@(2/2’2, 2% ;”il) Y e(ax?/2)=2"" 1Ze(ax /2) =
x=0

For s > r, the quadratic form we have is identically equal to 0, so the result is
obvious. ([
Lemma 3.4. Let p be an odd prime, and let both r and k be positive integers. Let
q1 and g be the two nonisometric nondegenerate quadratic forms on G = Z/p"Z.
Then

8(G,q1) = (=D &(G, q2)

where e =r(k+1) —min{r, v, (k)}.

Proof. There are only two distinct nondegenerate quadratic forms on G; see Table 1.
Without loss of generality, we may thus assume that g;(x) = u;(p" + Dx2/2p"
for j = 1,2, where u; = 1 and up = u, is a quadratic nonresidue modulo p.
Lemma 3.2(a) implies ©(G, q1) = (—=1)"©(G, q2). If v, (k) > r, the lemma holds
by the fact that ©(G, —kq) = 4/|G].

Now assume 0 < v, (k) <r. Write s = v, (k) and —k = p*a with a € Z relatively
prime to s. Then ®(G, —kg;) is equal to

©(G, p’aq)) = p**OZ/p" 7, p'au;(p + )x*/2p")
=p*?O@/p L, (p" + Daujx*/2p" ).
The first equality follows from Lemma 3.3(a). For the second, we need to observe
that the quadratic forms (p"~* 4+ Dax?/2p"~* and (p” + )ax?/2p"~* are identical
on Z/p"°Z. From Lemma 3.2(a), we have
O(Z/p"Z, (p"* + Dau,x*/2p" ™)
= (=1)70(Z/p"Z, (" + Dax*/2p"™),

which implies (G, —kq;) = (—1)"""*® (G, —kq;). The lemma follows once
we recall that ®(G, g1) = (—1)"O(G, g2). ([l
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Next, we shall introduce an invariant oy (b) of a discriminant form (G, b) defined
in [Kawauchi and Kojima 1980] and in Lemma 3.6 compare it to our Gauss sums
(discriminant forms are called linking pairs in [Kawauchi and Kojima 1980]).

Definitions. For the convenience of the reader, we shall recall some of the defi-
nitions from [Kawauchi and Kojima 1980; Wall 1963]. Let G be a finite abelian
group. Let

Gnl]={x € G:nx =0}

denote the n-torsion subgroup of G. Let p be a prime. Then G(,) =, G[p"] is
the p-Sylow subgroup of G. For k > 1, define

G! = GIp"1/(GIp* "1+ PGP,

Take a decomposition of G into a direct sum of cyclic groups of prime power
order. If such a decomposition has n factors isomorphic to Z/p*Z, then 5’; is an
elementary abelian p-group of rank n. Let b be a nondegenerate symmetric bilinear
form on G. Then

by (Ix], [yD = p*'b(x, y)

defines a nondegenerate bilinear form on 5’1‘, Here x and y denote any two elements
of G[p¥] representing [x], [y] € G¥, respectively.

Let ¢k (b) be the characteristic element (also called parity element) of the [F;-
quadratic space (G¥, 15’5). Explicitly, cX(b) is the unique element of 5’5 such that
15’5 (x,x)= 15’5 (x, (b)) for all x € 5’5 In other words, ¢k (b) is represented by any
¢ € G[2*] that satisfies

25 1p(x, x) =2 b(x,c) forall x € G[2X].

Note that both sides of the above equality can only take the values O or 1/2. Also
observe that the characteristic element c* (b) is zero if and only if b(x, x) € 21=k7 /17
for all x € G[2X].

The invariant oy (b) takes values in (Z/87)U{oo}, which is made into a semigroup
by defining 0o 4 00 = n 4 00 = oo for n € Z/87. If c*(b) # 0, then o, (b) = oo by
definition. If c¢¥(b) = 0, then one checks that

qr(x) =25"h(x, x)

induces a well defined quadratic form on G2/ G[2¥] and, following [Kawauchi
and Kojima 1980], we can define oy (b) by

1G2)/GI2"11'*0(G )/ G124, qi) = Ce(ox(b)/98),

where C is the absolute value of the left-hand side of the equation [Kawauchi
and Kojima 1980, §2]; we shall soon see that C # 0. If x, y € G() represent
[x]. [y] € G2/ G[2*], then dgx ([x], [y]) = 2*b(x, y). Suppose [x] € G2/ G[2*]
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such that gy ([x], [y]) =0 for all [y] € G(z)/G[Zk]. Let x € G(2) be arepresentative
for [x]. Then 2*b(x, y) =0 for all y € G (2. Since b is nondegenerate, it follows
that 2¥x = 0, so [x] = 0 in G(z)/G[2k]. So we have argued that, if ck(b) =0,
then g (x) is a nondegenerate form on G2/ G[2*]. Hence, Theorem 3.1(b) gives
C = |G/ GI2¥1|'/2. So oy (b) is in fact given by the simpler formula

O(G )/ GI2", qx) = e(ov(b)/8). )

The following theorem is the reason for our interest in the invariant oy (b), and it
follows from Theorem 4.1 of [Kawauchi and Kojima 1980].

Theorem 3.5. Let G be a finite abelian 2-group, and let b and b’ be two non-
degenerate symmetric bilinear forms on G. Then (G, b) ~ (G, b') if and only if
or(b) ~ or (V) forall k > 1.

Definition. It will be convenient for us to work with the invariant

Sk (b) = e(or(b)/8) ®)

rather than oy (b). If o3 (b) = o0, then we define ¢;(b) = 0. So ¢ takes values
in the multiplicative semigroup ug U {0} where ug is the group of 8-th roots of
unity. From Corollary 2.2 of [Kawauchi and Kojima 1980], it follows that, if
(G,b) = (G, b)) L (G, by), then ¢x(b) = g (b1)sr(b2). In other words, ¢ is
multiplicative, just like the Gauss sums or the invariant &. The multiplicativity
of ¢ (b) also follows from the next lemma.

Lemma 3.6. Let G be a finite abelian 2-group, and let b be a nondegenerate
symmetric bilinear form on G. Let k > 1. Then

O(G, 2 b (x, x)) = G211 2 g1 ().

Let q be a nondegenerate quadratic form on G. Then with b = dq, the above
equation yields
sk(99) = G[2°]720(G, 2q). (©6)

Proof. Let g1 (x) = 2k=1p(x, x). Let w vary over a set of coset representatives of
G/G[2*] and y vary over G[2¥]. Then

IGI'?0(G, q0) = X e(ge(w + ) = X e(gr(w) X e 'b(y, “®))). (D
w,y w y

The second equality follows since 25b(w, y) =0 and 2" 'b(y, y) =25"1b(y, K (b)).

If K (b) # 0, then y — e(2k_1b(y, cX(b))) is a nontrivial character on G[2¥], so the

inner sum in (7) is zero; hence, ®(G, 2¥~1b(x, x)) = 0. Now suppose k() =0.

Then we find that 25~ !'h(w, w) = 2¥~'b(w’, w’) if w = w’ mod G[2¥]. Thus,
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(w — gi(w)) induces a quadratic form on G/ G[2*]. From (7), we get
IGI'"?0(G, q) =1GI2] Y elgr(w))

weG/GA - = |G12MIVIG/ GI2¥118(G/ G12M], qp).
The lemma follows from (4). O

Lemma 3.7. Let (G, q) be an irreducible metric 2-group with exp(G) = 2" (see
Table I). Let B be an odd integer and n > 1. Then

n 0 ifn=rand k(G) =1,
2 (09)P = \ 8
sn(99) {(_ l)rk(G)S,,yzzﬁ,,]@(G’ q)ﬂz otherwise, (8)
where §; ; is the Kronecker delta, and
O(G, f2"q) = |G[2"|/2(— 1) KO maxir=nOIF=D/S ¢ (5)P ©9)

Proof. We treat the cases rk(G) = 1 and tk(G) = 2 separately. First suppose G
has rank 1, that is, (G, ¢) ~ (Z/2"Z, ax*/2"*') where « € {£1, £+5}. Then from
Lemma 3.2(b), we find that ®(G, g) = +e(«/8). Since n > 1, we have

O(G, ¢)P* = e(a/8)F*". (10)

Now we split the argument into three cases.

Case 1 (n > r). Then O(G,2"Bq) = |G|'/? = |G[2"]]"/?, and so (6) implies
¢,(dg) = 1. This verifies (9). From (10), we obtain ®(G, ¢)f*" = e(a/8)F* =
(—1)%2%1_This verifies (8).

Case 2 (n = r). Lemma 3.3(b) implies that ®(G, 2"8g) = 0. From (6), we get
¢, (3q) = |G[2"]|7'/20(G, 2"g) = 0 too. This verifies (8) and (9) in this case.

Case 3 (1 <n < r). From (6) and Lemma 3.3(b), we have

6. (09) = |G[2"]7'?0(G, 2"q)

2
= 2—"/2(9(2/2’2, 2"

oax
or+l

) = (=)D (a8,

Since n > 1, using (10), we obtain ¢,(3¢)#*" = e(a/8)P*" = O(G, ¢)#*", which
verifies (8). To verify the expression for ® (G, 82"q), we compute as follows:

( ) ﬂq) - / ’ 2r+1
_ 2n/2(_1)(r—n)(0lzﬂz—1)/ge(13a/8)
_ 2,,/2(_1)(r—n)(ﬂ2—1)/8((_1)(r—n)(a2—1)/8e(a/8))’3

- 2_
=2"2(=) I RG, (0g)”,
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where the third equality follows from the fact that for odd integers 8 and «

@B =D —(B*=1D) =B =D =BB-D@>—=1)=0mod16.  (11)
This verifies (9) and finishes the argument in the case rk(G) = 1.

Now assume rk(G) = 2. If n < r, then (6) and Lemmas 3.3(a) and 3.2(c) give us
¢n(0g) = %1 (or else see Corollary 2.2 of [Kawauchi and Kojima 1980]). If n > r,
then from (4), we obtain, ¢,(dq) = O (G/G[2"], 2"q). Since G[2"] = G, the Gauss
sum is equal to 1 and thus ¢, (dg) = 1. Thus, in any case, we find that ¢, (dg) = 1.
Lemma 3.2(c) tells us that ®(G, g) = £1 as well. Now (8) follows since n > 1.

Since ¢, (dg) = %1, the right-hand side of (9) becomes

IG12"11' %6, (3¢q).

Since G is of type Eyr or Fpr, Lemma 2.2 implies (G, Bq) >~ (G, gq). So (G, 2" Bq) =~
(G, 2"g), and (9) follows immediately from (6). O

Lemma 3.8. Let (G, q) be a metric 2-group. Let n > 1 and B be an odd positive
integer. Let ¢,(3q) be the invariant introduced in (5). Then

gZ"ﬁ(G, q) = (_I)FG,ﬂ,n |G[2n]|l/2gn(aq)(2"—1)ﬁ

where I'g g n is an integer dependent on G, B, and n and independent of q. More
precisely, if we write G = EB;”;I(Z/TZ)N', then

o
FG.pn=08x2N1+ )  N.max{r —n,0}(8>—1)/8.

r=1
Proof. Observe that both sides of the equation we want to prove are multiplicative
invariants of a metric group. Since any metric group (G, ¢g) can be decomposed
into irreducibles by Theorem 2.1, it suffices to prove the equation when (G, q)
is an irreducible metric group. Assume (G, g) is an irreducible metric group
of exponent 2"; the possibilities for these are given in Table 1. Note that G is
isomorphic to (Z/2"Z) or (Z/2rZ)2 and N; =4; , rk(G). So the equation we want
to prove becomes

(G, )P (G, —p2"q)

_ (_1)rk(G)8n,281‘,+rk(G)max{r—n,O}(ﬂz—l)/S|G[2n]|1/2 )@ =DB

Sn(dq
This equation follows directly from Lemma 3.7. O

4. Indicator of Tambara—Yamagami categories as Gauss sums

Let G be a finite abelian group. A function x : G x G — C* is called a symmetric
bicharacter on G if x(x,-) and x (-, x) are characters on G and x (x, y) = x(y, x)
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for each x, y € G. A symmetric bilinear form b on G determines a symmetric
bicharacter x : G x G — C* given by x(x,y) = e(—b(x, y)) (the minus sign
in front of b is for consistency with notation in [Shimizu 2011]). This sets up
a natural correspondence between bilinear forms and bicharacters. We say x is
nondegenerate if b is.

Let G be a finite abelian group, x be a nondegenerate symmetric bicharacter
on G, and T be a square root of |G|~!. Let b be the bilinear form on G given
by x (x, y) =e(—b(x, y)). Given any triple (G, x, ), there exists a spherical fusion
category C, called the Tambara—Yamagami category or TY-category for short. We
shall denote this category by TY (G, x, t) or by TY(G, b, t). The simple objects
of C are G U {m}. We shall write m = m¢ if there is a chance of confusion. The
associativity constraint in TY (G, x, t) is dictated by the bicharacter x and sign(7).
See [Tambara and Yamagami 1998] or [Shimizu 2011] for more details on the
TY-categories. Caution: the abelian groups in [Shimizu 2011] are multiplicative
while for our purpose it is convenient to write the group G additively.

For each simple object x of a spherical fusion category and each integer k > 1,
one can associate a complex number v (x), introduced in [Ng and Schauenburg
2007b], called the k-th Frobenius—Schur indicator of x. The lemma below tells us
the indicators of the simple objects of a TY-category. This is an easy translation of
results in [Shimizu 2011]. Our main observation is noting that the indicators of the
object m¢ can be expressed in terms of certain Gauss sums.

Lemma 4.1. Let C =TY(G, x, t) be a TY-category. From [Shimizu 2011, The-
orem 3.2], we know that vi(x) = 8, 1 for x € G. Let b be the bilinear form on G
given by x(x,y) = e(—b(x,y)). Let g be any quadratic form such that 0g = b.
Then for all k > 1, one has vy (m¢) = 0 and

vak(me) = sign(2)*0(G, ¢)*O(G, —kq) = sign(1)"& (G, q),
and this value does not depend on the choice of q.
Proof. From Theorem 3.3 of [Shimizu 2011], we know that vy;_;(m) = 0. Let
C(x)={¢:G— C:px)p(Me(x+y)~" = x(x,y) forx,y € G}.
From the proof of that result, we have
1 k
va(me) = 1 > (rZso(X)) VIGI. (12)
peC(x) xeG

By definition, eog € C(x). One checks that G acts simply transitively on C(x) by
a-p(x)=p)x (@ x)". So C(x) ={ps:a € G} where g, (x) =e(q(x)) x (a, x)~".
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One has
sign(t)
T a(x) == e(q(x) +b(a, x) +q(a) — q(a))
xeG |G| xeG
— BRI Y e+ a)
xeG

=sign(r)e(—q(a))O(G, q).
From (12), it follows that

sign(r)k X
v (me) = ==Y e(—kq(a)® (G, q)
|G| aeG

= sign(1)*O (G, ¢)*O(G, —kq).

To complete the proof, observe that the expression on the right-hand side of (12)
only depends on x and is independent of the choice of g. U

We shall need the following.

Lemma 4.2 [Shimizu 2011, Theorem 3.5]. Let C =TY(G, b, t) be a TY-category.
Let q be a quadratic form such that dq = b. Then vy (m) = |G[k]|'/*Y where
Y € ug U{0} (recall that ng denotes the set of 8-th roots of unity). One has =0 if
and only if there exists a € Glk] such that kq(a) # 0.

Remark. We should mention that, from the values of the Gauss sums given in
the previous section and the decomposition of (G, ¢) into irreducibles, we can
show that & (G, ¢) =0 if and only if (G, ¢g) contains an irreducible component that
equals Ayr, Byr, Cyr, or Dyr where r = vp(k) for some even k and that this yields
another proof of Lemma 4.2.

Let (G, q) be a premetric group. The invariant & (G, ¢g) can itself be expressed
as a Gauss sum as follows. Let F;(G, q) denote the premetric group given
by the abelian group {(gi, ..., g) € G* : Zj gj = 0} with the quadratic form
q(gl,...,8) = Zj q(gj). Then one can show that & (G, q) = Fx(G, q). In view
of this formula, the appearance of the 8-th root of unity i in the above lemma
becomes a consequence of Milgram’s formula.

5. Tambara-Yamagami categories are determined by the higher
Frobenius—Schur-indicators

In this section, we shall prove Theorem 1.1. Let C =TY(G, x, t) be a TY-category.
We shall show that the Frobenius—Schur indicators of the simple objects of C
determine the triple (G, x, t). So the indicators can distinguish between any two
TY-categories. Most of the work goes into showing that the indicators vi(mc)
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determine the bicharacter x. Let g be a quadratic form on G such that x (x, y) =
e(—dq(x, y)). Then Lemma 4.1 gives vi(m¢) = sgn(r)kf;‘k(G, q) where &,(G, q)
is a product of quadratic Gauss sums. Based on computations in Section 3, we shall
argue that the invariants & (G, g) determine the bicharacter x. We need a couple
of lemmas before proving Theorem 1.1. The lemmas let us handle special cases.

Lemma 5.1. Let G be an abelian group of odd order. Let by and by be two
nonisometric nondegenerate symmetric bilinear forms on G. Let q| and q, be
quadratic forms such that 3q; = b; for j =1, 2. Then either there exists an odd
positive integer k such that &.(G, q1) # & (G, q2) or else, for each natural number y ,
there exists a positive integer k with vo(k) = y and &(G, q1) # & (G, q2).

Proof. Fix a nonsquare u,, modulo p for each odd prime p. Recall from Table 1

—1y2 271y x2
) and Bp,:(zmrz,q(x):—”).
p

Ap’ = (Z/Prz q(x) = ;
We will also use the notation

27 Inx? -1 2
n-APrZ(Z/prZ,q(x): e ) and n.Bprz(z/prz,q(x)=M>
pr p”

forn € Z. Write G >~ @p’r(Z/p’Z)NW where p ranges over odd primes and r > 1.
Since A,r L Ay > By L By [Wall 1963, Theorem 4], the metric group (G, g;) is
an orthogonal direct sum, over all (p, r) such that N, . # 0, of the homogeneous
metric groups

Npr—1 j
Alyticl,,

where C é,r is either A,- or B,r. Since & is multiplicative, we have

§G.ap= [] &@m™&Ci). (13)
p.r:Np#0
Let
A={(p.r):Np, #0, C,, #C> 1.
Amax ={(p, 7)€ A: (p, 1) ¢ Aforall ¥’ > r}.

If (p,r) ¢ A, then the (p, r)-th term in the product in (13) is the same for j =1, 2.

If (p, r) € A, then the (p, r)-th terms differ by a factor (— l)efm given in Lemma 3.4.
It follows that

£(G,q1) = (=D &(G,q0) where A= ) e .
(p.r)eA



1810 Tathagata Basak and Ryan Johnson

Case 1. If there is a prime p such that (p, 1) € Apax, then choose such a prime pg
and let k = pg. We find

> ek =k =1(k+1)—min{l, v, (k)} = po=1 mod 2.

r:(po,r)€A

For all prime (p, r) € A such that p # pg, we have egr =r(po+1)=0mod?2. It
follows that A = 1 mod 2, so & (G, q1) # & (G, q2).

Case 2. Otherwise, choose (pg, rg) € Amax such that ryp > 1. Choose any y > 1,
and let

k= 27’p0_1 l_[ p.
(p,r)€Amax

Note that k is an integer with vy(k) =y and v, (k) =rp — 1. One has

ek =ro(k+1) —min{rg, v, (k)} = ro — (ro — 1) = 1 mod 2.

Pos1o
If r <rg, thenr <, (k), so ef,o’r =r(k—1)—r =0 mod 2. Finally if p # py, then
(p,r) € Aimplies r < v, (k) by our choice of k, so ef,’, =r(k+1)—r =0 mod2.
Again, A =1 mod 2, s0 §(G, q1) # & (G, q2). U

Lemma 5.2. Let b and b’ be two nondegenerate symmetric bilinear forms on a finite
abelian 2-group G. Let q and q' be quadratic forms such that 9q = b and dq’ =b'.
Let k be a positive integer such that v, (k) =0 or vy (k) > max{2, v2(exp(G))}. Then
&(G,q) =&(G,q").

Proof. By the structure theorem of finite abelian groups and by Theorem 2.1, we
can decompose G and (G, g) as

o0
G~@@/2)™ and (G,q) > (Hy, 1) L L(Hp, pim),

r=1
respectively, where each H; ~ 7/2"Z or H; ~ (Z /2" Z)?* and p; is an irreducible
nondegenerate quadratic form on H;.

Suppose k is odd. By Lemmas 3.2(b) and 3.3, if (H;, u;) = (Z/2"Z, ax? 2"+,
then
Ec(Hi, 1) = (— DM DB g0 8)F (—1)1 0D B g (—ka8).

Using (11), this simplifies to
sk(Hi, /’Li) — (_l)ri(kz_l)/S.

By Lemma 3.2, if (H;, ;) = ((Z/27Z)%, (ax} + x1x2 +ax3)/27) with « € {0, 1},
then
Sk(Hia Ml) — (_1)0{2r,'k(_1)(—ka)2rl- — (_l)ar,-k—i-ar,-kz —1.
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We summarize both cases with the equation
§(Hy, i) = (= DK nrs,
Summing over all i such that r; = r yields ) , tk(H;)ri =), rN,. So
5(G, q) = (—1) X N0,

The expression for & (G, ¢) does not depend on ¢, so we get & (G, q) = &(G, q')
for k odd.

Now suppose that k = 2" with 8 odd and n > max{2, v,(exp(G))}. Then
max{r —n, 0} = 0 for all r such that N, > 0. Since n > v,(exp(G)), the quadratic
forms 2"~ 'b(x, x) and 2"~ !5 (x, x) are identically equal to 0, so Lemma 3.6 implies
that ¢, (b) = ¢, (b") = 1. From Lemma 3.8, we get

£25(G,q) =1GI2"1I"*¢, (1) "V = |G|,
Thus, &4(G, g) does not depend on g and we get £2:4(G, q) = €2g(G,q"). O
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Write C; = TY(G1, by, 71) and C; = TY(G3, by, 72). Let
my =mgc, and my =m¢,. We have pdim(x) =1 for x € G; and pdim(m ;) = ,/|G|.
So the hypothesis in the theorem yields

V1G1l = Dvg(m1) = (|G2| = Dvg(myp)  forall k > 1. (14)

Lemma 4.1 implies that, if k£ is a multiple of 8|G||G|, then vy (m ;) = /|G|
for j =1, 2. It follows that (/]G] — 1)v/|G1| = (+/]G2] — 1)4/]G>| and hence
1G] =1Gal.

First consider the trivial case: |G| = |G;| = 1. Then the bilinear forms b
and b; are trivial. So there are only two such TY-categories, and they are only
distinguished by the value of T € {£1}. We know erG,— vk (x) = |Gj[k]| and
sign(z;) = v2(mc;). (See Theorem 3.2 of [Shimizu 2011] and the remark following
the proof of Theorem 3.4 of [Shimizu 2011]. Or else, see Lemma 4.1.) It follows
that 1+sign(t1) =Y _ycpre, V2(V) =2 yerre, v2(V) = 1+sign(za). Sosign(zy) =
sign(1,), and the theorem holds in the trivial case.

We may now assume that |G| =|G2| > 1. Equation (14) implies v (1) = vg (m2)
and hence ) s vk(x) =) ., vk(x) for all k > 1. It follows that |G [k]| =
|G [k]| for each k > 1. This forces G| >~ G,, and so we may assume without loss
of generality that G; = G, = G. By [Shimizu 2011], sign(z;) = v2(mc¢;), and so it
follows that t; = 1p. Assume that b and b, are nonisomorphic.

Write G =G,.®G, where G, is the 2-Sylow subgroup of G and G, = @pﬂ G
is the “odd part”. Then (G, b;) = (G,, b?) 1(G,, b;). Choose quadratic forms qjo.
and q;? such that b? = quo. and b; = qu . Then g; = qj”. 1L qJ‘f is a quadratic form
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such that dg; = b;. By Lemma 4.1, it is enough to show that &, (G, q1) # (G, q2)
for some k. Since & is multiplicative for j € {1, 2}, we have

£(G.,q)) = &(Gor 4DE(Ge, 45
We split the argument into two cases.
Case 1 (b] 2 b5). Then Lemma 5.1 implies that there is an integer k > 1 that is
either odd or v, (k) > max{2, v2(exp(G,))} such that &(G,, ¢¥) # & (G,, ¢5) and
Lemma 5.2 implies that & (G., q7) =& (G, q5). So var(m1) # vor(m2) if b 2 b5.
Case 2 (b{ = bj). In this case, we must have b] 2 b5. From Theorem 3.5, there

exists some n > 1 such that 0, (b{) # 0,(b3), which implies ¢, (b)) # ¢, (b5). Now
Lemma 3.8 implies that

£21(Ge, q) = (=D |G [2"]] 6, (06> !

where I'g, 1,, 18 an integer dependent on G, and n but independent of qj‘i. It follows
that &1 (Ge, q7) # & (Ge, g5). On the other hand, since (G,, b)) = (G,, b3), we
have £:(G,, q7) = &21(Gy, g3). SO voui1(m1) % Vont1(my). O

6. Tambara-Yamagami categories associated to groups with an odd factor
are determined by the state-sum invariants

Let G be a finite abelian group, x be a nondegenerate symmetric bicharacter on G
and t be a square root of |G|~'. Let C = TY(G, x, t) denote the associated
Tambara—Yamagami category. If M is a closed compact 3-manifold, we denote
by |M|¢ the state-sum invariant of M defined using the category C, as in [Turaev
and Vainerman 2012]. Let L,, , denote the lens spaces.

Lemma 6.1. For all k > 1, one has | Ly 1|c = (|G[k]] +|G|"> v (me)) /(2| G)).

This lemma follows directly from Theorem 0.3 of [Turaev and Vainerman 2012]
as well as Lemma 4.1. The former expresses | Lo 1|¢ in terms of a quantity & (x)
that is essentially the right-hand side of the equation in Lemma 4.1.

Corollary 6.2. Forallk > 1, |L;1|c = (pdim(C))~! ZVEIH(C) Vi (V) pdim(V).
The corollary follows from Theorem 3.2 of [Shimizu 2011], which implies

> veG Vk(x) = |GIK]|.

Theorem 6.3. Let C = TY(G, x, 1) and C' = TY(G', x', ') be any two TY-

categories. Suppose |G| is not a power of 2. If |Ly 1|lc = |Lk.1lc for all k > 1, then

c~Cc.

Proof. Let G, and G/, be the 2-Sylow subgroups of G and G, respectively. Let G,

and G/, be the sums of the p-Sylow subgroups for all odd p. From Theorem 0.1 of

[Turaev and Vainerman 2012], we already know that |G| = |G| and that the p-Sylow
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subgroups of G and G’ are isomorphic for all odd p. It follows that |G.| = |G.,|.
We claim that G, >~ G/, as well. The claim implies G >~ G’, and then Lemma 6.1
tells us v (me) = v (mer) for all k, which forces x >~ x’ by Theorem 1.1. Thus, to
complete the proof, we need to show G, >~ G,. For this, it suffices to show that
|G[2"]] = |G'[2"]] for all n > 0. Suppose this is false. Since |G[2°]| = |G'[2°]| =1,
we may pick the smallest n > 0 such that |G[2"*!]| > |G'[2"+!]| (without loss of
generality) and |G[2™]]| = |G'[2™]| for all m < n.

Leta=|G,|=|G,|. Letn > 0. Then G[2"a]l=G,® G[2"]. By Lemma 4.2, we
can write von+1,(me) = |G[2”a]|1/21ﬁ,,, where ¥, € ug U{0}. Define v, similarly
for C’. We have

|G| Lyps1gqle = 1G22 al| + |G| Pvyuir, (me)
= |G, |(IGL2" T+ |G| *IG[2"11' 2.

So [Lontig 1lc = |Lont141]cr implies
IGLR2" M| +1Ge | IGI2" 11 2, = |G 12" ) + |G V2 G 12M 24,

If ¥, = ¥/ = 0, then the above equation would imply |G[2"*!]| = |G'[2"!]].
So ¥, # 0 or ¥, # 0. Rearranging the above equation and remembering that
|Gel =1G,l, we get

IG2" T — |G [2" 1| = |G| IGI2" 112 (Y, — ¥). (15)

Each side of (15) belong to Z[e*"/3]. Consider the absolute norm of each side.
If ¥ € ug U {0}, one verifies that the absolute norm of (¥ — 1) is a power of 2 or
zero. For example, if ¢ is a primitive 8-th root of unity, then Ngf W](w - 1) =
H?zo(e((Zj +1)/8) — 1) =2.1If ¥, # 0 or ¢, # 0, then writing (Y, — ¥,) =
V(Y /Y —1) or (Y, — ) =y, (1=, /¥,), respectively, we find that the norm of
(Y) — ) is a power of 2 or zero. So the norm of the right-hand side of (15) is also a
power of 2. However, note that the left-hand side is already an integer, so it must also
be a power of 2. The only way this is possible is if |G[2"T!]| = 2|G'[2"+!]|. Write
Vout1 (me) = |G[2"1|Y/? A, and vyuii (mer) = |G'[2"]|1/2 A/, for some Ay, AL, € g U{0}.
Now the equality |Lyn+1 y|c = [Lont1 jler yields

IG' 12" = |GI2" | — |G’ 12" 1| = |GG 12" V2 (A, — ).

Now the left-hand side is a power of 2, so the norm of the right-hand side must
also be a power of 2. Since N (A, — A,,) is a power of 2, it follows that |G| is also a
power of 2, which contradicts our assumption. It follows that (G, x) =~ (G’, x/).
Now since v (m¢) = sgn(t), the equality |L2 1|c = |L2,1|c implies 7 = 7’. O
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Example. We exhibit two Tambara—Yamagami categories that have the same
state-sum invariant for all lens spaces Ly 1. Recall that Ay« denotes the met-
ric group ((Z/2"Z), x*/2"*1). For k € Z, we shall denote the premetric group
((2)2"Z), kx*/2"1) by (k - Am). Let (Gy, by) = (A2)* L A4 and (G2, by) =
(A2)* L (A4)%. Let C; =TY(Gy, by, —) and C; = TY(G2, b, §). Then we claim
that L, 1lc, = |Ln.1lc, for all positive integers .

Proof of claim. Let g; be a quadratic form such that dq; = b; for i € {1,2}. We
will break the proof into cases according to possible 2-valuations of n. The trivial
case is that [L, 1|¢, = ﬁ =|Ly,1lc, if n is odd. By Lemmas 6.1 and 4.1, to prove
|Lak.1lc, = | L2k 1le,, it is enough to show that

|G112k]] + (—=1)*8&(G, q1) = |G2[2k]| + 8& (G, q2).
Since & is multiplicative,

£(G, q1) = &(A) & (As) and  &(G, q2) = &(A2) & (As)*.

From Lemma 3.2, we have & (Ay) = O(A» ) O (—k-Ay) = e(k/8)O(—k-Ayr).
The values of ®(—k - Ayr) were computed in Lemma 3.3. This lets us compute the
invariants. We shall consider three cases.

Case 1. Suppose k is odd. Then we have ©(—k - Ay) = (—1)X*~D/8¢(—k/8), so
£(A2) = (—1)®~D/8 We have O (—k - Ag) = (—1)>®~D/8¢(—k/8) = e(—k/8),
so &, (A4) = 1. It follows that & (G, q1) = 1 = & (G, q»). Since |G[2k]| = 32 and
|G2[2k]| = 16, we get | Lok 1lc, = |L2k.1le, in this case.

Case 2. Suppose va(k) =1 or 2. Then ®(—k - Ay) =0 or O(—k - Ag) =0, so
&r(A2)=0o0r & (As)=0. Since both (G, by) and (G», by) have components of type
Aj and A4 and since & is multiplicative, it follows that & (G, q1) = & (G, q2) = 0.
Since |G;[2k]| = 64, we get | Lok 1l¢, = | Lok, 1lc, in this case.

Case 3. Finally suppose va(k) > 3. Letr =1 or r = 2. Then O(Ar)f=e(k/8) =1.
The quadratic form —k- Ay- is identically equal to 1, s0 &, (Ao ) = O(—k-Ay) = 2112,
It follows that &(G, ¢;) = |G|"/?> = 8 for j = 1,2. Since |G;[2k]| = 64 and
(—D* =1, we get |Lat.1le, = |Lax.1]c, in this case too. O

Appendix: Diagonalization of bilinear and quadratic forms

In this appendix, we discuss the problem of decomposing quadratic and bilinear
forms on finite abelian groups into irreducible components.

Notation. If R is an abelian group, we let M, (R) be the set of all n x n matrices
with entries in R. If R is a commutative ring and § is an R-module, then S” is
a (left) M,,(R)-module and M,,(S) is an M,,(R)-bimodule. The action of M, (R)
on S" is obtained by writing elements of S" as column vectors and multiplying by
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the matrix on the left. The two actions of M,,(R) on M, (S) are by left and right
multiplication.

Recall from Section 2 that, if x is an element in a p-group of finite order, then we
write v, (x) = —log » (order(x)) and v,(0) = oo. The lemma below is elementary.
We leave the proof as an easy exercise.

Lemma A.1. Let p be a prime. Let G be an abelian p-group.
(@) Letx e Gandr € Z. Then rx =0 if and only if v,(r) +v,(x) > 0.
(b) If x e Gandr € Z such that rx # 0, then v,(r) + v,(x) = v,(rx).

(c) Let xq, x2 € G Then v, (x1 + x2) > min{v,(x1), v,(x2)}, and equality holds
if (x1) =0o0rv,(x1) #v,(x2). (Here and later, (x) denotes the cyclic
subgroup generated by x.)

(d) Let b be a symmetric bilinear form on a finite abelian p-group G. If g € G,
then v,(g) < v,(b(g, h)) forall h € G. Further, if b is nondegenerate, then

v,(g) =min{v,(b(g, h)) : h € G}.

Decomposing symmetric bilinear forms into irreducible components is almost
equivalent to diagonalizing matrices by row and column operations. We introduce
these operations next.

Definitions. Let E;; be the n x n matrix whose (i, j)-th entry is 1 and all other
entries are 0. Let /,, denote the n x n identity matrix. Let R be a commutative ring.
Let A be an nxn matrix with entries in some R-module M. The operations Flip;; (A),
Add; J(A), and Scale! (A) defined below are called row-column operations on A.

o Let Flip;;(A) = S"AS where S = I, — E;; — Ej; + E;j + E ;. This operation
interchanges the i-th and j-th rows of A and then interchanges the i-th and
Jj-th columns of A.

o Let Add?’j(A) = SYAS, where S =1, +rkE;j; for some r € R and i # j. This
operation adds r times the j-th row of A to the i-th row of A and then adds r
times the j-th column of A to the i-th column of A.

o Let Scale (A) = S"AS where S = I, + (r — 1)E;; for some r € R. This
operation multiplies the i-th row of A by r and then multiplies the i-th column
by r.

Let (G, b) be a discriminant form and (e, ..., e,) € G". For each i # j, the
operation Flip; ; converts Gramy(ey, ..., e,) to Gramb (fi,..., fu) where f; =¢;,
fi=ej,and fy=ex fork ¢ {i, j}. The operation Add}”’ converts Gramy(ey, ..., €,)
to Gramy (f1, ..., fu) Where f; =e;+re; and fy = ey for k #i. The operation Scale;
converts Gramy(eq, ..., e,;) to Gramy(f1, ..., f,) where f; = re; and f; = e
for k #i. We shall say that a row-column operation on Gramy(ey, . .., e,) is valid
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if G = Py (ex) implies G = P, ( fk). Clearly, Flip;; is always valid. The operation
Scale; is valid if r is relatively prime to the exponent of G. Lemma A.2 lets us
decide when Add’;" is valid.

Lemma A.2. Let G be a finite abelian group and ey, ..., e, € G such that G =
@D, (ex). Let fi, ..., fu € G such that ord( fi) = ord(ex) for all k and fi, ..., f,
generate G. Then there exists ¢ € Aut(G) such that ¢ (ex) = fx. In particular,

G =Dy (fi)-

Proof. Let n; = ord(e;) = ord(fx). Since (e;) is a cyclic group of order nj; and
fx is an element of order ny in G, there exists a homomorphism ¢y : (e;) —> G
given by ¢y (ex) = fx. By the universal property of the direct sum, there exists a
homomorphism ¢ : G — G such that ¢ (ex) = fi for all k. Since the f; generate G,
the map ¢ is onto. Since G is a finite group, ¢ must be injective as well. U

Let A € M, (Qp)/Z). The proofs of Lemmas A.3 and A.4 are based on the
algorithm to reduce A to a diagonal matrix (or a block-diagonal matrix with blocks of
size at most 2 when p = 2) by conjugation or equivalently using the elementary row-
column operations introduced above. This paves the way to proving Theorem 2.1 of
[Wall 1963]. Let diag(ay, ..., a,) denote the diagonal n x n matrix with diagonal
entries aq, . .., d,.

Lemma A.3. Let p be an odd prime. Let u, be a quadratic nonresidue modulo p.
Let A # 0 be a symmetric matrix in M,(Qp)/Z). Let ry be the smallest number
such that p"' A = 0.

(a) Then there exists a matrix S € GL,(Z) such that S mod p € GL,,(Z/pZ) and
SYAS =diag(p €1, ...,p "ey)

withry >r,>--->r, >0,€; € {l,u,,0},and €; #0.

(b) Let (G, b) be a nondegenerate discriminant form where G is a p-group. Let
G=@'_(e)). Then there exists fi, ..., fn € G suchthat G =@i_(f;) and
Gramy (f1, ..., fn) = diag(p ™€y, ..., p mey) withry >rp>--->r, >0
and €; € {1, up}.

Proof. (a) One proceeds by finding a pivot with the smallest p-valuation and then
using this pivot to sweep out the rows and columns. Let A = ((a;;)) € M, (Q(p)/Z)
be a symmetric nonzero matrix. Let r; > O be the smallest integer such that
p"'A = 0. By induction on n, it suffices to show that there is a sequence of row-
column operations that converts A to a matrix of the form (%‘ 2,) where d| = p~

ordi=u,p " and A" € M,,_1(Qyp)/Z) is a symmetric matrix such that p"' A" = 0.

r

Claim (finding a pivot). After changing A by row-column operations, we may
assume that aj; = p~"' oray = MpP_r'-
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Proof of claim. 1f there is a diagonal entry a;; such that v,(a;;) = —r;, then
apply Flip;; to A to get v,(a;) = —r;. Otherwise, there exists i # j such that
vp(a;j)=—ryand v,(a;;) > —ry and v,(a;;) > —ry. In this case, apply Addil’j to A.
This changes the (i, i)-th entry of the matrix from a;; to (a;; +2a;; +aj;), whose
p-valuation is —r;.! Now we apply Flip,,. Either way, we get v plair) =—ry. Using
the operation Scale!, we can change aj to r2a;;. By choosing r appropriately, we

can make aj; = p~ "' oray; =u,p~"". This proves the claim.
Sweeping out. Now a1 =€ p~"" with €, =1 or u,. Since € is relatively prime
to p, we can pick € € Z such that €’e; = 1 mod p"'. We can represent aj; in

the form B; p~" with B; € Z. We add (—p;€’) times the first row to the i-th row
and then add (—g;€’) times the first column to the i-th column to make a;; = 0

and a;; = 0. Performing this operation for i =2, 3, ..., n converts A to a matrix of
the form (“'# "' 7). Finally note that the entries of A’ are Z-linear combinations

of entries of A, so p"'A =0 implies p"' A" = 0. The row-column operations above
correspond to conjugating A by certain matrices that are always invertible modulo p.
Now part (a) follows by induction.

(b) Assume the setup of part (b). Let A = Gramy(e, ..., e,). Part (a) shows that the
matrix A can be diagonalized by a sequence of row-column operations. Performing
a row-column operation on Gramy(ey, ..., e,) converts it to Gramy(fi, ..., fu)
where the f; are given in the definition preceding Lemma A.2. We need to verify
that all the row-column operation used in the proof of part (a) are valid (see
the definition preceding Lemma A.2). While finding the pivot, we may perform
Addil ") to a matrix Gramy(eq, ..., e,) if a nondiagonal entry of the matrix, say a;;,
has the highest power of p in the denominator. Since a;; = a;;, Lemma A.1(d)
implies that order(e;) = order(e;). Since (e;) N {(e;) = 0, Lemma A.1 implies that
ord(e; +ej) = ord(e;). Now Lemma A.2 implies that Add}’J is valid. /

While sweeping out, we perform the row-column operation Addi_ﬂ e 1
a;; = Bip~"'. This operation changes Gramy(ey, ..., e,) to Gramy(fi, ..., f,)
where f; =e;—Bi€’e; and fi =ei fork #i. Assume G =P, (ex). Since the discrim-
inant form on G is nondegenerate, we have v, (e;) = —ry and hence v, (—pB;€’e;) =
vp(B) — 1. Also, vy(e;) < vp(ai)) = v,(B;) —r1. Since (e;) N (~Pie'er) = {0},
we have v, (f;) = min{v,(¢;), v,(—Bi€’e1)} = v,(e;). Lemma A.2 implies that the
row-column operations performed while sweeping out are valid.

where

It follows that there exist fi,..., f, € G such that G = @(f;) and that
Gramy(f1, ..., f,) = diag(p "€y, ..., p~"€,) withry >ry > --->r, >0 and
€; €{1,u,, 0}. Since (G, b) is nondegenerate, it follows that we must have €; # 0
and order(f;) = p'/ for all j. O

IThis is the step in the argument that fails for p = 2.
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The next lemma handles the case of the prime p = 2. This proof is similar to the
proof of Lemma A.3 but somewhat more complicated. We only elaborate on the
necessary modifications.

Lemma A4. (a) Let A # 0 be a symmetric matrix in M,,(Q2)/Z). Let m be the
smallest number such that 2" A = 0. Then there exists a matrix S € GL,(Z)
such that (S mod 2) € GL,(Z/2Z) and ST AS is block-diagonal with blocks of
size 1 or 2. Each block is of the form

278 or 27(%7) (16)

where r is some nonnegative integer, a, b, and c are integers with b odd, and
6 €{0, £1, £5}. The largest r that occurs is equal to m.

(b) Let (G, b) be a nondegenerate discriminant form where G is a 2-group. Let
G = @_(e)). Then there exists fi, ..., fu € G such that G = @;_,(f;)
and Gramy (f1, ..., fn) is a block-diagonal matrix with blocks of size 1 or 2.
Each block is of the form given in (16) where r is some positive integer, a, b,
and c are integers with b odd, and § € {1, £5}.

Proof. (a) As above, we try to get a diagonal entry of A to have minimum 2-
valuation. If this succeeds, then we can proceed with the sweep out as before and
split off a 1 x 1 block from A. This procedure fails only in the situation when there
exists i # j such that (;’;’I Z;;) = 2_’"(213“ 2@) where «, B, y € Z, B is odd, and all
the diagonal entries of A have 2-valuation strictly larger than —m. In this case, we
can use row-column flips to move this 2 x 2 submatrix to the upper-left corner of A
so that (! 02) =27" (2;‘ 2’?/ ) and then use this 2 x 2 block to sweep out the first
two rows and first two columns simultaneously.

This is how it is done. Suppose the first two entries of the i-th row are 27" (u, v)
for u, v € Z where i > 2. We want to find r; and r, such that

(r1, r2)2—m(2; 2’?/) =2""(u, v) mod Z.

This system can always be solved since the determinant (4ay — 82) of the coefficient
matrix is odd. Solving the equation yields

(r1,r) =dQ2yu — Bv, 2av — Bu)

where d is an inverse of (4ay — %) modulo 2. Now we add to the i-th row —ry
times the first row and —r; times the second row and then perform the corresponding
column operations to the i-th column. Verify that after these operations the first
two entries of the i-th row and i-th column become zero. Part (a) follows.

(b) Let A = Gramy(ey, ..., e,). The sweep-out operation above corresponds to
replacing Gramy(ey, ..., e,) by Gram(fi, ..., f,) where f; = e; +rie; + re>
and f; = e; for all j # i. The extra work needed in part (b) is to check that
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this operation is valid. Note that, since 2" is the maximum denominator in A,
order(e;) = order(e;) = 2™. Suppose order(e;) = 2%, Then u and v must be
divisible by 2"~ because the entries of the i-th row can have denominator at
most 2. From the formula for r; and r,, we see that 2% divides r; and ry.
It follows that 2€ f; = 0. On the other hand, since (e;) N (e, e2) = 0, we have
order( f;) > 2%, So order( f;) = order(e;) and Lemma A.2 implies the sweep-out
operations using 2 x 2 blocks described above are valid. ]

For p-groups with p odd, Wall’s Theorem 2.1(a) follows from Lemma A.3.
For p =2, we need Lemma A.4 and we also need Lemmas 2.2 and A.7, which
describe the irreducible nondegenerate quadratic and bilinear forms on (Z/2"Z)>.
Proving Lemmas 2.2 and A.7 depends on solving a system of congruence equations
modulo 2" for all n. This can be done by a standard application of Hensel’s lemma,
which we now state in the necessary form.

Lemma A.5 (Hensel’s lemma). Let p be a prime. Let f1, ..., fu € Z[x1, ..., X]
and f = (f1,..., fm). Let Df = ((0f;/dx;)) be the Jacobian of f. Lett| € 7"
such that f(t;) = 0 mod p and the m x n matrix (Df(t;) mod p) has rank m
over [,,. Then, for all k > 1, there exists ty € 7" such that ty 1 = t;y mod pk and
f () =0 mod pk.

The proof is omitted.

Lemma A.6. (a) Lets = (i; ;Z) be a 2 x 2 matrix of indeterminates. Let

(A(s), B(s), C(s))

= (57, 4+ 511512 + 5%, 2511521 + 511522 + 521512 + 2512522, 53, + 521522 + 53,).
Let A, B, and C be odd integers. Let n > 1. Then the equation
(A(s), B(s), C(s)) = (A, B, C) mod 2" (17)

has a solution S € M»(Z) such that S = I mod 2 (here I denotes the 2 x 2
identity matrix).

(b) Lets = (3" °12) be a 2 x 2 matrix of indeterminates. Let
$21 8§22

(A(s), B(s), C(s)) = (511512, 11522 + 521512, 521522).

Let A, B, and C be integers such that B is odd and AC is even. Letn > 1.
Then the equation

(A(s), B(s), C(s)) = (A, B, C) mod 2" (18)

has a solution S € M»(Z) such that S = (‘;‘ é) mod 2.



1820 Tathagata Basak and Ryan Johnson

Proof. (a) Apply Hensel’s lemmato f = (fi, fa, f3) for fi(s) =si +s11512+5%,—A,
fo(s) =2s11521 + 511522 + 521512 + 25125220 — B, and f3(s) = 53, + 521522+ 53, — C.
Since A, B, and C are odd, s = I is a solution to f(s) =0 mod 2. One computes

2511 + 512 0 s11+ 2812 0
Df = | 2521 + 522 2511+ 512 $21+ 2520 511+ 2812 | S
0 28501 + 522 0 $21 + 252

0010
so Df(I)=]100 1] mod?2,
0100

which has rank 3. For part (b), let fi(s) =s115120 — A, f>(s) = 511522 + S21512 — B,
and f3(s) = s2150 — C. Since B is odd and AC is even, s, = (? é) satisfies
f(sx) =0 mod 2. One computes

s;2 0 511 O 1 0AO0
Df: 8§22 S12 $21 S11 ], SO Df(s*)E C11A mod 2.
0 52 0 s 0CO1

Since A or C is even, either the second or the third column of the above matrix is
equal to (0, 1, 0)"r. So the matrix (Df (s4+) mod 2) has rank 3. O

Proof of Lemma 2.2. (a) Note that 2q(x) = dqg(x,x) € 277Z/Z. So g(x) takes
values in 27"~17/7, and

q(x1, x2) = 2_r_1(otx12 +2Bx1x2 + yx%)

where ¢(1,0) =2"""la, (0, 1) =2"""1y, and 3¢ ((1, 0), (0, 1)) =2"" B. Suppose
« is odd. Let @ be an inverse of @ modulo 2!, Then we can complete squares to
write

q(x1,x2) =27 (x) + Baxy)? + (y — B*a@)x2).

This contradicts the irreducibility of ¢, and thus, « has to be even. For the same
reason, y has to be even. So we can write

q(x1,x)=2"" (Ax12 + Bxixy + szz).

If A, B, and C are all even, then dq takes values in 27" +IZ/Z and hence cannot
be nondegenerate. If B is even, then A or C must be odd, and we can once again
complete squares (as above) and decompose (G, ¢) into an orthogonal direct sum
of two metric groups. So B must be odd.

First, suppose AC is odd. Let F(xy, x2) = x7 +x1x2+x3. Let s = (f;: fg) Note
that

F((x1,x2)s) = A(s)x? + B(s)x1xa + C(s)x3
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where (A(s), B(s), C(s)) are the polynomials given in Lemma A.6(a). We want to
show ¢ (x1, x2) = 27" F(xy, x2). This is equivalent to finding a matrix s € M, (Z)
with odd determinant such that

F((x1, x2)s) = (Ax? + Bx;x + Cx3) mod 2"

or equivalently (A(s), B(s), C(s)) = (A, B, C) mod 2". The proof follows from
Lemma A.6(a) if AC is odd. If AC is even, then the proof is identical, using
F(x1, x) = x1x7 and using part (b) of Lemma A.6 instead of part (a). O

Lemma A.7. (a) Let A, B, and C be odd integers. Let r > 1. Then there exists a

matrix S € M»(Z) such that S(% ;)Str = (2; 2BC) mod 2" and S = I mod 2.

(b) Let A, B, and C be integers such that AC is even and B is odd. Letr > 1.
Then there exists a matrix S € M»(Z) such that S((l) (1))5tr = (2A B ) mod 2"

B 2C
and S = () mod 2.

Proof. (a) The congruences in part (a) translate into A(s) = A mod 27=1 B(s) =
B mod 2", and C(s) = C mod 2"~ where A(s), B(s), and C(s) are as in Lemma
A.6(a). Part (a) follows from Lemma A.6. Similarly part (b) follows from part (b)
of Lemma A.6. O

Proof of Theorem 2.1. (a) Let (G, b) be a nondegenerate discriminant form. It suf-
fices to decompose (G, b) into irreducibles when G is a p-group for some prime p.
First suppose p is odd. From Lemma A.3, it follows that there exist fi,..., f, € G
such that G = @(f;) and Gram,(fi, ..., f») = diag(p™"€1,..., p~""€,) with
ri=rp>--->r,>0ande; € {1,u,}. Since (G, b) it nondegenerate, it follows
that we must have order(f;) = p'/ for all j. Thus, (G, b) is an orthogonal direct
sum of the rank-1 discriminant forms ({f;), b|(f;)) and each of these are of type A
or B. This completes the argument for odd p.

Now we consider the case p = 2. From Lemma A .4, it follows that there exist
fi,..., fu € G such that G = @(f;) and Gram,(fi, ..., f,) is block-diagonal
with blocks of size 1 or 2 as given in Lemma A.4. Accordingly, (G, b) is an
orthogonal direct sum of rank-1 or -2 discriminant forms spanned by one or two
of the f;. The rank-1 forms among these are clearly of type A, B, C, or D. The
Gram matrix of a rank-2 piece has the form 27" (%' 7). Lemma A.7 shows that
such a rank-2 piece is either of type E or F.

(b) Let (G, g) be a metric group. By part (a), (G, dq) is an orthogonal direct sum
of irreducible forms (G, b;). Each G; is a homogeneous p-group of rank 1 or
2. Further, G; can have rank 2 only if p = 2. It follows that (G, g) is also an
orthogonal direct sum of (G, q;) where q; = q|g;. The rank-1 forms are clearly
of type A, B, C, or D. The rank-2 forms either decompose into two rank-1 forms
or they are irreducible as metric groups. In the latter case, Lemma 2.2 shows that
(Gj,qj)isof type E or F. (]
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The number of nonzero coefficients
of modular forms (mod p)

Joél Bellaiche and Kannan Soundararajan

Let f =) o2, a,q" be a modular form modulo a prime p, and let 77 (f, x) be the
number of nonzero coefficients a, for n < x. We give an asymptotic formula for
7w (f, x); namely, if f is not constant, then

7(f, %) ~ e(f) ——(log log x)",
(log _x)a(f)

where a( f) is a rational number such that 0 < o (f) <3/4, h(f) is a nonnegative
integer and c(f) is a positive real number. We also discuss the equidistribution
of the nonzero values of the coefficients a,,.

1. Introduction

Let f =), axq" be a holomorphic modular form of integral weight k > 0 and
some level I' (N) such that the coefficients a, are integers. Let p be a prime number.
Serre [1976] has shown that the sequence a, (mod p) is lacunary. That is, the
natural density of the set of integers n such that p { a, is 0. More precisely, Serre
gave the asymptotic upper bound

[l <%, ay £0 (mod p)}| € ——, (1)
(log x)#
where § is a positive constant depending on f. Later, Ahlgren [1999, Lemma 2.1]
established the following asymptotic lower bound: assume that p is odd and that
there exists an integer n > 2 divisible by at least one prime £ not dividing Np such
that p { a,. Then

X

(log )’

l{n <x, a, #0 (mod p)}| > )
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Under the same hypothesis, this lower bound was recently improved by Chen [2012]:
for every K > 0,
X

(log x)

l{n <x, a, 0 (mod p)}| > (loglog x)¥, 3)

where the implicit constant depends on K.

We improve on results (1), (2) and (3) by giving an asymptotic formula for
{n < x, a, #0 (mod p)}|. To describe our results, we slightly change our setting
by working directly with modular forms over a finite field, which allows for more
generality and more flexibility.

Let p be an odd prime! and N > 1 an integer. We define the space of modular
forms of level I't (V) with coefficients in [, denoted by M (N, [,), as the subspace
of F,[[¢]l generated by the reductions modulo p of the g-expansions at oo of all
holomorphic modular forms of level I'; (V) and some integral weight £ > 0 with co-
efficients in Z. For [ a finite extension of [, we define M (N, ) as M(N, [,) ®r, .
Given f in M(N, [F), let

m(f,x)=|{n <x:a, #0}|.

Theorem 1. Let f = ZZO:() anq" € M(N, F), and assume that f is not constant,
that is, assume a, # 0 for some n > 1. Then there exists a rational number o (f)
with 0 < a(f) < 3/4, an integer h(f) > 0, and a positive real constant c(f) > 0
such that

~ _r h(f
m(f,x)~c(f) Tog1)?D (loglog x)").

This theorem was established by Serre [1976] for the case when f is an eigenform
for all Hecke operators 7;, (thatis, T,, f = Ay f, An € F), and in this case one
has A(f) = 0. However, the case of eigenforms is special because, as shown
by Atkin, Serre, Tate and Jochnowitz in the 1970s, there are only finitely many
normalized eigenforms in the infinite-dimensional space M (N, F). One can de-
compose every f € M(N,F) as a finite sum ), f; of generalized eigenforms” f;
but this fact does not seem to be of immediate use, for two reasons. The meth-
ods for treating genuine eigenforms do not seem to apply readily to generalized
eigenforms, and moreover it is not clear how to obtain an asymptotic formula
for w(f, x) from asymptotics for (f;, x). For f an eigenform, the main tool
in Serre’s study is the Galois representation over a finite field attached to f by
Deligne’s construction, o : Gg,np — GL2(F). To deal with a general modular
form f we replace pr by a two-dimensional Galois pseudorepresentation, ty,

IWhen p = 2, similar but slightly different results may be obtained, see [Bellaiche and Nicolas
2015].

2We call a form f € M(N, ) a generalized eigenform if, for every £ not dividing Np, there exist
A¢ € Fand n; € N such that (Ty — Ap)"*¢ f =0.
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of Gg,np over a finite ring Ay. The ring Ay is obtained as the quotient of A
by the annihilator of f, where A is the Hecke algebra acting on the space of
modular forms M (N, F). The ring Ay is not in general a field. In fact, it is a
field precisely when f is an eigenform for the Hecke operators Ty (¢ 1 Np). The
Hecke algebra A (at least in the case of I'g(/N)) was introduced and studied in
the wake of Swinnerton-Dyer’s work on congruences between modular forms by
Serre, Tate, Mazur, Jochnowitz and others. More recent progress on understanding
its structure may be found in [Nicolas and Serre 2012a; 2012b; Bellaiche and
Khare 2015]. In Section 3, we recall the definitions of the Hecke algebra A,
its quotient Ay, and the pseudorepresentation 7y and gather the results we need
pertaining to them.

To prove Theorem 1, we introduce the notion of a pure form. A form f is pure
if every Hecke operator T; (with £ { Np) in Ay is either invertible or nilpotent.
Generalized eigenforms are pure since the finite ring Ay is local in this case,
but there are pure forms that are not generalized eigenforms. For pure forms
we can give a reasonable description of the set of integers n with (n, Np) = 1
and such that a, # 0, and using this and a refinement of the Selberg—Delange
method (see Section 2) we deduce (in Section 4A) an asymptotic formula for
the number of n < x with a, # 0 and (n, Np) = 1. For a general f, we show
in Section 4B that if f = ) . f; is a minimal decomposition of f into pure
forms, then 7 (f, x) is asymptotically ), w(f;, x). To complete the proof of
Theorem 1, it remains to handle coefficients a, with (n, Np) > 1, and this is
treated in Section 4C.

Theorem 1 gives an asymptotic formula for the number of n < x such that a, #0
but says nothing about the number of n < x such that a, = a, where a is a specific
fixed value in F*. Some partial results are given during the course of the proof
of Theorem 1 in Section 4A. We say that f has the equidistribution property if
the number of n < x such that a, = a is asymptotically the same for every a € [F*.
In Section 5 we give sufficient conditions and, in some cases, necessary conditions
for the equidistribution property.

In Section 6 we consider a variant of the main theorem, where one counts only
the nonzero coefficients at square-free integers of a modular form.

Let us finally mention that the constants «(f), h(f) and c¢(f) of Theorem 1 can
be effectively computed from our proof. This is done in some cases in Section 7.
However, we do not have a satisfactory understanding of how A (f) and c(f)
behave as f varies. Such an understanding would require a more detailed study
of the structure of the Hecke algebra A and of the space M (N, ) as a Hecke-
module than is currently available (except in the case p =2, N = 1 [Nicolas and
Serre 2012b; Bellaiche and Nicolas 2015] and partially in the case p =3, N =1
[Medvedovki 2015]).
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2. Applications of the Landau-Selberg—Delange method

2A. Frobenian and multifrobenian sets. 1f ¥ is a finite set of primes and L is a
finite Galois extension of (0 unramified outside ¥ and oo, then for any prime £ ¢ X
we denote by Frob, € Gal(L/Q) an element of Frobenius attached to £. We recall
that Froby is only well-defined up to conjugation in Gal(L/Q).

Definition 2. Let & be a nonnegative integer and X a finite set of primes. We say
that a set M of positive integers is X-multifrobenian of height h if there exists a
finite Galois extension L of (2 with Galois group G, unramified outside X and oo,
and a subset D of G", invariant under conjugation and under permutations of the
coordinates, such that m € M if and only if m = £ - - - £;, where the ¢; are distinct
primes not in X, and (Froby,, ..., Froby,) € D. For such a £-multifrobenian set M
we define its density 6 (M) to be

_#D
RI#HGHM

Observe that the condition (Froby, ..., Froby,) € D depends only on the product
£y --- £y, since replacing each Frob,, by a conjugate in G amounts to replacing
(Froby,, ..., Froby,) by a conjugate in G and D is invariant by conjugacy in
G", and since changing the order of the prime factors ¢, ..., £, permutes the
components of (Froby,, ..., Froby,) and D is invariant by permutations. Thus the
notion of a multifrobenian set is well-defined.

There is only one X-multifrobenian set of height # = 0, namely {1}. Note that
a X-multifrobenian set of height 1 is just a X-frobenian set of prime numbers in
the usual sense (see [Serre 2012, §3.3.1]). In what follows we will say that a set
is multifrobenian if it is X-multifrobenian for some finite set of primes ¥ and
frobenian if it is multifrobenian of height 1. We observe that this definition of
frobenian is slightly more restrictive than the one used by Serre (cf. [2012, §3.3.2])
for whom a set of primes is frobenian if it is frobenian in our sense up to a finite

S(M)

set of primes. The more restrictive definition of frobenian that we adopt here will
be sufficient for our purposes, and we hope that its use will cause no confusion
to the reader.

Lemma 3. Let M be a multifrobenian set of height h and density §(M). Then

1
Y — ~8(M)(loglogx)".
meM m

m=<x
Proof. This follows from the Chebotarev density theorem. ([

Note in particular that § (M) depends only on the set M and not on the choice
of L, G and D.
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Remark 4. Using the Chebotarev density theorem, one may show that if M is a
multifrobenian set of height /, then

{n <x:neM}|~hi(M) a (loglog x)" 1.
log x
This formula clearly implies Lemma 3 by partial summation, but the weaker Mertens-
type estimate of Lemma 3 suffices for our purposes.

2B. Square-free integers with prime factors in a frobenian set and random walks.
We begin with a general result of the Landau—Selberg—Delange type, which follows
by the method discussed in Chapter II.5 of Tenenbaum’s book [1995], or as in
Théoreme 2.8 of Serre’s paper [1976].

Proposition 5. Let a(n) be a sequence of complex numbers with |a(n)| < di(n)
for some natural number k, where dy(n) denotes the k-divisor function defined
by ;(s)k = Zflozl dr(n)n=*. Suppose that in the region Re(s) > 1 the function
A(s) = Z;?ozl a(n)n™" can be written, for some real number o, as

A(s) = ()Y B(s),

where B(s) extends analytically to the region Re(s) > 1 —c/log(2 + |t|) for some
positive constant ¢ and is bounded in that region by |B(s)| < C(1 + |t]) for some
constant C. Then, for all x > 3 and any J > 0, there is an asymptotic expansion

Sam =3 A +o( Cx )
an) = (logx)H'j_"‘ (10gx)1+2—°‘ ’

n<x j=0

where the A; are constants, with

B(1)

0=m,

and the implied constant in the remainder term depends only on c, k, and J.

Proof. As mentioned above, this is a straightforward application of the Landau—
Selberg—Delange method, and so we content ourselves with sketching the argument
briefly. The constant ¢ can be replaced by a possibly smaller constant so that £ (s)
has no zeros in the region Re(s) > 1 —c/log(2+|¢]), and moreover in this region we
have the classical bounds |¢(s)%| < (log(|s|+ 2))Alel for some constant A provided
we stay away from s = 1 (see for example II.3 of [Tenenbaum 1995]). Next, by
applying a quantitative version of Perron’s formula we see that, for x > 3 and with
x1/A0k) > 7> 1

1 1+1/logx+iT x$ X
Za(n):—/ A(s)—ds+0<?(logx)k).
1 h)

nex 278 Ji41/1ogx—iT
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Now we deform the line of integration as follows. First make a slit along the real
line segment from 1 —c¢/log(7 +2) to 1. Then from 1+ 1/logx +i7T we proceed
in a straight line to 1 —c/log(T +2)+iT and from there to 1 —c/log(T +2) +i0™"
(on the upper part of the slit) and from there to 1. We then circle around to the lower
part of the slit until 1 —¢/log(T 4+2)+i0~ and from there to 1 —c/log(T +2)—iT
and thence to 14 1/logx —iT. The integrand has a logarithmic singularity at 1,
and the change in the argument above and below the slit leads to the main terms in
the asymptotic expansion (by “Hankel’s formula”; see [Tenenbaum 1995, §11.5.2]).
The remaining integrals are estimated using the bounds for |£(s)“| in the zero-free
region, together with our assumed bound for | B(s)|. The resulting error terms are
bounded by O (x!=¢/1°8T+2 (T 4 2) log(T +2)). Choosing T = exp(c;/log x) for
a suitably small positive constant ¢, we obtain the proposition. ]

Now suppose we are given a frobenian set of primes ¢/ of density 8 = &) > 0,
a finite abelian group I, and a frobenian map® 7o : &/ — T such that the image
70(U) generates I". Using multiplicativity, extend 7y to a map 7 from the set of
square-free numbers composed of prime factors in ¢/ to I'.

Theorem 6. Let g be any given element of T, and let r be a positive integer. Then,
for x = 3 and uniformly in r, we have

#{n < x :n square-free, p|n = peld, t(n)=g, (n,r) =1}

W 1 X 0 xd(r)
=D ogy 7 <<logx>1ﬁ+5>’
where CU, )= (1/T(B)) ]_[pwp with w, = (14+1/p)(1— 1/p)? if p el with p1r,
and w, = (1 -1/ )P otherwise. In the remainder term above, d(r) denotes the
number of divisors of r, and § is a fixed positive number (depending only on the
group T).

Proof. We use the orthogonality of the characters of the group I', which we write
multiplicatively even though it is abelian. Thus the quantity we want is

F1| Y o x(@ > x(xmy,

I
where we set x (t(n)) = 0 if n is divisible by some prime not in ¢/ or if n is not
square-free.
We will use Proposition 5 to evaluate the sum over n above. Since the map t
is frobenian, by the usual proof of the Chebotarev density theorem (that is, by
expressing frobenian sets in terms of Hecke L-functions and using the zero-free

3A map from a frobenian set of primes to a finite set is called frobenian if its fibers are frobenian.
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region for Hecke L-functions) we may write

oo
x(t(n)) _
D T =L@ B (), where B0 =) x(@)3(z; ().
n=1 gel
(n,r)=1
and B, ,(s) extends analytically to the region Re(s) > 1 —c¢/(log(2+ [¢])) for some
1/10 > ¢ > 0 and in that region satisfies the bound |B, ,(s)| < Cd(r)(1 + |¢]) for
some constant C. The constants ¢ and C depend only on ¢/ and I" but not on r.
First suppose that y equals the trivial character xo. Note that 8(x) then equals 8

and that
1 1 1\
=15 ) () T3
peU pEU
pir or plr
Therefore, appealing to Proposition 5, we obtain the main term of the theorem.
Now suppose that x is not the trivial character. Then Re(8(x)) < 8 — ¢ for
some fixed § > 0, since there is a g in the image of 7y such that x (g) # 1 (since
T(U) generates I'), and the frobenian set 7, g is nonempty and hence of positive
density é(z, ! (g)). Therefore, by Proposition 5, we see that the contribution of the

nontrivial characters is
0 xd(r) 0
(log x) 1-8+8 |°

2C. A density result. We keep the notation and hypotheses of the preceding section:
U is a frobenian set with § =§(U) > 0, I' is a finite abelian group, and 7o : U/ — I' is
a frobenian map whose image generates I". In addition, let M be a multifrobenian
set of height 2 > 0, such that every element in M is coprime to the primes in .
Let S be a given nonempty set of square-full numbers (we permit 1 to be treated as
a square-full number).

Define Z = Z(U, M, S) to be the set of positive integers n > 1 that can be
written as

(2.1) n=mm’m"” with m, m’, m” positive integers such that
(2.1.1) m is square-free and all its prime factors are in I/
2.12) m' e M;

(2.1.3) m” € S and m” is relatively prime to mm’.

These conditions imply that m, m’ and m” are pairwise relatively prime, and for
n € Z such a decomposition n = mm’m” is unique. Extend 7 to a map Z — [ by
setting T(n) = t(m) for n as in (2.1). Let A be any nonempty subset of I'.

Theorem 7. With notation as above, we have

A
Bn<xineZ e Al ~CoME_* (oglogx),
IT'| (log x)!=#
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where (with C(U, s) as in Theorem 6)

szca;{,é‘)

seS

Proof. Set R = (logx)? and 7 = x!/1°21°2%  We want to count n = mm'm" for
m” eS8, m € M, with (im’,m") = 1, and for m composed of primes in U/, with
(m,m”) =1 and t(m) = g. We now group these terms according to whether
@) m” <Randm’ <z, or (ii)) m”" < R but m’ > z, or (iii) m” > R. We shall show
that the first case gives the main term in the asymptotics, and the other two cases
are negligible.

First consider case (i). This case contributes

> X Xims

m’eS m'eM geA
m'<R m'<z
(m',m")=1

—it(m)=g, (m,m") = IH

Now we use Theorem 6, so that the above equals

cU,m" 1Al X 0 xd(m")
Z Z ( ( )|F| m'm" (log(x/m'm"))!~F - (m/m”(logx)l—ﬁJra))'

m’'eS m'eM
m'<R m'<z
(m/’m//)=1

Using Lemma 3, and since ) s d(m")/m” converges, we see that the error term
above is O (x/(log x)!=#*9=¢), which is negligible. Since log(x/m'm") ~ log x,
the main term above is (again using Lemma 3)

A »
||F|| - x)l SB(M)(oglogx)™) Y- M’
m//g}ge

which equals the main term of the theorem.
Now consider case (ii). Since all the terms involved are positive, we see that
they contribute (with w(u) denoting the number of distinct prime factors of u)

<y > oL )

m’eS z<u<x/m” m<x/(um")
m’"<R  wu=h plm=peld

Now in the sums above either u < /x or m < /x. In the first case, note that
the largest prime factor of u lies in [z!/", \/x] and the others are all below \/x.
Moreover, using Proposition 5, the inner sum over m in (4) is < x/(um” (log x)'=#).
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Thus we see that the first-case contribution to (4) is bounded by

. B ! [\
< Z Z um”(logx)l ﬂ (logx)l ,3( Z _)(Z ;)

m'es z<u<f >zI/h p P<Nx
m'<R w(u)= p<ﬁ

< (log logx)h*1 logloglog x.

X
(log x)!1=#

For the second case, note that for m < /x (and m” < R = (log x)%) we have (by
standard estimates for the number of integers with /4 distinct prime factors)

x  (loglog x)"!
i« (loglog x) ’

mm” log x

u<x/(mm')
w(u)=h

and so we obtain that the second-case contribution to (4) is bounded by

I 1
(loglogx)"™" 3~ — (loglogx)h "T1 <1+ )
m p

m<y/x P=yx
mel peU

X
<
log x

< _r (loglog x)h_1
(logx)1=F

Putting both cases together, we see that the contribution of the terms in case (ii) is

X h—1
< W(log logx)"~ " logloglog x,

which is small compared to the contribution from case (i).
Finally, since the number of mm’ < x/m” is trivially at most x/m”, the contri-
bution in case (iii) is

<Y L=
m"  JR logx’
which is negligible. This completes our proof. U

3. Modular forms modulo p

3A. The algebra of modular forms M (N, F). As in the introduction, we fix an
odd prime p and a level N > 1. Let £k > 0 be an integer. The space My(N, Z)
denotes the space of all holomorphic modular forms of weight k£ and level I'j (V)
and with g-expansion at infinity in Z[[¢]]. For any commutative ring A we define

Mi(N, A) = My(N,Z)® A.
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The natural g-expansion map My (N, A) — Allq] is injective for any ring A (this
is the g-expansion principle; see [Diamond and Im 1995, Theorem 12.3.4]), and so
we may view below My (N, A) as a subspace of A[[¢]l. Finally we define

o
M(N,A)=> " M(N, A) C Alql.
k=0
Note that if A is a subring of C, then M (N, A) is the direct sum of the spaces
My (N, A) (see [Miyake 2006, Lemma 2.1.1]). However, the situation is different
for general rings A and, in particular, when A is a finite field. For instance, the
constant modular form 1 of weight 0 in My(N, [F,) and the Eisenstein series Ej,_
in M,_1(N, [,) both have the same g-expansion 1, showing that the subspaces
My(N, Fp) and M, (N, [,) are not in direct sum in [, [[¢]]. For the same reason
it is not true that M (N, A) 4 A’ = M (N, A’) in general (though this is true if A’
is flat over A); rather M (N, A’) is the image of M(N, A) ®4 A’ in A'[¢].

3B. Hecke operators on My (N, A). For any k > 0, the space of modular forms
My (N, C) is endowed with the action of the Hecke operators 7,, for positive inte-
gers n. If n is a positive integer coprime to N, define the operator S, as n*~2(n),
where (n) is the diamond operator. Recall that these operators satisfy the following
properties.

(3.1) All the operators T, and S,, commute.

(3.2) We have S; =1 and S,,,, = S, S, for all m, n coprime to N.

(3.3) The Hecke relations 71 = 1, Ty, = T,, T,, if (m, n) =1 hold. If £{ N is prime,
then Tyn+1 = Tyn Ty — £S¢Typn—1. If £ | N is prime then Ty» = (T)".

As is customary, we shall also use below the notation U, for the operators T
when ¢ | N. From the above relations one sees that the operators 7, and S, for
£ prime determine all the others. Recall that the action of the Hecke operators on
g-expansions is given as follows.

(3.4) If £|N then a,(Us f) = ae (f).
(3.5) If £4 N is prime, then a, (Ty ) = aen (f) +Lay e(Se f), with the understanding
that a,/, means O if £{n.

It follows that

(3.6) if (n,m) =1 then a,(T,, f) = aun(f); in particular, a; (T, f) = a, (f) for
every m > 1.

Lastly, we recall the following important fact, which follows from the geometric
interpretation due to Katz [1973] of the elements of My (N, A) as the sections of a
coherent sheaf on the modular curve Y;(N) /4 over A, and of the Hecke operators
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as correspondences on Y;(N). A convenient reference is [Diamond and Im 1995,
Chapter 12].

(3.7) Let A be a subring of C. All the operators 7, and S, leave stable the subspace
My (N, A) of Mi(N, C).

This fact allows us to define unambiguously the operators 7, and S, over
My (N, A) = My (N, Z) @z A by extending the scalars from Z to A for the linear
operators T, and S, on My (N, 7).

3C. Hecke operators on M (N, [F). From now on, [ is a finite field of characteris-
tic p. First we recall a result due to Serre and Katz, which allows us to assume that
the level N is prime to p; for a proof, see [Gouvéa 1988, pages 21-22].

(3.8) Let [ be a finite field of characteristic p. Write N = Nop" with (Ng, p) = 1.
Then as subspaces of F[[¢]] one has M (N, F,) = M(Ny, [,).

Henceforth, we assume that (N, p) = 1.

(3.9) There are unique operators 7, (for any n > 1) and S, (forn > 1 with (n, N)=1)
on M (N, [F) such that, for any £ > 0, the inclusion My (N, F) — M(N,F) is
compatible with the operators 7,, and S, defined on the source and target.

Since the sum of the M (N, A) fork=0,1,2,...1is M(N, A) by definition, the
uniqueness claimed in (3.9) follows. The existence relies on the interpretation of
the elements of M (N, A) as algebraic functions on the open Igusa curve (an étale
cover of degree p — 1 of the ordinary locus of Y1(N)/¢,) which is due to Katz (see
[1973; 1975, Theorem 2.2]) and based on earlier work of Igusa. For a more recent
reference for (3.9), see [Gross 1990, Propositions 5.5 and 5.9].

It is clear that the operators 7, and S, still satisfy properties (3.1) to (3.6). We
record one more easy consequence of (3.9).

(3.10) The actions of the Hecke operators 7,, and S,, on M (N, F) are locally finite.
That is, any form f € M (N, F) is contained in a finite-dimensional subspace
of M(N, [F) stable under all these operators.

We shall use the notation U, instead of 7, when acting on the space M (N, [F).
More generally, if m is an integer all of whose prime factors divide Np we shall
use the notation U, instead of 7,,.

Finally, we note that the space M (N, [F) enjoys an additional Hecke operator
(see [Jochnowitz 1982, §1]).

(3.11) The subspace M (N, IF) of F[¢] is stable under the operator V), defined by
Vp(z anqn) = Zanqpn‘
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3D. The subspace F(N,F) of M(N, [F). Using the same notation as in [Nicolas
and Serre 2012a; 2012b], let us define F(N, [F) as the subspace ﬂva ker Uy
of M(N, [F). In other words,

(3.12) F(N,F) ={f =Y_,2panq" € M(N,F), a, #0= (n, Np) = 1}.
Since the Hecke operators commute, 7; and S, for £ t Np stabilize F(N, [F).

3E. The residual Galois representations p and the invariant o(p). We denote
by Gq,np the Galois group of the maximal algebraic extension of Q) unramified
outside Np. We denote by ¢ a complex conjugation in Gg,y,. If £ is a prime not
dividing Np, we denote by Frob, an element of Frobenius associated to £ in Gg, np.
We fix an algebraic closure [F_p of F,.

We shall denote by R = R(N, p) the set of equivalence classes of continuous
odd* semisimple two-dimensional representations /5 of the Galois group G, Np
over [F_p that are attached to eigenforms in M (N, [fp). Here we say that p is attached
to an eigenform in M (N, [F_p) if there exists a nonzero eigenform f € M (N, [F_p) for
the Hecke operators 7, and Sy for £ { Np, with eigenvalues A, and oy, such that

(3.13) the characteristic polynomial of p(Froby) is X 20X + Loy,

Although we do not need this fact, we remark that Khare and Wintenberger have
shown Serre’s conjecture that every odd semisimple two-dimensional representation
of Serre’s conductor N is attached to an eigenform in M (N, I]:_p).

A result of Atkin, Serre and Tate in the case N =1 [Serre 1973], and of Jochnowitz
in the general case [1982, Theorem 2.2], states that the number of systems of
eigenvalues for the 7; and S, appearing in M (N, [fp) is finite. Hence R(N, p) is a
finite set. If p: Go,np — GLZ([F_I,) is a representation, it is defined over some finite
extension [ of [, inside [F_p (for absolutely irreducible p, this amounts to saying
that tr p(Gq,np) C F, since finite fields have trivial Brauer groups). Therefore,
there exists a finite extension [ of [, such that all representations in R(N, p) are
defined over F.

For p € R(N, p), we shall denote by U; the open and closed subset of Gg, np
of elements g such that tr p(g) # 0, and by N; its complement, the set of elements g
such that tr p(g) = 0. We set «(p) = iGq y, (Np), Where gy, , 1s the Haar measure
on the compact group G, np.

Proposition 8. For all representations p we have a(p) € Q with 0 < a(p) < 3/4.
If p is reducible, we have a(p) < 1/2.

Proof. By definition, ¢ (p) is the proportion of elements of trace zero in the finite
subgroup G = p(Gq,np) of GLy([F,). Thus a(p) is rational and is at most one.
Since p(c) has trace zero, we have @ (p) > 0. It remains now to obtain the upper

4That is, such that tr p(c)=0.
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bounds claimed for «(p). Let G’ be the image of G in PGLZ([F_,,). Then a(p) is
also the proportion of elements of trace zero in G’ (it makes sense to say that an
element of PGLZ(I]:_[,) has “trace zero”, even though the trace of such an element
is of course not well-defined). Also, observe that an element g’ in PGLQ(H:_[,) has
trace O if and only if it has order exactly 2. Indeed, let g be a lift of g’ in GLQ(F_,,).
If g is diagonalizable and x, y are its eigenvalues, then g’ having order exactly 2
means that x # y, but x> = y?; thus x = —y, and tr g = 0. If g is not diagonalizable,
then the order of g’ is a power of p, hence not 2, and it has a double eigenvalue
x # 0 so its trace 2x is not 0. Hence «(p) is also the proportion of elements of
order 2 in G'.

If p is reducible, then, since p is assumed semisimple, G is conjugate to a
subgroup of the diagonal subgroup D = [F_p* X [F_p*, and G’ may thus be assumed to
be a subgroup of the image D’ of D in PGL,. The group D’ is isomorphic to [F,*,
by the isomorphism sending x € [,* to the image of () in PGL>(F,), and via this
identification the only element of trace zero of D’ is —1, which is always in G’
because G contains p(c). Thus one has a(p) = 1/|G’|. Therefore, a(p) < 1/2
since G’ is not the trivial group because p(c) is not trivial in PGLz([F_p).

Now assume that p is irreducible. We shall use the classification of subgroups
of PGLQ([F_,,) for which a convenient modern reference is [Faber 2012]. According
to Theorems B and C of [Faber 2012], if G’ is any finite subgroup of PGLz([F_p),
we are in one of the 9 situations described there and labeled B(1) to B(4) and
C(1) to C(5). The case B(3) does not arise since we assume p > 2, and neither
do cases B(2) and C(1) which contradict the assumed irreducibility of p (for B(2)
because G’ cyclic implies G abelian, and for C(1) by Remark 2.1 of [Faber 2012]).
In the other situations, we argue as follows.

C(2) G’ is isomorphic to a dihedral group D,, of order 2n (for n > 2 an
integer) which is a semidirect product of a cyclic group C, by a subgroup
of order 2. In this case, the elements of order 2 are the elements not
in C,, and, if n is even, the unique element of order 2 in C,,. Thus

_ % if n is odd,

aP)=37 4 ..

5+5, ifniseven.

Note that if n = 2, then «(p) = 3/4, and in all other cases «(p) < 5/8.

C(3) G’ ~ A4, so a(p) = 1/4 since A4 has order 12, and has 3 elements of
order 2.

C4) G' >~ 84, s0 a(p) =3/8 since S4 has order 24 and 9 elements of order 2
(6 transpositions and 3 products of two disjoint transpositions).

C(5), B(4) G’ >~ As, so a(p) = 1/4 since As has order 60 and has 15 elements of
order 2 (the products of two disjoint transpositions).
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B(1) The subgroup G’ of PGLZ([F_I,) is conjugate to PGL;([F,), where g is
some power of p. In this case, the number of matrices of trace 0 in G’
is g%, while |G'| = q(g — 1)(g +1), so

a(p)= —F
(g—D(@+1)
Thus in this case we have «(p) < 3/8, and this bound is attained for

q=3.

B(1) again The subgroup G’ of PGLZ([F_p) is conjugate to PSL,(F,). The number
of matrices of trace 0 in SL([F,) is g% — q if —1 is not a square in Fy
and g% +¢ if —1 is a square. Since | SL>(Fy)|=q(g—1)(g+1) one has

1 . . .

—— if —1 is not a square in [,

apy= o T eI e

=) if —1is a square in [,.

Thus in this case we have a(p) < 1/4, and this value is attained for

qg=3and g =5. (]

3E. The Hecke algebra A. From now on, we assume that [ is a finite field con-
tained in [F_p and large enough to contain the fields of definition of all the represen-
tations p € R(N, p).

Let A= A(N, F) be the closed subalgebra of Endr (M (N, [F)) generated by the
Hecke operators T, and S, for £ prime not dividing Np. Equivalently, by (3.3), A is
the closed subalgebra of Endp (M (N, F)) generated by the 7, for all m relatively
prime to Np. Here we give M (N, [F) its discrete topology and Endp(M (N, F)) its
compact-open topology. Then M = M (N, F) and F = F(N, ) are topological
A-modules. Note that if f € M (or if f € F) the submodule Af of M (respectively
of F) generated by f is finite-dimensional over F by (3.10), and hence is finite
as a set.

By construction, the maximal ideals of A(N, F) correspond to the Gal([F_p /F)-
conjugacy classes of systems of eigenvalues (for the T; and Sy, £1 Np) appearing
in M(N, [F_p). As recalled earlier, the set of such systems is finite and in natural
bijection (determined by the Eichler—Shimura relation (3.13)) with the set R(N, p).
Further, by our choice of F, all those eigenvalues are in F. It follows that A is a
semilocal ring; more precisely, we have a natural decomposition

A= T] 4.
FER(N. p)

where Aj is the localization of A at the maximal ideal corresponding to the system
of eigenvalues corresponding to p. The quotient A; of A is a complete local [F-
algebra of residue field [, and if one denotes by 7; the image of an element T € A
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in Az, then Aj; is characterized among the local components of A by the following
property.

(3.14) For every £ 1 Np, the elements Ty 5 — tr p(Frob,) and ¢S, — det p(Froby)
belong to the maximal ideal m; of A; (or, equivalently, are topologically
nilpotent in Az).

The decomposition of A as [[ A; gives rise to corresponding decompositions
of M=M(N,F)and F = F(N, [F):

M= @B M. F= P F.

PER(N,p) PER(N,p)

such that A;M; = M; and A;My = 0 if p # p’, and similarly for 7. In other
words, M; (or F5) is the common generalized eigenspace in M (respectively F)
for all the operators Ty and £S; (£ 1 Np) with generalized eigenvalues tr p(Froby)
and det p(Froby).

Let p € R. Since A acts faithfully on M, the algebra A; acts faithfully on M. In
particular M; is nonzero. It is easy to deduce that Mj contains a nonzero eigenform
for all the Hecke operators Ty and Sy, £t Np. We shall need on one occasion the
following slightly more precise result, due to Ghitza [2006].

(3.15) Let p € R. There exists a form f =Y -, a,q" in Mj, with ap =0, a; =1,
that is an eigenform for all the Hecke operators 7y and Sy, £t Np.

Indeed, according to [Ghitza 2006, Theorem 1], there exists an eigenform i € M;
which is cuspidal, that is, such that ag(h) = 0. Let m € N with a,,(h) # 0. Then
f = 1/an(h))Uy,h is an eigenform and satisfies ag(f) =0, a;(f) = 1.

3G. The Hecke modules Af and the Hecke algebra Ay. For f € M(N, ), recall
that we defined Af to be the submodule of M (over A) generated by f, which
by (3.10) is a finite-dimensional vector space over [F. We shall denote by Ay the
image of A under the restriction map Endg(M) — Endf(Af). Thus Ay is a finite-
dimensional quotient of A. We continue to denote by 7, and S, the images of
Ty and Sg in Ay.

3H. The support R(f) of a modular form. For f € M, we define the support
of f to be the subset of R consisting of those representations p such that the
component f; of f in Mj is nonzero. We will denote the support of f by R(f).
Thus R(f) =@ if and only if f =0, and R(f) is a singleton {p} if and only if f is
a generalized eigenform for all the operators 7; and S; (with £t Np). Equivalently,
R(f) is the smallest subset of R such that the natural surjection A =] SR A;— Ay
factors through [ | ser(s) Ap- In view of (3.14), we have the following lemma.
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Lemma 9. Let €1 Np. The action of the operator Ty on the finite-dimensional space
Af is nilpotent if and only if Frob, € N; for every p € R(f). Similarly, the action
of Ry on Af is invertible if and only if Frob, € U; for every p € R(f).

31. Pure modular forms and the invariants o.( f) and h(f).

Definition 10. We say that f € M is pure if, for every p, p’ € R(f), one has
N; = Ny, or equivalently U; = Uy If f is pure and nonzero, we denote by Ny
and Uy the common sets N; and Uj for p € R(f). Further, we let Ny and Uy denote
the sets of primes ¢ { Np with Frob, € Ny and Frob, € Uy respectively.

Note that generalized eigenforms are pure, but that the converse is false in general.
Also note that, by Lemma 9, if f is nonzero and pure and £t Np, then 7 is nilpotent
on Af if £ € Ny, and Ty is invertible on Af if £ € Uy.

Definition 11. Let f be a pure, nonzero, modular form. Define a(f) = g v, (Nr)
such that a(f) = a(p) for any p € R(f). Define the strict order of nilpotence
of f, denoted by h(f), as the largest integer & such that there exist (not necessarily
distinct) prime numbers £1, ..., £, { Np in Ny with Ty, --- Ty, f #0.

Note that, in the definition of the strict order of nilpotence, the largest integer A
exists and is no more than the dimension of Af, since the Ty, act nilpotently on Af
for ¢; € Ny.

(3.16) Given a general nonzero form f, partition the finite set R( f) into equivalence
classes R; (/) based on the equivalence relation o ~ p’ if and only if N; = Né.
Thus we may write

f=Y_fin fi= Y f
i PER(f)

so that the f; are pure. We call this decomposition the canonical decompo-
sition of f into pure forms.

We now extend the definitions of «( f) and /4 ( f) to forms that are not necessarily
pure.

Definition 12. If f =), f; is the canonical decomposition of f into pure forms,
we set a(f) =min; a(f;) and h(f) = max; o(f)=a(r) L(fi)-
3J. Existence of a pseudorepresentation and consequences.

Proposition 13. There exist continuous maps t : Go,np — A andd : Go np — A
such that

(i) d is a morphism of groups Go,np — A,
(i) ¢ is central (i.e., t(gh) =t (hg)),
(iii) (1) =2,
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(iv) 1(gh) +1(gh™")d(h) =1()t(h) for all g, h € Ga,np,
(v) t(Froby) = Ty for all £1 Np,
(vi) d(Froby) = ¢S, for all £ Np.

The uniqueness of such a pair (¢, d) is clear: the function ¢ is characterized
uniquely by (ii) and (v) alone using the Chebotarev density theorem, and d is
characterized by (i) and (vi) (or else by (iv); see (5) below). The existence of
t and d is proved by “glueing” the traces and determinants of the representations
attached by Deligne to eigenforms in characteristic zero and then reducing modulo p.
For details, see [Bellaiche and Khare 2015].

Remark 14. The properties (i) to (iv) express the fact that (¢, d) is a pseudorepre-
sentation of dimension 2. The map ¢ is called the trace, and the map d is called the
determinant of the representation (¢, d) (see [Chenevier 2014]). It is easy to check
that the trace and determinant of any continuous two-dimensional representation
(of a topological group over any topological commutative ring) satisfy properties
(i) to (iv). Since p > 2, one can recover d from ¢ by the formula

d(g) = (1(8)* = 1(g)/2. )
which follows upon taking g = & in (iv) and using (iii).
We prove for later use the following lemma.
Lemma 15. For every g € Go,np one has t(gP) =1(g)”.

Proof. Letm € GLa(A) be the matrix (., (o)) With tr(m) =1(g) and det(m) =d (g).
Since tr and det on the multiplicative subgroup generated by m satisfy properties
(i) to (iv) above, one sees easily by induction on n that tr(m") = t(g") for all n.
Thus it suffices to prove that tr(m?) = tr(m)?.

Let f:[F,[D, T]— A be the morphism of rings sending D to d(g) and T to z(g),
where D and T are two indeterminates. Let M € GL,(F,[D, T']) be the matrix
(g _Tl ) Since f(M) = m, it clearly suffices to prove that tr(M?) = tr(M)?. Since
F,[D, T] can be embedded in an algebraic field k of characteristic p, it suffices
to prove that, for all M € M, (k), one has tr(M?) = tr(M)?. Replacing M by a
conjugate matrix if necessary, we may assume that M is triangular, in which case
the formula is obvious. (]

Let f € M(N,T) be a modular form. Let ty : G — Ay and df : G — Ay be the
composition of ¢ and d with the natural morphism of algebras A — Ay. Note that
(t, dy) satisfies the same properties (i) to (vi), and so (t, dy) is a pseudorepresen-
tation of G on Ay. In particular, (v) reads

ty (Froby) f = Ty f. (©)
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We now deduce certain consequences of the existence of the pseudorepresentation
(t, d) for the algebra A and for modular forms f € M.

Proposition 16. The Hecke algebra A is topologically generated by the Ty for
£t Np alone (that is, without the S).

Proof. Let A’ be the closed subalgebra of A generated by the T,. Since the
elements Froby for £t Np are dense in Ga,np and t(Froby) =Ty € A’, one sees that
t(Ga,np) C A'. In particular, for £ not dividing Np, we have t(Frob%) € A’, hence
we also have (¢ (Frob%) — t(Froby)?)/2. But this element is just d(Froby) = £S,.
Hence Sy € A’ and A’ = A. O

Lemma 17. There exists a finite quotient Gy of Ga,np such that, for £ { Np, the
action of Ty on Af depends only on the image of Froby in G.

Proof. Let H denote the subset of G, y, consisting of elements /4 such that
tr(gh) =ty (g) for every g € G. Since ¢ is central (property (ii) above), it follows
that H is a normal subgroup of G. We call H the kernel of the pseudorepresentation
(tr,dr). By (5) and (iii) one has dr(h) =1 for h € H. Let Gy = Gg,np/H. The
maps tr,dr : Go,np — Ay factor through Gy to give maps Gy — Ay, which we
shall also denote by #; and dy. Note that, by construction, there is no 4 # 1 in Gy
such that 74 (gh) = t7(g) for every g € Gy¢. Since Ay is finite, it follows easily that
Gy is a finite group. Finally, by (6), Ty f depends only on #¢(Frob,), which only
depends on the image of Froby in G¢. Therefore, if ¢ € Af, then g = Tf for some
T eA,and Tyg =T;Tf =TT, f depends only on the image of Frob, in Gy. [

We draw three consequences of this lemma.

Proposition 18. Ler f =Y 2 a,q" € F = F(N,F). If f #0, then there exists a
square-free integer n such that a, # 0.

Proof. Since f is nonzero, a, # 0 for some n € N, and since f € F, one has
(n, Np) = 1. Thus a,(T, f) # 0. By Proposition 16, T, is a limit of linear combina-

tions of terms of the form 7y, - - - Ty, with £4, ..., £, being (not necessarily distinct)
primes all not dividing Np. Since T +> a;(Tf) is continuous and linear, we deduce
that a; (T, - - - Ty, f) # O for some primes {1, ..., £; not dividing Np (again not

necessarily distinct). Since the action of Ty, on Af depends only on Froby, in the
finite Galois group Gy, one can replace ¢; by any other prime whose Frobenius has
the same image without affecting the action of 7j,. In this manner, we may find
distinct primes ¢; such that Ty, - - - Ty, = Ty - -+ Ty, and then with m = 0yt
follows that a,, () = a1 (T f) =a1(Ty, - - Te, ) = ai(Te, - -~ Ty, f) #0. (]

Proposition 19. Let f € M(N,F) be a pure form, and let f' be any element
of M(N, F). Let h be a nonnegative integer, and let M denote the set of square-
free integers m having exactly h prime factors, all from the set Ny, and such that
Tnf = f'. Then M is multifrobenian.
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Proof. Let Gy be as in Lemma 17 and let Dy y C G;’ denote the set of A-tuples
(g1, ..., 8n) suchthatts(g1)---tr(gn) f = f', where gi € Ny fori =1, ..., h. Then
Dy 4 is invariant under conjugation and symmetric under permutations, and hence
by definition M is the multifrobenian set of weight £ attached to Dy, ;» and Gy. [

Proposition 20. Let f be a pure modular form. Then there exist h(f) distinct
primes Ly, ..., Ly in Ny such that Ty, - - - Ty, . f # 0.

Proof. The fact that we can find h(f) primes £y, ..., ¢y in Ny such that
fli=Ty - Ty, nJS # 0 simply follows from the definition of 2(f). In the
notation of the previous proposition we see that Dy is not empty as it con-

tains (Froby,, ..., Frob, ). Hence the multifrobenian set M of that proposi-
tion is not empty, and there exist distinct primes ¢/, ..., ZZ(f) in Ny such that
Ty, Ty, f =1 #0. =

4. Asymptotics: proof of Theorem 1

Let f =) a,q" € M = M(N, F). We assume below that f is not constant. We set
Z(f)={neN,a,#0} and n(f,x)=|n<x, a, #0}|,

and our goal is to establish an asymptotic formula for 7 (f, x). For a given a € [F*
it will also be convenient to define

Z(f,a)={neN, a,=a} and n(f,a,x)=I|{n<x, a, =a}|.

By (3.8), we may assume without loss of generality that (N, p) = 1, so all the
results of Section 3 apply.

4A. Proof of Theorem 1 when f € F(N, ) and f is pure. We assume in this
section that f is a pure form in F(N, F). From Section 31 recall that the set of
primes ¢ not dividing Np may be partitioned into two sets, Uy and Ny, such that
¢ € Uy if T, acts invertibly on Af and £ € N if T, acts nilpotently on Af.

Given a € F* we wish to prove an asymptotic formula for 7 (f, a, x). If n is an
integer with a,(f) = a (and since f € F we must have (n, Np) = 1) then we may
write n =mm'm" with m square-free and containing all prime factors from U/, with
m’ square-free and containing 4 < h(f) prime factors all from Ny, and with m”
square-full and coprime to mm’. Such a decomposition of the number # is unique,
and if we write f” = T,,» f and f' = T, f” then f’ and f” are forms in Af — {0}
with a,,, (f') = a. Thus integers n with a, ( f) = a uniquely define triples (f', f”, h)
and we may decompose

z(fay= 1] z(fa; £, " b, (7
S " h
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where the disjoint union is taken over forms f’, f” in Af — {0} and integers
0 < h < h(f). Here the set Z(f,a; f', f”, h) is defined as the set of integers
n=mm'm" with (n, Np) = 1 such that

(4.1) m is square-free and all its prime factors are in U,

(4.2) m’ is square-free, has exactly & prime factors, and all its prime factors are in
Ny, and moreover f' =T, f";

(4.3) m” is square-full, relatively prime to mm’, and f” = T, f;
4.4) an(f)=a.

Next we evaluate the number of elements up to x in the set Z(f, a; f', f”, h)
using Theorem 7. Write Sy, ¢» for the set of square-full integers m” such that
Tw f = f”, and write M g ¢+ for the set of integers m’ that are the product of
h distinct primes in Ay and such that f” = T, f”. By Proposition 19, M ¢ is a
multifrobenian set of height . Observe that conditions (4.1), (4.2), (4.3) are the
same as conditions (2.1.1), (2.1.2), (2.1.3) defining the set ZUys, My g, Sy 7).
Now, define a map 7y : Uy — A}k sending £ to ty(Frob,) = T; and extend it by
multiplicativity to the set of all square-free integers composed only of primes
from Uy. Let I'y be the image of 77, which is a finite abelian subgroup of the
finite group A* and let A ;7 , denote the set of y € I'; such that a;(yf’) = a. For
n=mm'm" € Z(f a; f', f", h) set ty(n) = t7(m) so that condition (4.4) is the
same as t7(n) € Ay ,. Thus we are in a position to apply Theorem 7, which yields,
assuming that the sets My g, Sy p» and A , are all not empty,

{n<x:neZ(fia; f', f". W)
=|{n<x:neZWUs, My s, Sf ), T(n) € Apr 4}l

~ C 6(./\/(]”/ f//) IAf/,(ll Y (log log x)h, (8)
h [Tl (logx)*()
where ¢ = ¢(f, f”) > 0 is a constant depending only on Uy and Sy, s~ (thus only
on f and f”), and a(f) =1 —38(Us) = §(Ny) as defined in Section 31. If at least
one of the sets M s g, Sy, v or Ay, is empty, then sois Z(f, a; f', f", h).
Using (7), one deduces that either all the Z(f, a, f', f”, h) are empty for all
permissible choices of (f/, f”, k), in which case 7 (f, a, x) = 0 for all x, or

~ - h(f.a)
m(f.a0) ~e(fag )a( 7 (loglog x)" -, ©
where h(f,a) < h(f) is the largest integer 1 < h(f) for which there exist forms
f', f” € Af —{0} such that Z(f, a; f’, f”, h) is not empty, and where

TN
4Ty

c(fay=" Y c(fs f8Mp ) (10)

(f".f".h(f.a))
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the sum being over those f', f” € Af — {0} such that Z(f, a; f', f”, h(f, a)) is
not empty.

We claim that the set Z(f, a; f’, f”, h(f)) is not empty for some choice of
(f', f") € (Af —{0})? and some a € F*. To see this, take m” =1 and f" = f =T, f.
By Proposition 20, there exists an integer m’ with 4 ( f) distinct prime factors in Ay
such that T, f # 0. Fix one such m’ and let f’ = T, f. Proposition 18 tells us
that there exists a square-free integer m such that a,, (f’) # 0. Note that (') =0,
hence m has all its prime factors in Uy. Define a = a,(f’) € F*. Then the set
Z(f,a; f', f", h(f)) contains n =mm’'m” and is therefore not empty, which proves
the claim.

Since w(f, x) =) 5= T(f, a, x), it follows from (9) and the above claim that

nqum—jmmme%mmﬁb ;dm&[j
h(f.a)=h(f)

4B. Proof of Theorem 1 when f € F(N, ) but f is not necessarily pure. Let
f= Zi fi be the canonical decomposition (see (3.16)) of f into pure forms. By
the preceding section, one has

n(.fl?-x) (ﬁ W(loglogx)h(fl)

Consider the indices i such that o( f;) is minimal (and by definition «( f;) = a(f));
among those, select the indices with & ( f;) maximal (and by definition 2 ( f;) =h(f)).
Let I denote the set of such indices. We claim that

~e(f)— hH wi _ :
7.3~ e(f) e (loglog )", with ¢(f) =) e(f).

iel

To prove the claim, first note that we can forget those f; with i ¢ I, because they
have a negligible contribution compared to the asserted asymptotics (either the
power of log log x is smaller, or the power of log x is larger). It remains to prove
that, for i, j € I, i # j, one has

7(fi, fi»x)=o0 (m(loglogx)h(f)>, (11)

where 7 (f1, fj,x) = |{n < x, a,(f;) # 0, a,(f;) # 0}|. But if n is such that
a,(f;) #0 and a,(f;) # 0, it has at most h(f;) + h(f;) = 2h(f) prime factors £
such that Frob, € Ny, U ij. Moreover, the two open sets Ny, and ij of Gg,np are
not equal by definition of the decomposition into pure forms (3.16). Therefore the
measure ' of the open set Ny, U Ny, is strictly greater than the common measure
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a(f) =a(fi) =a(fj) of Ny, and Ny,. Hence an application of Theorem 7 gives

) = * 2h(f)
n(fl,fj,x)_O(W(loglogx) )
which implies (11) since o' > a(f). O
4C. Proof of Theorem 1: general case. Let 3 be the set of integers m > 1 all of

whose prime factors divide Np. Note that the series > 1/m converges. For
m € BB, we consider the following operators on F[[g]:

U, (Z anq") = Zamnq” and V, (Z anq"> = Zanqm".

We also consider the operator W defined by

W(Zanq") = Z anq".

(n,Np)=1

meB

The operators U, stabilize the space M (N, [F) (see Section 3C). The operator V,,
however does not stabilize M (N, F) (except for m = p; see (3.11)), but it sends
M(N,F) into M(Nm, [F) since it is the reduction modulo p of the action on
g-expansions of the operator on modular forms f(z) — f(mz). As for the opera-
tor W, it is easily seen from the definitions to satisfy

W =" pu(m)VpUn,

meB

where u(m) is the Mobius function. Since p vanishes on integers that are not
square-free, the sum is in fact finite, and it follows that W sends M (N, ) into
M (N?, F) and, more precisely, into F (N 2 F).

Let f =) a,q" € M(N, F) be a modular form. For any integer m € B, define

n
Jm= E anq -,
n=mm’

(m',Np)=1

so that f =ag+ ), fm- This sum may genuinely be infinite, but it obviously
converges in F[[g]. Clearly

T(fox) =Y 7 (fm %)+ O(D),
meB
where the error term O (1) is just O if ag = 0 and 1 otherwise. One sees from the
definitions that f,,, = V,, WU, f, so that

T(fm, ) =7 (WU, f, x/m).
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Since 7 (f, x) is clearly at most x /m, and since ZmeB,m>(logx)2 1/m < 1/logx,
we conclude that

X
n(f,x) = ,;g n(WUmf,x/m>+0<logx>. (12)
mg(log)c)2

Now WU, f € F(N%, F), and we can apply the results of Section 4B and
thus estimate 7(WU,, f, x/m). Thus, if WU, f # 0 and m < (logx)? (so that
log(x/m) ~ log x), then

h(WUmf). (13)

(W Up f, 5/ m) ~ €W Up )+ s log log 1)
Note that, since f is not a constant, WU,, f # O for at least one m € . Further,
note that, while B is infinite, the set of forms WU, f for m € B is finite since U, f
belongs to the Hecke-module generated by f which is finite-dimensional over [
(see (3.10)). Thus the asymptotic formula (13) holds uniformly for all m < (log x)?
with m € B and as x — oo. Finally, since the Hecke operators 7, for £ prime to Np
commute with the operators U, V;,, and W, it follows that

a(f) = mig aWU, f) and h(f)= maé h(WU, f).

Wi [0 W f£0
« WUy )Za(f)

Thus, setting ¢,, = c(WU,, f) when WU,, f # 0 (which happens for at least one
m € B) and setting c,, = 0 otherwise, we may recast (13) as

T (WU f, x/m) = (e + €n(x)) — (loglog x)"/), (14)

x
(log x)*(f)

where €,,(x) — 0 as x — 00, uniformly for all m € B with m < (log x)2.
From (12) and (14) we obtain

~ m X W) oo h(f)
w(f, x) ,; m (og x)a) (loglog x) c(logx)"‘(f) (loglog x)"/7,
m<(10gx)2

with c
m
= -, 15
¢ E (15)

meB

noting that this series converges because c,, takes only finitely many values (and
hence is bounded). This finishes the proof of Theorem 1. (]

5. Equidistribution

Definition 21. We say that a form f € M (I'1(N), F) has the equidistribution prop-
erty if, for any two a, b € F*, we have 7w (f, a, x) ~ w(f, b, x). We say that a
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subspace V C M(I'1(N), F) has the equidistribution property if every nonconstant
form f € V has the equidistribution property.

In view of Theorem 1, f having the equidistribution property is equivalent to

2(f.a.x) ~ c(f)

h(f)
[ — 1 Togr)®® (loglog x)""/’,

where c(f) is the constant of Theorem 1.

We now give a sufficient condition for equidistribution for generalized eigen-
forms, which generalizes a similar criterion for true eigenforms due to Serre [1976,
Exercise 6.10].

Proposition 22. Let p : Gg,ny — GL2(F) be a representation in R(N, p). If the
set tr p(Ga,np) — {0} generates F* multiplicatively, then the generalized eigenspace
M(N, [F); has the equidistribution property.

Proof. First assume that f € (N, [F);. Since f is pure, the asymptotic formula (9)
holds for 7 (f, a, x), and to obtain equidistribution it remains to show that the
constant ¢(f, a) appearing there is independent of a € F*. By formula (10), which
gives the values of c(f, a), it suffices to prove that the cardinalities of the sub-
sets A, of I'y are independent of a € F*, for any given form f' € Af — {0}.
Recall that I'y is the subgroup of A;‘- generated by the elements T; = t7(Froby)
for £ € Uy = U; and hence, by Chebotarev and the definition of U/, the sub-
group of A; generated by #:(Gq,np) N A}“. Recall also that Ay, is the set of
elements y € I'y such that a;(y f’) = a. To prove that |A / ,| is independent of a,
it therefore suffices to prove that I'y contains the subgroup [F* of A}k, in which case
multiplication by ba~! will induce a bijection between Ay and A gy for any
b € F*. Since by hypothesis tr p(Gq,np) — {0} generates [*, it suffices to show
that tr o(Gq,np) — {0} C I'y. For this, let g € Gg,np, and assume that tr p(g) # 0.
By (3.14), one has 7r(g) =tr p(g) (mod my,) where m,, is the maximal ideal of
the finite local algebra Ay. Let n be an integer such that m’f"f =0, and let g be the
cardinality of F. Then, by Lemma 15,

tr(87) = 1()" = (wr p(g)?" (mod m}),
so that, since x + x7 induces the identity on [,
tr(g7) =1tr p(g).

Hence trp(g) € I'y and this completes the proof of the proposition for forms
feF(N,F);.
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Now consider a general nonconstant form f € M(N, F);. Mimicking the proof
in Section 4C, one has

a(fiax)= Y a(WUnfia,x/m)+ 0(10;)

meB
m g(logx)2
and the asymptotic formula obtained for 7w (WU, f, a, x /m) is independent of a € F*,
since WU,, f € F(N?,F) ;5 and by the result just established. O

Serre has given an example of an eigenform f mod p that does not have the
equidistribution property: namely, the form A mod 7 (see [Serre 1976, Exercise 12]).
Here is a generalization.

Proposition 23. Suppose f is a nonconstant eigenform in F(N,[F)s. If the set
tr p(Ga,np) — {0} does not generate F* multiplicatively, then f does not have the
equidistribution property.

Proof. Let f =Y 2, ayq". Since f is an eigenform for the Ty, £+ Np, and also is
killed by the U, for £ | Np (because it is in F), the sequence a, is multiplicative and
one has ay = 0 for £ | Np and a, = tr p(Froby) for all £{ Np. Also one has a; # 0
since f is nonconstant, and we may assume a; = 1.

Let B be the proper subgroup of [* generated by tr p(Gg,np) —{0}. By multiplica-
tivity, a, € B U {0} for all square-free integers m. Since a, # 0 for square-free n
exactly when n is composed only of primes in U/, we see that

Z 1> Z 1~ (10gx)a(f) (16)

n<x n<x
ap€B n square-free
pln=pely
for a suitable positive constant c. Now if f has the equidistribution property, then,
since |B| < |F* — B] for proper subgroups B of ¥, we must have

Y r<d+on) 1L

n<x n<x

a,€B a,€F*—B
The right-hand side above is at most the number of integers of the form mr < x
where 1 < m is square-full and r < x/m is square-free with (r, m) =1 and a, # 0.
Ignoring the condition (r, m) = 1, the number of such integers is (arguing as in
Section 4C)

x c+o(l) X
LooX'E L ot L
l<m=<x r<x/m 1<m<(log x)? m>(log x)?

m square-full r square-free m square-full m square-full
plr=pelly
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which is at most

; L x (trB3)
oM rgmm 2 ;‘(”"(”)(logx)m( £(6) 1)

l<m
m square-full

=((0.9435.. )c+ 0(1))W'

But this contradicts the lower bound (16), completing our proof. ]

We can use the above result to give a converse to Proposition 22 when the level N
is equal to 1.

Proposition 24. Let p € R(1,F). The space M(1,F); has the equidistribution
property if and only if the set tr p(Gq,,) — {0} generates F* multiplicatively.

Proof. By (3.15), M (1, F); has an eigenform f = Zflozl an,q" with a; = 1 for all
the Hecke operators T; and S, £ # p. Replacing f by f — V,U, f (see (3.11)),
we may assume that f is an eigenform in (1, F)s. If M(1,F)j, hence f, has
the equidistribution property, then by the preceding proposition tr p(Gq, ,) — {0}
generates [* multiplicatively. O

In the same spirit, but concerning forms that are not necessarily generalized
eigenforms, one has the following partial result.

Proposition 25. If 2 is a primitive root modulo p, then M (N, [F,) has the equidis-
tribution property.

Proof. One reduces to the case of an f € F(N, p) pure exactly as in Section 4B.
Then, arguing as in the proof of Proposition 22, it suffices to prove that the group I'y
generated by #r(Gq,np) contains [;. But I'r contains #;(1) =2 which by hypothesis
generates [F). (]

Again, one has a partial converse to this proposition.

Proposition 26. In the case N =1 and p =3 (mod 4), M(1, F,) has the equidis-
tribution property if and only if 2 is a primitive root modulo p.

Proof. Let ), : Gg,p — I]:; be the cyclotomic character modulo p, and define
p=16& a)f,,p_l)/z. The hypothesis p = 3 (mod 4) means that (p — 1)/2 is odd,
and so p is odd and thus belongs to R(1, p) (p is the representation attached to the
Eisenstein series Ex(z) where k =1+ (p —1)/2 for p > 3 and to E4(z) if p = 3).
Reasoning as in Proposition 24, there is an eigenform f in F(1, p);. If M(1, p),
hence f, has the equidistribution property, then p(Gq,,) — {0} generates [F‘;k by
Proposition 23. Since the image of p is {0, 2}, this implies that 2 is a primitive root
modulo p. ([l
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6. A variant: counting square-free integers with nonzero coefficients
Given a modular form f =7 a,q" in M(N, p), let
wst(f, x) = [{n < x, n square-free, a, # 0}|.

Our proof of Theorem 1 allows us to get asymptotics for g ( f, x), and indeed this
is a little simpler than Theorem 1. We state this asymptotic result, and sketch the
changes to our proof, omitting details.

Theorem 27. [f there exists a square-free integer n with a, # 0, then there exists a
positive real constant cg(f) > 0 such that

st (fo x) ~ ot () (log log x)").

X
(log x)®(H)
If a, = 0 for all square-free integers n, then in fact a,, # 0 only for those integers n
that are divisible by £* for some prime £ dividing Np.

Suppose below that f has some coefficient a,, # 0 with n not divisible by the
square of any prime dividing Np. We first prove Theorem 27 for a pure form
f € F(N, p), as in Section 4A. In this case, our hypothesis on f is equivalent
to saying that f is nonconstant. Then the proof given in Section 4A works by
replacing the sets Z(f), Z(f, a) by their intersection Z(f), Zss( f, a) with the set
of square-free integers. We have a decomposition, analogous to (7) but simpler:

Zg(foa)= || Zs(fo a ), (17)
fhh
where the disjoint union is taken over forms f’ in Af — {0} and over integers

0<h <h(f). Here the set Zy(f, a; f', h) is defined as the set of integers n = mm’
with (n, Np) = 1 such that

(6.1) m is square-free and all its prime factors are in Uy;

(6.2) m’ is square-free, has exactly & prime factors, and all its prime factors are in
Ny, and moreover [’ =T, f;

(6.3) an(f)=a.

The asymptotics for the number of integers less than x in Z( f, a; f’, h) is then
exactly as in Section 4A, except that the set of square-full integers Sy, r» is now {1}.
The desired asymptotics for s ( f) follows.

The case where f is in F(N, F) but not necessarily pure is reduced to the pure
case exactly as in Section 4B.

Finally, in the general case where f € M (N, [F), let By be the set of square-free
integers m whose prime factors all divide Np. We observe that B is a finite subset
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of the infinite set 3 defined in Section 4C. For m € By, we define as in Section 4C

fm = Z anq",

n=mm’
(m',Np)=1

and we have clearly

T (fox) =Y Wi fn, X).

meBg

By the assumption made on f, at least one of the f,, for m € By is nonconstant.
The rest of the proof is therefore exactly as in Section 4C.

7. Examples

7A. Examples in the case N =1, p = 3. The simplest case where our theory
appliesis N =1, p=3. Letus denote by A =g +2¢*+¢” +g"3+--- € F3[[¢] the
reduction modulo 3 of the g-expansion of the usual A function. The space M (1, F3)
is the polynomial algebra in one variable F3[A] and F(1, F3) is the subspace of
basis (A*) where k runs among positive integers not divisible by 3. The set of
Galois representations R(1, [F3) has only one element, p = 1 @ w3 where w3 is the
cyclotomic character modulo 3. Therefore, every nonzero form f € M(1,[F3) is a
generalized eigenform, and hence pure. Thus the sets U/¢, Ny are independent of f
and are respectively the sets &/, N/ of prime numbers ¢ congruent to 1, 2 modulo 3;
the invariant o (f) is 1/2.

The invariant 2(f) is more subtle. Recall from Section 3I that iA(f) is the
largest integer / such that there exist primes £y, .. ., £; in Ny (that is, congruent to
2 mod 3) such that Ty, - - - T, f # 0. According to a result of Anna Medvedowski
[2015] A(f) is also the largest A such that T2h f #0. Using this it is easy to compute
the value of h(A¥) for small values of k, as shown below (we omit the values of k
divisible by 3 since h(A*) = h(AV)):

f HA‘AZ‘A4‘A5‘A7‘AS‘AIO‘AII‘A13‘A14‘A16‘A17‘A19
o1 23454 |5]4]|5][4]5]6

In general Medvedowski [2015] has shown that h(AF) < 4k'°g2/1023 Numerical
experiments suggest that /1(A¥) is of the order +/k for large k with 3 fk, so there is
perhaps some room to improve this upper bound (note log 2/ log 3 ~ 0.63).

Calculation of (A%, x). The invariant c( f) is the most difficult to determine. We
shall calculate ¢(A?), illustrating the proof of our theorem in this simplest nontrivial
case. To ease notation, set f = A”. The Hecke module Af is a two-dimensional
vector space generated by f = A? and A, and the Hecke algebra A ¢ can be identified
with the algebra of dual numbers F3[€], where €A* = A and €A = 0. The value
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of the operators Ty and €S, in Ay = [3[€] is given by the following table (see
[Bellaiche and Khare 2015, §A.3.1]):
/i (mod9) |1,47] 2] 538

2 € 26 0
1 — -1 -1

From this, using (3.3), it is not difficult to compute 7 for any n:

¢ (mod 9) 1,4,7 2 5 8
n (mod6) || 0,3 \ 1,4 \ 2,5/0,2,4 \ 1 \ 3 \5 0,2,4 \ 1 \ 3 \ 510,2,4 \ 1,3,5
o 120 1 Jelac]o] 1 J2c]elo] 1] o

We are now ready to follow the proof of Theorem 1. Since f € F(1, F3) and f is
pure, only Section 4A is relevant. As in our analysis there, write f =) _, a,q"
and, fora =1, 2 (mod 3), let Z( f, a) be the set of integers n such that a, =a. The
set Z( f, a) is the disjoint union of sets Z( f, a; f’, f”, h) asin (7), where f’, f” are
in Af — {0} and 2 < h(f) =1 is a nonnegative integer. The subsets with 2 = 0 have
negligible contribution in view of (8). When i = 1, for the set Z(f, a; f/, f", 1)
to be nonempty one must have A(f”) = 1 and A(f") = 0. Since f” and f' must
be the image of f by some Hecke operators, this implies, in view of the table
above, that f” is either 2A% or A% and that f' is either 2A or A, so we have 4 sets
Z(f,a; f', f”, 1) to consider for each value 1, 2 of a. As explained in Section 4A,
to each permissible choice of f’, f” is attached a set Sy, ;v of square-full integers,
namely the set of square-full m” such that 7,,» f = f”, and a multifrobenian set of
height 1, that is, a frobenian set, M s/ ¢, which is the set of primes £ in Ny such that
Tef" = f'. For every choice of f”, f’, one sees from the table above that M s/ ¢~
is either the set of primes congruent to 2 (mod 9) or to 5 (mod 9), and in any case
8(M g yr) =1/6. The sets Sy, ;» may be easily determined using our table above.
Thus Sx2 a2 consists of square-full numbers where primes =2 (mod 3) appear in
an even exponent, an even number of primes = 1 (mod 3) appear in exponents
that are at least 2 and = 1 or 4 (mod 6), and other primes = 1 (mod 3) appear in
exponents that are multiples of 3. The set Sx2 12 consists of square-full numbers
that are divisible by an odd number of primes = 1 (mod 3) appearing in exponents
at least 2 and = 1 or 4 (mod 6), other primes = 1 (mod 3) appearing in exponents
that are multiples of 3, and primes = 2 (mod 3) appearing in even exponents.

According to Theorem 7, fora =1 or 2, f'= A or 2A, and f” = A” or 22,
one has

{n<x:neZ(fa; f', f", D}

(5o o
B 6 (log x)?

S GSfY Y
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where

1 —1
cU,s)=CU) ]_[ (HZ)

Ls
£=1 (mod 3)

1 | 1\2 1\2
ety L0 L6
r'(3) ,,=1l;[0d3) p P 1l P

p#1 (mod 3)

:‘6 ]‘[ <1—i2>2:0.2913.... (19)
P

V2 p=1 (mod 3)

and

In (18), the factor 1/6 is (M ¢ ¢/) and the factor 1/2 is |A|/|I"| (and this factor
would disappear if we counted cases a = 1 and a = 2 together).
Adding up all the possibilities, using (7), we finally obtain that

(A%, x) ~ c(A?) - loglog x,
(log x)2
where
1 cU,s) CU 1\7! 1\~!
2y _ & _ _ _
c(A) = 3 Z s -3 l_[ (1 53) 1_[ 1 02 :
s€SF fUSraf ¢=1 (mod 3) £=2 (mod 3)

Calculation of e (AF, x) fork=1,2,4,5,7,10. In these examples, we describe
the calculation of cg(A¥), which is simpler than evaluating c(AY). For h > 0 an
integer, let M, be the set of integers that are the product of exactly & distinct
primes, all congruent to 2 or 5 modulo 9. This is a multifrobenian set, attached to
the cyclotomic extension Q(u9)/Q of the Galois group G = (Z/97)*, and one has
§(My) =2"/(n'6") = 1/(h'13"). One can show that, for k = 1,2, 4, 5,7, 10 and
h = h(Ak) =0,1, 2,3, 4, 4 respectively, and for m’ € M, one has (with f = AF)
that 7, f # 0, and in fact T,y f = A or T,y f = 2A. Also note that for f' = A or
f'=2A, one also has T,, f' = A or 2A for any square-free m with prime factors
inU, so that a,, (f") #0.

Thus, the main contribution to Zg(AX) is the set we call ZU, My, 1), namely
the set of all square-free numbers mm’, where m is any product of primes in U/ (i.e.,
congruent to 1 (mod 3)) and m’ € M,,. According to Theorem 6,

cU) x i
Tzloglog )", k=1,2,4,5,7,10,

Aoy~ DX
Tt (A% 2) ™ 530 og )

where h = h(k) =0, 1, 2, 3, 4, 4 respectively and C (i) is the constant appearing
in (19).
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7B. Example of a nonpure form in the case N =1, p =7. Examples of powers
of A that are not pure arise (mod 7). There one has A> = f + A, where f = A>— A
is an eigenform for all the Hecke operators 7, (£ a prime number with £ # 7), with
eigenvalue ¢2 + ¢3. The Galois representation py corresponding to this system is
w3 ® w; where @7 is the cyclotomic character modulo 7. The set Nj, is the set of
prime numbers £ that are congruent to —1 modulo 7, and Uj, is the set of prime
numbers congruent to 1, 2, 3,4, 5 modulo 7. One has a(f) =a(pr) =1/6.

The form A is also of course an eigenform, with system of eigenvalues £ + £*
for Ty, corresponding to the Galois representation pp = w7 a)é’ with a(pp) = 1/2.

The decomposition A> = f + A is thus the canonical decomposition into pure
forms, and the pure form A can be neglected because a(A) > a(f). One finds

(A2, x) ~ 75 (f, x) ~ CUp) —— ¢

oz 7"
with
| 1 1\é 1)s
cUp=ras I (+g)(-4) I (-3)
I'(5/6) ¢=1,2,3,4,5 (mod 7) £ ¢ £=—1,0 (mod 7) ¢
so that
2 2 X 2
Ti(AZ, x) ~ cg(A )W, cst(A7) = C(Up,) =0.5976....
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Noetherianity for infinite-dimensional
toric varieties

Jan Draisma, Rob Eggermont, Robert Krone and Anton Leykin

We consider a large class of monomial maps respecting an action of the infinite
symmetric group, and prove that the toric ideals arising as their kernels are
finitely generated up to symmetry. Our class includes many important examples
where Noetherianity was recently proved or conjectured. In particular, our results
imply Hillar—Sullivant’s independent set theorem and settle several finiteness
conjectures due to Aschenbrenner, Martin del Campo, Hillar, and Sullivant.

We introduce a matching monoid and show that its monoid ring is Noetherian
up to symmetry. Our approach is then to factorize a more general equivariant
monomial map into two parts going through this monoid. The kernels of both
parts are finitely generated up to symmetry: recent work by Yamaguchi—-Ogawa—
Takemura on the (generalized) Birkhoff model provides an explicit degree bound
for the kernel of the first part, while for the second part the finiteness follows
from the Noetherianity of the matching monoid ring.

1. Introduction and main result

Families of algebraic varieties parameterized by combinatorial data arise in various
areas of mathematics, such as statistics (e.g., phylogenetic models parameterized by
trees [Allman and Rhodes 2008; Draisma and Kuttler 2009; Draisma and Eggermont
2015; Pachter and Sturmfels 2005] or the relations among path probabilities in
Markov chains parameterized by path length [Haws et al. 2014; Norén 2015]),
commutative algebra (e.g., Segre powers of a fixed vector space parameterized by
the exponent [Snowden 2013] or Laurent lattice ideals [Hillar and Martin del Campo
2013]), and combinatorics (e.g., algebraic matroids arising from determinantal
ideals parameterized by matrix sizes [Kiraly and Rosen 2013] or edge ideals of
hypergraphs parameterized by the number of vertices [Gross and Petrovi¢ 2013]).
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A natural question is whether such families stabilize as some of the combinatorial
data tend to infinity. A recently established technique for proving such stabilization
is passing to an infinite-dimensional limit of the family, giving some equations for
that limit, and showing that those equations cut out a suitably Noetherian space.
This then implies that the limit itself is given by finitely many further equations,
and that the family stabilizes. This technique is applied, for instance, in the proof
of the independent set theorem [Hillar and Sullivant 2012], and in the first author’s
work on the Gaussian k-factor model, chirality varieties, and tensors of bounded
rank [Draisma 2010; Draisma and Kuttler 2014].

In the present paper, we follow a similar approach, utilizing the new concept
of a matching monoid to prove that stabilization happens for a large class of toric
varieties. Our main theorem provides one-step proofs for several existing results
that were established in a rather less general context; and it settles conjectures
and questions from [Aschenbrenner and Hillar 2007; Hillar and Sullivant 2012;
Hillar and Martin del Campo 2013]. There is a list of three such consequences at
the end of this Introduction. Moreover, we show Noetherianity in a constructive
manner by complementing the main theorem with an algorithm that produces a
finite set of equations whose orbits define the infinite-dimensional toric variety
under consideration.

Instead of working with inverse systems of affine varieties, we work directly
with direct limits of their coordinate rings. In fact, we formulate our main theorem
directly in the infinite-dimensional setting, as going back to families of finite-
dimensional coordinate rings of toric varieties is fairly straightforward. Throughout,
N denotes {0, 1, 2, 3, ...}, and for k € N we write [k] := {0, ..., k — 1}. We write
Sym(N) for the group of all bijections N — N, and Inc(N) for the monoid of all
strictly increasing maps N — N. Let Y be a set equipped with an action of Sym(N).
We require that the action has the following property: for each y € Y there exists a
ky € N such that y is fixed by all of Sym(N\ [k,]), i.e., by all elements of Sym(N)
that fix [k,] elementwise. In this setting, Inc(N) also acts on Y, as follows: for
m € Inc(N) and y € Y, choose a 7' € Sym(N) that agrees with = on [k,], set
7y := 7'y, and observe that this does not depend on the choice of 7’. Observe
that for each y € Y the Inc(N)-orbit Inc(N)y is contained in Sym(N)y, and that
the latter is in fact equal to the orbit of y under the countable subgroup of Sym(N)
consisting of permutations fixing all but finitely many natural numbers. See also
[Hillar and Sullivant 2012, Section 5].

Let R be a Noetherian ring (commutative, with 1), and let R[Y] be the commuta-
tive R-algebra of polynomials in which the elements of Y are the variables and the
coefficients come from R. The group Sym(N) acts by R-algebra automorphisms
on R[Y] by permuting the variables. Furthermore, let k£ be a natural number, and let
Z ={z;j | i €[k], j € N} be a second set of variables, with a Sym(N)-action given
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by mz;; = zix(j)- Extend this action to an action by R-algebra automorphisms of
R[Z]. Note that the Sym(N)-actions on R[Y], Z, and R[Z] all have the property
required of the action on Y. Hence they also yield Inc(N)-actions, by means of
injective R-algebra endomorphisms in the case of R[Y] and R[Z]. In general, when
a monoid IT acts on a ring S by means of endomorphisms, S is called I1-Noetherian
if every I1-stable ideal in S is generated by the union of finitely many IT-orbits of
elements, i.e., if S is Noetherian as a module under the skew monoid ring S * Il;
see [Hillar and Sullivant 2012].

Theorem 1.1 (main theorem). Assume that Sym(N) has only finitely many orbits
onY. Let ¢ : R[Y] — R[Z] be a Sym(N)-equivariant homomorphism that maps
each y € Y to a monomial in the z;;. Then ker ¢ is generated by finitely many
Inc(N)-orbits of binomials, and im ¢ = R[Y]/ ker ¢ is an Inc(N)-Noetherian ring.

If an ideal is Sym(N)-stable, then it is certainly Inc(N)-stable, so the last state-
ment implies that R[Y]/ ker ¢ is Sym(N)-Noetherian. The conditions in the theorem
are sharp in the following senses.

(1) The ring R[Y] itself is typically not Sym(N)-Noetherian, let alone Inc(N)-
Noetherian. Take, for instance, Y = {y;; | i, j € N} with Sym(N) acting diagonally
on both indices, and take any R with 1 # 0. Then the Sym(N)-orbits of the
monomials

Y12Y21, Y12Y23Y315 Y12Y23Y34 Y415 - - «

generate a Sym(N)-stable ideal that is not generated by any finite union of orbits
(see [Aschenbrenner and Hillar 2007, Proposition 5.2]).

(2) The R-algebra R[Z] is Sym(N)-Noetherian, and even Inc(N)-Noetherian [Co-
hen 1987; Hillar and Sullivant 2012] — this is the special case of our theorem where
Y = Z and ¢ is the identity — but Sym(N)-stable subalgebras of R[Z] need not be,
even when generated by finitely many Sym(N)-orbits of polynomials. For instance,
an (as yet) unpublished theorem due to Krasilnikov says that in characteristic 2, the
ring generated by all 2 x 2-minors of a 2 x N-matrix of variables is not Sym(N)-
Noetherian. Put differently, we do not know if the finite-generatedness of ker ¢
in the main theorem continues to hold if ¢ is an arbitrary Sym(N)-equivariant
homomorphism, but certainly the quotient is not, in general, Sym(N)-Noetherian.

(3) Moreover, subalgebras of R[Z] generated by finitely many Inc(N)-orbits of
monomials need not be Inc(N)-Noetherian; see Krasilnikov’s example in [Hillar
and Sullivant 2012]. However, our main theorem implies that subalgebras of R[Z]
generated by finitely many Sym(N)-orbits of monomials are Inc(N)-Noetherian.

Our main theorem applies to many problems on Markov bases of families of
point sets. In such applications, the following strengthening is sometimes useful.
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Corollary 1.2. Assume that Sym(N) has only finitely many orbits on Y , and let S
be an R-algebra with trivial Sym(N)-action. Let ¢ : R[Y] — S[Z] be a Sym(N)-
equivariant R-algebra homomorphism that maps each y € Y to an element of S
times a monomial in the z;;. Then ker ¢ is generated by finitely many Inc(N)-orbits
of binomials, and im ¢ = R[Y]/ ker ¢ is an Inc(N)-Noetherian ring.

Proof of the corollary given the main theorem. Let y,, p € [N] be representatives
of the Sym(N)-orbits on Y. Then for all p € [N] and 7 € Sym(N) we have
¢(wyp) = spmu, for some monomial u, in the z;; and some s, in S. Apply the
main theoremto Y’ :=Y x N and ZU Z' with Z’ := {z’p’j | p€[N],jeN}and
¢’ the map that sends the variable (ry), j) to z;’ Tl p. Consider the commutative
diagram

/

@
R[Y'] —— R[Z U Z']
j Py, )y l Yz, sy
¢
R[Y] —— S[Z]

of Sym(N)-equivariant R-algebra homomorphisms. By the main theorem, im ¢’
is Inc(N)-Noetherian, hence so is its image under ; and this image equals im ¢
because p is surjective. Similarly, ker(y o ¢’) is generated by finitely many Inc(N)-
orbits (because this is the case for both ker ¢’ and ker ¥/ |im /), hence so is its image
under p; and this image is ker ¢ because p is surjective. ([

Here are some consequences of our main theorem.

(1) Our main theorem implies [Aschenbrenner and Hillar 2007, Conjecture 5.10],
to the effect that chains of ideals arising as kernels of monomial maps of the
,,,,, i z?]' e sz, where the indices iy, . .., iy are required to be distinct,
stabilize. Aschenbrenner and Hillar proved this in the squarefree case, where the
aj are equal to 1. In the Laurent polynomial setting more is known [Hillar and
Martin del Campo 2013].

(2) A consequence of [de Loera et al. 1995] is that for any n > 4 the vertex set
{vij:=e;+ej|i # j} S R" of the (n — 1)-dimensional second hypersimplex has a
Markov basis corresponding to the relations v;; = v;; and v;; + v = v;; +vg;. Here
is a qualitative generalization of this fact. Let m and k be fixed natural numbers.
For every n € N consider a finite set P, € Z" x Z¥*". Let Sym(n) act trivially on
7™ and by permuting columns on Z¥*". Assume that there exists an n( such that
Sym(n) P,, = P, for n > ng; here we think of ZF*10 a5 the subset of Z¥*" where
the last n — ny columns are zero. Then Corollary 1.2 implies that there exists an
ny such that for any Markov basis M, for the relations among the points in P,,,
Sym(n)M,, is a Markov basis for P, for all n > nj. For the second hypersimplex,
no equals 2 and n| equals 4.
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(3) A special case of the previous consequence is the independent set theorem of
[Hillar and Sullivant 2012]. We briefly illustrate how to derive it directly from
Corollary 1.2. Let m be a natural number and let F be a family of subsets of a finite
set [m]. Let T be a subset of [m] and assume that each F' € F contains at most one
element of T'. In other words, 7 is an independent set in the hypergraph determined
by F. Fort € [m]\T let r; be a natural number. Set Y :={y, | € NT x ]_[te[m]\T[rt]}
and Z :={zpq | F € F,a e NFNT x ]_[F\T[r,]}, and let ¢ be the homomorphism
Z[Y] — Z[Z] that maps y, to ]_[Fef ZF,a|p» Where a| f is the restriction of o from
[m] to F. Then ¢ is equivariant with respect to the action of Sym(N) on the
variables induced by the diagonal action of Sym(N) on N7, and (a strong form of)
the independent set theorem boils down to the statement that ker ¢ is generated by
finitely many Sym(N)-orbits of binomials. By the condition that 7" is an independent
set, each z-variable has at most one index running through all of N. Setting § to
be Zlzro | FNT = @], we find that Y, S, the remaining zf ,-variables, with
|FNT| =1, and the map ¢ satisfy the conditions of the corollary. The conclusion
of the corollary now implies the independent set theorem.

The remainder of the paper is organized as follows: In Section 2 we reduce
the main theorem to a particular class of maps ¢ related to matching monoids of
complete bipartite graphs. For these maps, finite generation of the kernel follows
from recent results on the Birkhoff model [ Yamaguchi et al. 2014]; see Section 3,
where we also describe the image of ¢. In Section 4 we prove Noetherianity of
im ¢, still for our special ¢. As in [Cohen 1987; Hillar and Sullivant 2012], the
strategy in Section 4 is to prove that a partial order on certain monoids is a well-
partial-order. In our case, these are said to be matching monoids, and the proof that
they are well-partially ordered is quite subtle. In Section 5 we establish that a finite
Inc(N)-generating set of ker ¢ is (at least theoretically) computable. The last section
describes a simpler procedure that one can attempt in order to obtain a generating
set; at the moment, we do not know if this procedure is guaranteed to terminate.
We conclude the paper with a computational example for which termination does
occur.

2. Reduction to matching monoids

In this section we reduce the main theorem to a special case to be treated in
the next two sections. To formulate this special case, let N € N and for each
p €[N]letk, € N. First, introduce a set Y’ of variables y;,’ ; where p € [N] and
J = (Dielk,) € N1 is a kp-tuple of distinct natural numbers. The group Sym(N)
acts on Y’ by ny;u = y;’nu) where 7 (J) = (7 (ji))ief,)- This action has finitely
many orbits and satisfies the condition preceding the main theorem.
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Second, let X be a set of variables x,; ; with p € [N],[ € [k,], j € N and let
Sym(N) act on X by its action on the last index.

Proposition 2.1. Let ¢’ : R[Y'] — R[X] be the R-algebra homomorphism sending
y;J to Hle[kp] Xp.1, - Then the main theorem implies that ker ¢’ is generated by
finitely many Inc(N)-orbits of binomials, and that im ¢’ is an Inc(N)-Noetherian
ring. Conversely, if these two statements hold for all choices of N, ky, ..., ky €N,
then the main theorem holds.

Proof. The first statement is immediate — note that the pair (p, /) comprising the
first two indices of the variables x, ; ; takes on finitely many, namely ) | p kp, values.
For the second statement, consider a monomial map ¢ : R[Y] — R[Z] with
Z ={z; j | i €[k], j € N} as in the main theorem. Let N be the number of Sym(N)-
orbits on Y and let y,, p € [N] be representatives of the orbits. Set k, := ky,, for
p € [N], so that 7wy, depends only on the restriction of 7 € Sym(N) to [k,]. We
have thus determined the values of N and the k), and we let Y’, X be as above.

Let ¢ : R[Y'] — R[Y] be the R-algebra homomorphism defined by sending y/p’ 7
to y, for any w € Sym(N) satisfying 7 (/) = j;, I € [k,]. This homomorphism is
Sym(N)-equivariant. The composition ¢” := @ o : R[Y'] — R[Z] satisfies the
conditions of the main theorem. Since v is surjective, it maps any generating set
for ker ¢” onto a generating set for ker ¢; moreover, we have im ¢” = im ¢. Hence
the conclusions of the main theorem for ¢” imply those for ¢.

Next write " (yp.7) = [ Ticpa.jen z;{’}""". Observe thatd,,; j = 0 whenever j & J,
using the fact that any permutation that fixes J also fixes y,, s, and hence must also
fix ¢”(yp,s) by Sym(N)-equivariance. Now let ¢’ [:1 K[Y'] = K[X] be as above
and define p : R[X]— R[Z]by p(xp1 1) =[Tici z; ;" By construction, we have
p o (p/ — (p//‘

Now im ¢” is a quotient of im ¢’ and ker ¢” is generated by ker ¢ together with
preimages of generators of ker(po|im ), hence the conclusions of the main theorem
for ¢’ imply those for ¢”, as desired. O

In what follows, we will drop the accents on the y-variables and write Y for
the set of variables y, ;, X for the set of variables x,; ;, and ¢ for the R-algebra
homomorphism

¢ : RIY1— RIX1, yps> [] %pui- (1)
lelk,]

Monomials in the x,,; ; will be denoted x* where A € [T,y NN is an [N]-
tuple of finite-by-infinite matrices A ,. Note that ¢(y, ;) equals x4 where only the
p-th component A, of A is nonzero and in fact has all row sums equal to 1, all
column sums labeled by J equal to 1, and all other column sums equal to 0. Thus
A, can be thought of as the adjacency matrix of a matching of the maximal size &,
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in the complete bipartite graph with bipartition [k,] UN. Thus the monomials in
im ¢ form the abelian monoid generated by such matchings (with p varying). We
call a monoid like this a matching monoid. In the next section we characterize these
monomials among all monomials in the x,; ;, and find a bound on the relations
among the ¢(y,, /).

3. Relations among matchings

We retain the setting at the end of the previous section: Y is the set of variables y), ;
with p running through [N] and J € N*»! running through the [k pl-tuples of distinct
natural numbers; X is the set of variables x,; ; with p € [N],[ € [k,], j € N, and
@ is the map in (1). In this section we describe both the kernel and the image of
¢. Note that if some k), is zero, then the corresponding (single) variable y, () is
mapped by ¢ to 1. The image of ¢ does not change if we disregard those p, and
the kernel changes only in that we forget about the generators y, () — 1. Hence we
may and will assume that all k,, are strictly positive. The following lemma gives a
complete characterization of the x# in the image of ¢.

Proposition 3.1. For an [N]-tuple A € ]_[pe[N] Nk IXN the monomial x* lies in
the image of ¢ if and only if for all p € [N] the matrix A, € NN Bas all row
sums equal to a number d, € N and all column sums less than or equal to d .

We call such A good. Note that d,, is unique since all k,, are strictly positive.
We call the vector (d)) , the multidegree of A and of xA.

Remark 3.2. By replacing N with [n] for some natural number n greater than or
equal to the maximum of the k,, the proposition boils down to the statement that
for each p the lattice polytope in RI\»1*[" with defining inequalities V;;a;; > 0,
Vi> ja;=1andV; > a; <1isnormal (in the case where n = k), this is the
celebrated Birkhoff polytope). This is a not new result; in fact, this polytope satisfies
a stronger property, namely, it is compressed. This follows, for instance, from
[Sullivant 2006, Theorem 2.4] or from the main theorem of [Ohsugi and Hibi 2001];
see also [Yamaguchi et al. 2014, Section 4.2]. For completeness, we include a proof
of the proposition using elementary properties of matchings in bipartite graphs.

Proof of Proposition 3.1. Let x,, denote the vector of variables x,; ; for [ € [k,]
and j € N. By definition of ¢, the monomial x* lies in im ¢ if and only if the
monomial x,” lies in im ¢ for all p € [N]. Thus it suffices to prove that x;,\" lies
in im ¢ if and only if all row sums of A, are equal, say to d € N, and all column
sums of A, are at most d. The “only if” part is clear, since every variable y, ; is
mapped to a monomial xg where B € N%»1*N hag all row sums 1 and all column
sums at most 1. For the “if”” part we proceed by induction on d: assume that the
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Figure 1. A bipartite graph on [2]UIN and its corresponding mono-
mial x?” (top). This graph can be decomposed into matchings in
two different ways (middle and bottom). Each decomposition
represents a monomial in the preimage ¢! (x?”).

statement holds for d — 1, and consider a matrix A, with row sums d and column
sums < d, where d is at least 1. Clearly, the “if” part is true in the case d = 0.
Think of A, as the adjacency matrix of a bipartite graph I (with multiple edges)
with bipartition [k, | LN (see Figure 1). With this viewpoint in mind, we will invoke
some standard results from combinatorics, and refer to [Schrijver 2003, Chapter 16].
The first observation is that I" contains a matching that covers all vertices in [k, ].
Indeed, otherwise, by Hall’s marriage theorem, after permuting rows and columns,

A, has the block structure
A1 O i|
A, =
P [AIZ Axn

with Ay € NUXU=1 for some 7 satisfying 1 <! < k. But then the entries of Ay;
added row-wise add up to /d, and added columnwise add up to at most (/ — 1)d, a
contradiction. Hence I' contains a matching that covers all of [k,]. Next, let § € N
be the set of column indices where A, has column sum equal to the upper bound d.
We claim that I" contains a matching that covers all of S. Indeed, otherwise, again
by Hall’s theorem, after permuting rows and columns A, has the structure

A A
=[5
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with A € NU=1X for some [ with 1 <1 < |S|; here the first / columns correspond
to a subset of the original S. Now the entries of Ay added columnwise yield I/d,
while the entries of Aj; added row-wise yield at most (/ — 1)d, a contradiction.
Finally, we invoke a standard result in matching theory (see [Schrijver 2003,
Theorem 16.8]), namely that since I" contains a matching that covers all of [k ]
and a matching that covers all of S, it also contains a matching that covers both.
Let B be the adjacency matrix of this matching, so that B has all row sums 1 and
all column sums < 1, with equality at least in the columns labeled by S. Then
A/p := A, — B satisfies the induction hypothesis for d — 1, so x;‘!,’ € img. Also,
x;f = ¢(yp,7), where j, € N is the neighbor of a € [k,] in the matching given by

U . .
B. Hence, x> = x;‘f’xf € im ¢ as claimed. O

This concludes the description of the image of ¢. For the kernel, we quote the
following result.

Theorem 3.3 [ Yamaguchi et al. 2014, Theorem 2.1]. The kernel of ¢ from (1) is
generated by binomials in the y, ; of degree at most 3.

Indeed, for each fixed p, and replacing N by some [n] with n > k,, the monomial
map (1) captures precisely the generalization of the Birkhoff model studied in
[Yamaguchi et al. 2014], where each voter chooses k, among n candidates. Then
their Theorem 2.1 yields that the kernel is generated in degrees 2 and 3. Since this
holds for each n > k,, it also holds for N instead of [n]. Moreover, taking the union
over all p of sets of generators for each individual p yields a set of generators for
the kernel of ¢. A straightforward consequence of the theorem is the following.

Corollary 3.4. The kernel of ¢ from (1) is generated by finitely many Inc(N)-orbits
of binomials.

4. Noetherianity of matching monoid rings

By Corollary 3.4 and Proposition 2.1, the main theorem follows from the following
proposition.

Proposition 4.1. The ring R[x* | A €[] ,c;y; N¥PN good] is Inc(N)-Noetherian.

Let S be the ring in the proposition, and let G C [ | PpelN] Nk IxN be the set of
good (N-tuples of) matrices. The monomials of S are precisely x4, for A € G. The
monoids Sym(N) and Inc(N) act on G by permuting or shifting columns, so we
have mx4 = x™4, where the 7(j)-th column of the matrix (7 A), equals the j-th
column of A,. Let dy = (da.,), € NIV denote the multidegree of A; recall that
this means that all row sums of A, are equal to dy4,,. To prove Noetherianity we
will define a partial order < on G and prove that < is a well-partial-order. Thus we
need some basic results from order theory.
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A partial order < on a set P is a well-partial-order (or wpo) if for every infinite
sequence pi, p2, ...in P, there is some i < j such that p; < p;; see [Kruskal 1972]
for alternative characterizations. For instance, the natural numbers with the usual
total order < is a well-partial-order, and so is the componentwise partial order on
the Cartesian product of any finite number of well-partially ordered sets. Combining
these statements yields Dickson’s lemma [1913] that N¥ is well-partially ordered.
This can be seen as a special case of Higman’s lemma [1952], for a beautiful proof
of which we refer to [Nash-Williams 1963].

Lemma 4.2 (Higman’s lemma). Let (P, <) be a well-partial-order and let P* :=
U P!, the set of all finite sequences of elements of P. Define the partial order
<" on P* by (ag, ...,a;_1) =<' (bo, ..., bu_1) if and only if there exists a strictly
increasing function p : [I] — [m] such that aj < b,;) for all j € [1]. Then <" is a
well-partial-order.

Our interest in well-partial-orders stems from the following application. Consider
a commutative monoid M with an action of a (typically noncommutative) monoid
[T by means of monoid endomorphisms. We suggestively call the elements of M
monomials. Assume that we have a I1-compatible monomial order < on M, i.e., a
well-order that satisfiesa <b =ac <bcanda <b=ma <nbforalla,b,ceM
and 7 € I1. Then it follows that the divisibility relation | defined by a|b if there
exists a c € M with ac = b is a partial order, and also that a < wa for all a € M.
Define a third partial order, the I1-divisibility order, < on M by a < b if there exists
am €Il and a c € M such that cma = b. A straightforward computation shows that
=< is, indeed, a partial order — antisymmetry follows using a < wa.

Proposition 4.3. If < is a well-partial-order, then for any Noetherian ring R, the
R-algebra R[M] is T1-Noetherian.

Proof. This statement was proved in [Hillar and Sullivant 2012] for the case where
R is a field. The more general case can be proved with the same argument by
incorporating work done in [Aschenbrenner and Hillar 2007]. U

Note that the monoid {x? | A € G} that we are considering here can be given a
monomial order which respects the Inc(N)-action. For example, take the lexico-
graphic order, where the variables x, ; ; are ordered by their indices: x, ; j <xp i jr
ifandonlyif p<p;orp=p'and j < j0orp=p’,j=j,andi <i

The Inc(N)-divisibility order gives a partial order < on the set G of good (N-
tuples of) matrices by A < B if and only if there is a monomial x¢ € S and
7 € Inc(N) such that x¢7(x4) = x?, or equivalently there is = € Inc(N) such that
B —m A € G. Note that A < B not only implies there is some 7 € Inc(N) such
that all A,; ; < B, »(j), but additionally that all (N-tuples of) column sums of
B — A are at most dg —ds € NINI. This prevents us from applying Higman’s
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lemma directly to (G, <). To encode this condition on column sums, for any A € G,
let A e I1 PpelN] f\i[kp“]XN be the N-tuple of matrices suc~h that for all p € [N], the
first k,, rows of A, are equal to A, and the last row of A, is such that all column
sums equal dy p:

~ {Ap,iﬁj for i <k,,
pij = kp—1 .
dA,P_leo Ap,l,j for i —kp.

We let G be the set of N-tuples of matrices of the form A with A € G. It is precisely
the set of N-tuples of matrices of the form A € [] perny NN with the property
that there exists a d4 € NIV such that for each p € [N] the first k, row sums of A,
are equal to du , and all column sums of A, are equal to d4 ,. Since A € G has
only finitely many N-tuples of nonzero columns, A will have all but finitely many
N-tuples of columns equal to ((0, ...,0, dA’p)T)pE[N]. Such N-tuples of columns
will be called rrivial (of degree d). The N-tuple of j-th columns of A will be
denoted A.. j- We define the action of Inc(N) on G as (A) = 7 (A). Note that for
any j ¢ im(w), the column (7 A).. j 1s trivial of degree d,, rather than uniformly
Zero.

Proposition 4.4. For A, B € G, A < B if and only if there is w € Inc(N) such that
wA < B entrywise.

Proof. The condition that (nﬁ)p,i,j < l:}p,,"j for all p € [N], all i < k, and all
J € N is equivalent to the condition that B — A is nonnegative. Using the fact that
kp—1
Bpi,.j— @A) pi,.j = (dpp—dap)— Z (Bp —mAp)ij»
i=0

the condition that B, ky.j— (7 A, k,.j = 0forall pe[N]andall j € Nisequivalent
to the condition that every N-tuple of column sums of B — 7 A is less than or equal
to dp —ds. Therefore tA < Bifandonlyif B—7A € G. O

Example 4.5. Let A and B be the following good matrices in N21*N:

30000 --- 31000 ---
A_[01110---]’ B__02110.--]

Note that 7 A < B when r is the identity, however A A B. Consider

~ [30000 - 31000 -
A=|l01110--- |, B=|02110"- ,
02223 ... 11334

and note that there is no = € Inc(N) such that 7 A < B.



1868 Jan Draisma, Rob Eggermont, Robert Krone and Anton Leykin

We will work with finite truncations of N-tuples of matrices in G. Let H be
the set of N-tuples of matrices A € | ;= [] pelN] NIk +1IXIE guch that there exists
d 4 € NIV1 such that for all p, all column sums of A, are equal to dy4 , and the first k,
row sums are at most d s p; we call d the multidegree of A. Note that the condition
on row sums is relaxed, which will allow us to freely remove columns from matrices
while still remaining in the set H. For A € H the number of columns of A is called
the length of A and denoted £4. We give H the partial order < defined as follows.
For A, B € H, A < B if and only if there is a strictly increasing map p : [£4] — [£p]
such that pA < B. Just as in G, here pA is defined by (pA).; = A.,-1(;) for
J €im(p), and (pA)..; trivial (of degree d) for j € [£]\ im(p). For an N-tuple
of matrices A and a set J C N, let A..; denote the N-tuple of matrices obtained
from A by taking only the columns A..; with j € J.

Some care must be taken in the definition of H since we allow matrices with
no columns. In all other cases, the degree of A € H is uniquely determined by its
entries. However for the length O case the degree is arbitrary, so we will consider
H as having a distinct length 0 element Z¢ with degree d for each d € NIV1, and
we define Z¢ < A if and only if d < d4. Additionally, define A.g = Zda,

Definition 4.6. For A € H, the N-tuple of j-th columns of A is bad if for some
pE[N], wehave A, i, j <da p/2.1f Ap g, ; <da p/2, we will call j a bad index
of A (with respect to p). Let H, denote the set of N-tuples of matrices in H with
exactly ¢ bad indices.

We will use induction on ¢ to show that (H;, <) is well-partially ordered for
all + € N. This will in turn be used to prove that (H, <) and then (G, <) are
well-partially ordered. First we prove the base case:

Proposition 4.7. (Hy, <) is well-partially ordered.

Proof. Let AV A® . be any infinite sequence in Hy. We will show that there is
an r and an s, with 7 < s, such that A < A®),

Fix p € [N]. There are now two possibilities: either the degrees of the elements
of the sequence A(pl), Ag), ... are bounded by some d), € N, or they are not. In the
former case, it follows that the number of nontrivial columns in any Ag) is bounded
by d,k,. Then there is a subsequence B;,l), B;,z), ...of Af,,l), Ag), ... such that
every element has the same degree and same number of nontrivial columns. In

the latter case, AE,I), Af,,z), ... has a subsequence with strictly increasing degree and
moreover a subsequence Bél), B,(gz), ... with the property that dgs+1 , > 2dge ,
for all s € N.

In either case we replace AV, A@ . by BV B@ . . without loss of gen-
erality. We repeat this procedure for all p € [N], and we find that AV, A@
contains a subsequence BW B@  such that for all p € [N], one of the following
two statements holds.
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1: Both dgw , and the number of nontrivial columns in B), are constant.
2: We have dgu+n , > 2dgo , for all 7.

It now suffices to show that there are r < s such that B < B®). Define the
partial order = on Hy by A C B if and only if there exists strictly increasing
p : [€a]l — [£p] such that A..; < B..,(; for all j € [£4]. By Higman’s lemma
(Lemma 4.2), C is a wpo. This means that there exist » < s such that B") = B®),
Fix such a pair r < s. We will show that B") < B®),

Let p:[£5] — [€pw] be a strictly increasing map that witnesses BMEB® . We
claim that it also witnesses B") < B®). For this, we have to show that pB") < B,
By the properties of =, we already have (o B"). () = B p( ; , which is to say that
it suffices to show that for all j ¢ im(p), we have dg¢) < (Bp k J),,E[N]

Let p € [N]. Suppose we are in the case that both dgo and the number of
nontrivial columns in B, are constant. Since o must map nontrivial columns of
BY” to nontrivial columns of B, we conclude that if j ¢ im(p), then the j-th
column of BI(,S) is trivial, and hence (B;7 3( j) =dpw ,. But the latter equals dpw) .
so certainly dg» , < (B[(:i )

Alternatively, suppose we have dga+) , > 2dgo p, for all . Since B},S) has no
bad columns, we have

(s)
Bp kp,j —

—dB(s) > dB(’),p
This is exactly what we wanted to show.

So in both cases, we find that dBm < B[J kp.j for all j ¢ im(p). This is true
for all p, so we have dgw) < (Bp k. pEIN]- We conclude that B < B® as we

wanted to show. (]
Proposition 4.8. (H;, <) is well-partially ordered for all t € N.

Proof. The base case, t = 0, is given by Proposition 4.7. For ¢ > 0, assume by
induction that (H;_, <) is well-partially ordered. For any A € H,, let j4 be the
largest bad index of A. Then A can be decomposed into three parts: the N-tuple
of matrices of all N-tuples of columns before j4, A..;, itself, and the N-tuple of
matrices of all N-tuples of columns after j4. This decomposition is represented by
the map
6:H;, > H;_1 x 1_[ N1 Hy
PElN]

A (Ao, ja—11s Ajins Avfjatl, o ta—1})-

Let the partial order = on H;—1 x [ ¢y, N> +11 5 Hy be the product order of the
wpos (H;_1, <), (NIFHI <y and (Ho, <). Note that the product order of any finite
number of wpos is also a wpo. Suppose for some A, B € H; that §(A) E §(B). This
implies that A..;, < B..;, and that there exist strictly increasing maps p and o such
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A Ao,y A A1)
p o
TA PA 0.1 A A G0
IA IA IA
B B,{o,.,.ﬁj,,—l} B, Bw{jﬁlwln’l}

Figure 2. §(A) C §(B) implies A < B.

that ,O(A..[jA]) < B"[jB] and O’(A..{jA_H ,,,,, eA_1}) < B--{jB—H ,,,,, 2p—1}- We combine
these into a single strictly increasing map 7 : [£4] — [£p] defined by

o) for 0 <j < ja,
t(j)=JB for j = ja,
o(j—ja—D+jp+1 for ja<j<{la,
illustrated in Figure 2. Then TA < B so A < B. Since C is a wpo, (H,, <) is also
a wpo. ([

Proposition 4.9. (H, <) is well-partially ordered.

Proof. For any A € H, if j is a bad index of A, then for some p € [N], we have
da,p/2 > Zie[kp] A, i ;. Letting J, C N be the set of bad indices of A with respect
to p and let J C N be the union of the J,. Then

|J| <ZZA,,”<ZZAP,,<de,

jedpielky] ielkp] jeN

with the last inequality due to the row sum condition on A ,. Therefore |J,| <2k, —1,
and hence |J| <22pE[N] —N.

Let AV, A®  be any infinite sequence in H. Since the numbers of bad
N-tuples of columns of elements of H are bounded by 2 > perny kp — N there exists
a subsequence which is contained in H, for some 0 <t <2 pelN] k, — N. By
Proposition 4.8 there is » < s with A" < A®), O

Proposition 4.10. (G, <) is well-partially ordered.

Proof. Let AV, A® . be any infinite sequence in G. Each A" has some j, > 0
such that all N-tuples of columns A( are zero for m > j,. Consider the sequence
A.(_z[)jz], . in H obtained by truncating each A to the first j, N- -tuples of
columns. By Proposition 4.9 there is some r < s and p : [j.] — [Jjs] such that
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pfiff[)j.r] < A~.(_‘Y[)jA]. Note that this implies d4» < d . Extend p to some 7 € Inc(N)
so then
(TAD). ;= pAY, ) < A,

The remaining N-tuples of columns of 7 A" and A are trivial, so TA®) < A®)
follows from the fact that d s, < d 4. Therefore A”) < A®) by Proposition 4.4. [J

Now we can apply Proposition 4.3 to the monoid {x* | A € G} which proves
that the ring R [x4 | A € G] is Inc(N)-Noetherian. This concludes the proof of
Proposition 4.1.

5. Buchberger’s algorithm for matching monoid algebras

Assume the general setting of Proposition 4.3: M is a monoid with IT-action and I1-
compatible monomial order <. For a polynomial f and an ideal I in K[M], we can
define Im( f), Ic(f), in(Z), division with remainder, and the concept of equivariant
Grobner basis from [Brouwer and Draisma 2011]; all relative to the monomial
order <. We now derive a version of Buchberger’s algorithm for computing such a
Grobner basis, under an additional assumption. For a, b € M we define the set of
least common multiples

lem(a, b) ={l € M : a|l, b|l and (a|l’, b|l',I'll = I =1)}.

We require the following variant of conditions EGB3 and EGB4 from [Brouwer
and Draisma 2011]:

EGB34. For all f, g € K[M], the set of triples in M x I1f x I[1g defined
by
Tig= {(l’, . g) | flenlf, g ellg, ' elem(m(f’), lm(g’))},

1s a union of a finite number of IT-orbits:

Tre =0 fig). ielrl.

In particular, EGB34 implies that for all a, b € M and & € I1, we have & lem(a, b) C
Icm(ra, wb). (This is what condition EGB3 of [loc. cit.] looks like when least
common multiples are not unique.)

If EGB34 is fulfilled, then there is a unique inclusion-minimal finite set of orbit
generators as above, which we denote

Oﬁg = {(li’ fiv gl) | i € [I"]}

Indeed, suppose that O and O’ are both inclusion-minimal sets of orbit generators
for Ty .. For any triple t € O, there are t' € O’, w € IT such that 7t = ¢, and
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similarly " € O, T € I1 such that t¢” =¢'. Now t = 7 7t” and since O is minimal,
t =1t”. But since IT is compatible with a monomial order, 7 t¢” = t” implies that
also the intermediate expression ¢’ = 7¢” equals t”. Hence O € O’ and equality
holds by minimality of O’.

Definition 5.1. For monic f, g € K[M] define the set of S-polynomials to be
Sre=1{af —bg' | (', f',8) € Oy4; a,beM; and alm(f") =blm(g) =1'}.

Furthermore, define I1-reduction of a polynomial f with respectto aset G € K[M]
as follows: while there exist g € G and & € I1 with 7 Im(g)| Im(f), replace f by

le(f) Im(f)

fr=r- lc(g)m Im(g)

9

and when no such g and 7 exist, return the remainder f’.

One can generalize Grobner theory to our equivariant setting for a monoid algebra
satisfying EGB34. In particular, Buchberger’s criterion holds, and the following
procedure produces an equivariant Grobner basis if it terminates.

Algorithm 5.2. G = BUCHBERGER(F)

Require: F is a finite set of monic elements in K[M], the algebra of a monoid M
equipped with a IT-action, satisfying the assumptions above and the condition
EGB34.

Ensure: G is an equivariant Grobner basis of (F).

G <« F
S<U 1.geG St.g{in particular, compute O, needed in Definition 5.1}
while S # @ do
pick f €S
S < S\{f}
h < the I-reduction of f with respect to G
if 1 # 0 then
G <~ GU{h}
S« SuU (UgeG Sg’h)
10:  end if
11: end while

R A Al

This algorithm has been implemented for the particular case where K[M] is a
polynomial ring and IT = Inc(N) (i.e., the algorithm described in [Brouwer and
Draisma 2011]) in the package EquivariantGB [Hillar et al. 2013] for the computer
algebra system Macaulay? [Grayson and Stillman 2002]. When the algebra K [M ]
is [1T-Noetherian, termination of Algorithm 5.2 is guaranteed, but in general we
cannot make this claim.
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We now turn our attention to the task of computing a finite Inc(N)-generating
set of binomials of a general toric map as in the main theorem. By the proof of
Proposition 2.1 we may assume that Y is as in (1), i.e., it consists of variables
¥p,s Where p runs through [N] and J runs through all k,-tuples of distinct natural
numbers. Section 2 then leads to the following analysis of this task.

Problem 5.3. Fix the names of algebras and maps in the following diagram:
RIY1% RIX1 S RIZ).

Here ¢ is the map defined by (1), whose image is the R-algebra spanned by the
matching monoid, and v is any Sym(N)-equivariant monomial map from R[X] to
Rlzij |i € [k], j € N]. For ker(y o ¢), how does one compute

(a) a finite set of generators up to Inc(N)-symmetry?

(b) a finite Inc(N)-Grobner basis with respect to a given Inc(N)-compatible mono-
mial order on K[Y]?

The algorithm we are about to construct solves Problem 5.3(a); indeed, we do
not know whether a finite Inc(N)-Grobner basis as in part (b) exists! Our algorithm
relies on the fact that we may replace R[X] above by the matching monoid algebra
img = R[x* | A good], so as to get the sequence

R[Y]% RIx" | A good] % R[Z]. )

Most of our computations will take place in the ring R[x* | A good][Z], which is
itself a matching monoid with N replaced by N +k and k, =1 for p € [N +k]\[N].
This monoid is Grobner friendly by the following proposition.

Proposition 5.4. Let M be a submonoid of NWI*N that is generated by the Sym(N)-

orbits of a finite number of matrices. For Il = Inc(N), the monoid algebra KM ]
satisfies EGB34.

Proof. Any such K[M] is the image of some map ¢ as in the main theorem (with
R = K), and so is Inc(N)-Noetherian. Similarly K[M3] = K[M]®3 is Inc(N)-
Noetherian. For any a, b € M, the monomial ideal (7, ,) € K[M 3] is Inc(N)-stable.
Let L € T, be a minimal finite Inc(N)-generating set of (7 p).

For any (I, wa, ob) € T, , there is some (m, a’,b’) € L and t € Inc(N) such
that t(m, a’, b')|(l, wa, ob). Itis clear that ta’ = a and ©b' = o'b. Since a’ and b’
divide m, wa and o b must divide Tm, and in turn tm divides /. But/ € lem(;ra, ob)
by assumption, so [ = tm. Therefore (I, wa, ob) = t(m, da’, b"). This shows that
T,.» is the union of the Inc(N)-orbits of the elements of L, and then L = O, 5.

To establish the same fact for a general pair f, g € K[M] we first determine
Ogu,p, Where a = Im(f) and b = Im(g). For any (I, f,0g) € Ty, the triple
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(I,ma,ob) € T, p is in the orbit of some (m, a’, b’) € O, . This implies a’ = ta
for some t € Inc(N), but 7 is not unique. Define

Ago={teInc(N) |a'=1a; andn €imt forall n > £, }.

Here ¢, denotes the length of a’ as in Section 4, the maximum index value among
all nonzero columns of a’. Note that A, . is a finite set.

Since ma is in the orbit of a’, w factors through some t € A, . So (I, nf, 08) =
(ym,at f, Brag) for some y, a, B € Inc(N), 71 € A, o and 72 € Ap . Therefore

Trec | MmxIf xIg
(m.f".g)eUf

where
Urg = U {m, 71 f, 128) | 11 € Agars T2 € Ap i}

(m,a’ ,b')eT, )

For each (m, f’, g’), the set [Tm x T1f’ x I1g’ is the union of a finite number
of Inc(N)-orbits. To prove this one can follow closely the proof of [Brouwer
and Draisma 2011] Lemma 3.4. From the finite set of generators we select only
those (ym, af’, Bg’) with ym € lem(af’, Bg’), and call this set Oy, s 4. Then
Of.g =Um, s .¢rev;, Om.f.g) is as desired. O

Algorithm 5.5. T = TORICIDEAL(yp)

Require: ¢ : R[Y] — R[Z] is a monomial map as in the main theorem.
Ensure: T is a finite set of generators of ker ¢ as Inc(N)-stable ideal.

Replace Y by the set of variables {y, s}, s as in the proof of Proposition 2.1.
Decompose ¢ with the composition of two maps ¢ and ¥ as in diagram (2).
Consider the ideal I, C R[xA | A good][Z] generated by the finite set F' of
binomials ¥ (x4) — x4, where A € [] pelN] N 1XN is go0d of multidegree

de{(1,0,...,0),...,(0,0,0,..., )} c NV

and <-minimal; the Inc(N)-orbits of such monomials x4 generate R[x* |
A good].

4:  Run Algorithm 5.2 for the input F' with respect to a monomial order that
eliminates the variables Z. Since R[x* | A good][Z] is the monoid algebra of a
monoid where Inc(N)-divisibility is a wpo, the algorithm terminates. Standard
elimination theory implies that G’ = G N R[x* | A good] generates

Iy N RIx* | A good] =kery Nim .

5. Let T consist of preimages of elements in G’ (one per element) and a finite
number of binomials whose orbits generate ker ¢ (see Corollary 3.4).
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Remark 5.6. We can execute Algorithm 5.5 for any coefficient ring R (not neces-
sarily a field), since all polynomials that appear in the computation are binomials
with coefficients £1.

In the following two remarks we comment on two major subroutines not spelled
out in the sketch of the algorithm above.

Remark 5.7. Unlike in the usual Buchberger algorithm, the task of computing
S-polynomials in Algorithm 5.2 is far from being trivial. To accomplish that, one
needs to compute the set O ,, which can be done following the lines of the proof
of Proposition 5.4. While this procedure is effective, by no means it is efficient.

Remark 5.8. In the last step of Algorithm 5.5 a preimage ¢ ~!(g) of an element
g € G can be computed by reducing the problem to one of computing maximal
matchings of bipartite graphs, a well studied problem in combinatorics. Any
monomial x4 € im ¢ can be considered as a collection of N bipartite graphs with
adjacency matrices Ao, ..., Ay_1 as in Section 3, where each A, has bipartition
[k,]UN. Fixing A, let S C N be the set of vertices in the second partition with
degree dj, (i.e., the indices of the columns of A, with column sum equal to d ))-
A matching B covering [k,] and S can be computed using the Hungarian method or
other algorithms for computing weighted bipartite matchings (see [Schrijver 2003,
Chapter 17] for more details). The matching B directly corresponds to a variable
Yp,g €Y with ¢(y, ) = xB. Since B covers S, it follows that A, — B is agood
matrix. Therefore x4/ @(yp,s) is also in im ¢ and can be decomposed further by
repeating the process.

Algorithm 5.5 yields a solution to Problem 5.3(a) as an important theoretical
consequence: a finite Inc(N)-generating set of the toric ideals in the main theorem
is computable. However, in view of Remark 5.7 and a more elementary procedure
(albeit with no termination guarantee) given in the following section that solves a
harder Problem 5.3(b) for a small example, we postpone a practical implementation
of Algorithm 5.5.

6. An example, and a more naive implementation

A more elementary approach to Problem 5.3 —indeed, to the hardest variant—is,
for a given order on [Y, Z], to directly apply the algorithm of [Brouwer and Draisma
2011] to the graph of the entire map i o ¢, rather than computing generators for the
kernels of ¢ and ¢ separately as in Algorithm 5.5. The advantages of this approach
are that it is simpler to implement, and that it produces not just a generating set,
but an Inc(N)-equivariant Grobner basis. The disadvantage is that we do not know
whether the procedure is guaranteed to terminate. We now set up a version of the
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usual equivariant Buchberger algorithm that is particularly easy to implement, and
conclude with one nontrivial computational example.

For convenience let w = ¥ o ¢. Let I, C R[Y, Z] be the ideal corresponding to
the graph of w, so I, is generated by the binomials of the form y — w(y) for each
variable y € Y. Choosing a representative y, = Yp,(0,...k,—1) of each Sym(N)-orbit
in Y, the ideal is Inc(N)-generated by the finite set

F:={oy,—w(oy,) | p€[N], o €Sym([k,])}.

Choose an Inc(N)-compatible monomial order < on R[Y, Z] that eliminates Z.
Then apply to F' the equivariant Grobner basis algorithm from [loc. cit.] (which is
essentially Algorithm 5.2). Note that since we are working in a polynomial ring
R[Y, Z], rather than a more complicated monoid ring R[X | X good][Z], every
pair of monomials has only one lcm, which is straightforward to compute. If
the procedure terminates with output G, then G N R[Y] is an Inc(N)-equivariant
Grobner basis of 1, N R[Y] = ker w.

This procedure can be adapted to make use of existing, fast implementations of
traditional Grobner basis algorithms. For each n € N truncate to the first #n index
values by defining

Y, i={yps | J €nl*},
Z,:={zij€Z|jelnl]},
Fp={y—w®)|yet,}

Let I, be the ideal in R[Y,, Z,] generated by F},. Each I, is Sym([n])-stable and
UneN I, = 1,. Let Inc(m, n) be the set of all strictly increasing maps [m] — [n],
and equip K[Y,, Z,] with the restriction of the Inc(N)-monomial order <.
Algorithm 6.1. G = TRUNCATEDBUCHBERGER (w)

Require: ¢ : R[Y] — R[Z] is a monomial map in the main theorem.
Ensure: G is an Inc(N)-equivariant Grobner basis of ker ¢.

n <— MmMaxXpe[N] kp
while true do
Fp<—{y—ow()|yeY}
G, < GROBNERBASIS(F;)
m < (n+1)/2]
if m > max ¢y kp and G, = Inc(m, n)G,, then
G <~ G,NR[Y]
return G
end if
n<n+1
end while
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Here GROBNERBASIS denotes any algorithm to compute a traditional Grobner
basis. If TRUNCATEDBUCHBERGER (w) terminates, this implies that there is some
m > maxpe(n] kp such that Inc(m, n)G,, satisfies Buchberger’s criterion for some
n >2m — 1. Then G,, satisfies the equivariant Buchberger criterion, so G, is an
equivariant Grobner basis. Because we require that m > max ¢y kp, the set G,
generates I, up to Inc(N)-action. Finally G = G,,, N R[Y] is an equivariant Grébner
basis for ker w.

Example 6.2. Set Y := {y;, ;, | jo,j1 €N, jo # ji} and Z :={z; | i € N}, each
consisting of a single Sym(N)-orbit, and define the monomial map w: R[Y]— R[Z]
by

W Yjo,ji = Z%ozjl‘

Whether ker w is finitely generated was posed as an open question in [Hillar and
Martin del Campo 2013] (Remark 1.6). This is answered in the affirmative by
Theorem 1.1, but by applying Algorithm 6.1 we have also explicitly computed an
Inc(N)-equivariant Grobner basis. The Grobner basis computations were carried out
using the software package 4¢i2 [Hemmecke et al. 2008], which features algorithms
specifically designed for computing Grobner bases of toric ideals. The monomial
order on Y is lexicographic, where variables are ordered by y; ; < y; js if i <i’, or
i=i"and j < j'

The result displayed in Table 1 consists of 51 generators with indices from
{0, 1, 2, 3,4, 5} and degrees up to 5. Note that a minimal generating set resulting
from a study of the family of equivariant toric maps of the form

i 2l i jeNi# ],

for fixed a, b € N in [Kahle et al. 2014] is much smaller.

Remark 6.3. As pointed out in the Introduction, the technique laid out in this
article does not settle the question whether the finite generatedness of ker ¢ in the
main theorem persists when Inc(N) acts with finitely many orbits on Y and the
monomial map ¢ is required to be merely Inc(N)-equivariant (though we do know
that im ¢ needs not be Inc(N)-Noetherian in this case).

However, a naive elimination procedure terminates, for instance, for the Inc(N)-
analogue of Example 6.2, i.e., for the same map, but with the smaller set of variables

Y = {yj,.ji | jo. 1 €N, jo> j1}.

A computation that can be carried out with EquivariantGB [Hillar et al. 2013]
produces a finite number of generators of the kernel:

{¥3,152.0 — ¥3.0¥2.15 ygz,zyl,o — ¥3,1)3,0Y2,1, Y4.2Y32Y1,0 — Y4,0Y3,1Y2,1}-



1878 Jan Draisma, Rob Eggermont, Robert Krone and Anton Leykin

< )’1,2)’&1 - ylz,oyo,z > <¥1,3Y0,2 — Y1,2Y0,3 >

< yz,oyg,l - yl,oyé,z > <Y¥2,0)1,0 — Y1,2)0,2 >
y2,1y§’2 — y%yoyo,l ¥Y2,1¥0,1 — ¥1,2)0,2
< ¥2,1¥1,00,2 = ¥2,01,2Y0,1 > Y2,3¥0.1 — ¥2,150,3
Y2.1Y7 0= YiaYol Y2,3Y1,0 ~ Y2,051,3
Y3 1502 = Y3 oV1.2 Y3,1¥2,0 = ¥3,002,1
Y3 1V1.0 = Y2.0)1 2 ¥3.2Y0,1 = ¥3,1)0,2
Y2,1¥1,00,3 = ¥2,0Y1,3)0,1 Y3.2Y1.0 = ¥3.051.2

2 2
¥2.1Y0,3 = Y3 01,3

Y2,3¥1,2Y0,2 — Y§,OY1,3

y3’0y1’2yg’2 - yz,oy12,3yo,3 Y2.191.2Y0.3Y0.2 = V3 0Y1.30.1
y3,02y1’2 20003 Y3.1Y2,31.3Y0.4 — V3 0Y2.1)1.4
Y3072, 7 ¥2372.001.3 V3,195 3Y0.4 = V3 g¥2.4Y2.1
Y3.1Y02 7 Y2.150,3 ¥3,2Y2,3¥1,3)0,4 — )’32703’2,4)’1,2
Y3,151,0)0,2 7 Y3,0)1,2)0,1 Y4,1Y2,3¥1,4)0,4 — yio)’z,l)’m
Y3.171.20.2 = J2,11.3)0.3 YA 1Y3,2Y1.4Y0.4 = V3 03,112

2
- 2
V310233037 93,0721 V4,1Y3,4Y2,4Y0,5 = Y1 0Y3,1)2,5
Y3102 = Y30)1,2

2
¥3,2¥1,3Y0,3 — Y3 9Y1,2 q
’ egree 5
V2292091 — Y30923312

2 .2 2 .2
V3,2Y2,0)1,4 = ¥3,0Y2,4)1,2 yévlyl,zym - y%,0y1’3yo,1
¥3,2Y2,150,3 — ¥3,1¥2,30,2 y2,1y1’22y0,4y0,3 - y2,02y1742y173y071
¥3,2¥2,1Y0,4 — ¥3,1¥2,4Y0,2 ¥3,2Y5 3Y1,4Y0,4 = V3 0¥2,4Y1.2

V4,0¥2,3Y1,3 — ¥3,0Y2,4Y1,4 Y3,2)’22,3YL4)’0,5 - y§,0y2,5y2,4y1,2
Y4,1¥2,3Y0,3 — ¥3,1Y2,4)0.4 y4,1y2,3y12,4y0,5 - yioyz,1y1,5y1,3
¥Y4,2¥1,3Y0,3 — ¥3,2¥1,4Y0,4 y4,1y3,2y12,4y0,5 - yio}’S,lyl,Syl,Z
Y4,2¥2,0¥1,3 — Y4,0¥2,3¥1,2 )’4,3)’2,0)’3,2)’3,1 - )’4,2)’4,1)’%4)’0,3
Y4,2¥2,1Y0,3 — Y4,1Y2,3)0,2 y5,1y4,2y§5y0,3 - y52,0y4,3y3,2y3,1

Table 1. An Inc(N)-equivariant Grobner basis for the kernel of @
in Example 6.2. The five highlighted binomials form a Sym(N)-
equivariant Markov basis according to [Kahle et al. 2014].
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On differential modules associated to
de Rham representations in the
imperfect residue field case

Shun Ohkubo

Let K be a complete discrete valuation field of mixed characteristic (0, p) with
possibly imperfect residue fields, and let G the absolute Galois group of K. In
the first part of this paper, we prove that Scholl’s generalization of fields of norms
over K is compatible with Abbes—Saito’s ramification theory. In the second
part, we construct a functor Ngg that associates a de Rham representation V to a
(¢, V)-module in the sense of Kedlaya. Finally, we prove a compatibility between
Kedlaya’s differential Swan conductor of Ngg (V') and the Swan conductor of V,
which generalizes Marmora’s formula.
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Hodge theory relates the singular cohomology of complex projective manifolds X
to the spaces of harmonic forms on X. Its p-adic analogue, p-adic Hodge theory,
enables us to compare the p-adic €tale cohomology H/' (X 9, Q) of proper smooth
varieties X over the p-adic field @, with the de Rham cohomology of X. Precisely
speaking, the natural action of the absolute Galois group Gg, of Q, on the p-adic
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which is the ring of p-adic periods introduced by Jean-Marc Fontaine. If X has
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semistable reduction, then one can obtain a more precise comparison theorem
between the p-adic étale cohomology of X and the log-cristalline cohomology of
the special fiber of X. Thus, we have a satisfactory p-adic étale cohomology theory
on proper smooth varieties over Q.

A p-adic representation V of Gg, is a finite dimensional (2,-vector space with
a continuous linear G@p-action. Fontaine [1994] defined the notions of de Rham,
crystalline, and semistable representations, which form important subcategories of
the category of p-adic representations of Gg,. Then, he associated linear algebraic
objects such as filtered vector spaces with extra structures to objects in each category.
Fontaine’s classification is compatible with geometry in the following sense: for a
proper smooth variety X over Q,, the p-adic representation H/ (X 9, Qp) of Gq,
is only de Rham in general. However, if X has a semistable reduction (resp. good
reduction), then H{ (X@p, Q,) is semistable (resp. crystalline).

There also exists a more analytic description of general p-adic representations.
Let B@P be the fraction field of the p-adic completion of Z,[[¢]][1/¢]. We define
the action of T'g, := Ga,(u,~)/@, on Bo, by y () = (1 +1)*®& — 1, where x :
I'q, — Z,, is the cyclotomic character. We also define a Frobenius lift ¢ on Bg,
by ¢(t) = (1+1)? — 1. An étale (¢, I'g ,)-module over Bg, is a finite dimensional
Bq,-vector space M endowed with compatible actions of ¢ and I'g,such that the
Frobenius slopes of M are all zero. Using Fontaine—Wintenberger’s isomorphism

Ga, (<) = GF, @)

of Galois groups, Fontaine [1990] proved an equivalence between the category of
p-adic representations and the category of étale (¢, I'g,)-modules over Bg,. We
consider the overconvergent subring

B(Bp = { Zant" €Bq,; a,€Qp, |a,|p" — 0 for some p € (0, 1] and n — —oo}
neZ

of Bg,. Frédéric Cherbonnier and Pierre Colmez [1998] proved that the category

of étale (¢, I'g,)-modules over Bg, is equivalent to the category of étale (¢, I'g,)-

modules over BIJP' As a consequence of Cherbonnier—Colmez’ theorem, p-adic

analysis over the Robba ring

Raq, = U { Zant”; an € Qp, lay|p" — 0 forall p € (p’, 1] and n — :i:oo}

0'€(0,1)
comes into play. Actually, via the above equivalences, Laurent Berger [2002]
associated a p-adic differential equation Ngr (V') over Rq, to a de Rham represen-
tation V. By using this functor Ngr and the quasi-unipotence of p-adic differential
equations due to Yves André, Zoghman Mebkhout and Kiran Kedlaya, Berger
proved Fontaine’s p-adic local monodromy conjecture, which is a p-adic analogue
of Grothendieck’s /-adic monodromy theorem. We note that in the above theory,

neZ
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Gq, is usually replaced by G, where K is a complete valuation field of mixed
characteristic (0, p) with a perfect residue field.

Recently, based on earlier work of Gerd Faltings and Osamu Hyodo, Fabrizio
Andreatta and Olivier Brinon [2008] started to generalize Fontaine’s theory in the
relative situation: instead of complete discrete valuation rings with perfect residue
fields, they work over higher dimensional ground rings R such as the generic fiber of
the Tate algebra Z ,{T7, Tl_l, o Ty, Td_1 }. In this paper, we work in the most basic
case of Andreatta—Brinon’s setup. That is, our ground ring K is still a complete
valuation field, but it has a nonperfect residue field kg such that pd = kg : kf;] < 0.
Such a complete discrete valuation field arises as the completion of a ground ring
along the special fiber in Andreatta—Brinon’s setup.

Even in our situation, a generalization of Fontaine’s theory could be useful as
in the proof of Kato’s divisibility result [2004] in the Iwasawa main conjecture
for GL,. Using compatible systems of K, of affine modular curves Y (p" N) for
varying n, Kato defines (p-adic) Euler systems in Galois cohomology groups over
Q, whose coefficients are related to cusp forms. A key ingredient in this paper
is that Kato’s Euler systems are related with some products of Eisenstein series
via Bloch—Kato’s dual exponential map exp*. In the proof of this fact, p-adic
Hodge theory for “the field of g-expansions” KC plays an important role, where
K is the fraction field of the p-adic completion of Z p[gpN][[ql/ N ]][q_l]. Roughly
speaking, Tate’s universal elliptic curve together with its torsion points induces a
morphism Spec(K(¢pn, g?™")) = Y(p"N). Using a generalization of Fontaine’s
ring B4r over K, Kato defines a dual exponential map for Galois cohomology
groups over K(¢pn, g?™"), and proves its compatibility with exp*. Then, the image
of Kato’s Euler system under exp* is calculated by using Kato’s generalized explicit
reciprocity law for p-divisible groups over K(¢,n, g” .

To explain our results, we recall Anthony Scholl’s theory [2006] of field of
norms, which is a generalization of Fontaine—Wintenberger’s theorem when kg
is nonperfect. In the rest of the introduction we restrict ourselves for simplicity
to the “Kummer tower case”: we choose a lift {¢;}1<j<4 of a p-basis of kg and
define a tower & := {K,, },~0 of fields by K, := K (ppn, tlp_n, - tj_n) forn > 0,
and set K, := |, K,. Then, the Frobenius on Ok, ., /pOk,,, factors through
Ok,/pOk, — Ok,.,/pOk,.,, and the limit X}; :=1lim, Ok, /pOk, is a complete
valuation ring of characteristic p. Here, we denote the integer ring of a valuation
field F by Op. Let Xz be the fraction field of X;g. Then, Scholl proved that a
similar limit procedure gives an equivalence of categories FEt Ko = FEtxﬁ, where
FEt, denotes the category of finite étale algebras over A. In particular, we obtain
an isomorphism of Galois groups

T: GKoo = GXR-
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The Galois group of a complete valuation field F is canonically endowed with
nonlog and log ramification filtrations in the sense of [Abbes and Saito 2002]. By
using the ramification filtrations, one can define Artin and Swan conductors of
Galois representations, which are important arithmetic invariants. It is natural to
ask that Scholl’s isomorphism 7 is compatible with ramification theory. The first
goal of this paper is to answer this question in the following form:

Theorem 0.0.1 (Theorem 3.5.3). Let V be a p-adic representation of G g, where
the Gg-action of V factors through a finite quotient. Then, the Artin and Swan
conductors of V |k, are stationary and their limits coincide with the Artin and Swan
conductors of T*(V|k_.).

We briefly mention the idea of the proof in the Artin case. Note that in the
perfect residue field case, the result follows from the fact that the upper numbering
ramification filtration is a renumbering of the lower numbering one, and this latter
filtration is compatible with the field of norms construction; see [Marmora 2004,
Lemme 5.4]. However, in the imperfect residue field case, since Abbes—Saito’s
ramification filtration is not a renumbering of the lower numbering one, we proceed
as follows. Let L/K be a finite Galois extension. Let X¢ be an extension of X g
corresponding to the tower £ = {L, := LK, },~0 under Scholl’s equivalence. Then,
it suffices to prove that the nonlog ramification filtrations of G, /g, and Gx,/x
coincide with each other. Abbes—Saito’s nonlog ramification filtration of a finite
extension E/F of complete discrete valuation fields is described by a certain family
of rigid analytic spaces as}, /F for a € Q¢ attached to E/F. In terms of Abbes—
Saito’s setup, we only have to prove that the number of connected components of
asg(): /Xx and asj /K, are the same for sufficiently large n. An optimized proof of
this assertion is as follows: we construct a characteristic O lift R of X;, which is
realized as the ring of functions on the open unit ball over a complete valuation
ring. We can find a prime ideal p, of R such that R/p, is isomorphic to Ok, .
Then, we construct a lift ASY /x5 over Spec(R) of asy, /x> Whose generic fiber
at py, is isomorphic to asy, /k,- We may also regard AS%. /xg dsa family of rigid
spaces parametrized by Spec(R). What we actually prove is that in such a family
of rigid spaces over Spec(R), the number of the connected components of the fiber
varies “continuously”. This is done by Grobner basis arguments over complete
regular local rings, extending the method of Liang Xiao [2010]. The continuity
result implies our assertion since the point p,, € Spec(R) “converges” to the point
(p) € Spec(R).

Note that Shin Hattori reproved [2014] the above ramification compatibility of
Scholl’s isomorphism t by using Peter Scholze’s perfectoid spaces [2012], which
form a geometric interpretation of the Fontaine—Wintenberger theorem. We briefly
explain Hattori’s proof. Let C,, (resp. Ct;,) be the completion of the algebraic closure
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of K (resp. Xg). Scholze proved the tilting equivalence between certain adic
spaces (resp. perfectoid spaces) over C, and Ci,. Let C be a perfectoid field and Y
a subvariety of A.. A perfection of Y is the perfectoid space defined as the pull-
back of Y under the canonical projection LiI_nT’_'_)T.p Ar — AE, where Ty, ..., T,
denotes a coordinate of Ay.. Hattori proved that the tilting of the perfections of
(asin / Kﬂ)@p and (as§£ / Xﬁ)@» are isomorphic under the tilting equivalence. Since
the underlying topological spaces are homeomorphic under taking perfections and
the tilting equivalence, he obtained the ramification compatibility.

The second goal of this paper is to generalize Berger’s functor Ngr and prove
a ramification compatibility of Ngr which extends Theorem 0.0.1. Precisely, we
construct a functor from the category of de Rham representations to the category of
(¢, V)-modules over the Robba ring. Our target objects (¢, V)-modules are defined
by Kedlaya [2007] as generalizations of p-adic differential equations. Kedlaya also
defined the differential Swan conductor Swan" (M) for a (¢, V)-module M, which
is a generalization of the irregularity of p-adic differential equations. Then, we
prove the following de Rham version of Theorem 0.0.1:

Theorem 0.0.2 (Theorem 4.7.1). Let V be a de Rham representation of Gg. Then
we have
Swan" (Ngr(V)) = lim Swan(V|x,),
n—oo

where Swan on the right-hand side means Abbes—Saito’s Swan conductor. Moreover,
the sequence {Swan(V |k, )}n=0 is eventually stationary.

Both Theorems 0.0.1 and 0.0.2 are due to Adriano Marmora [2004] when
the residue field is perfect. Even when the residue field is perfect, our proof of
Theorem 0.0.2 is slightly different from Marmora’s proof since we use a dévissage
argument to reduce to the pure slope case. As is addressed in [Kedlaya 2007, §3.7],
it seems to be possible to define a ramification invariant of Ngg (V) in terms of
(¢, I'k)-modules so that one can compute Swan(V) instead of Swan(V |k, ). It is
also important to extend the construction of Nggr to the general relative case: one
may expect that a relative version of slope theory, described in [Kedlaya 2013] for
example, will be an important tool.

Structure of the paper

In Section 1, we gather various basic results used in this paper. These contain
some p-adic Hodge theory, Abbes—Saito’s ramification theory, Kedlaya’s theory of
overconvergent rings, and Scholl’s fields of norms. In Section 2, we prove some
ring theoretic properties of overconvergent rings by using Kedlaya’s slope theory. In
Section 3, we develop a Grobner basis argument over complete regular local rings
and overconvergent rings. We apply the Grobner basis argument to study families
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of rigid spaces, and use it to prove Theorem 0.0.1. In Section 4, we generalize
Berger’s gluing argument to construct a differential module Ngg (V) for de Rham
representations V. We also study the graded pieces of Ngr(V) with respect to
Kedlaya’s slope filtration to reduce Theorem 0.0.2 to Theorem 0.0.1 by dévissage.

Convention

Throughout this paper, let p be a prime number. All rings are assumed to be
commutative unless otherwise stated. For a ring R, denote by nozar(R) the set of
connected components of Spec(R) with respect to the Zariski topology. For a field
E, fix an algebraic closure, denoted by E2 or E, and a separable closure EP. Let
G r/E be the Galois group of a finite extension F/E, and let Gg be the absolute
Galois group of E. For a field k of characteristic p, let kP’ := k”"" be the perfect
closure in a fixed algebraic closure of k.

For a complete valuation field K, we let Ok be its integer ring, 7wk a uniformizer,
and kg the residue field. Let vg : K — ZU {00} be the discrete valuation satisfying
vg(mg) = 1. We let K" be the p-adic completion of the maximal unramified
extension of K and denote by /g the inertia subgroup of Gx. We assume that
K is of mixed characteristic (0, p) and that [k : kZ] = pd < o0 in the rest
of this paragraph. Let egx be the absolute ramification index. Let C, be the p-
adic completion of K¢ and let v, be the p-adic valuation of C,, normalized by
v,(p) = 1. We fix a system of p-power roots of unity {¢,},~0 in K% ie., {pisa
primitive p-th root of unity and ¢” ,, = ¢pn foralln € Nog. Let x : Gx — Z; be
the cyclotomic character defined by g(¢,n) = g“;f,l(g) for all n > 0. We denote the
fraction field of a Cohen ring of kg by K. Denote a lift of a p-basis of kg in Ok
by {t;}1<j<q. For a given {t;}1<;<4, we can choose an embedding Ky < K such
that {#;}1<;<q4 C Ok,, see [Ohkubo 2013, §1.1]. Unless otherwise stated, we always
choose {#;}1<j<4 and an embedding Ky < K in this way, and we fix sequences of

[77)1 . al . pfnfl p pfn
p-power roots {17 },>0,1<j<a Of {tj}1<j<a in K*%, ie., we have (1] )" =1]

for all n > 0. For such a sequence, we define KP' as the p-adic completion of
U, K ({tjl-7 -’ <) gd). This is a complete discrete valuation field with perfect residue
field k%, and we regard C,, as the p-adic completion of the algebraic closure of K Pf,

For a ring R, let W(R) be the Witt ring with coefficients in R. If R is of
characteristic p, then we denote the absolute Frobenius on R by ¢ and also denote
the ring homomorphism W(¢) : W(R) — W(R) by ¢. Let [x] € W(R) be the
Teichmiiller lift of x € R.

For an integer & > 0, define Q,» := W(F ,»)[1/p]. Let K be a complete discrete
valuation field, and F/Q),, a finite extension. A finite dimensional F'-vector space
V with continuous semilinear G g-action is called an F-representation of Gg. If
moreover F = Q,, then we call V a p-adic representation of Gg. We denote the
category of F-representations of G by Repr(Gg). We say that V is finite (resp.
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of finite geometric monodromy) if G (resp. Ix) acts on V via a finite quotient. We
denote the category of finite (resp. finite geometric monodromy) F-representations
of Gk by Rep'lfp(GK) (resp. Repf;g'(GK)).

For homomorphisms f, g : M — N of abelian groups, we denote by M/=¢ the
kernel of the map f —g. For x € R, let | x] :=inf{n € Z; n > x} be the least integer
greater than or equal to x. We let N = Z be the set of all natural numbers.

1. Preliminaries

In this section, we fix notation and recall basic results needed in this paper.

1.1. Fréchet spaces. We will define some basic terminology of topological vector
spaces. Although we will use both valuations and norms to consider topologies,
we will define our terminology in terms of valuations for simplicity. See [Kedlaya
2010] or [Schneider 2002] for details.

Notation 1.1.1. Let M be an abelian group. A valuation v of M is a map v :
M — RU {oo} such that v(x — y) > inf{v(x), v(y)} for all x, y € R and v(x) = 00
if and only if x = 0. Moreover, when M = R is a ring, v is multiplicative if
v(xy)=v(x)+v(y) forall x, y € R. Aring equipped with a multiplicative valuation
is called a valuation ring. If (R, v) is a valuation ring and (M, vyy) is an R-module
with valuation vy, then we say that vy, is an R-valuation if vy (Ax) = v(A) +vpr(x)
holds for all A € R and x € M.

Let (R, v) be a valuation ring and M a finite free R-module. For an R-basis
el,...,e, of M, we define the R-valuation vy, on M (compatible with v) associated
toer, ..., e, by vy (Y i, aie;) =inf; v(a;) for a; € R ([Kedlaya 2010, Definition
1.3.2]). The topology defined by vy, is independent of the choice of a basis of M
([Kedlaya 2010, Definition 1.3.3]). Hence, we do not refer to a basis to consider
vy and we just denote vy, by v unless otherwise stated.

For any valuation v on M, we define the associated nonarchimedean norm
|-]: M — Rby |x| :=a "™ for a fixed a € R.| (nonarchimedean means that
it satisfies the strong triangle inequality). Conversely, for any nonarchimedean
norm |- |, v(-) = —log,| - | is a valuation. We will apply various definitions made
for norms to valuations, and vice versa in this manner.

Notation 1.1.2. Let (K, v) be a complete valuation field. Let {w,},<; be a family
of K-valuations of a K-vector space V. Consider the topology 7 of V whose
neighborhoods at 0 are generated by {x € V; w,(x) > n} forall r € I and n € N.
We call T the topology of V defined by {w,},<; and denote the topological space
V with this topology by (V, {w,},<s), or simply by V. If T is equivalent to the
topology defined by {w,},¢;, for some countable subset Iy C I, we call T the
K -Fréchet topology defined by {w, },<;. For a K-vector space, it is well-known that
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a K-Fréchet topology is metrizable (and vice versa). Moreover, when V is complete,
we call V a K-Fréchet space. Note that V' is just a K-Banach space when #1p = 1.
Also, note that a topological K-vector space V is a K-Fréchet space if and only
if V is isomorphic to an inverse limit of K-Banach spaces whose transition maps
consist of bounded K -linear maps. More precisely, let V be a K -Fréchet space with
valuations wg > wy > ..., and V,, the completion of V with respect to w,,. Then
the canonical map V — lim, V,, is an isomorphism of K -Fréchet spaces. Also, note
that if V and W are K-Fréchet spaces, then Homg (V, W) is again a K-Fréchet
space with respect to the operator norm.

Let (R, {w,},er) be a K-Fréchet space for aring R. If {w,},<; are multiplicative,
then we call R a K-Fréchet algebra. For a finite free R-module M, we choose a basis
of M and let {w, y},e; be the R-valuations compatible with {w;},c;. Obviously,
(M, {wy m}rer) is a K-Fréchet space. Unless otherwise stated, we always endow a
finite free R-module with such a family of valuations.

In the rest of the paper, we omit the prefix “K” unless otherwise stated.

Recall that the category of Fréchet spaces is closed under quotients, completed
tensor products and direct sums and that the open mapping theorem holds.

1.2. Continuous derivations over K. In this subsection, we recall the continuous
Kéhler differentials ([Hyodo 1986, §4]). Let K be a complete discrete valuation
field of mixed characteristic (0, p) such that [k : kX 1= p? < oco.

Definition 1.2.1. Let Q}OK be the p-adic Hausdorff completion of Q}oK /z and put
Qp :=Q¢ [1/p]. Letd : K — Q) be the canonical derivation.

Recall that §}< is a finite K-vector space with basis {df;}1<j<4. Moreover,
if K is absolutely unramified, then QEQK is a finite free Og-module with basis
{dtj}1<j<a. Also, ﬁl is compatible with base change, i.e., L Qg ﬁk = QIL for any
finite extension L/K.

Notation 1.2.2. Let R be a topological ring and M a topological R-module. We
let Dereont(R, M) be the R-module of continuous derivations d : R — M.

One can prove the next lemma by dévissage and the universality of the usual
Kihler differentials.

Lemma 1.2.3. For an inductive limit M of K -Fréchet spaces, we have the canonical
isomorphism
d* : Homg (Q, M) = Dereon(K, M).

Definition 1.2.4. Let {9;}1<; <4 C Dercont(Ko, Ko) = Homg, (2} ,» Ko) be the dual
basis of {dt;}1<j<q4. We call {0;} the derivations associated to {t;}. We also denote
by d; the canonical extension of d; to 9; : K¥& — K22 Since 0j(t;) = 4;j, we may
denote 9; by 9/01;.
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1.3. Some Galois extensions. In this subsection, we will fix some notation of a
certain Kummer extension which will be studied later. See [Hyodo 1986, §1] for
details. In this subsection, let K be an absolutely unramified complete discrete
valuation field of mixed characteristic (0, p) with [k FE k[’%] = pd < 0o. We put

Ky=K@p.t] .....tf )Yforn>0, Koo:=|_JKu. Kuritn = K(¢pr)
n>0 n>0

geom arith ._ —~ _ ~

F Mg = Karitn/ K

GE /ﬁarith’
R/ Hg = Ggae /i, -
Then, we have isomorphisms

raith o 7> = pEeom o~ zd

which are compatible with the action of F%i‘h on ng’ ™. The isomorphisms are
defined as follows: an element a € Z corresponds to y, € F%“th such that y, ({pn) =
¢ ;,’n for all n. An element b = (b;) € Z‘f, corresponds to y, € ['8°™M for 1 < j <d
such that y;,(¢,n) = ¢p» for all n € N and y;,(tj.f”) = {ﬁ,{ t}f". By regarding
as a subgroup G - —n) of I'g, we obtain isomorphisms

arith
'
Koo/ U R (" !
n=@0,....na): Tg ETENu IE" = 7% x 79,
Since we have a canonical isomorphism
Zy Zyp ... Z,

d
Z;D(Zp

12

E GLd"rl (Zp)v
1

the group I'g can be regarded as a classical p-adic Lie group with Lie algebra
. N J Q, ... Q
g::Lle(Fg):@px@p: 0 Cg[d+l(@p)'

For an integer n > 0 and a finite extension L/ K, we put
Ly:=K,L, Leo:=KslL,
FL = GLoo/L’ HL = GEalg/Lw.

Then, I'z, is an open subgroup of I'g. Hence, there exists an open normal subgroup
of I'y, which is isomorphic to an open subgroup of (1 +2pZ,) x Z‘; by the map 7.
Also, we may identify the p-adic Lie algebra of I'; with g. Finally, we define
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closed subgroups of I'y,

FL,O = {)/EFL; nj(y):O fOI‘aHISJSd},
Fpj:={yelL; n(y)=1ni(y)=0forall 1 <i <d,i#j} forl <j<d.

1.4. Basic construction of Fontaine’s rings. In this subsection, we recall the def-
inition of rings of p-adic periods due to Fontaine, see [Ohkubo 2013, §3] for
details.

Let K be a complete discrete valuation field of mixed characteristic (0, p) with
[kg - kI’;] = pd <oo. Let Ft:= lim, Oc, / rOc,, where the transition maps are
given by the Frobenius. This is a complete valuation ring of characteristic p
whose (algebraically closed) fractional field is denoted by . We have a canonical
identification

E={x™)pen € Cl; xF)? =x™ forall n e N},

For x € C,, we denote by ¥ € F an element ¥ = (x™) such that x©@ = x. In
particular, we put & := (1, ¢, 2, ...), 1 1= (1), t}/”, ...) € ET. We define the
valuation vg of T by UE((X(n))) =, (x @), We put

At :=WE") cA:=w(b),
BY :=A™(1/pl cB:=A[l/p],
ni=[el—1, q:=n/p '(7)= Z [sl/p]i e At
0<i<p
and we define a surjective ring homomorphism

6:B"—C,

> Pl p'xl,
n>>—0o

which maps At to Oc,. Note that g is a generator of the kernel of 0|7+.
Let K be a closed subfield of C,, whose value group v, (K*) is discrete. We will
define rings

, +
Aint.c,/cs Bare, o Bare, /i

Let Ainf’@p sk be the universal p-adically formal pro-infinitesimal Ox-thickening of
Oc b More precisely, if Qq;p /O ®z AT — OG;p denotes the linear extension of 6,
then Ainr ¢,k 18 the (p, ker O, /x)-adic Hausdorff completion of Ox ®z A*. The
map 6Oc,/x extends to O, /x : Aint,c,/x — Oc,. Note that Ajpf ¢, /@, is canonically
identified with AT. Let BIR,C], /K be the ker 0c,/c-adic Hausdorff completion of
Ainf’@p /x[1/p] and Oq;p /K BdR,@p /K — C,, the canonical map induced by 9@,, /K-
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Let
wj=1t; — ;] € Ant.c,/Ko»

B ey, o (el =
=log([e]) := ) (="' =

n>1

+
€ B0, C BdR Cp/K

Finally, we define BdR,@p /K= BIR,C,, //c[l /t]. These constructions are functorial
with respect to C,, and K. In particular:

, , + +
Aint.c,/@, CAint.c,/k>  Bare,ja, CBare, oo Barc,a, CBarc,/k-

Therefore, any continuous K-algebra automorphism of C,, acts on these rings. We
also have the following explicit descriptions:

. ~ N+ + ~
A1nf,(13],/K0 =Auy, ..., uql, BdR C,/K = BdR Cp/([;[)p[[ul’ oo ugll

and [EBGIR C,/0, is a complete discrete valuation field with uniformizer ¢ and residue
field C,. Also, B dR.C,/K and Bqr c,/x are invariant after replacing K by a finite
extension. In partlcular these rings are endowed with canonical K?2-algebra
structures.

ForV e Rep@p(GK), we define Dgr (V) := (Bar.c,/k ®@1,V)GK, which is a finite
dimensional K -vector space with dimg Dgr (V) < dim@p V. When the dimensions
are equal, we call V de Rham and denote the category of de Rham representations
of Gk by Repr(Gk).

We endow lim, Aint.c,/kc[1/pl/(kerbc, /;c)k with the inverse limit topology,
equipping Ainf,(gp L1/ pl/(ker 9@[, /;C)k with the K-Banach space structure whose
unit disc is the image of Ainf’([:p ;- The identification of BdR,@p sk and
lim, Ainf’([jp /cl1/pl/ (ker 9@,, /;C)k gives B:R,a:p /K its canonical topology and it is a
KC-Fréchet algebra.

The ring B;’R’CP /K is endowed with a continuous B:R,Cp /0, -linear connection

geom ., p+ + ol
\ ‘Bar.c WK BdR,Cp/lc Qk L,

which is induced by the canonical derivation d : K — Q ,‘C More precisely, if we de-
note by {9;}1<<q the derivations of B;LR,CP/K given by VE©™ (x) =37 9;(x)® dt’,

then 9; is the unique BSLR,C,, /@p—linear extension of 9/9¢; : K — K. Thus, we can

regard the above connection as a connection associated to a “coordinate” ¢y, . .., #z
of K, hence we put the superscript “geom”. We denote the kernel of V&°™ by
BY+

dR.C, /K which coincides with the image of [EB(';R C,/Q," Therefore, we may identify

V+
By R.C,/K with BdRC /0,

We also define a subring @ng C,/Q, of BdR c,/Q, 3 follows: let Acis ¢, /@, be the
universal p-adically formal Z,, thlckemng of (’)@ »» 1.e., the p-adic Hausdorff comple-
tion of the PD-envelope of AJF with respect to the ideal ker fc ,/q,, compatible with
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the canonical PD-structure on the ideal (p). Since the construction is functorial, the
Frobenius ¢ : A+ — A+ acts on both Agris.C »/Q,p and Bms C,/0, = = Aris, C,/Q, [1/p].
We define [EBrlg C,/0, = (Nyen @ ([E’ch C,/0, ), which is the max1ma1 subring of

B;SC /0, that is stable under ¢. By construction, Brvl; C,/Q, is a subring of

+ ~ mV+
BdR,C,, /Q, = BdR,C,, /K

Finally, for simplicity, we denote

v+ + v o._
Bir = Bag, Cp/Qp> Bir = Bar.c,/0,, BdR = BdR Cp/K>
o BV+ . mV+
Bar := BdR’CP/K’ Brlg : Brlg Cp/Qp
when no confusion arises.

1.5. Ramification theory of Abbes—Saito. In this subsection, we review Abbes—
Saito’s ramification theory, see [Abbes and Saito 2002, 2003] for details.

Let K be a complete discrete valuation field with residue field of characteristic p.
Let L/K be a finite separable extension. Let Z ={zo, ..., z,} be a set of generators
of O as an Og-algebra. View Ok (Zy, ..., Z,) as a Tate algebra, and let Z; > z;
be the corresponding surjective Ok -algebra homomorphism from Ok (Zy, ..., Z,)
to O with kernel /7. For a € Q. , we define the nonlog Abbes—Saito space by

asf x , =D" V' (mg|™"f; fely)={xe D" [f)| < |mk|* Vf €z},

which is an affinoid subdomain of the (n + 1)-dimensional polydisc D" Let
geom
(asy k. z) be the geometric connected components of asj ;. i.e., the con-
nected components of as{ K.z XKk K alg with respect to the Zariski topology. We
define a Gg-set F4(L) := ngeom(asL/K 7) and let

b(L/K):=infla e R; #F*(L) =[L: K]} € Q.

be the nonlog ramification break. If L/K is Galois, then F“(L) can be identified
with a quotient of G k. Moreover, the system {F“(L)}, of Gg-sets defines a
filtration {G¢ /K}a€@>0 of Gk such that F4(L) = GL/K/G%/K as G g-sets.
There exists a log variation of this construction by considering the following
log structure. Let P C Z be a subset containing a uniformizer, and take a lift

8 €0k (Zy, ..., Zy)of eK/nvL(Z’ for each z; € P. For each pair (z;, z;) € P x P,
we take a lift h; ; € Ok (Zy, ..., Z,) of UL(Z’)/ @) Forae Q-¢, we define the
log Abbes—Saito space by
x|~ f
asi k. z.p=D""" i |74 (XY — ki)

|7TK |*Q*UL(Zi)UL(Zj)/€L/K (X:';L(Zi) _ XUL(Z])hl’])
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as an affinoid subdomain of D"*!. Here, f ranges over Iz and the indices z; and
(zi, zj) range over P and P x P respectively. As before, we define the G g-set
]—"f(‘)g(L) = ngeom(asi /k,z,p) and define the log ramification break by

biog(L/K) :=inf{a e R; # l‘:)g(L) =[L:K]} €Q.

A similar procedure as before defines the log ramification filtration {G] y K,log}ae@zo
of G L/K-

In this paper, we consider only the following simple Abbes—Saito spaces. With
the notation as above, let po, ..., p,, be a system of generators of the kernel of
the surjection Ok (X, ..., X;) = Or. Assume that zg is a uniformizer of L and
po = X;L/K — kg go for some gg € Ok (Xop, ..., Xp). In this case, we have a simple
log structure: we put P := {zp} and we choose gg as a lift of sz/ ¥ /mk. We also
choose 1 as 1 ;. Hence, Abbes—Saito spaces are given by

as§ .z =D"(|mk| ™ pj for 0 < j <m),

1 —a—1 - :
as(z/K,Zp = D"t (|mk| ¢ Do, k| apj forl1 <j<m).

Let F/Q, be a finite extension and V an F-representation of G with finite
local monodromy. We define Abbes—Saito’s Artin and Swan conductors by

A (V)= Y a-dimp (Ve Ok v G,

06@30

Swan®S(V):= Y a-dimp (Ve Crios y T

ae@zo

Note that the above construction does not depend on other choices, like Z and P.
Also, note that both the Artin and Swan conductors are additive and compatible with
unramified base change. When kg is perfect, the log (resp. nonlog) ramification
filtration is compatible with the usual upper numbering filtration (resp. shift by one).
Moreover, our Artin and Swan conductors coincide with the classical Artin and
Swan conductors when kg is perfect.

Theorem 1.5.1 (Hasse—Arf theorem, [Xiao 2012, Theorem 4.5.14]). Assume that
K is of mixed characteristic. Let F/Q),, be a finite extension and V € Repj;'g (Gg).
Then, we have Art(V) € Z if K is not absolutely unramified; we have Swan™S (V) € Z
if p#2, and Swan®S(V) e 2717 if p = 2.

Xiao gives more precise results in the equal characteristic case, as we will see in
Theorem 1.7.10.
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1.6. Overconvergent rings. In this subsection, we will recall basic definitions of
overconvergent rings associated to complete valuation fields of characteristic p,
following [Kedlaya 2004, §2-3] and [Kedlaya 2005, §2].

Construction 1.6.1 ([Kedlaya 2005, §2.1-2.2]). Let (£, v) be a complete valuation
field of characteristic p. Assume that either E is perfect or that v is a discrete
valuation. We will construct an overconvergent ring associated to E. We first
consider the case where E is perfect. Note that any element of W(E)[1/p] is
uniquely expressed as ) p*[xi] with x; € E. For n € Z, we define a “partial
valuation” on W (E)[1/p] by

vf”< > pk[xk]) = inf v(xy).

k>—00

For r € R..¢, we define
wy(x) = inf{rv="(x) +n},
n
W(E), :={x € W(E); w,(x) < oo}.

Then, W (E),[1/p]isasubring of W(E)[1/p] and w, is a multiplicative valuation of
W (E),[1/p]. Moreover, we have W (E), C W(E),  for r’ <r. We put Won(E) :=
ll“}r—m W(E )r :

Next, we consider the general case, i.e., we do not need to assume that E is perfect
in the following. Let I" be a Cohen ring of E with a Frobenius lift ¢. Then, we can
obtain a Frobenius-compatible embedding I' < W (EP!) — W (E®2), where E¥
is the completion of E¥2. By using this embedding, we can define v=" and w, on T".
Moreover, we define I', :=1"N W(Ealg)r and Leop :=1lim,_ (T, =N Wcon(falg).
We say that I" has enough r-units if the canonical map I', — E is surjective. We
say that I has enough units if " has enough r-units for some > 0. Note that if
E is perfect, then I' has enough r-units for any . In general, by [Kedlaya 2004,
Proposition 3.11], I" has enough r-units for all sufficiently small . In the following,
we fix rg such that I has enough r-units for all » < ry. Note that I', is a PID
for r < rp, and I'con is a Henselian local ring with maximal ideal (p), residue
field E and fraction field I'con[1/p] [Kedlaya 2005, Lemma 2.1.12]. We endow
I';[1/ p] with the Fréchet topology defined by the family of valuations {w;}o<s</-
Let I'y, - be the completion of I'.[1/p] with respect to the Fréchet topology and
Can.con 1= lim,_ ; Can,. We extend v=" and w, to v=", w, : Ty, — R and we
endow ['ap , (resp. I'an.con ) With the Fréchet topology defined by {w;}o<s<, (resp.
the inductive limit topology of Fréchet topologies). Note that ¢(I',) C I,/ ,; hence,
@ extends toamap ¢ : 'y , —> an r/p. In particular, I'con and Iy con are canonically
endowed with endomorphisms ¢. Also, note that I'y, , for all » < rp and hence,
I"an,con are Bézout integral domains [Kedlaya 2005, Theorem 2.9.6].
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In the rest of this subsection, we will see explicit descriptions of I',, together
with its finite étale extensions, by using rings of overconvergent power series ring.

Notation 1.6.2. Let O be a complete discrete valuation ring of mixed characteristic
(0, p). Let O{{S}} be the p-adic Hausdorff completion of O((S)) := OISTIS™ .
For r € Q- ¢, we define the ring of overconvergent power series over O as

OS) ™ :={f € O{{S}); f converges on 0 <v,(S) <r}, O(S) = U oS) ™.

r>0

Recall that (O((S))T, (rro)) is a Henselian discrete valuation ring [Matsuda 1995,
Proposition 2.2]. We also define the Robba ring R associated to o(S)* by

R:= {f:ZanS"; a, € Frac(0), f converges on 0 <v,(S) <r for some r >O}.

nez

Construction 1.6.3. We construct a realization of a finite étale extension of O((S))*
as an overconvergent power series ring. Let I" be a Cohen ring of a complete discrete
valuation field E of characteristic p. By fixing an isomorphism f : I' = O{{S}},
where O is a Cohen ring of kg, we identify I" and E with O{{S}} and kg ((S)). Let
I/ T be a finite étale extension, with I'" connected and F/E the corresponding
residue field extension. Then, I'" is again a Cohen ring of F. We identify F with
kr((T)) and fix a Cohen ring O’ of k. We claim that there exists an isomorphism
[T/ = O'{{T}} such that f modulo p is the identity, f'(O[S]) c O'[T] and
[/ O[ST— O'[T] is finite flat. We can write S = T¢*/£j in O with some i1 € (’);5.
We fix a lift u € O'[T]* of & with respect to the projection O'[[T] — OpF and let

" Z[So] — O'[IT]; So+—> T¢F/Eu be a ring homomorphism. Let s : Z[Sy] — O[S]
be the ring homomorphism sending Sy to S. By the formal smoothness of s (see
[Ohkubo 2013, §1A]), there exists a local ring homomorphism g : O[S] — O'[T]:

OS] Og Or
ST T~ =~ p T
Z15] C CoNT]

By the local criteria of flatness and Nakayama’s lemma, § is finite flat. By the
definition of s and s’, B induces a map B : O((S)) — O'((T)), and hence a map
,3 O{SYy — O'{{T}}. Since ,3 is finite étale with residue field extension F/E,
there exists a canonical isomorphism f’: " = O’{{T}}, which satisfies the desired
properties by the construction of 8.

The relation S = T/£y for u € O'[T]* gives f/(O(S)T") c O'(T))Tr/erE,
In the limit » — 0o, we obtain a flat morphism f’: O(S))" — O'((T))". Finally,
we prove the finiteness of f': O((S))" — O'((T))". We fix a basis w1, ..., wg of
O'[T] as an O[[S]-module. Then, we only have to prove that x € O'((T¢#/£))""
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can be written as ) ; w; »_, a; ,S" with ) a; ,5" € O((S))"r¢r/E . By the relation
Su~! = T°F/F again, any element x € @' ((T¢*/¥))™" can be written as Y ez anS"
with a, € O'[T]] such that |a,||p|¢F/E"" — 0 for n — —oo, where | - | is a norm of
O'[T] associated to the p-adic valuation. We write a, =) ; a, ;w;. Then, we have
|a,| = sup;|ay ;|, where | - | on the RHS is a norm of O[[S] associated to the p-adic
valuation. Hence, ), a,;S" belongs to O(S))"rer/E | which implies the assertion.

Lemma 1.6.4 [Kedlaya 2005, Lemma 2.3.5, Corollary 2.3.7]. Let I" be a Cohen
ring of a complete discrete valuation field E of characteristic pand ¢ : ' — I" a
Frobenius lift. By fixing an isomorphism f : ' = O{{S}}, we identify I" and E with
O{{S}} and kg ((S)). Assume that ¢(S) € O(S))'. Then, we have

T, =0(S)™, Teon=0(S)"

for all sufficiently small r > 0.

Moreover, let F/E be a finite separable extension, I''/ T the corresponding finite
étale extension and ¢ : I'" — T’ the corresponding Frobenius lift extending ¢. We
fix an isomorphism f':T' = O'{{T}} as in Construction 1.6.3. Then, f’ induces
isomorphisms

L, =o' ()M, T, =0 (T)!
for all sufficiently small r > 0.

Proof. Let ¢ be the Frobenius lift of O'{{T}} obtained by identifying O'{{T}} with "’
We only have to check that the assumption ¢(T) € O (T in [Kedlaya 2005,
Convention 2.3.1] is satisfied. This follows from the fact that ©’((T))" is integrally
closed in O'{{T'}}, which in turn is a consequence of Raynaud’s criteria of integral
closedness for Henselian pairs [Raynaud 1970, Théoreme 3(b), Chapitre XI]. [J

Finally, we define (pure) ¢-modules over overconvergent rings.

Definition 1.6.5 [Kedlaya 2005, Definition 4.6.1]. Let R be I'[1/p], Tconl1/p],
or I'an,con (Construction 1.6.1) and let o := goh for some i € N.j. A o-module
over R is a finite free R-module M endowed with a semilinear o-action such
that ]| ® 0 : M Q.o R — M is an isomorphism. Assume that E is algebraically
closed. Then, any o-module over I'[1/p] or I'ay con admits a Dieudonné—Manin
decomposition [Kedlaya 2005, Theorem 4.5.7] and we define the slope multiset of M
as the multiset of the p-adic valuations of the “eigenvalues”. For a o -module M over

LCeonl1/ pl, we define the slope multiset of M as the slope multiset of I' ®r .11/, M,
which coincides with that of 'y con ®r.(1/ p) M. For a general E, we define the
slope multiset after the base change I' — W (E alg) A o-module over R is pure of
slope s if the slope multiset consists of only s. If M is a o-module that is pure of
slope 0, then we call M étale.
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Let ¢ be a Frobenius lift of I" := O{{S}} with ¢(S) C O(S))". By Lemma 1.6.4,
we can view (’)((S))T[l/p] and R in Notation 1.6.2 as I'con[1/p] and I'yn con, and
we can give similar definitions for R = O((S))'[1/p] and R.

When R is one of the above rings, we denote the category of o-modules (resp.
étale o-modules, o-modules of pure slope s) over R by Mod (o) (resp. Mod%(a),
Mod}%(0)).

1.7. Differential Swan conductor. The aim of this subsection is to recall the defi-
nition of the differential Swan conductor. The following coordinate free definition
of the continuous Kihler differentials for overconvergent rings will be useful.

Definition 1.7.1. Let I" be an absolutely unramified complete discrete valuation
ring of mixed characteristic (0, p). For a subring R of I, we define Q}e as the
R-submodule of QIL generated by the image of R underd : ' — Q}

Lemma 1.7.2. Let T := O{{S}} and T := O((S))", where © is a Cohen ring of a
field k of characteristic p. Assume that [k : kP] = p? < oco. Then, QIE is the unique
I'"-submodule M of ﬁlr such that

(i) M is of finite type over T'".
(ii) The image of T'" underd : T — QIL is contained in M.
(iii) The canonical map I" @+ M — @Il- is an isomorphism.
Also, if o : T'— T is a Frobenius lift o(I'") C T, Qllwr is stable under ¢ : ?ZIL — ﬁlL

We omit the proof since it is elementary. Note that if {z;} C O is a lift of a
p-basis of k, then Q}T is a free of rank d + 1 with basis dS, dtq, ..., dt,.

Corollary 1.7.3. With the notation as in Lemma 1.6.4, the canonical isomorphism
I ®r QF = QL descends to a canonical isomorphism T, ®r., Qllam =ql, .

Notation 1.7.4. In the rest of this section, let the notation be as in Lemma 1.7.2.
We fix a Frobenius lift ¢ : I' — T satisfying ¢(I'") C I'". Let R be the Robba ring
associated to I'" and assume that ¢(R) C R. We put Q}z =R QOr+ Q},T. Note that
the canonical derivationd : I'" — QlF+ extendstod : R — Q%z

Definition 1.7.5. A V-module M over R is a finite free module over R together
with a connection V=V : M — M Qr Q;a such that the composition of Vj; with
the map M @z QL — M ®r N\ QL induced by V is the zero map. For i € N,
a (¢", V)-module M over R is a ¢"-module over R endowed with a V-module
structure commuting with the action of ¢. We call a (¢", V)-module pure (resp.
étale) if the underlying ¢"-module is pure (resp. étale). Similarly, we define étale
or pure (¢, V)-modules over I'" and I'. Denote by Mod} (¢", V) the category of
pure ((ph, V)-modules over R, where R is either I, FT[I/p] or R.
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Theorem 1.7.6 [Kedlaya 2007, Theorem 3.4.6]. For a (¢, V)-module M over R,
there exists a canonical slope filtration

0=Fil°(M) C--- CFil'(M) =
whose graded pieces are (¢, V)-modules of pure slope s; < --- < s;.

Construction 1.7.7 [Kedlaya 2007, Definition 3.3.4]. Let F'/Q, be a finite unrami-
fied extension and V € Rep Fg (GE). Let "' be the maximal unramified extension
of I'. We put QFT w

ri I/ I'" with FJr connected We consider the connection

V: Fl’ur ®OF V— Q[‘Tcur ®OF

= lim Q! r where the limit runs all the finite étale extensions

AQYyH—>dAR®Yy. *)
Since 5211, - ST @ QILT as G g-modules by Corollary 1.7.3, we obtain a
connection

V: D' (V) = Q. @rt DT(V),

where DT (V) := (T R0y V)CE is a finite dimensional I''[1/p]-module of rank
dimzV, by taking G g-invariants of (*). Thus, we obtain a rank preserving functor

D Reng (GE) = Modrif1/,1(V).
By extending scalars, we also obtain a rank preserving functor
D : Repy: 18(G ) — Modg (V).

Note that if V is endowed with a semilinear action of ¢" for h € N, then DT(V)

and D:l g(V) are also endowed with semilinear ¢”-actions.

Definition 1.7.8. For a V-module M over R, let Swan"(M) be the differential
Swan conductor of M as in [Kedlaya 2007, Definition 2.8.1].

Recall that the differential Swan conductor is defined in terms of the behavior
of the logarithmic radius of convergence [Xiao 2010, Definition 2.3.20], which
depends only on the Jordan—Hoélder factors of a given V-module by definition. In
particular, we have:

Lemma 1.7.9 (The additivity of the differential Swan conductor). Let 0 — M’ —
M — M"” — 0 be an exact sequence of V-modules over R. Then, we have
SwanY(M) = Swan"(M’) 4+ Swan"(M").

The following is Xiao’s Hasse—Arf Theorem in the characteristic p case.
Theorem 1.7.10 [Xiao 2010, Theorem 4.4.1, Corollary 4.4.3]. Let V be an F-
representation of G g of finite local monodromy. Then, we have

Swan*$ (V) = Swan" (D[, (V).

Moreover, these invariants are nonnegative integers.
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1.8. Scholl’s fields of norms. In this subsection, we recall some results of [Scholl
2006, §1.3], which are a generalization of Fontaine—Wintenberger’s fields of norms.
Throughout this subsection, let K be a complete discrete valuation field of mixed
characteristic (0, p) with [k : k%] = p¢ < occ.

Definition 1.8.1. Let K| C K, C. .. be finite extensions of K and put Koo = | K.
We say that a tower & := {K,},~0 is strictly deeply ramified if there exists ng > 0
and an element & € OKno such that 0 < v,(§) < 1, and such that the following
condition holds: for every n > ng, the extension K, /K, has degree p?*!, and

— (Ok,.,/£0k, )T of Ok, ,-modules.

Let 8 = {K,}s>0 be a strictly deeply ramified tower. For n > ng, we have
ex,,./k, = pand kg, =k;/”, and the Frobenius O, /£ Ok, ., — Ok, ., /€Ok, .,
induces a surjection f,: Ok, ., /§ Ok, ., — Ok, /§ Ok, . We also choose a uniformizer
ng, of K, with ”I?,m = g, mod £Ok,. Then, we define X := XT(&, &, ng) :=
lim . Ok,/§Ok,, with transition maps {f,}. Let pr,, : Xt — Ok, /£Ok, be the
n-th projection for n > ng. We put I1 := (7g, mod §Ok,) € XT. Let kg :=
LiLnnzno kg, where the transition maps are induced by f,’s. Since kg, , = k}</n P the
projections pr,, : kg — kg, are isomorphisms for all n > ny. Moreover, X* is a
complete discrete valuation ring of characteristic p, with uniformizer IT and residue
field kg. The construction does not depend on & or ng, and X is invariant after
changing {K,}, by {K,+m}. for some m. Hence, we may denote X (8, &, ng) by
X ;g and denote the fractional field of X ;; by X 4. Note thatif K,/ K is Galois for all n,

then X g and X g are canonically endowed with Gk, -actions by construction.

. . . 1
there exists a surjection QOK"+1 JOx,

Example 1.8.2 (Kummer tower case). Let K = K and {L,} be as in Section 1.3.
Then, {L,} is strictly deeply ramified [Ohkubo 2010, Example 6.2].

Let L /Ko be a finite extension. We choose a finite extension L/K such that
Lo = LK. Then, the tower £:={L, := LK, } depends only on L, up to shifting,
and is also strictly deeply ramified with respect to any &’ € K, with 0 < v,(§') <
v, (&) ([Scholl 2006, Theorem 1.3.3]). Note that if L, /K is Galois for all n, then
X Z and X are canonically endowed with G,k -actions by construction.

Theorem 1.8.3 [Scholl 2006, Theorem 1.3.4]. Let the notation be as above. Denote
the category of finite étale algebras over K, (resp. Xg) by FE”tKOo (resp. FEtXﬁ).
Then, the functor

X, : FE"tKoo — FEtXR
Loor— X Iy
is an equivalence of Galois categories. In particular, the corresponding fundamental
groups are isomorphic, i.e., Gk = Gx,. Moreover, the sequences {[L, : K,]},,

{er,/k,}n and {[ky, : ki, 1}, are stationary for sufficiently large n. Their limits are
equal to [X¢ : Xgl, exq/x, and [kx, :kx ]
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1.9. (¢, I'k)-modules. Throughout this subsection, let K be a complete discrete
valuation field of mixed characteristic (0, p). In this subsection, we will recall the
theory of (¢, I'x)-modules in the Kummer tower case [Andreatta 2006]. To avoid
complications, especially when verifying the assumption [Scholl 2006, (2.1.2)], we
will assume the following to work under the settings of [Andreatta 2006; Andreatta
and Brinon 2008; 2010].

Assumption 1.9.1 [Andreatta 2006, §1]. Let V be a complete discrete valuation
field of mixed characteristic (0, p) with perfect residue field. Let Ry be the p-adic
Hausdorff completion of V[T, ..., Ty][1/T;...T,] and Ra ring obtained from
Ry by iterating finitely many times the following operations:

(ét) The p-adic Hausdorff completion of an étale extension.

(loc) The p-adic Hausdorff completion of the localization with respect to a
multiplicative system.

(comp) The Hausdorff completion with respect to an ideal containing p.
We assume that there exists a finite flat morphism R — Ok, which sends T; tot;.

Note that R is an absolutely unramified complete discrete valuation ring. Denote
R by Og and Frac(ﬁ) by K. Let L / K be a finite extension. In the rest of this
subsection, we will use the notation from Sections 1.3 and 1.4. We also apply the
results of Section 1.8 to the Kummer tower {L,},0.

Notation 1.9.2 [Andreatta and Brinon 2008, §4.1]. We will denote
[EZr = Xif, E; .= Xg.
For any nonzero & € pOr_, we put

Ef == lim O, /60, Ty :=Frac(E}),
x>xP

where both rings are independent of the choice of £. We also put
K\Z = W(EZ), AL :=W(EL), BL:=AL[l/pl.

By definition, we have [EJLr C EZL and E; C EL, and EL can be viewed as a closed
subring of E. In particular, the rings &f, A, and B, can be viewed as subrings
of A+, A and B. Note that the completion of an algebraic closure of E; coincides
with E. Moreover, E is perfect and (EL, vg) is a perfect complete valuation field,
whose integer ring is Ezr By using the G g-actions on [ and A, we can write

B =@H™, E=Fn A =A%, B, =8"

see [Andreatta and Brinon 2008, Lemma 4.1].
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Lemma 1.9.3 (a special case of [Andreatta and Brinon 2008, Proposmon 4.42)).
We put AW(k )= Wkl C AT, where w =[] — 1 € AT Let L/K be a finite
extension. The weak topology of A [E is the product topology EN 1» Where [EL is
endowed with the valuation topology. Then, there exists a unique subring Ay of AL
such that:

(1) AL is complete for the weak topology.
(i) pALNAL = pA;.

(iii) One has an commutative diagram

Ap —= [

L

AL —EL
(iv) [e], [7;]1 € Ay forall j.
(v) There exists an Atv(k) -subalgebra A"r of Ap and ry € Q¢ such that:
(a) There exists a € N such that p/n® € AJ“ and AJ“/(p/rr“) = [E+
(b) Ifa, B € Nog are such that /B < prp/(p — 1), then A} C N{p JP};

here, A"r{p [P} denotes the p-adic Hausdorff completion ofAJr p* /P
(©) A is complete for the weak topology.

Moreover, by the uniqueness, Ay is stable under the actions of ¢ and Gk if
L/K is Galois.

Definition 1.9.4. Let A be the p-adic Hausdorff completion of | J, /& AL, which

is a subring of A that is stable under the actions of both G and ¢. We also put

By :=Ar[1/p] and B := A[1/p].

Remark 1.9.5. (i) As remarked in [Andreatta and Brinon 2008, §4.3], A; is the
unique finite étale A g-algebra corresponding to E; /Eg; in particular, Ay is a
Cohen ring of .

(ii) The action of T'g on A is determined by the action of 'z on 7, [#1], . . ., [#4],
since ¢ — 1,71, ..., I form a p-basis of Eg. Explicit descriptions are given by:
va(m)=(1+m)* =1, y(lf;]) =1[1;] foraez;,
wm =, y(i;]) =1 +m)P[i;] forb= (b)) € Z.

Definition 1.9.6. For i € N, an étale (goh, I';)-module M over B, is an étale (ph-
module over B; endowed with a semilinear continuous G g -action that commutes
with the action of goh. Denote by Mod%L ((ph, I'p) the category of étale (goh, I'p)-
modules over B, .
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For V € Repg p (GL) letD(V) = (B Qg o
V(M) := (B®s, M)¥"=".

V)Hr. For M € Modg (9", Tp), let

Theorem 1.9.7 ([ Andreatta 2006, Theorem 7.11] or [Andreatta and Brinon 2008,
Théoreme 4.34]). Let h € N.y.
equivalence of categories

Then, the functor D gives a rank preserving

D: Rep@ph(GL) — Mod§} (¢",T'1)
with quasi-inverse V.

1.10. Overconvergence of p-adic representations. In this subsection, we will re-
call the overconvergence of p-adic representations in [Andreatta and Brinon 2008].
We still keep the notations of Section 1.9 and Assumption 1.9.1.

Definition 1.10.1. We apply Construction 1.6.1 to ([E vgp) with I' = A and write

~

AT =T, AT :=Ten, B :=T,[1/p)l, B :=Teull/pl,

B =Ty, B

rig * , rig = lﬁan,con-

We define vf" and w, the same way. For a finite extension L/ K, we apply a similar
construction to the following (E, vg) with I' and we denote:

r E I, con Fr[l/p] Fcon[l/p] l_‘an r l_‘an,con
A E AR Af Bl B BY  Bf,
A, E. A" A} B Bz leg’ ; leg ;
AL B AT OAL B B, Bly, B,
By construction, we have Bf = U, Bfr, BT = U, B, @}r = @K NBHr, @TK =

U, BY . B =Bx NB" and B, =, BY". We endow B, B

rg etc. with
the Fréchet topologies defined by {w;}o<s<,-

We can describe Az by the ring of overconvergent power series.

Lemma 1.10.2 (cf. [Berger 2002, Proposition 1.4]). Let O be a Cohen ring of k.
Then, there exists an isomorphism Ag = O{{r }}, which induces an isomorphism
AT "= O((n))" for all sufficiently small r>0. Szmzlarly, there exists an isomorphism
AL = O'{{n'}}, which induces an isomorphism A' T2 O (') R | where O

is a Cohen ring of k, .

Proof. Fix any isomorphism Ag = O{{r}} (Remark 1.9.5(1)). Since ¢(7) =
[e]? —1=(14n)? —1€ Ofn}}', the assertion follows from Lemma 1.6.4. [
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Notation 1.10.3. The isomorphism in Lemma 1.10.2 enables us to apply the results
of Section 1.7. In particular, for any finite extension L/K, we have a canonical
continuous derivation

d:Bl,, — Qb .
& r1g L
with @l =B} , ® aj @, afree B/, , -module with basis dr, d[f], . .., dlia].

r1 L L 3 . .
Hence, we have a notion of (¢, V)-modules over Biig ;. and the associated differen-

tial Swan conductors.

Deﬁnition 1.10.4. Let i € N_y. An étale (¢", I'z)-module M over [EBE is an
étale ¢"-module over [E&T endowed with a continuous semilinear G g-action that
commutes with the ¢” actlon Denote by Modet (¢, T'1) the category of étale
(", I'1)-modules over B

For V e Rep@ph(GL), let

D™ (V) := (B" ®a, V)™, D (V) = U D" (V),

Dl (V) =Bl , @i DV (V), Di(V)= UIDIIg’(V)
r
/1=1

For M € ModﬁﬂjT (", Tp), let V(M) := (BF ®g; M)
L

Theorem 1.10.5 [Andreatta and Brinon 2008, Theorem 4.35]. Let h € N. . The
functor DY gives a rank preserving equivalence of categories

D' : Rep@ph (GL) — MOd?pr ((ph, I'r)
L

with quasi-inverse V. Moreover D' and V are compatible with D and V in
Theorem 1.9.7. Furthermore, D" (V) is free of rank dlm@ ,V over [EBT for all suffi-
ciently small r, and we have a canonical isomorphism B! ®B+ ;DT (V) = DY(V).

The functor [I])rTlg will be studied in Section 4.5.

2. Adequateness of overconvergent rings

In this section, we will prove the “adequateness”, which ensures that the elemen-
tary divisor theorem holds, for overconvergent rings defined in Section 1.6. The
adequateness of overconvergent rings seems to be well-known to the experts: at
least when the overconvergent ring is isomorphic the Robba ring, the adequateness
follows from Lazard’s results [1962] as in [Berger 2002, Proposition 4.12(5)]).
Since the author could not find an appropriate reference, we give a proof.

Definition 2.0.1 [Helmer 1943, §2]. An integral domain R is adequate if the fol-
lowing hold:

(1) R is a Bézout ring, that is, any finitely generated ideal of R is principal.
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(ii) For any a, b € R with a # 0, there exists a decomposition a = aja; such that
(a1, b) = R and (a3, b) # R for any nonunit factor as of a;.

Recall that if R is an adequate integral domain, then the elementary divisor
theorem holds for free R-modules, see [Helmer 1943, Theorem 3]. Precisely
speaking, let N C M be finite free R-modules of ranks n and m respectively. Then,
there exists a basis of ey, ..., e, (resp. f1, ..., fn) of M (resp. N) and nonzero
elements Aj | --- | A, € R such that f; = X;e; for 1 <i <n.

In the rest of this section, let the notation be as in Construction 1.6.1. We fix
ro > 0 such that I" has enough rp-units and let r € (0, rp) unless otherwise stated.
Recall that I'y, - is a Bézout integral domain.

Definition 2.0.2. We recall basic terminologies, see also [Kedlaya 2004, §3.5]. For
x € 'y, nonzero, we define the Newton polygon of x as the lower convex hull of
the set of points (v="(x), n), minus any segments of slope less than —r on the left
end and/or any segments of nonnegative slope on the right end of the polygon. We
define the slopes of x as the negatives of the slopes of the Newton polygon of x.
We also define the multiplicity of a slope s € (0, r] of x as the positive difference
in y-coordinates between the endpoints of the segment of the Newton polygon of
slope —s, or 0 if there is no such segment. If x has only one slope s, we say that x
is pure of slope s.

A slope factorization of a nonzero element x of 'y, , is a Fréchet-convergent
product x = [ [, _, ., x; for n either a positive integer or oo, where each x; is pure of
slope s; with s > ;2 > ... (cf. an explanation before [Kedlaya 2004, Lemma 3.26]).

Recall that the multiplicity is compatible with multiplication, i.e., the multiplicity
of a slope s of xy is the sum of its multiplicities as a slope of x and of y [Kedlaya
2004, Corollary 3.22]. Also, recall that x € 'y, » is a unit if and only if x has no
slopes [Kedlaya 2005, Corollary 2.5.12].

Lemma 2.0.3 [Kedlaya 2004, Lemma 3.26]. Every nonzero element of Iy, » has a
slope factorization.

For simplicity, we denote 'y, - by R in the rest of this subsection. The lemma
below is an immediate consequence of R being Bézout and the additivity of the
multiplicity of a slope.

Lemma 2.0.4. (i) Let x,y € R such that x is pure of slope s and let 7 be a
generator of (x, y). Then, z is also pure of slope s, with multiplicity less than
or equal to the multiplicity of slope s of x. In particular, if the multiplicity of
the slope s of y is equal to zero, then 7 is a unit and we have (x, y) = R.

(i1) Let x, y € R such that x is pure of slope s. Then, the decreasing sequence of
the ideals {(x, y")},eN is eventually stationary.
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Lemma 2.0.5 (the uniqueness of slope factorizations). Let x € R be a nonzero
element. Let x =], x; =[]; x/ be slope factorizations whose slopes are sy > s> > . . .
and s| > s > .... Let m; and m be the multiplicities of s; and s; for x; and x;.
Then, we have s; = s{ and x; = x{ u; for some u; € R*. In particular, we have
m; = mj.

Proof. We can easily reduce to the case i = 1. Since the multiplicity of the slope s
of [[;~; x/ is equal to zero, we have (x1, [[,., x/) = R by Lemma 2.0.4(i). Hence,
we have (x1, x) = (x1, x1 [[;o; xi) = (x1). By assumption, we have s; # s} except
for at most one j. Just as before, we have

/! /! / / / / / /! !/
G x)= (e, 55 [ o) =@ = (] [xi ) =0 = (G [ [ 6f) = ).
i#j i>1 i#]
ie., (x;) = (x;.). Hence, there exists u € R* such that x; = x;u. By the same
argument, x; = x;u’ for some / and u’" € R*. Since {s;} and {s;} are strictly
decreasing, we must have j =/ =1, which implies the assertion. (]

Lemma 2.0.6. The integral domain Iy, » is adequate. In particular, the elementary
divisor theorem holds over Iy, ;.

Proof. We only have to prove that condition (ii) in Definition 2.0.1 is satisfied. Let
a,b e R witha #0. If b =0, then it suffices to put a; = 1, ap = a. If b is a unit,
then it suffices to put a; = a, ap = 1. Therefore, we may assume that b is neither a
unit nor zero. Let b =[], b; be a slope factorization with slopes s; > s, > .. ..
By Lemma 2.0.4(ii), there exists z; € R such that (a, b!') = (z;) for all sufficiently
large n. By [Kedlaya 2004, Proposition 3.13], we may assume that z; admits a
semi-unit decomposition, meaning that z; is equal to a convergent sum of the form
1+ Zj<0 ui,jpj, where u; ; € R* U{0}. As in the proof of [Kedlaya 2004, Lemma
3.26], we can prove that {z; ...z;};~o converges. Next, we claim that there exists
u; € R such thata = z; ... z;u;. We proceed by induction on i. By definition, we
have a = zju; for some u;. Assume that we have defined u;. Since the multiplicity
of the slope s; 4 of z; is equal to zero for 1 < j <i, we have (z;, z;+1) = R for
1 <j <i. Hence, we have (z;+1) = (a, zi+1) = (21 - - - Zilti, Zi+1) = (Ui, Zi+1), Which
implies z; 41 | u;. Therefore, u; 11 := u;/z;+1 satisfies the condition. By this proof,
we can choose u; = u1/(z1...z;). We put a; ;= lim;_ oo u; = ul/]—[i>1 z; and
ay := [];-0 zi, which is a slope factorization of a,. We prove that the factorization
a = aja, satisfies the condition. We first prove (a;, b)) = R. By the uniqueness
of slope factorizations, we only have to prove (aj, b;) = R for all i. Fix i € N..
Then, for all sufficiently large n € N, we have

(i) = (a, b)) = (a, b)) = (a1a2, BT C (a1, b)) (az, bY)
C (a1, b)) (zi, b)) = (a1, bi)(zi).
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Since z; # 0, we have R C (ay, b;), which implies the assertion. Finally, we prove
(az, b) # R for any nonunit a3 € R dividing a,. By replacing a3 by any factor of a
slope factorization of a3, we may assume that a3 is pure. By the uniqueness of slope
factorizations, a3 divides z; for some i. Since z; | b} for sufficiently large n, we
also have a3 | b!. Hence, we have (a3, b;) # R, and in particular, (a3, b) # R. [

3. Variations of Grobner basis argument

In this section, we will systematically develop a basic theory of Grobner bases
over various rings. Our theory generalizes the basic theory of Grobner bases over
fields ([Cox et al. 1997], particularly, §2). As a first application, we will prove the
continuity of connected components of flat families of rigid analytic spaces over
annuli (Proposition 3.4.5(iii)). As a second application, we prove the ramification
compatibility of Scholl’s fields of norms (Theorem 3.5.3).

The idea to use a Grobner basis argument to study Abbes—Saito’s rigid spaces of
positive characteristic is in [Xiao 2010, §1]. Some results of this section, particularly
Sections 3.2 and 3.3, are already proved there, however we do not use Xiao’s results.
We will work under a slightly stronger assumption and deduce stronger results, with
much clearer and simpler proofs, than Xiao’s. Note that this section is independent
from the other parts of this paper, except Sections 1.5 and 1.8.

Notation 3.0.1. Throughout this section, we will use multi-index notation. We
write n = (ny,...,n) €N, |n|:=ny+---+n;and X2 = X1 ... X" for variables
X =(X1,..., X;). Wealso denote by X" the set of monic monomials {X" | n € N'}.

In this section, when we consider a topology on a ring, we will use a norm | - |
rather than a valuation.

3.1. Convergent power series. In this subsection, we consider rings of strictly
convergent power series over the ring of rigid analytic functions over annuli, which
play an analogous role to Tate algebra in the classical situation. We also gather
basic definitions and facts on these rings for the rest of this section.

Definition 3.1.1. Let R be aring. For f =3} a,X" € R[X] with a, € R, we call
each a, X" aterm of f. If f =a,X™ with a, € R, then we call f a monomial. If
a, =1, then f is called monic.

Definition 3.1.2 [Bosch et al. 1984, Section 1.4.1, Definition 1]. Let (R, |- |) be
a normed ring. We define a Gauss norm on R[X] by | a,X"| :=sup, |a,|. A
formal power series ), a, X" € R[X]| is strictly convergenf if |a,| — O as @ — 00.
We denote the ring of strictly convergent power series over R by R(X). The above
norm | - | can be uniquely extended to | - | : R(X) — R>¢. Note that if R is complete
with respect to | - |, then R(X) is also complete with respect to | - |, see [Bosch et al.
1984, Section 1.4.1, Proposition 3].
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We recall basic facts on rings of strictly convergent power series. Let R be a
complete normed ring, whose topology is equivalent to the a-adic topology for an
ideal a. Then, R(X) is canonically identified with the a-adic Hausdorff completion
of R[X]. We further assume that R is Noetherian. Then, R(X) is R-flat. Moreover,
for any ideal b of R, we have a canonical isomorphism

R(X) ®r (R/b) = (R/b)(X),

where the RHS means the a-adic Hausdorff completion of (R/b)[X].
For a complete discrete valuation ring O with F = Frac(O), we denote by O(X)
(resp. F{X)) the rings of convergent power series over O (resp. F).

Lemma 3.1.3. Assume that R is a complete normed Noetherian ring, whose topol-
ogy is equivalent to the a-adic topology for some ideal a of R. Let I C R(X) be an
ideal such that R(X)/I is R-flat. Then, I is also R-flat. Moreover, for any ideal
J CR,wehave INJ - R(X)=JI. Inparticular, if f € I is divisible by s € R in
R(X), then f/s € 1.

We omit the proof since it is an easy exercise in flatness.

Notation 3.1.4. In the rest of this subsection, we fix the notation as follows. Let O
be a Cohen ring of a field k of characteristic p and fix anorm | - | on O corresponding
to the p-adic valuation. We put

Rt :=O[S] C R :=0(S))
and for r € 0., we define a norm
[-1r: R— Rxo

> anS" > suplagllpl™,
n>»>—00 n

which is multiplicative by [Kedlaya 2010, Proposition 2.1.2]. Recall the definition

R™ = { > a,S" € OfSY: lapS"|, > 0asn — —oo}

nez

from Notation 1.6.2. Note that we may canonically identify R"" /pR"" with k((S)).
We can extend |- |, to |- |, : R"" — Rx>o by [Y_, anS"|, :=sup, |a,S"|,. We define
subrings of R™" by

Ry :=1{f €R™; Ifl, < 1),

Ry i=Ry" NR={feR; Ifl, <1}.

Note that for a,b € N with b > 0, |p“/Sb|r < 1 if and only if a/b > r. Also,
note that R/ = Rg’r[S_l] since |S|, < 1. We may regard R™" as the ring of rigid
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analytic functions on the annulus [p”, 1) whose values at the boundary |S| =1 are
bounded by 1.

Lemma 3.1.5. (i) The R"-algebra R;’r is finitely generated.

(ii) The topologies of Rg” defined by | - | and by the ideal (p, S) are equivalent.

(ii1) The rings Rg’r and R™" are complete with respect to | - |, and Rg’r is dense
in R}".

(iv) The rings Rg’r, R(Jg’r, and R are Noetherian integral domains.

Proof. Let a, b € N ¢ denote relatively prime integers such that r = a/b.

(1) It is straightforward to check that Rg’r is generated as an R™-algebra by
pltl/st for b’ €10, ..., b).

(i) For n € N, we have
sup{lxl;; x € (p, "RE"} < {inf(Ipl, 1S1)}"

and the RHS converges to 0 as n — oo. Hence, the (p, S)-adic topology of
Rg’r is finer than the topology defined by | - |. To prove that the topology of
Rg’r defined by | - |, is finer than the (p, S)-adic topology, it suffices to prove
that

{xe R Ixl <191} € (p. )R

for all n € N. Let x = Zmel a,, 8™ € LHS with a,, € O. Then, we have
la, S" ", < |p"| < 1. Hence, x = §" Zmel a,S" " e S§". Rg’r, which
implies the assertion.

(i) If f =) ,,a.5" € Rg’r with a, € O, then {Z a,,S”}meN C Ry"
converges to f, which implies the last assertion. Since Rg’r is an open subring
of R™", we only have to prove completeness of Rg’r. Let { fin}men C R(T)’r
be a sequence such that | f,,|, — 0 as m — oo. We only have to prove that
the limit ) _,, f;, exists in Rg’r with respect to | - |,. Write f,, = > a,(lm)S”
with a\™ € O. For n € Z, we have

| fim |
15”1,

n>—m

nez

lai™| < = 1P| fulrs

hence, ™| — 0 as m — oo. Moreover, a, := Y e al™ € O converges
to 0 as n — —oo. Hence, the formal Laurent series f := ) _,a,S" belongs
to O{{S}}. Since

|a,S"| < sup |al™S"|, < sup|fulr <1,
meN meN
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we have f € Rg’r. For m € N, we have
|f = (fot- -+ fadlr <suplanS" — (@ +---+a")S",
n

< supsup |a$"|, = supsup |a{’§"|, < sup|fil,
n I>m I>m n I>m

and the last term converges to 0 as m — oo, which implies f =", fu.
(iv) This follows from (i), (ii) and (iii). U

Definition 3.1.6. Let R™(X) be the (p, S)-adic Hausdorff completion of R*[X].
We also define Rg’r (X) and RT"(X) as the rings of strictly convergent power series
over Rg’r and R™" with respect to | - |,. We endow R;”(X) and R™"(X) with the
topology defined by the norm |- |,. By Lemma 3.1.5(iii), RS”(X) and RV (X)
are complete. By Lemma 3.1.5(i1), Rg’r()_( ) can be regarded as the (p, §)-adic
Hausdorff completion of RS”[)_(], hence, Rg”@) and R™"(X) = R(T)”(X)[S_l] are
Noetherian integral domains by Lemma 3.1.5(iv). Also, we may view R (X) as a
subring of Rg’r(}_().

The following lemma seems to be used implicitly in [Xiao 2010, §1].
Lemma 3.1.7. The canonical map R (X) — RV (X) is flat.

Proof (due to Liang Xiao). We may regard RS”(X ) as the (p, S)-adic Hausdorff
completion of RT(X) @+ Rg’r. Since Rg'r is dense in Rg’r by Lemma 3.1.5(iii),
Rg’r (X) can be viewed as the (p, S)-adic Hausdorff completion of R (X) @ g+ Rg’r,
which is Noetherian by Lemma 3.1.5(i). Hence, the canonical map

@: RY(X)®p+Ry"™ — R} (X)

is flat. Since RS”[S*I] = R and RS”(X)[S”] = R""(X), the canonical map
«[S~!] is also flat, which implies the assertion. O

Next, we consider prime ideals corresponding to good “points” of the open unit
disc Rt = O[S].

Definition 3.1.8. An Eisenstein polynomial in R™ is a polynomial in O[S] of the
form P(S) = S¢ + ae_18°" ' 4+ -+ 4+ ag with a; € O such that p | a; for all i
and p?{ay. We call p € Spec(R™) an Eisenstein prime ideal if p is generated by an
Eisenstein polynomial P(S). Then, we put deg (p) := e if e # 0 and deg (p) := o0
if e = 0. Note that we may regard « (p) := R/pR as a complete discrete valuation
field with integer ring R*/pR™*. We denote by 1, € Oy(p) the image of S, which is
a uniformizer of O, (. Note that deg(p) < oo if and only if the characteristic of
R/p is zero. For simplicity, we write « (p) and S instead of x ((p)) and 7, ((py)-
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Lemma 3.1.9. Let p and q be Eisenstein prime ideals of R™. If
inf (v ) (x mod p), v, (q)(x mod q)) < inf (degp, degq),

for x € R, then we have Ve (py (X mod p) = v, () (x mod q).

Proof. Let x € RT and i € N such that 0 <i < deg p. Then, we have the following
equivalences:

Ve(p(x mod p) =i &= x € (p, SH\ (p, S
= x e, SH\ (P, S <= v (x mod p) =1,

where the second equivalence follows from the fact (p, S') = (p, §'), and the other
equivalences follow from the definitions. By replacing q by p, we obtain similar
equivalences. As a result, v (x mod p) =i < ve(q)(x mod q) =i for x € RT
and i < inf(deg(p), deg(q)), which implies the assertion. [l

The ring R (X) can be considered as a family of Tate algebras:

Lemma 3.1.10. Let p be an Eisenstein prime ideal of R with e = deg(p). Let
r € Q- satisfy 1/e < r. Then, there exists a canonical isomorphism

R™(X)/pR™ (X) = k(p)(X).
In particular, pR™" # RT".

Proof. We will briefly recall a result in [Lazard 1962]. Let F' be a complete
discrete valuation field of mixed characteristic (0, p). Recall that L ¢[O0, r] is the
ring of Laurent series with variable S and coefficients in F', which converge in
the annulus |p|” < |S| < 1, see [Lazard 1962, §1.3]. For r’ € Q~¢, a polynomial
P € F[S] is said to be r’-extremal if all zeroes x of P in F2 satisfy v(x) = r/,
see [Lazard 1962, §2.7]. Let ¥’ < r be a positive rational number and P € F[S] an
r’-extremal polynomial. Then, for f € Lg[0, r], there exist a unique g € L¢[0, r]
and a unique polynomial Q € F[S] of degree less than deg P such that f = Pg+ Q,
which is a special case of [Lazard 1962, Lemme 2]. Note that if f € F[S] with
deg(f) < deg(P), then we have g =0 and Q = f by the uniqueness. In particular,
the canonical map § : F[S]/P - F[S] — LF¢[0,r]/P - L¢[0, r] is an isomorphism.

We prove the assertion. We can easily reduce to the case X = ¢. That is, we
only have to prove that the canonical map

R [pR™ — i (p)

is an isomorphism. The assertion is trivial when p = (p). Hence, we may assume
p # (p). Since p is invertible in k (p), p is also invertible in R™" /pR™". Hence,
we have R™" /pR™" = R™"[1/p]/pR7"[1/p]. Note that R™"[1/p] coincides, by
definition, with Lz[0, r] with F := Frac(O). Let P € O[S] be an Eisenstein
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polynomial which generates p. Then, P is 1/e-extremal by a property of Eisenstein
polynomials. Hence, the assertion follows from the isomorphisms

Lp[0,r]/pLFp[0,r] = F[S]1/P - F[S]
= (O[S1/P - OISDI1/pl = (RT/p)[1/p] = k().

Here, the first isomorphism is Lazard’s 8, with r’ = 1/e. O

3.2. Gribner basis argument over complete regular local rings. In this subsec-
tion, we will develop a basic theory of Grobner bases over complete regular local
rings R, which generalizing that over fields. This is done in [Xiao 2010, §1.1],
when R is a 1-dimensional complete regular local ring of characteristic p. We
assume knowledge of the classical theory of Grobner bases over fields; our basic
reference is [Cox et al. 1997].

Recall that the classical theory of Grobner bases on F[X] for a field F can be
regarded as a multi-variable version of the Euclidean division algorithm of the
1-variable polynomial ring F[X]. To obtain an appropriate division algorithm
in F[X], we need to fix a “monomial order” on F[X] in order to define a leading
term, which is the analogue of the naive degree function in the 1-variable case.
Hence, we should first define a notion of leading terms over the ring of convergent
power series.

Definition 3.2.1. A monomial order > on a commutative monoid (M, +) is an
well-order such that if ¢ > B, then e +y > 8+ y. When @ > 8 and o # B, we
write o > f.

In the following, we restrict to the case where M is isomorphic to N/. Moreover,
the reader may assume that > is a lexicographic order; the lexicographic order >ex
on N is defined by (ai, ..., a) >1ex (@}, ..., a) ifay =aj, ..., a;=a], aiz1 >a], .
A lexicographic order is a monomial order, see [Cox et al. 1997, §2.2, Proposition 4].

For convenience, we define a monoid MU{oco} by a+00 = oo for any o € M U{oo}.
We extend any monomial order > on M to M U {oo} by co > « forany o € M.

Construction 3.2.2. Let R be a complete regular local ring of Krull dimension d
with fixed regular system of parameters {si, ..., sq}. Weput R; :=R/(s1, ..., si)R,
which is also a regular local ring. We denote the image of s;41, ..., Sq in R; by
Sit1s--.,8q again and we regard these as a fixed regular system of parameters. Let
vy, : Ri = NU{oo} be the multiplicative valuation associated to the divisor s; =0. For
anonzero f € R and 0 <i <d, we define a nonzero f) € R; ingl)uctively as follows.
We put f© := £ and define fU*1 as the image of f(")/sivif(f  in Riy1, which is
nonzero by definition. We put vz (f) := (vs, (f©), v5, (fF V), ..., vy, (F97D)) eNd
and v (0) := co. Thus, we obtain a map vp : R — N9 U {oo}. We also apply this
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construction to each R;. Note that we have a formula

VR() = (05, (), vg, (fD)). (1)

Also, note that v is multiplicative, i.e., V5 (fg) = vr(f) + vz (g), which follows
by induction on d and by using the formula.

Let R(X) be the mg-adic Hausdorff completion of R[X]. We fix a monomial
order > on XV = N/, For any nonzero f =)  a,X" € R(X) with a, € R, we
define v, (f) :=inf,. vg(a,), Where > is the lexicographic order on N, and
ER(f) =inf.{n e N/ Vr(a,) =vg(f)}. We put @R(O) := 00. Note that when
f #0, we have a formula

deg  (f) =deg, (fV) =deg, (f) ="---=deg, (f), 2)

which follows from (1). Also, note that deg is multiplicative. Indeed, formula (2)
allows us to reduce to the case where R is a field; here deg is multiplicative by
[Cox et al. 1997, Chapter 2, Lemma 8]. Thus, we obtain a multlphcatlve map

v x deg : R(X) — (N x N U {oo},
where oo in the RHS denotes (00, 00). We endow N? x N/ with a total order > by
(a,n) > (@,n)ifa <jexa ora=a"andn > n’

and extend it to (N? x N/) U {oo} as in Definition 3.2.1. Note that this order is an
extension of the fixed order on N/ = {0} x ... {0} x N’. As in the classical notation,
we also define

LT(f) := 2P XL for £ 2£0, LT(0) :=0,

where s = (s1, ..., sq). Note that LT is also multiplicative by the multiplicativities
of v, and deg .. We also have the formula

LTg(f) =LTg,(f mod (sq, ..., s;)) mod (sq,...,s:), Vf € R(X). 3)

Indeed, if s; | f (=1 for some i, then both sides are zero. If s; 1f =1 for all i,
then the formula follows from (1) and (2). The map LTg takes values in the subset
sNXNU {0} of R(X). We identify sV XN U {0} with (N¢ x N/) U {oo} as a monoid
and consider the total order > on sNX™ U {0}.

When R is a field, the above definition coincides with the classical definition as
in [Cox et al. 1997, §2].

Remark 3.2.3. LT stands for “leading term” with respect to a given monomial
order in the classical case d = 0. To define an appropriate LT in the case d > 0, we
should consider a suitable order on the coefficient ring R, which is defined by using
an ordered regular system of parameters as above. Our definition is compatible with
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dévissage, namely, compatible with parameter-reducing maps R — R; — - - - — Rj.
This property enables us to reduce everything about Grobner bases to the classical
case by assuming a certain “flatness” as we will see below.

In the rest of this subsection, let the notation be as in Construction 3.2.2. In
particular, we fix a monomial order > on X N,

Definition 3.2.4. For [ an ideal of R(X), we denote by LTz (/) the ideal of R(X)
generated by {LTz(f); f € I}. Assume that R(X)/I is R-flat. We say that
fi, ..., fs € I form a Grobner basis if (LTg(f1), ..., LTr(fs)) =LTr(I). Note
that a Grobner basis always exists since R(X) is Noetherian.

Note that for monomials f, fi, ..., f; € R(X), we have f € (f1,..., f;) if and
only if f is divisible by some f;. Indeed, any term of g € (f1, ..., fs) is divisible
by some f;, which implies the necessity.

Notation 3.2.5. Let / be an ideal of R(X) such that R(X)/I is R-flat. We write
Ii:=1/(s1,...,s;)]. We may identify R(X) ® R; and I ® R; with R; (X) and [;,
respectively. Note that R; (X)/I; is R;-flat.

Lemma 3.2.6. Let I be an ideal of R{X) such that R(X)/I is R-flat. The following
are equivalent for f1, ..., fs € I:

1) fi,..., fs form a Grobner basis of 1.
(ii) The images of fi, ..., fs form a Grébner basis of I; C R;(X) for some i.
Moreover, when f1, ..., fs is a Grobner basis of 1, fi, ..., fs generate I.

Proof. We prove the first assertion by induction on d = dim R. When d = 0, there is
nothing to prove. Assume the assertion is true for dimension < d. By the induction
hypothesis, we only have to prove the equivalence between (i) and (ii) with i = 1.

We first prove (i) = (ii). Let f € I; be a nonzero element and f € [ a lift of
f. By assumption, we have LTr(f;) | LTg(f) for some j. Then, LTg, (f; mod s1)
divides LTk, (f) by formula (3).

We prove Eii} = (i). Let f € I be a nonzero element. By Lemma 3.1.3, we have
fO= f/s;)'yl / € 1. By assumption, we have LTg, (f; mod s1) | LTg, (f® mod s7)
for some j. Since LTk, (fD mod s1) # 0, s; does not divides fiie, v (f;)=0.
By formulas (1) and (2), LTg(f;) divides LTg(f?), and hence divides LTg(f),
which implies the assertion.

We prove the last assertion. By Nakayama’s lemma and (ii) with i = d, the
assertion is reduced to the case where R is a field. In this case, the assertion follows

from [Cox et al. 1997, §2.5, Corollary 6]. O
Remark 3.2.7. By Lemma 3.2.6, f1, ..., f; is a Grobner basis of [ if and only
if f1 mod mg, ..., fy mod mg is a Grobner basis of //mg/l. In particular, the

definition of Grobner basis does not depend on the choice of a regular system of
parameters {sy, ..., Sq}.
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We can generalize the classical division algorithm, which is a basic tool in many
Grdobner basis arguments.

Proposition 3.2.8 (division algorithm). Let I be an ideal of R(X) such that R(X)/1
is R-flat. Let fi,..., fs € I be a Grobner basis of 1. Then, for any nonzero
f € R(X), there exist a;, r € R(X) for all i such that

f= afi+r
I<i<s
with LTr(f) > LTgr(a; f;) if a; fi # 0, and any nonzero term of r is not divisible by
any )_(dgk(f" ). Moreover, such r is uniquely determined (but the a;’s are not), and
felifandonlyifr =0.

Proof. When d =0, i.e, R is a field, the assertion is well known (see [Cox et al.
1997, §2.6, Proposition 1] for example). We prove the first assertion by induction
on d =dim R. Assume that the assertion is true for dimension < d. We may assume
s11 fi for all i. Indeed, by Lemma 3.2.6, the set { f;; s;1 f;} forms a Grobner basis
of I. Moreover, any LT (f;) is divisible by some LTz (f;) with s; { f;. Therefore,
if we can write f = Zi:ﬁ’fﬁ a; fi + r with respect to {f;; s; 1 fi}, then we can
write f in the same way with respect to f, ..., fs. First, we construct g, € R(X)
by induction on n € N. For h € R(X), let h be its image in Rj(X). Put go := f.
Assume that g, has been defined. Put g, := g, /s, s (&) . By applying the induction
hypothesis to I} = (fl, .. fs) we have a; ,, r, € R1(X) with

g :Z&i,nfi +Fn,
i

such that no nonzero terms of r, are divisible by any X , and such that
LTg,(g,) > LTk, (a; ,,f,) if a;, nf, # 0. We choose lifts a; , and r, in R(X) of
a; » and r,, respectively, such that no nonzero terms of a; , and r, are divisible
by si. Then, we put g1 := g, — U” (g")(zi ainfi +rn). By construction, we
have vy, (gn+1) > vs,(gn), hence, {gng converges si-adically to zero. Moreover,
ai=y., sf” & aipandr:=y_, sU” g")r,, converge s-adically and we have f =
> ai fi+r. We will check that a; and r satisfy the condition. Since s; 1 f; and since
no nonzero term of r, is divisible by s, no nonzero term of r is divisible by X deg, (/)
for all i. We have vy, (f;) = 0 by assumption and vy, (a;) > v, (f) by definition. If
Vs, (a;) > v, (f), then we have v(f) <iex Vg(a; fi), hence, LTr(f) > LTr(a; fi).
If vy, (ai) = v, (f), then we have al.(o) = ag; 0 mod s1, hence, vx(f) < vgp(a; fi) by
formulas (1), (2) and the choice of a; o. In particular, LT (f) > LTr(a; f;). Thus,
we obtain the first assertion.

We prove the rest of the assertion. We first prove the uniqueness of r. Let
f =2 aifi+r=7)_afi+r' be expressions satisfying the conditions. Then, we

gR(f,
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have r —r’ € I, hence, LTg(r — r) € LTg(I). Therefore, r — r’ is divisible by
LTg(f;) for some i. Since no nonzero term of r — ' is divisible by any LTg( f;),
we must have r = r’. We prove the equivalence r = 0 < f € I. We only have
to prove the necessity. Since r € I, we have LTg(r) € LTg(I). Hence, LTg(r)
is divisible by LT g(f;) for some i. Since all nonzero terms of r are divisible by
)_(Ek(f"), we must have r = 0. O

Definition 3.2.9. We call the above expression f =) a; f;+r a standard expression
(of f) and call r the remainder of f (with respectto fi, ..., fs). Note that standard
expressions are additive and compatible with scalar multiplications, that is, if
f=>,aifi+rand g =), a]fi +r' are standard expressions, then f + g =
> i(ai+a)) fi+r+r'isalso a standard expression of f+g,and Af =), Aa; fi+Ar
is a standard expression of Af for A € R by formulas (1) and (2). The remainder of
f depends only on the class f mod I by Proposition 3.2.8 and the above additive
property. Therefore, we may call r the remainder of f mod /.

As in the classical case, we have the following.

Lemma 3.2.10. Let I be an ideal of R(X) such that R(X)/I is R-flat. Let
fi...., fs € I be a Grobner basis of 1. Let f € R(X) be a nonzero element.
Forr € R(X), the following are equivalent:

(1) r is the remainder of f.

(i1) f —r € I and no nonzero term of r is divisible by )_(dg(f") foralli.
Proof. Since the assertion (i) = (ii) is trivial, we prove the converse. By applying the

division algorithm to f —r, we have f —r =) a; f; such that LTg(f) = LTg(q; f;)
if a; f; # 0. This means exactly that r is the remainder of f. (]

Corollary 3.2.11. Let the notation be as in Lemma 3.2.10. We regard fi mod
S1s ..., fs mod sy as a Grobner basis of 1. For f € R(X) with s\t f, denote by r
and r’ the remainders of f and f mod sy, respectively. Then, we have r mod sy =7,

Finally, we give a concrete example of a Grobner basis, which will appear in
Section 3.5.

Proposition 3.2.12. Let I = (f1, ..., fs) C R(X) be an ideal. Assume that there
exists relatively prime monic monomlals Ti, ..., Ty and units uy, . .., us € R™ such
that LT (f;) = u; T; for 1 <i <s. Then, we have the following:

(1) R(X)/I is R-flat.
(i) fi1,..., fs is a Grobner basis of 1.
(i) f1,..., fs is a regular sequence in R(X).
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Proof. We may assume that LTg(f1), ..., LTr(f;) are relatively prime monic
monomials by replacing f; by f;/u;. We first note that in the case of d = 0, the
assertion is basic, since condition (i) is automatically satisfied. Condition (ii) directly
follows from [Cox et al. 1997, §2.9, Theorem 3 and Proposition 4]. Condition (iii)
follows from [Eisenbud 1995, Proposition 15.15] with F = S = R[X] and M =0,
h;= f;, where F\, S and M, h;’s are as in the reference. We prove the assertion by
induction on s. In the case of s = 1, we have only to prove condition (i). We proceed
by induction on d. By the local criteria of flatness and the induction hypothesis,
we only have to prove that the multiplication by s; on R(X)/I is injective. Let
f € R(X) such that s; f € I. Write s; f = f1h for some h € R(X). By taking vy,
we have s; | & since s1 1 f1. This implies fj | f, i.e., f € I. This finishes the case
s = 1. We assume that the assertion is true when the cardinality of f;’s is <s. We
proceed by induction on d. The case d = 0 can be done as above. Assume that the
assertion is true for dimension < d. For h € R(X), denote by & its image in R (X).
By assumption, s; 1 f; for all i, hence, we can apply the induction hypothesis to
f], R ﬂ el := (f_l, R fs) C R(X) by formula (3). Hence, R1(X)/I; is R;-flat,
f], R fs are a Grobner basis of 1, and f_], el fs is a regular sequence in Ry (X).
Condition (ii) follows from Lemma 3.2.6. Next, we check condition (i). By the
local criteria of flatness, we only have to prove that multiplication by s; on R(X)/I
is injective. It suffices to prove I N sy - R(X) C s11. Denote by C, and C, Koszul
complexes for {f1, ..., fs} and {f_l, e, fs} [Matsumura 1980, 18.D]. Then, we
have C; = C;/s,C; for i > 1 by definition, and C, is exact since fi, ..., f; is a
regular sequence. We also have a morphism of complexes C, — C,, whose first
few terms are

C, C I 0
[
-2, 0

Let f € I Nsy - R(X). Then, there exists a € C; such that di(a) = f. Since
dy(a) = 0 mod s, there exists b € C, with da(b) = a. Let b € C, be a lift of b.
Then, there exists a’ € Cy such that a — d,(b) = s1a’. Therefore, we have f =
di(a — dy(b)) = s1dy(a’) € s11. Thus, condition (i) is proved. Finally, we check
condition (iii). We only have to prove thatif f; f € (f1, ..., fi—1) forsome f € R(X)
and 1 <i <s, then we have f € (f1, ..., fi—1). Note that f1, ..., fi—1 is a Grobner
basis of (f1, ..., fi—1) by the induction hypothesis. Let f = Zlij<l- ajfj+rbea
standard expression of f with respect to f1, ..., fi—1. It suffices to prove that r = 0.
We suppose the contrary and deduce a contradiction. No nonzero term of r is
divisible by LT z(f;) for any 1 < j < i; in particular, we have LTz (f;) t LT(r).
By assumption, f; f = ﬁ(ZlSjQ. ajfj) + fir € (f1, ..., fi—1). We therefore have
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fir € (f1,..., fi—1). In particular, there exists 1 < j <i with LTg(f;) | LT(f;r).
Since LTg(f;) and LTg(f;) are relatively prime, we have LTz (f;) | LTg(r), which
is a contradiction. Thus, we obtain assertion (iii). ([l

A remarkable feature of the remainder is the compatibility with quotient norms:

Lemma 3.2.13. Let I be an ideal of R(X) such that R(X)/I is R-flat. Let
f1, ..., fs € I be a Grobner basis of I. Let | - | : R — Rxo be any nonarchimedean
norm satisfying |R| < 1 and \mg| < 1. We extend |-| to a norm on R(X) by
1>, an X™| := sup,la,| < oo. If we denote by |- |q : R(X)/I — Rxg the quotient
norm of | - |, then the remainder r of f € R(X) achieves the quotient norm of
fmod I, ie.,

7| = | £ mod I1q.

Proof. Let f =) 1, X" with 4, € R. Let X" = ) a,,fi +r, be a standard
expression of X™. Let a; := ), Anan; and r := ) A,r,, Which converge since
An — 0 as |n| — oo. Then, f= doaifi+ris a standard expression of f by
Lemma 3.2.10. We have |a; f;| < |a;| < sup,|A,a,,i| < sup,|r.| =|f]|. Hence, we
have |r| < |f]. Since the remainder depend§ only on the class f mod I, we have

| f mod Iq Z;IngJFgI > |r| = [f mod I,

which implies the assertion. (]

3.3. Grobner basis argument over annuli. In this subsection, we will give an
analogue of a Grobner basis argument over rings of overconvergent power series.
We use the notations of Section 3.1 and 3.2 and further use the following notation.

Notation 3.3.1. Let O, R™, and R be as in Notation 3.1.4. Fix {p, S} as a regular
system of parameters of R™. Let I C R™(X) be an ideal such that R (X)/I is
R*-flat. For r € Q-, we give R™" the topology defined by the norm | - |, and write

A:=RYX)/1, T :=1Qp+x) RV (X), A" :=A®rx) R™(X).

(When I =0, R""(X) is denoted by R(X )™ in this notation. However, we use this
notation for simplicity.) Since R (X) — R""(X) is flat (Lemma 3.1.7), we may
identify [T and A™" with I - R""(X) and R”(X)/IT”. Since R™ is an integral
domain, A and hence, A" are R*-torsion free by flatness.

Let |- |q: At — R>o be the quotient norm of | - |.. Note that A" is complete
with respect to | - | by [Bosch et al. 1984, Section 1.1.7, Proposition 3].
Lemma 3.3.2 (cf. [Xiao 2010, Lemma 1.1.22]). Let f1, ..., f; € I be a Grobner
basis of I. For f € R™" (X)), there exists a unique v € RV (X) such that f —ve I™"
and no nonzero term of ¢ is divisible by X@R(ﬁ). Moreover, we have ||, = | f |y gt
forr' e QN (0, r), and vt =0 if and only if f € I'""". We call t the remainder of f
(with respect to f1, ..., fs).
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Proof. We first construct t. Let f = Zﬂ)\ﬂxﬂ e RV (X) with An € R™". Let

Xﬁzzaﬁ,i.fi +rﬂ
i

be the standard expression of X™ in R™ (X) with respect to fi, ..., fs. Since An—0
as |n| — oo, the series

a; :=E AnGy i, t:=E Anfn
n n

converge in RT(X) with respect to the topology defined by | - |.. Then, we have

[t], < sup |)\'Qrﬂ|r/ < Ssup I)‘er/ =|flr. “)
n n

Obviously, no nonzero term of v is divisible by any X deg ()

Zi ai fi € AR

We prove the uniqueness of t. We suppose the contrary and deduce a contradiction.
Let ' € R (X) be an element such that f —t € I™" and such that no nonzero term
of v/ is divisible by any X%/}, We choose m € N such that § := $™ (t—v') belongs
to 1] := I ®g+(xy Ry (X). If we write § = p"§ such that 8' € R} (X) is not
divisible by p in RS” (X), then we have §' € IOJ” by Lemma 3.1.3. We may identify
Ig’r/plg’r with 1/pI by Lemma 3.1.10. We write §’ := 8’ mod plg’r el/pl.

We also write Rfr := R /pR™, which is a complete discrete valuation ring with
deg, 1 (fi mod p)

and we have f —t =

uniformizer S. Then, no nonzero term of &’ is divisible by X . Hence,
8 is the remainder of 0 with respect to f; mod p, ..., f; mod p in R{(X). By
Lemma 3.2.10, 8 =0, i.e., 8 € mod pI;™", contradicting p 18&'.

We prove f =17" < v=0.1If f € I, then O satisfies the required property for
the remainder, and hence t = 0 by uniqueness. If t =0, then f € I by definition.

We prove |t|» = | f mod I”|r/,qt. Let € IT". Since v satisfies the required
condition for the remainder of f + «, the remainder of f + « is equal to t by
uniqueness. In particular, the remainder depends only on the of class f mod 17",

Hence, the assertion follows from
|f mod [ |yq = inf [eals = [el = |f mod [™|yq,
ael’

where the first equality follows from (4) and the second inequality follows by
definition. ]

The following is an immediate consequence of the above lemma.

Lemma 3.3.3. Let fi, ..., f; be a Grébner basis of 1. Let f, g € R""(X) and let
t, v be their remainders with respect to f1, ..., fs. Then, we have the following:

(i) The remainder of f + g is equal to t+v'.
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(ii) The remainder v depends only on f mod I™". One may call the remainder
of f the remainder of f mod I

(iii) For A € R™", the remainder of Af is equal to Ax. Moreover, if f mod I is
divisible by A € R™", then v is also divisible by .

Corollary 3.3.4. Let a C R™" be a principal ideal. Then, we have (Mnen @ AT =0,

Proof. Fix a Grobner basis f1, ..., fy of I. Let f € (), @ - AT and let ¢ be the
remainder of f with respect to f1, ..., f;. By Lemma 3.3.3(iii) and the assumption,
we have v € (), @" =0. O

Remark 3.3.5. Using [Kedlaya 2005, Proposition 2.6.5], one can prove that RT"
is a principal ideal domain. We do not use this fact in this paper.

3.4. Continuity of connected components for families of affinoids. In this sub-
section, we will apply the previous results to prove a continuity of connected
components of fibers of families of affinoids.

Lemma 3.4.1. Let f : R — S be a morphism of Noetherian rings and let Idem(T)
denote the set of idempotents of a ring T. If the canonical map fy : ldem(R) —
Idem(S) is surjective and f7'({0}) = {0}, then f*: 3™ (S) — n&*(R) is bijective.

Proof. We first recall a basic fact on commutative algebras. For a ring A, finite parti-
tions of Spec(A) into nonempty open subspaces as a topological space correspond to
finite sets of nonzero idempotents ey, ..., e, of A suchthat) ;e; =1 and e;je; =0
for all i £ j. Precisely, ey, ..., e, correspond to Spec(Aej) U - - L Spec(Ae,) (for
details, see [Bourbaki 1998, Proposition 15, II, §4, no 3]).

Decompose Spec(R) into connected components and choose the corresponding
idempotents ey, ..., e, as above. Since the nonzero idempotents f(e;), ..., f(e,)
satisfy ), _,, f(e;) =1and f(e;) f(e;) =0fori # j, we obtain a finite partition
Spec(S) :_Sﬁec(S f(er))U---USpec(Sf(en)). Hence, we only have to prove that
Spec(Sf(e;)) is connected for all 1 <i <n. Let ¢’ € Idem(Sf (¢;)). By regarding
¢’ as an element of Idem(S), we obtain an x € Idem(R) such that ¢/ = f(x). Since
xe; € Idem(Re;) and Spec(Re;) is connected by definition, we either have xe; =0
or xe; = e;. Since we have ¢’ = ¢’ f(e;) = f(x)f(e;) = f(xe;), we either have
¢ =0ore = f(e;). Hence, Sf (e;) has only trivial idempotents, which implies the
assertion. U

Notation 3.4.2. In the remainder of this subsection, we let the notation be as in
Notation 3.3.1 and Definition 3.1.8, unless otherwise stated. For an Eisenstein
prime ideal p of R™, we fix a norm |- |, of the complete discrete valuation field
Kk (p) and write

Acp) = (A/pA)[ST.
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We identify R (X)/pR™ (X) with O, (X), and denote the Gauss norm on « (p)(X)
by |- |p. We also denote the quotient (resp. spectral) norm of |- |, on A/pA and
Ay by |- lp,qt (tesp. | - |y sp). For simplicity, we also write | f mod I/p[|p g (resp.
| f mod I/pl|pq0) bY | flp.qe (resp. | flp.q0) for f € k(p)(X).

For f =Y, a, X" € O()(X) with nonzero a, € Op), let G, € R™ be a lift
of a,. Then, f= >, @ X™ € RT(X) is called a minimal lift of f.

We may apply Construction 3.2.2 to R = O, and s1 = m, with the same
monomial order > for O[S]. Let fi, ..., f; be a Grébner basis of /. Then, the
images of f;’s in Rt /mg+[X] form a Grobner basis by Lemma 3.2.6. Hence,
the images of f;’s in Oy, (X) form a Grobner basis of I/pl by Lemma 3.2.6
again. In particular, if v is the remainder of f € R™(X) with respect to fi, ..., fs,
then the image of v in O,y (X) is the remainder of f mod p with respect to
fimodyp,..., fy mod p.

By using our Grobner basis argument, Lemma 3.1.9 can be converted into the
following form:

Lemma 3.4.3. Let ¢ € N and let p, q be Eisenstein prime ideals of R such that
c < inf (degp, deg q). Assume that for n € N, we have

|f" lp.qt = |7Tp|;|f|g,qtv V€ Acp-
Then, we have
| q.qe = |mqlgl flgqe Y € Ac-

Proof. We fix a Grobner basis fi, ..., f; of I. We may regard the f; mod p’s (resp.
fi mod q’s) as a Grobner basis of I/pl (resp. 1/ql). To prove the assertion, we
may assume that f € A/qA. Let v € Oy () (X) be the remainder of f. We have
[flg.q = Itlqg = |71q|’" for some m € N. To prove the assertion, we may assume
| fla.qe = Itlg = 1 by replacing f, by f/x", v/nl".

Let ¥ € R*T(X) be a minimal lift of t and let f € A denote the image of . Denote
by t, € RT(X) the remainder of f”. Then, we have

v, mod pl, = | /" mod ply g > |np|;|f mod pl;”qt

by Lemma 3.2.13 and by assumption. Since |t[q = I, the coefficient of some X™ in
t belongs to O ()" Therefore, the coefficient of X" in t, hence, in t mod p is a unit.
Therefore, we have

| f mod plp g = [t mod p|p, =1,

hence, |v, mod p|, > |7y |,. By applying Lemma 3.1.9 to the coefficient A of v, that
satisfies |A mod p|, > |7, |, we obtain [t, mod q[q > |7Tq|c Since t, mod q is the
remainder of f", we have | f"|q q = v, mod qlq > |7rq|c by Lemma 3.2.13, which
implies the assertion. (]
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The following lemma can be considered as an analogue of Hensel’s lemma.
Lemma 3.4.4 (cf. [Xiao 2010, Theorem 1.2.11]). Assume that there exists ¢ € R>g
such that

| - |p,sp > |7Tplc| : |p,qt on AK(P)'

Then, for all v € Q- N[1/degp, 1/2c), there exists a canonical bijection
n()Zar(AK(p)) — ngar(AT,r).

Proof. Replacing ¢ by [c|, we may assume ¢ € N. Denote by « the canonical
map Idem(A™") — Idem(A, ). By Lemma 3.4.1, we only have to prove that we
have o~ ({0}) = {0} and that « is surjective. Let e € Idem(A™") satisfy a(e) = 0.
Then, we have e € p- AT, Since e = ¢", we have e € (Maen P - AT =0 by
Corollary 3.3.4, which implies the first assertion. We will prove the surjectivity
of a. Let e € Idem(A,(p)). Since |e|psp=1> |np|g|e|p,qt by assumption, we have
e € T, “A/pA. Hence, we can choose ¢’ € A such that e = S7“¢’ mod p. Put
ho := S~ (e/* — §°¢/) € A[S™']. Since
% — 5% = (S%)* — S°- S = 5% (e2 — ) = 0 mod p,
we have ho € pS~2¢ - A. Since p C (p, S°)R™T, we obtain

holr.q < sup (S|, [pDIS| 7% = |p' 2"

We define sequences { f,,} and {&,} in A[S™] inductively as follows. Put fj:=S"¢’
and let /1 be as above. For n > 0, we put

fort = fot by =2hnfa, hagri= iy — fup € AIST'LL
Note that for n € N, we have

for1 ==FIC[H=3)  fur—1=—(H—D*Qf+1D),
hence, 11 = f2(fo — D> f? — 4h, — 3) = h2(4h, — 3). Then, we have

| < 1.

2
|hn—|—1 |r,qt =< |hn|r,qt Sup(|hn|r,qta 1)-

Therefore, by induction on n, we have |h,|, <1, hence, |, 41|, < |y |f. In particular,
we have |h,|, — 0 for n — 0o0. We also have

Sup(|fn+1|r,qt» 1) 5 Sup(|fn|r,qt’ |hn|r,qt’ |hn|r,qt|fn|r,qt, 1) = Sup(lfn|r,qt» 1)’

hence, sup (| fulr.qt, 1) < sup (| folr,qt, 1). Therefore, we have

|fn+l _fn|r,qt = |hn(1 _an)|r,qt = |hn|r,qt Sup(lfn|r,qt7 1) = |hn|r,qt sup (|f0|r,qta 1)
In particular, { f,,}, is a Cauchy sequence in AT with respect to | - | rqt- The element
f :=1lim,_,  f, satisfies f2 — f =1lim,_ o h, = 0 and is an idempotent of AT,
Since we have &, € p- A" by induction on n, f = fy=e mod p, i.e., a(f) =e. O
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Proposition 3.4.5 (Continuity of connected components). Let A, (,) be reduced.

(1) There exists ¢ € R>q such that

| . |(p),sp = |S|?p) | : |(p),qt
on Ay (p). We fix such c in the following.
(ii) Let n € Nx; and p an Eisenstein prime ideal of R™ with degp > nc. Then:

nc

Do = ply™ [ lpar 0n Ay
(iii) Let p be an Eisenstein prime ideal of R™ such that degp > 3c. Then, for
reQ-oN[l/degp, %c), there exists a canonical bijection
T (Apy) = TET(AT).
In particular, we have
#10(Acp) = #10(Ar(py) = #m " (AT).
Proof.

(i) By assumption, |- [(p),sp is equivalent to | - () q ON A, (p). Hence, there exists
A € R.g such that |- |sp > A| - |q. From [1|sp = [1|qc = 1, we deduce A < 1.
Hence, ¢ = logl S| A > 0 satisfies the condition.

(i) By (i), we have

|fn|(p),qt = |fn|(p),sp = |f|?p),sp = |S|?;) |f|?p),qt’ Vf € AK(p)'

From Lemma 3.4.3, we obtain

| p.at = 7l [l g VS € Ay
By using this inequality iteratively, we obtain

nc(ni —1)

i 2 i i o i
L™ lpage = [ [y e fIE =17l ™ 1 f g VS € Ac)-

. i 1/n' -1
Hence, forall f € Ay, we have | flp sp=infien | £ 1y/ch = 175" | flp.que

(iii)) When p = (p), the assertion follows from (i) and Lemma 3.4.4. We consider the
case p # (p). By applying Lemma 3.4.4 to the inequality in (ii) with n =3, we
obtain the assertion for r € @QN[1/degp, %c). For general r € QN[1/degp, %c),

the assertion is reduced to the previous case by taking Jrozar of the commutative
diagram
can. can.
Ax(p) AP Axp)
id l can. id

can. 1

Appy === AV Ty S A O
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Remark 3.4.6. In Theorem 1.2.11 of [Xiao 2010], Xiao proves #mo(Ax(p)) =
#Jrozar(AT”) under the slightly mild Hypothesis 1.1.10 on A by a similar idea. To
generalize Xiao’s result for Eisenstein prime ideals, it seems needed to assume that
A is flat over R.

To obtain a geometric version of this proposition, we need the following lifting
lemma.

Lemma 3.4.7. Let p be an Eisenstein prime ideal of R™ and L/« (p) a finite exten-
sion. Let O" be a Cohen ring of kp and put R’ := O'[T]. Then, there exists a finite
flat morphism o : Rt — R’ and an isomorphism R’ /pR’ = Oy of R™ /p-algebras.
Moreover, for any Eisenstein prime q of R™, qR’ is again an Eisenstein prime ideal
with degree ey ;i (p) deg(q).

Proof. We can define « similar to the definition of the homomorphism § in
Construction 1.6.3: we fix an O’-algebra structure on Oy, and let f : R" — O
be the local O’'-algebra homomorphism, which maps 7 to a uniformizer r;, of L.
Write m, = nzL/ “P i with u € O} . Since f is surjective by Nakayama’s lemma,
we can choose a lift u € (R")* of &. Since R* is p-adically formally smooth over
Z[S], we can define a morphism « : R™ — R’, which maps § to T¢./<®y, by the
lifting property.

We claim that pR’ is an Eisenstein prime. Let P be an Eisenstein polynomial of
O[S] that generates p. We have P = T9€®eL/c»y mod pR’ for some unit u € R’.
By the Weierstrass preparation theorem, there exists a distinguished polynomial
Q(T) of degree deg(p)er /i (p) and a unit U(T') € R’ such that P = Q(T)U(T). By
evaluating at 7 = 0, we see that Q(0) is equal to p times a unit of O’, which implies
the claim. In particular, R’/pR’ is a discrete valuation ring. Hence, the canonical
surjection R’/pR’ — Oy induced by f is an isomorphism. By Nakayama’s lemma
and the local criteria of flatness, « is finite flat. The second assertion also follows
from the Weierstrass preparation theorem. ([

The following is our main result of this subsection:

Proposition 3.4.8 (continuity of geometric connected components). Assume that
Ay (p) is geometrically reduced.

(1) If all connected components of A, (p) are geometrically connected, then all con-
nected components of Ay are also geometrically connected for all Eisenstein
prime ideals p of R™ with degp > 0.

(i) For all Eisenstein prime ideals p of Rt with degp > 0, we have

#70" (Ae) = #15 (Ac(p))-
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Proof.
(i) By assumption, there exists ¢ € R>q such that |- [, sp > |S|fp)| “l(p),qt ON

(i)

3.5.
tion,

A(p) ®i(p) K (p)¥2. We prove that all Eisenstein prime ideals p of R* with
deg(p) > 3c satisfy the condition. Let L/ (p) be a finite extension. Let R’ be as
in Lemma 3.4.7. Since R’ is finite flat over R™, we have RT(X)®p+ R’ = R'(X)
and I' :=1 ®p+xy R"(X) = I - R’(X). Hence, we can apply Proposition 3.4.5
toR"=R,I=1"and A=A":= AQg+ R = R'(X)/I'. Note that cey /() can
be taken as c¢ in Proposition 3.4.5(i). Therefore, Proposition 3.4.5(iii) yields

#nozaI(AK(p) Qp) L) = #ﬂozar(A:«(pR’)) = nozar(Ajc(p))
= #710" (Ac(p) = #15" (Aep)
where the third equality follows from the assumption. Therefore, we have
#75°" (Are(p)) = #70(Ay(p)), which implies the assertion.

Let L/k(p) be a finite extension such that all connected components of
Ay(p) Q(py L are geometrically connected. Let R’ be a lifting of Oy, as
in Lemma 3.4.7 and A’ as in the proof of (i). Part (i) and Proposition 3.4.5(iii)
give the assertion. U

Application: Ramification compatibility of fields of norms. In this subsec-
we prove Theorem 3.5.3, which is the ramification compatibility of Scholl’s

equivalence in Theorem 1.8.3, as an application of our Grobner basis argument.
We first construct a characteristic zero lift of the Abbes—Saito space in character-

istic

p.

Lemma 3.5.1. Let F/E be a finite extension of complete discrete valuation fields of
characteristic p. Assume that the residue field extension kr / kg is either trivial or

purely inseparable. For m € N, we put X := (Xo, ..., Xm) and Y := (Yo, ..., Yi).

@)

(ii)

[Xiao 2010, Notation 3.3.8] For some m € N, there exist a set of generators
{z0, ..., 2m} of OF as an Og-algebra, with zy a uniformizer of F, and a set
of generators {py, ..., pm} of the kernel of the Og-algebra homomorphism
Og(X) — OF defined by X j — z; such that

po=Xy"" +meno,
P :X{’ —¢&;+Xod;+mgn; forl<j<m,
where 5‘/, UFRS 0E<)_(>, gj € OE(X(), ceey Xj—l) and fj e N.

Let > be the lexicographic order on Og{X) defined by X,, > --- > Xo. We
view g as a regular system of parameters of Og and apply Construction 3.2.2.
Then, we have LTo,(p;) = XgeF/E foralln € N. Let l,n € N.g satisfy



(iii)
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p n > eF/E Then, for 1 < j < m, there exists 0;;, € Op(X) such that
LTOE(pj — p(gp n/e”bJOJ n) = qu’p for some unitu € 1 +ngOF.

(cf. [Xiao 2010, Example 1.3.4.]). Fix an isomorphism E = kg ((S)). Let O be
a Cohen ring of kg and let R := O| S]] with canonical projection R — Og.
Fix a lift P; € R(X) of pj forall j. Let o € N+l B € NmJrl Assume that

Bj/er/E]l > ﬁofor all 1 < j <m, and assume that there exlstsl € N.og such
that p' | Bj for all 1 < j <m. Then, the R-algebra

Agp=R(X.Y)/(SY; — PP 0< j <m).
is R-flat. Moreover, the fiber of Ay g at any Eisenstein prime p of R is an
affinoid variety, which gives rise to the following affinoid subdomain of D™\

Kk(p) *
D" (|7ry|~*i/Pi (P; mod p), 0 < j <m).

Proof.

(i) See [Xiao 2010, Construction 3.3.5] for details.

(ii) Since the coefficient of X,""'* in p{! is equal to 1, the first assertion follows from
pi =X, """ modng. For the second, we put 6}, := Xpn errelr! n/eF/EJSf"
Since

) ! . ) 1 ! ! .
Pl = Xf i —85-”1 + X" = Xj.’ i —|—p0p "/eF/EJQJI,, mod 7,
LP n/er/E] plnf; pn
wehaveLTkE(p Po 0j1nmod )= LTkE(Xj —€; mod 7g) =

(iii)

X fip'n , which implies the assertion.

The last assertion is trivial. We prove the first assertion. Let > be the lexico-
graphic order on Og (X, Y) defined by X,, > --- > Xo> Y, > --- > Yo. We
view {p, S} as aregular system of parameters of R and apply Construction 3.2.2.
For 1 < j <m, we choose a lift of 6;; 4./, and denote it by © ; for simplicity.
Then, the ideal (S*/Y; — P; ’, 0 < j <m) is generated by Q¢ := S*Yp — P’gO
and

Q;:=8YY; - Pfj —($*Yy — P()BO)POLﬂj/eF/EJ_'B()@j

for 1 < j < m. It follows from Proposition 3.2.12 that we only have to prove
that LT g /m; (—Q; mod mp) are relatlvely prime monic monomials. We have
LTR/m;(Qo mod mg) = —LTg/m, (pOO) =— eF/EﬁO . Since

LBj/er/E]

Q pj + 0 941’1 ﬂj/pl mod meg,

we have LTg /m, (Q; mod mg) =—X {’ b by (ii), which yields the assertion. [J
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In the rest of this subsection, let the notation be as in Definition 1.8.1.

Lemma 3.5.2. Fix an isomorphism X g = kg((I1)), let O be a Cohen ring of kg and
put R := O[IT].

(1) There exists a surjective local ring homomorphism ¢, : R — Ok, for all
sufficiently large n such that diagram

can.

+
R Xt

\¢,, |

Ok, —= Ok, [0k,

commutes, and ker (¢,,) is an Eisenstein prime ideal of R. We fix ¢, in the
following and put p, := ker (¢,,).

(ii) Let r € Qg and let Lo/ K~ be a finite extension and £ = {L,},~0 a corre-
sponding strictly deeply ramified tower. Assume that the residue field extension
of X¢/ Xg is either trivial or purely inseparable. Then, there exists a flat R-
algebra AS" (resp. AS ]Og) of the form R(X)/I for anideal I C R(X), whose
fibers at (p) and p,, are isomorphic to the Abbes—Saito spaces asly /X0 and
asy ik, e (resp-asy ,x o andasy g ) forall sufficiently large n.

(ii1) With the notation and assumption of (ii), we have for all sufficiently large n:
#F'(Xg) =#F (Ln), #F50(Xe) = #Foq(Ln).
Proof. Put E := Xg and F := Xpg.

(1) For all sufficiently large n, the projection pr, : O — Ok, /£ Ok, induces
an isomorphism &, : kg — kg, of the residue fields. Hence, we can choose
an embedding O — Ok, that lifts ®,. Let wg, be a uniformizer of Ok, ,
which is a lift of pr, (IT) € Ok, /£ Ok, . Since the O-algebra homomorphism
O[Il] — R; IT + II is formally étale, we have a map ¢, sending II to 7k, .
Since Ok, /O is totally ramified, the kernel of ¢, is generated by an Eisenstein
polynomial.

(ii) Fix &' € Og_ such that 0 < v,(§") < v,(§) and such that {L,},~ is strictly
deeply ramified with respect to §’. We denote the composite cano pr, : O —
Ok, /§Ok, — Ok, /§'Ok, by pr, again, and fix an expression r = a/b with
a,beNandb > 0. Also, ﬁxlENw1thp > er/g. Define o, alog,ﬂ ,B]l eN!
via ag 1= a, Aog,0 :=a+b, Bo = Piog,0 :=b, and o; = o, j; = ap’, ,8]
Biog,j = bp' for 1 < j < m. Then, we can apply Lemma 3.5.1 to the finite
extension F'/E. In the following, we use the notation as of that lemma. We will
prove that Ay B (resp. Aal ) satisfies the desired condition. We first consider
the nonlog case. By Lemma 3 5.1(iii), the fiber of Ay B at (p) is isomorphic to
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asy JE.Z° where Z = {zo, ..., zn}. Recall that we have a canonical surjection

. Or—Op, /§'0Oy, for all sufficiently large n. We choose a lift z(") €0, of
pr (zj) €0y, /§'OL,. Then, the z( )5 are generators of Oy, as an (QK -algebra
by Nakayama’s lemma and, by lemma Lemma 3.5.1(1), z§ )
of Op,,. We consider the surjection ¢, : Ok, (X) — Op,; X; — z;

alift p" € ker (¢,) of pr,(p;) € Ok, /&' O, [X]:

is a uniformizer
) and choose

le—)Zj
Og(X) Or
prn prn
Xj—>pr,(z;)
Ok, /&' Ok, [X] Or,/&'0L,
can. can.
go,,;Xjn—ﬂyL)
Ok, (X) OL,.

By Nakayama’s lemma, the p )°s are generators of ker (¢,). We may assume
vk, (§) > r by choosing n sufﬁ01ent1y large. Since ¢, (P;) = p( " mod (&), we
have |¢, (P;)(x)| < |mk, |" if and only if |p{" (x)| < |mk, | for any x € Ot
This implies that the fiber of AS” at p,, is 1s0m0rphlc to as; K Z 0 where
zZm = {z (()"), R m)}, which implies the assertion. In the log case, a similar
proof works if we choose n sufficiently large such that vk, (') >r + 1.

(iii) This follows from applying Proposition 3.4.8 to AS” and AS{Og (]

The following is the main theorem in this subsection. See [Hattori 2014, §6] for
an alternative proof.

Theorem 3.5.3. Let Lo,/ Koo be a finite separable extension and £ = {L,},~0 a
corresponding strictly deeply ramified tower. Then, the sequence {b(L,/K,)}n>0
(resp. {biog(Ln/Kn)}n=0) converges to b(X ¢/ X g) (resp. biog(X e/ X))

Proof. Since the nonlog and log ramification filtrations are invariant under base
change, so are the nonlog and log ramification breaks. Hence, we may assume
that the residue field extension of Xg¢/Xg is either trivial or purely inseparable
by replacing K and Ly by their maximal unramified extensions. We first prove
the nonlog case. Recall that we have [X¢ : Xg] = [L, : K,,] for all sufficiently
large n by Theorem 1.8.3. For r € Q- with b(X¢/Xg) <r, we have #F7" (L) =
#F'(Xe) = [L, : K,] for all sufficiently large n by Lemma 3.5.2. Hence, we
have limsup, b(L,/K,) <b(Xe/Xg). Forr € Q.o with b(X¢/Xg) > r, we have
#F" (L) =#F"(Xe) <[L, : K,] for all sufficiently large n by Lemma 3.5.2 and the
definition of 7". Hence, we have liminf, b(L,/K,) > b(X¢/Xg). Therefore, we
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have b(X¢/Xg) < liminf, b(L,/K,) < limsup, b(L,/K,) < b(Xg/Xg), which
implies the assertion. In the log case, the same argument with b and 7" replaced

by bjog and ]-"{Og works. O

The following representation version of Theorem 3.5.3 will be used in the proof
of Theorem 4.7.1.

Lemma 3.54. Let F/Q, be a finite extension and let V € Replfg(GKn) a finite
F-representation for some n. We identify Gx, with Gk, via the equivalence in
Theorem 1.8.3.

(1) Form=>n, let L,, (resp. L, X') be the finite Galois extension corresponding to
the kernel of the action of G, (resp. Gk, , Gx,)onV. Then, Lo, corresponds
to X' under the equivalence in Theorem 1.8.3 and {L,,}>n is a strictly deeply
ramified tower corresponding to L.

(i1) The sequences {ArtAS Vlik.) and {SwanAS Vlk,,) }mZn

m }m>,, are eventually
stationary and their limits are equal to Art*S (V| x;) and Swan®S (V| Xg)-

Proof.

(1) The first assertion is trivial. We prove the second assertion. Since G, NGk, =
Gy, forallm > n, we have L,, = L,K,,. Therefore, {L,,} is a strictly deeply
ramified tower corresponding to L :=J,, L,,. Hence, we only have to prove
that Loo = L. Let p : Gk, — GL(V) be a matrix presentation of V. By the
commutative diagram

inc. 4

1 Gr. Gk., GL(V)
£\CanA \jid
inc plGKm
| GL. Gk, GL(V),

where the horizontal sequences are exact, we obtain a canonical injection
G, — Gy, Therefore, we have L,, C L, hence, L C L. To prove the
converse, we only have to prove [ Lo : Kool <[L : Koo]. Since (KooNLy)/Kp
is finite, we have Ko N L, = K,, N L, for sufficiently large m. In particular,

[L: Kool =[LnKoo: Kool =[Lyp: Koo N Ly]
=[Ly:KuNLyl=[LyKy:Kp]=[Lw:Kpnl.
Then, the assertion follows from
[Loo : Kool =#p(Gk,) < #p(Gk,) = [Lm : Knl.

(i) By Maschke’s theorem, there exists an irreducible decomposition V|x, =
V* with V* € Re f(GX‘). We choose mg € N such that the canonical
A pF 8
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map Gk, — Gr,/k, is an isomorphism for all m > mg. Then, V* is
G, -stable for all m > mo. Moreover, V*|g € Replf;(G k,,) 1s irreducible.
For m > my, let L /K,, be the finite Galois extension corresponding to the
kernel of the action of Gk, on V*. By (i), £* = {L },y=m, is a strictly deeply
ramified tower and X ¢x corresponds to the kernel of the action of Gy, on V*.
By the irreducibility of the action of Gg,, (resp. Gx,) on V%, we have

At (VHk,) = b(L},/Ky) dimp(V),
At (V| x) = b(X g1/ X ) dimp (V)

for m > mg. We apply Theorem 3.5.3 to each £* to getlim, o Art(V|g,) =
Art(V|x,). Note that K, is not absolutely unramified for sufficiently large m.
Indeed, the definition of strictly deeply ramified implies that K,,;/K,, is
not unramified. By Theorem 1.5.1, the convergence of {Art(V|g,, )} implies
that {Art(V|g,,)} is eventually stationary, which implies the assertion for the
Artin conductor. The assertion for the Swan conductor follows from the same
argument by replacing Art and b by Swan and bjqg. ([

Remark 3.5.5 (a Hasse—Arf property). Let the notation be as in Lemma 3.5.4 and
let p =2. By Theorem 1.7.10 and Lemma 3.5.4(ii), Swan(V |k, ) is an integer for
all sufficiently large m (cf. Theorem 1.5.1).

4. Differential modules associated to de Rham representations

In this section, we first construct Ngg (V) as a (¢, ['x)-module for de Rham repre-
sentations V € Rep@p(G k), see Section 4.2. Then, we prove that Ngg (V) can be
endowed with a (¢, V)-module structure (Section 4.4). Then, we define Swan con-
ductors of de Rham representations (Section 4.6) and we prove that the differential
Swan conductor of Ngr (V) and Swan conductor of V are compatible (Section 4.7).

Throughout this section, let K be a complete discrete valuation field of mixed char-
acteristic (0, p). Except for Section 4.6, we assume that K satisfies Assumption 1.9.1,
and we use the notation of Section 1.3.

4.1. Calculation of horizontal sections. For perfect kx, Ngr(V) is constructed
by gluing a certain family of vector bundles over K, [[¢] for n > 0, see [Berger
2008b, Section II.1]. When kg is not perfect, K,,[[¢] should be replaced by the ring
of horizontal sections of K, [[u, t1, ..., t;] with respect to the connection V&°™,
which will be studied in this subsection.

Definition 4.1.1. (i) We have a canonical K,-algebra injection

K, lt,ui,...,uqsll — BIR
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since B(J{R is a complete local K #'2-algebra. The topology of K, [[t, u1, ..., ug]l
as a subring of [B(J{R (endowed with the canonical topology) is called the
canonical topology. Note that K, [[#, u1, ..., uq] is stable under the G g -action,
and that the G g-action factors through I'k.

(i) Let F be a complete valuation field. The Fréchet topology on

FlIiXy, ..., I =Mm FIXy, .0, X/ (X, e, X)™
m

is the inverse limit topology, where F[ X1, ..., X, 1/(X1, ..., X,)" is endowed
with a (unique) topological F-vector space structure. Note that F[ X1, ..., X, ]
is a Fréchet space, and that the (X1, ..., X;)-adic topology of F[[ X1, ..., X,
is finer than the Fréchet topology.

Lemma 4.1.2. The canonical topology of K,[t, u1, ..., ugll and the Fréchet topol-
ogy are equivalent. In particular, K, [t,uy, ..., uqll is a closed subring of BIR.

Proof. Put V,, . =K, [t,uy, ..., uql/(t,ui, ..., uqs)" andidentify K, [[t,uy, ..., uqll
with lim, V. If we endow V,,, with a (unique) topological K, -vector space struc-
ture, then the resulting inverse limit topology is the Fréchet topology. We have a
canonical injection V,,, — [EBIR J(t,uy, ..., ug)™. If we endow V,, with the subspace
topology as a subset of [EB(“;R J(t,uy, ..., ug)"™, which is endowed with the canonical
topology, then the resulting inverse limit topology is the canonical topology. Since
[B:{R /(t,uy,...,uqg)™ is K,-Banach space by definition, V,, endowed with this
topology is a topological K,-vector space. This implies the assertion. ([

Notation 4.1.3. The subring K[z, u1, ..., ug]V*" =0 =By VK, llt, u1, ..., ugl
of ng is denoted by K, [[t, uy, ..., uq]lY for n € N. We call the subspace topology
of K,[it,ui, ..., uqllY as a subring of B:{R (endowed with the canonical topology)
the canonical topology. Note that K, [[¢, uy, ..., ugllV is a closed subring of ng
since the connection V&M : B, — Bl ®x QL is continuous and By is closed
ol

in Bg.

Lemma 4.1.4. The ring K,[[t, u1, ..., uqll" is a complete discrete valuation ring
with residue field K, and uniformizer t.

Proof. We define a map

f:Kn[t,ul,...,ud]—> Kullt, up, ..., uqll
(_1)n1+~~+nd " - "
X = Z l'—nd‘ul‘...uddal'o---oadf’(x).

It is easy to check that this is an abstract ring homomorphism such that Im(f) C
Kullt,ui, ..., uqlY, f(x)=tf(x)forall x € K,[t,uy,...,uqland f(u;)=0 for
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all j. In particular, f is (¢, uy, ..., ug)-adically continuous. Passing to the comple-
tion, we obtain a ring homomorphism f: K, [¢, uy, ..., usl — K,lt, uy, ..., ugllV.
Since f isidentity on K, [[¢, uy, ..., uqllV, fis surjective and f induces a surjection

foKaltl = Kollt, ur, oy ugll/ s .o ug) = Kallt, un, . ugll,

where the first isomorphism is induced by the inclusion K, [[t] C K, [[t, u1, ..., ugll.
Since f(r) =t is nonzero, f is an isomorphism, which implies the assertion. [
Lemma 4.1.5. The t-adic topology on K,[[t, ui, ..., ugll is finer than the canoni-
cal topology.

Proof. Denote K, [[t, ui, ..., uq]" by R and identify R with lim R/:™R. If we
endow R/t™R with the discrete topology, then the resulting inverse limit topol-
ogy is the r-adic topology. By Lemma 4.1.4 and dévissage, the canonical map
R/t"R — K,lt,uy,...,uql/(t,uy,...,ug)™ is injective. If we endow R/t R
with the subspace topology as a subset of K,,[t, uy, ..., uql/(t, uy, ..., ug)", en-
dowed with a (unique) topological K,-vector space structure, then the resulting
inverse limit topology is the canonical topology. Since the discrete topology is the
finest topology, we obtain the assertion. U

The map f defined in the proof of Lemma 4.1.4 is continuous when K = K:

Lemma 4.1.6. Let ¢ : Og — O be the unique Frobenius lift, characterized
by ¢(tj) = tf forall 1 < j <d. Then, the map f : Enﬂt,ul,...,ud]] —
Kullt, ut, ..., ugl¥ defined in the proof of Lemma 4.1.4 is continuous with respect
to the Fréchet topologies.

Proof. By the definition of f, we only have to prove the following claim: for all
meNand 1 <j <d, we have

"(Og) C m! Og.

) ~ ~ ~
W 0z —> : —
e first note since d : O QO,; and ¢, QO,; QO,; commute, we have

8jogpi=pitjl.7i_1(pioaj (5)
foralli e Nand 1 < j <d. We prove the claim. Fix m and choose i € N such

that v, (m!) <i. Since k = kII%I [1, ..., 1], we have O = ¢ (OR)[t1, . .., ta] by
Nakayama’s lemma. By Leibniz’s rule, we have

. m , _ .
MMMy = Y <m )aj“)(q)' O AT g (6)
0<mo<m 0
for . € Og and ay,...,as € N. We have Byo(wi(k)) € p'Og C m!Og, unless
mo = 0, by (5), and 8;." (t;.lj) € m! Og. Hence, the RHS of (6) belongs to m! O,
which implies the claim. (]
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4.2. Construction of Ngr. In this subsection, we construct Ngg (V) as a (¢, 'k)-
module for de Rham representations V. The idea is similar to [Berger 2008b, §11],
i.e., gluing a compatible family of vector bundles over K,,[[¢, uy, ..., ugq]lY to obtain
vector bundles over B:i’gr.
Notation 4.2.1. Forn e N, put r(n) :== 1/p"'(p — 1). For r € Q-, let n(r) € N
be the smallest integer n with r > r(n).

For each K, we fix ry such that Ax has enough ry-units (Construction 1.6.1)
and A" = O/ (")) ""/*x/% for all r € @~ N (0, ro) (Lemma 1.10.2), where O’ is
a Cohen ring of kg, . In the rest of this section, let r € Q. , and when we consider
Ay, B;(’r and B:i’gr’ x> we tacitly assume r € Q-9 N (0, r) unless otherwise stated.
Moreover, for V € Rep@p(G k), we further choose ro sufficiently small (dependent
on V though) such that D" (V) admits a [B}(’r—basis for all r € (0, r9). Note that

A;(’r, [E’B;(’r are PID’s and that Bji’gr x 1s a Bézout integral domain.

Definition 4.2.2. Letr >0andneN withn>n(r). Forx =3, . p*[xx] € B,
the sequence {Zkg N Pk [x,‘;7 ]} Nz Converges in [B(YRJr . Moreover, if we put

.ot v+
tn.BT’—>BdR

x> ) P
k>»>—o00
then ¢, is a continuous ring homomorphism (see the proof of [Andreatta and Brinon
2010, Lemme 7.2] for details). Since ng is Fréchet complete, ¢, extends to a
continuous ring homomorphism
=1, \Y

e B — By
We also denote by ¢, the restriction of ¢, to @lgr x Or B]Ti’gr k- Unless otherwise
stated, we also denote by ¢, the composite of ¢, and the inclusion ng C [B:{R.

Lemma 4.2.3. Forx € Bji’gr x> we have

T

xe (B;{)X & x e (B )% x has no slopes & x € (@K’r)X Sxe (@:i’grk)x.

rig, K
Proof. Note that the slopes of x as an element of B;’gr’ x Or @;’gr’ x are the same by
definition (see Section 2). Therefore, the assertion follows from [Kedlaya 2005,

Corollary 2.5.12]. O

Lemma 4.2.4. For B = B%’r, Bl’gr’K, @I{’r, @E’gr’K, we have

ker(@ot,: B—C,) =¢" ' (q)B

forn = n(r).
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Proof. Note that since Ex and E x gt are isomorphic, the associated analytic rings
[legr x and BTg ot Are isomorphic. Hence, in the case of B = Bng K>
follows from [Berger 2008b, Proposition 4.8]. By regarding C,, as the completion of
an algebraic closure of KP! and applying [Berger 2008b, Remarque 2.14], we have

ker(@ o, : B — Cp) = " 1(q)BT". Since (B )Hx = @}r and (p"*l(q) cBh,

the claim

we obtain the assertion for B = BT ". We will prove the assertion for B = Bn o k- Let
xeker(Bouy,: legr x — Cp). Since Bjig’ x 1s a Bézout integral domain, we have

Let y € B

g,k Such that " (g) = yy'.

(x, 9" (9)) = (v) for some y € B! .

Since y e ker (0 o1, : BL , — C,) =¢"" 1(q)Brlg x» We have y = ¢"1(q)y” for

rig, K

some y” € B:" ., hence, y'y” = 1. By Lemma 4.2.3, y’ is a unit in B’ .. Hence,

rig, K> rig, K *

for any x e ker (B oy, : B’

we have x € ¢"~ 1(q)B rig, K

g, K — C,), which implies
the assertion. For B = B;( , a similar proof works since B}(’r is a PID, hence, a

Bézout integral domain. ([

Lemma 4.2.5. The image of Bng
n > n(r). In particular, v, induces a morphism t, : Blg X
forn = n(r).

x under t, is contained in K ([t,uy, ..., uq] for
% Kn[[t’ul""’ud]]v

Proof. Since B[ ek C B-"" we may assume r = r(n). By [Andreatta and

rig, K °
Brinon 2010, Lemme 8.5], there exists a subring Ag (1 (p—1)pr-1y Of A such that
AT .r(n) = Ag.(1,(p-)p- 7™ 1. The inclusion Ln(B Y C Kulit, uy, ..., uqll is
proved in Proposition 8.6 of the same paper. Since K,[[r, ui, ..., uy]l is closed
in B;{R, we obtain the assertion. (]

Lemma 4.2.6. For h € N and n > n(r), the morphism

.mTr vV .h v
prhoLn.BngK—>K[[t Ui, ..., uqgll” /" Kullt,uy, ..., uqll

is surjective.

Proof. Since t € Bng

A; C Azr be as in [Andreatta and Brinon 2008, Proposition 4.42]. By the proof of
[Andreatta and Brinon 2010, Lemme 8.2], 6, : A; — Ok, is surjective after taking
the reduction modulo some power of p. Since A} is Noetherian and (p/7¢, p)-
adically Hausdorff complete, A;g is p-adically Hausdorff complete, which implies
the surjectivity of 6, : A;g — Ok, by Nakayama’s lemma. U

x we may assume & =1 by Lemma 4.1.4. Put 6, := 60 o¢,. Let

Lemma 4.2.7. The image of [Bng g under v, is dense in K,[[t,uy, ..., uglly with
respect to the canonical topology for n > n(r).

Proof. By Lemma 4.1.5, the assertion follows from Lemma 4.2.6. (]
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Lemma 4.2.8 ([Kedlaya 2005, Corollary 2.8.5, Definition 2.9.5], see also [Berger
20084, Proposition 1.1.1]). For B =8}, B}, B} . B} ¢
M of a finite free B-module, the following are equivalent:

(1) M is finite free.
(i) M is closed.
(iii) M is finitely generated.

Lemma 4.2.9. Let B be either [B%1 " or Br{lng

which divides (t") for some h € N then I is generated by an element of the
form Hn>n(r) (gon—l (Q)/P)jn with jn <h.

Proof. Note that we have a slope factorization t = 7 [, (¢"~ Y(q)/p) in [Bng Q,

(see the proof of [Berger 2008b, Proposition I. 2.2]). For n < n(r), ¢"~'(q)/p
is a unit in Bng Q, and for n > n(r), ¢"~'(¢)/p generates a prime ideal of B by
Lemma 4.2.4. Hence, the assertion follows from the uniqueness of slope factoriza-

tions, see Lemma 2.0.5. O

and a B-submodule

If 1 is a principal ideal of B

Lemma 4.2.10 (The existence of a partition of unity). Let n € N and r > 0 satisfy
n > n(r). For w € N.g, there exists t, ., € Bng x Such that v,(t, ) = 1 mod

YKLt uy, ... ug]ly and tn(tyw) € tKpllt, uy, ..., uglv ifm#nand m >
n(r).
Proof. Since leg@ C BngK and Q, ()] C Kyullt, ui, ..., uqlly, we may

assume K = Q,. The assertion then follows from [Berger 2008b, Lemma 1.2.1]. []

Lemma 4.2.11. Let B be either Br'lgr or leg K Forn>n(r), write i, : B := Blgr

Bv+ in the first case and i, : B := Bnng — B, := K,lit,uy, ..., uglly in
the second case. Let D be a 9-module over B of rank d' and DV and D(z) two

B-submodules of rank d’ stable by ¢ on D[1/t] = B[1/t1®pg D such that
i) DW[1/t]=D?[1/t] = D[1/1];

(ii) B, ®,,.B DM =B, ®,,.B D® foralln > n(r).

Then, we have DY = D@,

Proof. Since DV + D@ is finite free by Lemma 4.2.8 and satisfies the same
condition as D®, we may assume that D) ¢ D® by replacing D@ by DV + D@,
Then, the proof of [Berger 2008b, Proposition 1.3.4] works by using the ingredients
Lemma 2.0.6 and Lemma 4.2.9 instead of [Berger 2008b, Proposition 1.2.2]. [

Proposition 4.2.12 (cf. [Berger 2008b, Théoréme I1.1.2]). Let V € Repr (G K) be
a de Rham representation with negative Hodge—Tate weights. Let B be either B
or [Br'lg k- Let By and v, : B — By, be as in Lemma 4.2.11. In the first case, let D,
(Bl @k Dar(V)V""=0, and let D, := (K, [lt, uy, . .., uql ®k IDdR(V))ng:O in
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the second case. Put D := @:i’gr ®a, V in the first case and D := DY (V) in the
second case. Then, the following holds.

®

(ii)

rig

There exists h € N such that

tth ®Ln,B D C Dn C Bn ®z,,,B D

foralln > n(r).

Leti, : D — B, ®,, p D be given by x — 1 ® x and put
N :={x e D; 1,(x) € D, foralln > n(r)}.

Then, N is a finite free B-submodule of D, whose rank is equal to dimg, V.

Moreover, there exists a canonical isomorphism

By, ®l,,,BN_> D,

foralln > n(r).

Proof.

®

(i)

Since the inclusion B, C B:{R is faithfully flat by Lemma 4.1.4, we only have
to prove the assertion after tensoring [E’E:{R over B,. We have the following
isomorphisms:

Bjg ®5,B: ®,,.8 D =B ®, g B™ @grr DV
=B ®, 5B ®a,V =B ®q,V,
where D 1= BT ®q, V in the first case and D™ := D" (V) in the second

case. Since B, ®p, Dy C Bjy ®q, V by assumption and Bj ®p, D,[1/1] =
[B%(J{R ®xk Dar(V)[1/t] = Bar ®a,V, there exists & € N such that

"Bl ®a,V C Biy ®s5, Dy C Bz ®q,V,

which implies the assertion.

Since A is a closed B-submodule of D containing t" D, N is free of rank
dimg,V by Lemma 4.2.8. To prove the second assertion, we only have to
prove that the canonical map B, ®,, g N — D,/tD, is surjective for all
n > n(r) since B, is a t-adically complete discrete valuation ring. Fix n and
let x € D,. Note that pr;, o1, : B— B/ "B, is surjective. Indeed, when

B = [B;’gr & this follows from Lemma 4.2.6. When B = @Ii’gr, it is reduced to
the case h =0, and pr; o, =6 o, : Bji’gr — C,, is surjective since BT C BrTi};-

Hence, there exists y € D such that ¢,(y) —x € "B, Q.. D €tD,. We put
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7: =ty p+1y € D, where t,, 11 is as in Lemma 4.2.10. By the property of £, ,,
we have

n(z) —x = (ln(ln,h—H) - l)tn(y)+ln(y) —x€tD,

and for m # n,
tn(2) €t"™'B,®, gD CtD,.

These imply z € \; hence, we obtain the assertion. U

Definition 4.2.13. In the context of Proposition 4.2.12, we denote N by legr V)
in the first case and by Nggr (V) in the second case. For a de Rham representa-
tion V with arbitrary Hodge-Tate weights, we put legr (V) = legr (V(=n))(n)
and Ngr (V) := Ngr (V(—n))(n) for sufficiently large n € N. These defini-
tions are independent of the choice of n. We also put Nng(V) =U, leg’ V)
and Ngr (V) := |, Ngr (V). We note that for 0 < s < r, the canonical map
legs k ®gtr Narr (V) = Nar.o(V) is an 1som0rphlsm by Lemma 4.2.11 and
Pr0p051t10n 4 2.12. So, the canonical morphism [B%ng 1% ®B“ Nar,- (V) = Ngr(V)
is an isomorphism, and in particular, Nggr (V) is a finite free [B%Jr rig, K -module of rank
dlm@ V. Since the map ¢ : I]])Ilg(V) — IDr'lgr/p(V) induces a map ¢ : Ngr (V) —
NdR, ,/p(V) by the formula LnH o@ =t,, Ngr(V) is stable under the (¢, I'g)-action
of IDng(V) Slmllarly, N (V) is free of rank dimg,V and is stable under the
((p, G k)-action of B ®@ V. Thus, we obtain a (¢, G g)-module i (V) over

rig
ng and a (p, ['k)- module Ngr (V) over Bng K-

4.3. Differential action of a p-adic Lie group. In this subsection, we recall basic
facts on the differential action of a certain p-adic Lie group. Throughout this
subsection, let G be a p-adic Lie group, which is isomorphic to an open subgroup
of (1+2pZ,) x Z;ﬂ via a continuous group homomorphism 7 : G < Z7 Zf}.
Denote n(y) = (no(y), ..., na(y)) € Z; X Z‘[‘; fory e G. For1 < j <d,let
Go:={y €G; nj(y)=_0forall j >0},
Gj={r €G: no(y) =1, 7i(y) = 0 for all positive i # j}.

Notation 4.3.1. Let (R, v) be a Q,-Banach algebra and M a finite free R-module
endowed with an R-valuation v. Assume that G acts on R and M such that:

(i) The G-action on R is Q,-linear and the action of G on M is R-semilinear.
(i) We have voy(x) =v(x) forallx € R and y € G.
(iii) There exists an open subgroup G, <, G such that
v((y = Dx) = v(x) +v(p)
forall y € G, and x € R.
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(iv) For any x € M, there exists an open subgroup G, <, G, such that

v((y — Dx) =z v(x) +v(p)
for all y € G,.

Construction 4.3.2. Let the notation be as in Notation 4.3.1. We extend the con-
struction of the differential operator Vy in [Berger 2002, §5.1] to this setting. By
assumption, there exists an open subgroup Gy <, G, such that

v((y — Dx) > v(x) +v(p)

forall x e M and y € Gy. Hence, we can apply Berger’s argument to the 1-parameter
subgroup yZ» for y € Gy. Thus, we can define a continuous @ p-linear map

log(y) : M - M

x> log(n) () i= Y (-1 X0,

n>1
for y € Gy;. Moreover, the operators

Io X

Vo(x) := o8 g, Y € Gu N Go,
log(no(y))
lo X

Vi(x) = log(y)(x) fory € Gy NG;

nj(y)

for 1 < j <d are independent of the choice of y.
Assume that N satisfies the conditions of Notation 4.3.1. Then, M Q@ g N satisfies
the conditions of Notation 4.3.1, and we have

log(y ® y) =log(y) ®idy +idy ®@log(y) fory e Gy NGy

in Endg (M ®g N). With (M, N) = (R, R) or (M, R), V;: R — R is a continuous
derivation and V; : M — M is a continuous derivation, compatible with V; : R — R,
that is, V;(Ax) = V;(M)x +AV;(x) for L€ Rand x € M.

Lemma 4.3.3. Let the notation be as in Construction 4.3.2. In Endg, (M), we have

V; ifi=0,1<j<d,

Vi,V' = - V',V,‘ =
Vi, Vil ==LV, vil {0 ifl<i,j<d.

Proof. Since G; and G; are commutative for 1 <7, j < d, the assertion in the
second case is trivial. We prove the other case. Fix x € M. We regard G as
a subgroup of GL441(Z,) as in Section 1.3. For sufficiently small ug, u; € Z,
put yo :=1+4+uoE10€ GoNGyu, yj :=1+u;E|; € Gi NGy, where E ; is the
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(1, j + 1)-th elementary matrix in M,11(Z,). Then, the assertion is equivalent to
the equality

log(yo) o log(y;)(x) —log(y;) o log(yo) (x) = log(1 +uo) log(y;)x.
In the group ring Q,[G], we have

_1)n—1 n—1 n—1
Z %ugqulyjz Z ( 1) (u()E ) Z ( 1) (MjElj)n

1<i<n 1<i<n 1<i<n

_1\n—1 n—1
— Z (G 1’2 (u;E; ;)" Z = 1) (uoEr1)".

1<i<n 1<i<n

After applying both sides to x, the LHS converges to log(1 + ug) log(y;)(x) and
the RHS converges to log(yp) o log(y;)(x) —log(y;) olog(yo)(x), which implies
the assertion. O

In the following, we will use the Fréchet version of Construction 4.3.2.

Construction 4.3.4. Let (R, {w,}) be a Fréchet algebra and M a finite free R-
module endowed with R-valuations {w,}. Assume that G acts on R and M and
assume that the G-actions on (I/?\,, w,) and (1\7,, w,) satisfy the conditions of
Notation 4.3.1 for all », where k\, and 1\//?, are the completions of R and M with
respect to w,. By applying Construction 4.3.2 to each R, and M, and passing to
the limits, we obtain continuous derivations V; : R — R and V; : M — M for
0 < j <d, which are compatible with V; : R — R, that satisfy

[Vo,Vj1=V; forl<j<d, [V;V;1=0 forl<i,j<d.

Thus, the actions of Vy, ...V, give rise to a differential action of the Lie algebra

Lie(G) = Q, x Q9.

4.4. Differential action and differential conductor of Ngr. In Section 4.2, we
constructed Ngr (V) for de Rham representations V as a (¢, I'x)-module. The aim
of this subsection is to endow Nggr (V') with the structure of (¢, V)-module in the
sense of Definition 1.7.5 by using the results in Section 4.3. As a consequence, we
can define the differential Swan conductor of Ngg (V') (Definition 4.4.9). Throughout
this subsection, let V denote a p-adic representation of Gg.

Lemma 4.4.1. There exists an open normal subgroup I'y, <, I'x and rx > 0 such
that for all 0 < r <rg, there exists ¢, > 0 such that

w (1= y)x) = w,(x)+¢,, VxeBY VyeTl%.

Proof. We may assume x € A}’r. Recall that the ring A%?OK is a subring of &;(r
containing A}r(’r for m € N by [Andreatta and Brinon 2008, page 82]. Hence, we
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only have to prove a similar assertion for AS:OK' Then, the assertion follows
from [Andreatta and Brinon 2008, Proposition 4.22] if we define I'} as the closed
subgroup of 'k topologically generated by {yjp m; 0 < j < dj} for sufficiently
large m. (]

By shrinking I'%, if necessary, we may assume that I'}; is an open subgroup of
(1+2pZ,) x Z‘Il, as in Section 1.3. In the rest of this paper, we assume that r( in
Notation 4.2.1 is sufficiently small such that ro <rg.

Lemma 4.4.2. For x € B"" and ¢ > 0, there exists an open subgroup Uy . <, G
such that

wr((g—1Dx)>c forallgeUs,.

Proof. We may assume that x is of the form [x] with x € E. Indeed, if we
write x = ) > — 00 pk [xr] with x; € E, then, by definition, there exists N such that
w, (p*[xi]) > ¢ for all k > N. We choose U, such that w,((g — 1)(p*[xx])) > ¢
forall kK < N and all g € U, .. Then, U, . satisfies the condition.

Let x = [x] with x € . Since the action of G Kk on Fis continuous, there exists
Uy.c <o Gk such that vz((g — 1)x) > pllc/r (> 0) for all g € U, .. We prove that
U, . satisfies the desired condition. We can write

(¢ = DIEI =g — DEI+ Y prlxil

k>1

for some x; € F. Since
[x ]([(g 1)x] 1)=(g(i),—x1”,—x§2,...),

x,f ‘ /X can be written as the value of a polynomial, with coefficients in Z with
zero constant term, at (g — 1)x/x. Indeed, let S,, € Z[Xo, ..., Xm, Y0, .-, Y]
for m € N be a family of polynomials defining the addition on the ring of Witt
vectors, see [Bourbaki 2006, n°3, §1, IX]. Then, S,, is homogeneous of degree

m=i

p™, where deg(X;) = deg(Y;) = p'. Since So = Xo+Ypand) o, p'S] =

]
Yocicm P XD Y 0cicm P'YS form > 1, the coefficients of both X[, Y7 €

Sy are equal to zero, which implies the assertion. Hence, for n € N, we have
v (g = DLED = inf {ur((g — ). vg(xw}
> inf { (g —1 1 } = L —1
> Inf vE((g — Dx), vE((g )X) v[E((g )X).

Note that v~ "((g = DIx]) = oo forn € z ~0. Hence, we have w,((g — D[X]) =
1nfn€N(rU~ ((g — D[x]) +n) >inf (r- m vg((g — 1)X), |c]) = ¢, which implies
the assertlon O
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Lemma 4.4.3. Let {e;} be a [Bj(’r—basis of DV (V). We endow I]])Ii’gr(V) with valu-
ations {ws}o<s<r that are compatible with the {wg}o<s<r associated to {e;}. Then,

the actions of 'Y, on Bng x and IDr'lgr (V) satisfy the conditions of Notation 4.3.1.

Proof. Conditions (i) and (ii) follow from the definition. Condition (iii) follows
from the formula y? — 1 = Zl<l<p( )(¥ — )" and Lemma 4.4.1. To prove
condition (iv), we may assume x € D" (V). We choose a lattice 7 of V stable
under the Gg-action. Let { f;} be a basis of T and endow B ®q, V with the
valuations {w}}o<s<,, compatible with the {w;}o<s<,, associated to the BT -basis
{1® f;}. By the canonical isomorphism B ®BT DY (V)y=Bhr ®q, V following
from Theorem 1.10.5, we regard {1 ®e¢;} as a [EBT "_basis of B" "®aq, V. Then, wy is
equivalent to w; therefore, we only have to prove that for any x € [E’BT "®q, V and
O<s<r, there exists an open subgroup G% . <, Gk such that wi((g — Dx) >
w; (x) +wi(p) for all g € G , .. We may assume that x is of the form A ® v for
A eB" and v e T. Since the actlon of Gk on T is continuous, there exists an open
subgroup U <, G such that U acts trivially on T/pT. We apply Lemma 4.4.2
after regarding A € B, and get that there exists an open subgroup U’ <, Gk such
that wy((g — 1A) > ws(k)+ws(p) for all g € U'. If we put G sx = UNU’, then
the assertion follows from

E-DHA®@=Eg-DHM)®gw)+A1®(g— . O

Definition 4.4.4. By Lemma 4.4.3, we can apply Construction 4.3.4 to G = Ik,
R= BTgr x and M = I]])Jr r(V) Thus, we obtain continuous differentials operators
V; on [Dng (V) for 0 < j < d. The operator V; induces a continuous differential
operator on [[Dr (V), which is denoted by V; again. Since the actions of I'x and ¢

commute, V; commutes with ¢ by definition.

Until otherwise stated, let V = Q, and regard [I])rlg (Q)) as Bng k- Then, V; can
be regarded as a continuous derivation on Bji g” - In the following, we will describe
this derivation explicitly.

Construction 4.4.5. As in [Andreatta and Brinon 2010, Propostion 4.3], the action

of 'k on K, [[t, uy, ..., us] induces K,-linear differentials
~ lo
. 108(0) — (147 )_
log(no(v0))
~ 1 .0
V= g _ —t[fj]— forl<j<d
;i () du j

for all sufficiently small yy € 'k o and y; € 'k ;. Note that these are continuous
with respect to the canonical topology. Since the action of I'x commutes with
Vveeom by definition, V; acts on K, [[1, uy, ..., uglV.
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We assume K = K until otherwise stated. By the isomorphism A}r{’r =O(m)t,
we have derivations
ad
dp:=—, 01 == ——, ..., Oy := —,
o T B T
on A;@r (see Section 1.7), which are continuous with respect to the Fréchet topol-
ogy defined by {w;}o<s<. By passing to the completion, we obtain continuous

. . T,r T,r
derivations 9; Bng ¥ [E{%rlg K

T T
a derivation 0; Bng P Bng K e,
dense subring of K,[[t, u1, .. ., uglly viat,. Hence, we can extend any continuous
derivation 0 on [B%Zi’; g toa continuous derivation on K,[[t, uy, ..., ug]Y, which is

denoted by ¢,(9). Note that we have a formula

1 (8) (1 (x)) = 1, (8(x)) for x € Bng K- )

Lemma 4.4.6. For n > n(r), we have

for 0 < j < d. The derivation d; also extends to

By Lemma 4.2.7, we may regard B’ x asa

(1 +71)80) =Vo, 1,([7;18)) =V, for1<j<d.

Proof. Let 1 < j <d and put 8 := 1,(t (1 +7)dp) — Vp and §; := 1,,(t[1;18;) — V;
Let f: K,ulit, ui, ..., ugll— Kulit,ui, ..., ugll" bethe map defined in the proof of
Lemma 4.1.4, which is continuous by Lemma 4.1.6. Since f induces a surjection on
the residue fields by definition, f(K,[t]) is a dense subring of K,[[t, u1, ..., ugll¥
by Lemmas 4.1.4 and 4.1.5. Hence, we only have to prove that §p o f(K,[t]) =
8j0 f (Kalt]) =0. We view 8oo f|k,, 8;0 Ik, € Deteon(Kn, Kullt, u1, ..., uall¥),
which is isomorphic to Homg, (Q}(n, Kullt,up, ..., uglly) by Lemma 1.2.3. Since
ﬁ}(n =K, Qxk Q}( has a K,-basis {dt;; 1 <i <d} and since we have f(¢) =t and
f(t;) = [#;] by definition, we only have to prove 8y(t) = 3j(t)=0and So([t;]) =
8;([;]) =0forall 1 <i <d. By using formula (7), we get

a(t(1+1)80) (1) =1 = Vo(t),  ta(t(1+7)0)[7:] =0,
Ln(t[fj]aj)(t):():%j(t), L (t[519))[5] = 8;jtl1;]

forall 1 <i <d. Since (8/8uj)[fi] = —(0/0uj)u; = —4;; forall 1 <i <d, we
obtain the assertion. O

For the rest of this section, we drop the assumptions K = KandV =0 pe

Corollary 4.4.7. The derivation

1
d': rlg K~ QB;&K
\Y d V; d t
x> o<x)t(1+ jdm + D Vitdiij]
I<j<d
coincides with the canonical derivation d : leg x> Q[IB;T

rig, K
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Proof. Since the canonical map B P [EBrl o K is finite étale by [Kedlaya 2005,
Proposition 2.4.10], we can reduce to the case K = K. Let the notation be as in
Lemma 4.4.6. Obviously, V; extends to Vi ; by passing to the completion. Since ¢,
is injective, we have

Vo=1t(14+m)d, V;=t[t;]9; forl<j<d.
as derivations of leg K
Lemma 4.4.8. Let V € Repr(Gk).

by Lemma 4.4.6, which implies the assertion. U

(i) We have V;(Ngr(V)) C tNgr(V) for all 0 < j < d. We put V} = 1/1V;,
which is a continuous differential operator on Ngr (V).

(ii) Forall0 <i, j <d, we have
[V, V/]=0
(iii) Forall0 <i, j <d, we have
V}O(p:p(poV}
Proof.

(i) By Tate twist, we may assume that the Hodge—Tate weights of V are sufficiently
small. Let the notation be as in Construction 4.4.5 and Proposition 4.2.12
(with B = Bjig,K)‘ By viewing tNgr (V) and tDgr (V) as Ngr (V (1)) and
Dgr(V (1)), respectively, we only have to prove that ¢,(V;(x)) € tD, for
all n > n(r) and x € Ngg (V). For sufficiently small y; € I'x ;, we have
tp o log(y;)(x) = log(y;)(tn(x)) and ¢, (x) € D, C B, @k Dar(V). Since
Ik acts trivially on Dgr(V), log(y;) acts on B, @k Dgr(V) as log(y;) ® 1.
Since log(y;)(By) C t B, (see Construction 4.4.5), we have ¢, o log(y;)(x) €
(B, @k Dar(V(1)))V¥""=0 =¢D,,, which implies the assertion.

(i1) This follows from a straightforward calculation using Lemma 4.3.3, Vy(¢) =t,
and V; (1) =V;() =0.

(iii) Since V; commutes with ¢, we have tV} op=Vjop=¢poV;=9¢()po V} =

ptgooV;.. By dividing by ¢, we obtain the assertion since Ngr (V) is torsion free.

O

Definition 4.4.9. Let the notation be as in Lemma 4.4.8. For V € Repr (G k), put

VN (V) = Nar(V) ®B e
rig, K

x> Vo) @ p—dm + > Vi ®dlijl,
I<j<d
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which defines a V-structure on Ngr(V) by Corollary 4.4.7. Furthermore, this
V-structure is compatible with the ¢-structure on Nggr (V) by Lemma 4.4.8(iii)
and ¢((1 + 7)~'dn) = p(1 + 7)~'dn and ¢(d[i;]) = pd[i;]. Thus, Ngr(V)
is endowed with a (¢, V)-module structure and we obtain the differential Swan
conductor Swan" (Ngr (V) of Ngr (V). The slope filtration of Ngr (V) as a (¢, V)-
module (Theorem 1.7.6) is I" ¢ -stable by the commutativity of the I"x - and g-actions,
and the uniqueness of the slope filtration ([Kedlaya 2007, Theorem 6.4.1]).

4.5. Comparison of pure objects. In this subsection, we will study “pure” objects
in various categories.

Notation 4.5.1. Let G be a topological group and R a topological ring on which G
acts. Let ¢ : R — R be a continuous ring homomorphism that commutes with the
action of G. A (¢, G)-module over R is a finite free R-module with continuous
and semilinear action of G and a semilinear endomorphism ¢, both of which are
commutative. We denote the category of (¢, G)-modules over R by Modg (¢, G).
The morphisms in Modg (¢, G) consist of R-linear maps commuting with ¢ and G.

Definition 4.5.2 [Berger 2008a, Definition 3.2.1]. Let 2 > 1 and a € Z be relatively
prime. Let Rep, ,(G k) be the category with objects V,, , € Rep@ p (Gk), endowed
with a semlhnear Frobenius action ¢ : V,, , = V,j that commutes with the G K-
action such that ¢” = p“. The morphisms of this category are Q pr-linear maps that
commute with (¢, Gx)-actions. Whenh=1anda=0,Rep, ,(Gg)= Rep@p (Gg).

Lets:=a/h € Q. We denote by Dy the Q ,-vector space P, _, ., Q,e; endowed
with a trivial G g-action and with @-actions via ¢(e;) :=e; 4 if i ;S h and ¢(ep) :=
p“er. Then, Q@ ®q, Dis) belongs to Rep,, ;, (G k).

Definition 4.5.3. For s € Q, we define

Modg, (¢, Gx). Mody. (¢.Tx). Modg,(p. G).  Mody, (9. T'x)

nK

to be the full subcategories of ModBr (¢, Gg), MOdBT ((p, k), Mod (9, Gg)
and Mods (go, 'k ), whose objects are pure of slope s as @-modules.

Lemma 4.5.4. (i) For anyr > 0, there exists a canonical injection

V+ 1"
Brlg Brlg ’
which is (¢, G g)-equivariant. In the following, we regard @Z; as a subring
ofB:]gr and we endow Brvl;’
valuations {w; },-o.

(i1) For h € N.g,

with a Fréchet topology induced by the family of

(Bzg*)w =1 _ (leg*)‘ﬂ =l = Q.
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Proof. By definition, BV+ and [EBT > depend only on C,, and not on K. By regarding
C, as the p-adic completlon of the algebraic closure of KP', we can reduce to
the perfect residue field case. Assertion (i) follows from [Berger 2002, Exemple
2.8(2), Definition 2.16]. Assertion (ii) for BY+ is due to Colmez, see [Ohkubo 2013,

rig
Lemma 6.2], and (ii) for Bjigr is a consequence of [Berger 2002, Proposition 3.2]. [J

Definition 4.5.5. For s € Q, an object M € Modx By (¢, G) is said to be pure of

slope s if M is isomorphic to ([EBrvl; ®a, D)™ as a @-module for some m € N.

Denote by Mod%y, (¢, G) the category of (¢, Gg)-modules over [EBrl , which are
pure of slope s.Brig :

Lemma 4.5.6. Let the notation be as in Notation 1.6.2 and Definition 1.7.5. For
s € Q, the forgetful functor

Mody, (¢, V) — Mod}, (¢).
is fully faithful.

Proof. We consider the following commutative diagram

ay
Modr, (¢, V) —— Modry;  ,1(¢)

ﬁlT Tyl

s *2 s
Modrpiy (¢, V) —— Modpyy, 1(9)

B2 l l 2)
a3

Mod, (¢, V) Modx, (¢)

where «, is a forgetful functor, and 8, and y, are base change functors. We first note
that y; (resp. y») is fully faithful (resp. an equivalence) by [Kedlaya 2005, Theorem
6.3.3(a)] (resp. [Kedlaya 2005, Theorem 6.3.3(b)]). Let M, N € Modéﬁ[l/p] (¢, V)
and let M, N be the base changes of M, N via the canonical map I'"[1/p]— I'[1/p].
Then, we have

HomMOd;‘T[I/p]((p’v) (M, N) = HomFT[l/p] (M, N)(/?:],VZO
= Homr[l/p] (M, ﬁ)@:l,V:O’

where the first equality follows by definition and the second equality follows
because y; is fully faithful. Therefore, 8; is fully faithful. For the same reason,
since y; is fully faithful, so is B,. Note that «; is an equivalence in the étale case,
i.e., s =0 ([Kedlaya 2007, Proposition 3.2.8]). Let M, N € Mody. iy p1 (@5 V). Since
Homryi/,1(M, N) = MY ®r(1/p) N can be regarded as an étale (¢, V)-module over
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I'[1/p], where MY denotes the dual of M, we have
Homyoay,, 0.9y (M, N) = Homryi ) (M, N)?=1V=0 = Hompyy,,) (M, N)¢=!

= HomMod‘}“/m (@) (M, N),

where the first and third equalities follow from the definition and the second
equality follows since «; is fully faithful in the étale case. Therefore, o is an
equivalence. Since ¢, 1 and y; are fully faithful, so is ;. Since a, > and y»
are fully faithful, so is «3. (]

Lemma 4.5.7. Let s € Q and let h € N>, a € Z be relatively prime with s = a/ h.

(1) There exist equivalences of categories
DYy :Rep, ,(Gx)— Mody (9. Gx): Van > BYe ®a, Van,

Dl Rep, ,(Gx)— Mod%, (9, Gx); Van = B, ®a, Vs

rig* rig
Djigi Rep, ,(Gg)— MOde;i K(SD, L) Vant—> Bzg,,{ ®p; (B7 ®a,, Vo),
D:Rep, ,(Gx)— Mods (. Gx)i Vau > B ®a , Van,
D*:Rep,, (G )= Mody, (9. Tx); - Vo= (B @q, Vo).
More precisely, quasi-inverses of fl)rvi; , f[vD;fig and D' are givenby M — M o'=p",
(i) We denote by a; for 1 <i <5 the following canonical morphisms of rings:

"
rig, K

T a3 ot % mV+
Brig Brig Brig ’

where the left square is commutative. Then, the o;’s induce the following base
change functors o}:

Ol*
Mody, (. Tx) —> Mody,; (¢, T'x)
K

rig, K

* *
(02

Mod, (¢. Gk) —= Mod, (¢, Gx) < — Modie. (¢, G,

Tig Tig

where the left square is commutative. Moreover, the functors «}’s are compati-

ble with the functor defined in (i) , i.e., ai“ oD' =D

e etc. In particular, the

al’s are equivalences.
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Proof.

(i) We prove the assertion for Iﬁ)rvig"Ir .LetD:= lﬁ)rvi; and let V be, as before, the
functor in the other direction. Let V € Rep, ,(Gk). Then, there exists a
functorial morphism V — V o D(V), which is bijective by Lemma 4.5.4(ii).
Hence, we have a natural equivalence VoD ~id. For M € M0d~v+ (¢, Gg), we
get a functorial morphism Do V(M) — M that is bijective by the isomorphism

= ([Ei%rvlg ®a, Dis))™ of p-modules and Lemma 4.5.4(ii). Hence, we have a
natural equlvalence DoV ~id

The assertions for ﬁT tig and D' follow similarly: instead of using the
isomorphism M = (Brvlg ®a, Dis))™, we use Kedlaya’s Dieudonné-Manin
decomposition theorems over IB rig and B, see Propositions 4.5.3 and 4.5.10
and Definition 4.6.1; Theorem 6.3.3(b) of [Kedlaya 2005], respectively. These
assert that any object M in Mod[BT (¢) or Mod + (@) 1s isomorphic to a direct
sum of Bng ®q, Djs) or of B ®@ ¥ Dy respectlvely

We next prove the assertion for ID)T For M € Mod® B (o, Tg), let V(M) :=
([B%1 ®BT M )‘/’ =r". We will check that V gives a qua51 -inverse of D. Let

wh € Repa h(GK) By forgetting the action of ¢ on V,; and applying
Theorem 1.10.5to V =V, 5, we get a canonical bijection B Qpi DT( Van) =
B ®a, Va.n. Since this map is @- equlvarlant we have canomcal isomor-
phlsms VoD (Vo) = (BH'=! ®g i Van = Vap by Lemma 4.5.4(ii). Thus,
we obtain a natural equivalence V o oDt ~ id. We prove DT oV ~id. Let
M e Mod* B, (o, k). From [Kedlaya 2005, Proposmon 6.3.5], we obtain
the ex1stence of an A -lattice N of M such that p~¢¢" maps some basis
of N to another basis of N. Let M’ denote M with the ¢"-action given by
x > p~%p"(x) and with the same I'g-action as M. By the existence of the
above lattice N, we have M’ € ModgT (goh, "k ). Since we have G g -equivariant
isomorphisms V(M) = (B ®g; M5 =r" = B ®g;, M"'=! = V(M) the
assertion follows from the étale case (Theorem 1.10.5).

Finally, we prove the assertion for [D;rig. By the base change equivalence

: Mod! r((ﬂ) — Mod; (9,

r1g K

see [Kedlaya 2005, Theorem 6.3.3(b)], we also have the base change equiva-
lence af : ModBT (0, Tg) > ModY (¢, I'k). Hence, the assertion follows
from the D-casé. Brex

(i1) To check that the o}’s are well-defined, we have only to prove that pure objects
are preserved by base change. For o) and a3, this follows from [Kedlaya 2005,
Theorem 6.3.3(b)]. For a, a4, this follows from the definitions: M € MOdBT (@)
and Mod T ((p) are pure if B ®p t M and [EB ®BT M respectively, are pure
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by [Kedlaya 2005, Definitions 4.6.1 and 6.3.1] . For «s, it follows from
[Kedlaya 2005, Proposition 4.5.10 and Definition 4.6.1].

The commutativity of the diagram is trivial. The compatibility follows from
the definition. O

4.6. Swan conductor for de Rham representations. In this subsection, we define
Swan conductors of de Rham representations. In this subsection, Assumption 1.9.1
is not necessary since we do not use the results of [Andreatta and Brinon 2008].

We first recall the canonical slope filtration associated to a Dieudonné—Manin
decomposition.

Definition 4.6.1 [Colmez 2008b, Remarque 3.3]. A ¢-module M over [EBVJr is a
finite free [EBng+ -module together with a semilinear ¢-action. A ¢-module M over
[BZ; admits a Dieudonné—Manin decomposition if there exists an isomorphism
M= @1<l<m Bng ®a, Dis;) of p-modules over [EB with 51 <--- <s, € Q.
We define the slope multlset of M as the multiset of cardlnahty rank(M), consisting
of the s;, together with its multiplicity dimg, D). Let s; < --- < s/, be the
distinct elements in the slope multiset of M. Then, we define FllO (M) :=0 and
Flll (M) := 1D, 5 <s! ng " ®q, Djs,)) for 1 <i <r'. Note that the filtration

and the slope multiset are independent of the choice of f above.

Definition 4.6.2. Let V € Repyr(Gk). First, we assume that the Hodge—Tate
weights of V are negative. By assumption, we have Dgr(V) = ([EBdR ®a,V V)OK. As
in [Ohkubo 2013, Proposition 5.3], we define

NZ;(V) ={xe BXQ ®a,V: (x) € Bl ®x Dar(V)Y"" =0 forall n € Z},

where ¢, : Brvl; ®a,V — BdR ®q, V is defined by x ® v = ¢ 7" (x) ® v. Since
Nv+(V) admits a Dieudonné—Manin decomposition due to Colmez ([Ohkubo
2013 Proposition 6.2]), Nng (V) is endowed with a canonical slope filtration
Fil*( erl; (V)) of p-modules by Definition 4.6.1. Let s; < - - - < s, be the distinct
elements in the slope multiset of erl; (V). Write s; = a;/ h; witha; € Z, h; € N
relatively prime. By the uniqueness of slope filtrations, Fil' is G k-stable and the

graded piece gr' (erngr (V)) lies in Mod: BY (¢, Gg). Hence, by Lemma 4.5.7, there

exists a unique V; € Rep,, ;. (Gk), up to isomorphism, such that gr’ (erl; vyH=
[E’Ber ®@ Vi It is proved in Step 1 of the proof of the main theorem of [Ohkubo
2013] that the inertia /g acts on V; via a finite quotient, i.e., V; € Rep . (Gk) (in

the reference, Fil' and V; are denoted by M; and W;). Hence, we can deﬁne

Swan(V) := Z SwanAS(V,-).

i



1948 Shun Ohkubo

In the general Hodge—Tate weights case, we define NV+(V) = NZ; (V(—n))(n) and
Swan(V) := Swan(V (—n)) for sufficiently large n. The definition is independent

of the choice of n since the above construction is compatible with Tate twist.

Remark 4.6.3. As in [Colmez 2008a], we should consider an appropriate contribu-
tion of “monodromy action” to define the Artin conductor. To avoid complication,
we do not define Artin conductors for de Rham representations in this paper.

The lemma below easily follows from Hilbert 90.
Lemma 4.6.4. Let V € Repyr(Gk).

(1) If L is the p-adic completion of an unramified extension of K, then we have
Swan(V|z) = Swan(V).

(i1) Assume V € Repqu(GK). Then, we have Swan(V) = Swan®S (V).

Though the following result will not be used in the proof of the main theorem,
we remark that when kg is perfect, our definition is compatible with the classical
definition.

Lemma 4.6.5 (Compatibility of usual Swan conductor in the perfect residue field
case). Assume that ki is perfect. Then, we have Swan(V) = Swan(Dps(V)) (see
[Colmez 2008a, §0.4] for the definition of Dys).

Proof. Let the notation be as in Definition 4.6.2. By Tate twist, we may assume that
all Hodge—Tate weights of V' are negative. By Swan(Dps(V)) = Swan(Dps (V| gur))
and Lemma 4.6.4(i), we may assume that kg is algebraically closed by replacing
K by KY. Since B R @k Dar(V) is a lattice of BdR ®q, V, we may identify
NV+(V) [1/¢] with BZ; ®q, VI[1/t]. By the p-adic monodromy theorem, there
ex1sts a finite Galois extension L/K such that Dy 1 (V) = (B ®aq, V)OL has
dimension dimg, V. Moreover, we may assume that G, acts trivially on each V;. Put

D; := (B ®Bv+ Fll’ (Nng (V)))Cr. This forms an increasing filtration of Dy 1 (V).

Then, we have canonical morphisms
Di/Dis1 = (Bu®gy-gr' (NE (V) = (Ba®q , V) ZW(k)[1/p]®q , Vr.

where the first injection is an isomorphism by counting dimensions. By the
additivity of Swan conductors, we have Swan(Dps(V)) = Swan(Dy, (V) =
Y i Swan(D;/Dj11) = Y_; Swan(V;) = Swan(V). O

4.7. Main theorem. The aim of this subsection is to prove the following theorem,
which generalizes Marmora’s formula in Remark 4.7.2:

Main Theorem 4.7.1. Let V be a de Rham representation of Gg. Then, the
sequence {Swan(V |k, )}n>o0 is eventually stationary and we have

Swan" (Ngr(V)) = lim Swan(V g, ).
n
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Remark 4.7.2. When kg is perfect, we explain that our formula coincides with the
following formula from [Marmora 2004, Théoréme 1.1]:

Irr(Ngr (V) = lim Swan(Dps(Vx,,))-

Here, the LHS means the irregularity of Ngr (V) regarded as a p-adic differential
equation. By Lemma 4.6.5, the RHS is equal to the RHS in Main Theorem 4.7.1.
Therefore, we only have to prove Irr(D) = SwanV(D) for a (¢, V)-module D
over the Robba ring. Since D is endowed with a slope filtration and since both
irregularity and the differential Swan conductor are additive, we may assume that
D is étale by dévissage. Let V be the corresponding p-adic representation of finite
local monodromy. Then, the differential Swan conductor Swan" (D) coincides
with the usual Swan conductor of V ([Kedlaya 2007, Proposition 3.5.5]). On the
other hand, Irr(D) coincides with the usual Swan conductor of V ([Tsuzuki 1998,
Theorem 7.2.2]), which implies the assertion.

We will deduce Theorem 4.7.1 from Lemma 3.5.4(ii) by dévissage. In the
following, we use the notation as in Definition 4.6.2.

Lemma 4.7.3. Let V be a de Rham representation of G g with nonpositive Hodge—
Tate weights.

(1) The (¢, Gg)-modules

V+(V)

~ T ~
B, ®Bfi . Nar(V), By, ®BZ§ Nrig

coincide with each other in B/, ®aq, V. Moreover, the two filtrations induced

rig
by the slope filtrations of Ngr (V') and erlgr (V) also coincide with each other.

(i1) Let the notation be as in Construction 1.7.7. Then, there exists a canonical

isomorphism

&' Nar (V) = D, (Vi)

as (¢, V)-modules over Bng K-
Proof. (1) We prove the first assertion. By Lemma 4.2.11 (with B = B é) we only
have to prove that D) := B:lg’ ®B" Ngr.-(V), D@ := [legr ®@vg+ rlng(V) and

= [EBT g ®@p V satisfy the condltlons in the lemma. We have Ngr (V)[1/t] =
[D)Jr r(V)[l/t ] by definition and

Bl B DT (V) = B @gir B @pi DM (V)

=B s B ®q,V =Bl ®q,V.

As we have NV+(V) [1/t] = Bv+[1/t] ®a,V by definition, we obtain a canonical

isomorphism Bng@)BwNZ; WM 1 /1= leg’ [1/11®q,V, which implies condition (i).
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By Proposition 4.2.12(ii), we have a canonical isomorphism [BdR®L B NdR F(V)=
BdR ®xDgr (V). On the other hand, we have canonical 1somorph1sms

Bl ®gv Ny (V) =B @ (Bl 85 Dir (V)™= = B ®x Dar(V),

where the first isomorphism follows from [Ohkubo 2013, Proposition 5.3(ii)] and
the second isomorphism follows from [Ohkubo 2013, Proposition 5.4]. Since the
canonical map B~ — dR is faithfully flat, condition (ii) is verified. The second
assertion follows from the uniqueness of the slope filtration [Kedlaya 2005, Theorem
6.4.1].

(i) By (1), there exists canonical isomorphisms

Bl ®g; &' Nar(V)) = B, @ o' Ni (V) =]

rig ®@ph,- Vi

as (¢, Gk )-modules. By Lemma 4.5.7, we obtain a canonical isomorphism between
gr' (Ngr(V)) and I]])l:g(v,) as (¢, 'k)-modules. Since V; is of finite local mon-
odromy, s0 is V;|g, . So, dimyy DTV, I, ) = dimg i V;; in particular, the canonical
injection DT, lEx) — ([B%T ®@ V,)HK is an 1somorph1sm Therefore, we have
canonical isomorphisms Dr1g ] |[E K) = I]])Jr (V ) =gr '(Ngr(V)) as (pure) ¢-modules

over Blg x> hence, the assertion follows from Lemma 4.5.6. O

Remark 4.7.4. One can prove that there exist canonical isomorphisms
= ~ Ff v i
Brig ®Bllg,1{ Nar(V) = Brig ®@Z+ erg_(v) = erg(v)
Lemma 4.7.5. We have
Swan” (Nar(V)) = > Swan™S (V).
1<i<r

Proof. We have

Swan” (Nar(V)) = ) Swan” (gr' (Nar(V)))

1<i<r
= Y Swan"(Df (Vilg)) = Y Swan*S(Vilg,),
1<i<r 1<i<r

where the first equality follows from the additivity of the differential Swan conductor
(Lemma 1.7.9), the second one follows from Lemma 4.7.3(ii), and the third one
follows from Xiao’s comparison theorem (Theorem 1.7.10). (]

Proof of Main Theorem 4.7.1. By Lemma 4.7.5 and the definition of the Swan con-
ductor (Definition 4.6.2), we only have to prove Swan”$ WVileg) = Swan®® WVilk,)
for all sufficiently large n. This follows from Lemma 3.5.4(ii). (]
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Appendix: list of notation

The following is a list of notation in order defined.

1.2:
1.3:
1.4:

1.5:

1.6:

1.7:
1.8:
1.9:
1.10:

3.1:

3.2
3.3
3.4:
3.5:
4.1:
4.2:
4.3:
4.4.
4.5:

4.6:

QL,9;,0/0t.

Kny Koos T Higs Yas Vo 1= (00s - - - s 1a)s 8 Ly Loos Trs Hp, Tp -

ED, vg, A, BD, 6,7, 7, q, Aing, B, 14, 1, Dar(-), VEON BY A,
Beris, By, -
asf k7> FUL), b(L/K), as{ ;x ; ps Fiog (L), biog(L/K), Art®S (),
Swan®3(+).

v=", w,, W(E),, Weon(E), T'r, Teons Can.r» Can.cons OUSH, O(SH ™, O(S)T,
R, Mod,(0), ModS'(0), Mod: (o).

QL. QL. d: R — Qk, Modi(¢", V) D, D7, Swan" ().

X = XD (R, &, no).

ED B, A, By, A, By, B, ModS! (¢, '), D(+), V().

At R BB, B B At AL BT, BY BY, B, A}, AL B, B],
By 1 Bly 1o AL AL B BB Bl 1 D™ (), DTG, D (). D).
R(X), 0SNG, |- I OLSTX), OUSHE(X), O(S) " (X), deg(p), & (p),
k(p), Tp.

>, >, Zlews Vo deg o, LTR(4), |- g

ATV AT ] g

Idem(-), as - p.go | - lp.sp Axcp)-

AS", AS},,.
Kulluy, ..., uqllV.

s s Nar (), Nar (), NEZ (), NE ().
V. V.

Rep, 4 (Gx), Dy, Mod‘[%:ig (¢, Gk), Mod', (¢, Tx), Modi(g, G),

~ rig, K, ~

erlg_( ')9 Via SWan( : )
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