Vol. 9, No. 8, 2015

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 8, 1777–2003
Issue 7, 1547–1776
Issue 6, 1327–1546
Issue 5, 1025–1326
Issue 4, 777–1024
Issue 3, 521–775
Issue 2, 231–519
Issue 1, 1–230

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
$G$-valued crystalline representations with minuscule $p$-adic Hodge type

Brandon Levin

Vol. 9 (2015), No. 8, 1741–1792
DOI: 10.2140/ant.2015.9.17
Abstract

We study G-valued semistable Galois deformation rings, where G is a reductive group. We develop a theory of Kisin modules with G-structure and use this to identify the connected components of crystalline deformation rings of minuscule p-adic Hodge type with the connected components of moduli of “finite flat models with G-structure”. The main ingredients are a construction in integral p-adic Hodge theory using Liu’s theory of (φ,Ĝ)-modules and the local models constructed by Pappas and Zhu.

Keywords
Galois representation, $p$-adic Hodge theory, finite flat group scheme, local model
Mathematical Subject Classification 2010
Primary: 11S20
Secondary: 14L15, 14F30
Milestones
Received: 4 April 2014
Revised: 1 June 2015
Accepted: 15 July 2015
Published: 29 October 2015
Authors
Brandon Levin
Department of Mathematics
University of Chicago
5734 S. University Avenue, Room 208C
Chicago, 60637
United States