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Constructible isocrystals

Bernard Le Stum

We introduce a new category of coefficients for p-adic cohomology called con-
structible isocrystals. Conjecturally, the category of constructible isocrystals
endowed with a Frobenius structure is equivalent to the category of perverse
holonomic arithmetic D-modules. We prove here that a constructible isocrystal is
completely determined by any of its geometric realizations.
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Introduction

The relation between topological invariants and differential invariants of a manifold
is always fascinating. We may first recall de Rham’s theorem, which implies the
existence of an isomorphism

H'k (V) ~ Hom(H;(V), C)

on any complex analytic manifold V. The nonabelian version is an equivalence of
categories
MIC(V) =~ Repc(m1(V, x))

between coherent modules endowed with an integrable connection and finite-
dimensional representations of the fundamental group. The analogous result holds
on a smooth complex algebraic variety X if we stick to regular connections (see

MSC2010: 14F30.
Keywords: constructible isocrystal, overconvergent isocrystal, rigid cohomology, p-adic cohomology,
module with connection.
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[Deligne 1970] or Bernard Malgrange’s lecture in [Borel et al. 1987]). It has been
generalized by Masaki Kashiwara [1984] to an equivalence

D . (X)~DP (X

reg,hol cons

between the categories of bounded complexes of Dx-modules with regular holo-
nomic cohomology and bounded complexes of Cyx-modules with constructible
cohomology.

Both categories come with a so-called ¢-structure but these ¢-structures do not
correspond under this equivalence. Actually, they define a new #-structure on the
other side that may be called perverse. The notion of a perverse sheaf on X" has
been studied for some time now (see [Borel et al. 1987], for example). On the
D-module side, however, this notion only appeared in the recent article [Kashiwara
2004], even if he does not give it a name (we call it perverse but it might as well
be called constructible; see [Abe 2013]). In any case, he shows that the perverse
t-structure on DP (X)) is given by

reg,ho
D=%: codimsupp H"(F*) >n forn >0,
D=0 HL(F) =0 for n < codim Z.

In particular, if we call perverse a complex of Dx-modules satisfying both condi-
tions, there exists an equivalence of categories

DP o1 (X) = Cons(X™")

reg,

between the categories of perverse (complexes of) Dy-modules with regular holo-
nomic cohomology and constructible Cxa-modules.

In a handwritten note called “Cristaux discontinus”, Pierre Deligne gave an alge-
braic interpretation of the right-hand side of this equivalence. More precisely, he in-
troduces the notion of a constructible procoherent crystal and proves an equivalence

Consreg,procoh (X/C) ~ Cons(X™")

between the categories of regular constructible procoherent crystals and constructible
Cxan-modules.

By composition, we obtain what may be called the Deligne—Kashiwara corre-
spondence:

Consreg,procoh(X/C) = Df:ghol(x)'

It would be quite interesting to give an algebraic construction of this equivalence but
this is not our purpose here. Actually, we would like to describe an arithmetic analog.

Let K be a p-adic field with discrete valuation ring V and perfect residue field k.
Let X < P be a locally closed embedding of an algebraic k-variety into a formal
V-scheme. Assume for the moment that P is smooth and quasicompact, and that
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the locus of X at infinity inside P has the form D N X, where D is a divisor
in P. We may consider the category D°(X C P/K) of bounded complexes of
D;("’D)@-modules on P with support on X (see [Berthelot 2002], for example).
On the other hand, we may also consider the category of overconvergent isocrystals
on (X C P/K). Daniel Caro proved [2009] that there exists a fully faithful functor

sp, :Isoc) (X C P/K) — DL (X C P/K)

(the index coh simply means overconvergent isocrystals in Berthelot’s sense —
see below). This is the first step towards an overconvergent Deligne—Kashiwara
correspondence. Note that this construction is extended to a slightly more general
situation by Tomoyuki Abe and Caro [2013] and was already known to Pierre
Berthelot [1996b, Proposition 4.4.3] in the case X =P.

In [Le Stum 2014], we defined a category, which we may denote MIC!_ (P/K),
of convergent constructible V-modules on Px when P is a geometrically con-
nected smooth proper curve over V, as well as a category DP*"V(P/K) of perverse
(complexes of) D;@—modules on P, and we built a functor

R$p,, : MIC!

cons

(P/K) — DV (P/K).

coh

Actually, we proved the overconvergent Deligne—Kashiwara correspondence in this
situation: this functor induces an equivalence of categories

R$p, : F-MIC]

cons

(P/K)~F-D"(P/K)

between (convergent) constructible F-V-modules on Px and perverse holonomic
F —D;@—modules on P. Note that this is compatible with Caro’s sp, functor.

In order to extend this theorem to a higher dimension, it is necessary to develop a
general theory of constructible (overconvergent) isocrystals. One could try to mimic
Berthelot’s original definition and let Isoc! (X C ¥ C P/K) be the category of
J ;{ Ojy[-modules F endowed with an overconvergent connection which are only
“constructible” and not necessarily coherent (here X is open in Y and Y is closed
in P). It means that there exists a locally finite covering of X by locally closed
subvarieties Z such that j;]—" is a coherent j;O]y[—module. It would then be
necessary to show that the definition is essentially independent of P as long as P
is smooth and Y proper, and that they glue when there does not exist any global
geometric realization.

We choose here an equivalent but different approach with built-in functoriality.
I introduced in [Le Stum 2011] the overconvergent site of the algebraic variety X
and showed that we can identify the category of locally finitely presented modules
on this site with the category of overconvergent isocrystals in the sense of Berthelot.
Actually, we can define a broader category of overconvergent isocrystals (without
any finiteness condition) and call an overconvergent isocrystal E constructible when
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there exists a locally finite covering of X by locally closed subvarieties Y such
that E)y is locally finitely presented. Note that K may be any nontrivial complete
ultrametric field and that there exists a relative theory (over some base O). We
denote by Isocions(X / O) the category of constructible overconvergent isocrystals
on X/0. We expect a “Grothendieck’s six operations formalism” for overconver-
gent F-isocrystals and, more generally, that all usual properties of constructible
coefficients will hold in our context.

As usual, when we are given a crystalline solution to a coefficient problem, it is
necessary to be able to give an interpretation in terms of modules with an integrable
connection. Here, one may define a category MIC! (X, V/O) of constructible
modules endowed with an overconvergent connection on any “geometric realiza-
tion” V of X/ 0O, as in Berthelot’s approach. We will prove (Theorem 4.12 below)
that, when Char(K) = 0, there exists an equivalence of categories
(X/0) ~MIC!

¥
Isoc cons

cons

(X, V/0).

As a corollary, we obtain that the later category is essentially independent of the
choice of the geometric realization (and that they glue when there does not exist
such a geometric realization). Note that this applies in particular to the case of the
curve P above which “is” a geometric realization of P so that

Isoc! . (P/K) = MIC!

cons

(P/K).

In Section 1, we briefly present the overconvergent site and review some material
that will be needed afterwards. In Section 2, we study some functors between
overconvergent sites that are associated to locally closed embeddings. We do a
little more that what is necessary for the study of constructible isocrystals, hoping
that this will be useful in the future. In Section 3, we introduce overconvergent
isocrystals and explain how one can construct and deconstruct them. In Section 4,
we show that constructible isocrystals may be interpreted in terms of modules with
integrable connections.

Notation and conventions

Throughout this article, K denotes a nontrivial complete ultrametric field with
valuation ring V and residue field k.

An algebraic variety over k is a scheme over k that admits a locally finite covering
by schemes of finite type over k. A formal scheme over V always admits a locally
finite covering by -adic formal schemes of finite presentation over V. An analytic
variety over K is a strictly analytic K-space in the sense of [Berkovich 1993], for
example. We will use the letters X, Y, Z, U, C, D, ... to denote algebraic varieties
over k, P, O, S for formal schemes over V and V, W, O for analytic varieties over K.
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An analytic variety over K is said to be good if it is locally affinoid. This is the
case, for example, if V is affinoid, proper or algebraic, or more generally if V is an
open subset of such a variety. Note that in Berkovich’s original definition [1990]
all analytic varieties were good.

As usual, we will write A! and P! for the affine and projective lines. We will
also use (0, 1%) for the open or closed disc of radius 1.

1. The overconvergent site

We briefly recall the definition of the overconvergent site from [Le Stum 2011]. An
object is made of

(1) alocally closed embedding X < P of an algebraic variety (over k) into a
formal scheme (over V) and

(2) amorphism A : V — Pg of analytic varieties (over K).

We denote this object by X € P <2 Px <— V and call it an overconvergent
variety. Here, sp denotes the specialization map and we also introduce the notion
of atube of X in V:

1X[y := 2" sp~ 1 (X)).

We call the overconvergent variety good if any point of ] X[y has an affinoid
neighborhood in V. It makes it simpler to assume from the beginning that all
overconvergent varieties are good since the important theorems can only hold for
those (and bad overconvergent varieties play no role in the theory). But, on the
other hand, most constructions can be carried out without this assumption.

We define a formal morphism between overconvergent varieties as a triple of
compatible morphisms:

X' P’ Py %
T
XC P Py %

Such a formal morphism induces a continuous map

1L 01X Ty — 1X1y

between the tubes.

Actually, the notion of a formal morphism is too rigid to reflect the true nature
of the algebraic variety X and it is necessary to make invertible what we call a
strict neighborhood, which we define now: it is a formal morphism as above such
that f is an isomorphism X’ >~ X and u is an open immersion that induces an
isomorphism between the tubes ] X'[y >~ ] X[y. Formal morphisms admit a calculus
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of right fractions with respect to strict neighborhoods, and the quotient category is
the overconvergent site An}v. Roughly speaking, we allow the replacement of V
by any neighborhood of ] X[y in V and we make the role of P secondary (only
existence is required).

Since we call our category a site, we must endow it with a topology which is
actually defined by the pretopology of families of formal morphisms

Xc b P; Vi
| ]
Xc P Px \%

in which V; is open in V and ] X[y C | V; (this is a standard site).

Since the formal scheme plays a very loose role in the theory, we usually denote
by (X, V) an overconvergent variety and write (f, #) for a morphism.

We use the general formalism of restricted category (also called localized or
comma or slice category) to define relative overconvergent sites. First of all, we
define an overconvergent presheaf as a presheaf (of sets) T on Anjv. If we are
given an overconvergent presheaf 7', we may consider the restricted site An}T. An
object is a section s of T on some overconvergent variety (X, V) but we like to
see s as a morphism from (the presheaf represented by) (X, V) to T. We will then
say that (X, V) is a (overconvergent) variety over T . A morphism between varieties
over T is just a morphism of overconvergent varieties which is compatible with the
given sections. The above pretopology is still a pretopology on An;T and we denote
by T4, the corresponding topos. As explained by David Zureick-Brown [2010;
2014], one may as well replace An}'T by any fibered category over Anjv. This is
necessary if one wishes to work with algebraic stacks instead of algebraic varieties.

As a first example, we can apply our construction to the case of a representable
sheaf T := (X, V). Another very important case is the following: we are given
an overconvergent variety (C, O) and an algebraic variety X over C. Then, we
define the overconvergent sheaf X/O as follows: a section of X/O is a variety
(X', V') over (C, O) with a given factorization X’ — X — C (this definition
extends immediately to algebraic spaces — or even algebraic stacks if one is ready
to work with fibered categories). Alternatively, if we are actually given a variety
(X, V) over (C, O), we may also consider the overconvergent presheaf Xy /O:
a section is a variety (X', V') over (C, O) with a given factorization X’ — X — C
which extends to some factorization (X', V') — (X, V) — (C, O). Note that we
only require the existence of the second factorization. In other words, Xy /O is
the image presheaf of the natural map (X, V) — X/O. An important theorem
(more precisely Corollary 2.5.12 in [Le Stum 2011]) states that, if we work only
with good overconvergent varieties, then there exists an isomorphism of topos
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(Xv/O)pqi = (X/0O),,+ When we start from a geometric situation

X ¢ P Px 1%
N T
Cc S Sk 0]

with P proper and smooth around X over S and V a neighborhood of the tube of X
in Pg x5, O (and (C, O) is good).

If we are given a morphism of overconvergent presheaves v : T’ — T, we will
also say that 7"’ is a (overconvergent) presheaf over T. It will induce a morphism
of topos vy« : Ty, — Ty, We will often drop the index An' and keep writing v
instead of v,,+. Also, we will usually write the inverse image of a sheaf F as F7/
when there is no ambiguity about v. Note that there will exist a triple of adjoint
functors vy, v_!, v, with vy exact.

For example, any morphism (f, u) : (Y, W) — (X, V) of overconvergent varieties
will give rise to a morphism of topos

(fs ) pgnt 2 (Y, W) ppt = (X, V) ppt-

It will also induce a morphism of overconvergent presheaves f, : Yw/O — Xy /O
giving rise to a morphism of topos

qunJf : (YW/O)AnT - (XV/O)AHT.

Finally, if (C, O) is an overconvergent variety, then any morphism f : Y — X
of algebraic varieties over C induces a morphism of overconvergent presheaves
f:Y/0 — X/O giving rise to a morphism of topos

fAn* : (Y/O)AnT - (X/O)AnT‘

If we are given an overconvergent variety (X, V), there exists a realization map
(morphism of topos)

X, V)pni 2 WX [van, (X, V) <1 1X[yr,

where ] X[y, denotes the category of sheaves (of sets) on the analytic variety | X[y
(which has a section ). Now, if T is any overconvergent presheaf and (X, V) is
a variety over T, then there exists a canonical morphism (X, V) — T. Therefore,
if F is a sheaf on T, we may consider its restriction F|(x,v), which is a sheaf on
(X, V). We define the realization of F on (X, V) as

Fx,v = ov«(F(x,v))

(we shall simply write Fy in practice unless we want to emphasize the role of X).
As one might expect, the sheaf F is completely determined by its realizations Fy
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and the transition morphisms ] f [;l]fv — Fy obtained by functoriality whenever
(fiu): (X', V) = (X, V) is a morphism over T.
We will need below the following result:

Proposition 1.1. [fwe are given a cartesian diagram of overconvergent presheaves
(with a representable upper map)

vy —" s x v

T’ T

and F' is a sheaf on T, then
W F )y =1fluxFyr-
Proof. Since the diagram is cartesian, we have (this is formal)
sT 0 F = (f, u)w(s) T F
It follows that
WF )y = pras™ 0 F = ua(fo (s T F'
= 1/ luspvi(s) T F =1 flus T O

If (X, V) is an overconvergent variety, we will denote by ix : ] X[y < V the
inclusion map. Then, if T is an overconvergent presheaf, we define the structural
sheaf of Aan as the sheaf (’); whose realization on any (X, V) is iy 1OV. An
O;-module E will also be called a (overconvergent) module on T. As it was the case
for sheaves of sets, the module E is completely determined by its realizations Ey
and the transition morphisms

1fEy i=ig utixs Ey — Ey 2)

obtained by functoriality whenever (f, u) : (X', V') — (X, V) is a morphism over 7.
A module on T is called an (overconvergent) isocrystal if all the transition maps (2)
are actually isomorphisms (used to be called a crystal in [Le Stum 2011]). We will
denote by

Isoc’(T) C O;—Mod

the full subcategory made of all isocrystals on T (used to be denoted by Cris' (T)
in [Le Stum 2011]). Be careful that inclusion is only right exact in general.

If we are given a morphism of overconvergent presheaves v : T’ — T then the
functors vy, v !, v, preserve modules (we use the same notation v, for sheaves of
sets and abelian groups; this should not create any confusion) and v~! preserves
isocrystals.
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One can show that a module on 7' is locally finitely presented if and only if it is
an isocrystal with coherent realizations. We will denote their category by Isoczoh(T)
(be careful that it only means that the realizations are coherent: O; is not a coherent
ring in general). In the case T = X/Sx and Char(K) = 0, this is equivalent
to Berthelot’s original definition [1996a, Definition 2.3.6] of an overconvergent
isocrystal.

Back to our examples, it is not difficult to see that, when (X, V') is an overcon-
vergent variety, the realization functor induces an equivalence of categories

Isoc'(X, V) ~ iy 'Oy-Mod

between isocrystals on (X, V) and iy 'Oy -modules. Now, if (X, V) is a variety
over an overconvergent variety (C, O) and

P, P2 (X, VxoV)—(X,V)

denote the projections, we define an overconvergent stratification on an iy loy-
module F as an isomorphism

e pl' F=1pil'F

that satisfies the cocycle condition on triple products and the normalization condition
along the diagonal. They form an additive category Strat’ (X, V/O) with cokernels
and tensor products. It is even an abelian category when V' is universally flat over O
in a neighborhood of ]X[y. In any case, the realization functor will induce an
equivalence

Isoc' (Xy/0) ~ Strat’ (X, V/0).

We may also consider, for n € N, the n-th infinitesimal neighborhood V™ of V
in V xo V. Then, a (usual) stratification on an iy, 1OV—mOdule F is a compatible
family of isomorphisms

n)..—1 ~ .—1
€7 iy OV(n) ®i;](9v F =~ ‘F®i;10v Iy Oy

that satisfy the cocycle condition on triple products and the normalization condition
along the diagonal. Again, they form an additive category Strat(X, V/O) with
cokernels and tensor products, and even an abelian category when V is smooth
over O in a neighborhood of | X[y. There exists an obvious faithful functor

Strat’ (X, V/0) — Strat(X, V/0). 3)

Note that, a priori, different overconvergent stratifications might give rise to the
same usual stratification (and of course many usual stratifications will not extend at
all to an overconvergent one). Finally, a connection on an i, 1OV—module F is an
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Oop-linear map
) —1 ol
V:F— ]:®i;‘OV iy Qy

that satisfies the Leibniz rule. Integrability is defined as usual. They form an additive
category MIC(X, V/O) and there exists again a faithful functor

Strat(X, V/0) — MIC(X, V/0) @)

(V is induced by e — o, where o switches the factors in V xo V). When V is
smooth over O in a neighborhood of ] X[y and Char(K) = 0, then the functor (4)
is an equivalence. Actually, both categories are then equivalent to the category of
iy Dy so-modules. In general, we will denote by MICT(X, V/O) the image of the
composition of the functors (3) and (4) and then call the connection overconvergent
(and add an index coh when we consider only coherent modules). Thus, there exists
a realization functor

Isoc’ (Xy/0) — MICT (X, V/0) (5)

which is faithful and essentially surjective (but not an equivalence in general). In
practice, we are interested in isocrystals on X /O, where (C, O) is an overconvergent
variety and X is an algebraic variety over C. We can localize in order to find a
geometric realization V for X over O such as (1) and work directly on (X, V):
there exists an equivalence of categories

Isoc' (X/0) ~Isoc’ (Xy /0)
that may be composed with (5) in order to get the realization functor
Isoc’(X/0) — MICT (X, V/0).
In [Le Stum 2011], we proved that, when Char(K) = 0, it induces an equivalence

Isoc! . (X/0) =~ MIC]

coh

(X,V/0)

(showing in particular that the right-hand side is independent of the choice of the
geometric realization and that they glue). We will extend this below to what we
call constructible isocrystals.

2. Locally closed embeddings

In this section, we fix an algebraic variety X over k. Recall that a (overconvergent)
variety over X/ M(K) (we will simply write X/K in the future) is a pair made
of an overconvergent variety (X', V') and a morphism X" — X. In other words,
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it is a diagram
V/

|

X' P —— P

|

X

in which P’ is a formal scheme.

We also fix a presheaf T over X/K. For example, T could be (the presheaf
represented by) an overconvergent variety (X', V') over X/K. Also, if (C, O)
is an overconvergent variety and X is an algebraic variety over C, then we may
consider the sheaf 7 := X /O (see Section 1). Finally, if we are given a morphism
of overconvergent varieties (X, V) — (C, O), then we could set T := Xy /O (see
Section 1 again).

Finally, we also fix an open immersion « : U — X and denote by : Z — X
the embedding of a closed complement. Actually, in the beginning, we consider
more generally a locally closed embedding y : ¥ — X.

Definition 2.1. The restriction of T to Y is the inverse image
Ty = (Y/K) X(X/K) T

of T over Y /K. We will still denote by y : Ty < T the corresponding map. When
F is a sheaf on T, the restriction of T to Y is Fly := y I F.

For example, if T = (X', V') is a variety over X/K, then Ty = (Y’, V'), where
Y’ is the inverse image of Y in X’. Also, if (C, O) is an overconvergent variety, X
is an algebraic variety over C and T = X/O, then Ty = Y /O. Finally, if we are
given a morphism of overconvergent varieties (X, V) — (C,O) and T = Xy /O,
then we will have Ty = Yy /O.

If (X, V) is an overconvergent variety, we may consider the morphism of
overconvergent varieties (y,Idy) : (¥, V) — (X, V). We will then denote by
lylv : 1Y[y <= 1Xly, or simply Jy[ if there is no ambiguity, the corresponding
map on the tubes. Recall that [y [ is the inclusion of an analytic domain. This is an
open immersion when y is a closed embedding and vice versa (we use Berkovich

topology).
The next result generalizes Proposition 3.1.10 of [Le Stum 2011].

Proposition 2.2. Let (X', V') be an overconvergent variety over T andy':Y' < X'
be the inclusion of the inverse image of Y inside X'. If F is a sheaf on Ty, then

(v« F)x v =1y [ Fy v
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Proof. Using [Le Stum 2011, Corollary 2.4.15], this follows from Proposition 1.1. [

Since we will use it in some of our examples, we should also mention that
Ry, E =0 fori > 0 when E is an isocrystal with coherent realizations. This follows
from the fact that, with the notation of the proposition, ]y'[ is a quasi-Stein map.

We can work out very simple examples right now. We will do our computations
on the overconvergent variety

1 ol ol 1,an
Py/x =P — Py, < P

We consider first the open immersion « : A}C — I]3’,1c and the structural sheaf O'AEI /K
If weleti:D(0,17) — P}gan denote the inclusion map, we have ¢

RI (P g, 20"

A;/K) =RT (P, i*i_lopka") =K[1]" = U K{t/\}

A>1

(functions with radius of convergence (strictly) bigger than one at the origin).
On the other hand, if we start from 8 : co < P} and let j : D(c0, 17) < [P’}(’an
denote the inclusion map, we have

R (Py/x. BeOL x) =RT(PE™, juj ™ Opra) = K[1/11" := (| K{3/1)
A>1

(functions with radius of convergence at least one at infinity).
The following is immediate from Proposition 2.2:

Corollary 2.3. (1) v, 0 Yant, =1d, and
(2) if y' : Y < X is another locally closed embedding with Y NY' = &, then

yA_an © y//\nf* =0.
Alternatively, one may say that if F is a sheaf on Ty, we have
(s F)y =F and  (yuF) )y =0.

The first assertion of the corollary means that y, .+ is an embedding of topos
(direct image is fully faithful). Actually, from the fact that Y is a subobject of X
in the category of varieties, one easily deduces that Ty is a subobject of T in the
overconvergent topos and y, .+ is therefore an open immersion of topos. Note also
that the second assertion applies in particular to open and closed complements (both
ways): in particular, these functors cannot be used to glue along open and closed
complements. We will need some refinement.

We focus now on the case of an open immersion « : U < X which gives rise to
a closed embedding on the tubes.

Proposition 2.4. The functor ap,1,: Ty aqt = Tyt Is exact and preserves isocrystals.
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Proof. This is not trivial but can be proved exactly as in Corollary 3.1.12 and
Proposition 3.3.15 of [Le Stum 2011] (which is the case T = X/O). O

The following definition is related to rigid cohomology with compact support
(recall that 8 : Z — X denotes the embedding of a closed complement of U):

Definition 2.5. If F is a sheaf of abelian groups on 7, then
Ly F =ker(F — BiFiz)
is the subsheaf of sections of F with support in U.

If we denote by U the closed subtopos of T, which is the complement of the
open topos T, 5,i, then [y is the same thing as the functor HY, of sections with
support in /. With this in mind, the first two assertions of the next proposition
below are completely formal. One may also show that the functor F > F /B8~ F
is an exact left adjoint to ['y; it follows that "y preserves injectives.

Actually, we shall use the open/closed formalism only in the classical situation.
Recall (see [Iversen 1986, Section II.6], for example, for these kinds of things)
thatif i : W — V is a closed embedding of topological spaces, then i, has a right
adjoint i' (and one usually sets I'y := i,i') which commutes with direct images.
If (X, V) is an overconvergent variety, we know that Jo[ : JU[ < ]X] is a closed
embedding and we may therefore consider the functors Ja[' and [yyy.

Proposition 2.6. (1) The functor 'y is left exact and preserves modules.
(2) If F is a sheaf of abelian groups on T, then there exists a distinguished triangle
RI'yF — F — RB.Fiz — .

3) If (X', V') is a variety over T and o’ : U' — X' denotes the immersion of the
inverse image of U into X', we have

(RLy E)y =R, Ev
for any isocrystal E on T.

Proof. The first assertion follows immediately from the fact that all the functors
involved (8!, B« and ker) do have these properties. The second assertion results
from the fact that the map 7 — B,F|7 is surjective when F is an injective sheaf
(this is formal). In order to prove the last assertion, it is sufficient to remember (this
is a standard fact) that there exists a distinguished triangle

RTyy1, Ev — Ey: — RIB[AB Ev: —,

where B’ : Z' < X’ denotes the inverse image of the inclusion of a closed comple-
ment of U. Since E is an isocrystal, we have (E|z)z v = ],8/[_1EX/,V/. O
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Note that the second assertion means that there exists an exact sequence
0—CyF— F— BuFiz— RITyF—0

and that R/ B, F|z = R"F Ty F for i > 0. We can do the exercise with o : Al < P}
and B : 0o < P} as above. We obtain

RT (k. ROy 0Ly ) = [K — K1/ = (K[1/0]"/K)[=1].

Since realization does not commute with the inverse image in general, we need
to introduce a new functor. Recall that in order to define a sheaf on 7, it is sufficient
(and even equivalent) to give a compatible family of sheaves on the tubes 1 X[
for all (X', V') over T.

Lemma 2.7. If F is a sheaf on T, then the assignment
X' VY (5 F)y = 1o T T Fy,

where o' : U' < X' denotes the immersion of the inverse image of U into X', defines
a sheafon T.

Proof. We give ourselves a morphism (f, u) : (X", V") — (X', V') over T, we
denote by g : U” — U’ the map induced by f on the inverse images of U into X’
and X", respectively, and by «” : U” < X" the inclusion map. We consider the
cartesian diagram (forgetful functor to algebraic varieties is left exact)

", V"h)—— (X", V")
l(gﬁu) l(f,u)
U, V)—— (X', V)
which gives rise to a cartesian diagram (tube is left exact)
10" [y & 1X"[y»
l]g[u J]f[u
W'y —— 1X'lv

Since ]o/[ is a closed embedding, we have ]f[,;1 ola/[« =]a" [+ 0 ]g[;1 and there
exists a canonical map

L e T Fyr = 1o T 18l 10 T Fr = 10 e T £ Fo
- ]O//[* ]05//[_1.7'—\///. ]

Definition 2.8. If F is a sheaf on 7, then j,T]]-' is the sheaf of overconvergent
sections of F around U.
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Proposition 2.9. (1) The functor jZ] is exact and preserves isocrystals.
(2) If E is an isocrystal on T, we have j[T]E =a,a 'E.

Proof. Exactness can be checked on realizations. But, if (X', V') is a variety over T
and o’ : U' — X’ denotes the immersion of the inverse image of U in X', then we
know the exactness of Jo'[, (because ]o'[ is a closed embedding) and Jo/[~!. The
second part of the first assertion is a consequence of the second assertion which
follows from the fact that (¢« ' E)y» = Jo’[ "' Ey» when E is an isocrystal. O

Note that the canonical map jz,}' — oo~ L F is still bijective when F is a sheaf
of Zariski type (see Definition 4.6.1' of [Le Stum 2011]) but there are important
concrete situations where equality fails, as we shall see right now.

In order to exhibit a counterexample, we let again o : A}c — [P’,i and B :00 — P11<
denote the inclusion maps and consider the sheaf F := ,B*O;fo K> which is not an
isocrystal (and not even of Zariski type). Since &' o 8, =0, we have a,a ™! F = 0.
Now, let us denote by i¢: & < Px™ the inclusion of the generic point of the
unit disc (corresponding to the Gauss norm) and let i : (0, 11) — I]?l’}(’an and
jiD(oo,17) = [P’}g"m be the inclusion maps as above. Let

R = {Zantn : {3X> 1, M'a, — 0 for n — _|-oo}}

VA >1,A'a, — 0forn — —o0
neZ

be the Robba ring (functions that converge on some open annulus of outer radius
one at infinity). Then, one easily sees that

(JARI(’B*OZO/K) :i*i_lj*o[[])(()’lf) :l%.*’]z

Py/k

so that jgl F # 0. This computation also shows that
k

RF(I]J’}(/K,in,B*O;/K) =R.

We now turn to the study of the closed embedding g : Z — X, which requires
some care (as we just experienced, the direct image of an isocrystal need not be an
isocrystal).

The following definition has to do with cohomology with support in a closed
subset.

Definition 2.10. For any sheaf of abelian groups F on 7,
EE]—" = ker(F — a.Fu)
is the subsheaf of overconvergent sections of F with support in Z.

IThe comment following Definition 4.6.1 in [Le Stum 2011] is not correct and Lemma 4.6.2 is
only valid for an open immersion.



2136 Bernard Le Stum

We will do some examples below when we have more material at our disposal.

As above, if we denote by Z the closed subtopos of 7+ which is the complement
of the open topos Ty, 5,7, then L‘; is the same thing as the functor % of sections
with support in Z. This is the approach taken by David Zureick-Brown [2010;
2014] in order to define cohomology with support in Z on the overconvergent site.
The next proposition is completely formal if one uses Zureick-Brown’s approach.
Also, as above, one may prove that [‘; preserves injectives because the functor
F i+ F/aya~ ' F is an exact left adjoint.

Proposition 2.11. (1) The functor [‘; is left exact and preserves modules.

(2) If F is an abelian sheaf on T, then there exists a distinguished triangle
0— RLLF — F = aFiy —

We will also show below that [‘; preserves isocrystals.

Proof. As in the proof of Proposition 2.6, the first assertion follows from the fact that
all the functors involved (and the kernel as well) are left exact and preserve overcon-
vergent modules. Similarly the second one is a formal consequence of the definition
because a, and ! both preserve injectives (they both have an exact left adjoint)
and the map F — a,F|y is an epimorphism when F is injective (standard).  [J

Note that the last assertion of the proposition means that there exists an exact
sequence
0— [, F - F— a.Fiy — RITLF -0

and that RT;]—" =0fori > 1.

Before going any further, we want to stress the fact that ~! has an adjoint 8 on
the left in the category of all modules (or abelian groups or even sets with a light
modification) but f; does not preserve isocrystals in general. Actually, we always
have (B1.F)x’. v = 0 unless the morphism X" — X factors through Z (recall that
we use the coarse topology on the algebraic side). Again, the workaround consists
in working directly with the realizations. If j : W < V is an open immersion of
topological spaces, then j~! has an adjoint j, on the left also (on sheaves of abelian
groups or sheaves of sets with a light modification). This is an exact functor that
commutes with inverse images (see [Iversen 1986, Section I1.6] again). Now, if
(X, V) is an overconvergent variety, then ][ : ]1Z[ < ]X[ is an open immersion
and we may consider the functor ]B[;.

In the next lemma again, we use realizations and transition maps in order to
define a sheaf.

Lemma 2.12. If F is a sheaf (of sets or abelian groups) on Tz, then the assignment

X', V) (BiF)x v =181 Fz v,
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where B’ : Z' < X' denotes the embedding of the inverse image of Z into X', defines
a sheaf on T. Moreover, if E is an isocrystal on Tz, then B+ E is an isocrystal on T.

Proof. As above, we consider a morphism (f, u) : (X", V") — (X', V') over T. We
denote by h : Z”" — Z' the map induced by f on the inverse images of Z into X’
and X", respectively, and by B”: Z” < X" the inclusion map. We have a cartesian
diagram

(Z//’ V//);) (X//’ V//)

l(h,u) l(f,u)
(Z,V)—— (X', V)
giving rise to a cartesian diagram
12" v —— 1X"[y~
J]h[u J/]f[u
1Z'lv—— 1X'lv
It follows that there exists a canonical map

18 L Fy =18"0AL Fyr — 18" [ Fyr

as asserted. We consider now an isocrystal E and we want to show that

/LB LEy = 1B"[.Ev.
This immediately follows from the equality (which is formal)
it OV ®;ty10,, 1B 1AL Eve = 18"1(i7) O @110, Wl Evr). O
Definition 2.13. The sheaf 8;F is the overconvergent direct image of F.

Note that there exist two flavors of B+: for sheaves of sets and for sheaves of
abelian groups. Whichever we consider should be clear from the context.

Proposition 2.14. (1) If F is a sheaf on Tz, then:

(@) (B1F)iz=F.
() (BiF)w =0.
(c) If E is an isocrystal on T, then

Hom(B:F, E) = B, Hom(F, B~ E). (6)
(d) There exists a short exact sequence

0— BiF = BuF — ji BuF — 0. (7
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(2) The functor By is fully faithful, exact, and preserves isocrystals, and the induced
functor
B+ IsocT(TZ) — IsocT(T)

is left adjoint to
B! Isoc’(T) — Isoc’(Ty).

Proof. As usual, if (X', V') is a variety over T, then we denote by o’ : U" — X’
and B’ : Z' — X' the inclusions of the inverse images of U and Z, respectively.

When (X', V') is an overconvergent variety over Tz, then we will have ]8'[ = 1d,
and when (X', V') is an overconvergent variety over Ty then ]8'[ = @. We obtain
the first two assertions. When E is an isocrystal on 7, we have an isomorphism
(this is standard)

Hom(18'LFy+, Ev') =18l Hom(Fy, 18" Ev»),
from which the third assertion follows. Also, there exists a short exact sequence
0> 181 Fz.v = 1B LFzv = 1 [/ [ 1B [« Fz,v — 0

which provides the fourth assertion.

Full faithfulness and exactness of 8; follow from the full faithfulness and exact-
ness of ]8’[, for all (X', V’). The fact that B+ preserves isocrystals was proved in
Lemma 2.12. The last assertion may be obtained by taking global sections of the
equality (6). ([

We can also mention that there exists a distinguished triangle
BiF = RBuF — jiRBF — .
Now, we prove that the exact sequence (7) is universal:

Proposition 2.15. If 7' and F" are modules on Tz and Ty, respectively, then any
extension
0— B F > F—>a,F' =0

is a pull-back of the fundamental extension (7) through a unique morphism
. F" = ji BuF .
Proof. We know that 8~ 'a, F” = 0 and it follows that
Hom(e, F', B F') = Hom(B ', F', F') = 0.

This being true for any sheaves, we see that, actually, R Hom (o, F”, RB,F') = 0.
It formally follows that R" Hom(a, F”, B+ F') =0 for i < 1. As a consequence, we
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obtain a canonical isomorphism
Hom(a, ", jii BuF') = Ext(aF", B+F)).
This is exactly the content of our assertion. ]

We should observe that we always have Hom(a,. F”, B+ F') = 0. However, it is
not true that Ext(a,F”, B+ F") = 0 in general. This can happen because B+ does not
preserve injectives (although it is exact).

The overconvergent direct image is related to overconvergent support as follows:

Proposition 2.16. If E is an isocrystal on T, then
[JE =BiEz
and, for all i >0, R'TSE = 0.
Proof. Recall from Proposition 2.11 that there exists an exact sequence
0—>TLE—E— a.Ey—RTLE—0

and that RT;E =0 fori > 1. Now, let (X', V') be a variety over T. Denote by
B :Z — X', a : U — X’ the embeddings of the inverse images of Z and U
into X’. There exists a short exact sequence (standard again)

0— 18 LB "Ey — Ey — 1L 1e[ ' Ey — 0.

Since E is an isocrystal, we have (o E|y)y = Jo'[]Jo/[ "' Ey-. Tt follows that
(RT;E)V/ =0 and we also see that

(CLE)v =181 "Ev = (B+Ez)v. O

Note that the proposition is still valid for sheaves of Zariski type and not merely
for isocrystals. Be careful however that 8; E # L‘; B« E in general, even when E is
an isocrystal on 7z. With our favorite example in mind, we have

ETZ,B*O;O/K = ,B*O;fo/[( # ,B?O;ro/l(,
as our computations below will show.
Corollary 2.17. The functor E; preserves isocrystals, and the induced functor
L‘; :IsocT(T) — IsocT(T)
is exact. Moreover, if E is an isocrystal on T, then there exists a short exact sequence

0—>TLE—E— j,E—O.
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We might as well write this last short exact sequence as
0— BiEjz - E — aEy — 0.

As promised above, we can do an example and consider the closed embedding
B : 00 <> P} again. We compute
t ot ot
ﬂTOOO/K - Eooop]}/](
We have

RT (P} . BrOL, ) =K — K[1]']= (K[1]'/K)[—1].

We can also remark that the (long) exact sequence obtained by applying RT” ([P’,lc /K> -)
to the fundamental short exact sequence

0— ﬂfo;/,( — f;*o;/K N j;,s*o;m -0
reads

0— K[1/t]™ - R — K[t]'/K — 0. (8)

Corollary 2.18. (1) The functors oy and a~"' induce an equivalence between
isocrystals on Ty and isocrystals on T such that [;E =0 (or j;;E =F).

(2) The functors By and B~" induce an equivalence between isocrystals on Tz and
isocrystals on T such that E;E =FE (or jzr/E =0).

Proof. If E” is an isocrystal on Ty, then a, E” is an isocrystal on T and therefore
L E" = Bif B =0.

Conversely, if E is an isocrystal on 7 such that [‘;E =0, then E = j,T]E =a, a0 'E.
This shows the first part.
Now, if E’ is an isocrystal on 7, then B; E’ is an isocrystal on T and therefore

LLBE = pip ™ BrE' = BiE'.
Conversely, if E is an isocrystal on T such that [‘ZE =E,then E=g;7'E. O

We can also make the functor of sections with support in an open subset come
back into the picture:

Corollary 2.19. If E is an iso