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Weight functions on Berkovich curves
Matthew Baker and Johannes Nicaise

Let C be a curve over a complete discretely valued field K . We give tropical
descriptions of the weight function attached to a pluricanonical form on C and
the essential skeleton of C . We show that the Laplacian of the weight function
equals the pluricanonical divisor on Berkovich skeleta, and we describe the
essential skeleton of C as a combinatorial skeleton of the Berkovich skeleton
of the minimal snc-model. In particular, if C has semistable reduction, then the
essential skeleton coincides with the minimal skeleton. As an intermediate step,
we describe the base loci of logarithmic pluricanonical line bundles on minimal
snc-models.

1. Introduction

We denote by R a complete discrete valuation ring with quotient field K and
algebraically closed residue field k. Let X be a smooth and proper K-variety.
Mustat,ă and Nicaise [2015] defined the essential skeleton Sk(X) of X , which is a
finite simplicial complex embedded in the Berkovich analytification X an of X . It
is a union of faces of the Berkovich skeleton of any strict normal crossings model
of X , but it does not depend on the choice of such a model. It was proven in [Nicaise
and Xu 2013] that, when k has characteristic zero and the canonical line bundle
on X is semiample, the essential skeleton is a strong deformation retract of X an

and can be identified with the dual intersection complex of the special fiber of any
minimal dlt-model of X over R. The definition of the essential skeleton was based
on the construction of a weight function wtω on X an attached to a pluricanonical
form ω on X , which measures the degeneration of the pair (X, ω) locally at a point
of X an. The aim of the present paper is to give an explicit description of the weight
function and the essential skeleton in the case where X is a curve, and to relate
them to potential theory on graphs.

Let C be a smooth, proper, geometrically connected curve over K . Denote
by H0(C) the Berkovich analytification Can minus the points of type I and IV. In
Section 2 we construct a metric on H0(C) using the geometry of normal crossings
models of C over R. This is similar to the construction of the skeletal metric in
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the case where K is algebraically closed [Baker et al. 2013], but our metric is not
invariant under base change and cannot be obtained from the skeletal metric in
any direct way. Using this metric, we can speak of integral affine functions on
finite subgraphs of Can and Laplacians of such functions. Section 3 is the heart of
the paper; here we provide combinatorial descriptions of the weight function wtω
attached to a rational m-canonical form ω on C and of the essential skeleton of C .
Our first main result, Theorem 3.2.3, states that the Laplacian of the restriction of
the weight function to the Berkovich skeleton of a suitable snc-model of C equals
the m-canonical divisor of the Berkovich skeleton, which is defined in terms of
graph theory. Our second main result, Theorem 3.3.13, states that the essential
skeleton of a curve C of positive genus is the subgraph of the Berkovich skeleton of
the minimal snc-model of C obtained by contracting all the tails of rational curves.
In particular, if C has semistable reduction, then the essential skeleton of C is equal
to the Berkovich skeleton of its minimal snc-model. The proof of Theorem 3.3.13 is
based on Theorem 3.3.6, which describes the base locus of the logarithmic relative
pluricanonical bundles of the minimal snc-model of C . We also prove that, in the
semistable reduction case, it suffices to look at weight functions of 2-canonical forms
to recover the essential skeleton; moreover, if the essential skeleton of C is bridgeless,
then canonical forms suffice (see Theorem 3.4.6). Finally, in the Appendix, we
describe a different natural metric on H0(C) which behaves better under (tame)
base change and which is closer to the skeletal metric from [Baker et al. 2013].

1.1. Notation.

1.1.1. We denote by R a complete discrete valuation ring with quotient field K
and algebraically closed residue field k. We assume that the valuation vK on K
is normalized, i.e., that vK (t) = 1 for any uniformizer t in R, and we define an
absolute value | · |K on K by setting |a|K = exp(−vK (a)) for every a in K ∗. We
fix an algebraic closure K a of K . The absolute value | · |K extends uniquely to
an absolute value on K a , which we still denote by | · |K . We write K̂ a for the
completion of K a with respect to | · |K .

1.1.2. By a curve over K , we will mean a geometrically connected smooth proper
K-variety of dimension one. For every scheme S we denote by Sred the maximal
reduced closed subscheme. For every R-scheme X we set XK = X ×R K and
Xk = X×R k. If L is a line bundle on a scheme X and D is a Cartier divisor on X ,
then we write L(D) for the line bundle L⊗OX (D), as usual.

1.1.3. We will work with the category of K-analytic spaces as defined by Berkovich
[1990]. We assume a basic familiarity with the theory of analytic curves over K ;
see for instance [Baker et al. 2013].



Weight functions on Berkovich curves 2055

2. The metric on the Berkovich analytification of a K-curve

2.1. Metric graphs associated to curves with normal crossings.

2.1.1. When we speak of a discrete graph G, we mean a finite connected undirected
multigraph, i.e., we allow multiple loops and multiple edges between vertices. We
denote the vertex set of G by V (G) and the set of edges by E(G). A weighted
discrete graph is a couple (G, w) where G is a discrete graph and w is a function

w : V (G)→ R.

2.1.2. A discrete graph G has a geometric realization 0, which is defined as follows:
We start from the set V (G) and we attach one copy of the closed interval [0, 1]
between two vertices v1 and v2 for each edge of G with endpoints {v1, v2}. If G is
endowed with a weight function w that takes values in Z>0, then we can turn the
topological space 0 into a metric space by declaring that the length of every edge e
between two adjacent vertices v1 and v2 is equal to

`(e)= 1
w(v1)·w(v2)

. (2.1.3)

In these definitions, we allow the possibility that v1= v2. We call the metric space 0
the metric graph associated with (G, w).

2.1.4. Let X be a connected separated k-scheme of finite type of pure dimension
one. We say that X has normal crossings if the only singular points of Xred are
ordinary double points. We associate a weighted discrete graph (G(X), w) to X as
follows. The vertex set of G(X) is the set of irreducible components of X and the
edge set of G(X) is the set of singular points of Xred. If e is an edge corresponding
to a singular point x of Xred, then the end points of e are the vertices corresponding
to the irreducible components of X containing x . In particular, e is a loop if and
only if x is a singular point of an irreducible component of X . If v is a vertex of
G(X) corresponding to an irreducible component E of X , then the weight w(v) is
defined to be the multiplicity of X along E , i.e., the length of the local ring of X
at the generic point of E . The metric graph associated with (G(X), w) will be
denoted by 0(X).

2.2. Models with normal crossings.

2.2.1. Let C be a curve over K . An nc-model of C is a regular flat proper R-
scheme C, endowed with an isomorphism of K-schemes CK → C , such that the
special fiber Ck has normal crossings. We call C an snc-model of C if, moreover, Ck

has strict normal crossings, which means that its irreducible components (endowed
with the induced reduced structure) are regular. If C and C′ are nc-models of C ,
then a morphism of R-schemes h : C′ → C is called a morphism of nc-models
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if the morphism hK : C
′

K → CK obtained by base change to K commutes with
the isomorphisms to C . Morphisms of snc-models are defined analogously. We
say that C′ dominates C if there exists a morphism of nc-models C′→ C; such
a morphism is automatically unique. We denote this property by C′ ≥ C. The
relation ≥ defines a partial ordering on the set of isomorphism classes of nc-models
of C . This partial ordering is filtered, and the snc-models form a cofinal subset
since any nc-model can be transformed into an snc-model by blowing up at the
self-intersection points of the irreducible components of the special fiber. We say
that the curve C has semistable reduction if any relatively minimal nc-model of C
has a reduced special fiber. Beware that this does not imply that the minimal snc-
model has reduced special fiber, as blowing up at self-intersection points introduces
components of multiplicity two.

2.2.2. Denote by Can the Berkovich analytification of C , and let C be an snc-model
of C . If E is an irreducible component of Ck and v denotes the corresponding vertex
of the weighted discrete graph (G(Ck), w), then w(v) is precisely the multiplicity
of E in the divisor Ck . Mustat,ă and Nicaise [2015, §3.1] defined a canonical topo-
logical embedding of the metric graph 0(Ck) into Can, generalizing a construction
by Berkovich. The image of this embedding is called the Berkovich skeleton of
the model C and denoted by Sk(C). By [Mustat,ă and Nicaise 2015, 3.1.5], the
embedding of Sk(C) into Can has a canonical continuous retraction

ρC : Can
→ Sk(C).

If we let C vary over the class of snc-models of C , ordered by the domination
relation, then the maps ρC induce a homeomorphism

Can
→ lim
←−

C

Sk(C).

This is easily proven by an adaptation of the argument in [Baker et al. 2013,
Theorem 5.2] (where it is assumed that the base field is algebraically closed). It is
straightforward to generalize these constructions to nc-models, either by copying
the arguments or by observing that blowing up C at all the self-intersection points
of irreducible components of Ck , we get an snc-model C′ of C and the morphism
C′→C induces an isometry 0(C′k)→0(Ck) (the effect of this operation on 0(Ck)

is that we add a vertex in the middle of every loop).

2.3. Definition of the metric.

2.3.1. Let C be a curve over K , and denote by H0(C) the subset of Can obtained
by removing the points of type I and IV.

Lemma 2.3.2. For every nc-model C of C , the Berkovich skeleton Sk(C) is con-
tained in H0(C). Moreover, H0(C) is the union of the skeleta Sk(C) where C runs
through any cofinal set of nc-models of C.
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Proof. The points of type II on Can are precisely the divisorial points in the sense
of [Mustat,ă and Nicaise 2015, 2.4.7], and the points of type II and III are precisely
the monomial points. Thus the first part of the statement is obvious from the
construction of Sk(C). The second part follows from the fact that every monomial
point lies in the skeleton of some snc-model and the fact that, if C′ → C is a
morphism of nc-models of C , the skeleton Sk(C) is included in Sk(C′) [Mustat,ă
and Nicaise 2015, Proposition 3.1.7]. �

The following theorem explains how to define a natural metric on the set H0(C).

Theorem 2.3.3. There exists a unique metric on H0(C) such that, for every nc-
model C of C , the map

0(Ck)→ H0(C)

is an isometric embedding.

Proof. The uniqueness of the metric is obvious from Lemma 2.3.2. Thus it
suffices to prove its existence. Let C and C′ be nc-models of C such that C′

dominates C. Then the skeleton Sk(C) is contained in Sk(C′) by [Mustat,ă and
Nicaise 2015, Proposition 3.1.7], and it suffices to show that the corresponding
embedding 0(Ck)→0(C′k) is an isometry. Since we can decompose the morphism
C′→ C into a finite composition of point blow-ups, we can assume that C′→ C

is the blow-up of C at a closed point x of Ck . If x is a regular point of (Ck)red

then the claim is obvious. If x is a singular point then (G(C′k), w) is obtained from
(G(Ck), w) by adding a vertex on the edge e corresponding to x and giving it weight
w(v1)+w(v2), where v1 and v2 are the (not necessarily distinct) endpoints of e. The
lengths of the segment e in the metric graphs 0(Ck) and 0(C′k) are the same, because

1
w(v1)·w(v2)

=
1

w(v1)·(w(v1)+w(v2))
+

1
(w(v1)+w(v2))·w(v2)

. �

Remark 2.3.4. There is another metric on H0(C) that is induced by the piecewise
integral affine structure on the skeleta of snc-models; we will explain its construction
in the Appendix. Although this second metric arises more naturally and behaves
better under base change, the one we defined in Theorem 2.3.3 seems to be the
correct one for the purposes of potential theory. A similar discrepancy appears in
the nonarchimedean study of germs of algebraic surfaces, which is in many ways
analogous to the setup we consider here, see Section 7.4.10 of [Jonsson 2015].

3. The weight function and the essential skeleton

3.1. The weight function attached to a pluricanonical form.

3.1.1. We fix a K-curve C . Let m be a positive integer and let ω be a nonzero
rational m-canonical form on C . Thus ω is a nonzero rational section of the m-
canonical line bundle ω⊗m

C/K . As such, it defines a Cartier divisor on C , which we
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denote by divC(ω). If C is any snc-model of C , we can also view ω as a rational
section of the logarithmic relative m-canonical line bundle

ωC/R(Ck,red)
⊗m

and we denote the corresponding divisor on C by divC(ω). Note that the horizontal
part of divC(ω) is simply the schematic closure of divC(ω) in C.

3.1.2. Mustat,ă and the second author [2015, 4.5.4] attached to ω a so-called weight
function wtω. In our setting (the case of curves) we can characterize its restriction
to H0(C) in the following way. Recall that the points of type II on Can are precisely
the divisorial points in the sense of [Mustat,ă and Nicaise 2015, 2.4.7], and that the
points of type II and III are precisely the monomial points.

Proposition 3.1.3. The weight function

wtω : H0(C)→ R

is the unique function with the following properties for every snc-model C of C :

(1) The restriction of wtω to Sk(C) is continuous with respect to the metric topol-
ogy (which coincides with the Berkovich topology on Sk(C)).

(2) Let E be an irreducible component of Ck . We denote by N and ν the multi-
plicities of E in Ck and divC(ω), respectively. If x is the divisorial point of
Can attached to (C, E) (equivalently, the vertex of Sk(C) corresponding to E),
then

wtω(x)=
ν

N
.

Proof. It is shown in [Mustat,ă and Nicaise 2015, 4.4.3] that the weight function is
continuous (even piecewise affine) on Sk(C), and the description at divisorial points
is part of its definition. Uniqueness is clear from Lemma 2.3.2 and the fact that the
divisorial points are dense in the skeleton of every snc-model of C (by the proof of
[Mustat,ă and Nicaise 2015, 2.4.8], they correspond precisely to the points on 0(C)
with rational barycentric coordinates in the sense of 3.1.2 of the same work. �

3.1.4. Beware that the weight function is not continuous with respect to the
Berkovich topology on H0(C) (see [Mustat,ă and Nicaise 2015, Remark 4.6]
for a counterexample). The explicit description of the weight function given in
Theorem 3.2.3 below shows in particular that it is continuous with respect to the
metric topology on H0(C) (which is strictly finer than the Berkovich topology).

3.2. The Laplacian of the weight function.

3.2.1. By a pair over K , we mean a couple (C, δ) consisting of a K-curve C and
a divisor δ on C . An nc-model of a pair (C, δ) is an nc-model C of C such that
the sum of Ck with the schematic closure of δ is a normal crossings divisor on C.
An snc-model of (C, δ) is defined analogously. Note that for every point x in the
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support of δ, the specialization of x to Ck lies in a unique irreducible component E
of Ck , and the multiplicity of Ck along E is equal to the degree of x over K , by the
normal crossings condition. The skeleton of (C, δ) is defined to be the intersection
of H0(C) with the convex hull in Can of Sk(C) and the support of δ. We will denote
it by Sk(C, δ). Thus we obtain Sk(C, δ) from Sk(C) by adding, for each point x in
the support of δ, the open branch running from Sk(C) towards x . This construction
is similar to the definition of the skeleton of a strictly semistable pair in [Gubler
et al. 2016], but there it is assumed that K is algebraically closed and that Ck is
reduced and has strict normal crossings. By restricting the metric on H0(C) to the
skeleton Sk(C, δ), we can view the skeleton as a metric graph with some half-open
edges of infinite length. Then it makes sense to speak about a Z-affine function f
on Sk(C, δ) (i.e., a continuous real-valued function that is integral affine on every
edge) and the Laplacian 1( f ) of such a function (the divisor on Sk(C, δ) whose
degree at a vertex is the sum of the outgoing slopes of f ).

3.2.2. Our aim is to give a combinatorial description of the weight function wtω on
H0(C) attached to a nonzero rational m-canonical form ω on C . For this description
we need to introduce the m-canonical divisor of a labeled graph. Let G be a discrete
graph without loops, where we allow some of the edges of G to be half-open (i.e.,
the edge has only one adjacent vertex and is unbounded at the other side). Assume
that each vertex v of G is labeled by a couple of nonnegative integers (N (v), g(v)).
Then the canonical divisor of G is defined by

KG =
∑

v∈V (G)

N (v)(val(v)+ 2g(v)− 2)v,

where val(v) denotes the valency at v, that is, the number of edges (bounded and
unbounded) in G adjacent to v. When N (v)= 1 and g(v)= 0 for every vertex v,
this is just the usual definition of the canonical divisor of a discrete graph. The
m-canonical divisor of G is defined as m times the canonical divisor KG .

Theorem 3.2.3. We fix a K-curve C. Let m be a positive integer and let ω be a
nonzero rational m-canonical form on C. Let δ be any divisor on C whose support
contains the support of divC(ω) and let C be an snc-model for the pair (C, δ):

(1) The weight function wtω is Z-affine on every edge of Sk(C, δ).

(2) For every point x in the support of δ, the weight function wtω has constant
slope on the path running from Sk(C) to x in Can, and this slope is equal to

N (m+ degx(divC(ω))),

where N denotes the multiplicity of the unique component in Ck containing the
specialization of x.

(3) The Laplacian of the restriction of wtω to Sk(C, δ) is equal to the m-canonical
divisor of the graph Sk(C, δ) if we label each vertex v with (N (v), g(v)),
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where N (v) is the multiplicity of the corresponding irreducible component
in Ck and g(v) denotes its genus.

Proof. (1) It follows from the proof of [Mustat,ă and Nicaise 2015, 4.4.3] that wtω
is Z-affine on Sk(C), because no point in the support of divC(ω) specializes to a
singular point of (Ck)red. Here some care is needed, since the Z-affine structure in
[Mustat,ă and Nicaise 2015] is not the same as the one induced by our metric; it
corresponds to the metric one obtains by replacing the definition in (2.1.3) by

`(e)= 1
lcm{w(v1), w(v2)}

.

Since this multiplies every edge length by an integer factor, every Z-affine function
in the sense of [Mustat,ă and Nicaise 2015] is also Z-affine with respect to the metric
we use; we will come back to this point in the Appendix. The fact that wtω is also
Z-affine on the unbounded edges of Sk(C, δ) is a consequence of (2).

(2) Let x be a closed point of C . We can compute the slope of wtω on the path
running from Sk(C) to x as follows. Denote by E the unique irreducible component
of Ck containing the specialization xk of x . Denote by N the multiplicity of E in Ck

and by ν the multiplicity of E in divC(ω). Let h : C′→ C be the blow-up at xk .
Then C′ is again an snc-model of (C, δ) and its skeleton Sk(C′) is obtained from
Sk(C) by adding a closed interval I in the direction of x . The length of this interval
is 1/N 2, since the exceptional component E ′ of the blow-up has multiplicity N in C′k .
Moreover, the multiplicity of E ′ in divC′(ω) is equal to

ν+m+ degx(divC(ω))),

because
ω⊗m

C′/R(C
′

k,red)= (h
∗ω⊗m

C/R(Ck,red))⊗OC′(m E ′)

as submodules of the pushforward of ω⊗m
C/K to C′. Thus if we denote by v and v′ the

vertices of Sk(C′) corresponding to E and E ′, respectively, then wtω(v)= ν/N and

wtω(v′)= (m+ ν+ degx(divC(ω)))/N .

Since v and v′ are precisely the endpoints of I , we see that wtω has slope

N (m+ degx(divC(ω)))

on I if we orient I from v to v′. Replacing C by C′ and repeating the argument,
we conclude that wtω has constant slope

N (m+ degx(divC(ω)))

along the whole path from v to x .
(3) It remains to compute the Laplacian 1(wtω) of wtω on Sk(C, δ). Let v0 be

a vertex of Sk(C) corresponding to an irreducible component E0 of Ck . Denote
by x1, . . . , xa the points in the support of δ that specialize to a point in E0, and by
y1, . . . , yb the intersection points of E0 with the other irreducible components of Ck .
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For each i ∈ {1, . . . , b} we denote by Ei the unique irreducible component of Ck

intersecting E0 at yi . For each i ∈{0, . . . , b}we write νi and Ni for the multiplicities
of Ei in divC(ω) and Ck , respectively. Then the edges of Sk(C) adjacent to v0

correspond precisely to the points y1, . . . , yb, and the unbounded edges of Sk(C, δ)
adjacent to v0 are precisely the paths from v0 to the points x1, . . . , xa . We have
already computed the slopes of wtω along these unbounded edges, and taking into
account the edge lengths of Sk(C) we find that the degree of1(wtω) at v0 is equal to

a∑
i=1

(N0m+ degxi
(divC(ω)))+

b∑
j=1

(νj N0− ν0 Nj ).

This is nothing but

m N0a+ N0(E0 · (divC(ω)−
ν0
N0

Ck))= m N0a+ N0(E0 · divC(ω)).

By adjunction, the restriction of the line bundle ωC/R(Ck,red)
⊗m to E0 is precisely

ωE0/k(y1+ · · ·+ yb)
⊗m .

By computing the degree of this line bundle we find that the degree of 1(wtω) at
v0 is equal to

m N0(a+ b+ 2g(E0)− 2),

where g(E0) denotes the genus of E0. By definition, this is exactly the degree of
the m-canonical divisor of Sk(C, δ) at v0. �

3.2.4. We can use Theorem 3.2.3 to describe the Laplacian of the restriction of the
weight function to the skeleton of any snc-model C of C . Beware that the weight
function is not necessarily affine on the edges of Sk(C), only piecewise affine. The
Laplacian of such a function is still defined, but it is no longer supported on the
vertices of Sk(C), in general. We denote by (ρC)∗ the map on divisors induced by
linearity from the retraction map ρC : Can

→ Sk(C). We have

(ρC)∗(x)= deg(x) · ρC(x)

for every type I point x of Can.

Corollary 3.2.5. Let C be any snc-model of C. We denote by f the restriction of
wtω to Sk(C) and by mKSk(C) the m-canonical divisor of Sk(C), where we label
each vertex of Sk(C) by its multiplicity and genus as before. Then

1( f )= mKSk(C)− (ρC)∗(divC(ω)).

In particular, if ω is regular, then 1( f )≤ mKSk(C).

Proof. We can always dominate C by an snc-model C′ of the pair (C, divC(ω)).
If we denote by f ′ the restriction of wtω to Sk(C′), then it follows easily from
Theorem 3.2.3 that

1( f ′)= mKSk(C′)− (ρC′)∗(divC(ω)).
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Denote by ρ : Sk(C′)→ Sk(C) the map of metric graphs obtained by restricting ρC

to Sk(C′). Since the fibers of ρ are metric trees, it is straightforward to check that
1( f )= ρ∗(1( f ′)). On the other hand, we also have that

ρ∗(ρC′)∗(divC(ω))= (ρC)∗(divC(ω)),

and by factoring C′→ C into point blow-ups, one sees that ρ∗(KSk(C′))= KSk(C).
Thus the formula is valid for C, as well. �

Example 3.2.6. Let C be an elliptic curve over K of Kodaira–Néron reduction
type II (see [Silverman 1994, IV§8]) and let ω be a generator for the relative
canonical line bundle of the minimal regular model of C . Let C be the minimal
snc-model of C . Then the special fiber of C is of the form

Ck = E1+ 2E2+ 3E3+ 6E4,

where each component Ei is a rational curve, E4 intersects each other component in
precisely one point, and there are no other intersection points. The skeleton Sk(C)
consists of four vertices v1, . . . , v4 corresponding to the components E1, . . . , E4.
These are joined by three edges of respective lengths `(v1v4)= 1/6, `(v2v4)= 1/12
and `(v3v4)= 1/18. Moreover,

divC(ω)= E1+ 2E2+ 3E3+ 5E4

and the weight function wtω is affine on Sk(C) with values 1, 1, 1, 5/6 at the
vertices v1, v2, v3, v4, respectively. Direct computation shows that

1wtω = 6v4− v1− 2v2− 3v3,

which is also the canonical divisor of Sk(C) (labeled with multiplicities and genera).

Remark 3.2.7. It is worth noting that Corollary 3.2.5 uniquely determines wtω up
to an additive constant as a function on H0(C), and that this description of wtω
does not require K to be discretely valued (if we replace snc-models by semistable
models). This gives us a way to define wtω for any curve C over any nontrivially
valued nonarchimedean field K and any nonzero rational m-canonical form ω on C .
M. Temkin [2014] has recently discovered a different way to extend the definition
of wtω to the nondiscretely valued setting, and his method works in any dimension.

3.3. The essential skeleton.

3.3.1. Let C be a K-curve of genus g(C) ≥ 1 and let ω be a nonzero regular m-
canonical form on C , for some positive integer m. Then it is easy to deduce from
the properties of the weight function wtω in Theorem 3.2.3 that this function is
bounded below, and that its locus of minimal values is a union of closed faces of
Sk(C) for any snc-model C of (C, divC(ω)). Corollary 3.2.5 shows that this remains
true for any snc-model C of C (one needs to observe that the weight function is
concave on every edge of Sk(C) because its Laplacian is nonpositive at each point
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in the interior of an edge), see [Mustat,ă and Nicaise 2015, Theorem 4.7.5] for
a more general statement. The locus of minimal values of wtω was called the
Kontsevich–Soibelman skeleton of the pair (C, ω) in [Mustat,ă and Nicaise 2015,
4.7.1] and denoted by Sk(C, ω). The essential skeleton Sk(C) is the union of the
Kontsevich–Soibelman skeleta Sk(C, ω) over all the nonzero regular pluricanonical
forms ω on C , see [Mustat,ă and Nicaise 2015, Definition 4.10]. The aim of this
section is to compare the essential skeleton Sk(C) to the skeleton Sk(C) of the
minimal snc-model C of C .

3.3.2. We first recall the description of Sk(C, ω), the Kontsevich–Soibelman skele-
ton, in terms of an snc-model C of C (see [Mustat,ă and Nicaise 2015, Theo-
rem 4.7.5] for a more general result; in our setting, it can also be easily deduced
from Proposition 3.1.3 and Theorem 3.2.3). We write

Ck =
∑
i∈I

Ni Ei

and we denote by νi the multiplicity of Ei in divC(ω), for every i ∈ I . We say that
the vertex of Sk(C) corresponding to a component E j , j ∈ I , is ω-essential if

νj

Nj
=min

{ νi

Ni

∣∣∣ i ∈ I
}
.

We say that an edge in Sk(C) is ω-essential if its adjacent vertices are ω-essential
and the point of Ck corresponding to the edge is not contained in the closure of
divC(ω) (i.e., the horizontal part of divC(ω)). Then Sk(C, ω) is the union of the
ω-essential faces of Sk(C). Note however that, by its very definition, Sk(C, ω)
does not depend on the choice of a particular model C.

3.3.3. In order to determine the essential skeleton Sk(C), we will need a description
of the base locus of the logarithmic pluricanonical bundle on the minimal snc-model
of C . Let C be any snc-model of C . We label the vertices of the skeleton Sk(C) by
the multiplicities and genera of the corresponding irreducible components of Ck . We
define a tail in Sk(C) as a connected subchain with successive vertices v0, . . . , vn

where vn has valency one in Sk(C), vi has valency 2 in Sk(C) for 1≤ i < n, and vi

has genus zero for 1 ≤ i ≤ n. We say that the tail is maximal if v0 has valency
at least 3 in Sk(C) or v0 has positive genus. The vertex v0 is called the starting
point of the maximal tail and vn is called its end point. We call the components
of Ck corresponding to the vertices v1, . . . , vn inessential components of Ck . The
combinatorial skeleton of Sk(C) is the subspace that we obtain by replacing every
maximal tail by its starting point. Thus in Example 3.2.6, the combinatorial skeleton
of Sk(C) consists only of the vertex v4. Note that contracting maximal tails may
create new ones, but we do not repeat the operation to contract those. For instance,
if C is an elliptic K-curve of reduction type I ∗n (see [Silverman 1994, IV§8])
and C is its minimal snc-model, then the combinatorial skeleton of Sk(C) is the
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subchain formed by the n+ 1 vertices of multiplicity two. Note that Ck can never
consist entirely of inessential components, by our assumption that g(C)≥ 1 (this
follows from basic intersection theory and adjunction, see for instance [Nicaise
2013, Lemma 3.1.2]). We also observe that, if C has semistable reduction and C

is its minimal snc-model, there are no inessential components in Ck because the
end point of a tail would correspond to a rational (−1)-curve, which contradicts
the minimality of C.

3.3.4. We will need a technical lemma on two-dimensional log regular schemes.
We refer to [Kato 1989] for the basic theory of log schemes, and to [Kato 1994] for
the theory of log regular schemes.

Lemma 3.3.5. Let A be a normal Noetherian local ring of dimension 2 and let
D = D0 + D1 be a reduced Weil divisor on X = Spec A with prime components
D0 and D1. We define a log scheme X+ by endowing X with the divisorial log
structure induced by D. Assume that X+ is log regular. Then D0 and D1 are
Q-Cartier, and D0 · D1 ≤ 1 with equality if and only if A is regular.

Proof. We denote by M the multiplicative monoid consisting of the elements of A
that are invertible on X \ D, and we consider the characteristic monoid

M=M/A×.

By the log regularity assumption, D0 and D1 are regular and M is a toric monoid
of dimension 2. In particular, its groupification Mgp is a rank two lattice. The ring
A is regular if and only if the monoid M is generated by two elements, that is,
M∼= N2.

Let e0 and e1 be the primitive generators of the one-dimensional faces of M.
Then e0

∧
e1 generates

m ·
2∧
(Mgp),

for a unique positive integer m (in other words, m is the absolute value of the
determinant of (e0, e1)), and m = 1 if and only if A is regular. Since the fan of
the log scheme Spec A is canonically isomorphic with SpecM by [Kato 1994,
Proposition 10.1], we know that (up to renumbering), Di is the zero locus in Spec A
of the prime ideal M\Nei of M, for i = 0, 1 (by which we mean the zero locus of
its inverse image in M). Moreover, any representative ẽi of ei in M is a regular
local parameter on Di , and the characteristic monoid at the generic point of Di is
M/Ne1−i , see the proof of [Eriksson et al. 2015, Proposition 4.3.2(1)] for a similar
computation. It follows that m Di = div(̃e1−i ), so that D1 and D2 are Q-Cartier,
and m D1 · D2 = 1. Thus

D1 · D2 = 1/m ≤ 1,

with equality if and only if A is regular. �
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Theorem 3.3.6. Let C be a K-curve of genus g(C) ≥ 1 and let C be its minimal
snc-model. If m is a sufficiently divisible positive integer, then the base locus of the
line bundle ωC/R(Ck,red)

⊗m on C is the union of the inessential components of Ck .

Proof. Let m be a positive integer. Using adjunction, one sees that the line bundle
ωC/R(Ck,red)

⊗m has negative degree or degree 0 on each rational curve in Ck that
intersects the other components in precisely one point or two points, respectively.
It follows at once that the union of the inessential components in Ck is contained in
the base locus of ωC/R(Ck,red)

⊗m . We will show there are no other points in the
base locus if m is sufficiently divisible. If Ck,red is either an elliptic curve or a loop
of rational curves, then C has genus one and ωC/R(Ck,red)

⊗m is trivial for some
m > 0 by [Liu et al. 2004, Lemma 5.7 and Theorem 6.6]. Thus we can discard
these cases in the remainder of the proof.

We can choose a reduced divisor H on C with the following properties:

• The divisor H does not contain any prime component of Ck (in other words,
H is horizontal) and H +Ck is a divisor with strict normal crossings.

• We have H · E = 1 if E is a prime component of Ck that corresponds to the
end point of a maximal tail in Sk(C), and H · E = 0 for every other prime
component of Ck .

We denote by S+ the scheme S = Spec R endowed with its standard log structure
(the divisorial log structure induced by the closed point of S) and by C+ the log
scheme we obtain by endowing C with the divisorial log structure associated with
the divisor Ck + H . Then C+ is log regular in the sense of [Kato 1994] because
Ck + H has strict normal crossings.

By Lipman’s generalization [1969, Theorem 27.1] of Artin’s contractibility
criterion, any chain of rational curves in Ck can be contracted to a rational singularity.
In particular, there exists a morphism h : C→ D of normal proper R-models of C
that contracts precisely the rational components of Ck that meet the rest of the
special fiber in exactly one or two points. We endow D with the divisorial log
structure associated with Dk + h∗H and denote the resulting log scheme by D+. It
follows from [Ito and Schröer 2015, §3] that D+ is still log regular (this is the reason
why we added the horizontal divisor H ). The morphism h induces a morphism of
log schemes h : C+→D+, and this morphism is log étale since it is a composition
of log blow-ups.

We consider the canonical line bundle

ωC+/S+ = det�1
C+/S+

on C. It follows easily from [Eriksson et al. 2015, Proposition 3.3.4] that ωC+/S+ is
isomorphic to ωC/R(Ck,red+ H). We can copy the proofs of [Eriksson et al. 2015,
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3.3.2 and Proposition 3.3.6] to show that the coherent sheaf �1
D+/S+ on D is perfect,

so that we can define the canonical line bundle

ωD+/S+ = det�1
D+/S+

on D (the results in [Eriksson et al. 2015] were formulated for H = 0 but the
arguments carry over immediately). Since h is log étale, [Eriksson et al. 2015, Propo-
sition 3.3.6] also implies that we have a canonical isomorphism ωC+/S+ ∼= h∗ωD+/S+ .

By Lemma 3.3.5, the divisor h∗H is Q-Cartier. Thus by choosing m sufficiently
divisible, we can assume that mh∗H is Cartier. We will prove that the line bundle
ω⊗m

D+/S+(−mh∗H) on D is ample. This implies that its pullback to C is semiample
(that is, some tensor power is generated by its global sections). But this pullback
is isomorphic to ω⊗m

C+/S+(−h∗h∗m H), which is a subbundle of

ω⊗m
C+/S+(−m H)∼= ωC/R(Ck,red)

⊗m

that coincides with ωC/R(Ck,red)
⊗m away from the inessential components of Ck

(note that, for every closed point x of h∗H , the inverse image h−1(x) is a maximal
tail of inessential components in Ck).

Thus it is enough to show that ω⊗m
D+/S+(−mh∗H) is ample. By [Liu 2002, Chap-

ter 7, Proposition 5.5], it suffices to show that it has positive degree on every prime
component E of Dk . By adjunction, the restriction of ωD+/S+ to E is isomorphic to
ωE/k(F) where F is the reduced divisor on E supported on the intersection points
of E with the other components of Dk + h∗H . Note that either E has positive
genus, or F consists of at least three points including at least two intersections
points of E with the other components of Dk , since we contracted all the other
components in Ck . Therefore, we only need to show that h∗H0 · E < 1 for every
prime component H0 of H . This follows from Lemma 3.3.5 (note that D is singular
at every point of h∗H

⋂
Dk by minimality of C). �

Remark 3.3.7. In the language of [Nicaise and Xu 2013], the proof of Theorem
3.3.6 can also be interpreted as follows: The model C′ for C that we obtain from the
minimal snc-model C by contracting all the inessential components in the special
fiber is a minimal dlt-model of C . Even for curves, minimal dlt-models are not
unique, because we can construct a new one by blowing up an intersection point of
two components in the special fiber (in the language of the minimal model program,
the minimality of a dlt-model only expresses that the logarithmic relative canonical
line bundle is semiample). However, the set of isomorphism classes of minimal
dlt-models has a unique minimal element with respect to the dominance relation
(defined as in 2.2.1), and this is precisely the isomorphism class of C′. Beware that
such a unique minimal isomorphism class need no longer exist if we replace C by
a K-variety of dimension ≥ 2.
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3.3.8. If C has semistable reduction, we can be more precise; we will show in
Theorem 3.3.11 that the logarithmic 2-canonical line bundle on the minimal snc-
model of C is generated by global sections. This follows at once from Theorem 7
in [Lee 2005], which states that ω⊗m

Cmin/R is generated by global sections if m ≥ 2
and Cmin is the minimal regular model of a curve C of genus g ≥ 2 (recall that
the minimal regular model of a curve with semistable reduction coincides with
its minimal nc-model). Although we only deal with the semistable case, we feel
that our alternative proof of Theorem 3.3.11 is still interesting, because it uses a
different method and it is substantially simpler than the proof of the more general
result in [Lee 2005]. It does not seem possible to deduce Theorem 3.3.6 from
the semiampleness of ωCmin/R in a direct way, because of the discrepancy between
the minimal regular model and the minimal nc-model of C if C does not have
semistable reduction. We start by proving two elementary lemmas.

Lemma 3.3.9. Let X be a regular flat proper R-scheme of relative dimension one
and let L be a line bundle on X. Let E be an irreducible component of multiplicity N
in Xk and let a be an integer in {1, . . . , N }. If the restriction of L((1− a)E) to E
has negative degree, then

H 0(aE,L|aE)= 0.

Proof. We prove this by induction on a. The case a = 1 is obvious. Assume that
a> 1 and that the property holds for a−1. If L((1−a)E) has negative degree on E
then the same holds for L((b− a)E) for all b ≥ 1 because E2

≤ 0. We consider
the short exact sequence

0−→ L|aE ⊗ I −→ L|aE −→ L|(a−1)E −→ 0,

where I is the ideal sheaf of (a − 1)E in aE . By our induction hypothesis, it
suffices to show that

H 0(aE,L|aE ⊗ I)= 0.

This follows from the isomorphism of OaE -modules

L|aE ⊗ I ∼= L((1− a)E)|E
on E . �

Lemma 3.3.10. Let X be a regular flat proper R-scheme of relative dimension one
and let L be a line bundle on X. Let D be a reduced connected divisor supported
on Xk . Suppose that the restriction of L to each component in D has nonpositive
degree, and that this degree is negative for at least one component. Then

H 0(D,L|D)= 0.

Proof. This follows easily by induction on the number r of irreducible components
of D. If r = 1 the result is obvious. Suppose that r > 1 and let E be a component
of D on which L has negative degree. Then every section of L on D vanishes on E ,
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so it is also a section of L(−E) on D. The line bundle L(−E) has negative degree
on each irreducible component of D that intersects E , so we can apply the induction
hypothesis to this line bundle and to every connected component of D− E . �

Theorem 3.3.11. Let C be a K-curve of genus g(C)≥ 1 with semistable reduction
and let C be its minimal snc-model. Then the logarithmic 2-canonical line bundle
ωC/R(Ck,red)

⊗2 on C is generated by its global sections.

Proof. It will be convenient to start from the minimal nc-model C′ of C instead of
the minimal snc-model C. We will show that ω⊗2

C′/R is generated by global sections.
This implies the desired result; the line bundle ωC/R(Ck,red) is isomorphic to the
pullback of ωC′/R ∼= ωC′/R(C

′

k) through the morphism g : C′ → C, since C′k is
reduced and C is a composition of log blow-ups if we endow both models with the
divisorial log structure associated with their special fibers. We can assume that C
has genus at least 2, since otherwise ωC′/R is trivial.

Let x be a closed point of C′k and denote by h : D→ C′ the blow-up of C′ at x
and by E0 the exceptional curve of h. Then ω⊗2

C′/R is globally generated at x if and
only if the morphism

H 0(D, h∗ω⊗2
C′/R)→ H 0(E0, h∗ω⊗2

C′/R|E0)

is surjective. To prove surjectivity, it suffices to show that H 1(D, h∗ω⊗2
C′/R(−E0))

vanishes. By Serre duality, this is equivalent to showing that H 0(Dk,L)= 0, with

L= (ωD/R ⊗ (h∗ω−2
C′/R)(E0))|Dk

∼= (ω
−1
D/R(3E0))|Dk .

We write

Dk = N0 E0+

r∑
i=1

Ei ,

where N0 is one or two, depending on whether x is a regular or singular point of C′k .
We first observe that the restriction of L to N0 E0 has no nonzero global sections.

Because the restriction of the line bundle L((1− N0)E0) to E0 has negative degree
we can apply Lemma 3.3.9. Thus every section of L on Dk is also a section of

L′ = (ω−1
D/R((3− N0)E0))|Dk .

Note that L′ has degree −1 on E0 if N0 = 1 and degree 0 if N0 = 2. Next, we
consider any component Ei 6= E0 in Dk . By the adjunction formula, the degree of
L′ on Ei is given by

deg(L′|Ei )= 2− 2pa(Ei )+ E2
i + (3− N0)E0 · Ei . (3.3.12)

By the projection formula, E2
i = h(Ei )

2
− δ, where

• δ = 0 if x does not lie on h(Ei ),

• δ = 1 if x is a regular point of h(Ei ) (then E0 · Ei = 1),

• δ = 4 if x is a self-intersection point of h(Ei ) (then N0 = 2 and Ei · E0 = 2).
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Thus if E2
i +(3−N0)E0 ·Ei is positive, we have δ= 1 and h(Ei )

2
= 0, which means

that C′k = h(Ei ) and pa(Ei )= pa(h(Ei ))≥ 2 by our assumption on the genus of C .
Note also that E2

i + (3− N0)E0 · Ei = 0 implies that δ = 1 and h(Ei )
2
=−1, and

thus pa(Ei )= pa(h(Ei )) > 0, since otherwise h(Ei ) would be an exceptional curve
on C′, contradicting minimality.

It follows that the number in (3.3.12) is negative, unless

• pa(Ei )= 1 and E2
i + (3− N0)E0 · Ei = 0, or

• pa(Ei )= 0 and E2
i + (3− N0)E0 · Ei ∈ {−2,−1}.

If pa(Ei )= 1 and E2
i +(3−N0)E0 ·Ei = 0 then h(Ei ) is a (−1)-curve of arithmetic

genus one and x is a point on h(Ei ) that does not lie on any other component of C′k .
Similarly, if pa(Ei ) = 0 and E2

i + (3− N0)E0 · Ei = −1 then h(Ei ) must be a
regular rational (−2)-curve and x is a point on h(Ei ) that does not lie on any other
component of C′k . Finally, if pa(Ei )= 0 and E2

i +(3−N0)E0 ·Ei =−2 then h(Ei )

contains x or h(Ei ) is a regular rational curve of self-intersection number −2.
From these observations, we can deduce the following properties:

• The divisor Dk contains at most one component Ei on which L′ has positive
degree. In that case, this degree equals one, and h(Ei ) is a regular rational (−2)-
curve and it is the only component of C′k that contains x . Then each connected
component of Dk − N0 E0 − Ei contains a curve on which L′ has negative
degree, since such a component cannot consist entirely of regular rational (−2)-
curves. It follows from Lemma 3.3.10 that L′ has no nonzero global sections
on Dk − N0 E0− Ei . Then L has no nonzero global sections on Dk , because
every section vanishes at the two intersection points of Ei with Dk − N0 E0.

• Assume that L′ has nonpositive degree on every component of Dk . The divisor
Dk contains at least one component Ei on which L′ has negative degree, if x lies
on only one component of C′k then we can take Ei = E0. In the other case, all
components of Dk on which L′ has degree zero are regular rational curves that
intersect the rest of Dk in precisely two points, and Dk cannot consist entirely of
such curves because of our assumption that g(C)≥2. Thus Lemma 3.3.10 again
implies that L′ has no nonzero global sections on Dk,red, so that H 0(Dk,L)= 0.

This concludes the proof. �

We are now ready to compare the essential skeleton of a K-curve C of posi-
tive genus to the Berkovich skeleton Sk(C) of its minimal snc-model C. Recall
from 3.3.3 that the combinatorial skeleton of Sk(C) is the subspace that we obtain
by replacing every maximal tail by its starting point.

Theorem 3.3.13. Let C be a K-curve of genus g(C)≥ 1 and let C be its minimal
snc-model.
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(1) The essential skeleton Sk(C) is equal to the combinatorial skeleton of Sk(C)
(as a subspace of Can). In particular, Sk(C) is a strong deformation retract
of Can.

(2) If C has semistable reduction, then Sk(C)= Sk(C). Moreover,

Sk(C)=
⋃
ω

Sk(C, ω),

where ω runs through the set of nonzero regular 2-canonical forms on C.

Proof. (1) It follows from Corollary 3.2.5 that, for every nonzero regular pluri-
canonical form ω on C , the weight function wtω is strictly increasing along every
tail of Sk(C) if we orient the tail from its starting point to its end point. Thus the
essential skeleton Sk(C) is contained in the combinatorial skeleton of Sk(C). The
converse inclusion is a consequence of Theorem 3.3.6; we choose a positive integer
m such that the base locus of ωC/R(Ck,red)

⊗m is the union of inessential components
of Ck . If x is a singular point of Ck,red that does not lie on an inessential component
and ω is a global section of ωC/R(Ck,red)

⊗m that does not vanish at x , then the
weight function wtω vanishes on the edge of Sk(C) and it is nonnegative on the
whole skeleton Sk(C), so that the edge belongs to Sk(C, ω). Thus the combinatorial
skeleton of Sk(C) is equal to ⋃

ω

Sk(C, ω),

where ω runs through any basis of the R-module

H 0(C, ωC/R(Ck,red)
⊗m).

(2) As we have already observed in 3.3.3, the special fiber of C does not contain
any inessential components. Therefore, the combinatorial skeleton of Sk(C) is
equal to Sk(C) and thus also to the essential skeleton Sk(C) by point (1). The proof
of (1), together with Theorem 3.3.11, shows that 2-canonical forms ω suffices to
generate the whole essential skeleton Sk(C). �

3.4. The subset of the essential skeleton cut out by canonical forms.

3.4.1. Let C be a K-curve of genus g ≥ 1 and denote by C its minimal snc-model.
We assume that Ck is reduced. Looking at the definition of the essential skeleton in
3.3.1, it is natural to ask which part of the essential skeleton we recover by taking
the union of the Kontsevich–Soibelman skeleta Sk(C, ω) where ω runs through the
set of nonzero canonical (rather than pluricanonical) forms on C . In this section,
we will show that one obtains the union of all the closed nonbridge edges and
all the vertices of positive genus of the skeleton Sk(C). Recall that a bridge in a
graph G is an edge that is not contained in any nontrivial cycle, or equivalently,
that is contained in every spanning tree.
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3.4.2. Let G =G(Ck) be the dual graph of the special fiber Ck , and let ν : C̃k→Ck

be a normalization morphism. The set V (G) of vertices v of G is in bijection with
the set of connected components Cv of C̃k . Let E(G) denote the set of edges of G,
each endowed with a fixed (but arbitrary) orientation. If x is the singular point
of Ck corresponding to an edge e, then the choice of an orientation on e amounts
to choosing a point y in ν−1(x); if the oriented edge Ee points towards the vertex v,
then we take y to be the unique point of ν−1(x) lying on Cv.

3.4.3. By the cohomological flatness of C→ Spec(R) and Grothendieck–Serre
duality, the module H 1(C, ωC/R) is free, so that

H 0(Ck, ωC/R)⊗ k ∼= H 0(Ck, ωCk/k).

We can identify H 0(Ck, ωCk/k) with the space of Rosenlicht differentials on Ck . A
Rosenlicht differential ω is, by definition, the data of a meromorphic differential ωv
on Cv for each v ∈ V (G) such that:

(1) Each ωv has at worst logarithmic poles at the inverse images under ν of the
singular points of Ck , and is regular everywhere else.

(2) If x is a singular point of Ck and ν−1(x)= {y1, y2}, then the residues of ω at
y1 and y2 sum to zero.

Given ω ∈ H 0(Ck, ωCk/k) and an oriented edge Ee ∈ E(G), let resEe(ω) be the residue
of ω at the point of C̃k corresponding to Ee. By the residue theorem, the sum

res(ω) :=
∑

e∈E(G)

resEe(ω)(Ee)

belongs to H1(G, k), so that we obtain a morphism of k-vector spaces

res : H 0(Ck, ωCk/k)→ H1(G, k),

which is called the residue map.

Lemma 3.4.4. The residue map fits into a short exact sequence of k-vector spaces:

0−→⊕v∈V (G)H 0(Cv, ωCv/k)
α
−→ H 0(Ck, ωCk/k)

res
−→ H1(G, k)−→ 0.

Proof. By the definition of Rosenlicht differentials and the residue map, the kernel
of res is equal to

⊕
v∈V (G) H 0(Cv, ωCv/k). Surjectivity of the residue map now

follows by a dimension count, since

dimk H 0(Ck, ωCk/k)= dimk H1(G, k)+
∑

v∈V (G)

dimk H 0(Cv, ωCv/k)= g. �

Lemma 3.4.5. Let ω be a regular canonical form on C and let v be a vertex of
genus zero of Sk(C). Then v belongs to Sk(C, ω) if and only if some edge adjacent
to v belongs to Sk(C, ω).



2072 Matthew Baker and Johannes Nicaise

Proof. The “if” part follows from the fact that Sk(C, ω) is closed, so we only
need to prove the converse implication. We denote by f the restriction of wtω
to Sk(C). Assume that v lies in Sk(C, ω), that is, f reaches its minimal value at v.
By Corollary 3.2.5 and the assumption that v has genus zero, the degree of 1( f )
at v is strictly less than the valency of v in Sk(C). Since f has integer slopes, this
means that at least one of the outgoing slopes of f from v must be zero, so that the
corresponding edge also lies in Sk(C, ω). �

Theorem 3.4.6. If C is a K-curve of genus g ≥ 1 whose minimal snc-model C over
R is semistable, then the union S =

⋃
ω Sk(C, ω), as ω runs through the set of

nonzero global sections of ωC/K , is equal to the union of all the closed nonbridge
edges and all the vertices of positive genus of Sk(C).

Proof. Multiplying a nonzero canonical form ω with a ∈ K× shifts the weight
function wtω by vK (a) and does not affect Sk(C, ω). Moreover, since Ck is reduced,
wtω takes integer values at the vertices of Sk(C). Thus in the definition of S, we
only need to consider canonical forms ω whose minimal value on Sk(C) equals
zero (recall from 3.3.1 that this minimal value is always reached at a vertex).

Now it is clear from the definition of the weight function that wtω vanishes at an
edge, or vertex, of Sk(C) if and only if ω generates ωC/R(Ck) at the corresponding
point of Ck or at the generic point of the corresponding irreducible component of
Ck , respectively. Thus, in order to find the faces of Sk(C) that lie in S, we need to
determine which singular points and irreducible components of Ck lie in the base
locus of

ωC/R(Ck)∼= ωC/R.

For this aim, we can use Rosenlicht differentials; a point of Ck lies in the base locus
of ωC/R if and only if it lies in the base locus of ωCk/k on Ck , by the surjectivity of
the reduction map

H 0(C, ωC/R)→ H 0(Ck, ωCk/k).

Using the morphism α in Lemma 3.4.4, we can find an element of H 0(Ck, ωCk/k)

that generates ωCk/k at the generic point of every component of positive genus
of Ck . In particular, all the vertices of positive genus of Sk(C) belong to S. By
Lemma 3.4.5, it now suffices to determine which edges of Sk(C) lie in S. The
residue theorem immediately implies that a bridge never belongs to S, while the
surjectivity of the residue map in Lemma 3.4.4 shows that every nonbridge edge
lies in S. This concludes the proof. �

Remark 3.4.7. By Theorem 3.3.13, the essential skeleton Sk(C) is always con-
nected, but it is easy to use the proof of Theorem 3.4.6 to produce examples of a
curve C and a nonzero canonical form ω such that Sk(C, ω) is disconnected (for
instance, when Sk(C) is a chain with vertices of positive genus).
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3.5. An alternate approach to computing the essential skeleton of a maximally
degenerate semistable curve.

3.5.1. Let C be a K-curve of genus g ≥ 1 and denote by C its minimal snc-model.
There is an elegant way to prove Theorems 3.3.13(2) and 3.4.6 using potential
theory on metric graphs if we assume that C is a maximally degenerate K-curve.
This assumption is common in tropical geometry; it means that Ck is reduced and
that all the irreducible components of Ck are rational curves. This implies that the
metric graph Sk(C) still has genus g. The proofs yield some additional information
about the structure of Sk(C, ω) for certain explicit 2-canonical forms ω. They also
have the advantage that they can be extended to the nondiscretely valued setting
(see Remark 3.2.7).

3.5.2. For background on potential theory on metric graphs, see for instance [Baker
2008]. We recall that a tropical rational function on a metric graph 0 is a real-valued
continuous piecewise affine function on 0 with integral slopes, and that the divisor
of such a function is defined by div( f ) = −1( f ). In other words, the degree of
div( f ) at a point of 0 is the sum of the incoming slopes of f . Two divisors on 0
are called equivalent if they differ by the divisor of a tropical rational function. We
begin with a combinatorial lemma needed for our alternate proof of Theorem 3.4.6.

Lemma 3.5.3. Let G be a discrete graph without loops and denote by 0 the metric
graph associated with G. Let T be a spanning tree of 0, let e be an edge of 0
not contained in T , and let Z(T, e) be the unique cycle in T ∪ e. Let D be an
effective divisor on 0 which is equivalent to the canonical divisor KG and whose
support contains a point pi from the relative interior of each edge ei 6= e contained
in the complement of T . Finally, let f be a tropical rational function on 0 with
div( f )= D− KG . Then the locus of points p ∈ 0 where f achieves its minimum
value is equal to Z(T, e).

Proof. Let Sk( f ) be the locus of p ∈ 0 at which f attains its minimum value. For
each p ∈Sk( f ), f can be strictly increasing in at most val(p)−2 tangent directions,
since it has slope at least 1 in each such direction and nonnegative slope in every
other direction and the total sum of outgoing slopes of f at p is at most

degp KG = val(p)− 2.

Thus there are at least two tangent directions at p along which f is constant. It
follows that every connected component of Sk( f ) is a graph in which every vertex
has valency at least 2. However, Sk( f ) cannot contain any of the points pi , since the
sum of the outgoing slopes of f at pi is equal to− degpi

D<0. Thus Sk( f )⊂ T ∪e,
and the only possible cycle in Sk( f ) is Z(T, e). Hence, Sk( f )= Z(T, e) . �

We obtain the following strengthening of Theorem 3.4.6 in this context (it can
also be deduced directly from Lemma 3.4.4 and the proof of Theorem 3.4.6):
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Proposition 3.5.4. Assume that C is maximally degenerate. If e is a nonbridge
edge of Sk(C), then there exists a nonzero canonical form ω ∈ H 0(C, ωC/K ) such
that Sk(C, ω) is a simple cycle with e in its support.

Proof. Since e is not a bridge, there exists a spanning tree T of Sk(C) not con-
taining e. Let e = e0, e1, . . . , eg−1 be the edges of Sk(C) not contained in T , and
choose a type II point pi in the relative interior of ei for every i in {1, . . . , g− 1}
(type II points are the divisorial points in the terminology of [Mustat,ă and Nicaise
2015]). We set D0= p1+· · ·+ pg−1. We would like to find a divisor D̃0 on C such
that (ρC)∗(D̃0)= D0. Unfortunately, this is not possible, since only the vertices of
Sk(C) lift to K-rational points of C .

This issue can be solved in the following way. Let K ′ be a finite Galois extension
of K whose degree n = [K ′ : K ] is not divisible by the characteristic of k. We
denote by R′ the valuation ring of K ′. Set C ′ = C×K K ′ and let C′ be the minimal
resolution of C ×R R′. Then it is well known, and easy to see, that C′ is the
minimal snc-model of C ′, and C′k is reduced. Moreover, the projection morphism
π : (C ′)an

→ Can induces a homeomorphism Sk(C′)= π−1(Sk(C))→ Sk(C), and
Sk(C′) is obtained from Sk(C) by subdividing each edge into n edges. Now we
choose each point pi to be a vertex of Sk(C′) in the relative interior of ei . Then we
can find a divisor D̃0 on C ′ such that (ρC′)∗(D̃0)= D0.

Since H 0(C ′, ωC ′/K ′) has dimension g and D̃0 has degree g− 1, there exists a
nonzero ω′ ∈ H 0(C ′, ωC ′/K ′(−D̃0)). Let f be the restriction of wtω′ to Sk(C′). By
Corollary 3.2.5, we have

div( f )= (ρC′)∗(divC ′(ω
′))− KSk(C′).

If we set D= (ρC′)∗(divC ′(ω
′)), then D≥ D0 by construction. Now it follows from

Lemma 3.5.3 that Sk(C ′, ω′)= Sk( f ) is a simple cycle that contains e.
It remains to produce a nonzero element ω of H 0(C, ωC/K ) such that Sk(C, ω)=

Sk(C ′, ω′). Multiplying ω′ with a suitable element of (K ′)×, we can assume that
the minimal value of wtω′ on Sk(C′) is equal to 0. We denote by ω ∈ H 0(C, ωC/K )

the trace of ω′ with respect to the Galois extension K ′/K . Then it is easy to see
that wtω = wtω⊗K K ′ ≥ wtω′ on Sk(C). It is also clear that every singular point x
of C′k is fixed under the action of Gal(K ′/K ). Thus the logarithmic residues at x
of the conjugates of ω′ are all equal, and their sum is nonzero if and only if the
logarithmic residue of ω′ at x is nonzero. It follows that an edge of Sk(C′) lies in
the zero locus of wtω′ if and only if it lies in the zero locus of wtω. Since Sk(C ′, ω′)
is a union of edges, it follows that

Sk(C, ω)= Sk(C ′, ω′). �

Remark 3.5.5. The statement and proof of both Lemma 3.4.5 and Proposition 3.5.4
are closely related to Lemma 3.2 and Proposition 3.3, respectively, of [Jensen and
Payne 2016].
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We now show that if e is a bridge edge of Sk(C), then there exists a 2-canonical
form ω such that Sk(C, ω) contains e, providing a new proof of Theorem 3.3.13(2)
in the present context.

Lemma 3.5.6. Let G be a discrete graph without loops and denote by 0 the metric
graph associated with G. We assume that G has no 1-valent vertices. Choose any
maximal chain B of bridge edges in 0. We denote by v1, v2 the endpoints of B.
Let T be a spanning tree in 0. Let D be an effective divisor on 0 equivalent to 2KG

satisfying the following properties:

(1) The support of D contains a point from the relative interior of each edge
contained in the complement of T .

(2) D ≥ KG − (v1)− (v2).

Finally, let f be a tropical rational function on 0 with div( f )= D− 2KG . Then
the locus of points p ∈ 0 where f achieves its minimum value is equal to B.

Proof. Let Sk( f ) be the locus of p ∈ 0 at which f attains its minimum value.
We can argue in the same way as in the proof of Lemma 3.5.3. By condition (2),
for each p 6= v1, v2 in Sk( f ) there are at least two tangent directions at p along
which f is constant, and if p ∈ {v1, v2} there is at least one such direction. Thus
every connected component of Sk( f ) is a graph in which every vertex different
from v1, v2 has valency at least two, and it cannot be equal to {v1} or {v2}. On the
other hand, by condition (1), the set Sk( f ) cannot contain any cycles. It follows
that Sk( f )= B. �

Proposition 3.5.7. Assume that C is maximally degenerate. Let B be any maximal
chain of bridge edges of Sk(C). Then there exists a nonzero 2-canonical form
ω ∈ H 0(C, ω⊗2

C/K ) such that Sk(C, ω)= B.

Proof. We can assume that g≥2 since in the genus one case Sk(C) is a cycle and does
not contain any bridges. Since C is the minimal snc-model of C and Ck is reduced,
Sk(C) has no 1-valent vertices. We set0=Sk(C). We choose a spanning tree T of0.
We define K ′, C ′, and C′ as in the proof of Proposition 3.5.4. Then, by the same argu-
ments as in that proof, it suffices to find a nonzero element ω′ ∈ H 0(C ′, ω⊗2

C ′/K ′) such
that Sk(C ′, ω′)= B. We can find an effective divisor D̃0 on C ′ of degree 3g− 4=
g+(2g−4) over K ′ such that D0= (ρC′)∗(D̃0) satisfies properties (1) and (2) from
the statement of Lemma 3.5.6. Since the space H 0(C ′, ω⊗2

C ′/K ′) has dimension 3g−3
by Riemann–Roch, there exists a nonzero 2-canonical form ω′ ∈ H 0(C, ω⊗2

C ′/K ′)

with divC ′(ω
′)≥ D̃0. We set D = (ρC′)∗(divC ′(ω

′)). Then D ≥ D0 by construction.
Let f be the restriction of wtω′ to 0. By Theorem 3.2.3, we have

div( f )= D− 2K0.

The result now follows from Lemma 3.5.6. �
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Appendix: The stable metric on H0(C)

A.1. Definition of the stable metric.

A.1.1. Let C be a K-curve. The metric on H0(C) defined in Theorem 2.3.3 was well-
suited for the description of the Laplacian of the weight function in Theorem 3.2.3,
but it does not behave well under extensions of the base field K . We will now define
an alternative metric on H0(C), which we call the stable metric, which has better
properties with respect to base change. In particular, if k has characteristic zero, one
can compare it to the skeletal metric from [Baker et al. 2013] (see Proposition A.2.3).

A.1.2. We first put a metric on the geometric realization 0 of a weighted discrete
graph (G, w) by replacing the formula in (2.1.3) by

`(e)= 1
lcm{w(v1), w(v2)}

.

Now the same arguments as in Section 2.3 show that this definition induces a unique
metric on H0(C) such that, for every snc-model C of C , the embedding

0(Ck)→ H0(C)

is an isometry onto Sk(C). We call this metric the stable metric on H0(C). Note
that, if Ck is reduced, the stable metric on Sk(C) coincides with the one defined in
Theorem 2.3.3.

A.1.3. By [Mustat,ă and Nicaise 2015, §3.2], the skeleton Sk(C) of an nc-model
C of C carries a natural Z-affine structure. If e is an edge of Sk(C) with endpoints v1

and v2, then a Z-affine function

f : e \ {v1, v2} → R

is a function of the form

(x1, x2) 7→ ax1/N1+ bx2/N2+ c,

where a, b, c are integers, N1 = w(v1), N2 = w(v2), and x1 and x2 = 1− x1 are
barycentric coordinates on e\{v1, v2} ∼= ]0, 1[ such that the limit of x1 at v1 is 1 and
the limit of x2 at v2 is 1 (beware that we are not excluding the possibility v1 = v2).
This definition is motivated by the following fact: if h 6= 0 is a rational function
on C , then

Sk(C)→ R, x 7→ − ln |h(x)|

is continuous and piecewise Z-affine, and this function is affine on an edge e if and
only if the point of Ck corresponding to e does not belong to the horizontal part
of the divisor divC(h) on C (see [Mustat,ă and Nicaise 2015, Proposition 3.2.2]).
Moreover, if e is an edge of Sk(C) that is not a loop, then every Z-affine function
on e \ {v1, v2} can be written as

x 7→ − ln |h(x)|,
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for some rational function h 6= 0 on C (simply consider a monomial with suitable
integer exponents in the local equations for the components corresponding to the
vertices adjacent to e).

A.1.4. The Z-affine structure on Sk(C) induces the stable metric on Sk(C)=0(Ck),
in the following sense: the length of e is equal to

inf
f
{|lim0 f − lim1 f |},

where f runs through the set of injective Z-affine functions

f : e \ {v1, v2} → R,

and where limi f denotes the limit of f at i for i = 0, 1, where we choose any
homeomorphism to identify e \ {v1, v2} with the open interval ]0, 1[.

To see this, note that this infimum is equal to the smallest positive element of
the set

{a/N1− b/N2 | a, b ∈ Z},

which is precisely
gcd(N1, N2)

N1 N2
=

1
lcm(N1, N2)

.

Thus our definition of the length of e is the unique one such that the affine functions
on e \ {v1, v2} are precisely the differentiable functions with constant integer slope
whose value at v1 is a multiple of 1/N1.

A.2. Comparison with the skeletal metric.

A.2.1. The set

H0(C ×K K̂ a)= (C ×K K̂ a)an
\ {points of type I and IV}

carries a natural metric, which was called the skeletal metric in [Baker et al. 2013].
Its construction is described in detail in [Baker et al. 2013, §5.3]. We will now com-
pare it to the metric we defined on H0(C), in the case where k has characteristic zero.

A.2.2. Let C be a K-curve and let C be an snc-model for C . An irreducible
component of Ck is called principal if it has positive genus or it is a rational curve
that intersects the rest of Ck in at least three points. A principal vertex of Sk(C) is
a vertex corresponding to a principal component in Ck .

Proposition A.2.3. Assume that k has characteristic zero. Let C be a K-curve and
let C be an snc-model of C. Denote by π the canonical projection C ×K K̂ a→ C.
Then the corestriction

πC : π
−1(Sk(C))→ Sk(C)

of π to Sk(C) is a local isometry over the complement of the principal vertex set
of Sk(C). Moreover, if C is semistable, then πC is an isometry.
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Proof. This can be deduced in a rather straightforward way from the results in
Sections 1 and 4 of Chapter 3 in [Halle and Nicaise 2012]. Since the arguments are
somewhat tedious and the result is not needed in this paper, we omit the proof. �
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Nonvanishing of Dirichlet L-functions
Rizwanur Khan and Hieu T. Ngo

We show that for at least 3
8 of the primitive Dirichlet characters χ of large prime

modulus, the central value L
( 1

2 , χ
)

does not vanish.

1. Introduction

The zeros of L-functions on the critical line are as important in number theory as
they are mysterious. At the real point on the critical line (the central point), an
L-function is expected to vanish only for either a good reason or a trivial reason.
A good reason is when the central value has some arithmetic significance which
explains why it may vanish. For example, the central value of the L-function
attached to an elliptic curve over a number field is expected to vanish if and only if
the elliptic curve has positive rank (according to the Birch and Swinnerton-Dyer
conjecture). A trivial reason is when the functional equation implies that the central
value is zero. For instance, the L-function of any odd Hecke–Maass form f has
functional equation L

( 1
2 , f

)
= −L

( 1
2 , f

)
at the central point. In all other cases,

the most extensive success in proving the nonvanishing of L-functions has been
achieved through the use of mollifiers. For notable examples of the mollifier method,
see [Kowalski et al. 2000a; 2000b; Iwaniec and Sarnak 2000; Soundararajan 2000]
as well as the works discussed below.

In this paper, we study the classical nonvanishing problem of primitive Dirich-
let L-functions. It is conjectured that L

( 1
2 , χ

)
6= 0 for every primitive Dirichlet

character χ . Consider for each odd prime p the family of L-functions

{L(s, χ) : χ is primitive modulo p};

this family has size p−2. Viewing L
( 1

2 , χ
)

as a statistical object, we would like to
understand its distribution as p→∞. One way to get a handle on the distribution
is through understanding the moments of L

( 1
2 , χ

)
, but currently only moments of

small order are known. Nevertheless, this is enough to make some progress in
proving that a positive proportion of the family is nonvanishing.

MSC2010: 11M20.
Keywords: L-functions, Dirichlet characters, nonvanishing central value, mollifier.
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Asymptotic expressions for the first and second moments of L
( 1

2 , χ
)

are well
known. By a classical result of Paley [1931], we have

1
p

∑?

χ mod p

L
( 1

2 , χ
)
∼ 1,

1
p

∑?

χ mod p

∣∣L(1
2 , χ

)∣∣2 ∼ log p,

where
∑? restricts the summation to the primitive characters. The discrepancy

between the first and second moments indicates fluctuations in the sizes of the
central values. Using these moments and the Cauchy–Schwarz inequality, one can
only infer that at least 0% of the family is nonvanishing, since

1
p

∑?

χ mod p
L(1/2,χ)6=0

1 ≥

∣∣ 1
p

∑
∗

χ mod p L
( 1

2 , χ
)∣∣2

1
p

∑
∗

χ mod p

∣∣L(1
2 , χ

)∣∣2 � 1
log p

.

The mollifier method is used to remedy this situation. The origin of the method
traces back to the works of Bohr and Landau [1914] and Selberg [1942] on zeros of
the Riemann zeta function. The starting idea is to introduce a quantity M(χ), called
the “mollifier”, which, on average, approximates the inverses of the supposedly
nonvanishing values L

( 1
2 , χ

)
. The goal is to choose a mollifier such that the

mollified first and second moments are comparable; that is,

1
p

∑?

χ mod p

L
( 1

2 , χ
)
M(χ)� 1,

1
p

∑?

χ mod p

∣∣L( 1
2 , χ

)
M(χ)

∣∣2 � 1.

From this, a positive nonvanishing proportion can be inferred:

1
p

∑?

χ mod p
L(1/2,χ)6=0

1 ≥ 1
p

∑?

χ mod p
L(1/2,χ)M(χ)6=0

1 ≥

∣∣ 1
p

∑
∗

χ mod p L
( 1

2 , χ
)
M(χ)

∣∣2
1
p

∑
∗

χ mod p

∣∣L( 1
2 , χ

)
M(χ)

∣∣2 � 1. (1-1)

Balasubramanian and Murty [1992] were the first to do this; however, their mol-
lifier was inefficient and they obtained only a very small positive proportion of
nonvanishing.

Next came the work of Iwaniec and Sarnak [1999], who introduced a systematic
technique that has since served as a model for other families of L-functions. Iwaniec
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and Sarnak took the mollifier

M(χ)=
∑

m≤M

ymχ(m)
m1/2 , (1-2)

where M = pθ is the mollifier length and (ym) is a sequence of real numbers
satisfying ym � pε . They established the asymptotics of the mollified first and
second moments for θ < 1

2 and found that the choice of coefficients which maximizes
the ratio in (1-1) is essentially

ym = µ(m)
log(M/m)

log M
, (1-3)

yielding a nonvanishing proportion of

1
p

∑?

χ mod p
L(1/2,χ)6=0

1 ≥ θ

1+θ
.

This can be taken as close to 1
3 as possible on letting θ approach 1

2 . Computing
the mollified moments for larger values of θ would result in a higher proportion of
nonvanishing, but this appears to be very difficult to do. The problem seems to have
been attempted by Bettin, Chandee, and Radziwiłł. In [Bettin et al. 2015], these
authors solved the parallel problem for the Riemann zeta function, by obtaining the
asymptotics as T →∞ of∫ 2T

T

∣∣ζ ( 1
2 + i t

)∣∣2∣∣∣∣∑
m≤M

ym

m(1/2)+i t

∣∣∣∣2 dt,

where M = T θ, for values of θ slightly larger than 1
2 . However with regard to the

problem for Dirichlet L-functions, the authors remarked, “Our proof would not
extend to give an asymptotic formula in this case, and additional input is needed.”

Shortly after the work of Iwaniec and Sarnak, in their study of the nonvanishing
of high derivatives of Dirichlet L-functions, Michel and VanderKam [2000] used
the “twisted” mollifier

M(χ)=
∑

m≤M

ymχ(m)
m1/2 +

τ̄χ

p1/2

∑
m≤M

ym χ̄(m)
m1/2 , (1-4)

where M = pθ, ym is as in (1-3), and τχ is the Gauss sum as defined in their paper.
Heuristically, this is a better mimic of L

( 1
2 , χ

)−1 because the approximate functional
equation of L

( 1
2 , χ

)
essentially consists of a sum of two Dirichlet polynomials,

one multiplied by a Gauss sum. A similar two-piece mollifier was first used by
Soundararajan [1995] in the context of the Riemann zeta function. Michel and



2084 Rizwanur Khan and Hieu T. Ngo

VanderKam [2000] proved for θ < 1
4 a nonvanishing proportion of

1
p

∑?

χ mod p
L(1/2,χ) 6=0

1 ≥ 2θ
1+2θ

,

recovering the 1
3 proportion of Iwaniec and Sarnak [1999]. For this method too,

computing the mollified moments for larger θ would result in a higher proportion
of nonvanishing.

The nonvanishing problem was stuck at the proportion 1
3 for ten years until Bui

[2012] dexterously proved a nonvanishing proportion of 0.3411. His breakthrough
was not to increase the length of any existing mollifier but to use an ingenious
new two-piece mollifier. Bui [2012, page 1857] commented that “There are two
different approaches to improve the results in this and other problems involving
mollifiers. One can either extend the length of the Dirichlet polynomial or use some
‘better’ mollifiers. The former is certainly much more difficult.” We take the former,
more difficult approach.

Our first idea to attack the nonvanishing problem is to increase the length of
the Michel–VanderKam mollifier. This may be a somewhat unexpected avenue
because previous attempts at lengthening mollifiers have, as far as we are aware,
been directed at the Iwaniec–Sarnak mollifier. Our second idea is to establish
an estimate for a trilinear sum of Kloosterman sums with general coefficients
(Lemma 3.2). To prove this, we appeal to some work of Fouvry, Ganguly, Kowalski
and Michel [Fouvry et al. 2014]. These authors proved best possible estimates
for sums of products of Kloosterman sums to prime moduli by using powerful
algebro-geometric methods (this work built on [Fouvry et al. 2004] and was later
generalized in [Fouvry et al. 2015]). We stress that although the deepest part of our
proof comes from [Fouvry et al. 2014], it is not clear how this work is related to
the nonvanishing problem. We figure out this relationship.

Before stating our result, it should be said that the works [Iwaniec and Sarnak
1999; Michel and VanderKam 2000; Bui 2012] actually treat general moduli, while
we are restricting to prime moduli, which is arguably the most interesting case.

Theorem 1.1. Let ε > 0 be arbitrary. For all primes p large enough in terms of ε,
there are at least

( 3
8 − ε

)
of the primitive Dirichlet characters χ (mod p) for which

L
( 1

2 , χ
)
6= 0.

The significance of our work is that we show for the first time how to increase
the length of a classical mollifier in this context. An interesting open problem that
remains is to increase the length of the Iwaniec–Sarnak mollifier. Our nonvanishing
proportion 3

8 improves upon that of Bui for prime moduli. For general moduli,
Bui’s nonvanishing proportion 0.3411 is still the best known.
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Throughout the paper, we use the standard convention that ε denotes an arbitrarily
small positive constant which may differ from one occurrence to the next, and that
the implied constants in the various estimates depend on ε.

2. The work of Michel and VanderKam

We briefly summarize the mollifier method of Michel and VanderKam [2000],
setting the ground for our further discussion.

Let the mollifier M(χ) be given by (1-4), where the mollifier length is M = pθ

and the real mollifying coefficients ym are given by (1-3). Michel and VanderKam
asymptotically evaluated the mollified first moment

2
p

∑+

χ mod p

L
(1

2 , χ
)
M(χ)

for θ < 1
2 , where

∑
+ restricts the summation to the even primitive characters, of

which there are about p
2 . The evaluation for the odd primitive characters is entirely

similar. They evaluated the mollified second moment

2
p

∑+

χ mod p

∣∣L( 1
2 , χ

)
M(χ)

∣∣2 = 4
p

∑+

χ mod p

∣∣L( 1
2 , χ

)∣∣2∣∣∣∣∑
m≤M

ymχ(m)
m1/2

∣∣∣∣2

+
4
p

∑+

χ mod p

∣∣L( 1
2 , χ

)∣∣2 τχ
p1/2

(∑
m≤M

ymχ(m)
m1/2

)2

(2-1)

for θ < 1
4 ; see [Michel and VanderKam 2000, Equation (10)] for the above identity.

An asymptotic for the first sum on the right-hand side of (2-1) is derived for θ < 1
2 ,

as was done by Iwaniec and Sarnak [1999], but the second sum is more difficult
and could only be handled for θ < 1

4 . In the end, the main terms of the mollified
moments of Michel and VanderKam yield a nonvanishing proportion of 2θ/(1+2θ),
by taking P0(t)= t in [Michel and VanderKam 2000, Section 7].

Let us concentrate on the second sum on the right-hand side of (2-1). Recall the
standard approximate functional equation (see for example [Michel and VanderKam
2000, Equation (3)]):

∣∣L( 1
2 , χ

)∣∣2 = 2
∑

n1,n2≥1

χ(n1)χ̄(n2)

(n1n2)1/2
V
(n1n2

p

)
, (2-2)

where

V (x)= 1
2π i

∫
(2)

0
( s

2 +
1
4

)2

0
( 1

4

)2 (πx)−s ds
s
.
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By moving the line of integration, one shows that V (x) �c x−c for any c > 0,
whence the sum in (2-2) is essentially supported on n1n2 ≤ p1+ε . Therefore,

4
p

∑+

χ mod p

∣∣L(1
2 , χ

)∣∣2 τχ
p1/2

(∑
m≤M

ymχ(m)
m1/2

)2

=

∑
n1,n2≥1

m1,m2≤M

ym1 ym2

(n1n2m1m2)1/2
V
(n1n2

p

) 4
p

∑+

χ mod p

τχ

p1/2χ(n1m1m2)χ̄(n2). (2-3)

By [Michel and VanderKam 2000, Equation (17)] or [Iwaniec and Sarnak 1999,
Equation (3.4)], for (n, p)= 1 we have∑+

χ mod p

τχχ(n)= p cos
(2π n̄

p

)
+ O(1),

so that (2-3) equals

4
p1/2 Re

∑
n1,n2≥1

m1,m2≤M
(n1n2m1m2,p)=1

ym1 ym2

(n1n2m1m2)1/2
V
(n1n2

p

)
e
(n2 n1m1m2

p

)
+O

( M
p1−ε

)
(2-4)

for any ε > 0, where e(x) = e2π i x and n̄ denotes the multiplicative inverse of n
modulo p for (n, p)= 1. The terms with m1m2 = 1 contain a main term of (2-3);
see [Michel and VanderKam 2000, Section 6]. Consider the rest of the terms in
dyadic intervals. Let

B(M1,M2, N1, N2)=
1

(pM1 M2 N1 N2)1/2

×

∑
n1,n2≥1

M1≤m1≤2M1
M2≤m2≤2M2

(n1n2m1m2,p)=1

ym1 ym2 e
(n2n1m1m2

p

)
V
(n1n2

p

)
f1

( n1

N1

)
f2

( n2

N2

)
(2-5)

for 1 ≤ M1,M2 ≤
1
2 M , M1 M2 ≥ 2, 1 ≤ N1 N2 ≤ p1+ε , and any fixed smooth

functions f1, f2 compactly supported on the positive reals. Michel and VanderKam
[2000, Equations (24) and (27)] proved the bounds

B(M1,M2, N1, N2)� pε
(

M2 N1

pN2

)1/2

(2-6)

and

B(M1,M2, N1, N2)� pε
(

M2 N2

N1

)1/2

+
M

p1−ε . (2-7)
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These bounds together yield B(M1,M2, N1, N2)� p−ε , provided that M≤ p(1/4)−ε .
Thus the contribution to (2-4) of the terms with m1m2 ≥ 2 is O(p−ε) for θ < 1

4 .
In the next section we will show how to improve the bound (2-7), in the ranges

where (2-6) is not useful. This together with (2-6) will imply that

B(M1,M2, N1, N2)� p−ε

for larger values of θ , thereby extending the asymptotics of Michel and VanderKam.

3. Proof of Theorem 1.1

To get the bounds (2-6) and (2-7), Michel and VanderKam obtained cancellation
in only the (n1, n2)-sums of B(M1,M2, N1, N2). On the other hand, we use the
(m1,m2)-sums to our advantage. To set this up, we first prove some estimates for
averages of products of Kloosterman sums. Let

S(a, b; c) =
∑

x mod c
x x̄≡1 mod c

e
(ax+bx̄

c

)

denote the Kloosterman sum. The following lemma is a consequence of a result
from [Fouvry et al. 2014].

Lemma 3.1. For B < p, we have∑
1≤b1,b2,b3,b4≤B

∣∣∣∣ ∑
h mod p

S(h, b̄1; p)S(h, b̄2; p)S(h, b̄3; p)S(h, b̄4; p)
∣∣∣∣

� B4 p5/2
+ B2 p3. (3-1)

Proof. Write the left-hand side of (3-1) as∑
b1,b2,b3,b4≤B

=

∑
b1,b2,b3,b4≤B
(b1,b2,b3,b4)∈D

+

∑
b1,b2,b3,b4≤B
(b1,b2,b3,b4)/∈D

where D is the set of tuples (b1, b2, b3, b4) such that no component bi is distinct
from the others. Note that |D| � B2.

On the one hand, it follows from the Weil bound for Kloosterman sums that∑
b1,b2,b3,b4≤B
(b1,b2,b3,b4)∈D

∣∣∣∣ ∑
h mod p

S(h, b̄1; p)S(h, b̄2; p)S(h, b̄3; p)S(h, b̄4; p)
∣∣∣∣� B2 p3.

On the other hand, if (b1, b2, b3, b4) /∈ D, then in the language of [Fouvry et al.
2014, Definition 3.1], (b̄1, b̄2, b̄3, b̄4) is not in “mirror configuration”. Thus [Fouvry
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et al. 2014, Proposition 3.2] asserts that∑
h mod p

S(h, b̄1; p)S(h, b̄2; p)S(h, b̄3; p)S(h, b̄4; p)� p5/2,

saving a factor of p1/2 over Weil’s bound. So∑
b1,b2,b3,b4≤B
(b1,b2,b3,b4)/∈D

∣∣∣∣ ∑
h mod p

S(h, b̄1; p)S(h, b̄2; p)S(h, b̄3; p)S(h, b̄4; p)
∣∣∣∣� B4 p5/2.

The lemma follows. �

Let now
S =

∑
1≤|n|≤N
1≤a≤A
1≤b≤B

xn yazb S(n, ab; p),

where the coefficients satisfy xn, ya, zb� pε , ya = 0 for p|a, and zb = 0 for p|b.

Lemma 3.2. For NA ≤ p
2 and B < p, we have

S� pεN 3/4A3/4(Bp5/8
+ B1/2 p3/4).

Proof. On applying the Cauchy–Schwarz inequality, we infer

|S|2� pεNA
∑
|n|≤N
a≤A

∣∣∣∣∑
b≤B

zb S(nā, b̄; p)
∣∣∣∣2.

Hence

|S|2� pεNA
∑

h mod p

ν(h)
∣∣∣∣∑

b≤B

zb S(h, b̄; p)
∣∣∣∣2, (3-2)

where
ν(h) =

∑
|n|≤N
a≤A

nā≡h mod p

1.

On applying Cauchy–Schwarz to (3-2), we find that

|S|4� pεN 2A2
( ∑

h mod p

ν(h)2
)( ∑

h mod p

∣∣∣∣∑
b≤B

zb S(h, b̄; p)
∣∣∣∣4 ). (3-3)

Observe that ∑
h mod p

ν(h)2 =
∑

|n1|,|n2|≤N
a1,a2≤A

n1ā1≡n2ā2 mod p

1 =
∑

|n1|,|n2|≤N
a1,a2≤A

n1a2≡n2a1 mod p

1.
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Since NA ≤ p
2 by assumption, it follows that∑

h mod p

ν(h)2 =
∑

n1a2=n2a1
|n1|,|n2|≤N

a1,a2≤A

1 � pεNA.

Therefore, (3-3) becomes

|S|4� pεN 3A3
∑

b1,b2,b3,b4≤B

∣∣∣∣ ∑
h mod p

S(h, b̄1; p)S(h, b̄2; p)S(h, b̄3; p)S(h, b̄4; p)
∣∣∣∣.

Finally, we apply Lemma 3.1 to conclude that

|S|4� pεN 3A3(B4 p5/2
+ B2 p3),

and the lemma is proved. �

We are now in a position to prove a new bound for our nonvanishing problem.

Lemma 3.3. For N1/N2 > pεM and M < p1−ε , we have

B(M1,M2, N1, N2)� pε
(

N2 M3

N1 p3

)1/4(
p5/8
+

p3/4

M1/2

)
+

M
p1−ε . (3-4)

Proof. In (2-5), separate n1 into residue classes modulo p and apply the Poisson
summation formula to get

B(M1,M2, N1, N2)

=
1

(pM1 M2 N1 N2)1/2

N1

p

∑
k∈Z

n2≥1,(n2,p)=1
M1≤m1≤2M1
M2≤m2≤2M2

ym1 ym2 S(kn2,m1m2; p) f2

(
n2

N2

)
F(k),

(3-5)

where

F(k)=
∫
∞

−∞

f1(x)V
(

x N1n2

p

)
e
(
−xk N1

p

)
dx .

Repeatedly integrating by parts, we find that F(k)�c (k N1/p)−c for any c > 0.
Thus, the k-sum may be restricted to |k| ≤ p1+ε/N1.

The contribution to (3-5) of the terms with k = 0 is

1
(pM1 M2 N1 N2)1/2

N1

p

∑
n2≥1,(n2,p)=1
M1≤m1≤2M1
M2≤m2≤2M2

ym1 ym2 S(0,m1m2; p) f2

(
n2

N2

)
F(0)

�
(N1 N2 M1 M2)

1/2

p(3/2)−ε
�

M
p1−ε ,
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on using that the Ramanujan sum S(0,m1m2; p) equals −1. This is the last term
in (3-4). The contribution of the terms with |k|> 0 is bounded using Lemma 3.2,
by putting

n=kn2, xn= f2(n2/N2)F(k) if (n2, p)=1, xn=0 if p|n2, N=N2 p1+ε/N1,

a = m1, ya = ym1, A = 2M1,

b = m2, zb = ym2, B = 2M2.

Note that the conditions of Lemma 3.2, namely B < p and NA ≤ p
2 , are satisfied

by the assumptions that M < p1−ε and that N1/N2 > pεM . The bound (3-4)
follows. �

Finally, we sum up the work done to arrive at the following power-saving result.

Lemma 3.4. We have B(M1,M2, N1, N2)� p−ε for M < p(3/10)−ε .

Proof. Assume first that M < p(1/3)−ε . If N1/N2 ≤ pεM , it follows from (2-6) that
B(M1,M2, N1, N2)� p−ε , whence the lemma follows.

We therefore suppose that N1/N2> pεM . Now since the conditions of Lemma 3.3
are met, we have the bound (3-4). In this bound, we may suppose N2/N1<M2/p1−ε ,
since otherwise by (2-6), we have B(M1,M2, N1, N2)� p−ε . Thus, (3-4) becomes

B(M1,M2, N1, N2)�
M5/4

p1−ε

(
p5/8
+

p3/4

M1/2

)
+ p−(1/6)+ε .

The bound is O(p−ε) precisely when M � p(3/10)−ε . The lemma follows. �

Proof of Theorem 1.1. By Lemma 3.4, the nonvanishing proportion 2θ/(1+ 2θ) of
Michel and VanderKam is valid for any θ < 3

10 . On letting θ approach 3
10 , we infer

that the nonvanishing proportion is at least 3
8 − ε for any ε > 0. �
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Every integer greater than 454 is the sum
of at most seven positive cubes

Samir Siksek

A long-standing conjecture states that every positive integer other than

15, 22, 23, 50, 114, 167, 175, 186, 212,
231, 238, 239, 303, 364, 420, 428, 454

is a sum of at most seven positive cubes. This was first observed by Jacobi in 1851
on the basis of extensive calculations performed by the famous computationalist
Zacharias Dase. We complete the proof of this conjecture, building on previous
work of Linnik, Watson, McCurley, Ramaré, Boklan, Elkies, and many others.

1. Historical introduction

In 1770, Edward Waring stated in his Meditationes Algebraicæ,

Omnis integer numerus vel est cubus, vel e duobus, tribus, 4, 5, 6, 7, 8, vel
novem cubis compositus, . . .

Waring’s assertion can be concisely reformulated as the assertion that “every positive
integer is the sum of nine nonnegative cubes”. Henceforth, by a cube we shall
mean a nonnegative cube. In the 19th century, numerical experimentation led to
refinements of Waring’s assertion for sums of cubes. As noted by Dickson [1927],

“At the request of Jacobi, the famous computer Dase constructed a table showing
the least number of positive cubes whose sum is any p < 12 000”. In an influential
Crelle paper, Jacobi [1851] made a series of observations based on Dase’s table:
every positive integer other than 23 and 239 is the sum of eight cubes, every integer
greater than 454 is the sum of seven cubes, and every integer greater than 8 042
is the sum of six cubes. Jacobi believed that every sufficiently large integer is
the sum of five cubes, whilst recognizing that the cutoff point must be far beyond
Dase’s table, and he wondered if the same is true for sums of four cubes. He
noted that integers equivalent to 4, 5 (mod 9) cannot be sums of three cubes. Later

The author is supported by an EPSRC Leadership Fellowship EP/G007268/1, and EPSRC LMF:
L-Functions and Modular Forms Programme Grant EP/K034383/1.
MSC2010: 11P05.
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computations by Romani [1982] convincingly suggest that every integer greater
than 1 290 740 is the sum of five cubes, and by Deshouillers et al. [2000] that every
integer greater than 7 373 170 279 850 is the sum of four cubes.

Progress towards proving these observations of Waring, Jacobi and others has
been exceedingly slow. Maillet [1895] showed that twenty-one cubes are enough to
represent every positive integer. At the heart of Maillet’s proof is an idea crucial
to virtually all future developments; the identity (r + x)3+ (r − x)3 = 2r3

+ 6r x2

allows one to reformulate the problem of representing an integer as the sum of a
(certain number of) cubes in terms of representing a related integer as the sum of (a
smaller number of) squares. Exploiting this idea, Wieferich [1908] proved Waring’s
assertion (Wieferich’s proof had a mistake that was corrected by Kempner [1912]).
In fact, the theoretical part of Wieferich’s proof showed that all integers exceeding
2.25× 109 are sums of nine cubes. Completing the proof required appealing to a
table of von Sterneck [1903] (who extended Dase’s table to 40 000), and applying
what is now known as the greedy algorithm to reach the bound.

Soon thereafter, Landau [1908] showed that every sufficiently large integer is
the sum of eight cubes. This was made effective by Baer [1913], who showed
that every integer greater than or equal to 14.1× 2336

≈ 2.26× 1015 is the sum
of eight cubes. Dickson [1939] completed the proof of Jacobi’s observation that
all positive integers other than 23 and 239 are sums of eight cubes. Remarkably,
Dickson’s proof relied on extending von Sterneck’s table to 123 000 (with the help
of his assistant, Miss Evelyn Garbe) and then applying the greedy algorithm to
reach Baer’s bound.

Linnik [1943] showed that every sufficiently large integer is the sum of seven
cubes. A substantially simpler proof (though still ineffective) was given by Watson
[1951]. Linnik’s seven cubes theorem was first made effective by McCurley [1984],
who showed that it is true for integers greater than exp(exp(13.94)). Ramaré [2005]
improved this to exp(205 000) and finally to exp(524)≈3.72×10227 [Ramaré 2007].
This bound is way beyond computer searches combined with the greedy algorithm.
In [Deshouillers et al. 2000], it is shown that every integer between 1 290 741 and
1016 is a sum of five cubes. As observed in [Ramaré 2007], combining this with
the greedy algorithm [Bertault et al. 1999, Lemma 3], we can easily deduce that
every integer 455≤ N ≤ exp(78.7)≈ 1.51× 1034 is the sum of seven cubes.

There has been a number of partial results concerning sums of seven cubes.
Bertault et al. [1999] show that every nonnegative integer which is a cubic residue
modulo 9 and an invertible cubic residue modulo 37 is a sum of 7 cubes. Boklan
and Elkies [2009] show that every multiple of 4 greater than 454 is the sum of seven
cubes, whilst Elkies [2010] shows the same for integers equivalent to 2 (mod 4).

In this paper we complete the proof of Jacobi’s seven cubes conjecture, building
on the aforementioned great works.
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Theorem 1. Every positive integer other than

15, 22, 23, 50, 114, 167, 175, 186, 212, 231, 238, 239, 303, 364, 420, 428, 454

is the sum of seven cubes.

An online supplement contains Magma scripts implementing the algorithms that
support the proof.

2. The main criterion

Let K = exp(524) and K ′
= exp(78.7). By results found in [Ramaré 2007] and

[Deshouillers et al. 2000], it is sufficient to prove that every integer K ′
≤ N ≤K

is the sum of seven cubes.
Results from [Boklan and Elkies 2009] and [Elkies 2010] allow us to restrict

ourselves to odd integers N (our method can certainly be adapted to deal with
even integers, but restricting ourselves to odd integers brings coherence to our
exposition). In this section we give a criterion (Proposition 2.2) for all odd integers N
in a range K1 ≤ N ≤ K2 to be sums of seven cubes. Most of the remainder of
the paper is devoted to showing that this criterion holds for each of the ranges( 9

10

)n+1
K ≤ N ≤

( 9
10

)n
K with 0 ≤ n ≤ 4226. This will complete the proof of

Theorem 1 as( 9
10

)4227
K ≈ 1.42× 1034 and K ′

≈ 1.51× 1034.

Theorem 2 (Gauss, Legendre). Let k ≥ 0 be an even integer. There exist integers
x , y, z such that

x2
+ x + y2

+ y+ z2
+ z = k. (1)

Proof. Dividing by 2 we see that this is in fact the famous theorem, due to Gauss,
that every nonnegative integer is the sum of three triangular numbers. Alternatively,
we can rewrite (1) as

(2x + 1)2+ (2y+ 1)2+ (2z+ 1)2 = 4k+ 3. (2)

As k is even, 4k+ 3≡ 3 (mod 8); by a theorem of Legendre, every positive integer
equivalent to 3 (mod 8) is the sum of three odd squares. �

Throughout this section m will denote a positive integer satisfying the conditions

(i) m is a squarefree,

(ii) 3 |m,

(iii) every prime divisor of m/3 is ≡ 5 (mod 6).

Observe that m ≡ 3 (mod 6). Moreover, for any integer N , there is a unique integer
t ∈ [0,m) such that N ≡ 8t3 (mod m). Our starting point is a modified version of
Lemma 3 of [Watson 1951].

http://msp.berkeley.edu/ant/2016/10-10/ant-v10-n10-x03-CubeSum.zip
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Lemma 2.1. Let 0 < K1 < K2 be real numbers. Let m be a positive integer
satisfying (i)–(iii) above. Let εm and δm be real numbers satisfying

(iv) 0≤ εm < δm ≤ 1,

(v) K1 ≥
(
8δ3

m +
1
36

)
m3
+ 3m/4,

(vi) K2 ≤
(
8ε3

m +
1
18

)
m3
+m/2.

Let K1≤N ≤K2 be an odd integer. Suppose N≡8t3 (mod m)with t ∈[εm ·m, δm ·m).
Then N is the sum of seven nonnegative cubes.

Proof. Write m = 6r + 3. Let

k = N−8t3

m
− (r2

+ r + 1). (3)

The quantity k is an integer as N ≡ 8t3 (mod m), and even as (N − 8t3)/m and
r2
+ r + 1 are both odd. Observe that

k >
N − 8δ3

m ·m
3

m
− (r2

+ r + 1) (since t < δm ·m)

≥
K1− 8δ3

m ·m
3

m
− (r2

+ r + 1) (since N ≥ K1)

=
K1− 8δ3

m ·m
3

m
−

m2

36
−

3
4

(substituting r = (m− 3)/6)

≥ 0 (by (v)).

As k is nonnegative and even, by the Gauss–Legendre theorem, there exist integers
x , y, z satisfying (1). We shall make use of the identity

(r + 1+ x)3+ (r − x)3+ (r + 1+ y)3+ (r − y)3+ (r + 1+ z)3+ (r − z)3

= (6r + 3)(r2
+ r + 1+ x2

+ x + y2
+ y+ z2

+ z). (4)

From the definition of k in (3) and the fact that m = 6r + 3, we see that N − 8t3 is
equal to the right-hand side of the identity (4). Hence

N = (r+1+x)3+(r−x)3+(r+1+ y)3+(r− y)3+(r+1+z)3+(r−z)3+(2t)3.

To complete the proof it is enough to show that these cubes are nonnegative, or
equivalently that

−r − 1≤ x, y, z ≤ r.

This is equivalent to showing that

−(2r + 1)≤ 2x + 1, 2y+ 1, 2z+ 1≤ 2r + 1.
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Now (2y+ 1)2, (2z+ 1)2 ≥ 1 and so from (2), we have (2x + 1)2 ≤ 4k+ 1. It is
therefore enough to show that 4k+ 1 ≤ (2r + 1)2 or equivalently that k ≤ r2

+ r .
The following inequalities complete the proof:

k− r2
− r =

N − 8t3

m
− (2r2

+ 2r + 1) (from (3))

≤
N − 8ε3

m ·m
3

m
− (2r2

+ 2r + 1) (since t ≥ εm ·m)

≤
K2− 8ε3

m ·m
3

m
− (2r2

+ 2r + 1) (since N ≤ K2)

≤
K2− 8ε3

m ·m
3

m
−

m2

18
−

1
2

(substituting r = (m− 3)/6)

≤ 0 (by (vi)).

�

This simpleminded lemma has one serious flaw. The inequality K1 < K2 and
the conditions (iv)–(vi) together imply that

δ3
m < ε

3
m +

1
288
−

1
32m2 .

In particular, this forces the interval [εm · m, δm · m) to have length less than
m/ 3
√

288≈ 0.15m. On the other hand, the integer t appearing in the lemma (which
is the cube root of N/8 modulo m) can be any integer in the interval [0,m). Thus
the lemma only treats a small fraction of the odd integers K1 ≤ N ≤ K2. Our key
innovation over the works mentioned in the introduction is to use not just one value
of m, but many of them simultaneously. Each value of m will give some information
about those odd integers K1 ≤ N ≤ K2 that cannot be expressed as sums of seven
cubes; collecting this information will allow us to deduce a contradiction.

Let x be a real number and m be a positive integer. Define the quotient and
remainder obtained on dividing x by m as

Q(x,m)= bx/mc, R(x,m)= x −Q(x,m) ·m.

In particular, R(x,m) belongs to the half-open interval [0,m). If x ∈Z then R(x,m)
is the usual remainder on dividing by m and x ≡ R(x,m) (mod m). Let εm and δm

be real numbers satisfying 0≤ εm < δm ≤ 1. Define

Bad(m, εm, δm)= {x ∈ R : R(x,m) ∈ [0,m) \ [εm ·m, δm ·m)}

=

∞⋃
k=−∞

km+ ([0,m) \ [εm ·m, δm ·m)). (5)

The reader will observe, in Lemma 2.1, if N is not the sum of seven cubes, then
t ∈ Bad(m, εm, δm), which explains our choice of the epithet “bad”. Given a set of
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positive integers W , and sequences ε
˜
= (εm)m∈W , δ

˜
= (δm)m∈W of real numbers

satisfying 0≤ εm < δm ≤ 1 for all m ∈W , we define

Bad(W, ε
˜
, δ
˜
)=

⋂
m∈W

Bad(m, εm, δm). (6)

To make the notation less cumbersome, we usually regard the values εm and δm as
implicit, and write Bad(m) for Bad(m, ε, δ), and Bad(W) for Bad(W, ε

˜
, δ
˜
).

Proposition 2.2. Let 0 < K1 < K2 be real numbers. Let W be a nonempty finite
set of integers such that every element m ∈W satisfies conditions (i)–(iii). Suppose
moreover, that for each m ∈ W , there are real numbers εm and δm satisfying
conditions (iv)–(vi). Let M = lcm(W). Let S ⊂ [0, 1] be a finite set of rational
numbers a/q (here gcd(a, q) = 1) with denominators q bounded by 3

√
M/2K2.

Suppose that

Bad(W)∩ [0,M)⊆
⋃

a/q∈S

(
a
q

M −
3
√

M/16
q

,
a
q

M +
3
√

M/16
q

)
. (7)

Then every odd integer K1 ≤ N ≤ K2 is the sum of seven nonnegative cubes.

Proof. Let N be an odd integer satisfying K1≤ N ≤K2. It follows from assumptions
(i)–(iii) that M= lcm(W) is squarefree and divisible only by 3 and primes equivalent
to 5 (mod 6). Thus there exists a unique integer T ∈ [0,M) such that

N ≡ 8T 3 (mod M). (8)

Suppose N is not the sum of seven cubes. Then, by Lemma 2.1, for each m ∈W ,
we have R(T,m) ∈ [0,m) \ [εm ·m, δm ·m). Thus T ∈ Bad(W)∩ [0,M). By (7)
there is some rational a/q ∈S such that

−

3
√

M/16
q

< T −
a
q

M <
3
√

M/16
q

,

or equivalently

−
M
2
< 8(qT − aM)3 < M

2
.

Moreover, the denominator q is bounded by 3
√

M/2K2 and so

q3 N ≤ M N
2K2
≤

M
2
,

as N ≤ K2. Hence

|q3 N − 8(qT − aM)3|< M.
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However, by (8), we have q3 N − 8(qT − aM)3 ≡ 0 (mod M). Thus q3 N =
8(aT − aM)3. It follows that N is a perfect cube, and so is certainly the sum of
seven nonnegative cubes. �

We shall mostly apply Proposition 2.2 with the parameter choices given by the
following lemma.

Lemma 2.3. Let K ≥ 105. Let K1 = 9K/10, K2 = K . Let

263
100 K

1
3 ≤ m ≤ 292

100 K
1
3 . (9)

Then conditions (iv)–(vi) are satisfied with εm = 0 and δm =
1
10 .

3. Plan for the paper

The rest of the paper is devoted to understanding and computing the intersections
Bad(W)∩[0,M) appearing in Proposition 2.2. Section 4 collects various properties
of remainders and bad sets that are used throughout. Section 5 provides justification,
under a plausible assumption, that the intersection Bad(W) ∩ [0,M) should be
decomposable as in (7). Section 6 gives an algorithm (Algorithm 1) which takes
as input a finite set of positive integers W and an interval [A, B) and returns the
intersection Bad(W)∩ [A, B). We also give a heuristic analysis of the algorithm
and its running time. Section 7 introduces the concept of a “tower”, which is a
sequence

W0 ⊆W1 ⊆W2 ⊆ · · · ⊆Wr =W. (10)

Letting Mi = lcm(Wi ), we prove the recursive formula for computing Bad(Wi )∩

[0,Mi ) in terms of Bad(Wi−1)∩ [0,Mi−1). This recursive formula together with
Algorithm 1 is the basis for a much more efficient algorithm (Algorithm 2) for
computing Bad(W)∩ [0,M) given in Section 7.

In Section 8 we let M∗ be the product of all primes p ≤ 167 that are equivalent
to 5 (mod 6), and

W∗ = {m |M∗ : 265× 109
≤ m ≤ 290× 109

}. (11)

We use a tower and Algorithm 2 to compute Bad(W∗) ∩ [0,M∗). The actual
computation consumed about 18,300 hours of CPU time.

Section 9 is devoted to proving Theorem 1 for N ≥
( 9

10

)3998
·K ≈ 4.28× 1044,

where K = exp(524). The approach is to divide the interval
( 9

10

)3998
K ≤ N ≤K

into subintervals
( 9

10

)n+1
K ≤ N ≤

( 9
10

)n
K with 0 ≤ n ≤ 3997, and apply

Proposition 2.2 and Lemma 2.3 to prove that all odd integers in the interval( 9
10

)n+1
K ≤ N ≤

( 9
10

)n
K are sums of seven nonnegative cubes. Indeed, we

show that given 0 ≤ n ≤ 3997, there is some suitable positive κ such that the
elements of W0 = κ ·W∗ satisfy conditions (i)–(iii) (with K1 =

( 9
10

)n+1
K and
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K2 =
( 9

10

)n
K ) and that moreover, Bad(W0) = κ Bad(W∗). Thus the results of

the huge computation of Section 8 are recycled 3998 times; on top of this W0

we construct a tower and continue until we have found a set W that satisfies the
hypotheses of Proposition 2.2, thereby proving Theorem 1 for N ≥

( 9
10

)3998
·K .

The CPU time for the computations described in Section 9 was around 10,000 hours.
The proof of Theorem 1 is completed in Section 10 where a modified strategy

is needed to handle the “small” ranges
( 9

10

)n+1
K ≤ N ≤

( 9
10

)n
K with 3998 ≤

n ≤ 4226. Although these intervals are small (and few) compared to those handled
in Section 9, we are unable to recycle the computation of Section 8. This makes
the computations far less efficient, though still practical. The CPU time for the
computations described in Section 10 was around 2,750 hours.

4. Some properties of remainders and bad sets

Lemma 4.1. Let m and κ be positive integers with κ|m. Then for any real x we have

Q
( x
κ
,

m
κ

)
= Q(x,m), R

( x
κ
,

m
κ

)
=

1
κ

R(x,m).

Let κ be a positive integer. For a set X ⊂ R we denote κX = {κx : x ∈ X}.

Lemma 4.2. Let m and κ be positive integers. Let 0≤ ε < δ ≤ 1 be real numbers.
Then

Bad(κm, ε, δ)= κ ·Bad(m, ε, δ).

Let W be a set of positive integers and for m ∈ W let 0 ≤ εm < δm ≤ 1 be real
numbers. Let

W ′=κ·W, ε
˜
=(εm)m∈W , δ

˜
=(δm)m∈W , ε

˜

′
=(εm/κ)m∈W ′ δ

˜

′
=(δm/κ)m∈W ′ .

Then

Bad(W ′, ε
˜

′, δ
˜

′)= κ ·Bad(W, ε
˜
, δ
˜
).

Proof. By (5) and Lemma 4.1,

x ∈ Bad(κm, ε, δ)⇐⇒ R(x, κm) ∈ [0, κm) \ [ε · κm, δ · κm)

⇐⇒ 1/κ R(x, κm) ∈ [0,m) \ [ε ·m, δ ·m)

⇐⇒ R(x/κ,m) ∈ [0,m) \ [ε ·m, δ ·m)

⇐⇒ x/κ ∈ Bad(m, ε, δ)

⇐⇒ x ∈ κ ·Bad(m, ε, δ).

This proves the first part of the lemma. The second part now follows from (6). �
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Lemma 4.3. Given positive integers M1 |M2, we define the “natural” map

πM2,M1 : [0,M2)−→ [0,M1), x 7→ R(x,M1).

Then πM2,M1 is surjective, and for any T ⊆ [0,M1),

π−1
M2,M1

(T )=
(M2/M1)−1⋃

k=0

(k ·M1+ T ).

Lemma 4.4. Let W1, W2 be sets of positive integers with W1⊆W2, Mi = lcm(Wi ),
and π = πM2,M1 . Write U =W2 \W1. Then π(Bad(W2))⊆ Bad(W1) and

Bad(W2)∩ [0,M2)= π
−1(Bad(W1)∩ [0,M1))∩Bad(U).

Proof. Let x ∈R and let y = π(x)=R(x,M1). If m ∈W1 then R(y,m)=R(x,m),
as m |M1. Observe that

x ∈ Bad(W2)⇐⇒ R(x,m) /∈ [εm ·m, δm ·m) for all m ∈W2

=⇒ R(x,m) /∈ [εm ·m, δm ·m) for all m ∈W1

⇐⇒ R(y,m) /∈ [εm ·m, δm ·m) for all m ∈W1

⇐⇒ y ∈ Bad(W1).

This shows that π(Bad(W2))⊆ Bad(W1). The rest of the lemma easily follows. �

5. Gaps and ripples

We will soon give an algorithm for computing the intersection

Bad(W)∩ [0,M)=
( ⋂

m∈W

Bad(m)
)
∩ [0,M), M = lcm(W),

given a set W that satisfies the conditions of Proposition 2.2. The statement of
Proposition 2.2 (notably (7)) suggests that we are expecting this intersection to be
concentrated in small intervals around aM/q for certain a/q with relatively small
denominators q . In this section we provide an explanation for this. The situation is
easier to analyze if we make choices of parameters as in Lemma 2.3. Thus for this
section we fix the choices εm = 0, δm =

1
10 , and hence Bad(m) = Bad

(
m, 0, 1

10

)
.

We suppose that the elements m ∈W belong to an interval of the form

263
100 L ≤ m ≤ 292

100 L , (12)

for some L > 0 (see Lemma 2.3). In fact, we show that if q is large, and if the
residues of the integers aM/m are regularly distributed modulo q (in a sense that
will be made precise), then the intersection Bad(W)∩[0,M) contains no points in a
certain explicitly given neighborhood of aM/q . Likewise we show, for certain a/q
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with q small, that Bad(W) ∩ [0,M) does contain some points near aM/q. We
stress that the material in this section does not form part of our proof of Theorem 1.
It does however explain the results of our computations that do form part of the
proof of Theorem 1, and it lends credibility to them.

We fix the following notation throughout this section:

• L is a positive real number.

• W is a nonempty set of positive integers that belong to the interval (12).

• M = lcm(W).

Ripples.

Proposition 5.1. Suppose M ≥ 2000L. Let a/q ∈ [0, 1) be a fraction in simplest
form with 1≤ q ≤ 9 and 0≤ a ≤ q − 1. For 0≤ k ≤ 9− q let

ψk =
292
100

( k
q
+

1
10

)
, 9k =

263
100
·

k+1
q
. (13)

Then ψk <9k and

9−q⋃
k=0

(a
q

M +ψk · L ,
a
q

M +9k · L
)
⊆ Bad(W)∩ [0,M). (14)

This recipe gives 103 disjoint intervals contained in Bad(W) ∩ [0,M) of total
length ξ · L where

ξ = 261707
10500 ≈ 24.9.

We shall informally refer to the union of intervals (14) as a ripple emanating
from aM/q in the positive direction. The reader will easily modify the proof below
to show, under similar hypotheses, that there are ripples emanating from the aM/q
in the negative direction.

Proof. It is easy to check that ψk <9k for q ≤ 9 and 0≤ k ≤ 9−q . The assumption
M ≥ 2000L ensures that the 103 intervals are contained in [0,M) and are disjoint,
so it is enough to show that the intervals are contained in Bad(W). Let α be a real
number belonging to the interval ψk · L < α <9k · L . We would like to show that
aM/q+α ∈Bad(m) for all m ∈W . Let m ∈W . It follows from (12) and (13) that( k

q
+

1
10

)
m ≤ ψk · L < α <9k · L ≤

k+1
q

m. (15)

As m |M we can write aM = um with u ∈ Z. Now u = bq+ s where 0≤ s ≤ q−1.
Thus

a
q

M = bm+ s
q

m.
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From (15),

bm+ k+s
q

m+ m
10
<

a
q

M +α < bm+ k+s+1
q

m.

Let k+ s = qt + v where 0≤ v ≤ q − 1. Hence

(b+ t)m+
(
v

q
+

1
10

)
m <

a
q

M +α < (b+ t)m+ v+1
q

m.

Observe that
1
10
≤
v

q
+

1
10
<
v+1

q
≤ 1,

as q ≤ 9 and 0≤ v ≤ q − 1. Thus Q(aM/q +α,m)= b+ t and

m
10
< R

(aM
q
+α,m

)
< m.

This shows that aM/q +α ∈ Bad(m) as required. �

In the above proposition we showed the existence of ripples emanating from
aM/q for q ≤ 9. There can also be ripples emanating for aM/q for larger values
of q if the sequence of residues aM/m in Z/qZ contains large gaps as illustrated
by the following proposition.

Proposition 5.2. Let a/q ∈ (0, 1) be a rational number in simplest form with q ≥ 11
and 1 ≤ a ≤ q − 1. Let (q − 10)/10 < d < q − 1 be an integer, and let s be a
nonnegative integer satisfying

s < q − d − 1, s < 263
290(10d + 10− q). (16)

Suppose
s+ 1, s+ 2, . . . , s+ d /∈ {aM/m : m ∈W} ⊆ Z/qZ. (17)

Let
π =

292
100
·

s
q
, 5=

263
100

(s+d+1
q

−
1
10

)
.

Then π <5 and (a
q

M −5 · L , a
q

M −π · L
)
⊆ Bad(W).

Proof. Let m ∈W , and recall that m |M . Thus aM/m is an integer, and hence so
is R(aM/m, q). By assumption (17),

R(aM/m, q) 6= s+ 1, s+ 2, . . . , s+ d.

Thus R(aM/m, q) /∈ (s, s+ d + 1). By Lemma 4.1,

R(aM/q,m)= R(aM, qm) · 1/q = R(aM/m, q) ·m/q.
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Thus
R(aM/q,m) /∈

( s
q

m, s+d+1
q

m
)
. (18)

The condition d > (q − 10)/10 implies that

s
q
<

s+d+1
q

−
1

10
.

Let α belong to the interval

s
q

m < α <
(s+d+1

q
−

1
10

)
m. (19)

We claim that
R(aM/q −α,m) /∈ [0,m/10).

Suppose otherwise; then we can write

a
q

M −α = bm+ r,

where 0≤ r < m/10. Thus

bm+ s
q

m < bm+α ≤ a
q

M < bm+α+ m
10
< bm+ s+d+1

q
m,

as α satisfies (19). This contradicts (18), and establishes our claim. In fact we have
shown that if α belongs to the interval (19), then aM/q −α ∈ Bad(m).

Suppose now that α belongs to the interval π · L < α < 5 · L (the second
inequality in (16) ensures π <5). To prove the proposition, all we have to show
is that α satisfies the inequalities in (19) for all m ∈W . However, these follow
straightforwardly from the fact that all m ∈W belong to the interval (12). �

A few remarks are in order concerning Proposition 5.2 and its proof:

• For simplicity we have only constructed the first interval in a ripple emanating
from aM/q in the negative direction. If inequalities (16) are satisfied with a
significant margin, then it is possible to construct more intervals belonging to
this ripple. Likewise, with a suitable modification of the assumptions one can
also construct a ripple in the positive direction.

• The first inequality in (16) is imposed merely for simplicity; if it does not hold
one can also construct ripples emanating from aM/q after suitably modifying
the second inequality in (16).

• The one indispensable assumption in Proposition 5.2 is the existence of a
sequence

s+ 1, s+ 2, . . . , s+ d
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of consecutive residues belonging to (Z/qZ) \ {aM/m : m ∈W} of length d
that is roughly larger than q/10. We shall show below that if there is no such
sequence, then Bad(W) contains no elements in a neighborhood of aM/q .

Gaps. Let a/q ∈ [0, 1] be a rational in simplest form, and let

8a/q :W→ Z/qZ, m 7→ a(M/m).

In view of the above, define the defect d(W, a/q) of W with respect to a/q as the
length of the longest sequence s+1, s+2, . . . , s+d belonging to (Z/qZ)\8a/q(W).
As W 6= ∅, we have d(W, a/q) < q. For example, if 8a/q is surjective then
d(W, a/q)= 0, and if 8a/q(W)= (Z/qZ)∗ then d(W, a/q)= 1.

Lemma 5.3. With notation as above, let d = d(W, a/q). Let x ∈ R. Then there is
some element m ∈W and an integer k such that∣∣∣x − aM

qm
− k

∣∣∣≤ d+1
2q

.

Proof. Let u ∈ Z satisfy |u−qx | ≤ 1
2 . We first suppose that d is even. Consider the

sequence
u− d/2, u− d/2+ 1, u− d/2+ 2, . . . , u+ d/2

of d+1 elements of Z/qZ. By the definition of d , one of these equals 8a/q(m) for
some m ∈W . Thus there is some integer k such that∣∣∣u− aM

m
− kq

∣∣∣≤ d
2
.

As |u− qx | ≤ 1
2 , the result follows.

Now suppose that d is odd and qx ≥ u (the case qx < u is similar). Consider
the sequence

u− (d − 1)/2, u− (d − 1)/2+ 1, u− (d − 1)/2+ 2, . . . , u+ (d + 1)/2

which again has d + 1 elements, and so there is some m ∈W and some integer k
such that

u− d−1
2
≤

aM
m
+ kq ≤ u+ d+1

2
.

Since 0≤ qx − u ≤ 1
2 , the lemma follows. �

Lemma 5.4. Let
m∗ = 38398

13875
· L ,

Then for all m ∈W , ∣∣∣ L
m
−

L
m∗

∣∣∣≤ 725
38398

.
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Proof. By (12), the quantity L/m belongs to the interval
[100

292 ,
100
263

]
. We have

chosen m∗ so that L/m∗ is the midpoint of the interval. The lemma follows as 725
38398

is half the length of the interval. �

Proposition 5.5. With notation as above, let d = d(W, a/q) and suppose that
d < (q − 10)/10. Let

µ=
38398
725

( 1
20
−

d+1
2q

)
. (20)

Then (a
q

M −µL , a
q

M +µL
)
∩Bad(W)=∅.

A few words are perhaps appropriate to help the reader appreciate the content of
the proposition. We shall suppose that q > 11. If #W is large compared to q , then
we expect that 8a/q is close to being surjective which forces d to be small. If that
is the case then µ should be close to 38398

725×20 ≈ 2.64. Suppose now that #W is large,
but that q is much larger. Suppose also that the residues in the image 8a/q(W)

are “randomly” distributed in Z/qZ. The quantity d measures how large the gaps
between these residues in the image can be, and we expect that d should be around
q/#W . We therefore expect that

µ≈
38398
725

( 1
20
−

1
2·#W

)
.

We see that µ should be positive if W has much more than 10 elements.

Proof of Proposition 5.5. The assumption d <(q−10)/10 ensures that µ is positive.
Let y ∈ (aM/q −µL , aM/q +µL). We would to like to show that there is some
m ∈W such that y /∈ Bad(m).

Write y = aM/q +β where |β|< µL . Letting x = 1
20 −

β

m∗ in Lemma 5.3, we
deduce the existence of some integer k and some element m ∈W such that∣∣∣ βm∗ + aM

qm
+ k− 1

20

∣∣∣≤ d+1
2q

.

Thus ∣∣∣ βm + aM
qm
+ k− 1

20

∣∣∣≤ d+1
2q
+

∣∣∣ βm∗ − βm ∣∣∣.
Using |β|< µL , Lemma 5.4 and the definition of µ in (20), we see that∣∣∣ βm + aM

qm
+ k− 1

20

∣∣∣< 1
20
.

Thus y = aM/q + β belongs to the interval −km + (0,m/10), showing that
y /∈ Bad(m) as required. �
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6. A first approach to computing Bad(W)

In this section W is a finite set of positive integers m. Associated to each m ∈W
are real numbers 0≤ εm < δm < 1. We shall write ε

˜
= (εm)m∈W and δ

˜
= (δm)m∈W .

Lemma 6.1. Let A < B be real numbers. For m ∈W , let

qm = Q(A,m) and rm = R(A,m).

(a) Suppose rn ∈ [εn · n, δn · n) for some n ∈W . Write A′ =min((qn + δn) · n, B).
Then

Bad(W)∩ [A, B)= Bad(W)∩ [A′, B).

(b) Suppose rm /∈ [εm ·m, δm ·m) for all m ∈W . Define

Am =

{
(qm+εm) ·m if rm < εm ·m,
(qm+1+εm) ·m if rm ≥ δm ·m,

}
, A′ =min (B,min(Am)m∈W). (21)

Then
Bad(W)∩ [A, B)= (Bad(W)∩ [A′, B))∪ [A, A′).

Proof. Suppose n ∈W satisfies rn ∈ [εn · n, δn · n), and let A′ be as in (a). By (5)
we have

(qn · n+ [εn · n, δn · n))∩Bad(n)=∅.

Observe that [A, A′)⊆ qn ·n+[εn ·n, δn ·n) and [A, A′)⊆ [A, B). Part (a) follows.
Suppose now that rm /∈ [εm ·m, δm ·m) for all m ∈W , and let A′ be as in (b). It

is easy to check that R(A′′,m) /∈ [εm ·m, δm ·m) for all A′′ ∈ [A, Am). From this
we see that [A, A′)⊆

⋂
m∈W Bad(m, εm, δm)= Bad(W). Part (b) follows. �

Lemma 6.1 immediately leads us to the following algorithm.

Algorithm 1. To compute Bad(W)∩[A, B) as a disjoint union of intervals
⋃

I∈I I .
Input: A, B, W , ε

˜
, δ
˜
.

Initialize I ←∅.
Repeat until A = B:

(a) Loop through the elements m ∈W computing qm = Q(A,m), rm = R(A,m).

(b) If there is some n ∈W such that εn · n ≤ rn < δn · n then for any such n set

A←min((qn + δn) · n, B)

and go back to (a).

(c) Otherwise, let A′ be as in (21). Set I ←I ∪{[A, A′)} and then A← A′. Go
back to (a).

Output: I .
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A heuristic analysis of Algorithm 1 and its running time. Let x ∈ [0,M) and
recall that R(x,m) ∈ [0,m). Moreover, x ∈ Bad(m) if and only if R(x,m) ∈
[0,m) \ [εm · m, δm · m). Thus the “probability” that x belongs to Bad(m) is
1− (δm − εm). Assuming “independence of events” we expect that the total length
of intervals produced by Algorithm 1 is

(B− A) ·
∏

m∈W

(1− δm + εm). (22)

To analyze the running time, we shall suppose parameter choices as in Lemma 2.3:
namely εm = 0 and δm =

1
10 for all m ∈W . Moreover, we shall suppose that the

elements of m ∈ W belong to an interval (12) for some large positive L . By
the above, the expected total length of the intervals produced by Algorithm 1 is
(B − A) · 0.9#W . Moreover, we suppose that W is sufficiently large so that the
length of the output should be negligible compared to B − A; this should mean
that step (c) is relatively rare. We will estimate the expected number of times we
loop through steps (a), (b). Note that in step (b), A is increased by 0.1 · n − rn .
The remainder rn = R(A, n) belongs to [0, 0.1 · n). We regard the increase as a
product (0.1− rn/n) · n. Treating rn/n as a random variable uniformly distributed
in [0, 0.1) and n as a random variable uniformly distributed in interval (12), we
see that the expected increase is 0.05 · (2.63+ 2.92)L/2= 0.13875 · L . A standard
probability theory argument that we omit tells us that the expected number of times
the algorithm loops through steps (a), (b) is roughly

B−A
0.13875L

≈
7(B−A)

L
.

We now suppose that K is very large, and we would like to compute the inter-
section Bad(W)∩ [0,M) for some set W where we hope that the hypotheses of
Proposition 2.2 and Lemma 2.3 are satisfied. In particular, we take L = K

1
3 . The

number of steps should be around 7M/K
1
3 . We have to choose W so that M =

lcm(W) is much larger than K (see (7) and just above it). Thus the number of steps to
compute Bad(W) is much greater than K

2
3 . For K = exp(524), the expected number

of steps is larger than 10150, which makes the computation entirely impractical.

7. A refined approach to computing Bad(W): The tower

In this section we let W be a set of positive integers with M = lcm(W). Let
M0,M1,M2, . . . ,Mr be positive integers such that Mi |Mi+1 and Mr = M . Write
pi = Mi+1/Mi . In our later computations the pi will be primes, but we need not
assume that yet. Let

Wi = {m ∈W : m |Mi }.
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We suppose that Mi = lcm(Wi ). Write Ui =Wi+1\Wi . Recall (Lemmas 4.3 and 4.4)
that we have natural surjections πM j ,Mi : [0,M j )→ [0,Mi ) whenever j ≥ i , and
that these restrict to give maps (not necessarily surjections) Bad(W j )→ Bad(Wi ).
For ease of notation we shall denote πM j ,Mi simply by π j,i . We shall refer to
the sequence of inclusions (10) as a tower leading up to Bad(W), and use this to
compute Bad(W).

Lemma 7.1. Let 0≤ i ≤ r − 1. Suppose Ii is a finite set of disjoint subintervals of
[0,Mi ) such that

Bad(Wi )∩ [0,Mi )=
⋃
I∈Ii

I.

Then

Bad(Wi+1)∩ [0,Mi+1)=
⋃
I∈Ii

pi−1⋃
k=0

((k ·Mi + I )∩Bad(Ui )).

Proof. This is immediate from Lemmas 4.3 and 4.4. �

Lemma 7.1 immediately leads us to the following algorithm.

Algorithm 2. The following computes a finite set I =Ir of subintervals of [0,M)
such that Bad(W)∩ [0,M)=

⋃
I∈I I .

Input: W0, . . . ,Wr =W , ε
˜
, δ
˜
.

Initialize: I0 to be the set of disjoint intervals whose union is Bad(W0)∩ [0,M0),
which is computed using Algorithm 1.
Initialize: i← 0.
Repeat until i = r :

(a) Ii+1←∅.

(b) for I ∈ Ii and k ∈ {0, . . . , pi − 1}, compute, using Algorithm 1, a finite set
I ′ of subintervals of [0,Mi+1) such that (k ·Mi + I )∩Bad(Ui )=

⋃
I ′∈I ′ I ′;

let Ii+1←Ii+1 ∪I ′.

(c) i← i + 1.

Output: I =Ir .

A heuristic analysis of Algorithm 2 and its running time. We shall suppose, as
in Lemma 2.3, that εm = 0 and δm =

1
10 for all m ∈ W . Write ni = #Wi . We

assume that the elements of Wi , Ui belong to an interval of the form
[263L

100 ,
292L
100

]
for some large L . By our previous analysis, we expect that we can compute I0 in
roughly 7M0/L steps. The total length `(I0) of the intervals in I0 should roughly
be 0.9n0 M0. In Step (b) of the algorithm, we will replace each I ∈ I0 with p0

intervals of the same length, and then apply Algorithm 1 to each. Thus we expect
that the number of steps to compute I1 to be roughly
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7p0 · 0.9n0 ·M0

L
≈

7M1 · 0.9n0

L
.

The total length of the intervals in I1 should be roughly M1 · 0.9n1 . It is now
apparent that the total number of steps should be around

(7/L) · (M0+M1 · 0.9n0 +M2 · 0.9n1 + · · ·+Mr · 0.9nr−1).

8. A large computation

Let M∗ be the product of all primes p ≤ 167 that are ≡ 5 (mod 6), and W∗ be
as in (11). In this section we compute Bad(W∗) ∩ [0,M∗), using a tower and
Algorithm 2. As explained in Section 3, the result of this computation will be
reused again and again in Section 9. Let

M0 = 5× 11× 17× 23× 29× 41× 47× 53× 59× 71× 83× 89,

which is the product of the primes < 100 that are ≡ 5 (mod 6). Let

M1 = 101 ·M0, M2 = 107 ·M1, M3 = 113 ·M2, M4 = 131 ·M3,

M5 = 137 ·M4, M6 = 149 ·M5, M∗ = M7 = 167 ·M6.

We let
Wi = {m |Mi : 265× 109

≤ m ≤ 290× 109
}.

Thus W0 ⊆ · · · ⊆ W7 = W∗. We checked that Mi = lcm(Wi ). Table 1 gives
the cardinalities of the Wi . We use this tower and Algorithm 2 to compute
Bad(W∗)∩ [0,M∗). By our heuristic in the previous section, the number of steps
needed for this computation should very roughly be equal to 6.0× 1010, which is
the sum of the entries of the table’s third column. It appears from this estimate that
the computation can be done in reasonable time.

We wrote simple implementations of Algorithms 1 and 2 for the computer
algebra system Magma [Bosma et al. 1997]. We divided the interval [0,M0) into
59000 subintervals of equal length and ran our program on each of these intervals
[Ak−1, Ak) successively computing Bad(Wi )∩π

−1
i,0 ([Ak−1, Ak)) for i = 0, . . . , 7.

Our computation was distributed over 59 processors (on a 64 core machine with
2500MHz AMD Opteron Processors). Note that

Bad(Wi )∩ [0,Mi )=

59000⋃
k=1

Bad(Wi )∩π
−1
i,0 ([Ak−1, Ak));

thus our computation gives us a decomposition of Bad(Wi )∩ [0,Mi ) as a union of
disjoint intervals. The total CPU time for the computation was around 18,300 hours,
but as we distributed it over 59 processors, it was over in less than two weeks.
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i log10(Mi ) ni = #Wi 7Mi 0.9ni−1/1011

0 18.3 16 1.4× 109

1 20.3 38 2.6× 109

2 22.3 83 2.7× 1010

3 24.4 149 2.7× 1010

4 26.5 250 3.4× 109

5 28.6 401 1.1× 107

6 30.8 620 2.0× 102

7 33.0 911 3.2× 10−6

Table 1. The Mi and the Wi are given at the beginning of Section 8.
The third column gives an estimate for the number of steps needed
to compute Bad(Wi ) ∩ [0,Mi ) from Bad(Wi−1) ∩ [0,Mi−1) ac-
cording to the heuristic analysis at the end of Section 7.

Lemma 8.1. There are sequences (B j )
854
j=1 and (C j )

854
j=1 contained in [0,M∗] such

that
B1 < C1 < B2 < C2 < · · ·< B854 < C854

and

Bad(W∗)∩ [0,M∗)=
854⋃
j=1

[B j ,C j ),

with total length
∑854

j=1(C j − B j )= 20382195221000 6
10 .

Proof. As indicated by Table 2, our computation gives Bad(W∗)∩[0,M∗) as a union
of 861 intervals disjoint subintervals of [0,M∗). Among these there are 7 pairs of
the form [α, β)∪ [β, γ ), where the values of β are of the form β ′ ·M∗/59000 with

β ′ = 7375, 14750, 22125, 29500, 36875, 44250, 51625.

These subdivisions are clearly a result of our original subdivision of interval [0,M∗0 )
into 59000 subintervals of equal length. We simply replace the pairs [α, β)∪[β, γ )
with [α, γ ) so that Bad(W∗) ∩ [0,M∗) is expressed as a union of 854 intervals.
This simplification of course preserves the total length of intervals. �

Remarks and sanity checks. Our computations are done with exact arithmetic.
The reader will note by looking back at Algorithms 1 and 2 (and recalling that all
εm = 0 and δm = m/10) that the end points of the intervals encountered will be
rationals with denominators that are divisors of 10, except for the Ak appearing in
our original subdivision which have denominators that are divisors of 59000. As a



2112 Samir Siksek

i #Ii `i = `(Bad(Wi )∩ [0,Mi )) `i/Mi 0.9ni

0 23 458 002 365 300 497 739 376 385 8
10 1.85× 10−1 1.85× 10−1

1 553 209 618 3 625 384 986 862 035 664 4
10 1.82× 10−2 1.82× 10−2

2 1 106 375 245 3 313 998 145 602 553 709 1
10 1.56× 10−4 1.59× 10−4

3 209 982 392 350 826 426 611 537 217 1
10 1.46× 10−7 1.52× 10−7

4 1 062 201 1 076 402 154 947 217 8
10 3.41× 10−12 3.64× 10−12

5 904 20 663 973 893 432 1
10 4.78× 10−16 4.48× 10−19

6 870 20 504 346 087 851 7
10 3.19× 10−18 4.27× 10−29

7 861 20 382 195 221 000 6
10 1.90× 10−20 2.07× 10−42

Table 2. Some details for the computation described Section 8.
The second column gives #Ii , where Ii is a disjoint collection of
intervals

⋃
Ii = Bad(Wi )∩ [0,Mi ). The third column gives the

total length `i of these intervals. The fourth column gives the ratio
`i/Mi . According to the heuristic at the end of Section 6, this
ratio should approximately equal 0.9ni which is given in the last
column (here ni = #Wi as in Table 1). We explain the discrepancy
between the last two columns in the remarks on page 2111.

check on our computations, we verify that our results for Bad(W∗)∩ [0,M∗) are
consistent with Proposition 5.1. The set W∗ satisfies

min(W∗)= 265024970473 and max(W∗)= 289916573827.

We take L = min(W∗) · 100
263 . It turns out that L > max(W∗) · 100

292 . Thus W∗ is
contained in the interval (12) for this value of L . Proposition 5.1 yields a total
of 103 intervals of the form (aM∗/q + ψk · L , aM∗/q + 9k · L) that must be
contained in Bad(W∗)∩ [0,M∗). We checked that each of these is contained in
one of the 854 intervals produced by our computation. It is instructive to compare
the fourth and fifth columns of Table 2. According to our heuristic, the total length
`(Bad(Wi )∩ [0,Mi )) should be around Mi · 0.9ni (with ni = #Wi ) and therefore
we expect the two columns to be roughly the same. From the table, we see that this
heuristic is remarkably accurate for 0≤ i ≤ 4, and extremely inaccurate for i ≥ 5.
An explanation for this is provided by the ripples. The total length of the intervals
contained in Bad(Wi )∩ [0,Mi ) produced by Proposition 5.1 is ≈ 24.9L . Now

24.9L
M5
= 5.8× 10−17,

24.9L
M6
= 4.0× 10−19,

24.9L
M7
= 2.3× 10−21,
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which does provide an explanation for the discrepancy between the two columns.
Proposition 5.2 (with W∗ and M∗ in place of W and M) produces 172 intervals
with 11≤ q ≤ 100 with total length ≈ 17.8L . We checked that each of these is also
contained in one of the 854 intervals produced by our computation.

According to the overall philosophy of Section 5, the set Bad(W∗)∩ [0,M∗)
should be concentrated in short intervals around rational multiples (a/q) · M∗

with q small. To test this, we computed, using continued fractions, the best rational
approximation to (Bi +Ci )/(2M∗) with denominator at most 1020, for 1≤ i ≤ 854.
The largest denominator we found was 42.

The reader is probably wondering, given that we are employing 59 processors,
why we have subdivided [0,M0) into 59, 000 intervals instead of 59 intervals. This
was done purely for memory management reasons. A glance at Table 2 will show
the reader that there is an explosion of intervals at levels i = 1, 2, 3. By dividing
[0,M0) into 59, 000 subintervals, we only need to store roughly 1

59000 -th of the
intervals appearing at levels i at any one time per processor, and so only need to
store around 1

1000 -th of these intervals in the memory at any one time.

9. Proof of Theorem 1 for N ≥
( 9

10
)3998

· exp(524) ≈ 4.28 × 1044

The reader might at this point find it helpful to review the first paragraph of Section 2
as well as the plan in Section 3. Let K = exp(524). In this section we prove
Theorem 1 for N ≥

( 9
10

)3998
K . We shall divide the interval

( 9
10

)3998
K ≤ N ≤K

into subintervals
( 9

10

)n+1
K ≤ N ≤

( 9
10

)n
K with 0 ≤ n ≤ 3997. We apply

Proposition 2.2 and Lemma 2.3 to prove that all odd integers in the interval( 9
10

)n+1
K ≤ N ≤

( 9
10

)n
K are sums of seven nonnegative cubes.

Lemma 9.1. Let 0≤ n ≤ 3997. Let K =
( 9

10

)n
·K . There exists an integer κ that

satisfies:

(a) κ is squarefree.

(b) 3 | κ .

(c) κ/3 is divisible only by primes q ≡ 5 (mod 6) that satisfy q > 167.

(d) κ belongs to the interval

263
265
·

K
1
3

1011 ≤ κ ≤
292
290
·

K
1
3

1011 . (23)

Proof. We proved the lemma using a Magma script. Let I1, I2 be the lower and
upper bounds for κ in (23). If I2 < 107 then our script uses brute enumeration of
integers in the interval [I1, I2] to find a suitable κ . Otherwise, the script takes τ to be
a product of consecutive primes≡ 5 (mod 6) starting with 173 up to a certain bound,
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and keeps increasing the bound until I2/τ < 107. It then loops through the integers
I 1

3
τ ≤µ≤ I 2

3
τ until it finds one such that κ=3µτ satisfies conditions (a), (b), (c). �

Remark. For n = 3998, the interval in (23) is 7481.6 . . .≤ κ ≤ 7590.5 . . . , which
is too short for the existence of a suitable κ . This is also the case for most values
of n that are ≥ 3998.

Lemma 9.2. Let 0≤ n ≤ 3997 and let κ be as in Lemma 9.1. Let W∗ and M∗ be
as in Lemma 8.1. Let

W0 = {κ ·m∗ : m∗ ∈W∗} and M0 = lcm(W0)= κM∗.

Let εm = 0 and δm =
1

10 for all m ∈W0. Then m ∈W0 satisfy the conditions (i)–(vi)
of Section 2, where

K1 =
( 9

10

)n+1
·K and K2 =

( 9
10

)n
·K .

Moreover,

Bad(W0)∩ [0,M0)=

854⋃
j=1

[κ · B j , κ ·C j ), (24)

where the B j and C j are as in Lemma 8.1.

Proof. All m∗ ∈W∗ are squarefree and divisible only by primes q ≤ 167 satisfying
q ≡ 5 (mod 6). Thus conditions (i)–(iii) of Section 2 are satisfied by m ∈W0. As
we are taking εm = 0 and δm =

1
10 , to verify conditions (iv)–(vi) we may apply

Lemma 2.3. For this we need only check that (9) holds for m ∈W0, where K = K2.
This immediately follows from (23) and the fact that W∗ ⊂ [265× 109, 290× 109

].
Finally, by Lemma 4.2,

Bad(W0)∩ [0,M0)= κ · (Bad(W∗)∩ [0,M∗)).

Lemma 8.1 completes the proof. �

Our Magma script for proving Theorem 1 in the range K1 ≤ N ≤ K2 proceeds
as follows. We inductively construct a tower W0 ⊂W1 ⊂W2 ⊂ · · · . Observe that

`(Bad(W0)∩ [0,M0))

M0
=
`(Bad(W∗)∩ [0,M∗))

M∗
≈ 1.90× 10−20,

thus the computation of the previous section has already substantially depleted
the interval [0,M0). Given Wi , and Mi , we let pi be the smallest prime ≡ 5
(mod 6) that does not divide Mi and let Mi+1 = pi Mi . The script then writes
down positive integers m belonging to the interval (9), such that m |Mi+1 and
3pi |m. It is not necessary or practical to find all such integers, but we content
ourselves with finding around 3 log(pi )/ log(0.9−1) of them; we explain this choice
shortly. These m will form the set Ui and we take Wi+1 =Wi ∪Ui . The script then
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applies our implementation of Algorithm 2 to compute Bad(Wi+1)∩ [0,Mi+1) as
a union of disjoint intervals. Our heuristic analysis of Algorithm 2 suggests that
`(Bad(Wi+1)∩ [0,Mi+1)) should roughly equal pi · 0.9#Ui · `(Bad(Wi )∩ [0,Mi )).
We desire the total length of the intervals to decrease in each step of the tower,
so we should require #Ui > log(pi )/ log(0.9−1). Experimentation suggests that
requiring #Ui ≈ 3 log(pi )/ log(0.9−1) provides good control of both the total length
of Bad(Wi ) ∩ [0,Mi ) and the number of intervals that make it up. Our script
continues to build the tower and compute successive Bad(Wi ) ∩ [0,Mi ) until it
finds W =Wi and M = Mi that satisfy (7) for some set of rationals S⊂ [0, 1] with
denominators bounded by 3

√
M/2K . Specifically, once Mi > 2K , for each of the

disjoint intervals [α, β) that make up Bad(W)∩ [0,M), the script uses continued
fractions to compute the best rational approximation a/q to (α + β)/2M with
q ≤ 3
√

M/2K , and then checks whether

[α, β)⊆ (aM/q − 3
√

M/16/q, aM/q + 3
√

M/16/q).

The script continues constructing the tower until this criterion is satisfied for
all the intervals making up Bad(W). It then follows from Proposition 2.2 that
all odd integers in the range K ·

( 9
10

)n+1
≤ N ≤ K ·

( 9
10

)n are sums of seven
nonnegative cubes. We again distributed the computation among 59 processors
on the aforementioned machine, with each processor handling an appropriate
portion of the range 0 ≤ n ≤ 3997. The script succeeded in finding an appro-
priate W for all n in this range. The entire CPU time was around 10,000 hours,
but as the computation was distributed among 59 processors the actual time was
around 7 days.

We give more details for the case n = 0. Thus K = K = exp(524), and we
would like to show, using Proposition 2.2 that all odd integers 9K/10≤ N ≤ K are
sums of seven nonnegative cubes. The routine described in the proof of Lemma 9.1
gives the following suitable value for κ:

κ = 3× 173× 179× 191× 197× 227× 233× 239× 251× 257× 263× 269× 281× 293

× 311× 317× 347× 353× 359× 383× 389× 401× 419× 431× 443× 207443.

Table 3 gives some of the details for the computation. We take W =W48. Then
#W = #W0+

∑
#Ui = 9943, and

`(Bad(W)∩ [0,M))
= 1245937137395549638824015714140403151401411370898968055175937887691670913319978 1

2

≈ 1.25× 1078.

In comparison,

M = M48 ≈ 1.64× 10235 and K = 3.72× 10227.
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i pi−1 #Ui−1 N `i/Mi

0 – – 854 1.90× 10−20

1 449 174 775 3.73× 10−23

2 461 175 745 7.94× 10−26

3 467 176 740 1.70× 10−28

4 479 176 735 3.54× 10−31

5 491 177 732 7.20× 10−34

6 503 178 730 1.42× 10−36

7 509 178 730 2.80× 10−39

8 521 179 730 5.38× 10−42

9 557 181 730 9.65× 10−45

10 563 181 731 1.71× 10−47

11 569 181 730 3.01× 10−50

12 587 182 729 5.13× 10−53

13 593 182 729 8.64× 10−56

14 599 183 729 1.44× 10−58

15 617 183 729 2.34× 10−61

16 641 185 729 3.64× 10−64

17 647 185 729 5.63× 10−67

18 653 185 729 8.62× 10−70

19 659 185 729 1.31× 10−72

20 677 186 729 1.93× 10−75

21 683 186 729 2.83× 10−78

22 701 187 729 4.04× 10−81

23 719 188 729 5.61× 10−84

24 743 189 729 7.55× 10−87

i pi−1 #Ui−1 N `i/Mi

25 761 189 729 9.93× 10−90

26 773 190 729 1.28× 10−92

27 797 191 729 1.61× 10−95

28 809 191 729 1.99× 10−98

29 821 192 729 2.43× 10−101

30 827 192 729 2.93× 10−104

31 839 192 729 3.50× 10−107

32 857 193 729 4.08× 10−110

33 863 193 729 4.73× 10−113

34 881 194 729 5.36× 10−116

35 887 194 729 6.05× 10−119

36 911 195 729 6.64× 10−122

37 929 195 729 7.14× 10−125

38 941 195 729 7.59× 10−128

39 947 196 729 8.02× 10−131

40 953 196 729 8.41× 10−134

41 971 196 729 8.66× 10−137

42 977 197 729 8.87× 10−140

43 983 197 729 9.02× 10−143

44 1013 198 729 8.91× 10−146

45 1019 198 729 8.74× 10−149

46 1031 198 729 8.48× 10−152

47 1049 199 729 8.08× 10−155

48 1061 199 729 7.62× 10−158

Table 3. details for the computation for the case n = 0. For each
i ≥ 1, our script computes Bad(Wi ) as a disjoint union of subinter-
vals of [0,Mi ). The number of intervals, N , is given in the fourth
column. The fifth column gives, to 3 significant figures, the ratio
`i/Mi where `i = `(Bad(Wi )∩ [0,Mi )).

The set S as in (7) turns out be precisely the set of 171 rationals a/q ∈ [0, 1]
with denominators q belonging to

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 28, 30, 36, 42.

As a check on our results, we apply Proposition 5.2 to show that there is an interval
close to (a/42) · M for 1 ≤ a ≤ 41 with gcd(a, 42) = 1. Our W and M satisfy
the hypotheses of Section 5 with L = K

1
3 . Note that 3 |m |M for all m ∈W . As

M is squarefree, we have 3-(M/m). Moreover, all the prime divisors of M/3
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are ≡ 5 (mod 6). It follows that gcd(aM/m, 42) = 1 for all m ∈W . Let q = 42
and s = d = 5 in Proposition 5.2; hypothesis (16) is trivially satisfied. Now
s+ 1, . . . , s+ d are the integers 6, 7, 8, 9, 10 and none of these are coprime to 42.
Thus condition (17) is also satisfied. By Proposition 5.2, for each 1≤ a ≤ 41 with
gcd(a, 42)= 1 we have( a

42 M − 4471
10500 · K

1
3 , a

42 M − 73
210 · K

1
3
)
⊆ Bad(W). (25)

One of the 729 intervals that make up Bad(W) is [u, v)where the end points u, v are

u = 3895173640423584874713349032421520960246664873653293975537400307522458157015057896

8661382487115397667257923729694373737120676906393201731077732461793807977510051609

36231041460322490961793995991410145937421686204642056677472293123392066 3
10 ,

v = 3895173640423584874713349032421520960246664873653293975537400307522458157015057896

8661382487115397667257923729694373737120676906393201731077732461793807977510107869

7615391607190077739469387928238665618669912989320140106379011502569660,

and we checked that the interval in (25) with a = 1 is contained in [u, v). It is also
interesting to note how close the two intervals are in length: the ratio of the lengths
of the two intervals is ( 4471

10500 −
73

210

)
· K

1
3

v− u
≈ 0.9994

which illustrates how remarkably accurate our Proposition 5.2 is.

10. Completing the proof of Theorem 1

It remains to apply Proposition 2.2 to the intervals
( 9

10

)n+1
K ≤ N ≤

( 9
10

)n
K

with 3998 ≤ n ≤ 4226. We write K = K2 =
( 9

10

)n
K and K1 =

( 9
10

)n+1
K . It is

no longer practical to use the choices in Lemma 2.3 as the interval in (9) is too
short to contain many squarefree m whose prime divisors are 3 and small primes
≡ 5 (mod 6). The interval in (9) is a result of imposing the uniform choices εm = 0
and δm =

1
10 . Instead we consider integers m satisfying conditions (i)–(iii) of

Section 2 but belonging to the (much larger) interval

12
5 K

1
3 ≤ m ≤ 16

5 K
1
3 . (26)

For each such m we take εm = ε
′/1000 and δm = δ

′/1000 where ε′, δ′ are integers
with ε′ and δ′ respectively as small and as large as possible such that the conditions
(v), (vi) of Section 2 are satisfied. We only keep those values of m for which

0≤ εm < δm ≤ 1 and δm − εm ≥
1
20 ; (27)
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an elementary though lengthy analysis in fact shows that the inequalities in (27)
together with (v) and (vi) force m to belong to the interval (26). Note that the set
Bad(m, εm, δm) has “relative density” 1−δm+εm in R; the restriction δm−εm ≥

1
20

ensures that this relative density is not too close to 1, and that therefore m makes a
significant contribution to depleting the intervals in Algorithms 1 and 2.

We choose a prime q ≡ 5 (mod 6), depending on K , and let

M0 = 3 · 5 · 11 · · · q,

which is the product of 3 and the primes ≤ q that are ≡ 5 (mod 6). Let W0 be the
set of positive integers dividing M0 and satisfying the above conditions. We found
experimentally that for each n in the above range it is always possible to choose q
so that

M0 = lcm(W0),
∏

m∈W0

(1− δm + εm)≤
1
5 , and log10(M0/K

1
3 )≤ 7.5.

The inequality
∏

m∈W0
(1 − δm + εm) ≤

1
5 indicates that `(Bad(W0) ∩ [0,M0))

should heuristically be at most M0/5 which means that this is a good first step at
depleting the interval [0,M0). The other inequality indicates that we can compute
Bad(W0) ∩ [0,M0) in a reasonable number of steps, according to the heuristic,
following Algorithm 1. We let p0 be the first prime ≡ 5 (mod 6) that is > q , and p1

be the next such prime and so on. We let Mi+1 = pi Mi and construct a tower as
before. We stop once Bad(Wi )∩ [0,Mi ) satisfies the criterion of Proposition 2.2.
Our Magma script succeeded in doing this for all n in the range 3998≤ n ≤ 4226.
The total CPU time was around 2750 hours, but the computation was spread over 59
processors so the actual time was less than 2 days.

We give a few of details for the computation for the value n= 4226. The final M
is the product of 3 and the primes p ≡ 5 (mod 6) that are ≤ 227. The final W has
8083 elements. It turns out that Bad(W)∩ [0,M) consists of 305 intervals and that
`(Bad(W)∩ [0,M))/M ≈ 2.24× 10−32.
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We introduce a new category of coefficients for p-adic cohomology called con-
structible isocrystals. Conjecturally, the category of constructible isocrystals
endowed with a Frobenius structure is equivalent to the category of perverse
holonomic arithmetic D-modules. We prove here that a constructible isocrystal is
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Introduction

The relation between topological invariants and differential invariants of a manifold
is always fascinating. We may first recall de Rham’s theorem, which implies the
existence of an isomorphism

Hi
dR(V )' Hom(Hi (V ),C)

on any complex analytic manifold V. The nonabelian version is an equivalence of
categories

MIC(V )' RepC(π1(V, x))

between coherent modules endowed with an integrable connection and finite-
dimensional representations of the fundamental group. The analogous result holds
on a smooth complex algebraic variety X if we stick to regular connections (see
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[Deligne 1970] or Bernard Malgrange’s lecture in [Borel et al. 1987]). It has been
generalized by Masaki Kashiwara [1984] to an equivalence

Db
reg,hol(X)' Db

cons(X
an)

between the categories of bounded complexes of DX -modules with regular holo-
nomic cohomology and bounded complexes of CX an-modules with constructible
cohomology.

Both categories come with a so-called t-structure but these t-structures do not
correspond under this equivalence. Actually, they define a new t-structure on the
other side that may be called perverse. The notion of a perverse sheaf on X an has
been studied for some time now (see [Borel et al. 1987], for example). On the
D-module side, however, this notion only appeared in the recent article [Kashiwara
2004], even if he does not give it a name (we call it perverse but it might as well
be called constructible; see [Abe 2013]). In any case, he shows that the perverse
t-structure on Db

reg,hol(X) is given by{
D≤0
: codim suppHn(F •)≥ n for n ≥ 0,

D≥0
:Hn

Z (F
•)= 0 for n < codim Z .

In particular, if we call perverse a complex of DX -modules satisfying both condi-
tions, there exists an equivalence of categories

Dperv
reg,hol(X)' Cons(X an)

between the categories of perverse (complexes of) DX -modules with regular holo-
nomic cohomology and constructible CX an-modules.

In a handwritten note called “Cristaux discontinus”, Pierre Deligne gave an alge-
braic interpretation of the right-hand side of this equivalence. More precisely, he in-
troduces the notion of a constructible procoherent crystal and proves an equivalence

Consreg,procoh(X/C)' Cons(X an)

between the categories of regular constructible procoherent crystals and constructible
CX an-modules.

By composition, we obtain what may be called the Deligne–Kashiwara corre-
spondence:

Consreg,procoh(X/C)' Dperv
reg,hol(X).

It would be quite interesting to give an algebraic construction of this equivalence but
this is not our purpose here. Actually, we would like to describe an arithmetic analog.

Let K be a p-adic field with discrete valuation ring V and perfect residue field k.
Let X ↪→ P be a locally closed embedding of an algebraic k-variety into a formal
V-scheme. Assume for the moment that P is smooth and quasicompact, and that
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the locus of X at infinity inside P has the form D ∩ X , where D is a divisor
in P. We may consider the category Db(X ⊂ P/K ) of bounded complexes of
D†

P(
†D)Q-modules on P with support on X (see [Berthelot 2002], for example).

On the other hand, we may also consider the category of overconvergent isocrystals
on (X ⊂ P/K ). Daniel Caro proved [2009] that there exists a fully faithful functor

sp+ : Isoc†
coh(X ⊂ P/K )→ Db

coh(X ⊂ P/K )

(the index coh simply means overconvergent isocrystals in Berthelot’s sense —
see below). This is the first step towards an overconvergent Deligne–Kashiwara
correspondence. Note that this construction is extended to a slightly more general
situation by Tomoyuki Abe and Caro [2013] and was already known to Pierre
Berthelot [1996b, Proposition 4.4.3] in the case X = Pk .

In [Le Stum 2014], we defined a category, which we may denote MIC†
cons(P/K ),

of convergent constructible ∇-modules on PK when P is a geometrically con-
nected smooth proper curve over V , as well as a category Dperv(P/K ) of perverse
(complexes of) D†

PQ
-modules on P, and we built a functor

Rs̃p∗ :MIC†
cons(P/K )→ Dperv

coh (P/K ).

Actually, we proved the overconvergent Deligne–Kashiwara correspondence in this
situation: this functor induces an equivalence of categories

Rs̃p∗ : F- MIC†
cons(P/K )' F-Dperv

hol (P/K )

between (convergent) constructible F-∇-modules on PK and perverse holonomic
F-D†

PQ
-modules on P. Note that this is compatible with Caro’s sp+ functor.

In order to extend this theorem to a higher dimension, it is necessary to develop a
general theory of constructible (overconvergent) isocrystals. One could try to mimic
Berthelot’s original definition and let Isoc†

cons(X ⊂ Y ⊂ P/K ) be the category of
j†
XO]Y [-modules F endowed with an overconvergent connection which are only

“constructible” and not necessarily coherent (here X is open in Y and Y is closed
in P). It means that there exists a locally finite covering of X by locally closed
subvarieties Z such that j†

ZF is a coherent j†
ZO]Y [-module. It would then be

necessary to show that the definition is essentially independent of P as long as P
is smooth and Y proper, and that they glue when there does not exist any global
geometric realization.

We choose here an equivalent but different approach with built-in functoriality.
I introduced in [Le Stum 2011] the overconvergent site of the algebraic variety X
and showed that we can identify the category of locally finitely presented modules
on this site with the category of overconvergent isocrystals in the sense of Berthelot.
Actually, we can define a broader category of overconvergent isocrystals (without
any finiteness condition) and call an overconvergent isocrystal E constructible when
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there exists a locally finite covering of X by locally closed subvarieties Y such
that E|Y is locally finitely presented. Note that K may be any nontrivial complete
ultrametric field and that there exists a relative theory (over some base O). We
denote by Isoc†

cons(X/O) the category of constructible overconvergent isocrystals
on X/O. We expect a “Grothendieck’s six operations formalism” for overconver-
gent F-isocrystals and, more generally, that all usual properties of constructible
coefficients will hold in our context.

As usual, when we are given a crystalline solution to a coefficient problem, it is
necessary to be able to give an interpretation in terms of modules with an integrable
connection. Here, one may define a category MIC†

cons(X, V/O) of constructible
modules endowed with an overconvergent connection on any “geometric realiza-
tion” V of X/O, as in Berthelot’s approach. We will prove (Theorem 4.12 below)
that, when Char(K )= 0, there exists an equivalence of categories

Isoc†
cons(X/O)'MIC†

cons(X, V/O).

As a corollary, we obtain that the later category is essentially independent of the
choice of the geometric realization (and that they glue when there does not exist
such a geometric realization). Note that this applies in particular to the case of the
curve P above which “is” a geometric realization of Pk so that

Isoc†
cons(Pk/K )=MIC†

cons(P/K ).

In Section 1, we briefly present the overconvergent site and review some material
that will be needed afterwards. In Section 2, we study some functors between
overconvergent sites that are associated to locally closed embeddings. We do a
little more that what is necessary for the study of constructible isocrystals, hoping
that this will be useful in the future. In Section 3, we introduce overconvergent
isocrystals and explain how one can construct and deconstruct them. In Section 4,
we show that constructible isocrystals may be interpreted in terms of modules with
integrable connections.

Notation and conventions

Throughout this article, K denotes a nontrivial complete ultrametric field with
valuation ring V and residue field k.

An algebraic variety over k is a scheme over k that admits a locally finite covering
by schemes of finite type over k. A formal scheme over V always admits a locally
finite covering by π -adic formal schemes of finite presentation over V . An analytic
variety over K is a strictly analytic K-space in the sense of [Berkovich 1993], for
example. We will use the letters X, Y, Z ,U,C, D, . . . to denote algebraic varieties
over k, P, Q, S for formal schemes over V and V, W, O for analytic varieties over K.
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An analytic variety over K is said to be good if it is locally affinoid. This is the
case, for example, if V is affinoid, proper or algebraic, or more generally if V is an
open subset of such a variety. Note that in Berkovich’s original definition [1990]
all analytic varieties were good.

As usual, we will write A1 and P1 for the affine and projective lines. We will
also use D(0, 1±) for the open or closed disc of radius 1.

1. The overconvergent site

We briefly recall the definition of the overconvergent site from [Le Stum 2011]. An
object is made of

(1) a locally closed embedding X ↪→ P of an algebraic variety (over k) into a
formal scheme (over V) and

(2) a morphism λ : V → PK of analytic varieties (over K ).

We denote this object by X ⊂ P sp
←− PK ←− V and call it an overconvergent

variety. Here, sp denotes the specialization map and we also introduce the notion
of a tube of X in V :

]X [V := λ−1(sp−1(X)).

We call the overconvergent variety good if any point of ]X [V has an affinoid
neighborhood in V. It makes it simpler to assume from the beginning that all
overconvergent varieties are good since the important theorems can only hold for
those (and bad overconvergent varieties play no role in the theory). But, on the
other hand, most constructions can be carried out without this assumption.

We define a formal morphism between overconvergent varieties as a triple of
compatible morphisms:

X ′ �
�

//

f
��

P ′

v

��

P ′Koo

vK

��

V ′oo

u
��

X �
�

// P PKoo Voo

Such a formal morphism induces a continuous map

] f [u : ]X ′[V ′→ ]X [V

between the tubes.
Actually, the notion of a formal morphism is too rigid to reflect the true nature

of the algebraic variety X and it is necessary to make invertible what we call a
strict neighborhood, which we define now: it is a formal morphism as above such
that f is an isomorphism X ′ ' X and u is an open immersion that induces an
isomorphism between the tubes ]X ′[V ′ ' ]X [V . Formal morphisms admit a calculus
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of right fractions with respect to strict neighborhoods, and the quotient category is
the overconvergent site An†

/V . Roughly speaking, we allow the replacement of V
by any neighborhood of ]X [V in V and we make the role of P secondary (only
existence is required).

Since we call our category a site, we must endow it with a topology which is
actually defined by the pretopology of families of formal morphisms

X �
�

// Pi

vi

��

PiKoo

viK

��

Vioo
_�

��

X �
�

// P PKoo Voo

in which Vi is open in V and ]X [V ⊂
⋃

Vi (this is a standard site).
Since the formal scheme plays a very loose role in the theory, we usually denote

by (X, V ) an overconvergent variety and write ( f, u) for a morphism.
We use the general formalism of restricted category (also called localized or

comma or slice category) to define relative overconvergent sites. First of all, we
define an overconvergent presheaf as a presheaf (of sets) T on An†

/V . If we are
given an overconvergent presheaf T, we may consider the restricted site An†

/T . An
object is a section s of T on some overconvergent variety (X, V ) but we like to
see s as a morphism from (the presheaf represented by) (X, V ) to T. We will then
say that (X, V ) is a (overconvergent) variety over T . A morphism between varieties
over T is just a morphism of overconvergent varieties which is compatible with the
given sections. The above pretopology is still a pretopology on An†

/T and we denote
by TAn† the corresponding topos. As explained by David Zureick-Brown [2010;
2014], one may as well replace An†

/T by any fibered category over An†
/V . This is

necessary if one wishes to work with algebraic stacks instead of algebraic varieties.
As a first example, we can apply our construction to the case of a representable

sheaf T := (X, V ). Another very important case is the following: we are given
an overconvergent variety (C, O) and an algebraic variety X over C . Then, we
define the overconvergent sheaf X/O as follows: a section of X/O is a variety
(X ′, V ′) over (C, O) with a given factorization X ′ → X → C (this definition
extends immediately to algebraic spaces — or even algebraic stacks if one is ready
to work with fibered categories). Alternatively, if we are actually given a variety
(X, V ) over (C, O), we may also consider the overconvergent presheaf XV /O:
a section is a variety (X ′, V ′) over (C, O) with a given factorization X ′→ X→ C
which extends to some factorization (X ′, V ′)→ (X, V )→ (C, O). Note that we
only require the existence of the second factorization. In other words, XV /O is
the image presheaf of the natural map (X, V )→ X/O. An important theorem
(more precisely Corollary 2.5.12 in [Le Stum 2011]) states that, if we work only
with good overconvergent varieties, then there exists an isomorphism of topos
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(XV /O)An† ' (X/O)An† when we start from a geometric situation

X �
�

//

f
��

P

v

��

PKoo

vK

��

Voo

u
��

C �
�

// S SKoo Ooo

(1)

with P proper and smooth around X over S and V a neighborhood of the tube of X
in PK ×SK O (and (C, O) is good).

If we are given a morphism of overconvergent presheaves v : T ′→ T, we will
also say that T ′ is a (overconvergent) presheaf over T. It will induce a morphism
of topos vAn† : T ′An† → TAn† . We will often drop the index An† and keep writing v
instead of vAn† . Also, we will usually write the inverse image of a sheaf F as F|T ′
when there is no ambiguity about v. Note that there will exist a triple of adjoint
functors v!, v−1, v∗ with v! exact.

For example, any morphism ( f, u) : (Y,W )→ (X, V ) of overconvergent varieties
will give rise to a morphism of topos

( f, u)An† : (Y,W )An† → (X, V )An† .

It will also induce a morphism of overconvergent presheaves fu : YW/O→ XV /O
giving rise to a morphism of topos

fuAn† : (YW/O)An† → (XV /O)An† .

Finally, if (C, O) is an overconvergent variety, then any morphism f : Y → X
of algebraic varieties over C induces a morphism of overconvergent presheaves
f : Y/O→ X/O giving rise to a morphism of topos

fAn† : (Y/O)An† → (X/O)An† .

If we are given an overconvergent variety (X, V ), there exists a realization map
(morphism of topos)

(X, V )An†
ϕ
→]X [V an, (X, V ′) 7→]X [V ′,

where ]X [V an denotes the category of sheaves (of sets) on the analytic variety ]X [V
(which has a section ψ). Now, if T is any overconvergent presheaf and (X, V ) is
a variety over T, then there exists a canonical morphism (X, V )→ T. Therefore,
if F is a sheaf on T, we may consider its restriction F|(X,V ), which is a sheaf on
(X, V ). We define the realization of F on (X, V ) as

FX,V := ϕV∗(F|(X,V ))

(we shall simply write FV in practice unless we want to emphasize the role of X ).
As one might expect, the sheaf F is completely determined by its realizations FV
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and the transition morphisms ] f [−1
u FV → FV ′ obtained by functoriality whenever

( f, u) : (X ′, V ′)→ (X, V ) is a morphism over T.
We will need below the following result:

Proposition 1.1. If we are given a cartesian diagram of overconvergent presheaves
(with a representable upper map)

(X ′, V ′)
( f,u)

//

s′

��

(X, V )

s
��

T ′ v
// T

and F ′ is a sheaf on T ′, then

(v∗F ′)V = ] f [u∗F ′V ′ .

Proof. Since the diagram is cartesian, we have (this is formal)

s−1v∗F ′ = ( f, u)∗(s ′)−1F ′.

It follows that

(v∗F ′)V = ϕV∗s−1v∗F ′ = ϕV∗( f, u)∗(s ′)−1F ′

= ] f [u∗ϕV ′∗(s ′)−1F ′ = ] f [u∗F ′V ′ . �

If (X, V ) is an overconvergent variety, we will denote by iX : ]X [V ↪→ V the
inclusion map. Then, if T is an overconvergent presheaf, we define the structural
sheaf of An†

/T as the sheaf O†
T whose realization on any (X, V ) is i−1

X OV . An
O†

T -module E will also be called a (overconvergent) module on T. As it was the case
for sheaves of sets, the module E is completely determined by its realizations EV

and the transition morphisms

] f [†u EV := i−1
X ′ u∗iX∗EV → EV ′ (2)

obtained by functoriality whenever ( f, u) : (X ′, V ′)→ (X, V ) is a morphism over T.
A module on T is called an (overconvergent) isocrystal if all the transition maps (2)
are actually isomorphisms (used to be called a crystal in [Le Stum 2011]). We will
denote by

Isoc†(T )⊂O†
T -Mod

the full subcategory made of all isocrystals on T (used to be denoted by Cris†(T )
in [Le Stum 2011]). Be careful that inclusion is only right exact in general.

If we are given a morphism of overconvergent presheaves v : T ′→ T then the
functors v!, v−1, v∗ preserve modules (we use the same notation v! for sheaves of
sets and abelian groups; this should not create any confusion) and v−1 preserves
isocrystals.
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One can show that a module on T is locally finitely presented if and only if it is
an isocrystal with coherent realizations. We will denote their category by Isoc†

coh(T )
(be careful that it only means that the realizations are coherent: O†

T is not a coherent
ring in general). In the case T = X/SK and Char(K ) = 0, this is equivalent
to Berthelot’s original definition [1996a, Definition 2.3.6] of an overconvergent
isocrystal.

Back to our examples, it is not difficult to see that, when (X, V ) is an overcon-
vergent variety, the realization functor induces an equivalence of categories

Isoc†(X, V )' i−1
X OV -Mod

between isocrystals on (X, V ) and i−1
X OV -modules. Now, if (X, V ) is a variety

over an overconvergent variety (C, O) and

p1, p2 : (X, V ×O V )→ (X, V )

denote the projections, we define an overconvergent stratification on an i−1
X OV -

module F as an isomorphism

ε : ]p2[
†F ' ]p1[

†F

that satisfies the cocycle condition on triple products and the normalization condition
along the diagonal. They form an additive category Strat†(X, V/O) with cokernels
and tensor products. It is even an abelian category when V is universally flat over O
in a neighborhood of ]X [V . In any case, the realization functor will induce an
equivalence

Isoc†(XV /O)' Strat†(X, V/O).

We may also consider, for n ∈ N, the n-th infinitesimal neighborhood V (n) of V
in V ×O V. Then, a (usual) stratification on an i−1

X OV -module F is a compatible
family of isomorphisms

ε(n) : i−1
X OV (n) ⊗i−1

X OV
F ' F ⊗i−1

X OV
i−1
X OV (n)

that satisfy the cocycle condition on triple products and the normalization condition
along the diagonal. Again, they form an additive category Strat(X, V/O) with
cokernels and tensor products, and even an abelian category when V is smooth
over O in a neighborhood of ]X [V . There exists an obvious faithful functor

Strat†(X, V/O)→ Strat(X, V/O). (3)

Note that, a priori, different overconvergent stratifications might give rise to the
same usual stratification (and of course many usual stratifications will not extend at
all to an overconvergent one). Finally, a connection on an i−1

X OV -module F is an
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OO -linear map

∇ : F→ F ⊗i−1
X OV

i−1
X �1

V

that satisfies the Leibniz rule. Integrability is defined as usual. They form an additive
category MIC(X, V/O) and there exists again a faithful functor

Strat(X, V/O)→MIC(X, V/O) (4)

(∇ is induced by ε(1)− σ , where σ switches the factors in V ×O V ). When V is
smooth over O in a neighborhood of ]X [V and Char(K )= 0, then the functor (4)
is an equivalence. Actually, both categories are then equivalent to the category of
i−1
X DV/O -modules. In general, we will denote by MIC†(X, V/O) the image of the

composition of the functors (3) and (4) and then call the connection overconvergent
(and add an index coh when we consider only coherent modules). Thus, there exists
a realization functor

Isoc†(XV /O)→MIC†(X, V/O) (5)

which is faithful and essentially surjective (but not an equivalence in general). In
practice, we are interested in isocrystals on X/O , where (C, O) is an overconvergent
variety and X is an algebraic variety over C . We can localize in order to find a
geometric realization V for X over O such as (1) and work directly on (X, V ):
there exists an equivalence of categories

Isoc†(X/O)' Isoc†(XV /O)

that may be composed with (5) in order to get the realization functor

Isoc†(X/O)→MIC†(X, V/O).

In [Le Stum 2011], we proved that, when Char(K )= 0, it induces an equivalence

Isoc†
coh(X/O)'MIC†

coh(X, V/O)

(showing in particular that the right-hand side is independent of the choice of the
geometric realization and that they glue). We will extend this below to what we
call constructible isocrystals.

2. Locally closed embeddings

In this section, we fix an algebraic variety X over k. Recall that a (overconvergent)
variety over X/M(K ) (we will simply write X/K in the future) is a pair made
of an overconvergent variety (X ′, V ′) and a morphism X ′→ X. In other words,
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it is a diagram
V ′

��

X ′ �
�

//

��

P ′ P ′Koo

X

in which P ′ is a formal scheme.
We also fix a presheaf T over X/K. For example, T could be (the presheaf

represented by) an overconvergent variety (X ′, V ′) over X/K. Also, if (C, O)
is an overconvergent variety and X is an algebraic variety over C , then we may
consider the sheaf T := X/O (see Section 1). Finally, if we are given a morphism
of overconvergent varieties (X, V )→ (C, O), then we could set T := XV /O (see
Section 1 again).

Finally, we also fix an open immersion α :U ↪→ X and denote by β : Z ↪→ X
the embedding of a closed complement. Actually, in the beginning, we consider
more generally a locally closed embedding γ : Y ↪→ X.

Definition 2.1. The restriction of T to Y is the inverse image

TY := (Y/K )×(X/K ) T

of T over Y/K. We will still denote by γ : TY ↪→ T the corresponding map. When
F is a sheaf on T, the restriction of T to Y is F|Y := γ−1F.

For example, if T = (X ′, V ′) is a variety over X/K, then TY = (Y ′, V ′), where
Y ′ is the inverse image of Y in X ′. Also, if (C, O) is an overconvergent variety, X
is an algebraic variety over C and T = X/O, then TY = Y/O. Finally, if we are
given a morphism of overconvergent varieties (X, V )→ (C, O) and T = XV /O,
then we will have TY = YV /O.

If (X, V ) is an overconvergent variety, we may consider the morphism of
overconvergent varieties (γ, IdV ) : (Y, V ) ↪→ (X, V ). We will then denote by
]γ [V : ]Y [V ↪→ ]X [V , or simply ]γ [ if there is no ambiguity, the corresponding
map on the tubes. Recall that ]γ [ is the inclusion of an analytic domain. This is an
open immersion when γ is a closed embedding and vice versa (we use Berkovich
topology).

The next result generalizes Proposition 3.1.10 of [Le Stum 2011].

Proposition 2.2. Let (X ′, V ′) be an overconvergent variety over T and γ ′ :Y ′ ↪→ X ′

be the inclusion of the inverse image of Y inside X ′. If F is a sheaf on TY , then

(γ∗F)X ′,V ′ = ]γ
′
[∗FY ′,V ′ .
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Proof. Using [Le Stum 2011, Corollary 2.4.15], this follows from Proposition 1.1. �

Since we will use it in some of our examples, we should also mention that
Riγ∗E = 0 for i > 0 when E is an isocrystal with coherent realizations. This follows
from the fact that, with the notation of the proposition, ]γ ′[ is a quasi-Stein map.

We can work out very simple examples right now. We will do our computations
on the overconvergent variety

P1
k/K := P1

k ↪→ P̂1
V← P

1,an
K .

We consider first the open immersion α : A1
k ↪→ P1

k and the structural sheaf O†
A1

k/K
.

If we let i : D(0, 1+) ↪→ P
1,an
K denote the inclusion map, we have

R0
(
P1

k/K , α∗O
†
A1

k/K

)
= R0

(
P

1,an
K , i∗i−1O

P
1,an
K

)
= K [t]† :=

⋃
λ>1

K {t/λ}

(functions with radius of convergence (strictly) bigger than one at the origin).
On the other hand, if we start from β : ∞ ↪→ P1

k and let j : D(∞, 1−) ↪→ P
1,an
K

denote the inclusion map, we have

R0
(
P1

k/K , β∗O
†
∞/K

)
= R0

(
P

1,an
K , j∗ j−1O

P
1,an
K

)
= K [1/t]an

:=

⋂
λ>1

K {λ/t}

(functions with radius of convergence at least one at infinity).
The following is immediate from Proposition 2.2:

Corollary 2.3. (1) γ−1
An† ◦ γAn†

∗
= Id, and

(2) if γ ′ : Y ′ ↪→ X is another locally closed embedding with Y ∩ Y ′ =∅, then

γ−1
An† ◦ γ

′

An†
∗
= 0.

Alternatively, one may say that if F is a sheaf on TY , we have

(γ∗F)|Y = F and (γ∗F)|Y ′ = 0.

The first assertion of the corollary means that γAn† is an embedding of topos
(direct image is fully faithful). Actually, from the fact that Y is a subobject of X
in the category of varieties, one easily deduces that TY is a subobject of T in the
overconvergent topos and γAn† is therefore an open immersion of topos. Note also
that the second assertion applies in particular to open and closed complements (both
ways): in particular, these functors cannot be used to glue along open and closed
complements. We will need some refinement.

We focus now on the case of an open immersion α :U ↪→ X which gives rise to
a closed embedding on the tubes.

Proposition 2.4. The functor αAn†
∗
:TU,An†→TAn† is exact and preserves isocrystals.
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Proof. This is not trivial but can be proved exactly as in Corollary 3.1.12 and
Proposition 3.3.15 of [Le Stum 2011] (which is the case T = X/O). �

The following definition is related to rigid cohomology with compact support
(recall that β : Z ↪→ X denotes the embedding of a closed complement of U ):

Definition 2.5. If F is a sheaf of abelian groups on T, then

0UF = ker(F→ β∗F|Z )

is the subsheaf of sections of F with support in U.

If we denote by U the closed subtopos of TAn† which is the complement of the
open topos TZ ,An† , then 0U is the same thing as the functor H0

U of sections with
support in U . With this in mind, the first two assertions of the next proposition
below are completely formal. One may also show that the functor F 7→F/β!β−1F
is an exact left adjoint to 0U ; it follows that 0U preserves injectives.

Actually, we shall use the open/closed formalism only in the classical situation.
Recall (see [Iversen 1986, Section II.6], for example, for these kinds of things)
that if i :W ↪→ V is a closed embedding of topological spaces, then i∗ has a right
adjoint i ! (and one usually sets 0W := i∗i !) which commutes with direct images.
If (X, V ) is an overconvergent variety, we know that ]α[ : ]U [ ↪→ ]X [ is a closed
embedding and we may therefore consider the functors ]α[! and 0]U [.

Proposition 2.6. (1) The functor 0U is left exact and preserves modules.

(2) If F is a sheaf of abelian groups on T, then there exists a distinguished triangle

R0UF→ F→ Rβ∗F|Z → .

(3) If (X ′, V ′) is a variety over T and α′ :U ′ ↪→ X ′ denotes the immersion of the
inverse image of U into X ′, we have

(R0U E)V ′ = R0]U ′[V ′ EV ′

for any isocrystal E on T.

Proof. The first assertion follows immediately from the fact that all the functors
involved (β−1, β∗ and ker) do have these properties. The second assertion results
from the fact that the map F→ β∗F|Z is surjective when F is an injective sheaf
(this is formal). In order to prove the last assertion, it is sufficient to remember (this
is a standard fact) that there exists a distinguished triangle

R0]U ′[V ′ EV ′→ EV ′→ R]β ′[∗ ]β[−1 EV ′→,

where β ′ : Z ′ ↪→ X ′ denotes the inverse image of the inclusion of a closed comple-
ment of U. Since E is an isocrystal, we have (E|Z )Z ′,V ′ = ]β

′
[
−1 EX ′,V ′ . �
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Note that the second assertion means that there exists an exact sequence

0→ 0UF→ F→ β∗F|Z → R10UF→ 0

and that Riβ∗F|Z = Ri+10UF for i > 0. We can do the exercise with α : A1
k ↪→ P1

k
and β : ∞ ↪→ P1

k as above. We obtain

R0
(
P1

k/K ,R0A1
k
O†

P1
k/K

)
= [K → K [1/t]an

] = (K [1/t]an/K )[−1].

Since realization does not commute with the inverse image in general, we need
to introduce a new functor. Recall that in order to define a sheaf on T, it is sufficient
(and even equivalent) to give a compatible family of sheaves on the tubes ]X ′[V ′
for all (X ′, V ′) over T.

Lemma 2.7. If F is a sheaf on T, then the assignment

(X ′, V ′) 7→
(

j†
UF

)
V ′ := ]α

′
[∗ ]α

′
[
−1FV ′,

where α′ :U ′ ↪→ X ′ denotes the immersion of the inverse image of U into X ′, defines
a sheaf on T.

Proof. We give ourselves a morphism ( f, u) : (X ′′, V ′′)→ (X ′, V ′) over T, we
denote by g :U ′′→U ′ the map induced by f on the inverse images of U into X ′

and X ′′, respectively, and by α′′ : U ′′ ↪→ X ′′ the inclusion map. We consider the
cartesian diagram (forgetful functor to algebraic varieties is left exact)

(U ′′, V ′′) �
�

//

(g,u)
��

(X ′′, V ′′)

( f,u)
��

(U ′, V ′) �
�

// (X ′, V ′)

which gives rise to a cartesian diagram (tube is left exact)

]U ′′[V ′′
� � //

]g[u
��

]X ′′[V ′′

] f [u
��

]U ′[V ′
� � // ]X ′[V ′

Since ]α′[ is a closed embedding, we have ] f [−1
u ◦ ]α

′
[∗ = ]α

′′
[∗ ◦ ]g[−1

u and there
exists a canonical map

] f [−1
u ]α

′
[∗ ]α

′
[
−1FV ′ = ]α

′′
[∗ ]g[−1

u ]α
′
[
−1FV ′ = ]α

′′
[∗ ]α

′′
[
−1
] f [−1

u FV ′′

→ ]α′′[∗ ]α
′′
[
−1FV ′′ . �

Definition 2.8. If F is a sheaf on T, then j†
UF is the sheaf of overconvergent

sections of F around U.
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Proposition 2.9. (1) The functor j†
U is exact and preserves isocrystals.

(2) If E is an isocrystal on T, we have j†
U E = α∗α−1 E.

Proof. Exactness can be checked on realizations. But, if (X ′, V ′) is a variety over T
and α′ :U ′ ↪→ X ′ denotes the immersion of the inverse image of U in X ′, then we
know the exactness of ]α′[∗ (because ]α′[ is a closed embedding) and ]α′[−1. The
second part of the first assertion is a consequence of the second assertion which
follows from the fact that (α−1 E)V ′ = ]α′[−1 EV ′ when E is an isocrystal. �

Note that the canonical map j†
UF→ α∗α

−1F is still bijective when F is a sheaf
of Zariski type (see Definition 4.6.11 of [Le Stum 2011]) but there are important
concrete situations where equality fails, as we shall see right now.

In order to exhibit a counterexample, we let again α :A1
k ↪→P1

k and β :∞ ↪→P1
k

denote the inclusion maps and consider the sheaf F := β∗O†
∞/K , which is not an

isocrystal (and not even of Zariski type). Since α−1
◦β∗ = 0, we have α∗α−1F = 0.

Now, let us denote by iξ : ξ ↪→ P
1,an
K the inclusion of the generic point of the

unit disc (corresponding to the Gauss norm) and let i : D(0, 1+) ↪→ P
1,an
K and

j : D(∞, 1−) ↪→ P
1,an
K be the inclusion maps as above. Let

R :=
{∑

n∈Z

antn
:

{
∃λ > 1, λnan→ 0 for n→+∞
∀λ > 1, λnan→ 0 for n→−∞

}}
be the Robba ring (functions that converge on some open annulus of outer radius
one at infinity). Then, one easily sees that(

j†
A1

k
β∗O†

∞/K

)
P1

k/K
= i∗i−1 j∗OD(0,1−) = iξ∗R

so that j†
A1

k
F 6= 0. This computation also shows that

R0
(
P1

k/K , j†
A1

k
β∗O†

∞/K

)
=R.

We now turn to the study of the closed embedding β : Z ↪→ X , which requires
some care (as we just experienced, the direct image of an isocrystal need not be an
isocrystal).

The following definition has to do with cohomology with support in a closed
subset.

Definition 2.10. For any sheaf of abelian groups F on T,

0
†
ZF := ker(F→ α∗F|U )

is the subsheaf of overconvergent sections of F with support in Z .

1The comment following Definition 4.6.1 in [Le Stum 2011] is not correct and Lemma 4.6.2 is
only valid for an open immersion.
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We will do some examples below when we have more material at our disposal.
As above, if we denote by Z the closed subtopos of TAn† which is the complement

of the open topos TU,An† , then 0†
Z is the same thing as the functor H0

Z of sections
with support in Z. This is the approach taken by David Zureick-Brown [2010;
2014] in order to define cohomology with support in Z on the overconvergent site.
The next proposition is completely formal if one uses Zureick-Brown’s approach.
Also, as above, one may prove that 0†

Z preserves injectives because the functor
F 7→ F/α!α−1F is an exact left adjoint.

Proposition 2.11. (1) The functor 0†
Z is left exact and preserves modules.

(2) If F is an abelian sheaf on T, then there exists a distinguished triangle

0→ R0†
ZF→ F→ α∗F|U → .

We will also show below that 0†
Z preserves isocrystals.

Proof. As in the proof of Proposition 2.6, the first assertion follows from the fact that
all the functors involved (and the kernel as well) are left exact and preserve overcon-
vergent modules. Similarly the second one is a formal consequence of the definition
because α∗ and α−1 both preserve injectives (they both have an exact left adjoint)
and the map F→ α∗F|U is an epimorphism when F is injective (standard). �

Note that the last assertion of the proposition means that there exists an exact
sequence

0→ 0
†
ZF→ F→ α∗F|U → R10

†
ZF→ 0

and that Ri0
†
ZF = 0 for i > 1.

Before going any further, we want to stress the fact that β−1 has an adjoint β! on
the left in the category of all modules (or abelian groups or even sets with a light
modification) but β! does not preserve isocrystals in general. Actually, we always
have (β!F)X ′,V ′ = 0 unless the morphism X ′→ X factors through Z (recall that
we use the coarse topology on the algebraic side). Again, the workaround consists
in working directly with the realizations. If j :W ↪→ V is an open immersion of
topological spaces, then j−1 has an adjoint j! on the left also (on sheaves of abelian
groups or sheaves of sets with a light modification). This is an exact functor that
commutes with inverse images (see [Iversen 1986, Section II.6] again). Now, if
(X, V ) is an overconvergent variety, then ]β[ : ]Z [ ↪→ ]X [ is an open immersion
and we may consider the functor ]β[!.

In the next lemma again, we use realizations and transition maps in order to
define a sheaf.

Lemma 2.12. If F is a sheaf (of sets or abelian groups) on TZ , then the assignment

(X ′, V ′) 7→ (β†F)X ′,V ′ := ]β
′
[!FZ ′,V ′,
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where β ′ : Z ′ ↪→ X ′ denotes the embedding of the inverse image of Z into X ′, defines
a sheaf on T. Moreover, if E is an isocrystal on TZ , then β† E is an isocrystal on T.

Proof. As above, we consider a morphism ( f, u) : (X ′′, V ′′)→ (X ′, V ′) over T. We
denote by h : Z ′′→ Z ′ the map induced by f on the inverse images of Z into X ′

and X ′′, respectively, and by β ′′ : Z ′′ ↪→ X ′′ the inclusion map. We have a cartesian
diagram

(Z ′′, V ′′) �
�

//

(h,u)
��

(X ′′, V ′′)

( f,u)
��

(Z ′, V ′) �
�

// (X ′, V ′)

giving rise to a cartesian diagram

]Z ′′[V ′′
� � //

]h[u
��

]X ′′[V ′′

] f [u
��

]Z ′[V ′
� � // ]X ′[V ′

It follows that there exists a canonical map

] f [−1
u ]β

′
[!FV ′ = ]β

′′
[! ]h[−1

u FV ′→ ]β
′′
[!FV ′′

as asserted. We consider now an isocrystal E and we want to show that

] f [†u]β
′
[!EV ′ ' ]β

′′
[!EV ′′ .

This immediately follows from the equality (which is formal)

i−1
X ′′OV ′′ ⊗i−1

X ′′u
−1OV ′

]β ′′[! ]h[−1
u EV ′ = ]β

′′
[!

(
i−1

Z ′′OV ′′ ⊗i−1
Z ′′u
−1OV ′

]h[−1
u EV ′

)
. �

Definition 2.13. The sheaf β†F is the overconvergent direct image of F.

Note that there exist two flavors of β†: for sheaves of sets and for sheaves of
abelian groups. Whichever we consider should be clear from the context.

Proposition 2.14. (1) If F is a sheaf on TZ , then:

(a) (β†F)|Z = F.
(b) (β†F)|U = 0.
(c) If E is an isocrystal on T, then

Hom(β†F, E)= β∗Hom(F, β−1 E). (6)

(d) There exists a short exact sequence

0→ β†F→ β∗F→ j†
Uβ∗F→ 0. (7)
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(2) The functor β† is fully faithful, exact, and preserves isocrystals, and the induced
functor

β† : Isoc†(TZ )→ Isoc†(T )

is left adjoint to
β−1
: Isoc†(T )→ Isoc†(TZ ).

Proof. As usual, if (X ′, V ′) is a variety over T, then we denote by α′ : U ′ ↪→ X ′

and β ′ : Z ′ ↪→ X ′ the inclusions of the inverse images of U and Z , respectively.
When (X ′, V ′) is an overconvergent variety over TZ , then we will have ]β ′[ = Id,

and when (X ′, V ′) is an overconvergent variety over TU then ]β ′[ =∅. We obtain
the first two assertions. When E is an isocrystal on T, we have an isomorphism
(this is standard)

Hom(]β ′[!FV ′, EV ′)= ]β
′
[∗Hom(FV ′, ]β

′
[
−1 EV ′),

from which the third assertion follows. Also, there exists a short exact sequence

0→ ]β ′[!FZ ′,V ′→ ]β
′
[∗FZ ′,V ′→ ]α

′
[∗ ]α

′
[
−1
]β ′[∗FZ ′,V ′→ 0

which provides the fourth assertion.
Full faithfulness and exactness of β† follow from the full faithfulness and exact-

ness of ]β ′[! for all (X ′, V ′). The fact that β† preserves isocrystals was proved in
Lemma 2.12. The last assertion may be obtained by taking global sections of the
equality (6). �

We can also mention that there exists a distinguished triangle

β†F→ Rβ∗F→ j†
U Rβ∗F→ .

Now, we prove that the exact sequence (7) is universal:

Proposition 2.15. If F ′ and F ′′ are modules on TZ and TU , respectively, then any
extension

0→ β†F ′→ F→ α∗F ′′→ 0

is a pull-back of the fundamental extension (7) through a unique morphism

α∗F ′′→ j†
Uβ∗F

′.

Proof. We know that β−1α∗F ′′ = 0 and it follows that

Hom(α∗F ′′, β∗F ′)= Hom(β−1α∗F ′′,F ′)= 0.

This being true for any sheaves, we see that, actually, R Hom(α∗F ′′,Rβ∗F ′)= 0.
It formally follows that Ri Hom(α∗F ′′, β∗F ′)= 0 for i ≤ 1. As a consequence, we
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obtain a canonical isomorphism

Hom(α∗F ′′, j†
Uβ∗F

′)' Ext(α∗F ′′, β†F ′).

This is exactly the content of our assertion. �

We should observe that we always have Hom(α∗F ′′, β†F ′)= 0. However, it is
not true that Ext(α∗F ′′, β†F ′)= 0 in general. This can happen because β† does not
preserve injectives (although it is exact).

The overconvergent direct image is related to overconvergent support as follows:

Proposition 2.16. If E is an isocrystal on T, then

0
†
Z E = β† E|Z

and, for all i > 0, Ri0
†
Z E = 0.

Proof. Recall from Proposition 2.11 that there exists an exact sequence

0→ 0
†
Z E→ E→ α∗E|U → R10

†
Z E→ 0

and that Ri0
†
Z E = 0 for i > 1. Now, let (X ′, V ′) be a variety over T. Denote by

β ′ : Z ′ ↪→ X ′, α′ : U ′ ↪→ X ′ the embeddings of the inverse images of Z and U
into X ′. There exists a short exact sequence (standard again)

0→ ]β ′[! ]β ′[−1 EV ′→ EV ′→ ]α
′
[∗ ]α

′
[
−1 EV ′→ 0.

Since E is an isocrystal, we have (α∗E|U )V ′ = ]α′[∗ ]α′[−1 EV ′ . It follows that
(R10

†
Z E)V ′ = 0 and we also see that

(0
†
Z E)V ′ = ]β ′[! ]β ′[−1 EV ′ = (β† E|Z )V ′ . �

Note that the proposition is still valid for sheaves of Zariski type and not merely
for isocrystals. Be careful however that β† E 6= 0†

Zβ∗E in general, even when E is
an isocrystal on TZ . With our favorite example in mind, we have

0
†
Zβ∗O

†
∞/K = β∗O

†
∞/K 6= β†O†

∞/K ,

as our computations below will show.

Corollary 2.17. The functor 0†
Z preserves isocrystals, and the induced functor

0
†
Z : Isoc†(T )→ Isoc†(T )

is exact. Moreover, if E is an isocrystal on T, then there exists a short exact sequence

0→ 0
†
Z E→ E→ j†

U E→ 0.
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We might as well write this last short exact sequence as

0→ β† E|Z → E→ α∗E|U → 0.

As promised above, we can do an example and consider the closed embedding
β : ∞ ↪→ P1

k again. We compute

β†O†
∞/K = 0

†
∞
O†

P1
k/K
.

We have

R0
(
P1

k/K , β†O†
∞/K

)
= [K → K [t]†] = (K [t]†/K )[−1].

We can also remark that the (long) exact sequence obtained by applying R0(P1
k/K ,−)

to the fundamental short exact sequence

0→ β†O†
∞/K → β∗O†

∞/K → j†
Uβ∗O

†
∞/K → 0

reads

0→ K [1/t]an
→R→ K [t]†/K → 0. (8)

Corollary 2.18. (1) The functors α∗ and α−1 induce an equivalence between
isocrystals on TU and isocrystals on T such that 0†

Z E = 0 (or j†
U E = E).

(2) The functors β† and β−1 induce an equivalence between isocrystals on TZ and
isocrystals on T such that 0†

Z E = E (or j†
U E = 0).

Proof. If E ′′ is an isocrystal on TU , then α∗E ′′ is an isocrystal on T and therefore

0
†
Zα∗E

′′
= β†β

−1α∗E ′′ = 0.

Conversely, if E is an isocrystal on T such that 0†
Z E = 0, then E = j†

U E =α∗α−1 E .
This shows the first part.

Now, if E ′ is an isocrystal on TZ , then β† E ′ is an isocrystal on T and therefore

0
†
Zβ† E ′ = β†β

−1β† E ′ = β† E ′.

Conversely, if E is an isocrystal on T such that 0†
Z E = E , then E = β†β

−1 E . �

We can also make the functor of sections with support in an open subset come
back into the picture:

Corollary 2.19. If E is an isocrystal on T, then there exists a distinguished triangle

R0U E→ j†
U E→ j†

U Rβ∗E|Z → .
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Proof. There exists actually a commutative diagram of distinguished triangles:

0
†
Z E

��

0
†
Z E

��

R0U E // E //

��

Rβ∗E|Z //

��

R0U E // j†
U E //

��

j†
U Rβ∗E|Z //

��

More precisely, we know that the vertical triangles as well as the middle horizontal
one are all distinguished. The bottom one must be distinguished too. �

Back to our running example, we see that the long exact sequence obtained by
applying R0(P1

k/K ,−) to the distinguished triangle

R0A1
k
O†

P1
k/K
→ j†

A1
k
O†

P1
k/K
→ j†

A1
k
Rβ∗O†

∞/K →

reads
0→ K [t]†→R→ K [1/t]an/K → 0.

We can summarize the situation as follows:

(1) There exist two triples of adjoint functors (up means left):

O†
TU

-Mod

� � α!
//

� � α∗
//

O†
T -Modα−1

oo
β−1

// O†
TZ

-Mod.

? _
β!

oo

? _
β∗
oo

Moreover, α∗ is exact and preserves isocrystals (and so do α−1 and β−1).

(2) There exist two functors with support (that preserve injectives):

0U << O†
T -Mod bb 0

†
Z .

Moreover, 0†
Z preserves isocrystals and is exact on isocrystals.

(3) There exist two other functors:

j†
U 99 O†

T -Mod O†
TZ

-Mod.? _
β†

oo

They are both exact and preserve isocrystals (but not injectives). If E is an
isocrystal on T, we have

j†
U E = α∗E|U and 0

†
Z E = β† E|Z .
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3. Constructibility

Recall that K denotes a complete ultrametric field with ring of integers V and
residue field k. We let X be an algebraic variety over k and T a (overconvergent)
presheaf over X/K. Roughly speaking, T is some family of varieties X ′ over X
which embed into a formal V-scheme P ′, together with a morphism of analytic
K-varieties V ′→ P ′K . A (overconvergent) module F on T is then a compatible
family of i−1

X ′ OV ′-modules FV ′ , where iX ′ : ]X ′[V ′ ↪→ V ′ denotes the inclusion of
the tube (the reader is redirected to Section 1 for the details).

Definition 3.1. A module F on T is said to be constructible (with respect to X ) if
there exists a locally finite covering of X by locally closed subvarieties Y such that
F|Y is locally finitely presented.

Recall that a locally finitely presented module is the same thing as an isocrystal
with coherent realizations. It is important to notice however that a constructible
module is not necessarily an isocrystal (the transition maps might not be bijective).
We’ll give an example later.

Proposition 3.2. (1) Constructible modules on T form an additive category which
is stable under cokernel, extension, tensor product and internal Hom.

(2) Constructible isocrystals on T form an additive category Isoc†
cons(T ) which is

stable under cokernel, extension and tensor product.

Proof. The analog to the first assertion for locally finitely presented modules is
completely formal besides the internal Hom question that was proved in Proposi-
tion 3.3.12 of [Le Stum 2011]. The analog to the second assertion for all isocrystals
was proved in Corollary 3.3.9 of [Le Stum 2011]. Since the restriction maps
F 7→ F|Y are exact and commute with tensor product and internal Hom, everything
follows. �

Note however that Hom(E1, E2) need not be an isocrystal (see example below)
when E1 and E2 are two constructible isocrystals.

Proposition 3.3. Let F be a module on T.

(1) The module F is constructible if and only if there exists a locally finite covering
by locally closed subvarieties Y of X such that F|Y is constructible.

(2) If T ′→T is any morphism of overconvergent presheaves and F is constructible,
then F|T ′ is constructible. The converse also is true if T ′→ T is a covering.

(3) Assume that T is actually a presheaf on X ′/K for some f : X ′→ X. If F is
constructible with respect to X, then it is also constructible with respect to X ′.

Proof. The first assertion is an immediate consequence of the transitivity of locally
finite coverings by locally closed subsets: if X =

⋃
X i and X i =

⋃
X i j are such

coverings, so is the covering X =
⋃

X i j .
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In order to prove the second assertion, note first that it is formally satisfied by
locally finitely presented modules. Moreover, if Y is a locally closed subvariety
of X, we have (F|T ′)|Y = (F|Y )|T ′Y . The result follows.

Finally, for the third assertion, if X =
⋃

X i is a locally finite covering by locally
closed subvarieties, so is X ′=

⋃
f −1(X i ). Moreover, by definition F| f −1(X i )=F|X i

and there is nothing to do. �

Together with Corollary 2.18 above, the next proposition will allow us to move
freely along a closed or open embedding when we consider constructible isocrystals
(note that this is obviously wrong for overconvergent isocrystals with coherent
realizations):

Proposition 3.4. (1) If α : U ↪→ X is an open immersion of algebraic varieties,
then a module F ′′ on TU is constructible if and only if α∗F ′′ is constructible.

(2) If β : Z ↪→ X is a closed embedding of algebraic varieties, then a module F ′

on TZ is constructible if and only if β†F ′ is constructible.

Proof. We may assume that U and Z are open and closed complements. We saw in
Corollary 2.3 that (α∗F ′′)|Z =F ′′ and (α∗F ′)|U =0. We also saw in Proposition 2.14
that (β†F ′)|Z = F ′ and (β†F ′)|U = 0. �

It is easy to see that the usual dual to a constructible isocrystal is not an isocrystal
in general: if β : Z ↪→ X is a closed embedding of algebraic varieties and E
is an overconvergent isocrystal on Z with coherent realizations, it follows from
Proposition 2.14 that

(β† E)∨ :=Hom(β† E,O†
T)= β∗Hom(E,O†

TZ
)= β∗E∨,

which is constructible but is not an isocrystal in general (as we saw in Section 2).
The next property is also very important because it allows the use of noetherian

induction to reduce some assertions about constructible isocrystals to analogous
assertions about overconvergent isocrystals with coherent realizations.

Lemma 3.5. A module F on T is constructible if and only if there exists a closed
subvariety Z of X such that, if U := X \ Z , then both F|Z and F|U are constructible.
We may even assume that U is dense in X and F|U is locally finitely presented.

Proof. The condition is sufficient thanks to assertion (1) of Proposition 3.3. Con-
versely, if ξ is a generic point of X, then there exists a locally closed subset Y
of X such that ξ ∈ Y and F|Y is locally finitely presented. The subset Y contains
necessarily an open neighborhood Uξ of ξ in X. We may choose U :=

⋃
Uξ . �

Proposition 3.6. An isocrystal E on T is constructible if and only if there exists an
exact sequence

0→ β† E ′→ E→ α∗E ′′→ 0, (9)
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where E ′′ (resp. E ′) is a constructible isocrystal on a closed subvariety Z of X
(resp. on U := X \ Z ) and β : Z ↪→ X (resp. α :U ↪→ X ) denotes the inclusion map.
We may assume that U is dense in X and that E ′′ has coherent realizations.

Proof. If we are given such an exact sequence, we may pull back along α and β in
order to obtain E ′ ' E|Z and E ′′ ' E|U . Conversely, we may set E ′ := E|Z and
E ′′ := E|U in order to get such an exact sequence by Proposition 2.16. �

Note that this property is specific to constructible isocrystals and that the analog
for constructible modules is wrong.

It follows from Proposition 2.15 that any extension such as (9) comes from
a unique morphism α∗E ′′→ j†

Uβ∗E
′. This is a classical gluing method and the

correspondence is given by the morphism of exact sequences

0 // β† E ′ // β∗E ′ // j†
Uβ∗E

′ // 0

0 // β† E ′ // E

OO

// α∗E ′′ //

OO

0

We can do the computations in the very special case of α :A1
k ↪→P1

k and β :∞ ↪→P1
k .

We have E ′ =O†
∞/K ⊗K H for some finite-dimensional vector space H, and E ′′ is

given by a finite free K [t]†-module M of finite rank endowed with a (overconvergent)
connection. One can show that there exists a canonical isomorphism

Ext(α∗E ′′, β† E ′)= Hom(α∗E ′′, j†
Uβ∗E

′)

= Hom∇(M,R⊗K H)

= H 0
dR(M

∨
⊗K [t]† R)⊗K H

(the second identity is not trivial). A slight generalization will give a classification
of constructible isocrystals on smooth projective curves as in Theorem 6.15 of
[Le Stum 2014].

4. Integrable connections and constructibility

In this section, we will give a more concrete description of constructible isocrystals
in the case when T is representable by some overconvergent variety (X, V ), in
the case T = XV /O , where (X, V ) is a variety over some overconvergent variety
(C, O), and finally when T = X/O , where X is a variety over C (see Section 1).

Definition 4.1. Let (X, V ) be an overconvergent variety. An i−1
X OV -module F

is constructible if there exists a locally finite covering of X by locally closed
subvarieties Y such that i−1

Y iX∗F is a coherent i−1
Y OV -module.
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Of course, we have i−1
Y iX∗F = i−1

Y⊂XF if we denote by iY⊂X : ]Y [V ↪→]X [V the
inclusion of the tubes.

Proposition 4.2. Let (X, V ) be an overconvergent variety. Then:

(1) Isoc†
cons(X, V ) is an abelian subcategory of Isoc†(X, V ).

(2) The realization functor induces an equivalence between Isoc†
cons(X, V ) and

the category of all constructible i−1
X OV -modules.

Proof. It was shown in Proposition 3.3.8 of [Le Stum 2011] that the realization
functor induces an equivalence between Isoc†(X, V ) and the category of all i−1

X OV -
modules. Overconvergent isocrystals correspond to coherent modules. The second
assertion is an immediate consequence of these observations. The first assertion
then follows immediately from the analogous result about coherent modules. �

Recall that an i−1
X OV -module may be endowed with an overconvergent stratifi-

cation. Then, we have:

Proposition 4.3. Let (X, V ) be an overconvergent variety over another overconver-
gent variety (C, O).

(1) If V is universally flat over O in a neighborhood of ]X [, then Isoc†
cons(XV /O)

is an abelian subcategory of Isoc†(XV /O).

(2) The realization functor induces an equivalence between Isoc†
cons(XV /O) and

the category of constructible i−1
X OV -modules F endowed with an overconver-

gent stratification.

Proof. According to Proposition 3.5.3 of [Le Stum 2011], its corollary and Proposi-
tion 3.5.5 of the same paper, the proof goes exactly as in Proposition 4.2. �

The next corollary is valid if we work with good overconvergent varieties (which
we may have assumed from the beginning).

Corollary 4.4. If (C, O) is an (good) overconvergent variety and X is an algebraic
variety over C , then Isoc†

cons(X/O) is an abelian subcategory of Isoc†(X/O).

Proof. Using Proposition 4.6.3 of [Le Stum 2011], we may assume that X has a
geometric realization over (C, O) and use the second part of Proposition 3.5.8 in
the same paper. �

We could have included a description of constructible isocrystal as modules
endowed with an overconvergent stratification on some geometric realization of
X/O but we are heading towards a finer description (this is what the rest of this
section is all about).

Recall that any overconvergent stratification will induce, by pull-back at each
level, a usual stratification. This is a faithful construction and we want to show that
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it is actually fully faithful when we work with constructible modules (in suitable
geometric situations). Thus, we have the sequence of injective maps

HomStrat†(F,G) ↪→ HomStrat(F,G) ↪→ Hom(F,G)

and we wonder whether the first one is actually bijective. In order to do so, we will
also have to study the injectivity of the maps in the sequence

ExtStrat†(F,G)→ ExtStrat(F,G)→ Ext(F,G).

We start with the following observation:

Proposition 4.5. Let (X, V ) be a variety over an overconvergent variety (C, O),
α :U ↪→ X the inclusion of an open subvariety of X and β : Z ↪→ X the inclusion of
a closed complement. Let F ′ be an i−1

Z OV -module and F ′′ an i−1
U OV -module. Then

a usual (resp. an overconvergent) stratification on the direct sum ]β[!F ′⊕]α[∗F ′′

is uniquely determined by its restrictions to F ′ and F ′′.

Proof. Let us denote by

ε(n) =

(
]β[!ε

′(n) ϕn

ψn ]α[∗ε
′′(n)

)
the stratification of ]β[!F ′⊕ ]α[∗F ′′ (recall that the maps ]β[! and ]α[∗ are fully
faithful). Then the maps

ϕn : i−1
X OV (n) ⊗i−1

X OV
]α[∗F ′′→ ]β[!F ′⊗i−1

X OV
i−1
X OV (n)

and
ψn : i−1

X OV (n) ⊗i−1
X OV
]β[!F ′→ ]α[∗F ′′⊗i−1

X OV
i−1
X OV (n)

are necessarily zero, as one may see by considering the fibers.
On the other hand, denote by

ε =

(
]β[!ε

′ ϕ

ψ ]α[∗ε
′′

)
the overconvergent stratification of ]β[!F ′⊕]α[∗F ′′. Then the maps

ϕ : ]p2[
†
]α[∗F ′′ ' ]p1[

†
]β[!F ′ and ψ : ]p2[

†
]β[!F ′ ' ]p1[

†
]α[∗F ′′

are necessarily zero, as one may see by considering the fibers and using the fact
that p†

i commutes with ]α[∗ and ]β[!. �

We keep the assumptions and the notation of the proposition for a while and
assume that F ′ and F ′′ are both endowed with a usual (resp. an overconvergent)
stratification. From the general fact that

Hom(]β[!F ′, ]α[∗F ′′)= 0 and Hom(]α[∗F ′′, ]β[!F ′)= 0,
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we can deduce that

HomStrat(]β[!F ′, ]α[∗F ′′)= 0
(
resp. HomStrat†(]β[!F

′, ]α[∗F ′′)= 0
)
,

HomStrat(]α[∗F ′′, ]β[!F ′)= 0
(
resp. HomStrat†(]α[∗F

′′, ]β[!F ′)= 0
)
.

Since we also know that

Ext(]β[!F ′, ]α[∗F ′′)= 0,

we can deduce the following result from the proposition:

Corollary 4.6. If F ′ and F ′′ are both endowed with a usual (resp. an overconver-
gent) stratification, then we have

ExtStrat(]β[!F ′, ]α[∗F ′′)= 0
(
resp. ExtStrat†(]β[!F

′, ]α[∗F ′′)= 0
)
.

Alternatively, it means that any short exact sequence of i−1
Z OV -modules (resp.

with a usual stratification, resp. with an overconvergent stratification)

0→ ]α[∗F ′′→ F→ ]β[!F ′→ 0

splits (and the splitting is compatible with the extra structure).
From the proposition, we may also deduce the following:

Corollary 4.7. If F ′ and F ′′ are both endowed with a usual stratification, then the
map

ExtStrat(]α[∗F ′′, ]β[!F ′) ↪→ Ext(]α[∗F ′′, ]β[!F ′)

is injective. If F ′ and F ′′ are both endowed with an overconvergent stratification,
then the maps

ExtStrat†(]α[∗F
′′, ]β[!F ′) ↪→ ExtStrat(]α[∗F ′′, ]β[!F ′) ↪→ Ext(]α[∗F ′′, ]β[!F ′)

are injective.

Alternatively, it means that if F is an i−1
X OV -module with a usual (resp. an

overconvergent) stratification, and if the exact sequence of i−1
X OV -modules

0→ ]β[!F|]Z [→ F→ ]α[∗F|]U [→ 0

splits, then the splitting is always compatible with the (resp. the overconvergent)
stratifications.

We are now ready to prove our main result:

Proposition 4.8. Let

X �
�

//

f
��

P

v

��

PKoo

vK

��

Voo

u
��

C �
�

// S SKoo Ooo
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be a formal morphism of overconvergent varieties with f quasicompact, v smooth
at X, O locally separated and V a good neighborhood of X in PK ×SK O. If
F and G are two constructible i−1

X OV -modules endowed with an overconvergent
stratification, then

HomStrat†(F,G)' HomStrat(F,G).

Proof. Since we know that the map is injective, we may rephrase the assertion
as follows: we are given a morphism ϕ : F→ G of constructible i−1

X OV -modules
which is compatible with the usual stratifications and we have to show that ϕ is
actually compatible with the overconvergent stratifications. This question is clearly
local on O, which is locally compact. We may therefore assume that the image of
O in SK is contained in some S′K with S′ quasicompact. We may then pull back
the diagram along S′→ S and assume that X is finite-dimensional (use assertion
(3) of Proposition 3.3). This will allow us to use noetherian induction.

We know (use, for example, Propositions 3.5 and 4.3) that there exists a dense
open subset U of X such that the restrictions F ′′ and G′′ to U of F and G are
coherent. Moreover, it was shown in Corollary 3.4.10 of [Le Stum 2011] that the
proposition is valid for F ′′ and G′′ on U. Let us denote as usual by α :U ↪→ X the
inclusion map. Since ]α[∗ is fully faithful, we see that the proposition is valid for
]α[∗F ′′ and ]α[∗G′′. In other words, we have a bijection

HomStrat†(]α[∗F
′′, ]α[∗G′′)' HomStrat(]α[∗F ′′, ]α[∗G′′). (10)

We denote now by β : Z ↪→ X the inclusion of a closed complement of U and let F ′

and G′ be the restrictions of F and G to Z . We observe the following commutative
diagram:

0

��

0

��

HomStrat†(]α[∗F
′′,G)

��

� � // HomStrat(]α[∗F ′′,G)

��

HomStrat†(]α[∗F ′′, ]α[∗G′′)

��

'
// HomStrat(]α[∗F ′′, ]α[∗G′′)

��

ExtStrat†(]α[∗F ′′, ]β[!G′)
� � // ExtStrat(]α[∗F ′′, ]β[!G′)

The columns are exact because Hom(]α[∗F ′′, ]β[!G′) = 0, the bottom map is
injective thanks to Corollary 4.7 and the middle map is the isomorphism (10). It
follows from the five lemma (or an easy diagram chase) that the upper map is
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necessarily bijective: we have

HomStrat†(]α[∗F
′′,G)' HomStrat(]α[∗F ′′,G′′). (11)

We turn now to the other side: by induction, the proposition is valid for F ′ and G′

on Z , and since ]β[! is fully faithful, it also holds for ]β[!F ′ and ]β[!G′. Hence,
we have

HomStrat†(]β[!F
′, ]β[!G′)' HomStrat(]β[!F ′, ]β[!G′). (12)

Now, we consider the commutative square

HomStrat†(]β[!F
′, ]β[!G′)

'

��

'
// HomStrat(]β[!F ′, ]β[!G′)

'

��

HomStrat†(]β[!F
′,G) �

�
// HomStrat(]β[!F ′,G)

The vertical maps are bijective because Hom(]β[!F ′, ]α[∗G′′) = 0 and the upper
map is simply the isomorphism (12). It follows that we have an isomorphism

HomStrat†(]β[!F
′,G)' HomStrat(]β[!F ′,G). (13)

In order to end the proof, we will need to kill another obstruction. Since the
proposition holds for ]α[∗F ′′ and any constructible G, the following canonical map
is necessarily injective:

ExtStrat†(]α[∗F
′′,G) ↪→ ExtStrat(]α[∗F ′′,G). (14)

We consider now the commutative diagram with exact columns

0

��

0

��

HomStrat†(]α[∗F ′′,G)

��

'
// HomStrat(]α[∗F ′′,G)

��

HomStrat†(F,G)

��

� � // HomStrat(F,G)

��

HomStrat†(]β[†F
′,G)

��

'
// HomStrat(]β[†F ′,G)

��

ExtStrat†(]α[∗F
′′,G) �

�
// ExtStrat(]α[∗F ′′,G)

The horizontal isomorphisms are just (11) and (13) and the bottom injection is (14).
It is then sufficient to apply the five lemma again. �
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We may reformulate the statement of the proposition as follows:

Corollary 4.9. The forgetful functor from constructible i−1
X OV -modules endowed

with an overconvergent stratification to i−1
X OV -modules endowed with a usual

stratification is fully faithful.

It is also worth mentioning the following immediate consequence:

Corollary 4.10. If F and G are two constructible i−1
X OV -modules endowed with

an overconvergent stratification, then we have an injective map

ExtStrat†(F,G) ↪→ ExtStrat(F,G). (15)

It means that if
0→ F→ G→H→ 0 (16)

is a short exact sequence of constructible i−1
X OV -modules endowed with an over-

convergent stratification, then any splitting for the usual stratifications will be
compatible with the overconvergent stratifications. I strongly suspect that much
more is actually true: if we are given an exact sequence (16) of constructible i−1

X OV -
modules endowed with usual stratifications and if the stratifications of F ′ and F ′′

are overconvergent, then the stratification of F should also be overconvergent. In
other words, the injective map (15) would be an isomorphism.

If (X, V ) is a variety over an overconvergent variety (C, O), we will denote by

MIC†
cons(X, V/O)

the category of constructible i−1
X OV -modules F endowed with an overconvergent

connection (recall that it means that the connection extends to some overconvergent
stratification). Then, we can also state the following corollary:

Corollary 4.11. If Char(K ) = 0, then the realization functor induces an equiva-
lence of categories

Isoc†
cons(XV /O)'MIC†

cons(X, V/O).

As a consequence, we observe that we will have, for a constructible isocrystal E
on XV /O,

0(XV /O, E)' H 0
dR(EV ),

and we expect the same to hold for higher cohomology spaces; we only know at
this point that

H 1(XV /O, E)⊂ H 1
dR(EV ).

Again, we need to work with good overconvergent varieties for the theorem to
hold:
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Theorem 4.12. Assume that Char(K ) = 0 and that we are given a commutative
diagram

X �
�

//

f
��

P

v

��

PKoo

vK

��

Voo

u
��

C �
�

// S SKoo Ooo

(17)

in which P is a formal scheme over S which is proper and smooth around X , and V
is a neighborhood of the tube of X in PK×SK O (and O is good in the neighborhood
of ]C[). Then the realization functor induces an equivalence of categories

Isoc†
cons(X/O)'MIC†

cons(X, V/O)

between constructible overconvergent isocrystals on X/O and constructible i−1
X OV -

modules endowed with an overconvergent connection.

Proof. Using the second assertion of Proposition 3.5.8 in [Le Stum 2011], this
follows immediately from Corollary 4.11. �

As a consequence of the theorem, we see that the notion of a constructible module
endowed with an overconvergent connection only depends on X and not on the
choice of the geometric realization (17). It is likely that this could have been proven
directly using Berthelot’s technique of diagonal embedding. However, we believe
that our method is much more natural because functoriality is built in.
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Let K be a number field and let C/K be a curve of genus 2 with Jacobian
variety J. We study the canonical height ĥ : J (K )→ R. More specifically, we
consider the following two problems, which are important in applications:

(1) for a given P ∈ J (K ), compute ĥ(P) efficiently;
(2) for a given bound B > 0, find all P ∈ J (K ) with ĥ(P)≤ B.

We develop an algorithm running in polynomial time (and fast in practice) to deal
with the first problem. For the second problem, we show how to tweak the naive
height h to obtain significantly improved bounds for the difference h− ĥ, which
allows a much faster enumeration of the desired set of points.

Our approach is to use the standard decomposition of h(P)− ĥ(P) as a sum
of local “height correction functions”. We study these functions carefully, which
leads to efficient ways of computing them and to essentially optimal bounds. To
get our polynomial-time algorithm, we have to avoid the factorization step needed
to find the finite set of places where the correction might be nonzero. The main
innovation is to replace factorization into primes by factorization into coprimes.

Most of our results are valid for more general fields with a set of absolute
values satisfying the product formula.

An errata was submitted on 30 Dec 2022 and posted online on 16 Feb 2023.
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1. Introduction

Let K be a global field and let C/K be a curve of genus 2 with Jacobian variety J.
There is a map κ : J → P3 that corresponds to the class of twice the theta divisor
on J ; it identifies a point on J with its negative, and its image is the Kummer
surface KS of J. Explicit versions of κ can be found in the book [Cassels and Flynn
1996] for C given in the form y2

= f (x) and in the paper [Müller 2010] by the
first author for general C (also in characteristic 2). Thus κ gives rise to a height
function h : J (K )→ R, which we call the naive height on J. It is defined by

h(P)=
∑
v∈MK

log max{|κ1(P)|v, |κ2(P)|v, |κ3(P)|v, |κ4(P)|v},

where κ(P)= (κ1(P) : κ2(P) : κ3(P) : κ4(P)), MK is the set of places of K, and
| · |v is the v-adic absolute value, normalized so that the product formula holds:∏

v∈MK

|x |v = 1 for all x ∈ K×.

By general theory [Hindry and Silverman 2000, Chapter B] the limit

ĥ(P)= lim
n→∞

h(nP)
n2
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exists; it is called the canonical height (or Néron–Tate height) of P ∈ J (K ). The
difference h − ĥ is bounded. The canonical height induces a positive definite
quadratic form on J (K )/J (K )tors (and on the R-vector space J (K )⊗Z R).

In this paper, we tackle the following two problems:

Problem 1.1. Find an efficient algorithm for the computation of ĥ(P) for a given
point P ∈ J (K ).

Problem 1.2. Find an efficient algorithm for the enumeration of all P ∈ J (K )
which satisfy ĥ(P)≤ B, where B is a given real number.

These problems are important because such algorithms are needed if we want
to saturate a given finite-index subgroup of J (K ) (see the discussion at the end of
Section 18). This, in turn, is necessary for the computation of generators of J (K ).
Such generators are required, for instance, to carry out the method described in
[Bugeaud et al. 2008] for the computation of all integral points on a hyperelliptic
curve over Q. Furthermore, the regulator of J (K ) appearing in the conjecture
of Birch and Swinnerton-Dyer is the Gram determinant of a set of generators of
J (K )/J (K )tors with respect to the canonical height. So Problems 1.1 and 1.2 are
also important in the context of gathering numerical evidence for this conjecture as
in [Flynn et al. 2001].

It is a classical fact, going back to work by Néron [1965], that ĥ(P) and the
difference h(P)− ĥ(P) can be decomposed into a finite sum of local terms. In
our situation, this can be done explicitly as follows. The duplication map P 7→ 2P
on J induces a morphism δ : KS → KS, given by homogeneous polynomials
(δ1, δ2, δ3, δ4) of degree 4; explicit equations can again be found in [Cassels and
Flynn 1996] and [Müller 2010]. For a point Q ∈ J (Kv), where Kv is the completion
of K at a place v ∈ MK , such that κ(Q)= (x1 : x2 : x3 : x4) ∈ KS(Kv), we set

ε̃v(Q)=−log max{|δj (x1, x2, x3, x4)|v : 1≤ j ≤ 4}+4 log max{|x j |v : 1≤ j ≤ 4}.

Note that this does not depend on the scaling of the coordinates. We can then write
ĥ(P) in the following form (compare Lemma 2.4):

ĥ(P)= h(P)−
∑
v∈MK

∞∑
n=0

4−(n+1)ε̃v(2n P).

We set, for Q ∈ J (Kv) as above,

µ̃v(Q)=
∞∑

n=0

4−(n+1)ε̃v(2n Q), (1-1)

and we deduce the decomposition

h(P)− ĥ(P)=
∑
v∈MK

µ̃v(P), (1-2)
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which is valid for all points P ∈ J (K ). In addition, ε̃v = µ̃v = 0 for all but finitely
many v (the exceptions are among the places of bad reduction, the places where
the given equation of C is not integral and the archimedean places). The maps
ε̃v : J (Kv)→ R are continuous maps (with respect to the v-adic topology) with
compact domains, so they are bounded. Therefore µ̃v is also bounded.

Let us first discuss Problem 1.1. Because of (1-2), it suffices to compute h(P)
(which is easy) and

∑
v∈MK

µ̃v(P) in order to compute ĥ(P) for a point P ∈ J (K ).
Building on earlier work of Flynn and Smart [1997], the second author introduced an
algorithm for the computation of µ̃v(P) in [Stoll 2002]. One of the main problems
with this approach is that we need integer factorization to compute the sum µ̃f(P) :=∑

v µ̃v(P), where v runs through the finite primes v such that µ̃v(P) 6= 0, because
we need to find these primes, or at least a finite set of primes containing them.

We use an idea which was already exploited in [Müller and Stoll 2016] to obtain
a polynomial-time algorithm for the computation of the canonical height of a point
on an elliptic curve (in fact, we first used this technique in genus 2 and only later
realized that it also works, and is actually easier to implement, for elliptic curves).
When v is nonarchimedean, there is a constant cv > 0 such that the function

µv := µ̃v/cv

maps J (Kv) to Q. More precisely, µ̃f(P) is a sum of rational multiples of log-
arithms of positive integers. As in [Müller and Stoll 2016], we find a bound on
the denominator of µv that depends only on the valuation of the discriminant; this
allows us to devise an algorithm that computes µ̃f(P) in quasilinear time. We can
compute µ̃v(P) for archimedean v essentially from the definition of µ̃v . This leads
to a factorization-free algorithm that computes ĥ(P) in polynomial time:

Theorem 1.3. Let J be the Jacobian of a curve of genus 2 defined over Q, and let
P ∈ J (Q). There is an algorithm that computes ĥ(P) in time quasilinear in the
size of the coordinates of P and the coefficients of the given equation of C , and
quasiquadratic in the desired number of digits of precision.

See Theorem 14.5 for a precise statement. We expect a similar result to be true
for any number field K in place of Q.

We now move on to Problem 1.2. If we have an upper bound β for h − ĥ,
then the set of all points P ∈ J (K ) such that h(P) ≤ B + β contains the set
{P ∈ J (K ) : ĥ(P) ≤ B}. Since the naive height h is a logarithmic height, β
contributes exponentially to the size of the box we need to search for the enumeration.
Therefore it is crucial to keep β as small as possible.

We write β̃v =max{µ̃v(Q) : Q ∈ J (Kv)}, and we obtain the bound

h(P)− ĥ(P)≤
∑
v∈MK

β̃v
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from (1-2). If we write

γ̃v =max{ε̃v(Q) : Q ∈ J (Kv)},

then clearly 1
4 γ̃v ≤ β̃v ≤

1
3 γ̃v. In [Stoll 1999], it is shown that for curves given in

the form y2
= f (x), where f has v-adically integral coefficients, we have

γ̃v ≤−log |24 disc( f )|v =−log |2−41|v,

with disc( f ) denoting the discriminant of f considered as a polynomial of degree 6
and 1 denoting the discriminant of the given equation of C . When v is nonar-
chimedean and the normalized additive valuation of1 is 1, we can take γ̃v = β̃v = 0
[Stoll 2002].

The results of the present paper improve on this; they are based on a careful
study of the functions µ̃v. It turns out that when v is nonarchimedean, the set
of points where µv (or equivalently, µ̃v) vanishes forms a group. Moreover, the
function µv factors through the component group of the Néron model of J when
the given model of C/Kv, which we assume to have v-integral coefficients in the
following, has rational singularities; see Theorem 7.4. If the minimal proper regular
model of C is semistable, then we can use results of Zhang [1993] and Heinz
[2004] to give explicit formulas for µv in terms of the resistance function on the
reduction graph of C (which is essentially the dual graph of the special fiber of
the minimal proper regular model, suitably metrized). We use this to find simple
explicit formulas for µv that apply in the most frequent cases of bad reduction,
namely nodal or cuspidal reduction. These explicit formulas give us the optimal
bounds for µ̃v in these cases. By reducing to the semistable case and tracking how
µv changes as we change the Weierstrass equation of C , we deduce the general
upper bound

β̃v ≤−
1
4 log |1|v (1-3)

for nonarchimedean v; see Theorem 11.3.
When v is archimedean, we also get a new bound for µ̃v by iterating the bound

obtained in [Stoll 1999], leading to vast improvements for β̃v. Combining the
archimedean and nonarchimedean bounds, we find a nearly optimal bound β
for h− ĥ.

To get even smaller search spaces for the enumeration, we make use of the
observation that we can replace the naive height h by any function h′ such that
|h′− h| is bounded. Using the results on nearly optimal bounds for µv and such
a modified naive height h′ (which is also better suited than h for the enumeration
process itself) we get a much smaller bound on the difference h′− ĥ than what was
previously possible. This makes the enumeration feasible in many cases that were
completely out of reach so far.
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As an example, we compute explicit generators for the Mordell–Weil group of
the Jacobian of the curve

C : y2
= 82342800x6

− 470135160x5
+ 52485681x4

+ 2396040466x3
+ 567207969x2

− 985905640x + 247747600 (1-4)

over Q, conditional on the generalized Riemann hypothesis (which is needed to
show that the rank is 22). See Proposition 19.1. This curve has at least 642 rational
points, which is the current record for the largest number of known rational points
on a curve of genus 2; see [Stoll 2008].

The paper is divided into four parts. In Part I, we first generalize the usual
notion of the naive height on projective space and clarify the relation between these
generalized naive heights and suitable canonical heights, all in Section 2. We then
introduce local height correction functions ε and µ (=µv in the notation introduced
above) on the Jacobian of a genus-2 curve over a nonarchimedean local field in
Section 3. This is followed in Section 4 by a study of certain canonical local heights
constructed in terms of µ. We close Part I by introducing and investigating the
notion of stably minimal Weierstrass models of curves of genus 2 in Section 5 and
recalling some well-known results on Igusa invariants in Section 6.

Part II is in some sense the central part of the present paper. Here we study
the local height correction function µ over a nonarchimedean local field. Using
Picard functors, we show in Section 7 that µ factors through the component group
of the Néron model of the Jacobian when the given model of the curve has rational
singularities. We then relate µ to the reduction graph of C in Section 8. Building on
this, the following sections contain simple explicit formulas forµwhen the reduction
of the curve is nodal (Section 9), respectively cuspidal (Section 10). A simple
argument then gives the improved general upper bound (1-3) for µ; see Section 11.

In Part III we describe our factorization-free algorithm for the computation of
ĥ(P) for P ∈ J (K ), where K is a global field. We start in Section 12 by showing
how to compute µv(P) for nonarchimedean v, using a bound on its denominator.
The following section deals with archimedean places, before we finally combine
these results in Section 14 into an algorithm for the computation of ĥ(P) that
runs in polynomial time; this proves Theorem 1.3. Some examples are discussed
in Section 15.

In Part IV we turn to Problem 1.2. Section 16 contains two methods for bounding
µ̃v for archimedean v. In Section 17 we describe a modified naive height h′ such
that the bound on the difference h′− ĥ becomes small. We use this, the results of
Section 16, and our nearly optimal bounds for the nonarchimedean height correction
functions from Part II to give an efficient algorithm for the enumeration of the set
of rational points with bounded canonical height in Section 18. In Section 19 we
compute generators of the Mordell–Weil group of the record curve (1-4).
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Part I. Generalities on heights and genus-2 Jacobians

2. Generalized naive heights

Let K be a field with a set MK of places v and associated absolute values | · |v
satisfying the product formula∏

v∈MK

|x |v = 1 for all x ∈ K×.

We write Kv for the completion of K at v. For a tuple x = (x1, . . . , xm) ∈ K m
v we

set ‖x‖v =max{|x1|v, . . . , |xm |v}.
In the following we will introduce some flexibility into our notion of height on

projective spaces. (This is similar to the framework of “admissible families” in
[Zarkhin 1995].)

Definition 2.1. (1) Let v ∈ MK . A local height function on Pm at v is a map
hv : K m+1

v \ {0} → R such that

(i) hv(λx)= log |λ|v + hv(x) for all x ∈ K m+1
v \ {0} and all λ ∈ K×v , and

(ii)
∣∣hv(x)− log ‖x‖v

∣∣ is bounded.

(2) A function h : Pm(K )→ R is a height on Pm over K if there are local height
functions hv such that for all x ∈ Pm(K ) we have

h((x1 : x2 : · · · : xm+1))=
∑
v∈MK

hv(x1, x2, . . . , xm+1)

and hv(x)= log ‖x‖v for all but finitely many places v.

Note that property (i) of local height functions together with the product formula
imply that h is invariant under scaling of the coordinates and hence is well-defined.

One example of such a height is the standard height hstd, which we obtain by
setting hv(x)= log ‖x‖v for all v. We then have the following simple fact.

Lemma 2.2. Let h be any height on Pm over K and let hstd be the standard height.
Then there is a constant c = c(h) such that

|h(P)− hstd(P)| ≤ c for all P ∈ Pm(K ).

Proof. This follows from property (ii) of local height functions and the requirement
that hv(x)= log ‖x‖v for all but finitely many v. �

Example 2.3. Other examples of heights can be obtained in the following way. For
each place v, fix a linear form lv(x1, . . . , xm+1)= av,1x1+· · ·+ av,m+1xm+1, with
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av,1, . . . , av,m+1 ∈ Kv and av,m+1 6= 0, such that lv(x) = xm+1 for all but finitely
many v. Then

h((x1 : · · · : xm : xm+1))=
∑
v∈MK

log max{|x1|v, . . . , |xm |v, |lv(x1, . . . , xm+1)|v}

is a height on Pm.
More generally, we could consider a family of automorphisms Av of K m+1

v with
Av equal to the identity for all but finitely many v, and take

h(x)=
∑
v∈MK

log max ‖Av(x)‖v.

Now consider a projective variety V ⊂ Pm
K and an endomorphism ϕ : V → V of

degree d (i.e., given by homogeneous polynomials of degree d). Then by general the-
ory (see, e.g., [Hindry and Silverman 2000, Theorem B.2.5]) |hstd(ϕ(P))−dhstd(P)|
is bounded on V (K ). We write ϕ◦n for the n-fold iteration of ϕ. Then the canonical
height

ĥ(P)= lim
n→∞

d−nhstd(ϕ
◦n(P))

exists (and satisfies ĥ(ϕ(P))=dĥ(P)) [Hindry and Silverman 2000, Theorem B.4.1].
Let h be any height on Pm. Since |h− hstd| is bounded, we can replace hstd by h
in the definition of ĥ without changing the result. We can then play the usual
telescoping series trick in our more general setting.

Lemma 2.4. Let

ϕ((x1 : · · · : xm+1))= (ϕ1(x) : · · · : ϕm+1(x))

with homogeneous polynomials ϕj ∈ K [x1, . . . , xm+1] of degree d. We have

ĥ(P)= h(P)−
∑
v∈MK

µ̃v(P),

where

µ̃v(P)=
∞∑

n=0

d−(n+1)ε̃v(ϕ
◦n(P))

and, when P = (x1 : · · · : xm+1) and x = (x1, . . . , xm+1),

ε̃v(P)= dhv(x)− hv(ϕ1(x), . . . , ϕm+1(x)).

Proof. Note that ε̃v is well-defined: scaling x by λ adds |λ|v to hv(x) and d|λ|v to
hv(ϕ1(x), . . . , ϕm+1(x)). Let x be projective coordinates for P and write x (n) for
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the result of applying (ϕ1, . . . , ϕm+1) n times to x = x (0). Then

ĥ(P)= lim
n→∞

d−nh(ϕ◦n(P))

= h(P)+
∞∑

n=0

d−(n+1)(h(ϕ◦(n+1)(P))− dh(ϕ◦n(P))
)

= h(P)+
∞∑

n=0

d−(n+1)
∑
v∈MK

(
hv(x (n+1))− dhv(x (n))

)
= h(P)−

∑
v∈MK

∞∑
n=0

d−(n+1)ε̃v(ϕ
◦n(P))

= h(P)−
∑
v∈MK

µ̃v(P). �

We call the functions µ̃v : Pm(Kv)→ R local height correction functions.
Note that when Kv is a discretely valued field such that |x |v = exp(−cvv(x)) for

x ∈ K× with a constant cv > 0 (and where we abuse notation and write v : K×v � Z

also for the normalized additive valuation associated to the place v) and h = hstd,
then we have

µ̃v(P)= cvµv(P) and ε̃v(P)= cvεv(P),

where

µv(P)=
∞∑

n=0

d−(n+1)εv(P)

and

εv(P)=min{v(ϕ1(x)), . . . , v(ϕm+1(x))}− d min{v(x1), . . . , v(xm+1)},

if x = (x1, . . . , xm+1) are homogeneous coordinates for P. This is the situation
that we will study in some detail in Part II of this paper, for the special case when
V ⊂ P3 is the Kummer surface associated to a curve of genus 2 and its Jacobian J
and ϕ is the duplication map (then d = 4).

To deal with Problem 1.1, we work with the standard height hstd. We use
our detailed results on the local height correction functions to deduce a bound
on the denominator of µv (its values are rational) in terms of the valuation of
the discriminant of the curve. This is the key ingredient that leads to our new
factorization-free and fast algorithm for computing ĥ; see Part III.

To deal with Problem 1.2, we use the flexibility in choosing the (naive) height h
and modify the standard height in such a way that the sum

∑
v∈MK

sup µ̃v(J (Kv))
that bounds the difference h− ĥ is as small as we can make it. The local height
functions we use are as in Example 2.3 above, with lv(x1, x2, x3, x4)= x4/sv for
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certain sv ∈ K×v in most cases. Every height function of this type has the property
that for any point P = (x1 : x2 : x3 : x4)∈P3(K ) different from (0 : 0 : 0 : 1) we have

0≤ hstd((x1 : x2 : x3))≤ h(P).

This is relevant, since we can fairly easily enumerate all points P as above that are
on the Kummer surface and satisfy hstd((x1 : x2 : x3))≤ B; see Part IV. Refinements
of the standard height constructed using Arakelov theory were also used by Holmes
[2014] to give an “in principle” algorithm for the enumeration of points of bounded
canonical height on Jacobians of hyperelliptic curves over global fields.

3. Local height correction functions for genus-2 Jacobians

Until further notice, we let k be a nonarchimedean local field with additive valu-
ation v, normalized to be surjective onto Z. Let O denote the valuation ring of k
with residue class field k and let π be a uniformizing element of O. We consider a
smooth projective curve C of genus 2 over k, given by a Weierstrass equation

Y 2
+ H(X, Z)Y = F(X, Z) (3-1)

in weighted projective space Pk(1, 3, 1), with weights 1, 3 and 1 assigned to the
variables X, Y and Z , respectively. Here

F(X, Z)= f0 Z6
+ f1 X Z5

+ f2 X2 Z4
+ f3 X3 Z3

+ f4 X4 Z2
+ f5 X5 Z + f6 X6

and
H(X, Z)= h0 Z3

+ h1 X Z2
+ h2 X2 Z + h3 X3

are binary forms of degrees 6 and 3, respectively, such that the discriminant1(F, H)
of the Weierstrass equation (3-1) is nonzero. In characteristic different from 2, this
discriminant is defined as

1(F, H)= 2−12 disc(4F + H 2) ∈ Z[h0, . . . , h3, f0, . . . , f6],

and in general, we define it by the generic polynomial given by this formula. The
curve defined by the equation is smooth if and only if 1(F, H) 6= 0.

For the remainder of this section we assume that F, H ∈O[X, Z ], so that (3-1)
defines an integral Weierstrass model C of the curve in the terminology of Section 5
below. The discriminant of this model is then defined to be 1(C) :=1(F, H). We
may assume that C is given by such an integral equation if k is the completion at
a nonarchimedean place of a number field K and C is obtained by base change
from K, since we can choose a globally integral Weierstrass equation for the curve.
But also in general, we can always assume that C is given by an integral equation
after applying a transformation defined over k, since we know from Corollary 4.6 in
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the next section how the local height correction function µ defined in Definition 3.1
below behaves under such transformations.

We now generalize the definition of ε given in [Stoll 2002] (where the author
works with Weierstrass equations that have H = 0) to our more general setting. As
in the Introduction, let J denote the Jacobian of C and let KS be its Kummer surface,
constructed explicitly together with an explicit embedding into P3 in [Cassels and
Flynn 1996] in the case H = 0 and in [Müller 2010] in the general case. Also let
κ : J → P3 denote the composition of the quotient map from J to KS with this
embedding; it maps the origin O ∈ J (k) to the point (0 : 0 : 0 : 1). A quadruple
x = (x1, x2, x3, x4) ∈ k4 is called a set of Kummer coordinates on KS if x is a set
of projective coordinates for a point in KS(k); we denote the set of sets of Kummer
coordinates on KS by KSA (this is the set of k-rational points on the pointed affine
cone over KS). For x ∈ KSA we write v(x)=min{v(x1), . . . , v(x4)}, and we say
that x is normalized if v(x) = 0. If P ∈ J (k), we say that x ∈ KSA is a set of
Kummer coordinates for P if κ(P)= (x1 : x2 : x3 : x4).

We let δ denote the duplication map on KS, which is given by homogeneous poly-
nomials δ1, . . . , δ4 ∈O[x1, . . . , x4] of degree 4 such that δ(0, 0, 0, 1)= (0, 0, 0, 1).
We recall that there is a symmetric matrix B = (Bi j )1≤i, j≤4 of polynomials that
are bihomogeneous of degree 2 in x1, . . . , x4 and also in y1, . . . , y4 and have
coefficients in O. They have the following properties; see Chapter 3 of [Cassels
and Flynn 1996] and [Müller 2010].

(i) Let x, y ∈ KSA be Kummer coordinates for P, Q ∈ J (k). Then there are
Kummer coordinates w, z ∈KSA for P+Q and P−Q, respectively, such that

w ∗ z := (wi z j + ni jwj zi )1≤i, j≤4 = B(x, y)

and hence v(w)+v(z)= v(B(x, y)); here ni j = 1 if i 6= j and ni j = 0 if i = j.

(ii) If x ∈ KSA, then B(x, x)= δ(x) ∗ (0, 0, 0, 1).

We specialize the notions introduced in Section 2 to our situation: we consider
the Kummer surface KS⊂ P3 with the duplication map δ of degree d = 4. We use
the standard local height on P3.

Definition 3.1. Let x ∈ KSA be a set of Kummer coordinates on KS. Then we set

ε(x)= v(δ(x))− 4v(x) ∈ Z and µ(x)=
∞∑

n=0

1
4n+1 ε(δ

◦n(x)),

where δ◦n denotes the n-fold composition δ ◦ · · · ◦ δ.

Because δ is given by homogeneous polynomials of degree 4, ε(x) does not
depend on the scaling of x , so it makes sense to define ε(P) = ε(x) for points
P ∈ KS(k), where x ∈ KSA is any set of Kummer coordinates for P, and to define
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ε(P)= ε(κ(P)) for points P ∈ J (k). We likewise extend the definition of µ. Then
we have

µ(2P)− 4µ(P)=−ε(P) for all P ∈ J (k).

Note that our assumption F, H ∈O[X, Z ] implies that ε≥ 0. If k is a local field (as
we assume here), then KS(k) is compact in the v-adic topology, and ε is continuous,
so ε is bounded.

Remark 3.2. More generally, if k is a field with a discrete valuation and not
of characteristic 2, then the arguments in [Stoll 1999] show that when H = 0,
ε ≤ v(24 disc(F)), so ε is bounded also for these more general fields.

If k is any field with a discrete valuation, then one can still conclude that ε is
bounded, by making use of the fact that the duplication map is well-defined on KS,
which implies that the ideal generated by the δj and the polynomial δ0 defining
KS contains a power of the irrelevant ideal. So for some N > 0, one can express
every x N

j as a linear combination of δ0(x), . . . , δ4(x) with coefficients that are
homogeneous polynomials of degree N − 4 with coefficients in k. The negative of
the minimum of the valuations of these coefficients then gives a bound for ε.

Remark 3.3. If k is the completion of a global field at a place v, then for α ∈ k×,
v(α)/ log ‖α‖v = −cv is a negative constant. So for P ∈ J (k) we have ε(P) =
cv ε̃v(P) and µ(P)= cvµ̃v(P), where ε̃v and µ̃v are as defined in the introduction.

We will also have occasion to use the following function. Let x, y ∈ KSA and
define

ε(x, y)= v(B(x, y))− 2v(x)− 2v(y). (3-2)

In the same way as for ε(x) above, we can extend this to points in KS(k) and J (k).

Lemma 3.4. Let x, y, w, z∈KSA be Kummer coordinates satisfyingw∗z= B(x, y).
Then we have

δ(w) ∗ δ(z)= B(δ(x), δ(y)).

Proof. The proof carries over verbatim from the proof of [Stoll 2002, Lemma 3.2].
�

We deduce the following:

Lemma 3.5. Let x, y, w, z∈KSA be Kummer coordinates satisfyingw∗z= B(x, y).
Then we have

ε(δ(x), δ(y))+ 2ε(x)+ 2ε(y)= ε(w)+ ε(z)+ 4ε(x, y).

Proof. Using Lemma 3.4, relation (3-2), and property (i) above for δ(w), δ(z), δ(x)
and δ(y), we obtain

v(δ(w))+ v(δ(z))= v(B(δ(x), δ(y)))= ε(δ(x), δ(y))+ 2v(δ(x))+ 2v(δ(y)).
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Subtracting four times the corresponding relation for w, z, x and y, we get

ε(w)+ ε(z)= ε(δ(x), δ(y))− 4ε(x, y)+ 2ε(x)+ 2ε(y),

which is the claim. �

We state a few general facts on the functions ε and µ.

Lemma 3.6. For points P, Q ∈ J (k), we have the relation

µ(P + Q)+µ(P − Q)− 2µ(P)− 2µ(Q)=−ε(P, Q).

Proof. Let x and y be Kummer coordinates for P and Q, respectively; then w and z
as in Lemma 3.5 are Kummer coordinates for P + Q and P − Q (in some order).
The claim now follows from the formula in Lemma 3.5:

µ(P + Q)+µ(P − Q)− 2µ(P)− 2µ(Q)

=

∞∑
n=0

4−n−1(ε(2n P + 2n Q)+ ε(2n P − 2n Q)− 2ε(2n P)− 2ε(2n Q)
)

=

∞∑
n=0

4−n−1(ε(δ◦n(w))+ ε(δ◦n(z))− 2ε(δ◦n(x))− 2ε(δ◦n(y))
)

=

∞∑
n=0

4−n−1(ε(δ◦(n+1)(x), δ◦(n+1)(y))− 4ε(δ◦n(x), δ◦n(y))
)

=−ε(x, y)=−ε(P, Q). �

Lemma 3.7. If P ∈ J (k) satisfiesµ(P)=0, thenµ(P+Q)=µ(Q) for all Q∈ J (k).

Proof. We apply Lemma 3.6 with P and Q replaced by Q+nP and P, respectively,
where n ∈ Z. Taking into account that µ(P) = 0 and writing an for µ(Q + nP),
this gives

an+1− 2an + an−1 =−ε(P, Q+ nP).

As k is a nonarchimedean local field, the multiples of P accumulate at the origin O
in J (k). Recall that ε is locally constant. This implies that every value ε(P, Q+nP)
occurs for infinitely many n ∈ Z, since Q+ (n+ N )P will be close to Q+ nP for
suitably chosen N. We have for any m > 0

am+1− am − a−m + a−m−1 =

m∑
n=−m

(an+1− 2an + an−1)=−

m∑
n=−m

ε(P, Q+ nP).

Since µ is bounded, the left-hand side is bounded independently of m. We also
know that ε(P, Q + nP) ≥ 0. But if ε(P, Q + nP) were nonzero for some n,
then by the discussion above, the right-hand side would be unbounded as m→∞.
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Therefore it follows that ε(P, Q + nP) = 0 for all n ∈ Z. This in turn implies
an+1− 2an+an−1 = 0 for all n ∈ Z. The only bounded solutions of this recurrence
are constant sequences. In particular, we have

µ(P + Q)= a1 = a0 = µ(Q). �

Proposition 3.8. The subset U = {P ∈ J (k) : µ(P) = 0} is a subgroup of finite
index in J (k). The functions ε and µ factor through the quotient J (k)/U.

Proof. Lemma 3.7 shows that U is a subgroup. We have ε(P) = 0 for P ∈ J (k)
sufficiently close to the origin. So taking a sufficiently small subgroup neighborhood
U ′ of the origin in J (k), we see that ε(2n P)= 0 for all P ∈U ′ and all n ≥ 0. This
implies that µ= 0 on U ′, so U ⊃U ′. Because k is a local field, U ′ and therefore
also U have finite index in J (k). By Lemma 3.7 again, µ factors through J (k)/U,
and since ε(P)= 4µ(P)−µ(2P), the same is true for ε. �

We will now show that we actually have

U = {P ∈ J (k) : ε(P)= 0}

(the inclusion “⊂” is clear from the definition and Proposition 3.8). This is equivalent
to the implication ε(x)=0⇒ ε(δ(x))=0 and generalizes [Stoll 2002, Theorem 4.1].
For this we first provide a characteristic-2 analogue of Proposition 3.1(1) of the
same paper.

We temporarily let k denote an arbitrary field. Let CF,H be a (not necessarily
smooth) curve in the weighted projective plane with respective weights 1, 3, 1
assigned to the variables X , Y , Z that is given by an equation

Y 2
+ H(X, Z)Y = F(X, Z), (3-3)

where F, H ∈ k[X, Z ] are binary forms of respective degrees 6 and 3. Let KSF,H

denote the subscheme of P3 given by the vanishing of the equation defining the
Kummer surface of CF,H if CF,H is nonsingular. Then the construction of δ =
(δ1, δ2, δ3, δ4) still makes sense in this context, but we may now have δi (x)= 0 for
all 1≤ i ≤ 4 (which we abbreviate by δ(x)= 0) for a set x of Kummer coordinates
on KSF,H . We generalize Proposition 3.1 in [Stoll 2002] (which assumes H = 0)
to the case considered here.

Note that two equations (3-3) for CF,H are related by a transformation τ acting
on an affine point (ξ, η) by

τ(ξ, η)=

(
aξ + b
cξ + d

,
eη+U (ξ, 1)
(cξ + d)3

)
, (3-4)
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type H F conditions

1 0 0
2 Z3 0
3 Z3 aX Z5 a 6= 0
4 X Z2 aX Z5 a 6= 0
5 X Z2 bX3 Z3 b 6= 0
6 Z3 aX Z5

+ bX3 Z3 ab 6= 0
7 X Z2 0
8 X Z(X + Z) 0
9 X Z(X + Z) bX3 Z3 b(b+ 1) 6= 0

10 X Z(X + Z) aX Z5
+ bX3 Z3 a(a+ b)(a+ b+ 1) 6= 0

11 X Z2 aX Z5
+ bX3 Z3 ab 6= 0

12 0 X Z5

13 0 X3 Z3

Table 1. Representatives in characteristic 2.

where A =
(a

c
b
d

)
∈ GL2(k), e ∈ k× and U ∈ k[X, Z ] is homogeneous of degree 3.

The transformation τ also acts on the forms F and H by

τ ∗F(X, Z)= (ad − bc)−6(e2 F A
+ (eH A

−U A)U A),

τ ∗H(X, Z)= (ad − bc)−3(eH A
− 2U A),

where we write
S A
= S(d X − bZ ,−cX + aZ)

for a binary form S ∈ k[X, Z ].

Lemma 3.9. Let x ∈ KSF,H (k). If δ(δ(x))= 0, then we already have δ(x)= 0.

Proof. If k has characteristic different from 2, we can apply a transformation so
that the new Weierstrass equation will have H = 0; the statement is then [Stoll
2002, Proposition 3.1(1)]. So from now on, k has characteristic 2. We may assume
without loss of generality that k is algebraically closed. If the given curve is smooth,
then the result is obvious, because the situation described in the statement can never
occur. If it is not smooth, we can act on F and H using transformations of the
form (3-4), so it is enough to consider only one representative of each orbit under
such transformations. This is analogous to the strategy in the proof of [Stoll 2002,
Proposition 3.1]. We can, for example, pick the representatives listed in Table 1.

For these representatives, elementary methods as in that proof can be used to
check that δ(x)= 0 indeed follows from δ(δ(x))= 0. �

We can use the above to analyze the group U.
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Theorem 3.10. Suppose that k is a nonarchimedean local field and that J is the
Jacobian of a smooth projective curve of genus 2, given by a Weierstrass equation
(3-1) with integral coefficients. Then the set {P ∈ J (k) : ε(P) = 0} equals the
subgroup U in Proposition 3.8. In particular, U is a subgroup of finite index in
J (k) and ε and µ factor through the quotient J (k)/U. Moreover we have that
ε(−P) = ε(P) and U contains the kernel of reduction J (k)1 with respect to the
given model of J, i.e., the subgroup of points whose image in KS(k) equals that of O.

Proof. The statement in Lemma 3.9 implies ε(P) = 0 ⇒ ε(2P) = 0 for points
P ∈ J (k), since ε(P)= 0 is equivalent to δ(x̃) 6= 0 if x are normalized Kummer
coordinates for P, with reduction x̃ . This shows that ε(P)= 0 implies µ(P)= 0
(and conversely), so {P ∈ J (k) : ε(P) = 0} = {P ∈ J (k) : µ(P) = 0} = U. The
remaining statements now are immediate from Proposition 3.8, taking into account
that, for P in the kernel of reduction, we trivially have ε(P)= 0. �

An algorithm for the computation of µ(P) which is based on Theorem 3.10 (for
H = 0) is given in [Stoll 2002, §6]. Using the relation in Lemma 3.6, we obtain
the following alternative procedure for computing µ(P).

1. Let x be normalized Kummer coordinates for P. Set y0 = (0, 0, 0, 1) and
y1 = x .

2. For n = 1, 2, . . . , do the following.

a. Using pseudoaddition (see [Flynn and Smart 1997, §4]), compute nor-
malized Kummer coordinates yn+1 for nP from x , yn−1 and yn; record
ε(P, nP), which is the shift in valuation occurring when normalizing yn+1.

b. If ε(P, nP) = 0, check whether v(δ(yn)) = 0 (by Theorem 3.10, this is
equivalent to nP ∈U ). If yes, let N = n and exit the loop.

3. Return

µ(P)=
1

2N

N−1∑
n=1

ε(P, nP).

To see that this works, note that by Lemma 3.6 we have

µ((n+ 1)P)− 2µ(nP)+µ((n− 1)P)= 2µ(P)− ε(P, nP).

The sequence (µ(nP))n∈Z is periodic with period N, where N is the smallest
positive integer n such that nP ∈ U (which exists according to Theorem 3.10).
Taking the sum over one period gives

2Nµ(P)=
N−1∑
n=0

ε(P, nP)=
N−1∑
n=1

ε(P, nP).
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From the periodicity we can also deduce the possible denominators of µ(P). As
ε has integral values, we see that µ(P) ∈ 1

2N Z if N is a period of (µ(nP))n∈Z. In
fact, we can show a little bit more.

Corollary 3.11. Let P ∈ J (k) and N =min{n ∈ Z>0 : µ(nP)= 0}. Then

µ(P) ∈


1
N

Z if N is odd,

1
2N

Z if N is even.

Proof. The sequence (ε(P, nP))n∈Z has period N and is symmetric. So if N is odd,
we actually have

µ(P)= 1
2N

N−1∑
n=1

ε(P, nP)= 1
N

1
2 (N−1)∑

n=1

ε(P, nP) ∈ 1
N

Z. �

Analyzing the possible denominators of µ(P) will play a key role in Section 12,
where we discuss another algorithm for the computation of µ(P).

4. Canonical local heights on Kummer coordinates

We now define a notion of canonical local height for Kummer coordinates. We
keep the notation of the previous section.

Definition 4.1. Let x ∈KSA be a set of Kummer coordinates on KS. The canonical
local height of x is given by

λ̂(x)=−v(x)−µ(x).

Remark 4.2. We can also define the canonical local height on an archimedean local
field in an analogous way. Then, if K is a global field and x is a set of Kummer
coordinates for a point J (K ), we have

ĥ(P)=
∑
v∈MK

1
cv
λ̂v(x),

where cv is the constant introduced in Remark 3.3 for a nonarchimedean place v
and cv = [Kv : R]−1 if v is archimedean.

The canonical local height λ̂ on Kummer coordinates has somewhat nicer prop-
erties than the canonical local height defined (for instance, in [Flynn and Smart
1997] or, more generally, in [Hindry and Silverman 2000, §B.9]) with respect to a
divisor on J.

Proposition 4.3. Let x, y, z, w ∈ KSA. Then the following hold:

(i) λ̂(δ(x))= 4λ̂(x).
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(ii) If w ∗ z = B(x, y), then λ̂(z)+ λ̂(w)= 2λ̂(x)+ 2λ̂(y).

(iii) λ̂(x)=−limn→∞ 4−nv(δ◦n(x)).

(iv) If k ′/k is a finite extension of ramification index e and λ̂′ is the canonical local
height over k ′, then we have λ̂′(x)= e · λ̂(x).

Proof. (i) This follows easily from the two relations

v(δ(x))= 4v(x)+ ε(x) and µ(δ(x))= 4µ(x)− ε(x).

(ii) This is similar, using Lemma 3.6 and ε(x, y)= v(w)+ v(z)− 2v(x)− 2v(y).

(iii) This follows from (i) and the fact that µ(x) is a bounded function, implying

λ̂(x)= 4−nλ̂(δ◦n(x))=−4−nv(δ◦n(x))+ O(4−n).

(iv) This is obvious from the definition of λ̂. �

The canonical local height on Kummer coordinates also behaves well under
isogenies.

Proposition 4.4. Let C and C ′ be two curves of genus 2 over k given by Weierstrass
equations, with associated Jacobians J and J ′, Kummer surfaces KS and KS′ and
sets of sets of Kummer coordinates KSA and KS′A, respectively. Let α : J → J ′ be
an isogeny defined over k. Then α induces a map α : KS→ KS′; let d denote its
degree. We also get a well-defined induced map α : KSA→ KS′A if we fix a ∈ k×

and require α(0, 0, 0, 1)= (0, 0, 0, a). Then we have

λ̂(α(x))= dλ̂(x)− v(a) for all x ∈ KSA.

Proof. All assertions except for the last one are obvious. By the definition of λ̂, we
can reduce to the case a = 1. Using part (iii) of Proposition 4.3 it is then enough to
show that

v(δ◦n(α(x)))= dv(δ◦n(x))+ O(1).

However, we have v(α(x))−dv(x)=O(1) by assumption, so it suffices to show that

v(δ◦n(α(x)))= v(α(δ◦n(x))). (4-1)

But since α : J → J ′ is an isogeny, δ◦n(α(x)) and α(δ◦n(x)) represent the same
point on KS′, hence they are projectively equal. Because they also have the same
degree, the factor of proportionality is independent of x . It therefore suffices to
check (4-1) for a single x ; we take x= (0, 0, 0, 1)∈KSA. Because we have δ(x)= x
and, by assumption, α(x)= x ′, where x ′ = (0, 0, 0, 1) ∈ KS′A(k), we find

δ◦n(α(x))= x ′ and α(δ◦n(x))= x ′,

thereby proving (4-1) and hence the proposition. �
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Remark 4.5. Canonical local heights with similar functorial properties were con-
structed by Zarhin [1995] on total spaces of line bundles (without the zero section).
See also [Bombieri and Gubler 2006] for an approach to canonical local heights
using rigidified metrized line bundles.

The preceding proposition is particularly useful for analyzing the behavior of
the canonical local height under a change of Weierstrass equation of the curve.

Recall that two Weierstrass equations for C are related by a transformation τ as
in (3-4), specified by a triple (A, e,U ), where A =

(a
c

b
d

)
∈ GL2(k), e ∈ k× and

U = u0 Z3
+ u1 X Z2

+ u2 X2 Z + u3 X3
∈ k[X, Z ]

is homogeneous of degree 3. Such a transformation induces a map on KSA as
follows: Let x = (x1, x2, x3, x4) ∈ KSA. Then τ(x) is given by the quadruple

(ad − bc)−1(d2x1+ cdx2+ c2x3, 2bdx1+ (ad + bc)x2+ 2acx3,

b2x1+ abx2+ a2x3, (ad − bc)−2(e2x4+ l1x1+ l2x2+ l3x3)
)
,

where l1, l2, l3 do not depend on x . More precisely, we can write

li = li,1+ li,2+ li,3,

where

li,1 =
e2

(ad−bc)4
l ′i,1 with l ′i,1 ∈ Z[ f0, . . . , f6, a, b, c, d],

li,2 =
e

(ad−bc)4
l ′i,2 with l ′i,2 ∈ Z[h0, . . . , h3, u0, . . . , u3, a, b, c, d],

li,3 =
1

(ad−bc)4
l ′i,3 with l ′i,3 ∈ Z[u0, . . . , u3, a, b, c, d]

for i = 1, 2, 3. All of the l ′i, j are homogeneous of degree 8 in a, b, c, d and
homogeneous in the other variables.

So we see that τ acts on k4 as a linear map τ ′ whose determinant has valuation

v(τ) := v(det(τ ′))= 2v(e)− 3v(ad − bc).

In this situation, Proposition 4.4 implies:

Corollary 4.6. Let τ = ([a, b, c, d], e,U ) be a transformation (3-4) between two
Weierstrass equations W and W ′ of a smooth projective curve C/k of genus 2 and
let KS be the model of the Kummer surface associated to W . Then we have

λ̂(τ (x))= λ̂(x)− v(τ) for all x ∈ KSA.

In particular,
µ(x)= µ(τ(x))+ v(τ(x))− v(x)− v(τ).
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This can be used to construct a canonical local height which does not depend on
the choice of Weierstrass equation.

Definition 4.7. Let C/k be a smooth projective curve of genus 2 given by a Weier-
strass equation (3-1) with discriminant 1 and let KS be the associated Kummer
surface. We call the function

λ̃ : KSA→ R, x 7→ λ̂(x)+ 1
10v(1),

the normalized canonical local height on KSA.

Corollary 4.8. The normalized canonical local height is independent of the given
Weierstrass equation of C , in the following sense: if W and W ′ are two Weierstrass
equations for C , with associated sets of sets of Kummer coordinates KSA and KS′A
and canonical local heights λ̃ and λ̃′, respectively, and τ is a transformation (3-4)
between them, then for all x ∈ KSA we have λ̃′(τ (x))= λ̃(x).

Proof. Let 1 and 1′ be the respective discriminants of W and W ′. By [Liu 1996,
§2], we have

v(1′)= v(1)+ 10v(τ), (4-2)

so, using Corollary 4.6,

λ̃′(τ (x))= λ̂′(τ (x))+ 1
10v(1

′)

= λ̂(x)− v(τ)+ 1
10v(1

′)

= λ̂(x)+ 1
10v(1)= λ̃(x). �

We will not need the normalized canonical local height in the remainder of this
paper.

5. Stably minimal Weierstrass models

In this section, k continues to denote a nonarchimedean local field with valuation
ring O and residue field k. We build on results established by Liu [1996] in the
more general context of hyperelliptic curves of arbitrary genus.

Recall that an equation of the form (3-1) defining a curve C over k of genus 2 is
an integral Weierstrass model of C if the polynomials F and H have coefficients
in O. (Note that this is slightly different from the notion of an “integral equation” as
defined in [Liu 1996, Définition 2], but the difference is irrelevant for our purposes,
since any minimal Weierstrass model is actually given by an integral equation; see
[Liu 1996, Remarque 4].) It is a minimal Weierstrass model of C if it is integral and
the valuation of its discriminant is minimal among all integral Weierstrass models
of C [Liu 1996, Définition 3]. We introduce the following variant of this notion.

Definition 5.1. An integral Weierstrass model of a smooth projective curve C over k



Canonical heights on genus-2 Jacobians 2173

of genus 2 is stably minimal if it is a minimal Weierstrass model for C over k ′ for
every finite field extension k ′ of k.

Stably minimal Weierstrass models can be characterized in terms of the multi-
plicities of the points on the special fiber.

Definition 5.2. Only for this definition let k be an arbitrary field, and let CF,H be a
curve in Pk(1, 3, 1) given by an equation of the form (3-1) over k; we assume that
CF,H is reduced. The multiplicity m(P,CF,H ) of a geometric point P ∈ CF,H (k̄) is
defined as follows:

• If P is a singular point of type An (relative to the embedding of CF,H into
Pk(1, 3, 1)), then m(P,CF,H )= n+ 1.

• If P is fixed by the involution ι(X : Y : Z)= (X : −Y − H(X, Z) : Z) and is
nonsingular, then m(P,CF,H )= 1.

• Otherwise m(P,CF,H )= 0.

Singularities of type An were defined by Arnold over the complex numbers, and
hence for arbitrary fields of characteristic zero; see for instance [Barth et al. 1984,
§II.8]. For the case of positive characteristic, see [Greuel and Kröning 1990]. Note
that if the characteristic of k is not 2, then π(P) is a root of multiplicity m(P,CF,H )

of F2
+ 4H, where π : CF,H → P1 sends (X : Y : Z) to (X : Z).

We will use this notion in the context of points on the special fiber of a Weierstrass
model of a curve of genus 2 over a complete local field. In this context, Definition 5.2
is equivalent to [Liu 1996, Définition 9] when the curve is reduced; see [Liu 1996,
Remarque 8].

An algorithm that computes the multiplicity was given by Liu [1996, §6.1]. Liu
defines [1996, Définition 10] further multiplicities λr (P) for points on the special
fiber of an integral Weierstrass model (and r ≥ 1) that allow us to characterize when
such a model is minimal. We note here that λr (P) gives the value of λ(P)= λ1(P)
after making a field extension of ramification index r . Also, Lemme 7(e) of [Liu
1996] states for r sufficiently large that λr (P)=m(P) if the special fiber is reduced
and implies that λr (P)≥ r if the special fiber is nonreduced. In the reduced case,
we also have λ(P)≤ m(P).

Setting λ = λ1, Corollaire 2 in [Liu 1996] states (for g = 2) that the model is
minimal if and only if λ(P)≤3 and λ′(P)≤4 (and is the unique minimal Weierstrass
model up to O-isomorphism, if and only if in addition λ′(P)≤ 3) for all k-points P
on the special fiber, where λ′(P) is a number satisfying λ′(P) ≤ 2dλ(P)/2e; see
[Liu 1996, Lemme 9(c)].

Lemma 5.3. An integral Weierstrass model of a smooth projective curve C over k
of genus 2 is stably minimal if and only if its special fiber is reduced and the
multiplicity of every geometric point on the special fiber is at most 3.
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If the special fiber is reduced and all multiplicities are at most 2, then the model
is the unique minimal Weierstrass model of C over any finite extension k ′ of k, up to
isomorphism over the valuation ring of k ′.

Proof. First note that the multiplicity of a point is a geometric property; it does
not change when we replace k by a finite extension. If the special fiber of an
integral Weierstrass model has the given properties, then it follows from Liu’s
results mentioned above that λ(P) ≤ m(P) ≤ 3 and therefore λ′(P) ≤ 4 for all
points P on the special fiber, even after replacing k by a finite extension. It follows
that the model is stably minimal.

If m(P) ≤ 2 for all P, then λ(P) ≤ 2 and λ′(P) ≤ 2, so by Liu’s results, the
model is the unique minimal Weierstrass model of C over k ′.

Conversely, assume that the special fiber does not have the given properties. Then
either the special fiber is nonreduced, or else there is a point P on the special fiber of
multiplicity m(P)≥ 4. If the special fiber is nonreduced, then after replacing k by
a sufficiently ramified extension k ′, there is a point P on the special fiber such that
λ(P) > 3 over k ′ (ramification index 4 is sufficient). If the special fiber is reduced
and there is a (geometric) point P on the special fiber with m(P)>3, then again after
replacing k by a sufficiently large finite extension k ′ (such that P is defined over the
residue field and the ramification index is at least m(P)), we have λ(P)=m(P)> 3
over k ′. Liu’s results then show that the model is not minimal over k ′. �

Lemma 5.4. If C is a smooth projective curve over k of genus 2, then there is a
finite extension k ′ of k such that

(i) the minimal proper regular model of C over the valuation ring of k ′ has
semistable reduction, and

(ii) each minimal Weierstrass model of C over k ′ is already stably minimal.

Proof. That there is a finite extension with the first property is a special case of
the semistable reduction theorem [Deligne and Mumford 1969]. After a further
unramified extension, we can assume that all geometric components of the special
fiber of the minimal proper regular model (which all have multiplicity 1) are defined
over the residue field and that at least one component has a smooth point defined
over the residue field. This implies by Hensel’s lemma that C(k ′) 6= ∅. It then
follows from [Liu 1996, Corollaire 5] that every minimal Weierstrass model of C
over k ′ is dominated by the minimal proper regular model. Since the latter has
reduced special fiber, the same is true for each minimal Weierstrass model.

Now assume that there exists a stably minimal Weierstrass model of C over k ′.
Then every minimal Weierstrass model of C over k ′ must already be stably minimal,
since both models must have the same valuation of the discriminant, and the
discriminant of the stably minimal model remains minimal over any finite field
extension of k ′. So it is enough to show that a stably minimal model exists.
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We now consider the various possibilities for the special fiber of the minimal
proper regular model. The possible configurations are shown in Figures 1, 2, 3
and 5 (on pages 2187, 2188, 2189 and 2196). If the reduction type is [Im1−m2−m3]

in the notation of [Namikawa and Ueno 1973], then the Weierstrass model whose
special fiber contains the component(s) that are not (−2)-curves has the property
that all points on the special fiber have multiplicity at most 2; this is then the unique
minimal Weierstrass model, and it is stably minimal by Lemma 5.3. It remains to
consider reduction type [Im1 − Im2 − l]. We see that the Weierstrass models that
correspond to components in the chain linking the two polygons and also those
coming from the component of one of the polygons that is connected to the chain
satisfy the conditions of Lemma 5.3 and are thus stably minimal. On the other hand,
Weierstrass models whose special fiber does not correspond to a component in the
chain or to one of its neighbors have a point in the special fiber whose multiplicity
is at least 4 and so cannot be stably minimal. �

6. Igusa invariants

In this section we describe how we can easily distinguish between different types
of reduction using certain invariants of genus-2 curves introduced by Igusa [1960].
The results of this section are essentially due to Liu [1993]; see also [Mestre 1991].

Let k be an arbitrary field of characteristic not equal to 2 and consider the
invariants J2, J4, J6, J8, J10 defined in [Igusa 1960], commonly called Igusa
invariants. Then J2i (F) is an invariant of degree 2i of binary sextics, and if

F(X, Z)= f0 Z6
+ f1 X Z5

+ f2 X2 Z4
+ f3 X3 Z3

+ f4 X4 Z2
+ f5 X5 Z + f6 X6

is a binary sextic, then

J2i (F) ∈ Z
[ 1

2 , f0, . . . , f6
]
.

For example, J10(F)= 2−12 disc(F). It is shown in [Igusa 1960] that the invariants
J2, J4, J6, J10 generate the even-degree part of the ring of invariants of binary
sextics.

Now let F and H be the generic binary forms over Z of degrees 6 and 3,
respectively, with coefficients f0, . . . , f6 and h0, . . . , h3 as before. It turns out that
J2i (4F + H 2) is an element of Z[ f0, . . . , f6, h0, . . . , h3].

Definition 6.1. Let k be an arbitrary field and let H, F ∈ k[X, Z ] be binary forms
of respective degrees 3 and 6 over k. Let CF,H be the curve given by the equation
Y 2
+ H(X, Z)Y = F(X, Z) in the weighted projective plane Pk(1, 3, 1). For

1≤ i ≤ 5 we define the Igusa invariant J2i (CF,H ) of CF,H as

J2i (CF,H )= J2i (4F + H 2).
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Following [Liu 1993], we also define two additional invariants, namely

I4(CF,H )= J2(CF,H )
2
− 24J4(CF,H )

and

I12(CF,H )=−8J4(CF,H )
3
+ 9J2(CF,H )J4(CF,H )J6(CF,H )

− 27J6(CF,H )
2
− J2(CF,H )

2 J8(CF,H ).

The following is a consequence of [Liu 1993, Théorème 1].

Proposition 6.2. Let k be a field and let CF,H/k be the curve given by the equation

Y 2
+ H(X, Z)Y = F(X, Z)

in Pk(1, 3, 1), where H, F ∈ k[X, Z ] are binary forms of degree 3 and 6, respec-
tively. For 1≤ i ≤ 5 and j ∈ {4, 12} we set J2i = J2i (CF,H ) and Ij = Ij (CF,H ).

(i) CF,H is smooth⇐⇒ J10 6= 0.

(ii) CF,H has a unique node and no point of higher multiplicity⇐⇒ J10 = 0 and
I12 6= 0.

(iii) CF,H has exactly two nodes⇐⇒ J10 = I12 = 0, I4 6= 0, and J4 6= 0 or J6 6= 0.

(iv) CF,H has three nodes⇐⇒ J10 = I12 = J4 = J6 = 0 and I4 6= 0.

(v) CF,H has a cusp⇐⇒ J10 = I12 = I4 = 0 and J2i 6= 0 for some i ≤ 4.

(vi) CF,H is nonreduced or has a point of multiplicity at least 4⇐⇒ J2i = 0 for all i .

When C is a curve of genus 2 over a nonarchimedean local field, then Igusa
invariants can also be used to obtain information on the reduction type of C ; see
[Liu 1993, Théorème 1, Proposition 2].

Proposition 6.3. Let k be a nonarchimedean local field with normalized additive
valuation v : k× � Z and valuation ring O, and let C/k be a smooth projective
genus-2 curve, given by a minimal Weierstrass model with reduced special fiber.
Suppose that the minimal proper regular model Cmin of C over SpecO is semistable
and has reduction type K in the notation of [Namikawa and Ueno 1973]. We set
J2i = J2i (C) for i ∈ {1, . . . , 5} and I4 = I4(C), I12 = I12(C).

(i) If K = [Im−0−0], where m > 0, then m = v(J10).

(ii) If K = [Im1−m2−0], where 0< m1 ≤ m2, then

m1 =min
{
v(I12),

1
2v(J10)

}
and m2 = v(J10)−m1.
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(iii) If K = [Im1−m2−m3], where 0< m1 ≤ m2 ≤ m3, then

m1 =min
{
v(J4),

1
3v(J10),

1
2v(I12)

}
,

m2 =min
{
v(I12)−m1,

1
2(v(J10)−m1)

}
, and

m3 = v(J10)−m1−m2.

(iv) If K = [I0− I0− l], then l = 1
12v(J10).

(v) If K = [Im1 − I0− l], where m1 > 0, then

l = 1
12v(I12) and m1 = v(J10)− v(I12).

(vi) If K = [Im1 − Im2 − l], where m2 ≥ m1 > 0 and l > 0, then

l = 1
4v(I4),

m1 =min
{
v(I12)− 3v(I4),

1
2(v(J10)− 3v(I4))

}
, and

m2 = v(J10)− 3v(I4)−m1.

Part II. Study of local height correction functions

In Part II of the paper, k will always denote a nonarchimedean local field with
residue field k, valuation ring O and normalized additive valuation v : k× � Z.
We let C be a curve of genus 2 over k, given by an integral Weierstrass model C,
which we consider as a subscheme of the weighted projective plane PS(1, 3, 1),
where S = Spec(O). In the following five sections we find explicit formulas and
bounds for the local height correction function µ for the most frequent cases of bad
reduction and use these to deduce a general bound on µ. We denote the minimal
proper regular model of C over S by Cmin. Let J be the Jacobian of C ; we denote
its Néron model over S by J. We write Cv, Cmin

v and Jv for the respective special
fibers of C, Cmin and J.

7. The “kernel” of µ

By Theorem 3.10, the set

U = {P ∈ J (k) : ε(P)= 0}

is a group and the local height correction function µ factors through the quotient
J (k)/U. In this section we relate U to the Néron model of J when C has ratio-
nal singularities. See [Artin 1986] for a brief account of the theory of rational
singularities on arithmetic surfaces.

For the remainder of this section we assume that C/S is normal and reduced.
We let J 0 denote the fiberwise-connected component of the identity of J. Then
J 0 has generic fiber Jk ∼= J and special fiber J 0

v , the connected component of the
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identity of Jv. If C′→ C is a desingularization of C, then the identity components
Pic0

C′/S and Pic0
C/S of the respective relative Picard functors of C′ and C can both be

represented by separated schemes; see [Bosch et al. 1990, Theorem 9.7.1]. There
are canonical S-group scheme morphisms

Pic0
C/S→ Pic0

C′/S −→
∼ J 0

; (7-1)

the latter map is an isomorphism by [Bosch et al. 1990, Theorem 9.4.2]. Let
α : Pic0

C/S→ J 0 denote the composition of the morphisms from (7-1); note that
α does not depend on the choice of the desingularization C′. We will show that if
P ∈ J (k) has reduction on J in the image of α, then ε(P)= µ(P)= 0. The idea
is to first show that this is true for points in the image of a certain open subscheme;
we then prove that this suffices for the general case.

Let Csm be the smooth locus of C. Following [Bosch et al. 1990, §9.3], we define
an S-subscheme W of the symmetric square C(2)sm of Csm consisting of the points
w ∈ C(2)sm that satisfy the following conditions:

• H 1(C,OC(Dw))= 0, where D is the universal Cartier divisor D ⊂ C×S C(2)sm

induced by the canonical map C(2)sm → Div2
C/S .

• Ifw={w1, w2} withw1, w2 geometric points on the special fiber of C, then the
hyperelliptic involution ι maps the component containing w1 to the component
containing w2.

Then W has the following properties:

(i) W is an open subscheme of C(2)sm.

(ii) There is a strict S-birational group law on W, induced by the group law on
PicC/S .

(iii) Pic0
C/S is the S-group scheme associated with this strict S-birational group law.

For (ii) and (iii) see the discussion preceding [Bosch et al. 1990, Theorem 9.3.7].
Let Pic[2]C/S be the open subfunctor of PicC/S whose elements have total degree 2.

Let ρ : W → Pic[2]C/S be the canonical map induced by D; by [Bosch et al. 1990,
Lemma 9.3.5] it is an open immersion. Replacing S by the spectrum of the valuation
ring of a finite unramified extension of k, if necessary, we can find a section
x0 ∈ P1

S(S) such that its pullback D0 under the covering map C→ P1
S is horizontal

and does not intersect the singular locus of C. We denote by c0 the class of D0

in Pic[2]C/S . Let w = {P1, P2} ∈ W ; using the condition on the action of ι on the
components P1 and P2 lie on, we find that

ρ0(w) := ρ(w)− c0 ∈ Pic0
C/S .

In fact, ρ0 defines an open immersion ρ0 : W → Pic0
C/S; see [Bosch et al. 1990,

Lemma 9.3.6].
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Lemma 7.1. Suppose that the residue characteristic of k is not 2. Let P ∈ J (k)
such that the reduction of P on Jv is in α(ρ0(W )). Then ε(P)= 0.

Proof. We may assume that C : Y 2
= F(X, Z). Let JF denote the model of J in

P15 constructed in [Cassels and Flynn 1996, Chapter 2] and let JF/S denote the
model it defines over S. Following [Bruin and Stoll 2010, §5], we denote by J 0

F
the fiberwise-connected component of the identity of the smooth locus of JF , so
that the generic fiber is JF and the special fiber J 0

F,v is the connected component
of the identity of the smooth locus of the special fiber JF,v. We have a morphism
ψ : C(2)sm → J 0

F , defined using the expressions for the coordinates on JF in [Cassels
and Flynn 1996, Chapter 2]; see the proof of [Bruin and Stoll 2010, Lemma 5.7].
We also denote the restriction of this morphism to W by ψ .

The Néron mapping property yields a natural map ϕ : J 0
F→J. In general, its im-

age can be a proper subset of J 0. Nevertheless, the following diagram of S-scheme
morphisms is commutative by [Liu 2002, Proposition 3.3.11], since W is reduced,
J 0 is separated and the diagram is commutative when restricted to generic fibers:

W

ρ0

��

ψ
// J 0

F

ϕ

��

Pic0
C/S

α
// J 0

(7-2)

It follows from [Bruin and Stoll 2010, Proposition 5.10] that a point P ∈ J (k)
satisfies ε(P) = 0 if and only if P reduces to J 0

F,v(k). So if P has reduction in
α(ρ0(W )), then the commutativity of the diagram (7-2) shows that ε(P)= 0. �

If the residue characteristic is 2, then no explicit analogue of the group scheme JF

is known. Instead, we have to work with explicit expressions to prove a result
analogous to Lemma 7.1.

Let F̃ and H̃ be the reductions of F and H, respectively. In analogy with [Bruin
and Stoll 2010, Definition 5.1], we define the subscheme D̃ of A3

k × A4
k × A5

k

consisting of all triples

(A, B,C)=
(
(a0, a1, a2), (b0, b1, b2, b3), (c0, c1, c2, c3, c4)

)
∈ A3

k ×A4
k ×A5

k

such that
AC = F̃ − B2

− BH̃ ,

where
A = a0 Z2

+ a1 X Z + a2 X2,

B = b0 Z3
+ b1 X Z2

+ b2 X2 Z + b3 X3,

C = c0 Z4
+ c1 X Z2

+ c2 X2 Z2
+ c3 X3 Z + c4 X4.
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Moreover, we set D := (π2× id)(pr12(D̃)), where pr12 is the projection onto the first
two factors and π2 is the canonical map A3

k \ {(0, 0, 0)} → P2
k .

Note that if the curve Cv defined by Y 2
+ H̃(X, Z)Y = F̃(X, Z) in Pk(1, 3, 1)

is nonsingular, then D(k) is in bijective correspondence with the possible Mumford
representations of effective divisors of degree 2 on Cv.

In general, this correspondence still holds for the subset D′ of all (A, B) ∈ D
such that A does not vanish at the image in P1 of a singular point of Cv , and those
effective divisors with support in the smooth locus of Cv . More precisely, we get a
map ζ : D′→ C (2)

v such that if ζ((A, B))= {P̃1, P̃2}, then there are representatives
(Xi , Yi , Zi ) of P̃i (i = 1, 2) satisfying

(i) A(X, Z)= (Z1 X − X1 Z)(Z2 X − X2 Z),

(ii) Yi = B(Xi , Zi ) for i = 1, 2.

If Cv is nonsingular, and (A, B) ∈D, then we can compose the natural surjection
D→ Jac(Cv) \ {O} with the quotient map Jac(Cv)→ KSF̃,H̃ . In the general case
one can also define a surjection ω : D→ KSF̃,H̃ \{(0 : 0 : 0 : 1)} with the following
property: if P = [(P1)−(P2)] ∈ J (k) is such that the reductions P̃1 and P̃2 are both
smooth points on Cv , and if (A, B) ∈ D′ is such that ζ((A, B))= {P̃1, ˜ι(P2)}, then
the reduction of κ(P) on KSF̃,H̃ is ω((A, B)). The image of a pair (A, B) ∈ D
under ω is of the form (a0 : −a1 : a2 : x4).

Lemma 7.2. Suppose that the residue characteristic of k is 2. Let P ∈ J (k) such
that the reduction of P on J is in α(ρ0(W )). Then ε(P)= 0.

Proof. Let (A, B) ∈ D′
F̃,H̃

such that ζ((A, B))= {P̃1, P̃2} ∈W. By the discussion
preceding the lemma, it suffices to show that we have δ(x) 6= 0 for x = ω((A, B)).

Changing the given model, if necessary, we can assume that H̃ and F̃ are as
in the list of representatives 1–13 in Table 1. Table 2 contains conditions on x
which are equivalent to the vanishing of δ(x) for each representative and additional
conditions which a point x = (x1 : x2 : x3 : x4) ∈ P3 satisfying δ(x) = 0 must
satisfy in order to lie on KSF̃,H̃ . Finally, we have listed the multiplicities m(∞),
m(0), m(1) that Cv has at the points with (X : Z)= (1 : 0), (X : Z)= (0 : 1) and
(X : Z) = (1 : 1), respectively, in case the multiplicities there are greater than 1.
Note that we do not have to treat type 1, as Cv is assumed to be reduced.

Since A(X, Z) does not vanish at the image in P1 of a singular point, we get
x1 6= 0 and, if (0, 0) is a singular point, also x3 6= 0. Using Table 2, this already
implies that δ(x) 6= 0 whenever Cv is irreducible. In the reducible cases 2, 7 and 8,
Cv has two irreducible components, and one checks easily that x4 does not vanish
because, by definition of W, ι maps the component containing P̃1 to the component
containing P̃2. Hence δ(x) 6= 0 by Table 2. �

The next proposition follows from Lemmas 7.1 and 7.2.
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type condition additional m(∞) m(0) m(1)

1 x4 = 0
2 x4 = 0 6
3 x4 = 0 x1 = 0 5
4 x4 = 0 x1 = 0 4
5 x1x3 = x4 = 0 3 2
6 x1 = x4 = 0 3
7 x4 = 0 4 2
8 x4 = 0 2 2 2
9 x1x3 = x4 = 0 2 2

10 x1 = x4 = 0 2
11 x1 = x4 = 0 3
12 x4 = 0 x1 = 0 5
13 x4 = 0 x1x3 = 0 3 3

Table 2. Conditions for the vanishing of δ(x).

Proposition 7.3. Let α : Pic0
C/S → J 0 be the canonical homomorphism. If the

reduction of P ∈ J (k) on Jv is in the image of α, then ε(P)= µ(P)= 0.

Proof. If T is an S-scheme and x ∈ Pic0
C/S(T ), then by properties (ii) and (iii) of W,

there is an étale cover T ′/T and w1, . . . , wn ∈W (T ′) such that

x = ρ0(w1)+ · · ·+ ρ0(wn),

where the sum is taken with respect to the group law on Pic0
C/S . In fact we can

take n = 2; this follows from [Bosch et al. 1990, Lemma 5.1.4] and the discussion
following Lemma 5.2.4 of the same paper. Using this and Theorem 3.10, it suffices
to show that ε(P)= 0 when the reduction of P on Jv is in α(ρ0(W )). Hence the
result follows from Lemmas 7.1 and 7.2. �

Let J0(k) denote the subgroup of J (k) consisting of points whose image on the
special fiber of J is in J 0(k). By [Bosch and Liu 1999, Lemma 2.1] the group
8(k) of k-rational points in the component group 8 of J satisfies

8(k)∼= J (k)/J0(k).

We can now give a criterion for when ε and µ factor through 8(k).

Theorem 7.4. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model C with rational
singularities. Then ε and µ factor through 8(k).

Proof. First note that if C has rational singularities, then C is normal and reduced.
Moreover, according to [Bosch et al. 1990, Theorem 9.7.1], the homomorphism α

is an isomorphism if and only if C has rational singularities. This implies that the
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image of α, restricted to the generic fiber, is J0(k). By Proposition 7.3, we have
ε(P) = µ(P) = 0 for P in the image of α. Theorem 3.10 implies that µ and ε
factor through 8(k). �

Remark 7.5. A nonminimal Weierstrass model cannot have rational singularities.
Moreover, there are minimal (even stably minimal) Weierstrass models of curves of
genus 2 that have nonrational singularities. See Example 10.4 for a stably minimal
Weierstrass model having µ(P) 6= 0 for some points P ∈ J0(k).

This behavior cannot occur for elliptic curves; here µ always factors through
8(k), provided the given Weierstrass model is minimal; see [Silverman 1988]. This
is crucial for the usual algorithms to compute canonical heights on elliptic curves.
Note that a Weierstrass model of an elliptic curve is minimal if and only if it has
rational singularities by [Conrad 2005, Corollary 8.4].

8. Néron functions and reduction graphs

Our next goal is to derive a formula for µ(P) in the case when the minimal proper
regular model of C is semistable and µ factors through 8(k). To this end, we need
the notion of Néron functions. The following result is due to Néron; see [Lang
1983, §11.1].

Proposition 8.1. Let A be an abelian variety defined over a local field k. Then
we can associate to any divisor D ∈ DivA(k̄) a function λD : A(k̄) \ supp(D)→ R

such that the following conditions are satisfied, where we write λ≡ λ′ mod const.
to indicate that the functions λ and λ′ differ by a constant.

(1) If D, E ∈ DivA(k̄), then λD+E ≡ λD + λE mod const.

(2) If D = div( f ) ∈ DivA(k̄) is principal, then λD ≡ v̄ ◦ f mod const., where v̄ is
the extension of v to k̄.

(3) If D ∈ DivA(k̄) and TP : A→ A is the translation map by a point P ∈ A(k̄),
then we have λT ∗P D ≡ λD ◦ TP mod const.

Also, λD is uniquely determined up to adding a constant.

We call a function λD as in Proposition 8.1 a Néron function associated with D.
We can use local heights on Kummer coordinates to construct Néron functions on

the Jacobian J of our genus-2 curve C . If P0 ∈ C(k̄), then we have an embedding
Ck̄→ Jk̄ (defined over k̄) that maps P ∈ C(k̄) to the divisor class [(P)− (P0)] ∈

Pic0
C(k̄) = J (k̄). Its image is the theta divisor 2P0 . We set 2±P0

= 2P0 +2ι(P0);
then 2±P0

is symmetric and in the linear equivalence class of 22 (where 2 is a theta
divisor coming from taking a Weierstrass point as base-point). For the following,
fix a point∞∈ C(k̄) at infinity. For i ∈ {1, . . . , 4}, we set

Di =2
±

∞
+ div

(
κi

κ1

)
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and we define a function λ̂i : J (k) \ supp(Di )→ R by

λ̂i (P)= λ̂
(
κ(P)
κi (P)

)
.

Lemma 8.2. Let∞ ∈ C(k̄) be a point at infinity as above and let i ∈ {1, . . . , 4}.
Then Di is defined over k and the function λ̂i is a Néron function associated with Di .

Proof. If ∞ /∈ C(k), then we have ∞ ∈ C(k ′) for some quadratic extension k ′

of k and the nontrivial element of the Galois group Gal(k ′/k) maps ∞ to ι(∞),
proving the first assertion. For a proof of the second assertion, see [Uchida 2011,
Theorem 5.3]. �

Definition 8.3. Assume that C has semistable reduction over k. Let C ′ = Cmin
v,k̄

denote the special fiber of the minimal proper regular model Cmin of C , considered
over the algebraic closure of the residue field k. The reduction graph R(C) of C
is a graph with vertex set the set of irreducible components of C ′; two vertices
01 and 02 are connected by n edges, where n is the number of intersection points
of 01 and 02 if 01 6= 02, and n is the number of nodes of 01 if 01 = 02. The Galois
group of k acts on R(C) in a natural way.

We consider R(C) as a metric graph by giving each edge length 1. For two
vertices 01 and 02, we define r(01, 02) as the resistance between the vertices, when
R(C) is considered as an electric network with unit resistance along every edge.

Remark 8.4. We can compute r(01, 02) as follows. Order the vertices of R(C)
in some way and let M be the intersection matrix with respect to this ordering.
Since all components of the special fiber have multiplicity one, the kernel of M
is spanned by the “all-ones” vector and the image of M consists of the vectors
whose entries sum to zero. Let v be the vector with entries zero except that the
entry corresponding to 01 is 1 and the entry corresponding to 02 is −1. Then there
is a vector g with rational entries such that Mg = v, and

r(01, 02)=−g · v

is, up to sign, the standard inner product of the two vectors. (Note that g is not
unique, but adding a vector in the kernel of M to it will not change the result.) See
for instance [Cinkir 2011, Lemma 6.1].

Note that the linear map given by M on the space of functions on the vertices can
be interpreted as the discrete Laplace operator on the graph R(C). It is then easy to
see that g, viewed as a function on the vertices, is piecewise linear along sequences
of edges not containing 01, 02 or a vertex of degree at least 3. This makes it quite
easy to find g and to compute r(01, 02).

The reduction graph is unchanged when we replace k by an unramified extension.
If we base-change to a ramified extension k ′ of k with ramification index e, then
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the new reduction graph is obtained by subdividing the edges of R(C) into e new
edges. We can give these new edges length 1/e; then the underlying metric space
remains the same. In particular, r(01, 02) does not depend on k ′. This allows us to
replace k by a finite extension if necessary. The scaling of the length corresponds
to extending the valuation v : k× � Z to k̄× → Q instead of considering the
normalized valuation on k ′. All notions defined in terms of the valuation (for
example, intersection numbers) are then scaled accordingly.

Proposition 8.5. We assume that Cmin is semistable. Let P = [(P1)− (P2)] ∈ J (k),
with P1, P2 ∈ C(k) mapping to components 01 and 02, respectively, of the special
fiber of Cmin. We make the following further assumptions.

(i) If Q1,Q2∈C(k)map to01 and02, respectively, thenµ(P)=µ([(Q1)−(Q2)]).

(ii) There is a constant µ1 ∈Q such that µ([(Q1)− (Q′1)])= µ1 for all Q1, Q′1 ∈
C(k) mapping to 01 such that the images of Q1 and Q′1 on the special fiber of
Cmin are distinct.

(iii) There is a constant µ2 ∈Q such that µ([(Q2)− (Q′2)])= µ2 for all Q2, Q′2 ∈
C(k) mapping to 02 such that the images of Q2 and Q′2 on the special fiber of
Cmin are distinct.

Then we have
µ(P)= r(01, 02)+

1
2(µ1+µ2).

Proof. By the discussion preceding the statement of the theorem, we can assume
that k is sufficiently large for C(k) to contain all points we might be interested in.

Let P0∈C(k). The embedding with respect to P0 is obtained from the “difference
map” ψ : C × C → J that sends a pair of points (P1, P2) to [(P1) − (P2)] by
specializing the second argument to P0. One easily checks that

ψ∗2P0 =1C + ({ι(P0)}×C)+ (C ×{P0}),

where 1C denotes the diagonal and ι is the hyperelliptic involution on C . We then
have

ψ∗2±P0
= 21C + pr∗1 D0+ pr∗2 D0,

where D0 = (P0)+ (ι(P0)). By the results in [Heinz 2004] this implies that, taking
λ0 to be a Néron function associated to 2±P0

,

λ0([(P1)− (P2)])= 2〈P1, P2〉+ 〈P1+ P2, P0+ ι(P0)〉+ c

for all points P1, P2 ∈ C(knr) with P1 6= P2 and {P1, P2} ∩ {P0, ι(P0)} =∅, where
〈 · , · 〉 is the pairing in [Heinz 2004, Theorem 4.4] and c ∈ R is a constant.

If Cmin has semistable reduction, then, by [Heinz 2004, Remark 4.6], the pairing
〈 · , · 〉 coincides with Zhang’s admissible pairing ( · , · )a [1993] in terms of harmonic
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analysis on the reduction graph R(C). In these terms, we have, for Q, Q′ ∈ C(knr),

〈Q, Q′〉 = (Q, Q′)a = i(Q, Q′)+ gν(0, 0′),

where i(Q, Q′) is the intersection multiplicity of the sections Q, Q′ ∈ Cmin(Onr)

induced by Q and Q′, respectively, and gν(0, 0′) is the Green’s function associated
to a certain measure ν on R(C), with 0 and 0′ being the respective components of
the special fiber of Cmin that Q and Q′ reduce to. See [Zhang 1993, §4]. We extend
gν to a bilinear map on the free abelian group generated by the vertices of R(C).

Lemma 8.2 gives, for P0 =∞ and P = [(P1)− (P2)] with normalized Kummer
coordinates x(P)= (x1(P), . . . , x4(P)),

µ(P)= v(x1(P))− λ̂1(P)

= v(x1(P))− 2i(P1, P2)− i(P1+ P2, P0+ ι(P0))

− 2gν(01, 02)− gν(01+02, 00+0
′

0)− c,

where 01 and 02 are the respective components that P1 and P2 reduce to, and
00 and 0′0 are the respective components that P0 and ι(P0) reduce to. We assume
for a moment that the images of P1 and P2 on the special fiber of the original
model C are distinct from the images of the points at infinity. By assumption (i),
µ(P) is unchanged when we replace the points P1 and P2 by other points still
mapping to 01 and 02, respectively. We can therefore assume that the images of P1

and P2 on the special fiber of Cmin are distinct from each other and also from the
images of P0 and ι(P0). This implies that v(x1(P))= 0 and that the intersection
numbers in the formula above are zero. We can choose further points Q1 and Q2

that also reduce to 01 and 02 with reductions on the special fiber of C distinct from
those of P0 and ι(P0) and such that P1, P2, Q1 and Q2 all reduce to distinct points
on the special fiber of Cmin. Using assumptions (ii) and (iii), we obtain the relations

−
1
2µ1 =−

1
2µ([(P1)− (Q1)])= gν(01, 01)+ gν(01, 00+0

′

0)+
1
2 c,

µ(P)= µ([(P1)− (P2)])=−2gν(01, 02)− gν(01+02, 00+0
′

0)− c,

−
1
2µ2 =−

1
2µ([(P2)− (Q2)])= gν(02, 02)+ gν(02, 00+0

′

0)+
1
2 c.

Adding them together gives

µ(P)− 1
2(µ1+µ2)= gν(01−02, 01−02)= r(01, 02),

as desired. See [Zhang 1993, §3] for the last equality.
If our assumption that the images of P1 and P2 on the special fiber of the original

model C are distinct from the images of the points at infinity is not satisfied, then
we choose another point P0 for which the assumption is satisfied. We can then
perform a change of coordinates τ over O that moves P0 to infinity and apply the
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result above. By Corollary 4.6 (note that v(τ) = 0 in this case) and the fact that
v(τ(x))= v(x), µ(P) is unchanged by τ . �

Remark 8.6. We see from the proof that for two points Q, Q′ both having image
on a component 0, but with distinct reductions that are also distinct from those of
P0 and ι(P0), we always have

µ([(Q)− (Q′)])=−2gν(0, 0)− 2gν(0, 00+0
′

0)− c.

So the assumption that this value does not depend on the choice of Q and Q′ is not
really necessary.

Theorem 8.7. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model. Let J be the
Jacobian of C and J its Néron model over S = SpecO. Assume that the minimal
proper regular model Cmin of C over S is semistable and that µ factors through the
component group8(k) of J. Let P ∈ J (k) be such that its image in8(k) is [01−02],
where 01 and 02 are components of the special fiber of Cmin. Then we have

µ(P)= r(01, 02).

Proof. Since µ factors through8(k), it follows that µ([(P1)−(P2)]) vanishes when
P1 and P2 map to the same component on the special fiber of Cmin and in general
depends only on the components P1 and P2 map to. This shows that assumptions
(i)–(iii) in Proposition 8.5 are satisfied with µ1 = µ2 = 0. The claim follows. �

9. Formulas and bounds for µ(P) in the nodal reduction case

In this section and the next, we will deduce explicit formulas for µ(P) when we
have a stably minimal Weierstrass model C. Recall that Cmin denotes the minimal
proper regular model of C. In the following, when we speak of components, points,
and so on, of the special fiber of C or Cmin, we always mean geometric components,
points, and so on.

In this section we shall use Theorem 8.7 and Remark 8.4 to find explicit formulas
for µ(P) whenever C/k has nodal reduction, i.e., the special fiber Cv of C is reduced
and all multiplicities are at most 2. In this case C is semistable and therefore it has
rational singularities. Let 1=1(C) denote the discriminant of C; we assume that
there is at least one node, so that v(1) > 0.

Since there are at most three nodes in the special fiber of C, we have to consider
three different cases.

First suppose that there is a unique node in the special fiber of C and set m=v(1).
In the notation of [Namikawa and Ueno 1973] this is reduction type [Im−0−0]. If
m = 1, then C is regular over S. In general, there is a unique component, which we
denote by A, of genus 1 in the special fiber of Cmin. As in the case of multiplicative
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A
B1

B2

Bm−1

Bm−2 A

B1

B2

Bm−1
Bm−2

Figure 1. The special fiber of reduction type [Im−0−0] and its
reduction graph.

reduction of elliptic curves (see, for example, [Silverman 1994]), the singular point
on the special fiber is replaced by a string of m − 1 components of Cmin, all of
genus 0 and multiplicity 1. We choose one of the two components intersecting A
and call it B1 and number the other components B2, . . . , Bm−1 consecutively as in
Figure 1.

Using [Bosch et al. 1990, Theorem 9.6.1], it is easy to see that the geometric com-
ponent group 8(k̄) of the Néron model is generated by [B1− A] and is isomorphic
to Z/mZ. We have [Bj − A] = j · [B1− A] in 8(k̄).

We set B0 := Bm := A. Then we have the following result.

Proposition 9.1. Suppose that there is a unique node in the special fiber of C; let m
and the notation for the components of the special fiber of Cmin be as above. If
P ∈ J (k) maps to [Bi − A] in the component group, then we have

µ(P)=
i(m− i)

m
.

Proof. Since the given model is semistable, we can use Theorem 8.7 and Remark 8.4.
One choice of g as in Remark 8.4 is given by

g(Bj )=


−

j (m− i)
m

if 0≤ j ≤ i ,

−
i(m− j)

m
if i ≤ j ≤ m.

Then

µ(P)= r(Bi , A)=−(g(Bi )− g(A))=
i(m− i)

m
. �

Remark 9.2. Proposition 9.1 resembles the formula for the canonical local height on
an elliptic curve with split multiplicative reduction given, for instance, in [Silverman
1988].

Now suppose that there are precisely two nodes in the special fiber of C. The
reduction type is [Im1−m2−0] in the notation of [Namikawa and Ueno 1973], where
m1,m2 ≥ 1 and m1+m2 = v(1). The special fiber of Cmin is obtained by blowing
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Cm2−2

Figure 2. The special fiber of reduction type [Im1−m2−0] and its
reduction graph.

up the two singular points of the special fiber of C repeatedly and replacing them
with a chain of m1− 1 and m2− 1 curves of genus 0, respectively. We call these
components B1, . . . , Bm1−1,C1, . . . ,Cm2−1, numbered as in Figure 2, where A
contains all images of points reducing to a nonsingular point and we pick components
B1 and C1 intersecting A as in the case of a unique node. The component group
8(k̄) is isomorphic to Z/m1Z×Z/m2Z and is generated by [B1− A] and [C1− A];
this follows again using [Bosch et al. 1990, Theorem 9.6.1]. If we have m1 = 1 or
m2 = 1, then the corresponding singular point on the special fiber of C is regular
and is therefore not blown up.

We set B0 := Bm1 := C0 := Cm2 := A. Then every element of the component
group has a representative of the form [Bi −Cj ] with 0≤ i ≤ m1 and 0≤ j ≤ m2.
The following result expresses µ(P) in terms of this representative.

Proposition 9.3. Suppose that there are exactly two nodes in the special fiber of C;
let m1 and m2 and the notation for the components of the special fiber of Cmin be as
above. If P ∈ J (k) maps to [Bi −Cj ] in the component group, then we have

µ(P)=
i(m1− i)

m1
+

j (m2− j)
m2

.

Proof. This is an easy computation along the same lines as in the proof of
Proposition 9.1. �

The final case that we have to consider is the case of three nodes in the special
fiber of C, which then has two components. We call these components A and E .
The special fiber of the minimal proper regular model is obtained using a sequence
of blowups of the singular points; they are replaced by a chain of mi − 1 curves
of genus 0 and multiplicity 1, respectively, where v(1)= m1+m2+m3. Hence
the special fiber of Cmin contains the two components A and E , connected by
three chains of curves of genus 0 that we call B1, . . . , Bm1−1, C1, . . . ,Cm2−1 and
D1, . . . , Dm3−1, respectively, where B1, C1 and D1 intersect A, as shown in Figure 3.
The reduction type is [Im1−m2−m3].
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Figure 3. The special fiber of reduction type [Im1−m2−m3] and its
reduction graph.

By [Bosch et al. 1990, Proposition 9.6.10], the group 8(k̄) is isomorphic to
Z/dZ×Z/nZ, where

d = gcd(m1,m2,m3) and n =
m1m2+m1m3+m2m3

d
.

We set B0 := C0 := D0 := A and Bm1 := Cm2 := Dm3 := E . Then it is not hard
to see that each element of 8(k̄) can be written in one of the forms

[Bi −Cj ], [Cj − Dl] or [Dl − Bi ]

with 0≤ i ≤m1, 0≤ j ≤m2, 0≤ l ≤m3. The following result allows us to express
µ(P) for any P ∈ J (k) in terms of the component P maps to.

Proposition 9.4. Suppose that there are three nodes in the special fiber of C; let
m1, m2, m3 and the notation for the components of the special fiber of Cmin be as
above. If P maps to [Bi −Cj ] in the component group for some 0 ≤ i ≤ m1 and
0≤ j ≤ m2, then we have

µ(P)=
m2i(m1− i)+m3(i + j)(m1− i +m2− j)+m1 j (m2− j)

m1m2+m1m3+m2m3
.

The formulas for [Cj − Dl] and [Dl − Bi ] are analogous.

Proof. The proof is analogous to those of Propositions 9.1 and 9.3. To find g, use
that it is piecewise linear on the segments AB1 · · · Bi , Bi · · · Bm1−1 E , AC1 · · ·Cj ,
Cj · · ·Cm2−1 E , AD1 · · · Dm3−1 E and the relations at the vertices A, E , Bi , Cj . �
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Remark 9.5. Using the relation ε(P) = 4µ(P) − µ(2P), one can show by a
somewhat tedious computation involving a number of different cases that if the
image of P in 8(k) is [01−02], where 01 and 02 are components of the special
fiber of Cmin, then ε(P) is the “distance” between 01 and 02 in the reduction graph,
where the “length” of the path between Bi and Bj (say, analogously for Ci , Cj and
Di , Dj ) is min{2|i − j |,m1}, and otherwise “lengths” are additive. In particular, if
8(k)=8(k̄), then

γ =max{ε(P) : P ∈ J (k)} =max{mi +mj − δi j : 1≤ i < j ≤ 3},

where δi j = 0 if both mi and mj are even, and δi j = 1 otherwise.

Remark 9.6. In order to use the results of this section to actually compute µ(P) for
a given point P ∈ J (k), we need to be able to find the component of Jv that P reduces
to. One approach is to find P1, P2∈C such that P=[(P1)−(P2)] and find the reduc-
tions of P1 and P2 to Cmin

v . Another approach is to use a transformation (possibly de-
fined over an unramified extension of k) to move the singular points to∞, (0, 0) and
(1, 0), respectively. Then we can (possibly after applying another transformation)
read off the component that P maps to directly from the Kummer coordinates of P.

The discussion of this section shows that we get the following results on the local
height constant β =max{µ(P) : P ∈ J (k)}. Recall that γ =max{ε(P) : P ∈ J (k)}
and that 1

4γ ≤ β ≤
1
3γ . We will see that in many cases the lower bound is attained.

Let P be a node on Cv; it is defined over a finite extension of k. We say that the
node P is split if the two tangent directions of the branches at P are defined over
every extension that P is defined over, otherwise P is nonsplit. We say that P is even
if its contribution mi to the valuation of the discriminant is even, and odd otherwise.

Corollary 9.7. Suppose that C/k is a smooth projective curve of genus 2 given by
an integral Weierstrass model C such that there is a unique node in the special fiber
of C and let m = v(1). Then we have

β =
1

2m

⌊
m2

2

⌋
≤
v(1)

4

if the node is split or even, and β = 0 otherwise.

Proof. This follows from Proposition 9.1, taking into account that if m is odd and
the node is nonsplit, then the group 8(k) is trivial. �

Remark 9.8. Using the relation ε(P)= 4µ(P)−µ(2P), one can check that

ε(P)= 2 min{i,m− i} if P maps to [Bi − A] in 8(k).

If m is even (and β > 0), then β = 1
4 m = 1

4γ . If m is odd, then β = 1
4

(
m− 1

m

)
and

γ =m− 1, so β/γ = 1
4

(
1+ 1

m

)
approaches 1

4 as m→∞, but for m = 3 (the worst
case), we have β = 1

3γ .
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Corollary 9.9. Suppose that C/k is a smooth projective curve of genus 2 given by
an integral Weierstrass model C such that there are exactly two nodes in the special
fiber of C. Let v(1)= m1+m2 as above. Then we have

β =
1

2m1

⌊
m2

1

2

⌋
+

1
2m2

⌊
m2

2

2

⌋
≤
v(1)

4

if each of the nodes is split or even,

β =
1

2mi

⌊
m2

i

2

⌋
if the node corresponding to mi is split or even and the other node is nonsplit and
odd, and β = 0 if both nodes are nonsplit and odd.

Proof. This follows from Proposition 9.3, taking into account the action of Frobenius
on 8(k̄). �

If we have three nodes, then it helps to take the field of definition of the nodes
into account.

Corollary 9.10. Suppose that C/k is a smooth projective curve of genus 2 given
by an integral Weierstrass model C such that there are three nodes in the special
fiber of C. We say that C is split if the two components A and E of the special fiber
of Cmin are defined over k; otherwise C is nonsplit. Let v(1) = m1+m2+m3 as
above and set M = m1m2+m1m3+m2m3.

(a) If all nodes are k-rational, C is split, and we have m1 ≥ m3 and m2 ≥ m3, then

β =
1

2M

(
m2

⌊
m2

1

2

⌋
+m3

⌊
(m1+m2)

2

2

⌋
+m1

⌊
m2

2

2

⌋)
≤

m1+m2

4
<
v(1)

4
.

(b) If all nodes are k-rational, but C is nonsplit, then

β =max{0} ∪
{1

4(mi +mj ) : 1≤ i < j ≤ 3, mi and mj even
}
.

(c) If two of the nodes lie in a quadratic extension of k and are conjugate over k
and one is k-rational, then

β=



m1

M
max

{⌊
m2

1

2

⌋
+m1m3,

⌊
m2

3

2

⌋
+m1

⌊
m3

2

⌋}
if C is split,

m1

2
if C is nonsplit and m1 is even,

0 otherwise,

where m3 corresponds to the rational node (and m1 = m2).
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(d) If all nodes are defined over a cubic extension of k and are conjugate over k,
then m1 = m2 = m3 =

1
3v(1) and

β =

{
1
9v(1) if C is split,

0 otherwise.

Proof. The proof of (a) follows easily from Proposition 9.4.
For the other cases, note that in the nonsplit case some power of Frobenius

acts as negation on the component group 8(k̄), so the only elements of 8(k) are
elements of order 2 in 8(k̄), which correspond to [Bm1/2−Cm2/2] if m1 and m2 are
even

(
where µ takes the value 1

4(m1+m2)
)
, and similarly with the obvious cyclic

permutations.
In the situation of (c), we must have m1 = m2. If P = [(P1)− (P2)] ∈ J (k) and

P1 ∈ C(k̄) maps to one of the conjugate nodes, then P2 must map to the other, so
all P ∈ J (k) must map to a component of the form [Bi −Cj ] or [Di − Dj ]. Now
the result in the split case follows from a case distinction depending on whether
m1 ≤ m3 or not. In the nonsplit case, the only element of order 2 that is defined
over k is [Bm1/2−Cm1/2] if it exists.

In the situation of (d), the group 8(k) is of order 3 (generated by [E − A]) in
the split case and trivial in the nonsplit case. �

Extending the valuation v : k×� Z to v̄ : k̄×→Q, we get extensions of ε and µ
to J (k̄). Denote max{µ(P) : P ∈ J (k̄)} by β̄ and max{ε(P) : P ∈ J (k̄)} by γ̄ . Then
by the discussion at the beginning of Section 8 and the results above, we find that

β̄ = 1
4 γ̄ =

1
4v(1),

when there are one or two nodes, and

1
6v(1)≤ β̄ =

1
4 γ̄ =

1
4(v(1)−min{m1,m2,m3}) <

1
4v(1),

when there are three nodes. (Equality is achieved as soon as the Galois action on
R(C) is trivial and the ramification index is even.)

10. Formulas and bounds for µ(P) in the cuspidal reduction case

In this section we consider the case of a stably minimal Weierstrass model C such
that there are (one or two) points of multiplicity 3 on the special fiber. These points
are either both k-rational or they are defined over a quadratic extension of k and are
conjugate over k.

In the notation of [Namikawa and Ueno 1973], the reduction type is of the form
[K1−K2− l], where l ≥ 0 and K j is an elliptic Kodaira type for j ∈ {1, 2}. We can
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A

2

Figure 4. The special fiber of reduction type [I0− I∗0− 0].

compute K1, K2 and l as in [Liu 1994, §6.1]. By [Liu 1994, §7], we have

8(k̄)∼=81(k̄)×82(k̄),

where 8j is the component group of an elliptic curve with Kodaira type K j . As in
the previous section, we write 1=1(C) for the discriminant of the model C.

If C is not regular, then we can compute the minimal proper regular model
Cmin of C from C by a sequence of blowups in the singular point(s) of C, so the
corresponding morphism ζ : Cmin

→ C is the minimal desingularization of C.
Suppose that l > 0. Then the special fiber of Cmin consists of Kodaira types

K1 and K2, connected by a chain of l−1 rational curves. See for example Figure 5.
The desingularization ζ contracts K2 to one of the singular points; in this case we
say that this point corresponds to K2. If there is another singular point in Cv(k̄),
then it corresponds to K1; otherwise we must have K1 = I0.

Suppose now that l = 0. If both K1 and K2 are good or multiplicative, then we
are in the situation [Im1−m2−0] for some m1,m2 ≥ 0, which we have discussed in
the previous section. So we may assume that at least one of the K j is additive,
say K2. Then Cmin

v looks like Kodaira type K2, but with one of the rational curves
replaced by (see [Namikawa and Ueno 1973]):

• a curve A of genus 1 if K1 = I0 (see Figure 4 for the case K2 = I∗0);

• one of the rational components of K1, otherwise; the remainder of K1 is then
attached to this component.

We say that a singularity corresponds to one of the Kodaira types K1 or K2 similarly
to the case l > 0.

Lemma 10.1. Suppose that the residue characteristic of k is not 2. Let C be given
by a stably minimal Weierstrass model with reduction type [K1−K2− l]. Then after
at most a quadratic unramified extension of k there is a stably minimal Weierstrass
model

C : Y 2
= F(X, Z)= f6 X6

+ f5 X5 Z+ f4 X4 Z2
+X3 Z3

+ f2 X2 Z4
+ f1 X Z5

+ f0 Z6

of C , isomorphic to the given model of C , such that the elliptic curve with Weier-
strass model

E1 : Y 2 Z = X3
+ f2 X2 Z + f1 X Z2

+ f0 Z3
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has Kodaira type K1 and the elliptic curve with Weierstrass model

E2 : Y 2 Z = X3
+ f4 X2 Z + f5 X Z2

+ f6 Z3

has Kodaira type K2.

Proof. After possibly making a quadratic unramified extension and applying a
transformation, we can assume that there is a unique point∞ ∈ Cv(k) at infinity
on the special fiber and that it is a cusp, corresponding to K2; see the discussion
preceding the lemma. Moreover, we can assume that if there is another singular point
in Cv(k̄), then this point is P= (0, 0)∈Cv(k) (in which case it must correspond to K1).

Because the residue characteristic is not 2, we may assume that C has H = 0 and
that f3 is a unit. By Hensel’s lemma there is a factorization F = F1 F2, where F2

is a cubic form reducing to Z3. Similarly, we may assume that F1 reduces to X3 if
there is a cusp at P and to X2(X+aZ) with a 6= 0 if there is a node at P ; otherwise
F1 is squarefree. Consider the elliptic curves given by the Weierstrass models

D1 : Y 2 Z = F1(X, Z) and D2 : Y 2 Z = F2(Z , X).

We first show that D1 has Kodaira type K1 and D2 has Kodaira type K2.
If D1 is not minimal, then we can apply a transformation to C which makes D1

minimal. This decreases the valuation of the discriminant 1(D1), but increases the
valuation of 1(D2) by the same amount. The resulting model is still stably minimal
and the resulting F2 still reduces to Z3. Hence we may assume that D1 is minimal.

Let Q = (0, 0) ∈ D1,v(k); then D1 is smooth outside Q. Note that F2 is a unit
in OC,P , so that P is a smooth point if and only if Q is a smooth point, in which
case D1 has reduction type I0 = K1. More generally, C is regular at P if and only
if D1 is regular at Q, and P is a node (resp. a cusp) if and only if Q is a node (resp.
a cusp). Recall that P corresponds to K1, so that D1 has reduction type I1 (resp. II)
if and only if K1 = I1 (resp. K1 = II).

Now suppose that C is not regular at P and D1 is not regular at Q. The minimal
desingularization ξ : C′ → C in P can be computed by a sequence of blowups,
starting with the blowup of C in P. The preimage of P under the latter map is
contained in the chart C1 obtained by dividing the x- and y-coordinates by the uni-
formizing element π . Similarly, in order to compute the minimal desingularization
ξ1 : D′1→D1 in Q, we first blow up D1 in Q; then the chart D1

1 obtained by dividing
the x- and y-coordinates by π contains the preimage of Q. But because F2 reduces
to Z3, the special fibers of C1 and D1

1 are identical. This continues to hold after
further blowups (if any are necessary), so we have ξ−1(P)= ξ−1

1 (Q). There are no
exceptional components in these preimages, since we assumed that D1 is minimal.
Therefore D′1 is in fact the minimal proper regular model of the elliptic curve defined
by D1. Since the minimal desingularization of C′ in the point ∞ ∈ C′v(k) leads
to Cmin, and since P corresponds to K1, we deduce that D1 has Kodaira type K1.
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A similar argument (for which we first apply a transformation to make D2

minimal) shows that D2 has Kodaira type K2. To complete the proof of the lemma,
we therefore only need to make sure that Ei has the same reduction type as Di

for i = 1, 2. This is certainly satisfied if the coefficients of Ei and Di agree
modulo π Ni+1, where Ni is the number of blowups needed to construct the minimal
desingularization of Di . Suppose that F1 = a0 Z3

+ a1 X Z2
+ a2 X2 Z + a3 X3 and

F2 = b3 Z3
+ b2 X Z2

+ b1 X2 Z + b0 X3. Writing out the coefficients of F in terms
of the coefficients of F1 and F2, we see that it suffices to have

v(a0b2) > v(a1), v(a0b1+ a2b2) > v(a2),

v(b0a2) > v(b1), v(a1b0+ a2b1) > v(b2).

If this is not satisfied, it can be achieved by acting on the given stably minimal
Weierstrass model via a suitable element of GL2(O) as in Section 4. Finally, we
scale the variables to get f3 = 1. �

Remark 10.2. If the residue characteristic is 2, then it is not hard to see that one
can also construct a stably minimal Weierstrass model C and corresponding elliptic
Weierstrass models E1 and E2 as in the lemma in a similar way. The construction is
more cumbersome, since we cannot assume H = 0.

In view of Theorem 7.4 we want a condition for C to have rational singularities.

Lemma 10.3. The model C has rational singularities if and only if l = 0.

Proof. We may assume that C is as in Lemma 10.1 or Remark 10.2. Then all points in
Cv(k̄)\ {∞, P} are nonsingular, where∞∈ Cv(k) is the unique point at infinity, and
P = (0, 0) ∈ Cv(k). If C is regular in P, then P is a rational singularity. If not, then,
by [Artin 1966, Theorem 3], P is a rational singularity if and only if the fundamental
cycle of ξ−1(P) has arithmetic genus 0, where ξ is any desingularization of P.
In particular, the assertion that P is a rational singularity depends only on the
configuration of ξ−1(P), where ξ : C′→ C is the minimal desingularization of P.
Now let E1 be as in Lemma 10.1 or Remark 10.2, and let ξ1 : E ′1 → E1 denote
the minimal desingularization of the singular point Q = (0, 0) ∈ E1,v(k); then
the assertion that Q is a rational singularity depends only on the configuration
of ξ−1

1 (Q). We have ξ−1(P)= ξ−1
1 (Q) as in the proof of Lemma 10.1 (this also

works when char k= 2 and does not require minimality of E1). In particular, P is a
rational singularity if and only if Q is a rational singularity.

A similar argument proves the corresponding statement for E2. Hence C has
rational singularities if and only if both E1 and E2 have rational singularities. By
[Conrad 2005, Corollary 8.4] a Weierstrass model of an elliptic curve has rational
singularities if and only if it is minimal. But it is easy to see that E1 and E2 are both
minimal if and only if l = 0. �
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Figure 5. The special fiber of reduction type [Im1 − Im2 − l] and
its reduction graph.

According to Lemma 10.3, not all singularities of the given stably minimal
Weierstrass model C are rational when l > 0. The following example shows that in
this situation ε(P) 6= 0, and hence µ(P) 6= 0, can indeed occur for P ∈ J0(k).

Example 10.4. Let p be an odd prime and let C/Qp be given by

Y 2
= Z(X2

+ Z2)(X3
+ p5 X Z2

+ p8 Z3).

Let P1 = (0, p4) ∈ C(Qp) and P2 = ι(P1). The reduction type is [I0− III− 1] and
hence #8(k̄)= 2. It turns out that both P1 and P2 map to the same component and
so we have P = [(P1)− (P2)] ∈ J0(k). The image of P on the Kummer surface is
of the form (x1 : 0 : 0 : x4), where v(x4)− v(x1) = 2. We get ε(P) = ε(2P) = 6
and µ(P)= µ(2P)= 2.

The case of semistable reduction, corresponding to reduction type [Im1− Im2− l]
(see Figure 5) deserves special attention. Here l ≥ 1, by the discussion above. Note
that m1 = 0 (or m2 = 0) is possible; in that case A (or E) is a curve of genus 1 and
there are no components Bi (or Di ). If m1= 1 (or m2= 1), then A (or E) is a nodal
curve (again there are no Bi or Di ). After perhaps an unramified quadratic extension,
we can assume that all components in the “chain” that connects the two polygons in
the special fiber of Cmin are defined over k. There are then l + 1 different (meaning
pairwise nonisomorphic over O) minimal Weierstrass models of the curve; compare
the proof of Lemma 5.4. Explicitly, these models can be taken to have the form

C j : Y 2
+ (h0π

3 j Z3
+ h1π

j Z2 X + h2π
l− j Z X2

+ h3π
3(l− j)X3)Y

= f0π
6 j Z6
+ f1π

4 j X Z5
+ f2π

2 j X2 Z4
+ X3 Z3

+ f4π
2(l− j)X4 Z2

+ f5π
4(l− j)X5 Z + f6π

6(l− j)X6 (10-1)
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for j = 0, 1, . . . , l, where

y2
+ h1xy+ h0 y = x3

+ f2x2
+ f1x + f0

and
y2
+ h2xy+ h3 y = x3

+ f4x2
+ f5x + f6

are minimal Weierstrass equations of elliptic curves of reduction types Im1 and Im2 ,
respectively. Such a model corresponds to the vertex Cj of the reduction graph
(where we set C0 = A and Cl = E); the corresponding component of the special
fiber of Cmin is the one that is visible in the special fiber of C j . The valuation of
the discriminant of C j is m1+m2+ 12l and does not depend on j.

A simple path in R(C) is a subgraph that is a tree without vertices of valency ≥ 3.
Let P1, P2 ∈ C(k) reduce to components 01 and 02 of the special fiber of Cmin,
respectively. Consider the model C j of C . If there is a simple path from 01 to 02

in the reduction graph that passes through Cj , then we say that C j lies between
P1 and P2. We denote the µ-function computed with respect to C j by µj .

Proposition 10.5. Assume that C has semistable reduction of type [Im1 − Im2 − l].
Let P1, P2 ∈ C(k) be points reducing to components 01 and 02 of the special fiber
of Cmin and let j ∈ {0, 1, . . . , l}. Define jmin and jmax to be the smallest and largest
j ′ ∈ {0, 1, . . . , l} such that C j ′ lies between P1 and P2. Let P =[(P1)−(P2)] ∈ J (k).
Then

r(01, 02)+ jmax− jmin ≤ µj (P)≤ r(01, 02)+ | j − jmax| + | j − jmin|.

If C j lies between P1 and P2, then the inequalities are equalities.

Proof. First note that the last statement follows from the first, since jmin ≤ j ≤ jmax

implies jmax− jmin = | j − jmax| + | j − jmin|.
Let B0 = Bm1 = A and D0 = Dm2 = E . We prove a number of lemmas.

Lemma 10.6. If j = jmax = jmin ∈ {0, l}, then µj (P)= r(01, 02).

Proof. We assume that j = jmax = jmin = l; the other case is analogous. Then
01 and 02 are both of the form Di , and we consider the model Cl . We first claim that
µ(P)= 0 if 01 = 02, but the images of P1 and P2 on 01 are distinct. This is clear
if 01 = D0 = E , since in this case P is in the image of α; compare Lemmas 7.1
and 7.2. Otherwise, we note that the points with nonzero multiplicity on the special
fiber of Cl have multiplicities 1, 2 and 3. Transforming the equation over O if
necessary, we can assume that its reduction is case 7 in Table 1 of [Stoll 2002] or
(if the residue characteristic is 2) case 5 in Table 2 here.

Recall that 01 = 02 = Di , where we can assume 0 < i ≤ 1
2 m2. Applying a

transformation, we may assume that the points P1= (ξ1 : η1 : 1) and P2= (ξ2 : η2 : 1)
both reduce to (0 : 0 : 1) modulo π and that m2=min{v( f0), 2v( f1)}. First suppose
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that i < 1
2 m2. We then have v(ξ1) = v(ξ2) = v(ξ1 − ξ2) = i . Normalizing the

Kummer coordinates x of P so that x1 = 1, we can check that v(x2) and v(x3)

are positive, but that v(x4) = 0. This follows because 01 = Di = 02 implies that
v( f2ξ1ξ2+ 2η1η2)= 2i if char(k) 6= 2 and H = 0 and that v(ξ1η2+ ξ2η1)= 2i if
char(k)= 2. By a similar argument, the reduction of the image of P on the Kummer
surface has nonvanishing last coordinate if m2 is even and i = 1

2 m2. According to
the tables, this implies that ε(P)= 0 and therefore also µ(P)= 0.

Now consider the case that 01 and 02 do not necessarily coincide. The con-
siderations above imply that the assumptions of Proposition 8.5 are satisfied with
µ1 = µ2 = 0 (where we use Lemma 3.7 for the first assumption); the proposition
then establishes the claim. �

Lemma 10.7. Assume that 01 = 02 = Cj with 0< j < l. Then µj (P)= 0.

Proof. In this case, P is in the image of α, so the claim follows by Proposition 7.3. �

Note that Lemmas 10.6 and 10.7 establish the claim of Proposition 10.5 in all
cases such that j = jmin = jmax.

Lemma 10.8. Assume that both C j and C j+1 lie between P1 and P2, where 0≤ j < l.
Then µj (P)= µj+1(P).

Proof. Let τ : (ξ : η : ζ ) 7→ (πξ : η : π−1ζ ); then τ gives an isomorphism from the
generic fiber of C j to that of C j+1. The induced map on Kummer coordinates is

(x1, x2, x3, x4) 7→ (π−2x1, x2, π
2x3, x4);

we have v(τ) = 0. Since both C j and C j+1 lie between P1 and P2, assuming
that 01 is to the left and 02 to the right of Cj and Cj+1, we must have that the
x-coordinate of P1 on C j does not reduce to infinity, whereas that of P2 does. For
normalized Kummer coordinates x = (x1, x2, x3, x4) of P on the Kummer surface
associated to C j , this implies v(x2)= 0 (the point is not in the kernel of reduction,
so v(x4)≥min{v(x1), v(x2), v(x3)}) and v(x1) > 0. Comparing valuations in the
equation of C j , we see that P2 = (1 : η : ζ ) must have v(ζ ) ≥ 2, which implies
v(x1) ≥ 2. It follows that v(τ(x)) = 0 = v(x). By Corollary 4.6 we also have
λ̂(τ (x))= λ̂(x) (recall that v(τ)= 0). Since

−v(x)−µj (P)= λ̂(x)= λ̂(τ (x))=−v(τ(x))−µj+1(P),

the claim follows. �

Lemma 10.9. If C j lies between P1 and P2, then µj (P) depends only on 01 and 02.

Proof. Let P ′1, P ′2 ∈ C(k) be points also mapping to 01 and 02, respectively. We
assume without loss of generality that 01 is to the left of 02. By Lemma 10.6 or
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Lemma 10.7, we have that µjmin([(P1)− (P ′1)]) = 0 and µjmax([(P2)− (P ′2)]) = 0.
Using Lemmas 10.8 and 3.7, we obtain

µj ([(P ′1)− (P
′

2)])= µjmin([(P
′

1)− (P
′

2)])= µjmin([(P1)− (P ′2)])

= µjmax([(P1)− (P ′2)])= µjmax([(P1)− (P2)])= µj (P). �

Lemma 10.10. Let P ′1, P ′2 ∈ C(k) be points mapping to distinct points on the same
component of the special fiber of Cmin and let P ′ = [(P ′1)− (P

′

2)] ∈ J (k). Let j0 be
the unique index such that C j0 lies between P ′1 and P ′2. Then µj (P ′)= 2| j − j0|.

Proof. By Lemmas 10.6 and 10.7, we have µj0(P
′) = 0. Since the images of P ′1

and P ′2 on the special fiber of Cmin are distinct, P ′ is not in the kernel of reduction
with respect to C j0 . If

x ( j0) =
(
x ( j0)

1 , x ( j0)
2 , x ( j0)

3 , x ( j0)
4

)
are normalized Kummer coordinates for P ′ on the Kummer surface associated
to C j0 , we therefore have

0= v(x ( j0))=min
{
v(x ( j0)

1 ), v(x ( j0)
2 ), v(x ( j0)

3 )
}
.

Applying a suitable power of τ (see the proof of Lemma 10.8), we find that

x ( j)
=
(
π2( j0− j)x ( j0)

1 , x ( j0)
2 , π2( j− j0)x ( j0)

3 , x ( j0)
4

)
are (not necessarily normalized) Kummer coordinates for P ′ on the Kummer surface
associated to C j . For definiteness, assume that j > j0, the case j = j0 being clear.
Similarly to the proof of Lemma 10.8, we find that 0= v(x ( j0))= v(x ( j0)

1 ), which
implies that v(x ( j))=−2( j − j0). In the same way as in the proof of Lemma 10.8,
we deduce µj (P ′)= 2( j − j0)= 2| j − j0|. �

To continue the proof of the proposition, we now first consider the case that C j lies
between P1 and P2. In this case, Lemmas 10.9 and 10.10 show that the assumptions
in Proposition 8.5 hold with µ1= 2| j− jmin| and µ2= 2| j− jmax| or conversely. So
the statement follows from Proposition 8.5 and | j− jmax|+| j− jmin| = jmax− jmin.

Now assume that C j does not lie between P1 and P2. We assume for definiteness
that j > jmax. For normalized Kummer coordinates x ( jmax) for P = [(P1)− (P2)]

on the Kummer surface associated to C jmax , we have

v(x ( jmax)

2 )≤min
{
v(x ( jmax)

1 ), v(x ( jmax)

3 )
}
;

compare the proof of Lemma 10.8 above. Then x ( j)
= τ j− jmax(x ( jmax)) are Kummer

coordinates for [(P1)− (P2)] on the Kummer surface associated to C j , and we have

v(x ( jmax))− 2( j − jmax)≤ v(x ( j))≤ v(x ( jmax)).
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It follows that

µj (P)−µjmax(P)=
(
−λ̂(x ( j))− v(x ( j))

)
−
(
−λ̂(x ( jmax))− v(x ( jmax))

)
= v(x ( jmax))− v(x ( j)) ∈ {0, 1, . . . , 2( j − jmax)}.

As µjmax(P) = r(01, 02)+ jmax − jmin by the case already discussed, the result
follows, and the proof of Proposition 10.5 is finished. �

Corollary 10.11. Let C be a stably minimal Weierstrass model of C with discrimi-
nant 1; assume that C has reduction type [Im1 − Im2 − l] with l > 0. As usual, let

β(C)=max{µ(P) : P ∈ J (k)} and β̄(C)=max{µ(P) : P ∈ J (k̄)},

where µ is computed with respect to C. Then we have

β(C)≤ β̄(C)= 1
4(m1+m2)+ 2l < 1

4v(1) and β̄ ≥ 1
6v(1).

Proof. The assumption on the reduction type implies that the model is equiv-
alent to one of the form (10-1). Proposition 10.5 then gives upper bounds for
µ([(P1) − (P2)]), with P1, P2 ∈ C(k̄), depending on the images 01 and 02 of
P1 and P2 in the reduction graph. The maximizing case occurs for 01 = Bm1/2 and
02 = Dm2/2, giving

µ([(P1)− (P2)])= r(Bm1/2, Dm2/2)+ l = 1
4 m1+ l + 1

4 m2+ l.

For the remaining inequalities, recall that v(1)=m1+m2+ 12l and that l > 0. �

We state a technical lemma which will be needed for the proof of Theorem 10.13.

Lemma 10.12. Suppose that the residue characteristic of k is not 2. Consider a
degenerate Weierstrass equation of the form

C : Y 2
= f0 Z6

+ f1 X Z5
+ f2 X2 Z4

+ X3 Z3

and let
E : y2

= f0+ f1x + f2x2
+ x3

be an elliptic Weierstrass equation. If Q1 = (x1, y1) and Q2 = (x2, y2) are points
in E(k), then P1 = (x1 : y1 : 1) and P2 = (x2 : y2 : 1) are points in C(k), and if
x1, x2 ∈O, then µC([(P1)− (P2)])≤ µE(Q1− Q2).

Here µE is the height correction function for the elliptic curve E , and µC denotes
the height correction function defined in the same way as µ in the smooth case in
terms of the equation C.

Proof. Let δC= (δC,1, δC,2, δC,3, δC,4) be the duplication polynomials on the Kummer
surface associated to C, and let δE = (δE,1, δE2) be the duplication polynomials for
the numerator and denominator of the x-coordinate associated to E . Then a generic
computation shows that, if (ξ1 : ξ2 : ξ3 : ξ4) is the image of [(P1) − (P2)] on
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the Kummer surface, we have (ξ4 : ξ1) = x(Q1 − Q2). In addition, we find that
δC,1(ξ1, ξ2, ξ3, ξ4)= δE,2(ξ4, ξ1) and δC,4(ξ1, ξ2, ξ3, ξ4)= δE,1(ξ4, ξ1) (as polynomi-
als in the ξ j ).

That P1, P2 ∈ C(k) is obvious from the equations. For the last statement, we
observe that min{v(ξ1), v(ξ2), v(ξ3), v(ξ4)} =min{v(ξ1), v(ξ4)} (this is where we
use that x1 and x2 are integral), which implies

µC([(P1)− (P2)])= lim
n→∞

4−nv(δ◦nC (ξ))− v(ξ)

≤ lim
n→∞

4−nv(δ◦nE (ξ4, ξ1))−min{v(ξ1), v(ξ4)}

= µE(Q1− Q2). �

The following consequence is useful for practical purposes. For simplicity, we
state it for the case of residue characteristic 6= 2, but we expect that the statement
remains true for residue characteristic 2.

Theorem 10.13. Suppose that the residue characteristic of k is not 2. Let C be a
stably minimal Weierstrass model of C such that C has reduction type [K1−K2−l].
Then

β(C)≤ β(K1)+β(K2)+ 2l,

where β(K) denotes the maximum of µ for an elliptic curve of reduction type K,
taking the action of Frobenius into account. (See Table 1 in [Cremona et al. 2006]
for the values of β(K).)

Proof. We may assume that the point(s) of multiplicity 3 on the special fiber are
defined over k, at the cost of an at most quadratic unramified extension of k. Then
we can move these points to have x-coordinates 0 and ∞, respectively, and so
we can assume that our model C is as in Lemma 10.1. Let P ∈ J (k); we write
P = [(P1)− (P2)] with points P1, P2 ∈C(k ′) for a finite extension k ′ of k such that
the reduction of C over k ′ is semistable. We can find C0, C= C j and Cl as vertices in
the reduction graph of the minimal proper regular model of C over k ′. Then the part
of the graph to the left of C0 corresponds to the reduction graph of E1 over k ′, in the
sense that we consider a semistable model that dominates E1 (and is minimal with
that property); the graph then is either a line segment (potentially good reduction) or
a line segment joined to a circle (potentially multiplicative reduction), with E1 corre-
sponding to the end of the line segment joined to the remaining graph of C. Similarly,
the part of the graph to the right of Cl corresponds to the reduction graph of E2 over k ′.

Now assume that both P1 and P2 map (strictly) to the left of C0 in the reduction
graph. This means that the x-coordinates of the points have positive valuation. We
can then find points P ′1 and P ′2 in E1(k ′)with the same x-coordinates as P1 and P2 and
nearby y-coordinates. Then P ′1−P ′2 is in E1(k) and P ′1 and P ′2 have the same images
as P1 and P2 in the reduction graph. By our previous results for the semistable
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case, the value of (or at least the upper bound given in Proposition 10.5 for) µ0(P)
depends only on the part of the graph to the left of C0. We can therefore let l tend
to infinity; then Lemma 10.12 and the discussion preceding Lemma 10.3 show that
µ0(P) is bounded by the value of µE1 on the difference P ′1− P ′2. By the arguments
in the proof of Proposition 10.5, we have

µC(P)= µj (P)≤ µ0(P)+ 2 j ≤ β(K1)+ 2l.

The case that P1 and P2 both map to the right of Cl is similar.
If (say) P1 maps to the left of C0 and P2 maps to the right of C0, but not to the

right of Cl , then by the formula of Proposition 10.5, we can bound µC(P) by µ1+2l,
where µ1 comes from the part of the graph between P1 and C0. By an argument
similar to the one used in the previous paragraph, µ1 can be bounded by µE1(P

′

1),
where P ′1 is the point on E1 corresponding to P1 and we take the second point to
be on the component visible in C0. If P2 maps to the right of Cl , then we similarly
obtain a bound of the form µ1 +µ2 + 2l ≤ β(K1)+ β(K2)+ 2l. The remaining
cases are similar or follow directly from Proposition 10.5. �

The example in Section 19 demonstrates the effect of the improved bounds on β
as given in the preceding section. For other examples the bounds established in this
section will be similarly useful.

11. General upper and lower bounds for β̄

In this section we derive an upper bound for the geometric height constant β̄(C) in
the general case by reducing to the semistable situation. We also give a lower bound
of the same order of magnitude. We note the following consequence of the results
obtained so far; see the discussion at the end of Section 9 and Corollary 10.11.

Corollary 11.1. Assume that C is a stably minimal Weierstrass model of C over k
and that the minimal proper regular model Cmin of C over k has semistable reduction.
Denoting the discriminant of C by 1 and writing β̄(C)=max{µC(P) : P ∈ J (k̄)},
where µC denotes µ with respect to the model C and J is the Jacobian of C , we have

1
6v(1)≤ β̄(C)≤

1
4v(1).

When Cmin does not have semistable reduction, the idea is to pass to a suitable
field extension k ′/k and apply Corollary 11.1 over k ′. In order to compare the
corresponding geometric height constants β̄, we need to analyze how µ changes
under minimization. We first prove the following key lemma:

Lemma 11.2. There exists a transformation τ : C→ C′, defined over k, such that C′

is a minimal Weierstrass model and

v(τ(x))+ v(τ)≤ v(x) for all x ∈ KSA.
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Proof. If C is already minimal, then there is nothing to prove. Otherwise, [Liu 1996,
Remarque 11] implies that we can compute a minimal Weierstrass model by going
through the following steps for finitely many points P on the special fiber of C.

(a) Move P to (0, 0).

(b) Scale x by 1/π .

(c) Replace C by the normalization of the resulting model.

As transformations of the form (a) do not change v(x) and have determinant of
valuation 0, it suffices to prove

v(τ(x))+ v(τ)≤ v(x) for all x ∈ KSA

for a transformation τ =σ ◦ρ, where ρ is as in (b) and σ is as in (c). Note that such a
transformation decreases the valuation of the discriminant; cf. [Liu 1996, Lemme 9,
Corollaire 2]. By the discussion following Proposition 4.4, the transformation ρ
maps x ∈ KSA to (πx1, x2, π

−1x3, π
3x4).

Suppose v(2) = 0 and, without loss of generality, H = 0. According to [Liu
1996, Remarque 2], the normalization can be computed using the transformation σ
mapping an affine point (ξ, η) to σ(ξ, η)= (ξ, ηπ−s) for some nonnegative integer s.
As v(τ)=3−2s, we must have s≥2, since otherwise τ would increase the valuation
of the discriminant. Because τ(x) = (πx1, x2, π

−1x3, π
3−2s x4) for x ∈ KSA, we

find that v(τ(x))≤ v(x)+ 1, implying

v(τ(x))+ v(τ)− v(x)≤−2s+ 4≤ 0.

The case v(2) > 0 is slightly more complicated. Here one computes the normaliza-
tion by repeatedly applying transformations

(ξ, η) 7→

(
ξ,
η+ R(ξ, 1)

π

)
, (11-1)

where R ∈O[X, Z ] is a certain cubic form, until the minimum of the valuations of
the coefficients of F + RH − R2 is equal to 1. See [Liu 1996, Remarque 2]. Such
a transformation maps Kummer coordinates x = (x1, x2, x3, x4) to

(x1, x2, x3, π
−2x4+ l1x1+ l2x2+ l3x3)

and the expressions for the li given in Section 4 show that v(li )≥−2 for all i . As
the determinant of a transformation (11-1) has valuation −2, we need to apply at
least two such transformations, because otherwise the valuation of the discriminant
would increase. In other words, σ = σs ◦ · · · ◦ σ1, where s ≥ 2 and every σi is of
the form (11-1).

By the properties of the transformations (11-1), it suffices to show the desired
inequality for the case s = 2, since further applications of transformations σi will
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only make the left-hand side of the desired inequality smaller and will not change
the right-hand side. So suppose that σ = σ2 ◦ σ1; then τ = σ ◦ ρ maps x ∈ KSA to

τ(x)=
(
πx1, x2, π

−1x3, π
−1x4+πl1x1+πl2x2+πl3x3+πl ′1x1+l ′2x2+π

−1l ′3x3
)
,

where the li arise from σ1 and the l ′i arise from σ2. As v(τ)=−1, it clearly suffices
to prove that

v(τ(x))≤ v(x)+ 1. (11-2)

But if (11-2) is false, then v(x)= v(x4) <min{v(x1), v(x2)+1, v(x3)+2}. In this
situation it follows from the lower bounds v(li )≥−2 and v(l ′i )≥−2 that we get

v
(
πl1x1+πl2x2+πl3x3+πl ′1x1+ l ′2x2+π

−1l ′3x3
)
> v(x4)− 1.

This implies (11-2) and therefore finishes the proof of the lemma. �

Theorem 11.3. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model C. Then we have

β̄(C)≤ 1
4v(1(C)).

Proof. By Lemma 5.4 there is a finite extension k ′/k such that the minimal proper
regular model of C over k ′ is semistable and such that all minimal Weierstrass
models of C over k ′ are stably minimal. By Corollary 11.1, the claim therefore
holds for any minimal Weierstrass model of C over k ′.

It follows from Lemma 11.2 that there is a transformation τ : C→ C′ defined
over k ′ such that C′ is a minimal (and hence stably minimal) Weierstrass model
over k ′ and such that

v(τ(x))+ v(τ)≤ v(x) (11-3)

for all x ∈ KSA.
Then, by the above, we have

µ(τ(x))≤ 1
4v(1(C

′)).

Now using Corollary 4.6 and the relation (4-2), we find

µ(x)= µ(τ(x))− v(x)+ v(τ(x))− v(τ)

≤
1
4v(1(C

′))− v(x)+ v(τ(x))− v(τ)

=
1
4v(1(C))− v(x)+ v(τ(x))+

3
2v(τ)

≤
1
4v(1(C)),

where we have used (11-3) and v(τ)≤ 0. �
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Remark 11.4. When the residue characteristic is not 2, then we can easily show
that β̄(C) is indeed always comparable to v(1(C)). We can assume that H = 0 and
write F = cF0 with F0 primitive. We consider the points of order 2 on J. Such
a point P is given by a factorization F0 = G1G2 with G1 and G2 primitive of
degrees 2 and 4, respectively. An explicit computation shows that

ε(P)= 4v(c)+ 2v(R(P)),

where R(P) denotes the resultant of G1 and G2, and we have 4µ(P)= ε(P). Since
v(1(C))= v(disc(F))= 10v(c)+ v(disc(F0)) and 4v(disc(F0)) is the sum of the
valuations of the 15 resultants R(P), we find that

β̄(C)≥ 1
4 max

O 6=P∈J [2]
(4v(c)+ 2v(R(P)))≥ v(c)+ 1

30

∑
O 6=P∈J [2]

v(R(P))

= v(c)+ 2
15v(disc(F0))≥

1
10v(1(C)).

A similar statement should be true when the residue characteristic is 2.

Recall that we denote max{ε(P) : P ∈ J (k̄)} by γ̄ (C).

Corollary 11.5. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model C. Then we have

γ̄ (C)≤ v(1(C)).

If H = 0 and char(k) 6= 2, then this can be improved to

γ̄ (C)≤ v(2−41(C)).

Proof. The first inequality follows from ε(P)= 4µ(P)−µ(2P) and Theorem 11.3.
The second inequality is Theorem 6.1 of [Stoll 1999]. �

Question 11.6. If C is a minimal Weierstrass model, does β̄(C) only depend on the
special fiber of Cmin?

Note that the corresponding statement holds for elliptic curves [Cremona et al.
2006]. In our situation, however, there may be several nonisomorphic minimal
Weierstrass models, which complicates the picture.

Part III. Efficient computation of canonical heights

In this part we show how to compute the canonical height ĥ(P) efficiently for
a point P over a number field, global function field or more general field with a
system of absolute values as in Section 2. We first explain how to compute the local
height correction functions. We use M(d) to denote the time needed to multiply
two d-bit integers.
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12. Computing µ at nonarchimedean places

In this section, k is a nonarchimedean local field again, with valuation ring O,
uniformizer π , normalized valuation v and residue class field k. Let C be an integral
Weierstrass model for a genus-2 curve C over k. We make no assumptions on the
reduction type of C . We already discussed a method for the computation of µ(P)
for a given point P ∈ J (k) in Section 3. In this section, we provide an alternative
fast algorithm and show that its running time is

� (log v(1))M
(
(log v(1))v(1)(log #k)

)
,

where 1=1(C).

Lemma 12.1. Assume that M is a positive integer such that Mµ(P) ∈ Z. Further
assume that max{ε(P) : P ∈ J (k)} ≤ B. Then

µ(P)=
1
M

⌈
M

⌊
log
( 1

3 BM
)
/ log 4

⌋∑
n=0

4−n−1ε(2n P)
⌉
.

Proof. This follows from Mµ(P) ∈ Z and from

0≤ M
∑
n≥m

4−n−1ε(2n P)≤
BM

3 · 4m . �

If we know that the reduction is nodal, then we get an upper bound B for ε(P) and
all possible denominators of µ(P) from the results of Section 9. More generally, if
we know the smallest positive period N of the sequence (µ(nP))n , then we can take
M = N (respectively, M = 2N ) if N is odd (respectively, even) by Corollary 3.11.
Also note that we can always take B = v(1) (or even B = v(2−41) if char(k) 6= 2
and the equation of the curve has H = 0); see Corollary 11.5.

If we only know an upper bound for the denominator of µ(P), then the following
alternative approach can be used. This is analogous to [Müller and Stoll 2016,
Lemma 4.2].

Lemma 12.2. Assume that M ≥ 2 is an integer such that M ′µ(P) ∈ Z for some
0< M ′ ≤ M. Assume in addition that max{ε(P) : P ∈ J (k)} ≤ B, and set

m =
⌊

log
( 1

3 BM2
)

log 4

⌋
.

Then µ(P) is the unique fraction with denominator less than or equal to M in the
interval [µ0, µ0+ 1/M2

], where

µ0 =

m∑
n=0

4−n−1ε(2n P).
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Proof. Note that

µ0 ≤ µ(P)≤ µ0+
∑
n>m

4−n−1 B < µ0+
1

M2 .

But since M ≥ 2, the interval [µ0, µ0+ 1/M2
] contains at most one fraction with

denominator bounded by M ; by assumption, µ(P) is such a fraction. �

In order to apply Lemma 12.2, we now find a general upper bound M on the
possible denominators of µ. Let J denote the Néron model of J over S = Spec(O)
and write 8 for the component group of J.

Proposition 12.3. Let N denote the exponent of 8(k̄) and let P ∈ J (k). Then we
have

µ(P) ∈
1

2N
Z.

If N is odd or if C has a knr-rational Weierstrass point, then we have

µ(P) ∈
1
N

Z.

Proof. Let i ∈ {1, . . . , 4} be such that κi (P) 6= 0. Recall from Lemma 8.2 that the
function λ̂i = λ̂ ◦ (κ/κi ) is a Néron function with respect to the divisor Di . As
P /∈ supp Di , we find

µ(P)≡ λ̂(x)≡ λ̂i (P) (mod Z)

for any set of Kummer coordinates x for P. It follows from the results of [Néron
1965] and [Lang 1983, §11.5] that

λ̂i (P)≡ j (Di , (P)− (O)) (mod Z),

where j ( · , · ) denotes Néron’s bilinear j-pairing, defined in [Néron 1965, §III.3].
By [Néron 1965, Proposition III.2], the values of the j -pairing lie in 1

2N ′Z, where
N ′ = #8(k̄). It is easy to see that we can replace N ′ by the exponent N in the proof
of [Néron 1965, Proposition III.2], so the first statement of the proposition follows.

For the second statement, note that the j-pairing takes values in 1
N Z if N is

odd, again by [Néron 1965, Proposition III.2] and its proof. If C has a knr-rational
Weierstrass point P0, then the divisor Di is linearly equivalent over knr to 22P0 ,
where 2P0 is the theta divisor with respect to P0. The Néron model does not change
under unramified extensions, and µ(P) mod Z does not depend on the Weierstrass
model of C by Corollary 4.6. Hence we can assume that i = 1 and D1 = 22P0 , so
the linearity of the j-pairing in the first variable proves the claim. �

Remark 12.4. In the notation of [Namikawa and Ueno 1973], the only reduction
types for which Proposition 12.3 does not show that µ(P) ∈ 1

N Z (where N is the
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exponent of 8(k̄)), are [2III− l] and [2III∗ − l] for l ≥ 0; [2I∗n − l] for n, l ≥ 0;
and [2In − l] for n > 0 even and l ≥ 0. We have not found an example where
µ(P) /∈ 1

N Z.

We can compute the group 8(k̄) in practice using [Bosch et al. 1990, §9.6]. For
this we need to know the intersection matrix of the special fiber of a regular model
of C over S. This is implemented in Magma, but can be rather slow. If the residue
characteristic is not 2, then we can apply Liu’s algorithm [1994] to compute the
reduction type and read off 8(k̄).

In general, an upper bound for the exponent of8(k̄) suffices to apply Lemma 12.2.
We give a bound which only depends on the valuation of the discriminant1=1(C).

Lemma 12.5. The exponent of 8(k̄) is bounded from above by

M :=max
{
2,
⌊ 1

3v(1)
2⌋}.

Moreover, the denominator of µ(P) is bounded from above by M for all P ∈ J (k).

Proof. This follows from a case-by-case analysis, using the list of groups 8(k̄)
from [Liu 1994, §8] for all reduction types in [Namikawa and Ueno 1973], and
Proposition 12.3. �

Remark 12.6. By going through all reduction types, it is possible to obtain better
upper bounds for the denominator M ′ of µ(P) from the Igusa invariants discussed
in Section 6. First note that if the special fiber of C is nonreduced, then we have

(i) M ′ ≤ 4 if v(1)≤ 12,

(ii) M ′ ≤max{12, v(1)− 15} otherwise.

Suppose that C is reduced; then, by Proposition 6.2, we can use the Igusa invariants
of the special fiber to distinguish between the multiplicities of its singularities.

(i) If all points on the special fiber of C have multiplicity at most 2, then we can
bound M ′ using Proposition 6.3(i)–(iii) and Propositions 9.1, 9.3, and 9.4.

(ii) If there is a point of multiplicity 3 on the special fiber, then we have
• M ′ ≤min{6, v(1)+ 1} if v(1)≤ 10,
• M ′ ≤ 12 if v(1)≤ 20,
• M ′ ≤

⌊ 1
4(v(1)− 12)2

⌋
otherwise.

(iii) If there is a point of multiplicity ≥ 4 on the special fiber, then we have
• M ′ ≤ 3v(1)− 10 if v(1)≤ 10,
• M ′ ≤ 4v(1)− 20 if v(1) > 10 and the model is minimal,
• M ′ ≤

⌊ 1
3(v(1)− 10)2

⌋
if the model is not minimal.

The results of this section lead to an efficient algorithm for the computation
of µ(P), which is analogous to Algorithm 4.4 of [Müller and Stoll 2016]. We
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assume that the coefficients of F and H and the coordinates of P are given to
sufficient v-adic precision (in practice, they will be given exactly as elements of a
number field or function field).

1. If char(k) 6= 2 and H = 0, set B := v(2−41). Otherwise, set B := v(1).

2. Set M :=max
{
2,
⌊1

3v(1)
2
⌋}

.

3. Set m :=
⌊

log
( 1

3 BM2
)
/ log 4

⌋
.

4. Set µ0 := 0. Let x be normalized Kummer coordinates for P with (m+1)B+1
v-adic digits of precision.

5. For n := 0 to m do:

a. Compute x ′ := δ(x) (to (m+ 1)B+ 1 v-adic digits of precision).
b. If v(x ′)= 0, then return µ0.
c. Set µ0 := µ0+ 4−n−1v(x ′).
d. Set x := π−v(x

′)x ′.

6. Return the unique fraction with denominator at most M in the interval between
µ0 and µ0+ 1/M2.

The fraction in the final step can be computed easily, for instance, using continued
fractions.

For the complexity analysis in the following proposition, we assume that elements
of O are represented as truncated power series in π , whose coefficients are taken
from a complete set of representatives for the residue classes. Operations on these
coefficients can be performed in time�M(log #k).

Proposition 12.7. The algorithm above computes µ(P). Its running time is

� (log v(1))M
(
(log v(1))v(1)(log #k)

)
as v(1)→∞, with an absolute implied constant.

Proof. The following proof is analogous to the proof of [Müller and Stoll 2016,
Proposition 4.5]. Corollary 11.5 shows that B is a suitable upper bound for ε and
Lemma 12.5 shows that M is an upper bound for the denominator of µ. Because
M ≥ 2, the loop in step 5 computes the sum in Lemma 12.2. Note that when
v(x ′)= 0 in step 5b, we have µ(P)= µ0 by Theorem 3.10. At each duplication
step, the precision loss is ε(2n P)≤ B, so that with our choice of starting precision,
after the m+1 steps in the loop the resulting x still has at least one digit of precision.
This proves the correctness of the algorithm.

Clearly the running time of the algorithm is dominated by the running time of
the loop in step 5. Step 5a consists of a fixed number of additions and multipli-
cations of elements of O which are given to a precision of (m + 1)B + 1 digits.



2210 Jan Steffen Müller and Michael Stoll

Because steps 5b–5d take negligible time compared to step 5a, each pass through
the loop takes

�M
(
((m+ 1)B+ 1)(log #k)

)
operations, leading to a total running time that is

� (m+ 1)M
(
((m+ 1)B+ 1)(log #k)

)
� m M(m B(log #k))

� (log v(1))M
(
(log v(1))v(1)(log #k)

)
as v(1)→∞. Here we use that B�v(1) and M�v(1)2, so that m� log v(1). �

Remark 12.8. In step 2, we can use Remark 12.6 to compute a sharper upper
bound for the denominator of µ. See also the discussion following Remark 12.4.
Of course, if we want to find µ(P) for several points P, the quantities M, B and m
only have to be computed once.

Remark 12.9. We can compute µ(P) using the algorithm above in more general
situations. Suppose that k is any discretely valued field with valuation ring O and
uniformizer π . In that case, the sequence (µ(nP))n might not have a finite period,
so the method for the computation of µ(P) discussed in Section 3 might not be
applicable. However, Lemmas 12.1, 12.2 and 12.5 and Proposition 12.3 remain
valid. If char(k) 6= 2 and if H = 0, then we have the upper bound ε(P)≤ v(2−41)

(cf. Remark 3.2), so the algorithm above can be used and Proposition 12.7 remains
valid as well, in the sense that the computation can be done using � log v(1)
operations with elements of O/πnO, where n� v(1) log v(1). In the remaining
cases, we can compute an upper bound B on ε as in Remark 3.2, and we can apply
the algorithm with this choice of B.

13. Computing µ at archimedean places

In this section, k is an archimedean local field, so k = R or k = C. We assume that
the curve C is given by a Weierstrass equation C with H = 0. In the following,
log+ x =max{0, log x}.

Let x ∈ k4 be a set of Kummer coordinates. Recall that

ε̃(x)=−[k : R](log ‖δ(x)‖∞− 4 log ‖x‖∞)

and

µ̃(x)=
∞∑

n=0

4−n−1ε̃(δ◦n(x)).

We easily obtain a lower bound for ε̃ using the standard estimate for ‖δ(x)‖∞.
Since the coefficients of the duplication polynomials δj are universal polynomials
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of degree at most 4 in the coefficients of F, this gives

−ε̃� 1+ log+‖F‖∞,

where ‖F‖∞ is the maximum norm of the coefficient vector of F. We recall that
the method described in Section 7 of [Stoll 1999], leading to equation (7.1) there,
provides an upper bound γ̃ for ε̃ that can be explicitly computed for any given
Weierstrass equation C of the curve (provided H = 0). It is given by

γ̃ = log max
i

(∑
{S,S′}
|ai,{S,S′}|

√∑
1≤ j≤4

|b{S,S′}, j |

)2

≤ log 400+ 2 log max
i,{S,S′}

|ai,{S,S′}| + log max
{S,S′}, j

|b{S,S′}, j |

with certain numbers ai,{S,S′}, b{S,S′}, j , where i, j ∈ {1, 2, 3, 4} and {S, S′} runs
through the ten partitions of the set of roots of F into two sets of three. Using the
formulas in [Stoll 1999, §10] and Mignotte’s bound (see, for example, [von zur
Gathen and Gerhard 1999, Corollary 6.33]), we see that

log max
{S,S′}, j

|b{S,S′}, j | � 1+ log+‖F‖∞

and
log max

i,{S,S′}
|ai,{S,S′}| � 1+ log+‖F‖∞+ log+max

{S,S′}
|R(S, S′)|−1,

where R(S, S′) is the resultant of the two factors G, G ′ of F corresponding to the
partition of the roots. Using Mignotte’s bound again, we find that

|R(S, S′)|−1
=

√
|disc G| |disc G ′|
√
|disc F |

� ‖F‖2
∞
|1(C)|−1/2,

leading finally to the estimate

|ε̃| � 1+ log+‖F‖∞+ log+ |1(C)|
−1
=: s(F).

If |ε̃(x)| ≤ η̃ for all x ∈ KSA, then we have∣∣∣∣∑
n≥N

4−n−1ε̃(δ◦n(x))
∣∣∣∣≤ 1

3 η̃4−N ,

so we need to sum the first

N =
⌈

d
2
+

log
( 1

3 η̃
)

log 4

⌉
� d + log s(F)

terms to obtain an accuracy of 2−d. Comparing the largest term in any of the δj and
the lower bound on ‖δ(x)‖∞, we obtain a bound θ̃ on the loss of relative precision
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(in terms of bits) in the computation of δ(x); we have θ̃ � s(F). To achieve the
desired precision at the end, we therefore need to compute with an initial precision of

d + 1+ N θ̃ � (d + log s(F))s(F)

bits. The time needed for each duplication is then

�M((d + log s(F))s(F)).

A logarithm can be computed to d bits of precision in time� (log d)M(d) by one
of several quadratically converging algorithms (see, for example, [Borwein and
Borwein 1987, Chapter 7]), so we obtain the following result.

Proposition 13.1. Given Kummer coordinates x of a point P in J (k) (or KS(k)) to
sufficient precision, we can compute µ̃(P) to an accuracy of d bits in time

� (d + log s(F))(log d)M((d + log s(F))s(F)),
where

s(F)= 1+ log+‖F‖∞+ log+ |1(C)|
−1.

In the applications, k will be the completion of a number field at a real or
complex place. If the number field is Q and the given equation C of C is integral,
then |1(C)| ≥ 1 and we have s(F)= 1+log ‖F‖∞= 1+h(F), where h(F) denotes
the (logarithmic) height of the coefficient vector of F as a point in affine space. In
general, we have the estimate (denoting the value of s(F) for a place v by sv(F))∑

v|∞

sv(F)≤ [K :Q] +
∑
v|∞

log+‖F‖v +
∑
v|∞

log+ |1(C)|
−1
v

≤ [K :Q] + h(F)+ h(1(C))� h(F)

for h(F) large. This implies that we can compute the infinite part of the height
correction function in time

� (d + log h(F))(log d)M((d + log h(F))h(F)),

which is polynomial in d and h(F).

14. Computing the canonical height of rational points

The first algorithm for computing the canonical height on a genus-2 Jacobian over Q

was introduced by Flynn and Smart [1997]. It does not require any integer factoriza-
tion, but can be impractical even for simple examples; see the discussion in [Stoll
2002, §1]. A more practical algorithm was introduced in [Stoll 2002]; here the local
height correction functions are computed separately, so some integer factorization
is required. Uchida [2011] later introduced a similar algorithm. De Jong and Müller
[2014] used division polynomials for a different approach.
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Building on the Arakelov-theoretic Hodge index theorem for arithmetic surfaces
due to Faltings and Hriljac, Holmes [2012] and Müller [2014] independently devel-
oped algorithms for the computation of canonical heights of points on Jacobians of
hyperelliptic curves of arbitrary genus over global fields. While these algorithms
can be used to compute canonical heights for genus as large as 10 (see [Müller
2014, Example 6.2]), they are much slower than the algorithm from [Stoll 2002]
when the genus is 2.

In this section we now combine the results of Sections 12 and 13 into an efficient
algorithm for computing the canonical height of a point on the Jacobian of a curve
of genus 2 over a global field K.

If K is a function field, then there are no archimedean places and factorization
is reasonably cheap. So in this case, the best approach seems to be to first find
the places v of K such that µv(P) is possibly nonzero (this includes the places
at which the given equation of the curve is nonintegral) and then compute the
corrections µv(P) for each place separately as in the algorithm of Proposition 12.7,
if necessary changing first to an integral model and correcting for the transformation
afterwards. In fact this approach can be used whenever K is a field with a set of
absolute values that satisfy the product formula, because the algorithm before
Proposition 12.7 is applicable over any discretely valued field; see Remark 12.9.
This includes function fields such as Q(t) and C(t).

If K is a number field, then we compute the contribution from the archimed-
ean places as described in Section 13. The finite part of our algorithm is anal-
ogous to our quasilinear algorithm for the computation of the finite part of the
canonical height of a point on an elliptic curve in [Müller and Stoll 2016]; see
Proposition 14.3 below. For simplicity, we take K to be Q in the following. We
write εp and µp for the local height correction functions over Qp as given by
Definition 3.1 and µ̃∞ for the local height correction function over R as defined
in equation (1-1).

We assume that our curve is given by a model C : Y 2
= F(X, Z)with F ∈Z[X, Z ],

and we set 1=1(C). Our goal is to devise an algorithm for the computation of
ĥ(P) that runs in time polynomial in log ‖F‖∞, h(P) and the required precision d
(measured in bits after the binary dot). We note that h(P) can be computed in time

� log(h(P)+ d)M(h(P)+ d),

since it is just a logarithm. By Proposition 13.1, the height correction function
µ̃∞(P) can be computed in polynomial time. So we only have to find an efficient
algorithm for the computation of the “finite part” µ̃f(P) :=

∑
p µp(P) log p of the

height correction.
Fix P ∈ J (Q). We call a set x of Kummer coordinates for P primitive if x ∈ Z4

and gcd(x)= 1. We set gn = gcd(δ(x (n))), where x (n) is a primitive set of Kummer
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coordinates for 2n P. Then

µ̃f(P)=
∞∑

n=0

4−n−1 log gn.

We also know by [Stoll 1999] that gn divides D = 1
24 |1| = 24

|disc(F)|, which
implies that log gn ≤ log D for all n. To achieve a precision of 2−d, it is therefore
enough to take the sum up to

n = m :=
⌊ 1

2 d + log
( 1

3 log D
)⌋
� d + log log D� d + log log ‖F‖∞.

Since at each duplication step we have to divide by gn to obtain primitive coordinates
again, it suffices to do the computation modulo Dm+2. This leads to the following
algorithm.

1. Let D = 1
16 |1| and set m :=

⌊ 1
2 d + log log D− log 3

⌋
.

2. Let x be primitive Kummer coordinates for P.

3. Set µ := 0.

4. For n := 0 to m do:

a. Compute x ′ := δ(x) mod Dm+2.
b. Set gn := gcd(D, gcd(x ′)) and x := x ′/gn .
c. Set µ := µ+ 4−n−1 log gn (to d bits of precision).

5. Return µ̃f(P)≈ µ.

Proposition 14.1. This algorithm computes µ̃f(P) to d bits of precision in time

� (d + log log D) log(d + log log D)M((d + log log D) log D)+ h(P).

Proof. The discussion preceding the algorithm shows that it is correct. The duplica-
tion in step 4a can be computed in time

�M((m+ 2) log D)�M((d + log log D) log D),

while the gcd in step 4b can be computed in time

�M((m+ 2) log D) log((m+ 2) log D)

� log(d + log log D)M((d + log log D) log D);

the division is even faster, since gn is small. The computation of the logarithm takes
time� log(d + log D)M(d + log D); this is dominated by the time for computing
the gcd. This gives a time complexity of

� (d + log log D) log(d + log log D)M((d + log log D) log D)+ h(P),

where the last term comes from processing the input x . �
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Note that log D� log ‖F‖∞, so this bound is similar to (and even better by a
factor of log d than) the complexity for computing µ̃∞(P).

Remark 14.2. An alternative way to proceed is to compute

x ′ = δ◦(m+1)(x) mod Dm+2

(without dividing out gcds in between) and then use µ= 4−m−1 log gcd(x ′). The
advantage of the algorithm above is that we can actually work mod Dm+2−n, which
makes the computation more efficient. The advantage of the alternative is that it
can also be used when working over a number field with nontrivial class group
(replacing log gcd(x ′) by the logarithm of the ideal norm of the ideal generated
by x ′). The resulting complexity is similar, with the implied constant depending on
the base field.

We now show that we can in fact do quite a bit better than this, by using the
strategy already employed in [Müller and Stoll 2016]. Note that µ̃f(P) is a rational
linear combination of logarithms of positive integers. We can compute such a
representation exactly and efficiently by the following algorithm. We again assume
that x is a set of primitive Kummer coordinates for P.

1. Set x ′ := δ(x), g0 := gcd(x ′) and x := x ′/g0.

2. Set D := gcd(24 disc(F), g∞0 ) and B := blog D/ log 2c.

3. If B ≤ 1, return 0. Otherwise, set M :=max
{
2,
⌊1

3(B+ 4)2
⌋}

and m :=
⌊

log
( 1

3 B3 M2
)
/ log 4

⌋
.

4. For n := 1 to m do:

a. Compute x ′ := δ(x) mod Dm+1g0.
b. Set gn := gcd(D, gcd(x ′)) and x := x ′/gn .

5. Using the algorithm in [Bernstein 2004] (or in [Bernstein 2005]), compute a
sequence (q1, . . . , qr ) of pairwise coprime positive integers such that each gn

(for n = 0, . . . ,m) is a product of powers of the qi : gn =
∏r

i=1 qei,n
i .

6. For i := 1 to r do:

a. Compute a :=
∑m

n=0 4−n−1ei,n .
b. Let µi be the simplest fraction between a and a+ 1/(B2 M2).

7. Return
∑r

i=1 µi log qi (a formal linear combination of logarithms).

Proposition 14.3. The preceding algorithm computes µ̃f(P) in time

� (log log D)2 M((log log D)(log D))+M(h(P))(log h(P)).

Note that D ≤ 1
16 |1| and log D� log ‖F‖∞.
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Proof. If B ≤ 1 in step 3, then we either have g0 = 1 and µ̃f(P)= 0, or we have
D ∈ {2, 3}. In the latter case, g0 is a power of p = 2 or 3 and vp(1) = 1, which
would imply that εp(P)= 0 by [Stoll 2002, Proposition 5.2], so g0 = 1, and we get
a contradiction.

If a prime p does not divide g0, then εp(P)= 0, implying µp(P)= 0. Suppose
now that p divides g0; then we have vp(D)≤ B and vp(1)≤ B+4, so B, M and m
are suitable values for Lemma 12.2. We have vp(gn) = εp(2n P) for all n ≤ m,
because p(m+1)vp(D)+1

| Dm+1g0 (compare the proof of Proposition 12.7). All the gn

are power products of the qi , so there will be exactly one i = i(p)∈ {1, . . . , r} such
that p | qi(p). Setting bp = vp(qi(p)) and a =

∑m
n=0 4−n−1ei(p),n , we have

m∑
n=0

4−n−1εp(2n P)=
m∑

n=0

4−n−1vp(gn)= bpa,

implying

µp(P)=
∞∑

n=0

4−n−1εp(2n P)= bpa+
∞∑

n=m+1

4−n−1εp(2n P).

Here the last sum is in [0, 1/(B2 M2)] by the definition of m (compare the proof of
Lemma 12.2). Therefore

a ≤
µp(P)

bp
≤ a+

1
bp B2 M2 ≤ a+

1
B2 M2 .

Since the denominator ofµp(P) is at most M and since we have bp≤vp(D)≤ B, the
denominator of µp(P)/bp is at most BM. Hence µp(P)/bp is the unique fraction
in [a, a+ 1/(B2 M2)] with denominator bounded by BM, so µp(P)/bp = µi(p) by
step 6b. Now∑

p

µp(P) log p =
∑

p

µi(p)bp log p =
r∑

i=1

µi

∑
p|qi

bp log p =
r∑

i=1

µi log qi ,

so the algorithm is correct.
The complexity analysis is as in the proof of Proposition 6.1 in [Müller and Stoll

2016]. Namely, the computations in step 1 can be done in time�M(h(P)) log h(P).
The computations in steps 2 and 3 take negligible time. Each pass through the loop
in step 4 takes time� log((m+ 2) log D)M((m+ 2) log D), so the total time for
step 4 is

� m M(m log D) log(m log D)� (log log D)2 M((log log D)(log D)),

because m� log log D. The coprime factorization algorithm in [Bernstein 2004] (or
in [Bernstein 2005]) computes suitable qi for a pair (a, b) of positive integers in time
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� (log ab)(log log ab)2. We iterate this algorithm, applying it first to g0 and g1,
then to each of the resulting qi and g2, and so on. There are always � log D
terms in the sequence of the qi and we have gn ≤ D for all n. Hence step 5 takes
time� log D(log log D)3. Because this is dominated by the time for the loop and
because the remaining steps take negligible time, the result follows. �

Note that the complexity of the algorithm above is quasilinear in log D and h(P).
In practice, the efficiency of this approach can be improved somewhat:

• We can split off the contributions of all sufficiently small primes p by choosing
a suitable bound T and trial factoring 1 up to T ; the corresponding µp can then be
computed using the algorithm of Proposition 12.7; see also Remark 12.8. In step 3,
we can then set B := blog D′/ log T c, where D′ is the unfactored part of D, and
replace B+ 4 by B in the definition of M. If the coefficients of F are sufficiently
large, then this trial division can become quite expensive (even for small values of T ).
So when h(F) is large, it is usually preferable to avoid trial division altogether.

• We can update the qi after each pass through the loop in step 4 using the new gn;
we can also do the computation in step 4a modulo suitable powers of the qi instead
of modulo Dm+1g0. Moreover, it is possible to use separate values of B, M and m
for each qi ; these will usually be smaller than those computed in steps 2 and 3. In
this way, we can integrate steps 4, 5 and 6 into one loop.

Remark 14.4. Over a more general number field K in place of Q, the algorithm
as stated does not quite work, since we cannot always divide out greatest common
divisors. In this case we first compute x (1) = δ(x) and the ideal g0 generated by D
and the entries of x (1). Then we compute x (2) = δ(x (1)), . . . , x (m+1)

= δ(x (m))
modulo the ideal Dm+1g0. Let G j be the ideal generated by the entries of x ( j) and
Dm+1 and set

g1 = g−4
0 G2, g2 = G−4

2 G3, g3 = G−4
3 G4, . . . gm = G−4

m Gm+1.

The coprime factorization algorithms in [Bernstein 2004; 2005] also work for
ideals. In the final result, log qi has to be replaced by log N (qi ), where N (qi ) is
the norm of the ideal qi . This should result in a complexity similar to that over Q

(with the implied constant depending on K ), or at least one that is dominated
by the complexity of computing the naive height and the contributions from the
archimedean places. Unfortunately, no complexity analysis for standard operations
with ideals in number fields seems to be available in the literature; this prevents us
from making a precise statement. Alternatively, we can take the approach described
in Remark 14.2.

Combining this with the results for archimedean places, we obtain an efficient
algorithm for computing the canonical height ĥ(P) of a point P ∈ J (Q). As
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mentioned above, we expect a similar result to hold for any number field K in place
of Q, with the implied constant depending on K.

Theorem 14.5. Let C be given by the model Y 2
= F(X, Z) with F ∈ Z[X, Z ] and

let P ∈ J (Q) be given by primitive Kummer coordinates x (i.e., the coordinates are
coprime integers). We can compute ĥ(P) to d bits of precision in time

� log(d + h(P))M(d + h(P))

+ (d + log log‖F‖∞)(log d + log log‖F‖∞)M((d + log log‖F‖∞) log‖F‖∞).

Proof. The first term comes from computing h(P). The second term dominates
both the complexity bound for µ̃∞(P) from Proposition 13.1 and the complexity of
computing µ̃f(P) using the algorithm of Proposition 14.3, since we have D≤ 1

16 |1|

and log D� log ‖F‖∞. The time for the numerical evaluation of the logarithms
log qi to d bits of precision is also dominated by this term. �

Note that the complexity is quasilinear in log ‖F‖∞ and in h(P), and quasi-
quadratic in d . The latter is caused by the (only) linear convergence of the computa-
tion of µ̃∞(P). For elliptic curves one can use a quadratically convergent algorithm
due to Bost and Mestre [1993] (see also [Müller and Stoll 2016]); such an algorithm
in the genus-2 case would lead to a complexity that is quasilinear in d as well.

In Section 15 below we illustrate the efficiency of our algorithm by applying it
to a family of curves and points with the property that the number g0 above is large,
so that the previously known algorithms have problems factoring it.

15. Examples

We have implemented our algorithm using the computer algebra system Magma
[Bosma et al. 1997]. For the factorization into coprimes we have implemented a
simple quadratic algorithm due to Buchmann and Lenstra [1994, Proposition 6.5]
instead of the quasilinear, but more complicated, algorithms of [Bernstein 2004] or
[Bernstein 2005].

Since the estimates for the required precision in the computation of the archimed-
ean contribution as given in Section 13 are too wasteful in practice, we instead
compute this contribution repeatedly using a geometrically increasing sequence of
digits of precision until the results agree up to the desired number of bits.

We now compare our implementation with Magma’s built-in CanonicalHeight
(version 2.21-2), which is based on [Flynn and Smart 1997] and [Stoll 2002], for a
family of genus-2 curves. In CanonicalHeight, the duplication on the Kummer
surface is done using arithmetic over Q, making the implementation slow when
points with large coordinates show up during the computation. No factorization of
the discriminant is required. However, to find a set of primes such that µp(P) 6= 0
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for every prime p not in the set, CanonicalHeight factors the integer gcd(δ(x)),
where x are primitive Kummer coordinates for P.

Example 15.1. For an integer a 6= 0, consider the curve Ca of genus 2 defined by
the integral Weierstrass model y2

= x5
+a2x+a2. Let Ja denote the Jacobian of Ca .

Then the point P = [((0, a))− (∞)] ∈ Ja(Q) is nontorsion. A set of primitive
Kummer coordinates is given by x = (0, 1, 0, 0) and we have δ(x)= (4a2, 0, 0, a4).
Hence CanonicalHeight needs to factor a2.

We choose this family of curves because (a) there is an obvious rational point P
on the Jacobian that is generically nontorsion and (b) gcd(δ(x)) involves a large
integer, where x is a set of primitive integral Kummer coordinates for P. For a
random sextic polynomial in Z[x], very likely the discriminant will have a large
squarefree part, and so gcd(δ(x)) will be fairly small. Of course, the advantages of
our algorithm show most clearly when gcd(δ(x)) is too large to be factored quickly.

Consider

a = 580765860498857094216036712228682450578792019063967819
607220990444681533984530140793610237063603282,

with partial factorization 2 · 7 · 643 · 804743 ·a′, where a′ has 89 decimal digits, and
its smallest prime factor has 34 decimal digits. Our implementation computes ĥ(P)
in 0.51 seconds, whereas Magma’s CanonicalHeight needs about 15 minutes.

Next, we look at

a = 2004037729560594889502897895078536177197017605286267684456693
371856523790027402225238543540575431528468305556200069359999

066088091821746622820780762863572550314577271857779581968920.

This factors as a= 23
·5·17·a′, where a′ has 178 decimal digits and no prime divisor

with less than 50 decimal digits. Here, our implementation took 1.04 seconds to
compute ĥ(P), whereas Magma did not terminate in 8 weeks.

For a = p ·q , where p and q are the smallest primes larger than 10200 and 10250,
respectively, the canonical height of P was computed in 5.87 seconds using our
implementation.

For the computations in these examples, we used a single-core Xeon CPU E7-8837
having 2.67GHz. All heights were computed to 30 decimal digits of precision.

We conclude this part with an example over the rational function field Q(t).

Example 15.2. Consider the curve C/Q(t) given by the equation

y2
= x6
− 2t (t + 1)x5

+ (t + 1)(t3
− 5t2

+ 4t − 2)x4
+ 2t (t + 1)2(3t2

+ 1)x3

− (t + 1)(3t4
− 2t2

+ 4t − 1)x2
− 4t2(t + 1)3(t2

+ 2t − 1)x + 4t4(t + 1)4.
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It has the points

P1 = (1 : 1 : 0), P2 = (0,−2t2(t + 1)2), P3 = (t + 1, 2t (t − 1)(t + 1))

(and also points with x-coordinate t (t + 1) and a Weierstrass point (−t − 1, 0)).
Let Q = [(P1)− 2(P2)+ (P3)] ∈ J (Q(t)). Its image on the Kummer surface has
coordinates

(1 : −t + 1 : −2t2(t + 1) : 0).

Applying the duplication polynomials and looking at the gcd of the result, we see
that we have to compute the height correction functions at the places given by t = 0,
t = 1 and t =−1. We also have to consider the place at infinity, since our model
of C is not integral there. We use the algorithms of Section 12. Consider the place
t = 0. From the valuations of the Igusa invariants (see Section 6) we can deduce
that the reduction type is [I7−3−2], which gives us M = 41 for the exponent of the
component group and a bound B = 10 for ε. We follow Lemma 12.1 and compute

µ0(Q)=
1
41

⌈
41

3∑
n=0

4−n−1ε0(2n Q)
⌉
=

1
41

⌈
41
(

8
4
+

4
42 +

7
43 +

6
44

)⌉
=

98
41
.

At t = 1, the model is not stably minimal. We can deduce from the Igusa invariants
that there is a stably minimal model over an extension of ramification index 4, which
has reduction type [I12−2−2]. This shows that the denominator of µ1 is divisible by
4 · 26= 104. With M = 104 and B = 9 we get m = 4 in Lemma 12.1; we obtain

µ1(Q)=
1

104

⌈
104

4∑
n=0

4−n−1ε1(2n Q)
⌉
=

1
104

⌈
104

(
4
4
+

4
42+

3
43+

2
44+

2
45

)⌉
=

17
13
.

At t=−1, the situation is similar. There is a stably minimal model over an extension
with ramification index 4 again, which has reduction type [I20−0−0]. This leads to
M = 4 · 20= 80 and B = 20, so m = 4, and

µ−1(Q)=
1

80

⌈
80

4∑
n=0

4−n−1ε−1(2n Q)
⌉
=

1
80

⌈
80
(

7
4
+

10
42 +

8
43 +

10
44 +

8
45

)⌉
=

51
20
.

Finally, at the infinite place, there is a stably minimal integral model over an
extension with ramification degree 2, which has reduction type [I8−0−0]. In a
similar way as for t = −1 and taking into account a shift of −8 coming from
making the model integral, we obtain µ∞(Q)= 19

4 − 8=− 13
4 . This results in

ĥ(Q)= h(Q)−µ0(Q)−µ1(Q)−µ−1(Q)−µ∞(Q)

= 3−
98
41
−

17
13
−

51
20
+

13
4
=

11
5330

.
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To our best knowledge, the point Q is the point of smallest known nonzero canonical
height on the Jacobian of a curve of genus 2 over Q(t). The curve was found by
Andreas Kühn (a student of the second author) in the course of a systematic search
for curves with many points mapping into a subgroup of rank 1 in the Jacobian.

Part IV. Efficient search for points with bounded canonical height

16. Bounding the height difference at archimedean places

We now describe two approaches for getting a better upper bound β̃ on µ̃ than the
one coming from the bound on ε̃ given in [Stoll 1999, Equation (7.1)], when k is
an archimedean local field and C/k is a smooth projective curve of genus 2, given
by a Weierstrass equation Y 2

= F(X, Z) in PK (1, 3, 1).
We write ‖x‖∞ =max{|x1|, |x2|, |x3|, |x4|} for the maximum norm.

16A. Bounding ε̃ closely. For the first approach we assume that k = R. We
describe how to approximate max{ε̃(P) : P ∈ J (R)} to any desired accuracy, which
gives us an essentially optimal bound γ̃ . Recall that

ε̃(P)=−log
max{|δ1(x1, x2, x3, x4)|, . . . , |δ4(x1, x2, x3, x4)|}

max{|x1|, |x2|, |x3|, |x4|}4
,

where (x1 : x2 : x3 : x4) is the image of P ∈ J (R) on the Kummer surface. We
can normalize the Kummer coordinates in such a way that ‖x‖∞ = 1 and one of
the coordinates is 1. We then have to minimize max{|δ1|, . . . , |δ4|} over four three-
dimensional unit cubes, restricted to the points on the Kummer surface that are in the
image of J (R). This means that the relevant points satisfy the equation defining the
Kummer surface and in addition the value of (at least) one of four further auxiliary
polynomials is positive. (In general, the values of these polynomials are squares
if the point comes from the Jacobian, and the converse holds for any one of the
polynomials when its value is nonzero. One can choose four such polynomials in
such a way that they do not vanish simultaneously on the Kummer surface.)

The idea is now to successively subdivide the given cubes. For each small cube,
we check if it may contain points in the image of J (R), by evaluating the various
polynomials at the center of the cube and bounding the gradient on the cube. If it
can be shown that the defining equation cannot vanish on the cube or that one of
the auxiliary polynomials takes only negative values on the cube, then the cube can
be discarded. Otherwise, we find upper and lower estimates for max{|δ1|, . . . , |δ4|}

in a similar way. If the lower bound is larger than our current best upper bound for
the minimum, the cube can also be discarded. (At the beginning, we have a trivial
upper bound of 1 for the minimum, coming from the origin.) Otherwise, we keep it
and subdivide it further. We continue until the difference of the upper and lower
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bounds for ε̃ on the cube with the smallest lower bound for max{|δ1|, . . . , |δ4|}

becomes smaller than a specified tolerance. The upper bound for ε̃ on that cube is
then our bound γ̃ , and we take (as before) β̃ = 1

3 γ̃ .
We have implemented this approach in Magma [Bosma et al. 1997]. After a

considerable amount of fine-tuning, our implementation usually takes a few seconds
to produce the required bound. In many cases the new bound, which is essentially
optimal as a bound on ε̃, is considerably better than the bound of [Stoll 1999,
Equation (7.1)], but there are also cases for which it turns out that the old bound is
actually pretty good.

We used the following tricks to get the implementation reasonably fast.

• We keep the polynomials shifted and rescaled so that the cube under consider-
ation is [−1, 1]3.

• The shifting and scaling is done using linear algebra (working with vectors of
coefficients and matrices) and not using polynomial arithmetic.

• The coordinates of the centers and vertices of all cubes are dyadic fractions.
We scale everything (by 24

= 16 at each subdivision step — note that the poly-
nomials involved are of degree 4) so that we can compute with integers instead.

16B. Iterating Stoll’s bound. We now describe a different approach that also works
for complex places. Instead of trying to get an optimal bound on ε̃, we aim at a
bound on µ̃ by iterating the bound obtained from equation (7.1) in [Stoll 1999]. We
recall how this bound was obtained. There is an elementary abelian group scheme
G of order 32 that maps onto J [2] and acts on the space of quadratic forms in the
coordinates of the P3 containing the Kummer surface. This representation splits
into a direct sum of ten one-dimensional representations that correspond to the
ten partitions {S, S′} of the set of ramification points of the double cover C→ P1

into two sets of three. We write y{S,S′} for suitably normalized generators of these
eigenspaces ([Stoll 1999] gives explicit formulas in the case H = 0). We can then
express the squares x2

i as linear combinations of these quadratic forms,

x2
i =

∑
{S,S′}

ai,{S,S′}y{S,S′}(x),

for certain complex numbers ai,{S,S′} that can be explicitly determined. On the other
hand, y2

{S,S′} is a quartic form invariant under the action of J [2] (the representation
of G on quartic forms descends to a representation of J [2]) and is therefore a
linear combination of the duplication polynomials δj and the quartic defining the
Kummer surface. So there are complex numbers b{S,S′}, j that can also be explicitly
determined such that

y{S,S′}(x)2 =
∑

1≤ j≤4

b{S,S′}, jδj (x)
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if x is a set of Kummer coordinates. Taking absolute values and using the triangle
inequality, we obtain

|xi |
4
≤

(∑
{S,S′}
|ai,{S,S′}||y{S,S′}(x)|

)2

≤

(∑
{S,S′}
|ai,{S,S′}|

√∑
1≤ j≤4

|b{S,S′}, j ||δj (x)|
)2

for all (x1 : x2 : x3 : x4) ∈ KS(C). This gives a bound for ε̃ in terms of the ai,{S,S′}

and b{S,S′}, j as in equation (7.1) of [Stoll 1999].
We refine this as follows. Define a function ϕ : R4

≥0→ R4
≥0 by

(d1, d2, d3, d4) 7→

√∑
{S,S′}
|ai,{S,S′}|

√∑
1≤ j≤4

|b{S,S′}, j |dj


1≤i≤4

.

Lemma 16.1. Define a sequence (bn)n in R4
≥0 by

b0 = (1, 1, 1, 1) and bn+1 = ϕ(bn).

Then (bn) converges to a limit b and we have

µ̃(P)≤
4N

4N − 1
log ‖bN‖∞

for all N ≥ 1 and all P ∈ J (C). In particular, sup µ̃(J (C))≤ log ‖b‖∞.

Proof. By our previous considerations, it is clear that |δj (x)| ≤ dj for all j implies
|xi | ≤ ϕi (d1, d2, d3, d4) for all i . We deduce by induction on N that

log ‖x‖∞ ≤ log ‖bN‖∞+ 4−N log ‖δ◦N (x)‖∞

for all N ≥ 1. Writing

µ̃(P)=−
∞∑

m=0

4−m N (log ‖κ(2m N P)‖∞− 4−N log ‖δ◦N (κ(2m N P))‖∞
)
,

we obtain an upper bound of log ‖bN‖∞ for each of the terms in parentheses, which
gives the desired bound.

To see that (bn) converges, we consider

8(x)=
(
logϕi (exp(x1), . . . , exp(x4))

)
1≤i≤4.

It is easy to see that the partial derivatives ∂8i/∂x j are positive and that, for each i ,
summing them over j gives 1

4 .
(
This comes from the fact that ϕi is homogeneous of

degree 1
4 .
)

This implies that ‖8(x ′)−8(x)‖∞≤ 1
4‖x
′
−x‖∞, so that8 is contracting

with contraction factor ≤ 1
4 . The Banach fixed point theorem then guarantees the
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existence of a unique fixed point of 8, which every iteration sequence converges to.
This implies the corresponding statement for ϕ. �

If we are dealing with a real place, then we may gain a little bit more by making
use of the fact that the δj (x) are real, while some of the coefficients b{S,′S}, j may
be genuinely complex. This can lead to a better bound on |y{S,S′}|.

For example, considering the curve with the record number of known rational
points, we get an improvement from 7.726 to 0.973 for the upper bound on −µ̃
using Lemma 16.1. See Section 19 for more details. In practice it appears that this
second approach is at the same time more efficient and leads to better bounds than
the approach described in Section 16A above.

The approach described here can also be applied in the context of heights on
genus-3 hyperelliptic Jacobians; see [Stoll 2014].

17. Optimizing the naive height

We now consider an arbitrary local field k, with absolute value | · |. Let C be given
by an equation

Y 2
= F(X, Z),

and let W be the canonical class on C . The first three coordinates of the image of a
point P =[(X1 : Y1 : Z1)+(X2 : Y2 : Z2)]−W ∈ J on the Kummer surface are given
by Z1 Z2, X1 Z2+ Z1 X2, X1 X2, whereas the fourth coordinate is homogeneous of
degree 1 in the coefficients f j of F

(
if we consider Y1 and Y2 to be of degree 1

2

)
. This

has the effect that the fourth coordinate usually differs by a factor of about ‖F‖ :=
max{| f0|, | f1|, . . . , | f6|} from the other three, which gives this last coordinate a
much larger (when ‖F‖ is large; this is usually the case when k is archimedean)
or smaller (this may occur when k is nonarchimedean) influence on the local
contribution to the naive height when k= Kv and K is a global field. This imbalance
tends to increase the difference hstd− ĥ between naive and canonical height. This
observation suggests to modify the naive height in the following way, so as to give
all coordinates roughly the same weight. Compare Section 2 for the general setup.
Let x be a set of Kummer coordinates over a global field K and set

h′(x) :=
∑
v∈MK

log max{|x1|v, |x2|v, |x3|v, |x4|v/‖F‖v}.

This is a height as in Example 2.3.
We state the following simple result, which will help us use this modified height.

Lemma 17.1. Let F0 ∈ k[X, Z ] be squarefree and homogeneous of degree 6. For
c ∈ k×, let C (c) denote the curve Y 2

= cF0(X, Z). The Kummer surfaces KS(1)
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of C (1) and KS(c) of C (c) are isomorphic via

ι : KS(1)→ KS(c), (x1 : x2 : x3 : x4) 7→ (x1 : x2 : x3 : cx4).

We abuse notation and write ι also for the linear map

(x1, x2, x3, x4) 7→ (x1, x2, x3, cx4).

Write δ(c) for the duplication polynomials on KS(c). Then

δ(c)(ι(x))= c3ι(δ(1)(x)) for each x ∈ KS(1)A .

Proof. This can be checked by an easy calculation. �

If k is nonarchimedean and we use the modified local height given by

h′v(x)= log max{|x1|v, |x2|v, |x3|v, |x4|v/‖F‖v},

then we need to change the definition of ε accordingly to (compare Lemma 2.4)

ε(x)=min{v(δ1(x)), v(δ2(x)), v(δ3(x)), v(δ4(x))− v(F)}

− 4 min{v(x1), v(x2), v(x3), v(x4)− v(F)},

where v(F) = v({ f0, . . . , f6}). By Lemma 17.1 with c = πv(F), where π is a
uniformizer of k, and F0 = c−1 F, we then have, denoting the objects associated
to F0 by δ0, ε0 and µ0,

ε(x)= v
(
ι−1(δ(x))

)
− 4v(ι−1(x))

= v
(
c3δ0(ι

−1(x))
)
− 4v(ι−1(x))= 3v(F)+ ε0(ι

−1(x)).

This impliesµ(x)=v(F)+µ0(ι
−1(x)). Let C0 be the curve given by Y 2

= F0(X, Z).
We then get that

β(C)≤ v(F)+ β̄(C0).

Note that the Jacobians of C and C0 are in general only isomorphic over the
ramified quadratic extension k(

√
π), so we cannot necessarily use β(C0) here.

If v(F) is even, however, then the isomorphism is defined over k, and we have
β(C)= v(F)+β(C0).

So, except for the correction term v(F), the effect is that we use the Kummer
surface associated to the quadratic twist C0 of C , which has a primitive polynomial
on the right-hand side of its equation. Note in addition that this also allows us to
deal with nonintegral equations; in this case, we again implicitly scale to make the
polynomial on the right integral and primitive.

When k = Kv ∼= Q2 (say) and we can write F = 4F1+ H 2 with binary forms
F1 and H with integral coefficients, then C is isomorphic to the curve C ′ given by
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the Weierstrass equation

Y 2
+ H(X, Z)Y = F1(X, Z),

and we can use the Kummer surface of the latter to define the local contribution to
the naive height. The isomorphism between the Kummer surfaces is given by (see
[Müller 2010, p. 53]; note that this is the inverse of the map given there)

(x1 : x2 : x3 : x4) 7→
(
x1 : x2 : x3 :

1
4 x4+

1
2(h0h2x1+ h0h3x2+ h1h2x3)

)
.

The scaling factor this induces for the δ polynomials is 26 in this case. So defining
the local component at v of h′(x) to be

log max
{
|x1|v, |x2|v, |x3|v,

∣∣ 1
4 x4+

1
2(h0h2x1+ h0h3x2+ h1h2x3)

∣∣
v

}
,

we can replace the bound for µv by the bound we get on C ′ plus 2. If we use this
at the places above 2 where it applies (instead of, or combined with, the scaling
described above), we still obtain a height as in Example 2.3.

If v is an archimedean place, then the approach described in Section 16B above
can easily be adapted to the modified naive height. We just have to replace
b{S,S′},4 = 1 by ‖F‖v and a4,{S,S′} by a4,{S,S′}/‖F‖2v. This will usually lead to
a negative upper bound for µ̃v , which is fairly close to −log ‖F‖v , at least when F
is reduced in the sense of [Stoll and Cremona 2003] and its roots are not too close to-
gether. This is because the scaled ai,{S,S′} are now all of size≈‖F‖−2

∞
and the scaled

b{S,S′}, j are all of size≈‖F‖∞, so8 as in the proof of Lemma 16.1 roughly satisfies
‖8(x)‖∞ ≈− 3

4 log ‖F‖∞+ 1
4‖x‖∞, which has −log ‖F‖∞ as its fixed point.

Note that for a point (0 : 0 : 0 : 1) 6= P = (x1 : x2 : x3 : x4) ∈KS(K ) we have, for
all versions h′ of the modified height,

hstd((x1 : x2 : x3))≤ h′(P).

We will therefore find all points P with h′(P)≤ B, if we can enumerate all P with
hstd((x1 : x2 : x3))≤ B. This can be done (over Q) by using the -a option of the sec-
ond author’s program j-points, which is available at [Stoll 2006]. (This option is
also available in Magma version 2.22 or later.) In this way, enumerating all points as
above with B up to roughly log 50 000 is feasible. See the discussion in Section 18.

Note that it is quite possible that we end up with a bound

hstd((x1 : x2 : x3))≤ h′(P)≤ ĥ(P)+ β̃ for all P ∈ J (Q) \ {O}

with β̃ < 0. In this case −β̃ is a lower bound on the canonical height of any
nontrivial point in J (Q); in particular, the torsion subgroup of J (Q) must be trivial.
To give an indication of when we can expect β̃ to be close to zero or negative,
write |24 disc(F)| = DD′ with D and D′ coprime and D′ squarefree and odd. Then
the contribution of the finite places to β̃ can be bounded by 1

4 log D, and we get
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β̃ ≈ − log ‖F‖∞ + 1
4 log D. So if D � ‖F‖4

∞
, we are in good shape. Note that

|disc(F)| � ‖F‖10
∞

, so this means that 60% or more of log |disc(F)| comes from
primes p dividing the discriminant exactly once. For curves that are not very special
this is very likely to be the case.

In Section 19 we show how this approach can be used to get a very small bound
for the height difference even for a curve with ten-digit coefficients.

18. Efficient enumeration of points of bounded canonical height

Let C : y2
= f (x) be a curve of genus 2 over Q with Jacobian J. In this section we de-

scribe the algorithm for enumerating all points P ∈ J (Q)with ĥ(P)≤ B that follows
from the considerations above. We assume that f ∈ Z[x] and proceed as follows.

1. Compute the complex roots of f numerically.

2. Compute the coefficients ai,{S,S′} and b{S,S′}, j from the roots and the leading
coefficient of f according to the formulas given in [Stoll 1999, §10].

3. Multiply all a4,{S,S′} by ‖ f ‖−2
∞

and multiply all b{S,S′},4 by ‖ f ‖∞.

4. Iterate the function ϕ from Section 17 (but using the modified coefficients)
a number of times, starting at (1, 1, 1, 1), until there is little change; let β̃∞ be
the upper bound for µ̃∞ as in Lemma 16.1.

5. Factor the discriminant of f . Let g be the gcd of the coefficients of f .

6. For each prime divisor p of 2 disc( f ), do the following.
a. Let ep be the p-adic valuation of g and set f1 = p−ep f .
b. If p = 2 and f1 = h2

+ 4 f2 for polynomials f2, h ∈ Z[x], then set
C1 : y2

+h(x)y= f2(x) and replace g by 4g; otherwise set C1 : y2
= f1(x).

Let J1 be the Jacobian of C1.
c. If ep is even, let βp be the bound for µp on J1(Qp) as obtained in Part II.

Otherwise, let βp be the bound for µp on J1(Qp).

7. Set β̃ = β̃∞+
∑

p βp log p+ log g.

8. Use j-points with the -a option to enumerate all points O 6= P ∈ J (Q) such
that hstd((κ1(P) : κ2(P) : κ3(P)))≤ B+ β̃.

9. Add O to this set and return it.

Note that log g is the sum of the correction terms vp( f ) log p.
It follows from the discussion in the previous sections that the set returned by

this algorithm contains all points with canonical height at most B. If necessary,
one can compute the actual canonical heights using the algorithm from Part III and
discard the points whose height is too large.

The actual enumeration is done by running through all points (x1 : x2 : x3)∈P2 of
(standard) height at most B+ β̃ and checking whether there are rational numbers x4



2228 Jan Steffen Müller and Michael Stoll

such that (x1 : x2 : x3 : x4) is on the Kummer surface. For each of these points on the
Kummer surface, we then check if it lifts to the Jacobian. Both these conditions are
equivalent to some expression in the coordinates (and the coefficients of f ) being
a square. The j-points program tries to do this efficiently by using information
modulo a number of primes to filter out triples that do not lift to rational points
on J. Let N = bexp(B+ β̃)c. Then j-points usually takes a couple of seconds
when N = 1000, a few minutes when N = 5000 and a few days when N = 50 000.
The running time scales with N 3, but the scaling factor depends on how effective
the sieving mod p is. For Jacobians of high rank, the program tends to take longer
than for “random” Jacobians.

Since the running time depends exponentially on B+ β̃, it is very important to
obtain a small bound β̃ for the difference between naive and canonical height. The
improvement at the infinite place that we can achieve by considering a modified naive
height is crucial for making the enumeration feasible also in cases when the defining
polynomial has large coefficients. This is demonstrated by the example in Section 19.

If the discriminant of f is too large to be factored, then one can use

β̃ = β̃∞+
1
4 log |disc( f1)| + log g

(or use information from small prime divisors as in the algorithm above and 1
4 log D

for the remaining primes, where D is the unfactored part of the discriminant). But
note that it is usually a great advantage to know the bad primes, since we can take
βp = 0 for primes p such that vp(disc( f ))= 1. In most cases, this leads to a much
smaller bound β̃.

One of the most important applications of this enumeration algorithm is its use
in saturating a given finite-index subgroup of J (Q), which gives (generators of)
the full group J (Q). This is a necessary ingredient of the method for obtaining
all integral points on C developed in [Bugeaud et al. 2008], for example, and for
computing the regulator of J (Q).

There are essentially two ways of performing the saturation. Let G ⊂ J (Q)
denote the known subgroup.

(i) Let ρ be (an upper bound for) the covering radius of the lattice3= (G/G tors, ĥ).
Then J (Q) is generated by G together with all points P ∈ J (Q) that satisfy
ĥ(P) ≤ ρ2; see [Stoll 2002, Proposition 7.1]. This approach is feasible when
β̃ + ρ2 is sufficiently small.

(ii) Let I = (J (Q) :G) denote the index; we assume J (Q)tors⊂G. If m1, . . . ,mr are
the successive minima of3 and there are no points P ∈ J (Q)\G with ĥ(P)< B, then

I ≤

√
R · γ r

r∏r
j=1 min{mj , B}

;
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see [Flynn and Smart 1997, §7]. Here γr is (an upper bound for) the Hermite
constant for lattices of rank r , and R is the regulator of G (i.e., the determinant of
the Gram matrix of any basis of 3). This can be used to get a bound on I whenever
B is strictly positive, so for the enumeration we only need β̃ to be sufficiently small.
(If β̃ < 0, then we can do entirely without enumeration to get an index bound.) In a
second step, one then has to check that G is p-saturated in J (Q) (or find the largest
group G ⊂ G ′ ⊂ J (Q) with (G ′ : G) a power of p) for all primes p up to the index
bound. This can be done by considering the intersection of the kernels of the maps
J (Q)/pJ (Q)→ J (Fq)/pJ (Fq) for a set of good primes q (such that the group on
the right is nontrivial). If this intersection is trivial, then G is p-saturated; otherwise
it tells us where to look for points that are potentially divisible by p. Since the
index bound gets smaller with increasing B (as long as B < mr ), it makes sense to
pick B in such a way as to balance the time spent in the two steps of this approach.

19. Example

As an example that demonstrates the use of our nearly optimal upper bound for the
difference h− ĥ between naive and canonical height (which is based on the optimal
bounds for the µp obtained in Sections 9, 10 and 11 and the variation of the naive
height discussed in Section 17), we consider the curve

C : y2
= 82342800x6

− 470135160x5
+ 52485681x4

+ 2396040466x3
+ 567207969x2

− 985905640x + 247747600.

This curve is of interest, since it holds the current record for the largest number of
known rational points (which is 642 for this curve); see [Stoll 2008]. A 2-descent
on its Jacobian J (assuming GRH) as described in [Stoll 2001] and implemented
in Magma gives an upper bound of 22 for the rank of J (Q), and the differences of
the known rational points generate a group of rank 22. The latter statement can be
checked by computing the determinant R of the height pairing matrix of the 22 points
in J (Q) listed in Table 3, which is fairly fast using the algorithm for computing
canonical heights described in Section 14. The points are given in Mumford repre-
sentation (a(x), b(x)), which stands for [(θ1, b(θ1))+(θ2, b(θ2))]−W, where θ1, θ2

are the two roots of a(x) and W is the canonical class. Not all of these points are
differences of rational points, but they are linear combinations of such differences.

We can easily check that J (Q) has trivial torsion subgroup by computing the
order of J (Fp) for a few good primes p.

The discriminant of C factors as

1= 247
· 35
· 59
· 112
· 132
· 176
· 194
· 232
· 414
· 733

· 2707 · 43579 · 108217976921 · 8723283517315751077.
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(x2
+ x, 18868x + 15740),

(
x2
−

1
3 x, 216800

3 x − 15740
)
,(

x2
+

2
3 x − 1

3 ,
11747

3 x + 21131
3

)
, (x2

+ 5x + 4, 276256x + 273128),(
x2
+

4
3 x − 5

9 , 16315x + 26195
9

)
,
(
x2
+

53
12 x + 5

3 ,
1433669

6 x + 371650
3

)
,

(x2
− 3x − 4, 34104x + 30976), (x2

− 4x − 5, 65987x + 69115),(
x2
+

8
5 x + 3

5 , 67671x + 64543
)
,
(
x2
− 5x − 6, 883626

7 x + 905522
7

)
,(

x2
−

3
4 x − 7

4 , 31875x + 35003
)
,
(
x2
+

5
7 x − 2

7 ,
432898

49 x + 279626
49

)
,(

x2
+

29
6 x − 178

9 ,
3014179

6 x − 10824742
9

)
,
(
x2
+

19
84 x − 65

84 ,
4287373

294 x + 5207005
294

)
,(

x2
+

97
42 x − 37

42 ,
23742013

294 x − 5459431
294

)
,
(
x2
−

5
11 x, 1089388

121 x − 15740
)
,(

x2
+

325
84 x − 11

21 ,
30014567

147 x − 2230444
147

)
,
(
x2
−

683
140 x − 279

140 ,
45519013

490 x + 5478709
490

)
,(

x2
−

91
769 x − 584

769 ,
6911886712

591361 x + 16665656516
591361

)
,
(
x2
−

259
96 x + 163

72 ,
52305719

768 x − 13101271
576

)
,(

x2
−

3073
2307 x − 1252

769 ,
54505985456

1774083 x + 25990632928
591361

)
,
(
x2
−

137
51 x + 40

51 ,
47131040

867 x − 8471860
867

)
.

Table 3. Generators of the known part of J (Q).

The results of [Stoll 1999; Stoll 2002] lead to a bound of

1
3(43 log 2+ 3 log 3+ 9 log 5+ 2 log 11+ 2 log 13

+ 6 log 17+ 4 log 19+ 2 log 23+ 4 log 41+ 3 log 73)≈ 40.1

for the contribution of the finite places to the height difference bound. When trying
to get a better bound (for γp) by essentially doing an exhaustive search over the
p-adic points of the Kummer surface, Magma gets stuck at p = 2 for a long while,
but eventually finishes with a contribution of 26.434 from the finite places and
a total bound of 34.163. This contribution turns out to be 1

3γp log p in all cases
except for p = 73, where it is 2

3 log 73 instead of 1
3 log 73. Our new results from

this paper give bounds on the local contributions as shown in Table 4. 8p is the
component group (ε and µ factor through it in all cases) and “gain” gives the gain
in the bound on the height difference obtained by using the optimal bound on µ
versus the bound 1

3γ , where γ is the maximum of the values of ε.
This now gives a bound of ≈ 20.429 for the contribution of the finite places. The

optimization of the naive height does not give any improvement at the odd finite
places, since the polynomial f defining the curve is primitive. On the other hand,
we note that f is congruent to a square mod 4, so we could use the Kummer surface
of the curve y2

+ (x2
+ x)y = f1(x) (where f (x) = 4 f1(x)+ (x2

+ x)2) for the
local height at 2, but this results in no improvement, since we have already used a
minimal model to get our bound.

Now we consider the contribution of the infinite place. The bound obtained from
[Stoll 1999, Equation (7.1)] is 7.726. Using Lemma 16.1 with N = 10 improves
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p reduction type 8p βp
1
3γp gain

2 [I10−9−8] Z/242Z 2+ 1145/242 26/3 1.341
3 [I0− IV− 0] Z/3Z 2/3 2/3 0.000
5 [I4−3−2] Z/26Z 22/13 2 0.495

11 [I2−0−0] Z/2Z 1/2 2/3 0.400
13 [I2−0−0] Z/2Z 1/2 2/3 0.427
17 [I2−2−2] Z/2Z×Z/6Z 1 4/3 0.944
19 [I2−1−1] Z/5Z 3/5 2/3 0.196
23 [I2−0−0] Z/2Z 1/2 2/3 0.523
41 [I2−1−1] Z/5Z 3/5 2/3 0.248
73 [I1−1−1] Z/3Z 1/3 1/3 0.000

Table 4. Bounds for βp.

this to 0.973; increasing N further gives no significant improvement. However,
modifying the local height at the infinite place by scaling the contribution of the
fourth coordinate by ‖ f ‖−1

∞
reduces this bound drastically to µ̃∞ ≤ −19.25654

(compare this to −log ‖ f ‖∞ ≈−21.59708). This finally gives

h′(P)≤ ĥ(P)+ 1.17273

for our modified naive height h′.
So if we enumerate all points P ∈ J (Q) with h′(P) ≤ log N and do not find

points that are not in the known subgroup G, then we obtain a bound for the index
I = (J (Q) : G) as follows (see the discussion at the end of Section 18):

I ≤

√√√√ R · γ 22
22∏22

j=1 min{mj , log N − 1.17273}
.

Here R is the regulator of G and m1,m2, . . . ,m22 are the successive minima of the
lattice (G, ĥ), which are

8.5276, 8.5668, 8.5956, 8.8594, 9.0256, 9.0776, 9.1426, 9.1753,
9.4456, 9.7428, 9.7747, 9.9047, 9.9465, 9.9611, 9.9704, 10.1408,

10.3472, 10.3784, 10.5284, 10.5356, 10.6318, 10.9287.

With N = 10 000 we obtain I ≤ 6842, with N = 20 000 we get I ≤ 2835 and with
N ≥ 178 245 we obtain the best possible bound I ≤ 900. We checked that there are
no unknown points P with κ(P)= (x1 : x2 : x3 : x4) such that hstd((x1 : x2 : x3))≤

log 20 000 and verified that the index is not divisible by any prime p ≤ 2835. The
first computation took about two days on a single core, the second less than half a
day. This implies the following.
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Proposition 19.1. Assume the generalized Riemann hypothesis. Let

C : y2
= 82342800x6

− 470135160x5
+ 52485681x4

+ 2396040466x3
+ 567207969x2

− 985905640x + 247747600

and denote by J the Jacobian of C. Then J (Q) is a free abelian group of rank 22,
freely generated by the points listed in Table 3. In particular, J (Q) is generated by
the differences of rational points on C.
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Combinatorial degenerations of surfaces
and Calabi–Yau threefolds
Bruno Chiarellotto and Christopher Lazda

In this article we study combinatorial degenerations of minimal surfaces of
Kodaira dimension 0 over local fields, and in particular show that the “type”
of the degeneration can be read off from the monodromy operator acting on
a suitable cohomology group. This can be viewed as an arithmetic analogue
of results of Persson and Kulikov on degenerations of complex surfaces, and
extends various particular cases studied by Matsumoto, Liedtke and Matsumoto,
and Hernández Mada. We also study “maximally unipotent” degenerations of
Calabi–Yau threefolds, following Kollár and Xu, showing in this case that the
dual intersection graph is a 3-sphere.
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1. Introduction

Fix a complete discrete valuation ring R with perfect residue field k of characteristic
p > 3 and fraction field F . Let π be a uniformiser for R, and let X be a smooth
and projective scheme over F . Let F be a separable closure of F .
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Definition 1.1. A model of X over R is a regular algebraic space X , proper and
flat over X over R, whose generic fibre is isomorphic to X , and whose special fibre
is a scheme. We say that a model is semistable if it is étale locally smooth over
R[x1, . . . , xd ](x1 · · · xr −π), and strictly semistable if furthermore the irreducible
components of the special fibre Y are smooth over k.

A major question in arithmetic geometry is that of determining criteria under
which X has good or semistable reduction over F , i.e., admits a model X which
is smooth and proper over R, or semistable over R. In general the question of
determining good reduction criteria comes in two flavours:

(1) Does there exists a model X of X which is smooth over R?

(2) Given a semistable model X of X , can we tell whether or not X is smooth?

We will refer to the first of these as the problem of “abstract” good reduction,
and the second as the problem of “concrete” good reduction. The sorts of criteria
we expect are those that can be expressed in certain homological or homotopical
invariants of the variety in question. In this article we will mainly concentrate
on these problems for minimal smooth projective surfaces over F of Kodaira
dimension 0. These naturally fall into four classes:
• K3 surfaces;

• Enriques surfaces;

• abelian surfaces;

• bielliptic surfaces,

and in each case we have both the abstract and concrete good reduction problem.
Note that for this article we will generally use “abelian surface” to mean a surface
over F that is geometrically an abelian surface, i.e., we do not necessarily assume
the existence of an F-rational point (or thus of a group law).

In the analogous complex analytic situation (i.e., that of a semistable, projective
degeneration X → 1 over the open unit disc with general fibre X t a minimal
complex algebraic surface with κ = 0) it was shown by Persson [1977] and Kulikov
[1977] that, under a certain (reasonably strong) hypothesis on the total space X one
could quite explicitly describe the “shape” of the special fibre, and that these shapes
naturally fall into three “types” depending on the nilpotency index of the logarithm
of the monodromy on a suitable cohomology group. Our main result here is an
analogue of this result in an “arithmetic” context, namely classifying the special
fibre of a strictly semistable scheme over R whose generic fibre is a surface of one
of the above types, in terms of the monodromy operator on a suitable cohomology
group. The exact form of the theorem is somewhat tricky to state simply, so here
we content ourselves with providing a rough outline and refer to the body of the
article for more detailed statements.
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Theorem 1.2 (Theorems 6.4, 7.5, 8.3 and 9.3). Let X/F be a minimal surface with
κ = 0, and let ` be a prime (possibly equal to p). Let X /R be a “minimal” model of
X in the sense of Definition 5.1. Then the special fibre Y of X is “combinatorial”,
and moreover there exists an “`-adic local system” V` on X such that Y is of Type I,
II or III as the nilpotency index of a certain monodromy operator on H i (X, V`) is 1,
2 or 3 respectively.

Remark 1.3. (1) We will not give the definition of “combinatorial” surfaces here,
see Definitions 5.4, 5.5, 5.6 and 5.7.

(2) When char(F)= 0 or char(F)= p 6= ` then the local system V` is a Q`-étale
sheaf on X , and the corresponding cohomology group is H i

ét(X F , V`). This is
an `-adic representation of GF , de Rham when `= p and char(F)= 0, and
hence has a monodromy operator attached to it.

(3) When char(F) = p = ` then the local system V` = Vp is an overconvergent
F-isocrystal, and the corresponding cohomology group is a certain form of
rigid cohomology H i

rig(X/RK , Vp). This is a (ϕ,∇)-module over the Robba
ring RK and hence has a monodromy operator by the p-adic local monodromy
theorem. For more details on p-adic cohomology in equicharacteristic p case
see Section 2.

Certain types of results of this sort have been studied before, for example by
Matsumoto [2015] (for char(F) 6= ` and X a K3 surface), Liedtke and Matsumoto
[2016] (char(F) = 0, ` 6= p and X K3 or Enriques), Hernández Mada [2015]
(char(F)=0, `= p and X K3 or Enriques), and Pérez Buendía [2014] (char(F)=0,
` = p and X K3), and our purpose here is partly to unify these existing results
into a broader picture, and partly to fill in various gaps, for example allowing
` = p = char(F) in the case of K3 surfaces. It is perhaps worth noting that
even treating the case of abelian surfaces is not quite as irrelevant as it may seem
(given the rather well-known results on good reduction criteria for abelian varieties)
since our result describes the possible shape of the special fibre of a proper, but
not necessarily smooth model. We also relate these shapes to the more classical
description of the special fibre of the Néron model, at least after a finite base change
(Proposition 10.5).

In each case (K3, Enriques, abelian, bielliptic) the proof of the theorem is in two
parts. The first consists of showing that the special fibre Y is combinatorial; this uses
coherent cohomology and some basic (logarithmic) algebraic geometry. The second
then divides the possible shapes into types depending on the nilpotency index of
a certain monodromy operator N ; this uses the weight spectral sequence and the
weight monodromy conjecture (which in all cases is known for dimensions ≤ 2).
Although we do not use it explicitly, constantly lurking in the background here is a
Clemens–Schmid type exact sequence of the sort considered in [Chiarellotto and
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Tsuzuki 2014]. Unfortunately, while the structure of the argument in all 4 cases is
similar, we were not able to provide a single argument to cover all of them, hence
parts of this article may seem somewhat repetitive.

The major hypothesis in the theorem is “minimality” of the model X , which
is more or less the assumption that the canonical divisor KX of X is numerically
trivial. For K3 surfaces one expects that such models exist (at least after a finite base
change), and Matsumoto [2015] showed that this is true if the semistable reduction
conjecture is true for K3 surfaces. For abelian surfaces, this argument adapts to show
that one does always have such a model after a finite base change (Theorem 10.3),
however, for Enriques surfaces there are counterexamples to the existence of such
models (see [Liedtke and Matsumoto 2016]) and it seems likely that the same true
for bielliptic surfaces. Unfortunately, the methods used by Persson, Kulikov et al.
to describe the special fibre when one does not necessarily have these “minimal
models” do not seem to be at all adaptable to the arithmetic situation.

Finally, we turn towards addressing similar questions in higher dimensions by
looking at certain “maximally unipotent” degenerations of Calabi–Yau threefolds.
The inspiration here is the recent work of Kollár and Xu [2016] on log Calabi–Yau
pairs, using recently proved results on the minimal model program for threefolds in
positive characteristic (in particular the existence of Mori fibre spaces from [Birkar
and Waldron 2016]). The main result we obtain (Theorem 11.5) is only part of the
story, unfortunately, proceeding any further (at least using the methods of this article)
will require knowing that the weight monodromy conjecture holds in the given situa-
tion, so is only likely to be currently possible in equicharacteristic. A key part of the
proof uses a certain description of the homotopy type (in particular the fundamental
group) of Berkovich spaces, which forces us to restrict to models X /R which
are schemes, rather than algebraic spaces. As the example of K3 surfaces shows,
however, any result concerning the “abstract” good reduction problem is likely to
involve algebraic spaces, and will therefore require methods to handle this case.

Notation and conventions. Throughout k will be a perfect field of characteristic
p>3, R will be a complete DVR with residue field k and fraction field F , which may
be of characteristic 0 or p. We will choose a uniformiser π for F , and let F denote
a separable closure. We will denote by q some fixed power of p such that Fq ⊂ k.

A variety over a field will be a separated scheme of finite type, and when X is
proper and F is a coherent sheaf on X we will write

hi (X,F )= dim H i (X,F ) and χ(X,F )=
∑

i

(−1)i hi (X,F ).

We will also write χ(X)=χ(X,OX ); since we always mean coherent Euler–Poincaré
characteristics (rather than topological ones) this should not cause confusion.



Combinatorial degenerations of surfaces and Calabi–Yau threefolds 2239

Unless otherwise mentioned, a surface over any field will always mean a smooth,
projective and geometrically connected surface. A ruled surface of genus g is a
surface X together with a morphism f : X→ C to a smooth projective surface C
of genus g, whose generic fibre is isomorphic to P1. If we let F denote a smooth
fibre of f then an n-ruling of f (for some n ≥ 1) will be a smooth curve D ⊂ X
such D · F = n, a 1-ruling will be referred to simply as a ruling.

2. Review of p-adic cohomology in equicharacteristic

In this section we will briefly review some of the material from [Lazda and Pál
2016] on p-adic cohomology when char(F) = p, and explain some of the facts
alluded to in the introduction, in particular the existence of monodromy operators.
We will therefore let W =W(k) denote the ring of Witt vectors of k, K its fraction
field, and σ the q-power Frobenius on W and K . In this situation, we have an
isomorphism F ∼= k((π)), where π is our choice of uniformiser. We will let RK

denote the Robba ring over K , that is the ring of series
∑

i ai t i with ai ∈ K such
that

• for all ρ < 1, |ai |ρ
i
→ 0 as i→∞;

• for some η < 1, |ai |η
i
→ 0 as i→−∞.

In other words, it is the ring of functions convergent on some semiopen annulus
η≤ |t |< 1. The ring of integral elements Rint

K (i.e., those with ai ∈W ) is therefore a
lift of F to characteristic 0, in the sense that mapping t 7→ π induces Rint

K /(p)∼= F.
We will denote by σ a Frobenius on RK , i.e., a continuous σ -linear endomorphism
preserving Rint

K and lifting the absolute q-power Frobenius on F, we will moreover
assume that σ(t)= utq for some u ∈ (W [[t]] ⊗W K )×. The reader is welcome to
assume that σ

(∑
i ai t i

)
=
∑

i σ(ai )t iq . Let ∂t : RK → RK denote the derivation
given by differentiation with respect to t .

Definition 2.1. A (ϕ,∇)-module over RK is a finite free RK -module M together
with

• a connection, that is a K -linear map ∇ : M→ M such that

∇(rm)= ∂t(r)m+ r∇(m) for all r ∈RK and m ∈ M;

• a horizontal Frobenius ϕ : σ ∗M := M ⊗RK ,σ RK −→
∼ M .

Then (ϕ,∇)-modules over RK should be considered as p-adic analogues of
Galois representations, for example, they satisfy a local monodromy theorem (see
[Kedlaya 2004]) and hence have a canonical monodromy operator N attached
to them (see [Marmora 2008]). More specifically, the connection ∇ should be
viewed as an analogue of the action of the inertia subgroup IF and the Frobenius
ϕ the action of some Frobenius lift in GF . The analogue for (ϕ,∇)-modules
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of inertia acting unipotently (on an `-adic representation for ` 6= p) or of a p-
adic Galois representation being semistable (when char(F) = 0) is therefore the
connection acting unipotently, i.e., there being a basis m1, . . . ,mn such that∇(mi )∈

RK m1+· · ·+RK mi−1 for all i . The analogue of being unramified or crystalline for
a (ϕ,∇)-module M is therefore the connection acting trivially, or in other words M
admitting a basis of horizontal sections. We call such (ϕ,∇)-modules M solvable.

Let E †
K ⊂RK denote the bounded Robba ring, that is the subring consisting of

series
∑

i ai t i such that |ai | is bounded; we therefore have the notion of a (ϕ,∇)-
module over E †

K , as in Definition 2.1. The main purpose of the book [Lazda and
Pál 2016] was to define cohomology groups

X 7→ H i
rig(X/E

†
K )

for i ≥ 0 associated to any k((π))-variety X (i.e., separated k((π))-scheme of finite
type), as well as versions with compact support H i

c,rig(X/E
†
K ) or support in a closed

subscheme Z ⊂ X , H i
Z ,rig(X/E

†
K ). These are (ϕ,∇)-modules over E †

K and enjoy
all the same formal properties as `-adic étale cohomology for ` 6= p. Here we list a
few of them:

(1) If X is of dimension d then H i
rig(X/E

†
K )= H i

c,rig(X/E
†
K )= H i

Z ,rig(X/E
†
K )= 0

for i outside the range 0≤ i ≤ 2d.

(2) (Künneth formula) For any X, Y over k((π)) we have

H n
c,rig(X × Y/E †

K )
∼=

⊕
i+ j=n

H i
c,rig(X/E

†
K )⊗E

†
K

H j
c,rig(Y/E

†
K )

and if X and Y are smooth over k((π)) we also have

H n
rig(X × Y/E †

K )
∼=

⊕
i+ j=n

H i
rig(X/E

†
K )⊗E

†
K

H j
rig(Y/E

†
K ).

(3) (Poincaré duality) For any X smooth over k((π)) of equidimension d we have
a perfect pairing

H i
rig(X/E

†
K )× H 2d−i

c,rig (X/E
†
K )→ H 2d

c,rig(X/E
†
K )
∼= E †

K (−d)

where (−d) is the Tate twist which multiplies the Frobenius structure on the
constant (ϕ,∇)-module E †

K by qd.

(4) (Excision) For any closed Z ⊂ X with complement U ⊂ X we have long exact
sequences

· · · → H i
Z ,rig(X/E

†
K )→ H i

rig(X/E
†
K )→ H i

rig(U/E
†
K )→ · · ·

and

· · · → H i
c,rig(U/E

†
K )→ H i

c,rig(X/E
†
K )→ H i

c,rig(Z/E
†
K )→ · · · .
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(5) (Gysin) For any closed immersion Z ↪→ X of smooth schemes over k((π)), of
constant codimension c there is a Gysin isomorphism

H i
Z ,rig(X/E

†
K )
∼= H i−2c

rig (Z/E †
K )(−c).

(6) There is a “forget supports” map H i
c,rig(X/E

†
K )→ H i

rig(X/E
†
K ) which is an

isomorphism whenever X is proper over k((π)).

(7) Let U ⊂ C be an open subcurve of a smooth projective curve C of genus g,
with complementary divisor D of degree d . Then

dim
E

†
K

H 1
rig(U/E

†
K )=

{
2g− 1+ d if d ≥ 1,
2g if d = 0.

(8) Let A be an abelian variety over k((π)) of dimension g. Then H 1
rig(A/E

†
K )

is (more or less) isomorphic to the contravariant Dieudonné module of the
p-divisible group A[p∞] of A, has dimension 2g, and

H i
rig(A/E

†
K )
∼=
∧i H 1

rig(A/E
†
K ).

All of these properties were proved in [Lazda and Pál 2016]. We may therefore
define, for any variety X/k((π))

H i
rig(X/RK ) := H i

rig(X/E
†
K )⊗E

†
K

RK

as (ϕ,∇)-modules over RK . That the property of a (ϕ,∇)-module being solvable
(resp. unipotent) really is the correct analogue of a Galois representation being
unramified or crystalline (resp. unipotent or semistable) is suggested by the following
result.

Theorem 2.2 [Lazda and Pál 2016, §5]. Let X/k((π)) be smooth and proper. If X
has good (resp. semistable reduction) then H i

rig(X/RK ) is solvable (resp. unipotent)
for all i ≥ 0. If moreover X is an abelian variety, then the converse also holds.

In [Lazda and Pál 2016] was also shown an equicharacteristic analogue of the
Cst-conjecture, namely that when X /R is proper and semistable, the cohomology
H i

rig(X/RK ) of the generic fibre can be recovered from the log-crystalline coho-
mology H i

log -cris(Y
log/W log)⊗W K of the special fibre. Our task for the remainder

of this section is to generalise this result to algebraic spaces (with fibres that are
schemes).

So fix a smooth and proper variety X/F and a semistable model X /R (see
Definition 1.1) for X . Let Y log denote the special fibre of X with its induced log
structure, and let W log denote W with the log structure defined by 1 7→ 0. Then the
log-crystalline cohomology H i

log -cris(Y
log/W log)⊗W K is a (ϕ, N )-module over K ,

i.e., a vector space with semilinear Frobenius ϕ and nilpotent monodromy operator
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N satisfying Nϕ=qϕN , and the rigid cohomology H i
rig(X/RK ) is a (ϕ,∇)-module

over RK . There is a fully faithful functor

(−)⊗K RK :M8N
K →M8∇RK

from the category M8N
K of (ϕ, N )-modules over K to that of (ϕ,∇)-modules

over RK , whose essential image consists exactly of the unipotent (ϕ,∇)-modules,
i.e., those which are iterated extensions of constant ones. The analogue of Fontaine’s
Cst conjecture in the equicharacteristic world is then the following.

Proposition 2.3. There is an isomorphism(
H i

log -cris(Y
log/W log)⊗W K

)
⊗K RK ∼= H i

rig(X/RK )

in M8∇RK
.

Proof. Thanks to the extension of logarithmic crystalline cohomology and Hyodo–
Kato cohomology to algebraic stacks by Olsson [2007], in particular base change
[Olsson 2007, Theorem 2.6.2] and the construction of the monodromy operator
[loc. cit., §6.5], the same proof as given in the scheme case (see Chapter 5 of [Lazda
and Pál 2016]) works for algebraic spaces as well. �

In [Lazda and Pál 2016] was defined the notion of an overconvergent F-isocrystal
on X , relative to K . These play the role in the p-adic theory of lisse `-adic sheaves
in `-adic cohomology. Classically, i.e., over k, one can associate these objects to
p-adic representations of the fundamental group, and we will need to do this also
over Laurent series fields. We only need this for representations ρ with finite image,
and in this case the construction is simple. So let ρ : π ét

1 (X, x̄)→ G be a finite
quotient of the étale fundamental group of a smooth and proper variety over F, then
this corresponds to a finite, étale, Galois cover f : X ′→ X , and hence from results
of [Lazda and Pál 2016] we have a pushforward functor

f∗ : F-Isoc†(X ′/K )→ F-Isoc†(X/K )

from overconvergent F-isocrystals on X ′ to those on X . We may therefore define
Vρ ∈ F-Isoc†(X/K ) to be the pushforward f∗O

†
X ′/K of the constant isocrystal on X ′.

3. SNCL varieties

In this section, following F. Kato [1996, §11], we will introduce the key notion of a
simple normal crossings log variety over k, or SNCL variety for short.

Definition 3.1. We say a geometrically connected variety Y/k is a normal crossings
variety over k if it is étale locally étale over k[x0, . . . , xd ]/(x0 · · · xr ).
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Definition 3.2. Let Y denote a normal crossings variety over k, and let MY be a
log structure on Y . Then we say that MY is of embedding type if étale locally on Y
it is (isomorphic to) the log structure associated to the homomorphism of monoids

Nr+1
→

k[x0, . . . , xd ]

(x0 · · · xr )

sending the i-th basis element of Nr+1 to xi .

Note that the existence of such a log structure imposes conditions on Y , and the log
structure MY is not determined by the geometry of the underlying scheme Y . In fact,
one can show that such a log structure exists if and only if, denoting by D the singular
locus of Y , there exists a line bundle L on Y such that Ext1(�1

Y/k,OY )∼=L ⊗OD

(see for example Theorem 11.7 of [Kato 1996]).

Definition 3.3. We say that a log scheme Y log of embedding type is of semistable
type if there exists a log smooth morphism Y log

→ Spec(k)log where the latter is
endowed with the log structure of the punctured point.

Again, the existence of such a morphism implies conditions on Y , namely that
Ext1(�1

Y/k,OY )∼= OD (where again D is the singular locus).

Definition 3.4. A SNCL variety over k is a smooth log scheme Y log over klog of
semistable type, such that the irreducible components of Y are all smooth.

Any SNCL variety Y log is log smooth over klog by definition, and for all p ≥ 0
we will let 3p

Y log/klog denote the locally free sheaf of logarithmic p-forms on Y . We
will also let ωY =3

dim Y
Y log/klog denote the line bundle of top degree differential forms.

Proposition 3.5. The sheaf ωY is a dualising sheaf for Y .

Proof. This follows immediately from [Tsuji 1999, Proposition 2.14 and Theo-
rem 2.21]. �

We will also need a spectral sequence for the cohomology of semistable varieties.
This should be well-known, but we could not find a suitable reference.

Lemma 3.6. Let Y log be a SNCL variety over k of dimension n, with smooth
components Y1, . . . , YN . For each 0≤ s ≤ n write

Y (s) =
∐

I⊂{1,...,N }
|I |=s+1

⋂
i∈I

Yi ,

and let is : Y (s)→ Y denote the natural map. For 1≤ t ≤ s+ 1 let

∂s
t : Y

(s+1)
→ Y (s)
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be the canonical map induced by the natural inclusion Y{i1,...,is+1}→ Y
{i1,...,ît ,...,is+1}

.
Then the there exists an exact sequence

0→ OY
d−1

−−→ i0∗OY (0)
d0

−→ · · ·
dn−1

−−→ in∗O
(n)
Y → 0

of sheaves on Y , where d−1
= i∗0 and

ds
=

s+1∑
t=1

(−1)t∂s∗
t for s ≥ 0.

Proof. We define a complex

0→ OY → i0∗OY (0)→ · · · → in∗O
(n)
Y → 0

using the formulae in the statement of the lemma; to check it is in fact exact (or
indeed, to check that it is even a complex) we may work locally, and hence assume
that Y is smooth over Spec(k[x1, . . . , xd ]/(x1 . . . xr )). But now we can just use
flat base change to reduce to the case where Y = Spec(k[x1, . . . , xd ]/(x1 . . . xr )),
which follows from a straightforward computation. �

Corollary 3.7. In the above situation, there exists a spectral sequence

E s,t
1 := H t(Y (s),OY (s))⇒ H s+t(Y,OY ).

4. Some useful results

In this section we prove three lemmas that will come in handy later on. The
first characterises surfaces with effective anticanonical divisor of a certain form,
analogous to Lemma 3.3.7 of [Persson 1977] in the complex case.

Lemma 4.1. Let k be an algebraically closed field, and V a surface with canonical
divisor KV . Let {Ci } be a nonempty family of smooth curves Ci on V , such that the
divisor D =

∑
i Ci is a simple normal crossings divisor, and we have KV + D = 0

in Pic(V ). Then one of the following must happen:

(1) V is an elliptic ruled surface, and D = E1+ E2 is a sum of disjoint elliptic
curves, which are rulings on V .

(2) V is an elliptic ruled surface, and D = E is a single elliptic curve, which is a
2-ruling on V .

(3) V is rational, and D = E is an elliptic curve.

(4) V is rational, and D =
∑d

i=1 Ci is a cycle of rational curves on V , i.e., either
d = 2 and C1 ·C2 = 2, or d > 2 and C1 ·C2 = C2 ·C3 = · · · = Cd ·C1 = 1,
with all other intersection numbers 0.



Combinatorial degenerations of surfaces and Calabi–Yau threefolds 2245

Proof. The point is that since the classification of surfaces is essentially the same in
characteristic p as characteristic 0, Persson’s original proof carries over verbatim.
We reproduce it here for the reader’s benefit.

The hypotheses imply that V is of Kodaira dimension −∞, and hence is either
rational or ruled. For each curve Ci , let TCi denote the number of double points on
Ci , that is

∑
j 6=i Ci ·C j . By the genus formula we have

2g(Ci )− 2= Ci · (Ci + KV )=−TCi

(here KV is the canonical divisor) and hence either TCi = 0 and g(Ci )= 1 or TCi = 2
and g(Ci )= 0. Hence D is a disjoint sum of elliptic curves and cycles of rational
curves.

Let π : V → V0 be a map onto a minimal model. For any i such that π does not
contract Ci , let C0i = π(Ci ), and let D0 := π(D). Any exceptional curve E has to
either be a component of a rational cycle or meet exactly one component of D in
exactly one point (because D · E =−KV · E = 1). It then follows that D0 has the
same form as D (i.e., is a disjoint union of elliptic curves and cycles of rational
curves) except that it might also contain nodal rational curves, not meeting any
other components. If V0 ∼= P2, then the only possibilities for D0 are a triangle of
lines, a conic plus a line, a single elliptic curve or a nodal cubic. Therefore (V, D)
has the form claimed.

Otherwise, V0 is a P1 bundle over a smooth projective curve, let F ⊂ V0 be a fibre
intersecting all C0i properly. Applying the genus formula again gives KV0 · F =−2,
hence D0 · F = 2 =

∑
i C0i · F . Each connected component of D0 is either a

rational cycle, a nodal rational curve or an elliptic curve, and the first two kinds
of components have to intersect F with multiplicity ≥ 2 (in the second case this
is because it cannot be either a fibre or a degree 1 cover of the base). Hence if
some C0i is an elliptic curve E1, then either E1 · F = 2, in which case D0 = E1,
or E1 · F = 1, in which case we must have D0 = E1+ E2 for some other elliptic
curve E2. In the first case V0 can be elliptic ruled, in which case E1 is a 2-ruling,
or rational. In the second case V0 must be elliptic ruled, and both E1 and E2 are
rulings. Otherwise, each C0i is a rational curve, V0 must be rational and D0 is either
a single cycle of smooth rational curves or a single nodal rational curve. Again,
this implies that (V, D) has the form claimed. �

We will also need the following cohomological computation.

Lemma 4.2. (1) Let V be an elliptic ruled surface over k, and let ` be a prime
number 6= p. Then dimQ`

H 1
ét(Vk̄,Q`)= dimK H 1

rig(V/K )= 2.

(2) Let V be a rational surface over k, and let ` be a prime number 6= p. Then
dimQ`

H 1
ét(Vk̄,Q`)= dimK H 1

rig(V/K )= 0.
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Proof. One may use the excision exact sequence in either rigid or `-adic étale
cohomology to see that the first Betti number of a smooth projective surface is
unchanged under monoidal transformations, and is hence a birational invariant. We
may therefore reduce to the case of E ×P1 or P1

×P1, which follows from the
Künneth formula. �

Finally, we have the following (well known) result.

Lemma 4.3. Let X /R be proper and flat. Assume that the generic fibre X is
geometrically connected. Then so is the special fibre Y .

Proof. Since X is proper and flat over R, the zeroth cohomology H 0(X ,OX ) is
torsion free and finitely generated over R, hence it is free. Since the generic fibre is
geometrically connected, it is of rank 1, and the natural map R→ H 0(X ,OX ) is
an isomorphism. Since this also holds after any finite flat base change R→ R′, it
follows from Zariski’s Main Theorem [Belmans et al. 2005–, Tag 0A1C] that Y
must in fact be geometrically connected. �

5. Minimal models, logarithmic surfaces and combinatorial reduction

The purpose of this section is to introduce the notion of a minimal model of a surface
of Kodaira dimension 0, as well as the corresponding logarithmic and combinatorial
versions of these surfaces. The basic idea in all cases is that we have

minimal⇒ logarithmic⇒ combinatorial

and although the general form that the picture takes is the same in all 4 cases, there
are enough differences to merit describing how it works separately in each case.
This unfortunately means that the next few sections are somewhat repetitive.

Let X/F be a smooth, projective, geometrically connected minimal surface of
Kodaira dimension 0, and denote the canonical sheaf by ωX . Then X falls into one
of the following four cases:

(1) ωX
∼= OX and h1(X,OX )= 0. Then X is a K3 surface.

(2) h0(X, ωX )= 0 and h1(X,OX )= 0. Then X is an Enriques surface.

(3) ωX
∼= OX and h1(X,OX )= 2. Then X is an abelian surface.

(4) h0(X, ωX )= 0 and h1(X,OX )= 1. Then X is a bielliptic surface.

Note that if X is an Enriques surface we have ω⊗2
X
∼= OX and if X is a bielliptic

surface we have ω⊗m
X
∼= OX for m = 2, 3, 4 or 6. Also note that since p > 3 the

classification of such surfaces is the same over k as over F (i.e., we do not have to
consider the “extraordinary” Enriques or bielliptic surfaces). In all cases we may
therefore define an integer m as the smallest positive integer such that ω⊗m

X
∼=OX . If

X /R is a semistable model for X then we will let X log denote the log scheme with
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log structure induced by the special fibre; this is log smooth over Rlog, where the log
structure is again induced by the special fibre π = 0. We will let ωX =3

2
X log/Rlog

denote the line bundle of logarithmic 2-forms on X . We will also let Y denote the
special fibre, and Y log/klog the smooth log scheme whose log structure is the one
pulled back from that on X .

Definition 5.1. Let X /R be a semistable model for X . Then we say that X is
minimal if it is strictly semistable and ω⊗m

X
∼= OX .

Warning. When X is an Enriques surface, there are counter-examples to the exis-
tence of such minimal models, even allowing for finite extensions of R.

The first stage is in passing from minimal models to logarithmic surfaces of
Kodaira dimension 0, the latter being defined by logarithmic analogues of the above
criteria.

Definition 5.2. Let Y log/klog be a proper SNCL scheme over k, of dimension 2,
and let ωY =3

2
Y log/klog be its canonical sheaf. Then we say that Y log is a

(1) logarithmic K3 surface if ωY
∼= OY and h1(Y,OY )= 0;

(2) logarithmic Enriques surface if ωY is torsion in Pic(Y ), h0(Y, ωY ) = 0 and
h1(Y,OY )= 0;

(3) logarithmic abelian surface if ωY
∼= OY and h1(Y,OY )= 2;

(4) logarithmic bielliptic surface if ωY is torsion in Pic(Y ), h0(Y, ωY ) = 0 and
h1(Y,OY )= 1.

Proposition 5.3. Let X/F be a minimal surface of Kodaira dimension 0, and X /R
a minimal model. Then Y log is a logarithmic K3 (resp. Enriques, abelian, bielliptic)
surface if X is K3 (resp. Enriques, abelian, bielliptic).

Proof. Note that the only obstruction to Y log/klog being an SNCL variety is geomet-
ric connectedness, which follows from Lemma 4.3. The conditions on the canonical
sheaf ωY in Definition 5.2 follow from the definition of minimality, it therefore
suffices to verify the required dimensions of the coherent cohomology groups on Y .
We divide into the four cases.

First assume that X is a K3 surface. Then we have χ(X,OX ) = 2, and hence
by local constancy of χ under a flat map (see [Hartshorne 1977, Chapter III,
Theorem 9.9]) we must also have that χ(Y,OY ) = 2. Since Y is geometrically
connected by Lemma 4.3, we have h0(Y,OY ) = 1, and therefore h2(Y,OY ) −

h1(Y,OY )= 1. But by Proposition 3.5 we must have h2(Y,OY )= h0(Y, ωY ), and
by definition of minimality we know that ωY

∼= OY . Hence h2(Y,OY ) = 1 and
therefore h1(Y,OY )= 0. Hence Y log is a logarithmic K3 surface.

Next assume that X is Enriques. Then as above, we have that h0(Y,OY )= 1 and
hence by local constancy of χ , that h1(Y,OY )= h2(Y,OY ). Let π : X̃→X denote
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the canonical double cover coming from the 2-torsion element ωX ∈ Pic(X ), with
generic fibre X̃→ X and special fibre Ỹ → Y . Then X̃ is a minimal model of the
K3 surface X̃ , and hence Ỹ log is a logarithmic K3 surface. Hence h1(Ỹ ,OỸ )= 0,
and since OY ⊂ π∗OỸ is a direct summand, we must have h1(Y,OY ) = 0, and
therefore h0(Y, ωY )= h2(Y,OY )= 0. Thus Y log is a logarithmic Enriques surface.

The case of abelian surfaces is handled entirely similarly to that of K3 surfaces,
and the case of bielliptic surfaces is then deduced as Enriques is deduced from K3.

�

The next notion is that of combinatorial versions of the above four cases.

Definition 5.4. Let Y be a proper surface over k (not necessarily smooth). We
say that Y is a combinatorial K3 surface if, geometrically (i.e., over k̄), one of the
following situations occurs:

• (Type I) Y is a smooth K3 surface.

• (Type II) Y = Y1 ∪ · · · ∪ YN is a chain with Y1, YN smooth rational surfaces
and all other Yi elliptic ruled surfaces, with each double curve on each “inner”
component a ruling. The dual graph of Yk̄ is a straight line with endpoints Y1

and YN .

• (Type III) Y is a union of smooth rational surfaces, the double curves on
each component form a cycle of rational curves, and the dual graph of Yk̄ is a
triangulation of S2.

Definition 5.5. Let Y be a proper surface over k (not necessarily smooth). We say
that Y is a combinatorial Enriques surface if, geometrically, one of the following
situations occurs:

• (Type I) Y is a smooth Enriques surface.

• (Type II) Y =Y1∪· · ·∪YN is a chain of surfaces, with Y1 rational and all others
elliptic ruled, with each double curve on each “inner” component a ruling and
the double curve on YN a 2-ruling. The dual graph of Yk̄ is a straight line with
endpoints Y1 and YN .

• (Type III) Y is a union of smooth rational surfaces, the double curves on
each component form a cycle of rational curves, and the dual graph of Yk̄ is a
triangulation of P2(R).

Definition 5.6. Let Y be a proper surface over k (not necessarily smooth). We say
that Y is a combinatorial abelian surface if, geometrically, one of the following
situations occurs:

• (Type I) Y is a smooth abelian surface.

• (Type II) Y = Y1 ∪ · · · ∪ YN is a cycle of elliptic ruled surfaces, with each
double curve a ruling. The dual graph of Yk̄ is a circle.
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• (Type III) Y is a union of smooth rational surfaces, the double curves on
each component form a cycle of rational curves, and the dual graph of Yk̄ is a
triangulation of the torus S1

× S1.

Definition 5.7. Let Y be a proper surface over k (not necessarily smooth). We say
that Y is a combinatorial bielliptic surface if, geometrically, one of the following
situations occurs:

• (Type I) Y is a smooth bielliptic surface.

• (Type II) Y = Y1 ∪ · · · ∪ YN is either a cycle or chain of elliptic ruled surfaces,
with each double curve either a ruling (cycles or “inner” components of a
chain) or a 2-ruling (“end” components of a chain). The dual graph of Yk̄ is
either a circle or a line segment.

• (Type III) Y is a union of smooth rational surfaces, the double curves on
each component form a cycle of rational curves, and the dual graph of Yk̄ is a
triangulation of the Klein bottle.

Of course, in each case logarithmic surfaces will turn out to be combinatorial;
this has been proved by Nakkajima for K3 and Enriques surfaces, and we will
show it during the course of this article for abelian (Theorem 8.1) and bielliptic
(Theorem 9.1) surfaces.

6. K3 surfaces

In this section, we will properly state and prove Theorem 1.2 for K3 surfaces. The
case when char(F) = 0 and ` = p is due to Hernández Mada [2015], and Perez
Buendía [2014] and the case ` 6= p should be well-known (and at least part of it is
implicitly proved in [Matsumoto 2015]), however, we could not find a reference in
the literature so we include a proof here for completeness. We begin with a result
of Nakkajima.

Theorem 6.1 [Nakkajima 2000, §3]. Let Y log be a logarithmic K3 surface over k.
Then the underlying scheme Y is a combinatorial K3 surface.

Remark 6.2. A proof of this result given entirely in terms of coherent cohomology
can be given as in Theorem 8.1 below.

Corollary 6.3. Let X /R be a minimal semistable model of a K3 surface X/F.
Then the special fibre Y is a combinatorial K3 surface.

For a K3 surface X/K , and for all ` 6= p, the second cohomology group
H 2

ét(X F ,Q`) is a finite dimensional Q` vector space with a continuous Galois
action, which is quasiunipotent. If ` = p and char(F) = 0 then H 2

ét(X F ,Qp)

is a de Rham representation of GF , and if char(F) = p then H 2
rig(X/RK ) is a

(ϕ,∇)-module over RK .
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If we therefore let H 2(X) stand for

• H 2
ét(X F ,Q`) if ` 6= p;

• H 2
ét(X F ,Qp) if `= p and char(F)= 0;

• H 2
rig(X/RK ) if `= p and char(F)= p,

then in all cases we get a monodromy operator N on H 2(X).

Theorem 6.4. Let X /R be a minimal semistable model of a K3 surface X , and Y
its special fibre, which is a combinatorial K3 surface. Then Y is of Type I, II or III
respectively as the nilpotency index of N on H 2(X) is 1, 2 or 3.

Proof.
When X is a scheme, the case `= p and char(F)= 0 is due to Hernández Mada,

and in fact the case `= char(F)= p also follows from his result by applying the
results in Chapter 5 of [Lazda and Pál 2016].

To deal with the case ` 6= char(k) (and X an algebraic space), we use the weight
spectral sequence (for algebraic spaces this is Proposition 2.3 of [Matsumoto 2015]).
Let Y = Y1∪· · ·∪YN be the components of Y , Ci j = Yi ∩Y j the double curves and

Y (0) =
∐

i

Yi , Y (1) =
∐
i< j

Ci j , Y (2) =
∐

i< j<k

Yi ∩ Y j ∩ Yk .

We consider the weight spectral sequence

E s,t
1 =

⊕
j≥max{0,−s}

H t−2 j
ét (Y (s+2 j)

k̄
,Q`)(− j)⇒ H s+t

ét (X F ,Q`)

which degenerates at E2 and is compatible with monodromy in the sense that
there exists a morphism N : E s,t

r → E s+2,t−2
r of spectral sequences abutting to

the monodromy operator on H s+t
ét (X K ,Q`). Moreover, by the weight-monodromy

conjecture (see [Nakkajima 2006, Remark 6.8(1)]) we know that N r induces an
isomorphism E−r,w+r

2 −→∼ Er,w−r
2 . Hence we can characterise the three cases where

N has nilpotency index 1, 2 or 3 in terms of the weight spectral sequence as follows:

(1) N = 0 if and only if E1,1
2 = E2,0

2 = 0.

(2) N 6= 0, N 2
= 0 if and only if E1,1

2 6= 0 and E2,0
2 = 0.

(3) N 2
6= 0, N 3

= 0 if and only if E1,1
2 , E2,0

2 6= 0.

Hence it suffices to show the following:

(1) If Y is of Type I, then E1,1
2 = 0.

(2) If Y is of Type II, then E1,1
2 6= 0 and E2,0

2 = 0.

(3) If Y is of Type III, then E2,0
2 6= 0.
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The first of these is clear, and in both the Type II and III cases the term

E2,0
2 = coker

(
H 0(Y (1)

k̄
,Q`)→ H 0(Y (2)

k̄
,Q`)

)
is simply the second singular cohomology H 2

sing(0,Q`) of the dual graph 0. For
Type II this is 0, and for Type III this is 1-dimensional over Q`, hence it suffices to
show that if Y is of Type II, then E1,1

2 6= 0.
But we know that

dimQ`
E−1,2

2 + dimQ`
E0,1

2 + dimQ`
E1,0

2 = dimQ`
H 1

ét(X,Q`)= 0

and hence dimQ`
E0,1

2 = 0. Therefore we have

dimQ`
E1,1

2 = dimQ`
H 1

ét(Y
(1),Q`)− dimQ`

H 1
ét(Y

(0),Q`)

which using Lemma 4.2 we can check to be equal to 2(N − 1)− 2(N − 2) = 2.
Hence E1,1

2 6= 0 as required.
To deal with the case `= char(k) and X an algebraic space, we argue entirely

similarly, using the p-adic weight spectral sequence and Proposition 2.2(4) of [Mat-
sumoto 2015] (F mixed characteristic) or Proposition 2.3 (F equicharacteristic). �

7. Enriques surfaces

To deal with the case of Enriques surfaces, we again start with a result of Nakkajima,
analogous to the one quoted above.

Theorem 7.1 [Nakkajima 2000, §7]. Let Y log be a logarithmic Enriques surface
over k. Then the underlying scheme Y is a combinatorial Enriques surface.

Remark 7.2. Again, it is possible to prove this only using coherent cohomology
as in Theorem 9.1 below.

Corollary 7.3. Let X /R be a minimal semistable model of an Enriques surface
X/F. Then the special fibre Y is a combinatorial Enriques surface.

If X/F is an Enriques surface, then for all ` 6= p the second homotopy group
π ét

2 (X F )Q`
(for the definition of the higher homotopy groups of algebraic varieties,

see [Artin and Mazur 1969]) is a finite dimensional Q` vector space with a con-
tinuous Galois action, which is quasiunipotent. If ` = p and char(F) = 0 then
π ét

2 (X F )Qp is a de Rham representation of GF . If char(F)= p there is (currently!)
no general theory of higher homotopy groups, so instead we cheat somewhat and
use the known properties of the higher étale homotopy groups to justify making the
following definition.

Definition 7.4. We define π rig
2 (X/RK ) := H 2

rig(X̃/RK )
∨, where X̃ → X is the

canonical double cover of X .
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Thus π rig
2 (X/RK ) is a (ϕ,∇)-module over RK . Again, if we let π2(X) stand

for any of π ét
2 (X F )Q`

, π ét
2 (X F )Qp or π rig

2 (X/RK ), then in all cases we have a
monodromy operator N associated to π2(X).

Theorem 7.5. Let X /R be a minimal semistable model of an Enriques surface X ,
and Y its special fibre, which is a combinatorial Enriques surface. Then Y is of
Type I, II or III respectively as the nilpotency index of N on π2(X) is 1, 2 or 3.

Remark 7.6. (1) As noted in the introduction, a result very similar to this was
proved in [Hernandez Mada 2015].

(2) The result as stated here is slightly different to Theorem 1.2. There are in fact
two ways of stating it, one using the second homotopy group π2 and one using
the cohomology of a certain rank 2 local system V on X , given by pushing
forward the constant sheaf on the K3 double cover of X .

Proof. If we let X̃ denote the canonical double cover of X , with special fibre Ỹ
and generic fibre X̃ , then as remarked above, X̃ is a smooth K3 surface over K , and
X̃ is a minimal semistable model for X̃ . Hence Ỹ is a combinatorial K3 surface,
whose type can be deduced from the nilpotency index of the monodromy operator
N on H 2

ét(X̃ F ,Q`).
Now note that since X̃ is simply connected, we have

π ét
2 (X F )Q`

∼= π
ét
2 (X̃ F )Q`

∼= H ét
2 (X̃ F ,Q`)∼= H 2

ét(X̃ F ,Q`)
∨

for all ` (including `= p when char(F)= 0), and the corresponding isomorphism
holds by definition for π rig

2 (X/RK ). Hence Ỹ is of Type I, II or III respectively as
the nilpotency index of N on π2(X) is 1, 2 or 3. It therefore suffices to show that
the type of Ỹ is the same as that of Y .

Note that we have a finite étale map f : Ỹ→ Y , therefore if Ỹ is of Type I, that is
a smooth K3 surface, then we must also have that Y is smooth, hence of Type I. If
Y is not smooth, then let the components of Y be Y1, . . . , YN , and the components
of Ỹ be Ỹ1, . . . , ỸM . After pulling back f to each component Yi , one of two things
can occur:

(1) f −1(Yi ) is irreducible, and we get a nontrivial 2-cover Ỹ j → Yi ;

(2) f −1(Yi ) splits into 2 disjoint components Ỹ j , Ỹ j ′ , each mapping isomorphically
onto Y .

If Ỹ is of Type III, then each component Ỹ j is rational, hence, since rational varieties
are simply connected each component of Y is also rational, and Y is of Type III. If
Ỹ is of Type II, then one of two things can happen:

(1) M > 2 and there exists a component of Ỹ which is an elliptic ruled surface.
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(2) M = 2 and Ỹ = Ỹ1∪ Ỹ2 consists of 2 rational surfaces meeting along an elliptic
curve.

In the first case, one verifies that Y must also have a component isomorphic to an
elliptic ruled surface (since a rational surface cannot be an unramified cover of an
elliptic ruled surface), and is therefore of Type II. In the second case, Y must also
have 2 components, (since otherwise Y , and therefore Ỹ , would be smooth), and
each component of Ỹ would be a nontrivial double cover of a component of Y . But
since the components of Y are either rational or elliptic ruled, this cannot happen. �

8. Abelian surfaces

In order to deal with abelian surfaces, we need the following analogue of Nakka-
jima’s result,

Theorem 8.1. Let Y log be a logarithmic abelian surface over k. Then the underlying
scheme Y is a combinatorial abelian surface.

Proof. We may assume that k = k̄. We adapt the proof of Theorem II of [Kulikov
1977]. Let Y1, . . . , YN denote the components of Y , Ci j = Yi ∩ Y j for i 6= j the
double curves, and TCi j the number of triple points on each curve Ci j . We may
assume that N > 1.

Note that ωY |Yi
∼= �2

Yi/k(log
∑

j 6=i Ci j ) ∼= OYi and hence the divisor KYi +∑
j 6=i Ci j on Yi is principal, where KYi is a canonical divisor on Yi . Write Di =∑
j 6=i Ci j . Now applying Lemma 4.1 gives us the following possibilities for each

(Yi , Di ):

(1) Yi is an elliptic ruled surface, and either:
(a) Di = E1+ E2 where E1, E2 are 2 nonintersecting rulings;
(b) a Di = E is a single 2-ruling.

(2) Yi is a rational surface, and either:
(a) Di = E is an elliptic curve inside Yi ;
(b) Di = C1+ · · ·+Cd is a cycle of rational curves on Yi .

First suppose that there is some i such that case (2)(b) happens. Then this must also
occur on each neighbour of Yi , and since Y is connected, it follows that this occurs
on each component. The dual graph 0 is therefore a triangulation of a compact
surface without border.

Write

Y (0) =
∐

i

Yi , Y (1) =
∐
i< j

Ci j , Y (2) =
∐

i< j<k

Yi ∩ Y j ∩ Yk,

and consider the spectral sequence H t(Y (s),OY (s))⇒ H s+t(Y,OY ) constructed in
Section 3. Since the components Yi and the curves Ci j are rational, it follows
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that H t(Y (s),OY (s))= 0 for t > 0 (see for example, [Chatzistamatiou and Rülling
2011, Theorem 1]), and therefore that the coherent cohomology H i (Y,OY ) of
Y is the same as the k-valued singular cohomology H i

sing(0, k) of 0. But since
p 6= 2, the k-Betti numbers dimk H i

sing(0, k) are the same as the Q-Betti numbers
dimQ H i

sing(0,Q), the latter must therefore be 1, 2, 1 and by the classification of
closed 2-manifolds we can deduce that 0 is a torus.

Finally let us suppose that all the double curves Ci j are elliptic curves, so that
each TCi j = 0 (see the proof of Lemma 4.1). Again examining the spectral sequence
H t(Y (s),OY (s))⇒ H s+t(Y,OY ) and using the fact that χ(E) = 0 for an elliptic
curve, we can see that 0 = χ(Y ) = χ(Y (0)) =

⊕
i χ(Yi ). Since each Yi is either

rational (χ = 1) or elliptic ruled (χ = 0), it follows that each Yi must be elliptic
ruled, and we are in the case (1) above. The dual graph 0 is one dimensional,
and since each component has on it at most two double curves, 0 is either a line
segment or a circle.

If 0 were a line segment, then Y = Y1 ∪E1 · · · ∪EN−1 YN would be a chain. Then
birational invariance of coherent cohomology would imply that the maps

H 0(Yi ,OYi )→ H 0(Ei ,OEi ), H 0(Yi+1,OYi+1)→ H 0(Ei ,OEi ),

H 1(Yi ,OYi )→ H 1(Ei ,OEi ), H 1(Yi+1,OYi+1)→ H 1(Ei ,OEi ),

would be isomorphisms, and hence some basic linear algebra would imply surjec-
tivity of the maps

H 0(Y (0),OY (0))→ H 0(Y (1),OY (1)), H 1(Y (0),OY (0))→ H 1(Y (1),OY (1)).

Also, we would have dimk H 1(Y (0),OY (0))= N and dimk H 1(Y (1),OY (1))= N − 1,
so again examining the spectral sequence H t(Y (s),OY (s))⇒ H s+t(Y,OY ) would
imply that dimk H 1(Y,OY )= 1. Since we know that in fact dimk H 1(Y,OY )= 2
(by the definition of a logarithmic abelian surface), this cannot happen. Hence 0
must be a circle and Y is of Type II. �

Corollary 8.2. Let X /R be a minimal semistable model of an abelian surface X/F.
Then the special fibre Y is a combinatorial abelian surface.

If X/F is an abelian surface, then for any prime ` 6= p we consider the quasiu-
nipotent GF -representation H 2

ét(X K ,Q`). For `= p and char(F)= 0 we may also
consider the de Rham representation H 2

ét(X K ,Qp), and when char(F) = p = `
the (ϕ,∇)-module H 2

rig(X/RK ). Again letting H 2(X) stand for any of the above
second cohomology groups then, in each case, we have a nilpotent monodromy
operator N associated to H 2(X).

Theorem 8.3. Let X /R be a minimal semistable model for X , with special fibre Y .
Then Y is combinatorial of Type I, II or III respectively as the nilpotency index of N
on H 2(X) is 1, 2 or 3.
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Proof. We will treat the case ` 6= p and char(F)= 0; the other cases are handled
entirely similarly. Let Y1, . . . , YN be the smooth components of the special fibre
Y . For any I = {i1, . . . , in} write YI =

⋂
i∈I Yi and for any s ≥ 0 write Y (s) =∐

|I |=s+1 YI ; these are all smooth over k and empty if s > 2.
As in the proof of Theorem 6.4, we consider the weight spectral sequence

E s,t
1 =

⊕
j≥max{0,−s}

H t−2 j
ét (Y (s+2 j)

k̄
,Q`)(− j)⇒ H s+t

ét (X F ,Q`).

As before it suffices to show the following:

(1) If Y is of Type I, then E1,1
2 = 0.

(2) If Y is of Type II, then E1,1
2 6= 0 and E2,0

2 = 0.

(3) If Y is of Type III, then E2,0
2 6= 0.

Again, the first of these is trivial, and in both the Type II and III cases the term E2,0
2

is the second singular cohomology H 2
sing(0,Q`) of the dual graph 0. It therefore

suffices to show that if Y is of Type II, then E1,1
2 6= 0.

To show this, note that we have dimQ`
E i,0

2 = dimQ`
H i

sing(0,Q`), which is 1 for
i = 0, 1 and zero otherwise. Hence we may deduce that dimQ`

E−1,2
2 = 1, from the

fact that E−r,w+r
2 −→∼ Er,w−r

2 , and that dimQ`
E0,1

2 = 2, from the fact that

dimQ`
E−1,2

2 + dimQ`
E0,1

2 + dimQ`
E1,0

2 = dimQ`
H 1

ét(X F ,Q`)= 4.

If we write Y = Y1 ∪ · · · ∪ YN as a union of N elliptic ruled surfaces, then Y (1) is a
disjoint union of N elliptic curves. Hence by Lemma 4.2 we must have

dimQ`
H 1

ét(Y
(0)
k̄
,Q`)= dimQ`

H 1
ét(Y

(1)
k̄
,Q`)= 2N .

Hence dimQ`
E1,1

2 = dimQ`
E0,1

2 = 2 and therefore E1,1
2 6= 0.

When ` = p, the `-adic weight spectral should be replaced by the p-adic one
constructed by Mokrane [1993]. That this abuts to the p-adic étale cohomology
when char(F)= 0 follows from Matsumoto’s [2015] extension of Fontaine’s Cst

conjecture to algebraic spaces, and that it abuts to the RK -valued rigid cohomology
when char(F)= p follows from Proposition 2.3. �

9. Bielliptic surfaces

We can now complete our treatment of minimal models of surfaces of Kodaira
dimension 0 by investigating what happens for bielliptic surfaces.

Theorem 9.1. Let Y log be a logarithmic bielliptic surface over k. Then the underly-
ing scheme Y is a combinatorial bielliptic surface.

Proof. We may assume k = k̄. Let π : Ỹ log
→ Y log be the canonical m-cover

associated to ωY log . Then one easily checks that Ỹ log is a logarithmic abelian surface
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over k, and hence is combinatorial of Type I, II or III. If Ỹ is of Type I, then Ỹ ,
and therefore Y , must be smooth over k, and hence Y is a smooth bielliptic surface
over k, i.e., of Type I.

So assume that Ỹ is of Type II or III. Let Ỹ1, . . . , ỸM denote the components of
Ỹ and Y1, . . . , YN those of Y . Note that as in the proof of Theorem 8.1 we have

m(KYi +

∑
j 6=i

Ci j )= 0

in Pic(Yi ), where Ci j are the double curves.
Suppose that Ỹ is of Type II. Note that each component of Ỹ is finite étale over

some component of Y , and hence each component of Y is an elliptic ruled surface.
For each Yi choose some Ỹl→ Yi finite étale, and let C̃l j be the inverse image of
the double curves. Then we have

KỸl
+

∑
j

C̃l j = 0

in Pic(Ỹl). Applying Lemma 4.1 we can see that
∑

j C̃il is either a single elliptic
curve E , which is a 2-ruling on Ỹl , or two disjoint rulings E1, E2. Hence the same
is true for

∑
j Ci j on Yi , and therefore Y is of Type II.

Finally, suppose that Ỹ is of Type III. Then again, each component of Ỹ is finite
étale over some component of Y , hence all of the latter are rational. Since the
Picard group of a rational surface is torsion free, it follows that we must have

KYi +

∑
j 6=i

Ci j = 0

on each Yi . Hence applying Lemma 4.1 as in the proof of Theorem 8.1 it suffices
to show that the dual graph 0 of Y is a triangulation of the Klein bottle. But now
examining the spectral sequence

E s,t
1 := H t(Y (s),OY (s))⇒ H s+t(Y,OY )

(where Y (s) is defined similarly to before), and using the fact that char(k) > 2, we
can see that the Betti numbers of 0 are the same as the dimensions of the coherent
cohomology of Y , and therefore Y is of Type III. �

To formulate the analogue of Theorem 8.3 for bielliptic surfaces, we will need to
construct a family of canonical local systems on our bielliptic surface X . Note that
the torsion element ωX ∈ Pic(X)[m] ∈ H 1(X, µm) gives rise to a µm-torsor over X ,
and hence a canonical Q-valued permutation representation ρ of the fundamental
group π ét

1 (X, x̄), and we can use this to construct canonical `- or p-adic local sys-
tems on X . When ` 6= p we obtain a continuous representation ρ⊗QQ` of π ét

1 (X, x̄)
and hence a lisse `-adic sheaf V` on X , and when `= p and char(F)= 0 we may
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do the same to obtain a lisse p-adic sheaf Vp on X , and when ` = char(F) = p
we obtain an overconvergent F-isocrystal Vp on X/K using the construction of
Section 2.

Then the local systems V`, Vp do not depend on the choice of point x̄ , and the GF -
representations H 2

ét(X F , V`) and H 2
ét(X F , Vp) when char(F)= 0 are quasiunipotent

and de Rham respectively; we may also consider the (ϕ,∇)-module

H 2
rig(X/RK , Vp) := H 2

rig(X/E
†
K , Vp)⊗E

†
K

RK

over RK . Representing any of H 2
ét(X F , V`), H 2

ét(X F , Vp) or H 2
ét(X/RK , Vp) by

H 2(X, V ), in all cases we obtain monodromy operators N associated to H 2(X, V ).

Remark 9.2. This construction might seem a little laboured, since what we are
really constructing is simply the pushforward of the constant sheaf via the canonical
abelian cover of X . The point of describing it in the above way is to emphasise the
fact that the local systems V`, Vp are entirely intrinsic to X .

Theorem 9.3. Let X /R be a minimal semistable model for X , with special fibre Y .
Then Y is combinatorial of Type I, II or III respectively as the nilpotency index of N
on H 2(X, V ) is 1, 2 or 3.

Proof. The local systems V`, Vp are by construction such that there exists a finite
étale cover X̃ →X Galois with group G, such that X̃ is a minimal model of an
abelian surface X̃ and H 2(X, V )∼= H 2(X̃). The special fibre Ỹ is therefore a finite
étale cover of Y , also Galois with group G, and is a combinatorial abelian surface
of Type I, II or III according to the nilpotency index of N on H 2(X, V ). Hence we
must show that Ỹ and Y have the same type; this was shown during the course of
the proof of Theorem 9.1. �

10. Existence of models and abstract good reduction

As explained in the introduction, our results so far are essentially “one half” of the
good reduction problem for surfaces with κ = 0, the other half consists of trying to
actually find models nice enough to be able to apply the above methods.

Definition 10.1. Let X/F be a minimal surface of Kodaira dimension 0. Then we
say that X admits potentially combinatorial reduction if after replacing F by a finite
separable extension, there exists a minimal model X /R of X .

Then thanks to the results of the previous sections, for surfaces with potentially
combinatorial reduction, we can describe the “type” of the reduction in terms of
the nilpotency index of the monodromy operator on a suitable cohomology or
homotopy group of X (either `-adic or p-adic). We can therefore answer questions
of “abstract reduction” type by establishing whether or not surfaces have potentially
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combinatorial reduction. The strongest result one might hope for is that every such
surface has potentially combinatorial reduction. Unfortunately, this is not the case.

Example 10.2 [Liedtke and Matsumoto 2016, Theorem 2.8]. There exist Enriques
surfaces over Qp which do not admit potentially combinatorial reduction.

This can in fact be seen already in the complex analytic case of a degenerating
family X →1 of Kähler manifolds over a disc (see [Persson 1977, Appendix 2]).
In Proposition 2.1 of [Liedtke and Matsumoto 2016] it is shown that if a K3 surface
over F admits potentially strictly semistable reduction, then it admits potentially
combinatorial reduction. Again, while the former is always conjectured, it can only
be proved under certain conditions, see Corollary 2.2 of [loc. cit.]. Since we know
that abelian surfaces admit potentially strictly semistable reduction, we can use
their argument to prove the following.

Theorem 10.3. Abelian surfaces X/F admit potentially combinatorial reduction.

Proof. By Theorem 4.6 of [Künnemann 1998], after replacing F by a finite separable
extension, we may assume that there exists a strictly semistable scheme model
X /R of X . By applying the minimal model program of [Kawamata 1994] there
exists another scheme model X ′ for X such that:

(1) the components of the special fibre of X ′ are geometrically normal and integral
Q-Cartier divisors on X ′;

(2) X ′ is regular away from a finite set 6 of closed points on its special fibre, and
X ′ has only terminal singularities at these points;

(3) the special fibre is a normal crossings divisor on X \6;

(4) the relative canonical Weil divisor KX ′/R is Q-Cartier and n.e.f. relative to R.

Now, since the canonical divisor K X on the generic fibre is trivial, it follows that
we may write KX ′/R as a linear combination

∑
i ai Vi of the components of the

special fibre Y ′ of X ′. Moreover since
∑

i Vi = 0 we may in fact assume that
ai ≤ 0 for all i and ai = 0 for some i . Since KX ′/Q is n.e.f. relative to R, arguing
as in Lemma 4.7 of [Maulik 2014] shows that in fact we must have ai = 0 for all i ,
and hence KX ′/R = 0. In particular it is Cartier (not just Q-Cartier) and therefore
applying Theorem 4.4 of [Kawamata 1994] we can see that in fact X ′ is strictly
semistable away from a finite set of isolated rational double points on components
of Y ′.

Finally, applying Theorem 2.9.2 of [Saito 2004] and Theorem 2 of [Artin 1974]
we may, after replacing F by a finite separable extension, find a strictly semistable
algebraic space model X ′′/R for X and a birational morphism X ′′

→X ′ which
is an isomorphism outside a closed subset of each special fibre, of codimension ≥ 2
in the total space. Since we know that KX ′/R = 0, it follows that KX ′′/R = 0, and
therefore X ′′ is a minimal model in the sense of Definition 5.1. �
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Remark 10.4. Of course, this begs the question as to whether or not bielliptic
surfaces admit potentially combinatorial reduction; we are not sure whether to
expect this or not.

Finally, we would like to relate the “type” of combinatorial reduction for abelian
(and hence bielliptic) surfaces to the more traditional invariants associated to
abelian varieties with semiabelian reduction. So suppose that we have an abelian
surface X/F . Then after a finite separable extension, we may assume that X admits
the structure of an abelian variety over F ; let us therefore call it A instead. After
making a further extension, we may assume that A has semiabelian reduction, i.e.,
there exist a semiabelian scheme over R whose generic fibre is A. In this situation
we have a “uniformisation cross” for A (see for example [Coleman and Iovita 1999,
§2]), which is a diagram

T

��

0 // G π
//

��

A

B

where T is a torus over F , B is an abelian variety with good reduction, G is an
extension of B by T and 0 is a discrete group. Fixing a prime ` 6= p, the monodromy
operator on H 1

ét(AF ,Q`) can be defined as follows. We have an exact sequence

0→ Hom(0,Q`)→ H 1
ét(AF ,Q`)→ H 1

ét(G F ,Q`)→ 0

and a nondegenerate pairing

0×Hom(T,Gm)→Q

and the monodromy operator on H 1
ét(AF ,Q`) is then the composition

H 1
ét(AF ,Q`)→ H 1

ét(TF ,Q`)→Hom(T,Gm)⊗Z Q`→Hom(0,Q`)→ H 1
ét(AF ,Q`)

(see for example [Coleman and Iovita 1999]). Since the first map is surjective, the
last injective, and all others are isomorphisms, we have that the dimension of the
image of monodromy on H 1

ét(AF ,Q`) is equal to the dimension of H 1
ét(TF ,Q`),

and therefore to the rank of T. Using some simple linear algebra, one can therefore
give the nilpotency index of N on H 2

ét(AF ,Q`)=
∧2 H 1

ét(AF ,Q`) as follows:

(1) rank(T )= 0H⇒ N = 0 on H 2
ét(AF ,Q`);

(2) rank(T )= 1H⇒ N 6= 0, N 2
= 0 on H 2

ét(AF ,Q`);

(3) rank(T )= 2H⇒ N 2
6= 0, N 3

= 0 on H 2
ét(AF ,Q`).
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Hence we have the following.

Proposition 10.5. A has potentially combinatorial reduction of Type I, II or III as
rank(T ) is 0, 1 or 2 respectively.

11. Towards higher dimensions

In this final section of the article, we begin to investigate the shape of degenerations
in higher dimensions, in particular looking at Calabi–Yau threefolds and concen-
trating on the “maximal intersection case”, analogous to the Type III degeneration
of K3 surfaces. In characteristic 0 some fairly general results in this direction
are proved in [Kollár and Xu 2016], and the approach there provides much of the
inspiration for the main result of this section, Theorem 11.5, as well as some of
the key ingredients of its proof. Many of the proofs there rely on results from the
log minimal model program (LMMP), which happily has recently been solved for
threefolds in characteristics > 5 [Hacon and Xu 2015; Birkar 2016; Birkar and
Waldron 2016]. Given these results, many of our proofs consist of working through
special low dimensional cases of [Kollár and Xu 2016] explicitly (and gaining
slightly more information than given there), although there are certain places where
specifically characteristic p arguments are needed.

Since we will need to use the LMMP for threefolds, we will assume throughout
that p > 5. Unfortunately, since we will also need to know results on the homotopy
type of Berkovich spaces, we will also need to assume that our models are in fact
schemes, rather than algebraic spaces.

Definition 11.1. A Calabi–Yau variety over F is a smooth, projective, geometrically
connected variety X/F such that:
• the canonical sheaf ωX =�

dim X
X/F is trivial, i.e., ωX

∼= OX ;

• X is geometrically simply connected, i.e., π ét
1 (X F , x)= {1} for any x ∈ X (F);

• H i (X,OX )= 0 for all 0< i < dim X .

In dimension 2 these are exactly the K3 surfaces, and we will be interested in
what we can say about degenerations of Calabi–Yau varieties in dimension 3. Here
one expects to be able to divide “suitably nice” semistable degenerations into 4
“types” depending on the nilpotency index of N acting on H 3(X) (for some suitable
Weil cohomology theory). In this section we will treat the “Type IV” situation.

Definition 11.2. We say that a morphism f : X → S of algebraic varieties (over
an algebraically closed field) is a Mori fibre space if it is projective with connected
fibres, and the anticanonical divisor −K X is f -ample, i.e., ample on all fibres of f .

Definition 11.3. Let Y =
⋃

i Vi be a simple normal crossings variety over k of di-
mension 3. We say that Y is a combinatorial Calabi–Yau of Type IV if geometrically
(i.e., over k̄) we have:



Combinatorial degenerations of surfaces and Calabi–Yau threefolds 2261

• each component Vi is birational to a Mori fibre space over a unirational base;

• each connected component of every double surface Si j is rational;

• each connected component of every triple curve Ci jk is rational;

• the dual graph 0 of Y is a triangulation of the 3-sphere S3.

Remark 11.4. (1) It is worth noting that in characteristic 0 these conditions imply
that Vi is rationally connected, and the analogue of the condition in dimension
2 implies rationality, even in characteristic p.

(2) We may in fact assume that we have the above shape after a finite extension
of k.

Let H 3(X) stand for either H 3
ét(X F ,Q`) if char(F)= 0 or ` 6= p, or H 3

rig(X/RK )

if char(F)= p. In all cases, we have a natural monodromy operator N acting on
H 3(X), such that N 4

= 0. As a first step in the study of Calabi–Yau degenerations
in dimension 3, the main result of this section is the following.

Theorem 11.5. Let X be a strictly semistable R-scheme with generic fibre X a
Calabi–Yau threefold. Assume moreover that the sheaf of logarithmic 3-forms ωX

on X relative to R is trivial, and that N 3
6= 0 on H 3(X). Then the special fibre Y

of X is a combinatorial Calabi–Yau of Type IV.

As before, we will only treat the case char(F) = 0 and ` 6= p; the others are
handled identically. We may also assume that k = k̄. Let Vi denote the components
of Y , Si j the double surfaces, Ci jk the triple curves and Pi jkl the quadruple points.
Write Y (0) =

∐
i Vi , Y (1) =

∐
i j Si j et cetera. The only point where the hypothesis

on the nilpotency index of N is used is to prove the following lemma.

Lemma 11.6. Suppose that N 3
6= 0. Then Y has “maximal intersection”, i.e., there

exists a quadruple point Pi jkl .

Proof. If there is no quadruple point Pi jkl then Y (3) = ∅. Let Wn denote the
weight filtration on H 3

ét(X F ,Q`), so that W−1 = 0 and W6 = H 3
ét(X F ,Q`). The

monodromy operator N 3 sends Wi into Wi−6, in particular N 3(H 3
ét(X F ,Q`))⊂W0.

But Y (3) =∅ implies that W0 = 0 and hence N 3
= 0. �

Note that we do not need to know the weight-monodromy conjecture in order
for the lemma to hold, we simply need to know compatibility of N with the weight
filtration.

For each i we will let Di =
∑

j 6=i Si j , so that by the assumption ωX
∼=OX and the

adjunction formula we have−KVi =Di for all i . Similarly setting Ei j =
∑

k 6=i, j Ci jk

we obtain−KSi j = Ei j and setting Fi jk=
∑

l 6=i jk Pi jkl we can see that−KCi jk = Fi jk .
The lemma shows that there exists some Vi containing a quadruple point, and the
first key step in proving Theorem 11.5 is showing that this is actually true for every i .
The main ingredient in this is the following.
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Proposition 11.7. Let (V, D) be a pair consisting of a smooth projective threefold
V over k̄ and a nonempty strict normal crossings divisor D ⊂ V . Assume that
KV +D= 0, and that D is disconnected. Then D consists of two disjoint irreducible
components D1 and D2.

Remark 11.8. The corresponding result for surfaces follows from Lemma 4.1.

Proof. The characteristic 0 version of this result is Proposition 4.37 of [Kollár
2013]. However, thanks to the proof of the minimal model program for threefolds in
characteristic p > 5, in particular the connectedness principle and the existence of
Mori fibre spaces in [Birkar 2016; Birkar and Waldron 2016], the same proof works
here. So we will run the MMP on the smooth 3-fold V . It follows from Theorem 1.7
of [Birkar and Waldron 2016] that this terminates in a Mori fibre space p : V ∗→ S,
and by the connectedness principle ([Birkar 2016, Theorem 1.8]) it suffices to prove
that the strict transform D∗ ⊂ V ∗ consists of 2 irreducible components. Now we
simply follow the proof of Proposition 4.37 of [Kollár 2013], which goes as follows.

We know that there exists some component D∗1 ⊂ D∗ which positively intersects
the ray contracted by p. Choose another component D∗2 ⊂ D∗ disjoint from D∗1 ,
and choose some fibre Fs of p meeting D∗2 . Since D∗2 is disjoint from D∗1 , it follows
that it cannot contain Fs , and hence intersects Fs positively. Hence both D∗1 and
D∗2 are p-ample, intersecting the contracted ray positively. Hence the generic fibre
of p is of dimension 1, and is a regular (not necessarily smooth) Fano curve. It
then follows that if we choose a general fibre Fg of p, then D∗i · Fg = 1 for i = 1, 2
and all other components of D∗ are p-vertical, hence trivial as claimed. �

Corollary 11.9. Every component of Y contains a quadruple point.

Proof. By connectedness of Y it suffices to show that each neighbour of Vi also
contains a quadruple point. Note that by Proposition 11.7 the divisor Di is connected,
by hypothesis there exists a double surface Si j in Di containing a quadruple point,
and hence it suffices to show that each double surface Sik meeting Si j contains a
quadruple point. But if not, then Ci jk would form a connected component of Ei j

and hence again applying Lemma 4.1 we would see that Si j could not contain a
quadruple point. Therefore Sik must contain a quadruple point, and we are done. �

Of course this also shows that each double surface Si j contains a quadruple point,
hence by repeatedly applying Lemma 4.1 we can conclude that each surface Si j and
each curve Ci jk is rational. We may therefore see as in the proof of Theorem 8.1 that
the dual graph of each Di is a closed 2-manifold. Moreover, applying the MMP to
each Vi produces a Mori fibre space Wi → Zi , such that the divisor Di =

∑
j 6=i Si j

dominates Zi . Therefore Vi has the form described in Definition 11.3.
Finally, to show that the dual graph0 is a 3-sphere, we consider, for every vertex γ

corresponding to a component Vi of Y , the “star” of γ , i.e., the subcomplex of 0
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consisting of those cells meeting γ . This is a cone over the dual graph of Di , hence
0 is a closed 3-manifold.

Proposition 11.10. The dual graph 0 is simply connected.

Proof. Let Cp denote the completion of the algebraic closure of F, and OCp its ring
of integers. Let X denote the base change to OCp of the π-adic completion of X ,
this X is polystable over OCp in the sense of Definition 1.2 of [Berkovich 1999].
Let X an

Cp
denote the generic fibre of X, considered as a Berkovich space, or in other

words the analytification of the base change of X to Cp.
Let π ét

1 (X
an
Cp
) denote the étale fundamental group of X an

Cp
in the sense of [de Jong

1995], and by π top
1 (X an

Cp
) the fundamental group of the underlying topological space

of X an
Cp

. Theorem 2.10(iii) of [de Jong 1995] together with rigid analytic GAGA
shows that the profinite completion of π ét

1 (X
an
Cp
) is trivial, since it is isomorphic to

the algebraic étale fundamental group π ét
1 (XCp) of XCp , and X is Calabi–Yau. Next,

by Remark 2.11 of [de Jong 1995] together with Theorem 9.1 of [Berkovich 1999]
we have a surjection π ét

1 (X
an
Cp
)→ π

top
1 (X an

Cp
) and hence the profinite completion of

π
top
1 (X an

Cp
) is trivial.

Now by Theorem 8.2 of [Berkovich 1999] we have π1(0) ∼= π
top
1 (X an

Cp
) and

hence the profinite completion of π1(0) is trivial. Since 0 is a 3-manifold, we may
finally apply [Hempel 1987] to conclude that π1(0) is trivial as claimed. �

We may now conclude the proof of Theorem 11.5 using the Poincaré conjecture.
In fact, if we know that the weight monodromy conjecture holds, then we have the
following converse.

Proposition 11.11. Let X be a strictly semistable R-scheme whose generic fibre is
a Calabi–Yau threefold X , such that ωX

∼= OX . Assume that the special fibre Y is a
combinatorial Calabi–Yau of Type IV. If the weight monodromy conjecture holds for
H 3(X), then N 3

6= 0.

Proof. Again, we assume that ` 6= p; the other cases are handled similarly. Consider
the weight spectral sequence E p,q

r for X . The hypotheses imply that N 3 induces
an isomorphism

N 3
: E−3,6

2 → E3,0
2

and to show that N 3
6= 0 it therefore suffices to show that E3,0

2 6= 0. Writing out
the weight spectral sequence explicitly we see that we have an isomorphism

E3,0
2
∼= H 3

sing(0,Q`),

where 0 ' S3 is the dual graph of Y , and hence the claim follows. �

This is in particular the case if char(F) = p (when ` 6= p this is [Ito 2005],
when ` = p it is [Lazda and Pál 2016, Chapter 5]) or char(F) = 0, ` 6= p and X
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is a complete intersection in some projective space (which follows from [Scholze
2012]).
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The Voronoi formula
and double Dirichlet series

Eren Mehmet Kıral and Fan Zhou

We prove a Voronoi formula for coefficients of a large class of L-functions includ-
ing Maass cusp forms, Rankin–Selberg convolutions, and certain noncuspidal
forms. Our proof is based on the functional equations of L-functions twisted by
Dirichlet characters and does not directly depend on automorphy. Hence it has
wider application than previous proofs. The key ingredient is the construction of
a double Dirichlet series.

1. Introduction

A Voronoi formula is an identity involving Fourier coefficients of automorphic
forms, with the coefficients twisted by additive characters on either side. A history
of the Voronoi formula can be found in [Miller and Schmid 2004]. Since its
introduction in [loc. cit.], the Voronoi formula on GL(3) of Miller and Schmid has
become a standard tool in the study of L-functions arising from GL(3), and has
found important applications such as those in [Blomer 2012; Blomer et al. 2013;
Khan 2012; Li 2009; 2011; Li and Young 2012; Miller 2006; Munshi 2013; 2015].
As of yet the general GL(N ) formula has had fewer applications, a notable one
being found in [Kowalski and Ricotta 2014].

The first proof of a Voronoi formula on GL(3) was found by Miller and Schmid
[2006] using the theory of automorphic distributions. Later, a Voronoi formula
was established for GL(N ) with N ≥ 4 in [Goldfeld and Li 2006; 2008; Miller
and Schmid 2011], with [Miller and Schmid 2011] being more general and earlier
than [Goldfeld and Li 2008] (see the addendum there). Goldfeld and Li’s proof
[2008] is more akin to the classical proof in GL(2) [Good 1981], obtaining the
associated Dirichlet series through a shifted “vertical” period integral and making
use of automorphy. An adelic version was established by Ichino and Templier
[2013], allowing ramifications and applications to number fields. Another direction

MSC2010: primary 11F30; secondary 11F68, 11L05.
Keywords: Voronoi formula, automorphic form, Maass form, multiple Dirichlet series, Gauss sum,

Kloosterman sum, Rankin–Selberg L-function.
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of generalization with more complicated additive twists on either side has been
considered in an unpublished work of Li and Miller and in [Zhou 2016].

In this article, we prove a Voronoi formula for a large class of automorphic objects
or L-functions, including cusp forms for SL(N ,Z), Rankin–Selberg convolutions,
and certain noncuspidal forms. Previous works [Miller and Schmid 2011; Goldfeld
and Li 2008; Ichino and Templier 2013] do not offer a Voronoi formula for Rankin–
Selberg convolutions or noncuspidal forms. Even for Maass cusp forms, our new
proof is shorter than any previous one, and uses a completely different set of
techniques.

Let us briefly summarize our method of proof. We first reduce the statement of a
Voronoi formula to a formula involving Gauss sums of Dirichlet characters. We
construct a complex function of two variables and write it as double Dirichlet series
in two different ways by applying a functional equation. Using the uniqueness
theorem of Dirichlet series, we get an identity between coefficients of these two
double Dirichlet series. This leads us to the Voronoi formula with Gauss sums.

One of our key steps in obtaining the Voronoi formula is the use of functional
equations of L-functions twisted by Dirichlet characters. The relationship between
the Dirichlet twists and the additive twists was expected, but not fully understood,
such as in [Duke and Iwaniec 1990; Goldfeld and Li 2006, Section 4; Buttcane
and Khan 2015; Zhou 2016]. In these works, only prime modulus is dealt with,
which is a significant restriction. Miller and Schmid [2006, Section 6] derived
the functional equation of L-functions twisted by a Dirichlet character of prime
conductor from the Voronoi formula. However there is a combinatorial difficulty in
reversing this process, i.e., obtaining additive twists of general nonprime conductors
from multiplicative ones, which was acknowledged in both [Miller and Schmid
2006, p. 430] and [Ichino and Templier 2013, p. 68]. The method presented here is
able to overcome this difficulty by discovering an interlocking structure among a
family of Voronoi formulas with different conductors.

Our proof of the Voronoi formula is complete for additive twists of all conductors,
prime or not, and unlike [Ichino and Templier 2013], [Miller and Schmid 2006],
or [Miller and Schmid 2011], does not depend directly on automorphy of the cusp
forms. This fact allows us to apply our theorem to many conjectural Langlands
functorial transfers. For example, the Rankin–Selberg convolutions (also called
functorial products) for GL(m)×GL(n) are not yet known to be automorphic on
GL(m× n) in general. Yet we know the functional equations of GL(m)×GL(n)
L-functions twisted by Dirichlet characters. Thus, our proof provides a Voronoi
formula for the Rankin–Selberg convolutions on GL(m)×GL(n) (see Example 1.7).
Voronoi formulas for these functorial cases are unavailable from [Goldfeld and Li
2008], [Miller and Schmid 2011] or [Ichino and Templier 2013]. In Theorem 1.3
we reformulate our Voronoi formula like the classical converse theorem of Weil, i.e.,
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assuming every L-function twisted by a Dirichlet character is entire, has an Euler
product (or satisfies Hecke relations), and satisfies the precise functional equations,
then the Voronoi formula as in Theorem 1.1 is valid. We do not have to assume it
is a standard L-function coming from a cusp form.

Furthermore, by Theorem 1.3, we obtain a Voronoi formula for certain noncuspi-
dal forms, such as isobaric sums (see Example 1.8). This is not readily available
from any previous work but it is believed (see [Miller and Schmid 2011, p. 176])
that one may derive a formula by using formulas on smaller groups through a
possibly complicated procedure. Such complication does not occur in our method
because we work directly with L-functions.

We first state the main results for Maass cusp forms. Denote

e(x) := exp(2π i x)

for x ∈ R. Let N ≥ 3 be an integer. Let a, n ∈ Z, c ∈ N and let

q = (q1, q2, . . . , qN−2) and d = (d1, d2, . . . , dN−2)

be tuples of positive integers satisfying the divisibility conditions

d1|q1c, d2

∣∣∣ q1q2c
d1

, . . . , dN−2

∣∣∣ q1 · · · qN−2c
d1 · · · dN−3

. (1)

In this case, to simplify notation we set

ξi :=
q1 · · · qi c
d1 · · · di

.

Define the hyper-Kloosterman sum as

Kl(a, n, c; q, d) =
∑∗

x1 mod ξ1

∑∗

x2 mod ξ2

· · ·

∑∗

xN−2 mod ξN−2

e
(

d1x1a
c
+

d2x2x1

ξ1
+ · · ·+

dN−2xN−2xN−3

ξN−3
+

nxN−2

ξN−2

)
,

where
∑
∗ indicates that the summation is over reduced residue classes, and xi

denotes the multiplicative inverse of xi modulo ξi . When N = 3, Kl(a, n, c; q1, d1)

becomes the classical Kloosterman sum S(aq1, n; ξ1). For the degenerate case
N = 2, we define Kl(a, n, c; , ) := e(an/c).

Let F be a Hecke–Maass cusp form for SL(N ,Z) with the spectral parameters
(λ1, . . . , λN ) ∈ CN. Let A(m1, . . . ,m N−1), with (m1, . . . ,m N−1) ∈ NN−1, be the
Fourier–Whittaker coefficients of F normalized as A(1, . . . , 1) = 1. We refer to
[Goldfeld 2006] for the definitions and the basic results of Maass forms for SL(N ,Z).
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The Fourier coefficients satisfy the Hecke relations

A(m1m′1, . . . ,m N−1m′N−1)= A(m1, . . . ,m N−1)A(m′1, . . . ,m′N−1) (2)

if (m1 · · ·m N−1,m′1 · · ·m
′

N−1)= 1 is satisfied,

A(1, . . . , 1, n)A(m N−1, . . . ,m1)

=

∑
d0···dN−1=n

d1|m1,...,dN−1|m N−1

A
(

m N−1dN−2

dN−1
, . . . ,

m2d1

d2
,

m1d0

d1

)
,

(3)

and

A(n, 1, . . . , 1)A(m1, . . . ,m N−1)

=

∑
d0···dN−1=n

d1|m1,...,dN−1|m N−1

A
(

m1d0

d1
,

m2d1

d2
, . . . ,

m N−1dN−2

dN−1

)
. (4)

The dual Maass form of F is denoted by F̃ . Let B(∗, . . . , ∗) be the Fourier–
Whittaker coefficients of F̃ . These coefficients satisfy

B(m1, . . . ,m N−1)= A(m N−1, . . . ,m1). (5)

Define the ratio of Gamma factors

G±(s) := i−Nδπ−N (1/2−s)
N∏

j=1

0

(
δ+ 1− s− λ j

2

)
0

(
δ+ s− λ j

2

)−1

, (6)

where for even Maass forms, we define δ = 0 in G+ and δ = 1 in G−, and for odd
Maass forms, we define δ = 1 in G+ and δ = 0 in G−. We refer to [Goldfeld 2006,
Section 9.2] for the definition of even and odd Maass forms.

Theorem 1.1 (Voronoi formula on GL(N ) of Miller and Schmid [2011]). Let F be
a Hecke–Maass cusp form with coefficients A(∗, . . . , ∗), and G± a ratio of Gamma
factors as in (6). Let c > 0 be an integer and let a be any integer with (a, c) = 1.
Denote by ā the multiplicative inverse of a modulo c. Let the additively twisted
Dirichlet series be given as

Lq

(
s, F, a

c

)
=

∞∑
n=1

A(qN−2, . . . , q1, n)
ns e

( ān
c

)
(7)

for <(s) > 1. This Dirichlet series has an analytic continuation to all s ∈ C and
satisfies the functional equation
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Lq(s, F, a/c)

=
G+(s)−G−(s)

2

∑
d1|q1c

∑
d2|

q1q2c
d1

· · ·

∑
dN−2|

q1···qN−2c
d1···dN−3

∞∑
n=1

A(n, dN−2, . . . , d2, d1)Kl(a, n, c; q, d)
n1−scNs−1d1d2 · · · dN−2

d(N−1)s
1 d(N−2)s

2 · · · d2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

+
G+(s)+G−(s)

2

∑
d1|q1c

∑
d2|

q1q2c
d1

· · ·

∑
dN−2|

q1···qN−2c
d1···dN−3

∞∑
n=1

A(n, dN−2, . . . , d2, d1)Kl(a,−n, c; q, d)
n1−scNs−1d1d2 · · · dN−2

d(N−1)s
1 d(N−2)s

2 · · · d2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

, (8)

in the region of convergence of the expression on the right-hand side (<(s) < 0).

The traditional Voronoi formula, involving weight functions instead of Dirichlet
series, is obtained after taking an inverse Mellin transform against a suitable test
function.

Choose a Dirichlet character χ modulo c, which is not necessarily primitive,
multiply both sides of (8) by χ(a), and sum this equality over the reduced residue
system modulo c. We obtain the following Voronoi formula with Gauss sums. In
Section 3B we show through elementary finite arithmetic that the formulas (8) and
(11) are equivalent.

Theorem 1.2 (Voronoi formula with Gauss sums). Let χ be a Dirichlet character
modulo c, induced from the primitive character χ∗ modulo c∗ with c∗ | c. Define for
q = (q1, . . . , qN−2) a tuple of positive integers

H(q; c, χ∗, s)=
∞∑

n=1

A(qN−2, . . . , q1, n)g(χ∗, c, n)
ns(c/c∗)1−2s (9)

for <(s) > 1, and

G(q; c, χ∗, s)=
G(s)χ∗(−1)

cNs−1(c/c∗)1−2s

∑
d1c∗|q1c

∑
d2c∗| q1q2c

d1

· · ·

∑
dN−2c∗|

q1···qN−2c
d1···dN−3

∞∑
n=1

A(n, dN−2, . . . , d1)

n1−sd1d2 · · · dN−2

d(N−1)s
1 d(N−2)s

2 · · · d2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

× g(χ∗, c, d1)g(χ∗, ξ1, d2) · · · g(χ∗, ξN−3, dN−2)g(χ∗, ξN−2, n) (10)

for <(s) < 0, where G equals G+ or G− depending on whether χ∗(−1) is 1 or −1,
and g(χ∗, `c∗, ∗) is the Gauss sum of the induced character modulo `c∗ from χ∗,
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which is defined in Definition 2.1. Both functions have analytic continuation to all
s ∈ C, and the equality

H(q; c, χ∗, s)= G(q; c, χ∗, s) (11)

is satisfied.

In proving (11), we define

Z(s, w)=
Lq(2w− s, F)L(s, F ×χ∗)

L(2w− 2s+ 1, χ∗)
, (12)

where q = (q1, . . . , qN−2) is a tuple of positive integers, and the function Lq(s, F)
is given as the Dirichlet series

Lq(s, F)=
∞∑

n=1

A(qN−2, . . . , q1, n)
ns

for <(s)� 1. We express Z(s, w) as a double Dirichlet series in two different
ways. In one region of convergence we express the L-functions as Dirichlet series
and obtain

Z(s, w)=
∞∑

n=1

an(s)
n2w .

On the other hand, we apply the functional equation of L(s, F ×χ∗), replacing s
with 1− s, and write Z(s, w) as the Dirichlet series

Z(s, w)=
∑

n

bn(s)
n2w .

By the uniqueness of Dirichlet series, we must have an(s)= bn(s). This equality
leads us to the Voronoi formula with Gauss sums.

Our proof only uses the Hecke relations about the Fourier coefficients of F and
the exact form of the functional equations. The expression of Gamma factors, or
the automorphy of F , plays no role. Hence we can formulate our theorem in a style
similar to the classical converse theorem of Weil. First, let us list the properties of
Fourier coefficients that we use in order to state the following theorem.

The Fourier coefficients of F grow moderately, i.e.,

A(m1, . . . ,m N−1)� (m1 · · ·m N−1)
σ (13)

for some σ > 0. Given a primitive Dirichlet character χ∗ modulo c∗, define the
twisted L-function

L(s, F ×χ∗)=
∞∑

n=1

A(1, . . . , 1, n)χ∗(n)
ns (14)
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for <(s) > σ + 1. It has analytic continuation to the whole complex plane, and
satisfies the functional equation

L(s, F ×χ∗)= τ(χ∗)N c∗−Ns G(s)L(1− s, F̃ ×χ∗), (15)

where G(s)= G+(s) or G−(s) depending on whether χ∗(−1)= 1 or −1.

Theorem 1.3. Let F be a symbol and assume that with F come numbers

A(m1, . . . ,m N−1) ∈ C

attached to every (N − 1)-tuple (m1, . . . ,m N−1) of natural numbers. Assume
A(1, . . . , 1)= 1.

Assume that these “coefficients” A(∗, . . . , ∗) satisfy the aforementioned Hecke
relations (2), (3) and (4). Further assume that they grow moderately as in (13).

Let F̃ be another symbol whose associated coefficients B(∗, . . . , ∗)∈C are given
as in (5) and assume that they also satisfy the same properties. Further, assume
that there are two meromorphic functions G+(s) and G−(s) associated to the pair
(F, F̃), so that for a given primitive character χ∗, the function L(s, F × χ∗) as
defined in (14) satisfies the functional equation (15).

Under all these assumptions, Lq(s, F, a/c), defined as in (7) for <(s) > 1+ σ ,
has analytic continuation to all s ∈ C, and satisfies the Voronoi formula (8). (The
Dirichlet series on the right side of (8) is absolutely convergent for <(s) <−σ .)

Equivalently the functions H(q; c, χ∗, s) and G(q; c, χ∗, s) as defined by the
formulas (9) and (10) have analytic continuations to all s and equal each other as
in (11).

Remark 1.4 (the structure of this article). Theorem 1.3 is our main result. For
the most part our focus is on the case N ≥ 3, and we deal with the case N = 2 in
Remark 3.2. The Voronoi formula (8) is proved to be equivalent to a formula (11)
involving Gauss sums. The equivalence is shown in Proposition 3.5. A convolved
version of (11) is obtained in Theorem 3.1 by comparing Dirichlet coefficients of two
different expressions of a double Dirichlet series. We later show in Proposition 3.3
that this convolved version yields (11).

Remark 1.5. If we start with an L-series L(s, F) with an Euler product

L(s, F)=
∞∑

n=1

A(1, . . . , 1, n)
ns =

∏
p

N∏
i=1

(
1−

αi (p)
ps

)−1

and with
∏

i αi (p) = 1 for any p, then we can define A(pk1, . . . , pkN−1) by the
Casselman–Shalika formula [Zhou 2014, Proposition 5.1] and they are compati-
ble with the Hecke relations. More explicitly, for a prime number p, we define
A(pk1, . . . , pkN−1)= Sk1,...,kN−1(α1(p), . . . , αN (p)) by the work of Shintani, where
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Sk1,...,kN−1(x1, . . . , xN ) is the Schur polynomial, which can be found in [Goldfeld
2006, p. 233].

We extend the definition to all A(∗, . . . , ∗)multiplicatively by (2). One can prove
that A(∗, . . . , ∗) satisfies the Hecke relations (2)–(4). In summary, the “coefficients”
A(∗, . . . , ∗) along with the Hecke relations can be generated by an L-function with
an Euler product.

The following examples satisfy the conditions in Theorem 1.3, and hence we
have a Voronoi formula for each of them.

Example 1.6 (automorphic form for SL(N ,Z)). Any cuspidal automorphic form
for SL(N ,Z) satisfies the conditions in Theorem 1.3. It can have an unramified or
ramified component at the archimedean place, because only the exact form of the
G± function would change; see [Godement and Jacquet 1972]. The Hecke–Maass
cusp forms considered in Theorem 1.1 are included in this category, and therefore,
we prove Theorem 1.3 instead of Theorem 1.1.

Example 1.7 (Rankin–Selberg convolution). Let F1 and F2 be even Hecke–Maass
cusp forms for SL(N1,Z) and SL(N2,Z) with the spectral parameters

(λ1, . . . , λN1) ∈ CN1 and (µ1, . . . , µN2) ∈ CN2,

respectively. Assume F1 6= F̃2 if N1 = N2. The automorphic forms F1 and F2 have
the standard L-functions

L(s, F1)=
∏

p

N1∏
i=1

(
1−

αi (p)
ps

)−1

and L(s, F2)=
∏

p

N2∏
i=1

(
1−

βi (p)
ps

)−1

.

Let L(s, F1× F2) be the Rankin–Selberg L-function of F1 and F2 defined by

L(s, F1× F2)=
∏

p

N1∏
i1=1

N2∏
i2=1

(
1−

αi1(p)βi2(p)
ps

)−1

.

The L-function is of degree N := N1 N2. The work of Jacquet, Piatetskii-Shapiro,
and Shalika [Jacquet et al. 1983] shows that L(s, F ×χ∗)= L(s, (F1×χ

∗)× F2)

is holomorphic and satisfies the functional equation (15) for F := F1× F2.
Define A(pk1, . . . , pkN−1) by the Schur polynomials as in Remark 1.5:

A(pk1, . . . , pkN−1) :=

Sk1,...,kN−1

(
α1(p)β1(p), . . . , αi1(p)βi2(p), . . . , αN1(p)βN2(p)

)
.
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Extend the definition to all A(∗, . . . , ∗) multiplicatively by (2). Define

G±(s) :=

i−Nδπ−N (1/2−s)
N1∏

i1=1

N2∏
i2=1

0

(
δ+ 1− s− λi1 −µi2

2

)
0

(
δ+ s− λi1 −µi2

2

)−1

,

where one takes δ = 0 and δ = 1 for G+ and G−, respectively. Theorem 1.3 gives
us a Voronoi formula for the Rankin–Selberg convolution F = F1× F2 with the
A(∗, . . . , ∗) and G± defined above.

Example 1.8 (isobaric sum, Eisenstein series). For i = 1, . . . , k, let Fi be a Hecke–
Maass cusp form for SL(Ni ,Z). Let si be complex numbers with

∑
i Ni si = 0.

Define the isobaric sum F =
(
F1×| · |

s1
A

)
�
(
F2×| · |

s2
A

)
� · · ·�

(
Fk×| · |

sk
A

)
, whose

L-function is L(s, F)=
∏

i L(s+ si , Fi ). This isobaric sum F is associated with a
noncuspidal automorphic form on GL(N ), an Eisenstein series twisted by Maass
forms, where N =

∑
i Ni ; see [Goldfeld 2006, Section 10.5]. The L-function

twisted by a character is simply given by L(s, F × χ∗) =
∏

i L(s + si , Fi × χ
∗),

which satisfies the conditions of Theorem 1.3.

Example 1.9 (symmetric powers on GL(2)). Let f be a modular form of weight
k for SL(2,Z), and define F := Sym2 f . The symmetric square F satisfies the
conditions in Theorem 1.3 by the work of Shimura [1975]. Here we do not need to
involve automorphy using Gelbart–Jacquet lifting. One may have similar results for
higher symmetric powers depending on the recent progress in the theory of Galois
representations.

As a last remark, let us explain the construction of the double Dirichlet series
Z(s, w) given by (12). This construction originates from the Rankin–Selberg
convolution of a cusp form F and an Eisenstein series on GL(2). The Fourier
coefficients of the Eisenstein series E(z, s, χ∗) can be written in terms of the
divisor function σ2s−1(n, χ∗) defined in Definition 2.1:

1
n2s−1

σ2s−1(n, χ∗)
L(2s, χ∗)

or
∞∑
`=1

g(χ∗, `c∗, n)
(`c∗)2s .

Therefore, in the case of F on GL(2), the Rankin–Selberg integral of F and
E
(
∗, w− s+ 1

2 , χ
∗
)

produces the double Dirichlet series

∞∑
n=1

∞∑
`=1

A(n)g(χ∗, `c∗, n)
ns(`c∗)2w+1−2s .

A similar expression appears on the left-hand side of the Voronoi formula with
Gauss sums (9). The Rankin–Selberg convolution of the cusp form F and an
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Eisenstein series can be written as a product of two copies of a standard L-function
of F , namely L(2w− s, F)L(s, F ×χ∗)

L(2w− 2s+ 1, χ∗)
.

Applying the functional equation to only L(s, F ×χ∗) gives us another expression,
which is similar to the right-hand side (10) of the Voronoi formula with Gauss sums.
Since L(2w− s, F) was not used in this process, we have the freedom to replace
L(2w − s, F) by Lq(2w − s, F) in the case of GL(N ), and it gives us enough
generality to prove the Voronoi formula (11) with Gauss sums. In the case of GL(3),
this construction is similar to Bump’s double Dirichlet series; see [Goldfeld 2006,
Chapter 6.6] or [Bump 1984, Chapter X].

2. Background on Gauss sums

Here we collect information about the Gauss sums of Dirichlet characters which
are not necessarily primitive.

Definition 2.1. Let χ be a Dirichlet character modulo c induced from a primitive
Dirichlet character χ∗ modulo c∗. Define the divisor function

σs(m, χ)=
∑
d|m

χ(d)ds.

Define the Gauss sum of χ to be

g(χ∗, c,m) =
∑

(u,c)=1
u mod c

χ(u)e
(mu

c

)
.

The standard Gauss sum for χ∗ is given as τ(χ∗)= g(χ∗, c∗, 1).
The Gauss sum g(χ∗, c,m) is the same as the Gauss sum τm(χ) in other literature.

However we prefer our notation because we come upon numerous Gauss sums of
characters χ induced from a single primitive character χ∗.

Lemma 2.2 (Gauss sum of nonprimitive characters [Miyake 1989, Lemma 3.1.3(2)]).
Let χ be a character modulo c induced from a primitive character χ∗ modulo c∗.
Then the Gauss sum of χ is given by

g(χ∗, c, a)= τ(χ∗)
∑

d|(a,c/c∗)

dχ∗
( c

c∗d

)
χ∗
(a

d

)
µ
( c

c∗d

)
.

Lemma 2.3 [Montgomery and Vaughan 2007, Theorem 9.12]. Let χ∗ be a primitive
character modulo c∗ and assume c∗ | c. Then we have

g(χ∗, c, a)= τ(χ∗)
φ(c)

φ(c/(c, a))
µ
( c

c∗(c, a)

)
χ∗
( c

c∗(c, a)

)
χ∗
( a
(c, a)

)
if c∗ | c/(a, c). Otherwise, g(χ∗, c, a) is zero.
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The next lemma is a generalization of a famous formula of Ramanujan:

σs−1(n)
ns−1 = ζ(s)

∞∑
`=1

c`(n)
`s ,

where c`(n) is the Ramanujan sum.

Lemma 2.4. Let <(s) > 1. Define a Dirichlet series

I (s, χ∗, c∗,m)=
∞∑
`=1

g(χ∗, `c∗,m)
`s

as a generating function for the nonprimitive Gauss sums induced from χ∗. It
satisfies the identity

τ(χ∗)σs−1(m, χ∗)= ms−1 I (s, χ∗, c∗,m)L(s, χ∗).

Proof. We prove the equivalent formula

τ(χ∗)m1−sσs−1(m, χ∗)L(s, χ∗)−1
= I (s, χ∗, c∗,m).

For <(s) > 1, the function τ(χ∗)m1−sσs−1(m, χ∗)L(s, χ∗)−1 can be written as a
Dirichlet series

τ(χ∗)
∑
d|m

dχ∗(m/d)
ds

∞∑
n=1

χ∗(n)µ(n)
ns

= τ(χ∗)

∞∑
`=1

∑
d|(m,`) dχ∗(m/d)µ(`/d)χ∗(`/d)

`s ,

and this equals I (s, χ∗, c∗,m) by Lemma 2.2. �

Lemma 2.5. For any two positive integers n and m, and a primitive Dirichlet
character χ∗ modulo c∗, we have∑

`d=n

χ∗(d)g(χ∗, `c∗,m)=
{
τ(χ∗)χ∗(m/n)n if n | m,

0 otherwise.

Proof. We start with the formula,

τ(χ∗)σs−1(m, χ∗)
ms−1 = I (s, χ∗, c∗,m)L(s, χ∗).

Both sides are Dirichlet series and we equate coefficients. The left-hand side is
given as

τ(χ∗)
∑
e|m

χ∗(m/e)e
es ,
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whereas the right-hand side is
∞∑
`=1

g(χ∗, `c∗,m)
`s

∞∑
d=1

χ∗(d)
ds =

∞∑
n=1

∑
d`=n χ

∗(d)g(χ∗, `c∗,m)
ns . �

3. The Voronoi formula

3A. Double Dirichlet series. We begin by proving a convolved version of (11).

Theorem 3.1. For N ≥ 3, q = (q1, . . . , qN−2) ∈ NN−2, and n ∈ N, define

H(q; n, s) :=
∑

d1|q1,...,dN−2|qN−2

χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

∑
d`=n

χ∗(d)H(q ′; `c∗, χ∗, s)

for <(s)� 1, and

G(q; n, s) :=
∑

d1|q1,...,dN−2|qN−2

χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

∑
d`=n

χ∗(d)G(q ′; `c∗, χ∗, s)

for <(1− s)� 1, where we abbreviate

q ′ =
(q1d

d1
,

q2d1
d2

, . . . ,
qN−2dN−3

dN−2

)
. (16)

The functions H(q; n, s) and G(q; n, s) have analytic continuation to all s ∈ C and
these analytic continuations satisfy

H(q; n, s)= G(q; n, s). (17)

Proof. The region of absolute convergence for H(q; n, s) is a right half plane
<(s)� 1, and the region of absolute convergence of G(q; n; s) is a left half plane
<(1− s)� 1. Let Z(s, w) be defined as in (12). For any s ∈ C and w with <(w)
large enough so that <(2w− s)� 1 and <(w− s) > 0, writing Lq(2w− s, F) and
L(2w− 2s+ 1, χ∗)−1 as Dirichlet series, we derive

Z(s,w)= L(s,F×χ∗)
∞∑

n=1

∑
d|n A(qN−2, . . . , q1, d)dsχ∗(n/d)µ(n/d)(n/d)2s−1

n2w .

Hence, we have

Z(s, w)=
∞∑

n=1

an(s)
n2w ,

where

an(s)= L(s, F ×χ∗)
∑
d|n

A(qN−2, . . . , q1, d)dsχ∗(n/d)µ(n/d)(n/d)2s−1.

Here an(s) is an analytic function of s ∈ C, because L(s, F × χ∗) is entire. The
computation below shows that an(s) equals either side of (17) in their respective
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regions of absolute convergence, up to scaling by a constant τ(χ∗). This proves
the analytic continuation of H and G as well as their equality.

For <(s)� 1, <(w− s) > 0, we expand the two L-functions in the numerator
of Z(s, w) as Dirichlet series, obtaining

Z(s, w)=
1

L(2w− 2s+ 1, χ∗)

∞∑
n,m=1

A(qN−2, . . . , q1, n)A(1, . . . , 1,m)χ∗(m)
n2w−sms

=
1

L(2w− 2s+ 1, χ∗)

∞∑
n,m=1

(
χ∗(m)

n2w−sms

×

∑
d0d1···dN−1=m

d0|n,d1|q1,...,dN−2|qN−2

A
(qN−2dN−3

dN−2
, . . . ,

q1d0
d1

,
ndN−1

d0

))
,

where we have used the Hecke relation (3). We change the variable n/d0→ n and
combine h = ndN−1, giving

Z(s, w)=
1

L(2w− 2s+ 1, χ∗)

∞∑
n,d0,dN−1=1

∑
di |qi

i=1,...,N−2

χ∗(d0 · · · dN−1)

n2w−sd2w−s
0 (d0 · · · dN−1)s

× A
(qN−2dN−3

dN−2
, . . . ,

q1d0
d1

, ndN−1

)
=

1
L(2w− 2s+ 1, χ∗)

∞∑
d0,h=1

∑
di |qi

i=1,...,N−2

χ∗(d0 · · · dN−2)

d2w−s
0 (d0 · · · dN−2)s

× A
(qN−2dN−3

dN−2
, . . . ,

q1d0
d1

, h
)σ2w−2s(h, χ∗)

h2w−s .

Applying Lemma 2.4, we get

Z(s, w)= τ(χ∗)−1
∞∑

d0=1

∑
di |qi

i=1,...,N−2

(
χ∗(d0 · · · dN−2)

d2w
0 (d1 · · · dN−2)s

×

∞∑
h=1

1
hs A

(qN−2dN−3
dN−2

, . . . ,
q1d0
d1

, h
) ∞∑
`=1

g(χ∗, `c∗, h)
`2w−2s+1

)
.

Therefore, defining q ′ as in (16), we reach

Z(s, w)= τ(χ∗)−1
∞∑

n=1

1
n2w

∑
d1|q1,...,dN−2|qN−2

(
χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

×

∑
d`=n

χ∗(d)H(q ′; `c∗, χ∗, s)
)
. (18)
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On the other hand, let us apply the functional (15) to L(s, F ×χ∗) in Z(s, w),
giving

Z(s, w)=
G(s)τ (χ∗)N

c∗Ns

Lq(2w− s, F)L(1− s, F̃ ×χ∗)
L(2w− 2s+ 1, χ∗)

.

Given <(1− s)� 1 and <(2w− s)� 1, we open the expression as a Dirichlet
series:

Z(s, w)

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

∞∑
n,m=1

A(qN−2, . . . , q1, n)A(m, 1, . . . , 1)χ∗(m)
n2w−sm1−s

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

×

∞∑
n,m=1

χ∗(m)
n2w−sm1−s

∑
d0d1···dN−1=m

d0|n,d1|q1,...,dN−2|qN−2

A
(qN−2dN−1

dN−2
, . . . ,

q1d2
d1

,
nd1
d0

)

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

×

∞∑
n,m=1

∑
d0d1···dN−1=m

d0|n,d1|q1,...,dN−2|qN−2

χ∗(d0d1 · · · dN−1)A
(qN−2dN−1

dN−2
, . . . ,

q1d2
d1

,
nd1
d0

)
(n/d0)2w−sd1+2w−2s

0 (d1 · · · dN−1)1−s
,

where we have combined the Fourier coefficients by the Hecke relation (4). We
change the variable n/d0→n. Then the sum over d0 cancels with L(2w−2s+1, χ∗)
in the denominator, giving

Z(s, w)

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

∞∑
n,d0,dN−1=1

∑
di |qi

i=1,...,N−2

A
(qN−2dN−1

dN−2
, . . . ,

q1d2
d1

, d1n
)

×
χ∗(d0d1 · · · dN−1)

n2w−sd1+2w−2s
0 (d1 · · · dN−1)1−s

=
G(s)τ (χ∗)N

c∗Ns

∞∑
n,dN−1=1

∑
di |qi

i=1,...,N−2

χ∗(d1 · · · dN−1)

n2w−s(d1 · · · dN−1)1−s . (19)

If we denote the right-hand side of (17) by τ(χ∗)bn(s), our goal is to transform
(19) into R :=

∑
∞

n=1 bn(s)n−2w. But at this point it is easier to start from R. More
explicitly, we have
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R = τ(χ∗)−1
∞∑

h=1

1
h2w

∑
d1|q1,...,dN−2|qN−2

(
χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

×

∑
d`=h

χ∗(d)G(q ′; `c∗, χ∗, s)
)
. (20)

Here q ′ has been defined in (16). We plug in the definition of G(q ′; `c∗, χ∗, s)
from (10) for q ′, giving

G(q ′; `c∗, χ∗, s)

=
G(s)χ∗(−1)

c∗Ns−1`(N−2)s

∑
f1|

q1d`
d1

∑
f2|

q1q2d`
f1d2

· · ·

∑
fN−2|

q1···qN−2d`
f1··· fN−3dN−2

∞∑
n=1

A(n, fN−2, . . . , f1)

n1−s f1 f2 · · · fN−2

f (N−1)s
1 f (N−2)s

2 · · · f 2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

(d1 · · · dN−2)
s

d(N−2)s

× g(χ∗, `c∗, f1)g
(
χ∗,

q1d`c∗

f1d1
, f2

)
· · · × g

(
χ∗,

q1 · · · qN−3d`c∗

f1 · · · fN−3dN−3
, fN−2

)
g
(
χ∗,

q1 · · · qN−2d`c∗

f1 · · · fN−2dN−2
, n
)
.

We substitute G(q ′; `c∗, χ∗, s) with this expression in (20) and change the orders
of summation between fi and di . The summations over d and di collapse with the
repeated use of Lemma 2.5, giving

R= τ(χ∗)−1 G(s)χ∗(−1)
c∗Ns−1

∞∑
h=1

∞∑
n=1

∑
h| f1

f1|q1h

∑
q1h
f1
| f2

f2|
q1q2h

f1

· · ·

∑
q1···qN−3h
f1··· fN−3

| fN−2

fN−2|
q1···qN−2h
f1··· fN−3

∑
q1···qN−2h
f1··· fN−2

|n

τ(χ∗)N−1

h2w

×χ∗
( f1

h

)
χ∗
( f1 f2

hq1

)
· · ·χ∗

( f1 f2 · · · fN−2
hq1 · · · qN−3

)
χ∗
( f1 f2 · · · fN−2n

hq1 · · · qN−2

)
×

(q1
f1

)N−2(q2

f2

)N−3
· · ·

(qN−2
fN−2

)
hN−1−Ns+2s

×
A(n, fN−2, . . . , f1)

n1−s f1 · · · fN−2

f (N−1)s
1 · · · f 2s

N−2

q(N−2)s
1 · · · qs

N−2

.

Define e1 = f1/h and ei = ( f1 · · · fi )/(q1 · · · qi−1h) for i = 2, . . . , N − 2, so
that the double conditions under the sums simplify to ei |qi . Extend this to all
positive integers by setting eN−1 = ( f1 · · · fN−2n)/(hq1 · · · qN−2). Finally, noting
τ(χ∗)−1

= χ∗(−1)τ (χ∗)/c∗, we get
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R =
G(s)τ (χ∗)N

c∗Ns

∞∑
h,eN−1=1

1
h2w−s

∑
ei |qi

i=1,...,N−2

χ∗(e1 · · · eN−2eN−1)

(e1 · · · eN−1)1−s

× A
(

eN−1qN−2

eN−2
, . . . ,

e2q1

e1
, e1h

)
,

which in turn, by (19), equals Z(s, w) as well as (18). We complete the proof by
applying the uniqueness theorem for Dirichlet series [Apostol 1976, Theorem 11.3]
to the equality between (18) and (20). �

Remark 3.2. The above proof works for N ≥ 3 but not for N = 2. We can prove
the Voronoi formula for SL(2,Z) similarly and easily by considering

Z(s, w)=
L(2w− s, F)L(s, F ×χ∗)

L(2w− 2s+ 1, χ∗)L(2w,χ∗)
.

We have, from the Hecke relations on GL(2),

Z(s, w)= τ(χ∗)−1
∞∑
`=1

∞∑
n=1

A(n)
ns

g(χ∗, `c∗, n)
`1+2w−2s ,

and applying the functional equation for L(s, F ×χ∗) we have

Z(s, w)= τ(χ∗)c∗−2s G(s)
∞∑
`=1

∞∑
n=1

A(n)
n1−s

g(χ∗, `c∗, n)
`2w .

Applying the uniqueness theorem for Dirichlet series to the variable w, we get the
Voronoi formula with Gauss sums on GL(2).

Proposition 3.3. Equation (11) is equivalent to Theorem 3.1.

Proof. Construct the following summation:

T :=
∑
e0|n

∑
e1|q1e0

· · ·

∑
eN−2|qN−2eN−3

µ(e0 · · · eN−2)χ
∗(e0 · · · eN−2)

(e1 · · · eN−2)s

×H

(
q1e0

e1
, . . . ,

qN−2eN−3

eN−2
;

n
e0
, s
)

=

∑
e0|n

∑
e1|q1e0

· · ·

∑
eN−2|qN−2eN−3

(
µ(e0 · · · eN−2)χ

∗(e0 · · · eN−2)

(e1 · · · eN−2)s

×

∑
di |qi ei−1/ei
i=1,...,N−2

χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

∑
d0|n/e0

χ∗(d0)

× H
(

q1e0d0

e1d1
, . . . ,

qN−2eN−3dN−3

eN−2dN−2
;

n
e0d0

c∗, χ∗, s
))
.
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Change variables ei di → ai for i = 0, . . . , N −2, and change orders of summation,
getting

T =
∑
a0|n

∑
e0|a0

∑
a1|q1e0

∑
e1|a1

· · ·

∑
aN−2|qN−2eN−3

∑
eN−2|aN−2

χ∗(a0 · · · aN−2)

(a1 · · · aN−2)s

× H
(

q1a0

a1
,

q2a1

a2
, . . . ,

qN−2aN−3

aN−2
;

nc∗

a0
, χ∗, s

)
µ(e0) · · ·µ(eN−2).

One by one, the Möbius summation over ei forces ai = 1, and thus we obtain
T = H(q; nc∗, χ∗, s). By Theorem 3.1, we have H= G, and the same calculations
yield T = G(q; nc∗, χ∗, s). This proves the theorem. �

3B. Equivalence between equations (8) and (11). First we prove a lemma show-
ing that the hyper-Kloosterman sum on the right-hand side of (8) becomes a product
of (N − 2) Gauss sums after averaging against a Dirichlet character.

Lemma 3.4. Let χ be a Dirichlet character modulo c which is induced from the
primitive character χ∗ modulo c∗. Let q = (q1, . . . , qN−2) and d = (d1, . . . , dN−2)

be two tuples of positive integers, and assume that all the divisibility conditions in
(1) are met. Consider the summation

S :=
∑

a mod c
(a,c)=1

χ(a)Kl(a, n, c; q, d).

The quantity S is zero unless the divisibility conditions

d1c∗|q1c, d2c∗
∣∣∣ q1q2c

d1
, d3c∗

∣∣∣ q1q2q3c
d1d2

, . . . , dN−2c∗
∣∣∣ q1 · · · qN−2c

d1 · · · dN−3
(21)

are satisfied. Under such divisibility conditions, setting ξi := (q1 · · · qi c)/(d1 · · · di ),
S can be written as a product of Gauss sums:

S = g(χ∗, c, d1)g(χ∗, ξ1, d2) · · · g(χ∗, ξN−3, dN−2)g(χ∗, ξN−2, n).

Proof. The divisibility conditions (1) imply

d1 | q1(c, d1), d2 | q2(ξ1, d2), . . . , dN−2 | qN−2(ξN−3, dN−2). (22)

We open up the hyper-Kloosterman sum in S. The forthcoming computation is
an iterative process. The summation over a yields a Gauss sum, which in turn
produces the term χ∗(x1). Then the summation over x1 yields another Gauss sum,
which produces the term χ∗(x2), and so on.
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First, we sum over a modulo c:

S =
∑

a mod c

χ(a)
∑∗

x1 mod ξ1

e
(d1x1a

c

)( ∑∗

x2 mod ξ2

e
(d2x2x1

ξ1

)
· · ·

)

=

∑∗

x1 mod ξ1

g(χ∗, c, x1d1)

( ∑∗

x2 mod ξ2

e
(d2x2x1

ξ1

)
· · ·

)
.

Now, because (c, x1d1)= ((c, q1c), x1d1)= (c, (q1c, x1d1))= (c, d1), we deduce
from Lemma 2.3 that

g(χ∗, c, x1d1)= χ∗(x1)g(χ∗, c, d1).

By Lemma 2.3, this Gauss sum is zero unless c∗ | c/(c, d1), which implies the first
divisibility condition of (21) because, by (22),

c∗
∣∣ c
(c, d1)

=
d1

(c, d1)

c
d1

∣∣ q1c
d1
.

Next we sum over x1. Notice that x1 is its multiplicative inverse modulo q1c/d1,
and hence modulo c∗. This means that χ∗(x1)= χ∗(x1). We change variables in
the x1 summation x1→ x1, and change orders of summation to obtain

S = g(χ∗, c, d1)
∑∗

x1 mod ξ1

χ∗(x1)

( ∑∗

x2 mod ξ2

e
(d2x2x1

ξ1

)
· · ·

)

= g(χ∗, c, d1)
∑∗

x2 mod ξ2

∑∗

x1 mod ξ1

χ∗(x1)e
(d2x2x1

ξ1

)( ∑∗

x3 mod ξ3

e
(d3x3x2

ξ2

)
· · ·

)

= g(χ∗, c, d1)
∑∗

x2 mod ξ2

g(χ∗, ξ1, d2x2)

( ∑∗

x3 mod ξ3

e
(d3x3x2

ξ2

)
· · ·

)
.

Once again, the equalities (ξ1, d2x2) = ((ξ1, d2ξ2), d2x2) = (ξ1, (d2ξ2, d2x2)) =

(ξ1, d2) imply that we can pull out χ∗(x2) from the Gauss sum. Then we have

S = g(χ∗, c, d1)g(χ∗, ξ1, d2)
∑∗

x2 mod ξ2

χ∗(x2)

( ∑∗

x3 mod ξ3

e
(d3x3x2

ξ2

)
· · ·

)
.

The second Gauss sum g(χ∗, ξ1, d2) vanishes unless c∗ | ξ1/(ξ1, d2) by Lemma 2.3.
This in turn implies c∗ | ξ1/(ξ1, d2) | ξ2 by (22), which is the second divisibility
condition of (21). We complete the proof after repeating this process (N − 2)
times. �

Proposition 3.5. The equations (8) and (11) are equivalent.

Proof. Let χ be a Dirichlet character modulo c induced from the primitive Dirichlet
character χ∗ modulo c∗. Multiply both sides of (8) by χ(a) and sum over reduced
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residue classes modulo c. On the left-hand side of (8), one gets∑
a mod c
(a,c)=1

χ(a)Lq(s, F, a/c)= (c/c∗)1−2s H(q; c, χ∗, s),

whereas on the right-hand side of (8), one obtains (c/c∗)1−2s G(q; c, χ∗, s) by
making use of Lemma 3.4 and the fact that

g(χ∗, ξN−2,−n)=±g(χ∗, ξN−2, n),

depending on whether χ(−1) is 1 or −1. This shows that (8) implies (11).
Conversely, if we multiply both sides of (11) by χ(a)/φ(c) and sum over all

Dirichlet characters (both primitive and nonprimitive) modulo c, we obtain (8) by
using the orthogonality relation for Dirichlet characters. Since both of the afore-
mentioned summations that shuttle between (8) and (11) are finite, the properties
of absolute convergence and analytic continuation are preserved. �
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Finite dimensional Hopf actions
on algebraic quantizations

Pavel Etingof and Chelsea Walton

Let k be an algebraically closed field of characteristic zero. In joint work with
J. Cuadra, we showed that a semisimple Hopf action on a Weyl algebra over a
polynomial algebra k[z1, . . . , zs] factors through a group action, and this in fact
holds for any finite dimensional Hopf action if s = 0. We also generalized these
results to finite dimensional Hopf actions on algebras of differential operators.
In this work we establish similar results for Hopf actions on other algebraic
quantizations of commutative domains. This includes universal enveloping alge-
bras of finite dimensional Lie algebras, spherical symplectic reflection algebras,
quantum Hamiltonian reductions of Weyl algebras (in particular, quantized quiver
varieties), finite W-algebras and their central reductions, quantum polynomial
algebras, twisted homogeneous coordinate rings of abelian varieties, and Sklyanin
algebras. The generalization in the last three cases uses a result from algebraic
number theory due to A. Perucca.

1. Introduction

Throughout this paper, k will denote an algebraically closed field of characteristic
zero. In [Etingof and Walton 2014, Theorem 1.3], we showed that any semisimple
Hopf action on a commutative domain over k factors through a group action.
Likewise, it was established in our joint work with Juan Cuadra that the same
conclusion holds for semisimple Hopf actions on Weyl algebras An(k[z1, . . . , zs])

[Cuadra et al. 2015, Proposition 4.3]. Moreover, we showed that it holds for any
(not necessarily semisimple) finite dimensional Hopf action on An(k) [Cuadra et al.
2016, Theorem 1.1], and, more generally, on algebras of differential operators of
smooth affine varieties [Cuadra et al. 2016, Theorem 1.2]. Finally, in [Etingof and
Walton 2016] we extended these results to certain finite dimensional Hopf actions
on deformation quantizations (i.e., formal quantum deformations) of commutative
domains. We say that there is no finite quantum symmetry in the settings above.
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Keywords: algebraic quantization, filtered deformation, Hopf algebra action, quantum polynomial
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2287

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2016.10-10
http://dx.doi.org/10.2140/ant.2016.10.2287


2288 Pavel Etingof and Chelsea Walton

The goal of this paper is to establish no finite quantum symmetry results for
finite dimensional Hopf actions on other algebraic quantizations of commutative
domains, i.e., quantizations whose parameters are elements of k (rather than formal
variables). We now summarize our main results for various classes of algebraic
quantizations.

1A. Semisimple Hopf actions on filtered quantizations. Our first main result con-
cerns Hopf actions on filtered deformations (or filtered quantizations) of commuta-
tive domains, that is, on filtered k-algebras B where the associated graded algebra
gr(B) is a commutative finitely generated domain.

Let B be a Z+-filtered algebra over k such that gr(B) is a commutative finitely
generated domain. We will see that for sufficiently large primes p, the algebra B
admits a reduction Bp modulo p, which is a domain over Fp. Namely, there exists
an R-order BR ⊂ B over some finitely generated subring R ⊂ k, and

Bp = Bψ,p := BR ⊗R Fp

for a homomorphism ψ : R→ Fp. (For details on R-orders in B, see Section 2A
below).

Recall that a ring A is PI if it satisfies a polynomial identity over Z. By Posner’s
and Ore’s theorems [Posner 1960; Ore 1931; McConnell and Robson 2001, Theo-
rem 13.6.5 and Corollary 1.14], a domain A is PI if and only if it is an Ore domain
and its division ring of fractions Frac(A) is a central division algebra. In this case,
Frac(A) is a division ring that is dimension d2 over its center, where d is the PI
degree of A [McConnell and Robson 2001, Definition 13.6.7].

Definition 1.1. Given B as above, we say that B is an algebra with PI reductions
if it admits an order BR such that Bp is PI for sufficiently large p (with any choice
of ψ).1

Theorem 2.4. If B is an algebra with PI reductions, then any semisimple Hopf
action on B factors through a group action.

Note that when the Hopf action preserves the filtration of B, Theorem 2.4
(even without the PI reduction assumption) is proved in [Etingof and Walton 2014,
Proposition 5.4]; our main achievement here is that we eliminate this requirement.

A basic example of an algebra with PI reductions is the Weyl algebra B = An(k),
and, in fact, the proof of Theorem 2.4 is analogous to the proof of [Cuadra et al.
2015, Theorem 4.1], which addresses this case. Moreover, a wide range of filtered
quantizations (each defined in Section 2B below) are algebras with PI reductions,
resulting in the following corollary.

1It follows from Lemma 2.1(ii) below that if this condition holds for one pair (R, BR), then the
condition holds for all such pairs.
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Corollary 2.6. Let B be one of the following filtered k-algebras:

(i) any filtered quantization B generated in filtered degree one; in particular,
the enveloping algebra U (g) of a finite dimensional Lie algebra g, or the
algebra Dω(X) of twisted differential operators on a smooth affine irreducible
variety X ;

(ii) a finite W-algebra or its quotient by a central character;

(iii) a quantum Hamiltonian reduction of a Weyl algebra by a reductive group
action; in particular, the coordinate ring of a quantized quiver variety;

(iv) a spherical symplectic reflection algebra; or

(v) the tensor product of any of the algebras above with any commutative finitely
generated domain over k.

Then any semisimple Hopf action on B factors through a group action.

Other applications of Theorem 2.4 have been investigated recently by Lomp and
Pansera [2015]; for instance, they establish no finite semisimple quantum symmetry
on certain iterated differential operator rings.

Remark 1.2. We do not know if a filtered quantization of a finitely generated
commutative domain over k must be an algebra with PI reductions (i.e., if the PI
reduction assumption is, in fact, vacuous); see the question in [Cuadra et al. 2015,
Introduction] and [Etingof 2016, Question 1.1]. This is of independent interest in
noncommutative ring theory.

1B. Finite dimensional Hopf actions on filtered quantizations. Like [Cuadra et al.
2015, Theorem 4.2], Theorem 2.4 and hence Corollary 2.6 hold for Hopf–Galois
actions of any (not necessarily semisimple) finite dimensional Hopf algebra (see
Theorem 3.1). The proof is parallel to the proofs of Theorem 2.4 and [Cuadra et al.
2015, Theorem 4.2].

Moreover, it turns out that even without the Hopf–Galois assumption, Theorem 2.4
extends to nonsemisimple Hopf actions for a somewhat more restrictive class of quan-
tizations. To see this, let us recall some algebras introduced in [Cuadra et al. 2016].

Notation 1.3 (B, Bpm , Cm , Dpm , Z , Z(m)). Let B be a quantization with PI
reductions, and let Bpm be the reduction of B modulo pm . Let Cm be the center
of Bpm , Frac(Cm) be its ring of fractions, and Dpm := Bpm ⊗Cm Frac(Cm). The PI
reduction condition implies that Dpm is the full localization (i.e., ring of fractions)
of Bpm . These algebras are defined over the truncated Witt ring Wm,p of Fp;
cf. [Cuadra et al. 2016, Sections 2.1, 2.3, 2.4]. Let Z be the center of the central
division algebra Dp. (Here and below, to lighten the notation, we often suppress
dependence on p.) Let Zm be the center of Dpm , and let Z(m) be its image in Dp

under the map Dpm � Dp (so Z(1)= Z ). It is easy to see that Z(m)⊂ Z(m− 1).
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Definition 1.4. We say that an algebra B with PI reductions is nondegenerate if
for almost all p one has

⋂
m≥1 Z(m)= Fp.

Theorem 3.5. If B is a nondegenerate algebra with PI reductions, then any finite
dimensional Hopf action over B factors through a group action (i.e., the condition
that H is semisimple in Theorem 2.4 can be dropped).

The proof of Theorem 3.5 is similar to the proof of [Cuadra et al. 2016, Theo-
rem 1.2].

To illustrate when the nondegeneracy condition holds, recall that gr(B) carries
a natural Poisson bracket. Namely, if B is commutative, this bracket is zero;
otherwise, if d is the largest integer such that [Fi B, F j B] ⊂ Fi+ j−d B, then for a0

∈ gri (B) and b0 ∈ gr j (B), the Poisson bracket {a0, b0} is the projection of [a, b]
to gri+ j−d(B), where a ∈ Fi B and b ∈ F j B are any lifts of a0 and b0, respectively.
Thus, gr(B)= O(X), where X is an irreducible Poisson algebraic variety.

The nondegeneracy assumption is satisfied, in particular, when X is a generi-
cally symplectic Poisson variety, i.e., one having a symplectic dense open subset;
see Theorem 3.6. Therefore, Theorem 3.5 holds for many of the examples of
Corollary 2.6 — quantum Hamiltonian reductions of Weyl algebras, central re-
ductions of finite W-algebras, spherical symplectic reflection algebras, and tensor
products thereof (see Corollary 3.7).

1C. Quantum polynomial algebras. For our next main result, we consider finite
dimensional Hopf actions on quantum polynomial algebras (or quantized coordinate
rings of affine n-space):

kq[x1, . . . , xn] := k〈x1, . . . , xn〉/(xi x j − qi j x j xi ),

where q = (qi j ), qi j ∈ k× with qi i = 1 and qi j q j i = 1. Thus we can view q as a
point of the algebraic torus (k×)n(n−1)/2 with coordinates qi j for i < j .

There are many examples of semisimple Hopf actions on kq[x1, . . . , xn] that
do not factor through group actions; the parameters qi j are roots of unity in these
examples. See, for instance, [Chan et al. 2016, Theorem 0.4; Etingof and Walton
2014, Example 5.10; Kirkman et al. 2009, Examples 7.4–7.6]. Still, we establish
the following result.

Let 〈q〉 be the subgroup in (k×)n(n−1)/2 generated by q, and let Gq be its Zariski
closure. Let G0

q be the connected component of the identity in Gq .

Theorem 1.5 (Theorem 4.1). Let H be a semisimple Hopf algebra of dimension d.
If the order of Gq/G0

q is coprime to d!, then any H-action on B := kq[x1, . . . , xn]

factors through a group action.

If each qi j is a root of unity of order ri j , then |Gq/G0
q |= lcm{ri j }i< j . In particular,

if n = 2, i.e., if B = k〈x, y〉/(xy − qyx), then the condition on q = q ∈ k× in
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Theorem 1.5 is that the order of q is coprime to d! or infinite. On the other hand,
the condition on q in Theorem 1.5 is also satisfied if each qi j is not a root of unity
and the set of the qi j is multiplicatively independent; here, |Gq/G0

q | = 1. See
Example A.3 for a discussion of how to compute |Gq/G0

q | in general.
One may compare Theorem 1.5 to a similar result, Theorem 4.3 of [Chan et al.

2014], in the case where the Hopf action preserves the grading of kq[x1, . . . , xn].
But note that without the degree-preserving assumption, semisimplicity is still
needed in Theorem 1.5; see [Etingof and Walton 2015; 2016, Example 3.6] for
counterexamples for n = 1, 3, respectively.

Moreover, Theorem 1.5 is valid for finite dimensional Hopf algebras in the Hopf–
Galois case, where we can replace the condition “coprime to d!” with “coprime
to d” (Proposition 5.1). Also, Theorem 1.5 has a straightforward generalization
(with the same proof) to actions on the quantum torus kq[x±1

1 , . . . , x±1
n ].

Another generalization of Theorem 1.5 to the nonsemisimple case can be made
under a nondegeneracy assumption. Recall that q may be viewed as a skew-
symmetric bicharacter on Zn with values in k×, with q(ei , e j )= qi j for the standard
basis {ei }. A bicharacter q is called nondegenerate if the character q(a, · ) :Zn

→ k×

is nontrivial whenever a 6=0. Note that unlike skew-symmetric bilinear forms (which
are always degenerate in odd dimensions), a skew-symmetric bicharacter can be
nondegenerate for any n ≥ 2.

Theorem 5.2. Let H be a finite dimensional Hopf algebra of dimension d acting
on B := kq[x1, . . . , xn]. Assume that the order of Gq/G0

q is coprime to d!, and q is
a nondegenerate bicharacter. Then, the action of H on B factors through a group
algebra.

It is shown in Example 5.5 that Theorems 1.5 and 5.2 fail when hypotheses
are removed; these examples involve actions of the nonsemisimple 4-dimensional
Sweedler Hopf algebra.

1D. Twisted homogeneous coordinate rings of abelian varieties and Sklyanin
algebras. Let X be an abelian variety over k, let L be an ample line bundle on X ,
and let σ : X→ X be an automorphism given by translation by a point s ∈ X . Then
we can define the twisted homogeneous coordinate ring

B(X, σ,L) :=
∞⊕

n=0
H 0
(

X,
n−1⊗
i=0
(σ i )∗L

)
,

with twisted multiplication f ∗ g := f (σ n)∗(g), where f is of degree n [Artin and
Van den Bergh 1990]. It is well-known that B(X, σ,L) is a domain, and if |σ |<∞,
then B(X, σ,L) is a PI domain of PI degree |σ |.

Let Gσ be the Zariski closure of the subgroup {si
}i∈Z, and let G0

σ be the connected
component of the identity in Gσ .
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Theorem 1.6 (Theorem 6.1). If H is a semisimple Hopf algebra of dimension d,
and if the order of Gσ/G0

σ is coprime to d!, then any H-action on B(X, σ,L)
factors through a group action.

In particular, if the subgroup {si
}i∈Z is Zariski-dense in X , then any semisimple

Hopf action on B(X, σ,L) factors through a group action. Moreover, if X =: E
is an elliptic curve, the condition on σ in Theorem 6.1 is that the order of σ is
coprime to d! or infinite.

Lastly, we study semisimple Hopf actions on another class of quantizations: the
3-dimensional Sklyanin algebras S(a, b, c) (Definition 6.3). To S(a, b, c), one can
naturally associate an elliptic curve Eabc ⊂ P2

k and an automorphism σabc given by
translation by a point; see [Artin et al. 1990, Introduction].

Theorem 1.7. If H is a semisimple Hopf algebra of dimension d, and if the order
of σabc is coprime to d! or infinite, then any H-action on S(a, b, c) factors through
a group action.

Remark 1.8. We believe that by adapting the techniques in this work, one could
establish a version of Theorem 1.7 for semisimple Hopf actions on other elliptic
algebras, such as in [Sklyanin 1982] (or, see [Smith and Stafford 1992]) and in
[Etingof and Ginzburg 2010; Odesskiı̆ 2002; Stephenson 1997]. Further, we believe
that under an appropriate nondegeneracy condition, there are no finite quantum
symmetry results for such elliptic algebras and for twisted homogeneous coordinate
rings B(X, σ,L) as above; compare to Theorem 5.2.

Our paper is organized as follows. We discuss semisimple Hopf actions on filtered
quantizations in Section 2, nonsemisimple Hopf actions on filtered quantizations in
Section 3, semisimple Hopf actions on quantum polynomial algebras in Section 4,
nonsemisimple Hopf actions on quantum polynomial algebras in Section 5, and Hopf
actions on twisted homogeneous coordinate rings of abelian varieties and Sklyanin
algebras in Section 6. The results of Sections 4–6 rely on a number-theoretic result
of Antonella Perucca discussed in the Appendix.

The notation and terminology of the introduction is used throughout this work,
often without mention.

2. Semisimple Hopf actions on filtered quantizations

2A. The result on semisimple Hopf actions on quantizations with PI reductions.
In this section, we study actions of semisimple Hopf algebras H on filtered quanti-
zations B. Throughout this section, we let B denote a Z+-filtered algebra over k
such that gr(B) is a commutative finitely generated domain; such B will be referred
to as a filtered quantization.
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Our goal is to prove Theorem 2.4. This result was established in [Cuadra et al.
2015] for B a Weyl algebra, and we generalize those techniques for our purpose
here.

Let R be a finitely generated subring of k. By an R-order in a filtered quantization
B we mean an R-subalgebra BR of B such that gr(BR) is a finitely generated
R-algebra which is projective as an R-module, and such that the natural map
gr(BR)⊗R k→ gr(B) is an isomorphism of graded k-algebras.

Lemma 2.1. (i) Any filtered quantization B admits an R-order BR for a suitable
ring R.

(ii) For any two orders BR over R and BR′ over R′, there exists a finitely generated
ring R′′ ⊂ k containing R and R′, and admitting an R′′-algebra isomorphism
φ : BR ⊗R R′′→ BR′ ⊗R′ R′′ such that grφ is an isomorphism.

Proof. (i) By the Hilbert basis theorem, the algebra gr(B) is finitely presented. This
implies that so is B, as we can lift the generators and defining relations of gr(B) to
those of B.

More specifically, pick homogeneous generators b̄1, . . . , b̄n of gr(B) of degrees
m1, . . . ,mn . Let

ps(b̄1, . . . , b̄n)= 0, s = 1, . . . , r

be a set of defining relations for gr(B), with ps ∈k[X1, . . . , Xn] being homogeneous
of degree ds (this set may be chosen to be finite by the Hilbert basis theorem). Let
b j be lifts of b̄ j to B, and p̃s be homogeneous lifts of ps to k〈X1, . . . , Xn〉. Then
[bi , b j ] = fi j (b1, . . . , bn), where fi j ∈ k〈X1, . . . , Xn〉 is a noncommutative polyno-
mial of filtration degree at most mi +m j −1, and p̃s(b1, . . . , bn)= p′s(b1, . . . , bn),
where p′s ∈ k〈X1, . . . , Xn〉 is a noncommutative polynomial of filtration degree at
most ds − 1.

Let gs := p̃s − p′s ∈ k〈X1, . . . , Xn〉. Thus, we have relations

[bi , b j ] = fi j (b1, . . . , bn) and gs(b1, . . . , bn)= 0 (1)

in B. It is easy to see that these relations are defining, since they are already defining
at the graded level.

Using relations (1), we can find a suitable finitely generated subring R ⊂ k and
define BR ⊂ B as follows. We take R̃ to be the ring generated by all the coefficients
of the polynomials fi j , gs , and set R= R̃[1/ f ] for a suitable f ∈ R̃. Now let BR be
the subalgebra of B generated over R by b1, . . . , bn . We can choose f so that (1)
are defining relations for BR , and so that BR is an R-order on B, since for a suitable
choice of f , gr(BR) is a projective (in fact, free) R-module by Grothendieck’s
generic freeness lemma [Eisenbud 1995, Theorem 14.4]. This proves (i).
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(ii) Note that we have a natural isomorphism of filtered algebras

φ̃ : BR ⊗R k→ BR′ ⊗R′ k

(as both are equal to B). This isomorphism is defined over some finitely generated
ring R′′ ⊂ k containing R and R′, which implies (ii). �

Lemma 2.2. Suppose that B is a filtered quantization that carries an action of
a finite dimensional Hopf algebra H. Let S be a finitely generated subring of k,
and BS be an S-order in B. Then one can find a finitely generated subring R ⊂ k
containing S and a Hopf order HR ⊂ H (cf. [Cuadra et al. 2015, Definition 2.1]),
so that there is an induced action of HR on BR := BS ⊗S R which gives the action
of H on B upon tensoring over R with k.

Proof. We use the method of [Cuadra et al. 2015, Section 2]. Pick homogeneous
generators b̄1, . . . , b̄n of gr(BS), and let b j be lifts of b̄ j to BS . Choose a basis
{hm} of H . We have

hm · b j = qmj (b1, . . . , bn) (2)

for some noncommutative polynomials qmj ∈ k〈X1, . . . , Xn〉. Let R be generated
over S by the structure constants of H in the basis {hm} and the coefficients of qmj .
Let HR ⊂ H be the span of hm over R. Then, HR ⊂ H is a Hopf order, and HR

acts on BR by formula (2). The lemma is proved. �

Thus, any action of H on B admits an R-order for some finitely generated ring
R ⊂ k. Moreover, it is easy to see from Lemma 2.1(ii) that any two such orders
over rings R and R′ can be identified after tensoring with some finitely generated
ring R′′ ⊂ k containing R and R′, so an order is essentially unique.

Now fix a ring R and an R-order BR ⊂ B with an action of HR . Let p be a
sufficiently large prime, and ψ : R→ Fp be a character. Following [Cuadra et al.
2015, Section 2], let Hp := HR ⊗R Fp, Bp := BR ⊗R Fp be the corresponding
reductions of H, B modulo p, where Fp is an R-module via ψ . Then, Hp acts on
Bp (by applying ψ to the action of HR on BR).

Lemma 2.3. For a sufficiently large prime p, gr(Bp), and hence Bp, is a domain.

Proof. We have gr(Bp) = gr(BR)⊗R Fp. Therefore, the statement follows from
[Grothendieck 1966, 9.7.7(i)] (“geometric irreducibility”). �

Theorem 2.4. If B is an algebra with PI reductions, then any semisimple Hopf
action on B factors through a group action.

Proof. We may assume without loss of generality that the action of H on B is inner
faithful (otherwise we can pass to an action of a quotient Hopf algebra).

Take p � 0. Then by [Cuadra et al. 2015, Proposition 2.4] (which applies
with the same proof in our more general situation), Hp acts inner faithfully on Bp.
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Moreover, as in [Cuadra et al. 2015, Lemma 2.5], Hp is a semisimple cosemisimple
Hopf algebra over Fp.

Since B is an algebra with PI reductions, by Lemma 2.3, the algebra Bp is a PI
domain. Let Dp be the division algebra of quotients of Bp. Then by [Etingof 2016,
Corollary 3.2(ii)], Dp is a central division algebra of degree pn for some n ≥ 0
(which may depend on p). Moreover, Hp acts inner faithfully on Dp by [Skryabin
and Van Oystaeyen 2006, Theorem 2.2].

Since deg Dp = pn is coprime to (dim H)!, [Cuadra et al. 2015, Proposi-
tion 3.3(ii)] implies that Hp is cocommutative. Thus, H is cocommutative (as
in the proof of [Cuadra et al. 2015, Theorem 4.1]), and thus is a group algebra. �

2B. Some examples of filtered quantizations. As a consequence, Theorem 2.4 ap-
plies to semisimple Hopf actions on many classes of filtered quantizations. Namely,
we will consider the following examples.

Twisted differential operators. Let X be a smooth affine irreducible algebraic variety
over k, and ω a closed 2-form on X . Then we define the algebra of twisted
differential operators Dω(X) to be the algebra generated by O(X) and elements
Lv attached k-linearly to vector fields v ∈ DerO(X) on X , with defining relations

L f v = f Lv, [Lv, f ] = v( f ), [Lv, Lw] = L [v,w]+ω(v,w)

for f ∈ O(X), v,w ∈ Der O(X). Then Dω(X) carries a filtration defined by
deg O(X)= 0 and deg Lv = 1 for v ∈ Der O(X), and gr(Dω(X))= O(T ∗X), the
algebra of functions on the symplectic variety T ∗X .

The filtered algebra Dω(X) depends only on the cohomology class [ω] of ω, and
if [ω] = 0, then Dω(X)= D(X), the algebra of usual differential operators on X .
For more on twisted differential operators, see, e.g., [Beı̆linson and Bernstein 1993,
Section 2].

Quantum Hamiltonian reductions. Let G be a reductive algebraic group over k
with Lie algebra g, and let (V, ( · , · )) be a faithful finite dimensional symplectic
representation of G. Let A(V ) be the Weyl algebra of V , generated by v ∈ V with
relations [v,w] = (v,w) for v,w ∈ V . We have a natural action of G on A(V )
which preserves its filtration. In this case, we have a natural G-equivariant Lie
algebra map µ̂ : g→ A(V ) called the quantum moment map, which quantizes the
classical moment map µ : V → g∗, where µ(v)(a) = 1

2(v, av) for v ∈ V , a ∈ g.
Now, given a character χ : g→ k, we can define the algebra

B(χ) := [A(V )/A(V )(µ̂(a)−χ(a), a ∈ g)]G,

called the quantum Hamiltonian reduction of A(V ) by G using χ . It inherits a
filtration from the Weyl algebra. See [Etingof 2007, Chapter 4] for further details.
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Assume that the moment map µ is flat, and that the scheme µ−1(0) is reduced
and irreducible (i.e., µ−1(0) is a reduced irreducible complete intersection). In this
case, X := µ−1(0)/G is an irreducible generically symplectic Poisson variety, and
B(χ) is a filtered quantization of O(X). See [Losev and Etingof 2015, Section 2.3;
Nakajima 2015, Section 2(i)], and references therein for more details.

An interesting special case of this is when

G =
( r∏

i=1

GL(Vi )

)
/k× and V =

⊕
i, j

(Vi ⊗ V ∗j )
⊕mi j ,

where Vi are finite dimensional vector spaces and mi j = m j i are positive integers
with mi i even; i.e., V is the space of representations of a doubled quiver, and G is the
group of linear transformations for this quiver. In this case, B(χ) is the quantized
quiver variety; see, e.g., [Braden et al. 2012, Section 3.4]. The conditions under
which µ is flat and µ−1(0) is reduced and irreducible are given in [Crawley-Boevey
2001, Theorems 1.1 and 1.2].

Finite W-algebras. Let g be a simple Lie algebra over k, and e ∈ g a nilpotent
element. To this data one can attach a Lie subalgebra m ⊂ g with a character χ ,
and a finite W-algebra is

U (g, e) :=
(
U (g)/U (g)(a−χ(a), a ∈m)

)adm
,

a quantum Hamiltonian reduction of U (g). The algebra U (g, e) has a filtration
induced by the filtration in U (g), and its associated graded algebra is a polynomial
algebra (of functions on the corresponding Slodowy slice). We refer the reader to
[Losev 2010, Sections 2.3 and 2.4] and the references therein for details.

Also, the center U (g)g of U (g) embeds into U (g, e), so for any central character
θ :U (g)g→ k, one can consider the central reduction

Uθ (g, e) :=U (g, e)/(a− θ(a), a ∈U (g)g).

Then gr(Uθ (g, e))= O(X), where X is the nilpotent Slodowy slice, a generically
symplectic Poisson variety.

Symplectic reflection algebras. Let G be a finite group and V a faithful finite dimen-
sional symplectic representation of G, and assume that V is not a direct sum of two
nonzero symplectic representations. The symplectic reflection algebra Ht,c(G, V )
is the most general filtered deformation of kGn SV , where [Fi , F j ] ⊂ Fi+ j−2; here
t ∈ k, and c is a conjugation invariant function on the set of symplectic reflections
in G; see [Etingof 2007, Chapter 8].

Let e= |G|−1∑
g∈G g be the symmetrizing idempotent for G. Then, the algebra

eHt,c(G, V )e is called the spherical symplectic reflection algebra. For t = 1, it is a
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filtered quantization of O(X), where X = V/G, a generically symplectic Poisson
variety.

Remark 2.5. There are many other interesting examples of filtered quantizations,
and our results given below can be extended to such examples. Since this extension
is rather routine, we leave it outside the scope of this paper.

2C. Results on semisimple Hopf actions on specific filtered quantizations. Here
are some concrete applications of Theorem 2.4.

Corollary 2.6. Let B be one of the following filtered k-algebras:

(i) any filtered quantization B generated in filtered degree one; in particular,
the enveloping algebra U (g) of a finite dimensional Lie algebra g, or the
algebra Dω(X) of twisted differential operators on a smooth affine irreducible
variety X ;

(ii) a finite W-algebra or its quotient by a central character;

(iii) a quantum Hamiltonian reduction of a Weyl algebra by a reductive group
action; in particular, the coordinate ring of a quantized quiver variety;

(iv) a spherical symplectic reflection algebra; or

(v) the tensor product of any of the algebras above with any commutative finitely
generated domain over k.

Then any semisimple Hopf action on B factors through a group action.

Note that in some of these cases, a stronger statement is true: any finite dimen-
sional (not necessarily semisimple) Hopf action on B factors through a group action;
see Corollary 3.7 below. However, we still prefer to prove the weaker version here,
since the proof is simpler (e.g., it does not require reduction modulo prime powers).

Proof. By Theorem 2.4, our job is to show that B is an algebra with PI reductions.
In other words, we need to show that the division algebra Dp of fractions of Bp is
central (i.e., there is a “p-center”) for p� 0. We do so below in each case.

(i) We show that if a filtered quantization A of a commutative finitely generated
domain A0 over a field F of characteristic p > 0 is generated in degree one, then it
is module-finite over its center after localization; this implies the required statement.

Let A0[i] be the degree i part of A0. Then A0[0] = A[0] is a finitely generated
commutative domain. Let ā1, . . . , ān be generators of A0[1] as an A0[0]-module.
Let ai be lifts of āi to A. Then, ai and A[0] generate A as an algebra. Also, the
operators [ai , · ] are derivations of A[0], and hence vanish on A[0]p. Thus, A[0]p is
central in A. Let K be the field of quotients of A[0]p, and let A′ := A⊗A[0]p K . The
K-algebra A′ is generated in filtration degree 1, and L := F1 A′ is a finite dimensional
vector space over K (as it is spanned by 1, a1, . . . , an over A[0] ⊗A[0]p K , and
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A[0] is module-finite over A[0]p as A[0] is a finitely generated algebra). Also, L
is closed under commutator. Thus, L is a finite dimensional Lie algebra over K ,
and A′ is a quotient of the enveloping algebra U (L). But the enveloping algebra of
a finite dimensional Lie algebra in characteristic p is module-finite over its center
(i.e., there is a p-center; see [Jacobson 1952; 1962, Chapter 6, Lemma 5]). This
implies that A′ is module-finite over its center, as desired.

(ii) Since a W-algebra is a quantum Hamiltonian reduction of the enveloping algebra
U (g) of a semisimple Lie algebra g [Losev 2010], the statement follows from (i).

(iii) This also follows from (i) and the definition of the quantum Hamiltonian
reduction.

(iv) This holds by [Etingof 2006, Theorem 9.1.1 (in the appendix)].

(v) This follows easily from the previous cases. �

3. Finite dimensional Hopf actions on filtered quantizations

3A. Hopf–Galois actions. Theorem 2.4 does not hold for nonsemisimple Hopf
actions, as there are many inner faithful actions of nonsemisimple finite dimensional
Hopf algebras on commutative domains; see [Etingof and Walton 2015]. However,
Theorem 2.4 is valid in the Hopf–Galois case.

Theorem 3.1. Let B be a filtered quantization of a commutative finitely generated
domain with PI reductions, and let H be a finite dimensional Hopf algebra over k
which acts on B. Assume that this action gives rise to an H∗-Hopf–Galois extension
B H
⊂ B. Then H is a group algebra.

Proof. The result follows from the arguments in the proofs of Theorem 2.4 and
[Cuadra et al. 2015, Theorem 4.2]. Namely, recall Notation 1.3. We show, similarly
to the proof of Theorem 2.4, that Z is Hp-stable, and then proceed as in the proof of
[Cuadra et al. 2015, Theorem 4.2]. Specifically, by [Etingof 2016, Corollary 3.2(ii)],
Dp has degree pn over its center Z = Z(Dp) for some n, so by [Cuadra et al. 2015,
Proposition 3.3(i)], Z is Hp-invariant. Now, since the action of H on B gives
rise to a Hopf–Galois extension, so does the action of Hp on Z , i.e., the algebra
map Z ⊗Z Hp Z→ Z ⊗ H∗p is an isomorphism. Thus, H∗p is commutative and Hp

is cocommutative, so H is cocommutative [Cuadra et al. 2015, Lemma 2.3(ii)],
i.e., a group algebra by the Cartier–Gabriel–Kostant theorem [Montgomery 1993,
Corollary 5.6.4(3) and Theorem 5.6.5]. �

3B. Preparatory results on nondegenerate quantizations. Another generalization
of Theorem 2.4 concerns nondegenerate quantizations, defined in Definition 1.4.
To obtain it, we first need to generalize [Cuadra et al. 2016, Theorem 3.2]. Let
H be a finite dimensional Hopf algebra over an algebraically closed field F of
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characteristic p > 0, and let Z be a finitely generated field extension of F . Let
Z(m), for m ≥ 1, be a collection of subfields of Z such that Z(m)⊃ Z(m+ 1) for
all m ≥ 1.

Theorem 3.2. Suppose that
⋂

m≥1 Z(m)= F , and that [Z : Z(m)] is a power of p
for all m≥ 1. Assume that H acts F-linearly and inner faithfully on Z . If p> dimH
and H preserves Z(m) for all m, then H is a group algebra.

Proof. The proof is the same as that of [Cuadra et al. 2016, Theorem 3.2]. Indeed,
the only properties of the fields Z pm

used in that proof are that their intersection is
F and that the degree of Z over Z pm

is a power of p. �

We will also need the lemma below from commutative algebra. We first introduce
the following notation. Let WN =WN (F) :=W (F)/(pN ) be the N -th truncated Witt
ring of F (WN is an algebra over Z/pN Z; cf. [Cuadra et al. 2016, Subsection 2.1]).
Let Y be an irreducible smooth affine algebraic variety over F with structure algebra
A := O(Y ), and Ỹ be a flat deformation of Y over WN . Let 1 ≤ m ≤ N , and let
Am := O(Ỹ )/(pm) (a free Z/pmZ-module); thus A1 = A and Am−1 = Am/(pm−1)

for m ≥ 2. Let
dm : Am→�Am/Wm

be the differential.

Lemma 3.3. For 1≤ m ≤ N , the image of ker(dm) in A is Apm
.

Proof. It is clear that the image of ker(dm) contains Apm
, so it remains to establish

the opposite inclusion. We do so by induction in m.
The base of induction is the equality ker(d|A) = Ap, which is the Cartier iso-

morphism in degree zero [Katz 1970, Section 7]. Alternatively, here is a direct
proof. Since A is integrally closed in its quotient field L := Frac(A), we may
replace A with L . Note that L can be represented as a finite separable extension
of F(y1, . . . , yn), where n = dim Y . Given f ∈ L such that d f = 0, consider the
minimal polynomial P(t)= tr

+ar−1tr−1
+· · ·+a0 of f over E := F(y1, . . . , yn).

Applying the differential to the equation P( f )= 0, we get
∑r−1

j=0 f j da j = 0. Since
P is the minimal polynomial, this implies that da j = 0 for all j . Thus a j ∈ E p (as
the statement in question is easy for purely transcendental fields). Thus, E p( f ) is
a finite separable extension of E p (as P is a separable polynomial). But E p( f )
is a purely inseparable extension of E p( f p). Hence, E p( f ) = E p( f p), that is,
f ∈ E p( f p)⊂ L p, as desired.

To perform the induction step, suppose f ∈ ker(dm). Our job is to show that the
image f̄ of f in A is contained in Apm

. By the induction assumption we know that
f̄ = bpm−1

for some b ∈ A, so it remains to show that b = cp for some c ∈ A.
For this, we expand f in a power series in some local coordinate system

y1, . . . , yn on Ỹ . It is easy to see by looking at monomials that if g∈Wm[[y1, . . . , yn]]
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and dg = 0, then the reduction ḡ of g modulo p lies in F[[y pm

1 , . . . , y pm

n ]]. In
particular, F[[y pm

1 , . . . , y pm

n ]] contains the power series expansion of f̄ in yi . This
means that the power series expansion of b is in F[[y p

1 , . . . , y p
n ]]. Thus, db= 0. By

the base of induction we conclude that b = cp for some c ∈ A, which completes
the induction step. �

Moreover, we will need the result below.

Lemma 3.4. Let B be an algebra with PI reductions, and let Dp denote the full
localization (i.e., the ring of fractions) of the reduction Bp of B, for p� 0. Then
the center Z of Dp is a finitely generated field extension of Fp.

Proof. Let v1, . . . , vN be a basis of Dp over Z , and let b1, . . . , bn be generators
of Bp. Then bsvi =

∑N
j=1 β

j
siv j for β j

si ∈ Z . Let K denote the field Fp(β
j

si ).
Now take z ∈ Z . Then z ∈ Dp, so z= c−1b, and hence cz= b for some b, c ∈ Bp

with c 6= 0. Since b, c ∈ Bp, they are noncommutative polynomials in b1, . . . , bn

over Fp. So, bvi =
∑
β

j
i v j , cvi =

∑
γ

j
i v j , with β j

i , γ
j

i ∈ K . But γ j
i z = β j

i and
γ

j
i are not all zero. So, z ∈ K and hence Z = K . Thus, Z is a finitely generated

extension of Fp. �

3C. Hopf actions on nondegenerate quantizations. Now let B be a filtered quan-
tization with PI reductions.

Theorem 3.5. If B is a nondegenerate algebra with PI reductions, then any finite
dimensional Hopf action on B factors through a group action (i.e., the condition
that H is semisimple in Theorem 2.4 can be dropped).

Proof. The proof is obtained by combining the proofs of Theorem 2.4 and [Cuadra
et al. 2016, Theorem 1.1] with the following modifications.

1. In [Cuadra et al. 2016, Lemma 2.5] and below, xi , yi should be replaced by any
finite set of generators L1, . . . , Lr of B, and the number 2n in the proof of [Cuadra
et al. 2016, Lemma 4.3] should be replaced by r (cf. [Cuadra et al. 2016, proof of
Theorem 1.2]).

2. The discussion in [Cuadra et al. 2016, Subsection 2.4, Lemma 4.7, Proposi-
tion 4.8] (needed to justify the assumptions of [Cuadra et al. 2016, Theorem 3.2])
becomes unnecessary. Instead, note that if a ∈ Dpm is central modulo pm−1 for some
m ≥ 2, then a p is central. Hence Z(m)⊃ Z(m− 1)p, implying that Z(m)⊃ Z pm−1

and therefore [Z : Z(m)] is finite (by Lemma 3.4) and is a power of p. Now the
proof proceeds by invoking Theorem 3.2, whose assumptions are satisfied by the
nondegeneracy property of B and using a straightforward generalization of [Cuadra
et al. 2016, Lemma 4.6].
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3. The rest of the proof of [Cuadra et al. 2016, Theorem 1.1] is modified as in the
proof of Theorem 2.4. Namely, we use the PI reduction condition and [Etingof
2016, Corollary 3.2], which says that the PI degree of Bp is a power of p. �

The next theorem shows that the nondegeneracy assumption is satisfied, in
particular, when gr(B)= O(X), where X is generically symplectic.

Theorem 3.6. Let B be a quantization with PI reductions. Assume gr(B)= O(X),
where X is a generically symplectic Poisson variety. Then any action of a finite
dimensional Hopf algebra H on B factors through a group action.

Proof. By Theorem 3.5, it suffices to show that B is a nondegenerate quantization,
i.e., that

⋂
m≥1 Z(m)= Fp for p� 0.

Recall Notation 1.3. Let C be the center of Bp; thus, by Posner’s theorem
[McConnell and Robson 2001, Theorem 13.6.5], the field Frac(C) of fractions of
C is Z . Let Cm be the center of Bpm , and C(m) be its image in Bp.

Let a ∈ Bpm be central modulo p (i.e., the image ā of a in Bp lies in C). Then a p

is central modulo p2, a p2
is central modulo p3, and so on. Hence, C pm−1

⊂ C(m).
Let C ′m be the preimage of C pm−1

in Cm . Then the image of C ′m in Bp is C pm−1
.

We claim that
Z(m)= Frac(C(m)). (3)

Indeed, it is clear that Frac(C(m)) ⊆ Z(m). On the other hand, observe that any
element a ∈ Dpm can be written as a = c−1b, where c ∈ C ′m is nonzero modulo
p, and b ∈ Bpm (as this can be done modulo p, since Dp = Z pm−1

Bp). Now
given z ∈ Z(m), let z̃ be its lift to Zm . Writing z̃ = c−1b as above, we see that
b := cz̃ ∈ Cm . Let b̄ ∈ C(m) and c̄ ∈ C pm−1

⊂ C(m) be the reductions of b and c
modulo p, respectively. We have b̄= c̄z, hence z= c̄−1b̄ ∈ Frac(C(m)), as claimed.

Now let B0pm := gr(Bpm ). This is a Poisson algebra over the truncated Witt
ring Wm,p. Let C0m be the Poisson center of B0pm , and C0(m) be the image of C0m

in B0p. Then gr(Cm)⊂ C0m and hence

gr(C(m))⊂ C0(m). (4)

Let Z0 := Frac(B0p). Since X is generically symplectic, C0m coincides with the
set of all f ∈ B0pm such that d f = 0. By Lemma 3.3 (taking Ỹ to be the reduction
modulo pm of a symplectic dense affine open subset U ⊂ X ), this implies that

Frac(C0(m))⊂ Z pm

0 . (5)

Now suppose that z ∈
⋂

m≥1 Z(m) with z 6= 0. Then by (3), for each m, we have
z = fm/gm for fm, gm ∈ C(m). Let f 0

m, g0
m ∈ gr(C(m)) be the leading terms of

fm, gm . By (4), f 0
m, g0

m ∈ C0(m). Then for any m, n we have f 0
m g0

n = f 0
n g0

m since
fm gn = fngm . So z0 := f 0

m/g0
m is independent of m and by (5) belongs to Z pm

0 for
all m ≥ 0. As

⋂
m≥1 Z pm

0 is a perfect field that is finitely generated over Fp, we get
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that
⋂

m≥1 Z pm

0 = Fp. So, z0 ∈ Fp is a nonzero constant, and f 0
m = z0g0

m for all m;
in particular,

deg( fm)= deg(gm). (6)

Now z−z0= ( fm−z0gm)/gm , and the numerator has degree strictly less than deg gm .
This violates (6), so z− z0 = 0, i.e., z ∈ Fp. This proves the theorem. �

Corollary 3.7. Let B be one of the following algebras:

(i) a quotient of a finite W-algebra by a central character;

(ii) a Hamiltonian reduction of a Weyl algebra by a reductive group action; in
particular, the coordinate ring of a quantized quiver variety;

(iii) a spherical symplectic reflection algebra H1,c(G, V ); or

(iv) the tensor product of any of the algebras in (i)–(iii).

Then any action of a finite dimensional Hopf algebra H on B factors through a
group action.

Proof. It is explained in Section 2B that in examples (i)–(iv), we have gr(B)=O(X),
where X is generically symplectic. This implies the corollary. �

Proposition 3.8. Theorems 2.4, 3.1, 3.5, and 3.6 remain valid if B is replaced by
its quotient division algebra Frac(B).

Proof. The proofs are obtained by combining the proofs of Theorems 2.4, 3.1, 3.5,
and 3.6 with the proof of [Cuadra et al. 2015, Proposition 4.4]. (The exact form
of the generators of B used in the proof of [Cuadra et al. 2015, Proposition 4.4] is
irrelevant for the argument.) �

4. Semisimple Hopf actions on quantum polynomial algebras

We now turn to finite dimensional Hopf actions on quantum polynomial algebras

kq[x1, . . . , xn] := k〈x1, . . . , xn〉/(xi x j − qi j x j xi ),

where q = (qi j ), qi j ∈ k× with qi i = 1 and qi j q j i = 1. We view q as a point of the
algebraic torus (k×)n(n−1)/2 with coordinates qi j , i < j . Let 〈q〉 be the subgroup
in (k×)n(n−1)/2 generated by q, and let Gq be its Zariski closure. Let G0

q be the
connected component of the identity in Gq .

Theorem 4.1. Let H be a semisimple Hopf algebra of dimension d. If the order of
Gq/G0

q is coprime to d!, then any H-action on B := kq[x1, . . . , xn] factors through
a group action.

Proof. We may assume that H acts on B := kq[x1, . . . , xn] inner faithfully. Let
R ⊂ k be a finitely generated subring containing qi j , let BR := Rq[x1, . . . , xn] be
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the quantum polynomial algebra defined over R, and let HR be a Hopf R-order
with an action on BR which becomes the action of H on B upon tensoring with k.

Similarly to the proof of Theorem 2.4, we need to control the PI degree of BR

after reducing modulo p; we employ a version of the number-theoretic result of
A. Perucca (as presented in the Appendix) to do so.

Given a number field K and a ring homomorphism ξ : R→ K , let R′ := ξ(R),
HR′ := HR⊗R R′, BR′ := BR⊗R R′= R′ξ(q)[x1, . . . , xn]. Then HR′ acts on BR′ inner
faithfully. For a generic choice of ξ , any multiplicative relation satisfied by ξ(qi j ) is
already satisfied by qi j , so by Example A.3, we have |Gq/G0

q | = |Gξ(q)/G0
ξ(q)|. By

Corollary A.2, there exist infinitely many primes p with prime ideals p⊂ R′ lying
over them such that, for a generic homomorphism ψ : R′→ Fp annihilating p, the
order N := Np of ψ ◦ξ(q) is finite and relatively prime to d!. Let Hp := HR′⊗R′ Fp

and Bp := BR′ ⊗R′ Fp be the corresponding reductions of H and B modulo p. For
large enough p, the Hopf algebra Hp is semisimple and cosemisimple by [Cuadra
et al. 2015, Lemma 2.5], and Bp is a PI domain with PI degree dividing N n (as x N

i
are central elements in Bp). Moreover, Hp acts on Bp inner faithfully by a version
of [Cuadra et al. 2015, Proposition 2.4] adapted to the algebra B (with the same
proof).

Let Dp be the quotient division algebra of Bp. Then the PI degree of Dp

divides N n , and is therefore coprime to d!. Further, Hp acts inner faithfully on Dp.
Hence, [Cuadra et al. 2015, Proposition 3.3(ii)] implies that Hp is cocommutative.
Since this happens for infinitely many primes, we conclude that HR′ is cocommuta-
tive. Since this happens for generic maps ξ , this implies that HR is cocommutative.
Thus H is cocommutative, i.e., H is a group algebra. �

Corollary 4.2. The conclusion of Theorem 4.1 holds when qi j = qmi j , where
mi j =−mj i are integers, and the order of q ∈ k× is infinite or is coprime to d!.

Proof. This is a special case of Theorem 4.1. �

Example 4.3. The assumption in Theorem 4.1 and Corollary 4.2 that the order of
Gq/G0

q is coprime to d! cannot be removed. For instance, there exists an inner
faithful action of the 8-dimensional noncommutative noncocommutative semisimple
Hopf algebra on the quantum polynomial algebra k−1[x, y]; see [Kirkman et al.
2009, Example 7.6]. In this case, |Gq/G0

q | = 2.

5. Finite dimensional Hopf actions on quantum polynomial algebras

Let us now extend the results of the previous section to not necessarily semisimple
Hopf algebras, under some additional assumptions.

First of all, when the action of H on B is Hopf–Galois, we can remove in
Theorem 4.1 the assumption that H is semisimple, and also weaken the coprimeness
assumption, replacing d! with d .
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Proposition 5.1. Suppose that a finite dimensional Hopf algebra H acts on B :=
kq[x1, . . . , xn], and the order of Gq/G0

q is coprime to d. If this action gives rise to
an H∗-Hopf–Galois extension B H

⊂ B, then the action of H on B factors through
a group algebra.

Proof. The proof is parallel to the proof of Theorem 3.1. The weaker coprimeness
assumption suffices since by the Hopf–Galois condition, [Dp : DH

p ] = d (not just
≤ d). Here, p� 0 and Dp is the full localization of B reduced modulo p via the
method in the proof of Theorem 4.1. �

Let us now give a generalization of Theorem 4.1 to the nonsemisimple case
under a nondegeneracy assumption.

Theorem 5.2. Let H be a finite dimensional Hopf algebra of dimension d acting
on B := kq[x1, . . . , xn]. Assume that the order of Gq/G0

q is coprime to d!, and q is
nondegenerate. Then the action of H on B factors through a group action.

Proof. The proof is obtained by combining the proofs of Theorems 3.5 and 4.1. Let
us describe the necessary changes.

We argue as in the proof of Theorem 4.1. Fix a generic character ξ : R→ K
from R to a number field K , and set R′ = ξ(R). By Corollary A.2, there exist
infinitely many primes p with prime ideals p⊂ R′ lying over them such that, for a
generic homomorphism ψ : R′→ Fp annihilating p, the order N := Np of ψ ◦ ξ(q)
is finite and coprime to d!.

Consider the image Z(m) of the center Zm of Dpm in Dp (thus, Z(1) = Z ).
By a straightforward generalization of [Cuadra et al. 2016, Lemma 4.6], Z(m) is
preserved by the action of Hp. It is clear that Z(m) is generated by the monomials
xm1

1 · · · x
mn
n such that

∏
j qm j

i j = 1 in the truncated ring of Witt vectors Wm,p (see
[Cuadra et al. 2016, Section 2.1]). Let W ′m,p be the kernel of the natural map of
multiplicative groups W×m,p→ F×p . Then every element of W ′m,p has order a power
of p. Hence, [Z : Z(m)] is a power of p. Also it is clear from the nondegeneracy
condition for q that

⋂
m Z(m)=Fp. Thus, Theorem 3.2 applies, and yields that Hp is

cocommutative. Hence HR′ is cocommutative, implying that HR is cocommutative
and ultimately that H is cocommutative, i.e., a group algebra. �

Remark 5.3. If qi j = qmi j , where q is not a root of unity, then q is nondegenerate
if and only if det(mi j ) 6= 0. Theorem 5.2 applies in this case. This gives a general-
ization of [Chan et al. 2014, Theorem 0.4] to nonhomogeneous Hopf actions for
even n.

Proposition 5.4. Theorem 4.1, Corollary 4.2, and Theorem 5.2 remain valid if the
quantum polynomial algebra B is replaced by the quantum torus kq[x±1

1 , . . . , x±1
n ]

or the division algebra of quotients Frac(B).



Finite dimensional Hopf actions on algebraic quantizations 2305

Proof. In the case of the quantum torus, the proof is analogous to the proof of
Theorem 4.1. The case of the division algebra of quotients is obtained using the
same argument as in the proof of [Cuadra et al. 2015, Proposition 4.4]. �

Example 5.5. The condition that H is semisimple cannot be dropped in Theorem 4.1,
and the condition that q is nondegenerate cannot be dropped in Theorem 5.2.

Namely, let A= A0⊕A1 be a Z/2Z-graded domain with a nonzero central element
z ∈ A1, and take H to be the 4-dimensional Sweedler Hopf algebra generated by a
group-like element g and a (g, 1)-skew-primitive element u with g2

= 1, u2
= 0

and gu+ ug = 0.

(1) Then there is an action of H on A (not preserving the grading of A) given by
g ·a= (−1)deg aa, and u ·a= 0 if a ∈ A0 and u ·a= za if a ∈ A1. It is easy to check
that this action is well-defined, and it is inner faithful since u acts by a nonzero
operator.

(2) In particular, we have an inner faithful action of H on the quantum polynomial
algebra kq [x, y], for q a root of unity of any odd order 2m− 1, m > 0; namely, we
can take z = x2m−1.

(3) This gives an inner faithful action of H on the quantum torus kq [x±1
1 , . . . , x±1

n ]

if n is odd: we can take the central element

z = x1x−1
2 x3 · · · x−1

n−1xn.

For even n, such an action is impossible if q is not a root of unity by Theorem 5.2.
Indeed, the matrix mi j := sign( j − i) is nondegenerate if and only if n is even (see
Remark 5.3).

(4) Finally, this gives an inner faithful Sweedler Hopf algebra action on the Weyl
algebra An(F) when char(F)= p ≥ 3; the Z/2Z grading is defined by giving the
generators degree 1, and we can take, for instance, z = x p

1 . (Note that by [Cuadra
et al. 2016, Theorem 1.1], this is impossible in characteristic zero; indeed, the center
of An(k) is k.)

6. Semisimple Hopf actions on twisted homogeneous coordinate rings
and 3-dimensional Sklyanin algebras

Now let us consider semisimple Hopf actions on twisted homogeneous coordinate
rings of abelian varieties. We keep the notation of Section 1D.

Let H be a Hopf algebra over k of dimension d .

Theorem 6.1. We have the following statements.

(i) If H is semisimple, and if the order of Gσ/G0
σ is coprime to d!, then any

H-action on B := B(X, σ,L) factors through a group action.
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(ii) Moreover, part (i) holds for the H-action on the division algebra of quotients
Frac(B) of B.

(iii) Part (i) also holds for not necessarily semisimple H if the order of Gσ/G0
σ is

coprime to d and the H-action gives rise to a Hopf–Galois extension.

Proof. The proofs of the statements (i)–(iii) are parallel to the proofs of Theorem 4.1,
Proposition 5.4, and Proposition 5.1, respectively, where we use that the PI degree
of B equals the order of σ . The only difference is that Corollary A.2 is applied to
the abelian variety X with subgroup {si

}i∈Z rather than the torus (k×)n(n−1)/2 with
subgroup 〈q〉. �

In particular, if X =: E is an elliptic curve, Theorem 6.1 holds if the order of σ
is coprime to d! or infinite. Moreover, if σ has infinite order, the assumption that
H is semisimple can be dropped.

Theorem 6.2. Let E be an elliptic curve, and take σ ∈ Aut(E) given by translation
by a point of infinite order. Then any finite dimensional Hopf action on B(E, σ,L)
factors through a group action.

Proof. The proof repeats the proofs of Theorems 5.2 and 3.5 without significant
changes. �

Finally, let us consider semisimple Hopf actions on 3-dimensional Sklyanin
algebras [Artin et al. 1990; Odesskiı̆ and Feı̆gin 1989]. Let F be an algebraically
closed field of characteristic not equal to 2 or 3.

Definition 6.3. Let a, b, c ∈ F× be such that

(3abc)3 6= (a3
+ b3
+ c3)3.

The 3-dimensional Sklyanin algebra, denoted by S(a, b, c) is generated over F by
x , y, z with defining relations

ayz+ bzy+ cx2
= azx + bxz+ cy2

= axy+ byx + cz2
= 0.

It is known that S(a, b, c) is Koszul with Hilbert series (1− t)−3 (see [Artin
et al. 1990, Theorems 6.6(ii) and 6.8(i)] and a result of J. Zhang [Smith 1996,
Theorem 5.11]), so that S(a, b, c) is a flat deformation of the algebra of polynomials
in three variables (see, e.g., [Tate and Van den Bergh 1996, Theorem 1.1]). Moreover,
the center of S(a, b, c) contains an element T of degree 3, and S(a, b, c)/(T ) =
B(E, σ,L), where E is the elliptic curve in P2 given by the equation

(a3
+ b3
+ c3)xyz = abc(x3

+ y3
+ z3),

σ is given by translation by the point (a : b : c)∈ E , and L is a line bundle of degree
3 on E .
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Theorem 6.4. Let S(a, b, c) be a 3-dimensional Sklyanin algebra over k and let H
be a semisimple Hopf algebra over k of dimension d. If the order of σ ∈ Aut(E) is
coprime to d! or infinite, then any H-action on S(a, b, c) factors through a group
action.

Proof. It is known from the theory of Sklyanin algebras that if σ has order N ,
then S(a, b, c) is PI with PI degree N (see [Artin et al. 1994, part 5 of theorem
on page 7]). Therefore, Theorem 6.4 is proved similarly to Theorem 4.1, using
Corollary A.2 for elliptic curves, as in Theorem 5.2. �

Remark 6.5. The semisimplicity condition on H in Theorem 6.1 and the infinite
order condition in Theorem 6.2 cannot be dropped, as there exists a Sweedler
Hopf algebra action on B := B(X, σ,L) if σ has odd order N . Namely, we take
a sufficiently large odd number m such that the line bundle L⊗m is very ample (it
exists since L is ample). Now B[mN ] 6= 0 and there exists an eigenvector f of σ
in B[mN ]. We then take z = f N, a nonzero central element of odd degree mN 2, so
that a desired action is given by Example 5.5.

Also, the semisimplicity assumption in Theorem 6.4 cannot be dropped, as
there exists a Sweedler Hopf algebra action on S(a, b, c) for any a, b, c, given by
Example 5.5 where we use the central element T in place of the element z.

Appendix

The goal of this Appendix is to provide number-theoretic results needed in Section 4.
We start by quoting a result from [Perucca 2009] (in which we take F to be the
number field K itself).

Theorem A.1 [Perucca 2009, Theorem 7]. Let G be the product of an abelian
variety and a torus defined over a number field K . Let g ∈ G(K ) be a K-rational
point on G such that the Zariski closure Gg of the subgroup 〈g〉 ⊂ G(K ) generated
by g is connected. Fix a positive integer r . Then there exists a positive Dirichlet
density of primes p of K such that the order of g modulo p is coprime to r . �

Corollary A.2. Let K ,G be as in Theorem A.1, let g∈G(K ), and let ` := |Gg/G0
g|,

where G0
g is the connected component of the identity in Gg (i.e., Gg/G0

g = Z/`Z).
Fix a positive integer r coprime to `. Then there exists a positive Dirichlet density
of primes p of K such that the order of g modulo p is coprime to r .

The corollary above is used in the proof of Theorem 4.1, where d! is r and Np is
the order of g modulo p.

Proof. The order of g in Gg/G0
g is `, so Gg` = G0

g. Now the statement follows by
applying Theorem A.1 to g`. �

Example A.3. Let G be a split m-dimensional torus, and consider an element
g := (q1, . . . , qm) ∈ G. We have the following statements.
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(1) The group Gg is connected if and only if the group 0 generated by q1, . . . , qm

in K× is free, i.e., does not contain nontrivial roots of unity. Indeed both conditions
are equivalent to the condition that any character χ of G which maps g to an `-th
root of unity satisfies χ(g)= 1.

(2) More generally, |Gg/G0
g| = ` if and only if the group of roots of unity generated

by χ(g), where χ runs through characters of G such that χ(g) is a root of unity,
is µ`. In other words, ` is the order of the torsion subgroup in Zm/g⊥, where g⊥ is
the subgroup of characters χ such that χ(g)= 1. In particular, ` depends only on
the multiplicative relations satisfied by qi j .

(3) If dim G = 1 (i.e., G = Gm or an elliptic curve), then Gg is connected if and
only if g has infinite order or g = 1. More generally, |Gg/G0

g| = ` > 1 if and only
if g has order `.
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