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on algebraic quantizations

Pavel Etingof and Chelsea Walton

Let k be an algebraically closed field of characteristic zero. In joint work with
J. Cuadra, we showed that a semisimple Hopf action on a Weyl algebra over a
polynomial algebra k[z1, . . . , zs] factors through a group action, and this in fact
holds for any finite dimensional Hopf action if s = 0. We also generalized these
results to finite dimensional Hopf actions on algebras of differential operators.
In this work we establish similar results for Hopf actions on other algebraic
quantizations of commutative domains. This includes universal enveloping alge-
bras of finite dimensional Lie algebras, spherical symplectic reflection algebras,
quantum Hamiltonian reductions of Weyl algebras (in particular, quantized quiver
varieties), finite W-algebras and their central reductions, quantum polynomial
algebras, twisted homogeneous coordinate rings of abelian varieties, and Sklyanin
algebras. The generalization in the last three cases uses a result from algebraic
number theory due to A. Perucca.

1. Introduction

Throughout this paper, k will denote an algebraically closed field of characteristic
zero. In [Etingof and Walton 2014, Theorem 1.3], we showed that any semisimple
Hopf action on a commutative domain over k factors through a group action.
Likewise, it was established in our joint work with Juan Cuadra that the same
conclusion holds for semisimple Hopf actions on Weyl algebras An(k[z1, . . . , zs])

[Cuadra et al. 2015, Proposition 4.3]. Moreover, we showed that it holds for any
(not necessarily semisimple) finite dimensional Hopf action on An(k) [Cuadra et al.
2016, Theorem 1.1], and, more generally, on algebras of differential operators of
smooth affine varieties [Cuadra et al. 2016, Theorem 1.2]. Finally, in [Etingof and
Walton 2016] we extended these results to certain finite dimensional Hopf actions
on deformation quantizations (i.e., formal quantum deformations) of commutative
domains. We say that there is no finite quantum symmetry in the settings above.
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The goal of this paper is to establish no finite quantum symmetry results for
finite dimensional Hopf actions on other algebraic quantizations of commutative
domains, i.e., quantizations whose parameters are elements of k (rather than formal
variables). We now summarize our main results for various classes of algebraic
quantizations.

1A. Semisimple Hopf actions on filtered quantizations. Our first main result con-
cerns Hopf actions on filtered deformations (or filtered quantizations) of commuta-
tive domains, that is, on filtered k-algebras B where the associated graded algebra
gr(B) is a commutative finitely generated domain.

Let B be a Z+-filtered algebra over k such that gr(B) is a commutative finitely
generated domain. We will see that for sufficiently large primes p, the algebra B
admits a reduction Bp modulo p, which is a domain over Fp. Namely, there exists
an R-order BR ⊂ B over some finitely generated subring R ⊂ k, and

Bp = Bψ,p := BR ⊗R Fp

for a homomorphism ψ : R→ Fp. (For details on R-orders in B, see Section 2A
below).

Recall that a ring A is PI if it satisfies a polynomial identity over Z. By Posner’s
and Ore’s theorems [Posner 1960; Ore 1931; McConnell and Robson 2001, Theo-
rem 13.6.5 and Corollary 1.14], a domain A is PI if and only if it is an Ore domain
and its division ring of fractions Frac(A) is a central division algebra. In this case,
Frac(A) is a division ring that is dimension d2 over its center, where d is the PI
degree of A [McConnell and Robson 2001, Definition 13.6.7].

Definition 1.1. Given B as above, we say that B is an algebra with PI reductions
if it admits an order BR such that Bp is PI for sufficiently large p (with any choice
of ψ).1

Theorem 2.4. If B is an algebra with PI reductions, then any semisimple Hopf
action on B factors through a group action.

Note that when the Hopf action preserves the filtration of B, Theorem 2.4
(even without the PI reduction assumption) is proved in [Etingof and Walton 2014,
Proposition 5.4]; our main achievement here is that we eliminate this requirement.

A basic example of an algebra with PI reductions is the Weyl algebra B = An(k),
and, in fact, the proof of Theorem 2.4 is analogous to the proof of [Cuadra et al.
2015, Theorem 4.1], which addresses this case. Moreover, a wide range of filtered
quantizations (each defined in Section 2B below) are algebras with PI reductions,
resulting in the following corollary.

1It follows from Lemma 2.1(ii) below that if this condition holds for one pair (R, BR), then the
condition holds for all such pairs.
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Corollary 2.6. Let B be one of the following filtered k-algebras:

(i) any filtered quantization B generated in filtered degree one; in particular,
the enveloping algebra U (g) of a finite dimensional Lie algebra g, or the
algebra Dω(X) of twisted differential operators on a smooth affine irreducible
variety X ;

(ii) a finite W-algebra or its quotient by a central character;

(iii) a quantum Hamiltonian reduction of a Weyl algebra by a reductive group
action; in particular, the coordinate ring of a quantized quiver variety;

(iv) a spherical symplectic reflection algebra; or

(v) the tensor product of any of the algebras above with any commutative finitely
generated domain over k.

Then any semisimple Hopf action on B factors through a group action.

Other applications of Theorem 2.4 have been investigated recently by Lomp and
Pansera [2015]; for instance, they establish no finite semisimple quantum symmetry
on certain iterated differential operator rings.

Remark 1.2. We do not know if a filtered quantization of a finitely generated
commutative domain over k must be an algebra with PI reductions (i.e., if the PI
reduction assumption is, in fact, vacuous); see the question in [Cuadra et al. 2015,
Introduction] and [Etingof 2016, Question 1.1]. This is of independent interest in
noncommutative ring theory.

1B. Finite dimensional Hopf actions on filtered quantizations. Like [Cuadra et al.
2015, Theorem 4.2], Theorem 2.4 and hence Corollary 2.6 hold for Hopf–Galois
actions of any (not necessarily semisimple) finite dimensional Hopf algebra (see
Theorem 3.1). The proof is parallel to the proofs of Theorem 2.4 and [Cuadra et al.
2015, Theorem 4.2].

Moreover, it turns out that even without the Hopf–Galois assumption, Theorem 2.4
extends to nonsemisimple Hopf actions for a somewhat more restrictive class of quan-
tizations. To see this, let us recall some algebras introduced in [Cuadra et al. 2016].

Notation 1.3 (B, Bpm , Cm , Dpm , Z , Z(m)). Let B be a quantization with PI
reductions, and let Bpm be the reduction of B modulo pm . Let Cm be the center
of Bpm , Frac(Cm) be its ring of fractions, and Dpm := Bpm ⊗Cm Frac(Cm). The PI
reduction condition implies that Dpm is the full localization (i.e., ring of fractions)
of Bpm . These algebras are defined over the truncated Witt ring Wm,p of Fp;
cf. [Cuadra et al. 2016, Sections 2.1, 2.3, 2.4]. Let Z be the center of the central
division algebra Dp. (Here and below, to lighten the notation, we often suppress
dependence on p.) Let Zm be the center of Dpm , and let Z(m) be its image in Dp

under the map Dpm � Dp (so Z(1)= Z ). It is easy to see that Z(m)⊂ Z(m− 1).
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Definition 1.4. We say that an algebra B with PI reductions is nondegenerate if
for almost all p one has

⋂
m≥1 Z(m)= Fp.

Theorem 3.5. If B is a nondegenerate algebra with PI reductions, then any finite
dimensional Hopf action over B factors through a group action (i.e., the condition
that H is semisimple in Theorem 2.4 can be dropped).

The proof of Theorem 3.5 is similar to the proof of [Cuadra et al. 2016, Theo-
rem 1.2].

To illustrate when the nondegeneracy condition holds, recall that gr(B) carries
a natural Poisson bracket. Namely, if B is commutative, this bracket is zero;
otherwise, if d is the largest integer such that [Fi B, F j B] ⊂ Fi+ j−d B, then for a0

∈ gri (B) and b0 ∈ gr j (B), the Poisson bracket {a0, b0} is the projection of [a, b]
to gri+ j−d(B), where a ∈ Fi B and b ∈ F j B are any lifts of a0 and b0, respectively.
Thus, gr(B)= O(X), where X is an irreducible Poisson algebraic variety.

The nondegeneracy assumption is satisfied, in particular, when X is a generi-
cally symplectic Poisson variety, i.e., one having a symplectic dense open subset;
see Theorem 3.6. Therefore, Theorem 3.5 holds for many of the examples of
Corollary 2.6 — quantum Hamiltonian reductions of Weyl algebras, central re-
ductions of finite W-algebras, spherical symplectic reflection algebras, and tensor
products thereof (see Corollary 3.7).

1C. Quantum polynomial algebras. For our next main result, we consider finite
dimensional Hopf actions on quantum polynomial algebras (or quantized coordinate
rings of affine n-space):

kq[x1, . . . , xn] := k〈x1, . . . , xn〉/(xi x j − qi j x j xi ),

where q = (qi j ), qi j ∈ k× with qi i = 1 and qi j q j i = 1. Thus we can view q as a
point of the algebraic torus (k×)n(n−1)/2 with coordinates qi j for i < j .

There are many examples of semisimple Hopf actions on kq[x1, . . . , xn] that
do not factor through group actions; the parameters qi j are roots of unity in these
examples. See, for instance, [Chan et al. 2016, Theorem 0.4; Etingof and Walton
2014, Example 5.10; Kirkman et al. 2009, Examples 7.4–7.6]. Still, we establish
the following result.

Let 〈q〉 be the subgroup in (k×)n(n−1)/2 generated by q, and let Gq be its Zariski
closure. Let G0

q be the connected component of the identity in Gq .

Theorem 1.5 (Theorem 4.1). Let H be a semisimple Hopf algebra of dimension d.
If the order of Gq/G0

q is coprime to d!, then any H-action on B := kq[x1, . . . , xn]

factors through a group action.

If each qi j is a root of unity of order ri j , then |Gq/G0
q |= lcm{ri j }i< j . In particular,

if n = 2, i.e., if B = k〈x, y〉/(xy − qyx), then the condition on q = q ∈ k× in
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Theorem 1.5 is that the order of q is coprime to d! or infinite. On the other hand,
the condition on q in Theorem 1.5 is also satisfied if each qi j is not a root of unity
and the set of the qi j is multiplicatively independent; here, |Gq/G0

q | = 1. See
Example A.3 for a discussion of how to compute |Gq/G0

q | in general.
One may compare Theorem 1.5 to a similar result, Theorem 4.3 of [Chan et al.

2014], in the case where the Hopf action preserves the grading of kq[x1, . . . , xn].
But note that without the degree-preserving assumption, semisimplicity is still
needed in Theorem 1.5; see [Etingof and Walton 2015; 2016, Example 3.6] for
counterexamples for n = 1, 3, respectively.

Moreover, Theorem 1.5 is valid for finite dimensional Hopf algebras in the Hopf–
Galois case, where we can replace the condition “coprime to d!” with “coprime
to d” (Proposition 5.1). Also, Theorem 1.5 has a straightforward generalization
(with the same proof) to actions on the quantum torus kq[x±1

1 , . . . , x±1
n ].

Another generalization of Theorem 1.5 to the nonsemisimple case can be made
under a nondegeneracy assumption. Recall that q may be viewed as a skew-
symmetric bicharacter on Zn with values in k×, with q(ei , e j )= qi j for the standard
basis {ei }. A bicharacter q is called nondegenerate if the character q(a, · ) :Zn

→ k×

is nontrivial whenever a 6=0. Note that unlike skew-symmetric bilinear forms (which
are always degenerate in odd dimensions), a skew-symmetric bicharacter can be
nondegenerate for any n ≥ 2.

Theorem 5.2. Let H be a finite dimensional Hopf algebra of dimension d acting
on B := kq[x1, . . . , xn]. Assume that the order of Gq/G0

q is coprime to d!, and q is
a nondegenerate bicharacter. Then, the action of H on B factors through a group
algebra.

It is shown in Example 5.5 that Theorems 1.5 and 5.2 fail when hypotheses
are removed; these examples involve actions of the nonsemisimple 4-dimensional
Sweedler Hopf algebra.

1D. Twisted homogeneous coordinate rings of abelian varieties and Sklyanin
algebras. Let X be an abelian variety over k, let L be an ample line bundle on X ,
and let σ : X→ X be an automorphism given by translation by a point s ∈ X . Then
we can define the twisted homogeneous coordinate ring

B(X, σ,L) :=
∞⊕

n=0
H 0
(

X,
n−1⊗
i=0
(σ i )∗L

)
,

with twisted multiplication f ∗ g := f (σ n)∗(g), where f is of degree n [Artin and
Van den Bergh 1990]. It is well-known that B(X, σ,L) is a domain, and if |σ |<∞,
then B(X, σ,L) is a PI domain of PI degree |σ |.

Let Gσ be the Zariski closure of the subgroup {si
}i∈Z, and let G0

σ be the connected
component of the identity in Gσ .
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Theorem 1.6 (Theorem 6.1). If H is a semisimple Hopf algebra of dimension d,
and if the order of Gσ/G0

σ is coprime to d!, then any H-action on B(X, σ,L)
factors through a group action.

In particular, if the subgroup {si
}i∈Z is Zariski-dense in X , then any semisimple

Hopf action on B(X, σ,L) factors through a group action. Moreover, if X =: E
is an elliptic curve, the condition on σ in Theorem 6.1 is that the order of σ is
coprime to d! or infinite.

Lastly, we study semisimple Hopf actions on another class of quantizations: the
3-dimensional Sklyanin algebras S(a, b, c) (Definition 6.3). To S(a, b, c), one can
naturally associate an elliptic curve Eabc ⊂ P2

k and an automorphism σabc given by
translation by a point; see [Artin et al. 1990, Introduction].

Theorem 1.7. If H is a semisimple Hopf algebra of dimension d, and if the order
of σabc is coprime to d! or infinite, then any H-action on S(a, b, c) factors through
a group action.

Remark 1.8. We believe that by adapting the techniques in this work, one could
establish a version of Theorem 1.7 for semisimple Hopf actions on other elliptic
algebras, such as in [Sklyanin 1982] (or, see [Smith and Stafford 1992]) and in
[Etingof and Ginzburg 2010; Odesskiı̆ 2002; Stephenson 1997]. Further, we believe
that under an appropriate nondegeneracy condition, there are no finite quantum
symmetry results for such elliptic algebras and for twisted homogeneous coordinate
rings B(X, σ,L) as above; compare to Theorem 5.2.

Our paper is organized as follows. We discuss semisimple Hopf actions on filtered
quantizations in Section 2, nonsemisimple Hopf actions on filtered quantizations in
Section 3, semisimple Hopf actions on quantum polynomial algebras in Section 4,
nonsemisimple Hopf actions on quantum polynomial algebras in Section 5, and Hopf
actions on twisted homogeneous coordinate rings of abelian varieties and Sklyanin
algebras in Section 6. The results of Sections 4–6 rely on a number-theoretic result
of Antonella Perucca discussed in the Appendix.

The notation and terminology of the introduction is used throughout this work,
often without mention.

2. Semisimple Hopf actions on filtered quantizations

2A. The result on semisimple Hopf actions on quantizations with PI reductions.
In this section, we study actions of semisimple Hopf algebras H on filtered quanti-
zations B. Throughout this section, we let B denote a Z+-filtered algebra over k
such that gr(B) is a commutative finitely generated domain; such B will be referred
to as a filtered quantization.
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Our goal is to prove Theorem 2.4. This result was established in [Cuadra et al.
2015] for B a Weyl algebra, and we generalize those techniques for our purpose
here.

Let R be a finitely generated subring of k. By an R-order in a filtered quantization
B we mean an R-subalgebra BR of B such that gr(BR) is a finitely generated
R-algebra which is projective as an R-module, and such that the natural map
gr(BR)⊗R k→ gr(B) is an isomorphism of graded k-algebras.

Lemma 2.1. (i) Any filtered quantization B admits an R-order BR for a suitable
ring R.

(ii) For any two orders BR over R and BR′ over R′, there exists a finitely generated
ring R′′ ⊂ k containing R and R′, and admitting an R′′-algebra isomorphism
φ : BR ⊗R R′′→ BR′ ⊗R′ R′′ such that grφ is an isomorphism.

Proof. (i) By the Hilbert basis theorem, the algebra gr(B) is finitely presented. This
implies that so is B, as we can lift the generators and defining relations of gr(B) to
those of B.

More specifically, pick homogeneous generators b̄1, . . . , b̄n of gr(B) of degrees
m1, . . . ,mn . Let

ps(b̄1, . . . , b̄n)= 0, s = 1, . . . , r

be a set of defining relations for gr(B), with ps ∈k[X1, . . . , Xn] being homogeneous
of degree ds (this set may be chosen to be finite by the Hilbert basis theorem). Let
b j be lifts of b̄ j to B, and p̃s be homogeneous lifts of ps to k〈X1, . . . , Xn〉. Then
[bi , b j ] = fi j (b1, . . . , bn), where fi j ∈ k〈X1, . . . , Xn〉 is a noncommutative polyno-
mial of filtration degree at most mi +m j −1, and p̃s(b1, . . . , bn)= p′s(b1, . . . , bn),
where p′s ∈ k〈X1, . . . , Xn〉 is a noncommutative polynomial of filtration degree at
most ds − 1.

Let gs := p̃s − p′s ∈ k〈X1, . . . , Xn〉. Thus, we have relations

[bi , b j ] = fi j (b1, . . . , bn) and gs(b1, . . . , bn)= 0 (1)

in B. It is easy to see that these relations are defining, since they are already defining
at the graded level.

Using relations (1), we can find a suitable finitely generated subring R ⊂ k and
define BR ⊂ B as follows. We take R̃ to be the ring generated by all the coefficients
of the polynomials fi j , gs , and set R= R̃[1/ f ] for a suitable f ∈ R̃. Now let BR be
the subalgebra of B generated over R by b1, . . . , bn . We can choose f so that (1)
are defining relations for BR , and so that BR is an R-order on B, since for a suitable
choice of f , gr(BR) is a projective (in fact, free) R-module by Grothendieck’s
generic freeness lemma [Eisenbud 1995, Theorem 14.4]. This proves (i).



2294 Pavel Etingof and Chelsea Walton

(ii) Note that we have a natural isomorphism of filtered algebras

φ̃ : BR ⊗R k→ BR′ ⊗R′ k

(as both are equal to B). This isomorphism is defined over some finitely generated
ring R′′ ⊂ k containing R and R′, which implies (ii). �

Lemma 2.2. Suppose that B is a filtered quantization that carries an action of
a finite dimensional Hopf algebra H. Let S be a finitely generated subring of k,
and BS be an S-order in B. Then one can find a finitely generated subring R ⊂ k
containing S and a Hopf order HR ⊂ H (cf. [Cuadra et al. 2015, Definition 2.1]),
so that there is an induced action of HR on BR := BS ⊗S R which gives the action
of H on B upon tensoring over R with k.

Proof. We use the method of [Cuadra et al. 2015, Section 2]. Pick homogeneous
generators b̄1, . . . , b̄n of gr(BS), and let b j be lifts of b̄ j to BS . Choose a basis
{hm} of H . We have

hm · b j = qmj (b1, . . . , bn) (2)

for some noncommutative polynomials qmj ∈ k〈X1, . . . , Xn〉. Let R be generated
over S by the structure constants of H in the basis {hm} and the coefficients of qmj .
Let HR ⊂ H be the span of hm over R. Then, HR ⊂ H is a Hopf order, and HR

acts on BR by formula (2). The lemma is proved. �

Thus, any action of H on B admits an R-order for some finitely generated ring
R ⊂ k. Moreover, it is easy to see from Lemma 2.1(ii) that any two such orders
over rings R and R′ can be identified after tensoring with some finitely generated
ring R′′ ⊂ k containing R and R′, so an order is essentially unique.

Now fix a ring R and an R-order BR ⊂ B with an action of HR . Let p be a
sufficiently large prime, and ψ : R→ Fp be a character. Following [Cuadra et al.
2015, Section 2], let Hp := HR ⊗R Fp, Bp := BR ⊗R Fp be the corresponding
reductions of H, B modulo p, where Fp is an R-module via ψ . Then, Hp acts on
Bp (by applying ψ to the action of HR on BR).

Lemma 2.3. For a sufficiently large prime p, gr(Bp), and hence Bp, is a domain.

Proof. We have gr(Bp) = gr(BR)⊗R Fp. Therefore, the statement follows from
[Grothendieck 1966, 9.7.7(i)] (“geometric irreducibility”). �

Theorem 2.4. If B is an algebra with PI reductions, then any semisimple Hopf
action on B factors through a group action.

Proof. We may assume without loss of generality that the action of H on B is inner
faithful (otherwise we can pass to an action of a quotient Hopf algebra).

Take p � 0. Then by [Cuadra et al. 2015, Proposition 2.4] (which applies
with the same proof in our more general situation), Hp acts inner faithfully on Bp.



Finite dimensional Hopf actions on algebraic quantizations 2295

Moreover, as in [Cuadra et al. 2015, Lemma 2.5], Hp is a semisimple cosemisimple
Hopf algebra over Fp.

Since B is an algebra with PI reductions, by Lemma 2.3, the algebra Bp is a PI
domain. Let Dp be the division algebra of quotients of Bp. Then by [Etingof 2016,
Corollary 3.2(ii)], Dp is a central division algebra of degree pn for some n ≥ 0
(which may depend on p). Moreover, Hp acts inner faithfully on Dp by [Skryabin
and Van Oystaeyen 2006, Theorem 2.2].

Since deg Dp = pn is coprime to (dim H)!, [Cuadra et al. 2015, Proposi-
tion 3.3(ii)] implies that Hp is cocommutative. Thus, H is cocommutative (as
in the proof of [Cuadra et al. 2015, Theorem 4.1]), and thus is a group algebra. �

2B. Some examples of filtered quantizations. As a consequence, Theorem 2.4 ap-
plies to semisimple Hopf actions on many classes of filtered quantizations. Namely,
we will consider the following examples.

Twisted differential operators. Let X be a smooth affine irreducible algebraic variety
over k, and ω a closed 2-form on X . Then we define the algebra of twisted
differential operators Dω(X) to be the algebra generated by O(X) and elements
Lv attached k-linearly to vector fields v ∈ DerO(X) on X , with defining relations

L f v = f Lv, [Lv, f ] = v( f ), [Lv, Lw] = L [v,w]+ω(v,w)

for f ∈ O(X), v,w ∈ Der O(X). Then Dω(X) carries a filtration defined by
deg O(X)= 0 and deg Lv = 1 for v ∈ Der O(X), and gr(Dω(X))= O(T ∗X), the
algebra of functions on the symplectic variety T ∗X .

The filtered algebra Dω(X) depends only on the cohomology class [ω] of ω, and
if [ω] = 0, then Dω(X)= D(X), the algebra of usual differential operators on X .
For more on twisted differential operators, see, e.g., [Beı̆linson and Bernstein 1993,
Section 2].

Quantum Hamiltonian reductions. Let G be a reductive algebraic group over k
with Lie algebra g, and let (V, ( · , · )) be a faithful finite dimensional symplectic
representation of G. Let A(V ) be the Weyl algebra of V , generated by v ∈ V with
relations [v,w] = (v,w) for v,w ∈ V . We have a natural action of G on A(V )
which preserves its filtration. In this case, we have a natural G-equivariant Lie
algebra map µ̂ : g→ A(V ) called the quantum moment map, which quantizes the
classical moment map µ : V → g∗, where µ(v)(a) = 1

2(v, av) for v ∈ V , a ∈ g.
Now, given a character χ : g→ k, we can define the algebra

B(χ) := [A(V )/A(V )(µ̂(a)−χ(a), a ∈ g)]G,

called the quantum Hamiltonian reduction of A(V ) by G using χ . It inherits a
filtration from the Weyl algebra. See [Etingof 2007, Chapter 4] for further details.
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Assume that the moment map µ is flat, and that the scheme µ−1(0) is reduced
and irreducible (i.e., µ−1(0) is a reduced irreducible complete intersection). In this
case, X := µ−1(0)/G is an irreducible generically symplectic Poisson variety, and
B(χ) is a filtered quantization of O(X). See [Losev and Etingof 2015, Section 2.3;
Nakajima 2015, Section 2(i)], and references therein for more details.

An interesting special case of this is when

G =
( r∏

i=1

GL(Vi )

)
/k× and V =

⊕
i, j

(Vi ⊗ V ∗j )
⊕mi j ,

where Vi are finite dimensional vector spaces and mi j = m j i are positive integers
with mi i even; i.e., V is the space of representations of a doubled quiver, and G is the
group of linear transformations for this quiver. In this case, B(χ) is the quantized
quiver variety; see, e.g., [Braden et al. 2012, Section 3.4]. The conditions under
which µ is flat and µ−1(0) is reduced and irreducible are given in [Crawley-Boevey
2001, Theorems 1.1 and 1.2].

Finite W-algebras. Let g be a simple Lie algebra over k, and e ∈ g a nilpotent
element. To this data one can attach a Lie subalgebra m ⊂ g with a character χ ,
and a finite W-algebra is

U (g, e) :=
(
U (g)/U (g)(a−χ(a), a ∈m)

)adm
,

a quantum Hamiltonian reduction of U (g). The algebra U (g, e) has a filtration
induced by the filtration in U (g), and its associated graded algebra is a polynomial
algebra (of functions on the corresponding Slodowy slice). We refer the reader to
[Losev 2010, Sections 2.3 and 2.4] and the references therein for details.

Also, the center U (g)g of U (g) embeds into U (g, e), so for any central character
θ :U (g)g→ k, one can consider the central reduction

Uθ (g, e) :=U (g, e)/(a− θ(a), a ∈U (g)g).

Then gr(Uθ (g, e))= O(X), where X is the nilpotent Slodowy slice, a generically
symplectic Poisson variety.

Symplectic reflection algebras. Let G be a finite group and V a faithful finite dimen-
sional symplectic representation of G, and assume that V is not a direct sum of two
nonzero symplectic representations. The symplectic reflection algebra Ht,c(G, V )
is the most general filtered deformation of kGn SV , where [Fi , F j ] ⊂ Fi+ j−2; here
t ∈ k, and c is a conjugation invariant function on the set of symplectic reflections
in G; see [Etingof 2007, Chapter 8].

Let e= |G|−1∑
g∈G g be the symmetrizing idempotent for G. Then, the algebra

eHt,c(G, V )e is called the spherical symplectic reflection algebra. For t = 1, it is a
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filtered quantization of O(X), where X = V/G, a generically symplectic Poisson
variety.

Remark 2.5. There are many other interesting examples of filtered quantizations,
and our results given below can be extended to such examples. Since this extension
is rather routine, we leave it outside the scope of this paper.

2C. Results on semisimple Hopf actions on specific filtered quantizations. Here
are some concrete applications of Theorem 2.4.

Corollary 2.6. Let B be one of the following filtered k-algebras:

(i) any filtered quantization B generated in filtered degree one; in particular,
the enveloping algebra U (g) of a finite dimensional Lie algebra g, or the
algebra Dω(X) of twisted differential operators on a smooth affine irreducible
variety X ;

(ii) a finite W-algebra or its quotient by a central character;

(iii) a quantum Hamiltonian reduction of a Weyl algebra by a reductive group
action; in particular, the coordinate ring of a quantized quiver variety;

(iv) a spherical symplectic reflection algebra; or

(v) the tensor product of any of the algebras above with any commutative finitely
generated domain over k.

Then any semisimple Hopf action on B factors through a group action.

Note that in some of these cases, a stronger statement is true: any finite dimen-
sional (not necessarily semisimple) Hopf action on B factors through a group action;
see Corollary 3.7 below. However, we still prefer to prove the weaker version here,
since the proof is simpler (e.g., it does not require reduction modulo prime powers).

Proof. By Theorem 2.4, our job is to show that B is an algebra with PI reductions.
In other words, we need to show that the division algebra Dp of fractions of Bp is
central (i.e., there is a “p-center”) for p� 0. We do so below in each case.

(i) We show that if a filtered quantization A of a commutative finitely generated
domain A0 over a field F of characteristic p > 0 is generated in degree one, then it
is module-finite over its center after localization; this implies the required statement.

Let A0[i] be the degree i part of A0. Then A0[0] = A[0] is a finitely generated
commutative domain. Let ā1, . . . , ān be generators of A0[1] as an A0[0]-module.
Let ai be lifts of āi to A. Then, ai and A[0] generate A as an algebra. Also, the
operators [ai , · ] are derivations of A[0], and hence vanish on A[0]p. Thus, A[0]p is
central in A. Let K be the field of quotients of A[0]p, and let A′ := A⊗A[0]p K . The
K-algebra A′ is generated in filtration degree 1, and L := F1 A′ is a finite dimensional
vector space over K (as it is spanned by 1, a1, . . . , an over A[0] ⊗A[0]p K , and
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A[0] is module-finite over A[0]p as A[0] is a finitely generated algebra). Also, L
is closed under commutator. Thus, L is a finite dimensional Lie algebra over K ,
and A′ is a quotient of the enveloping algebra U (L). But the enveloping algebra of
a finite dimensional Lie algebra in characteristic p is module-finite over its center
(i.e., there is a p-center; see [Jacobson 1952; 1962, Chapter 6, Lemma 5]). This
implies that A′ is module-finite over its center, as desired.

(ii) Since a W-algebra is a quantum Hamiltonian reduction of the enveloping algebra
U (g) of a semisimple Lie algebra g [Losev 2010], the statement follows from (i).

(iii) This also follows from (i) and the definition of the quantum Hamiltonian
reduction.

(iv) This holds by [Etingof 2006, Theorem 9.1.1 (in the appendix)].

(v) This follows easily from the previous cases. �

3. Finite dimensional Hopf actions on filtered quantizations

3A. Hopf–Galois actions. Theorem 2.4 does not hold for nonsemisimple Hopf
actions, as there are many inner faithful actions of nonsemisimple finite dimensional
Hopf algebras on commutative domains; see [Etingof and Walton 2015]. However,
Theorem 2.4 is valid in the Hopf–Galois case.

Theorem 3.1. Let B be a filtered quantization of a commutative finitely generated
domain with PI reductions, and let H be a finite dimensional Hopf algebra over k
which acts on B. Assume that this action gives rise to an H∗-Hopf–Galois extension
B H
⊂ B. Then H is a group algebra.

Proof. The result follows from the arguments in the proofs of Theorem 2.4 and
[Cuadra et al. 2015, Theorem 4.2]. Namely, recall Notation 1.3. We show, similarly
to the proof of Theorem 2.4, that Z is Hp-stable, and then proceed as in the proof of
[Cuadra et al. 2015, Theorem 4.2]. Specifically, by [Etingof 2016, Corollary 3.2(ii)],
Dp has degree pn over its center Z = Z(Dp) for some n, so by [Cuadra et al. 2015,
Proposition 3.3(i)], Z is Hp-invariant. Now, since the action of H on B gives
rise to a Hopf–Galois extension, so does the action of Hp on Z , i.e., the algebra
map Z ⊗Z Hp Z→ Z ⊗ H∗p is an isomorphism. Thus, H∗p is commutative and Hp

is cocommutative, so H is cocommutative [Cuadra et al. 2015, Lemma 2.3(ii)],
i.e., a group algebra by the Cartier–Gabriel–Kostant theorem [Montgomery 1993,
Corollary 5.6.4(3) and Theorem 5.6.5]. �

3B. Preparatory results on nondegenerate quantizations. Another generalization
of Theorem 2.4 concerns nondegenerate quantizations, defined in Definition 1.4.
To obtain it, we first need to generalize [Cuadra et al. 2016, Theorem 3.2]. Let
H be a finite dimensional Hopf algebra over an algebraically closed field F of
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characteristic p > 0, and let Z be a finitely generated field extension of F . Let
Z(m), for m ≥ 1, be a collection of subfields of Z such that Z(m)⊃ Z(m+ 1) for
all m ≥ 1.

Theorem 3.2. Suppose that
⋂

m≥1 Z(m)= F , and that [Z : Z(m)] is a power of p
for all m≥ 1. Assume that H acts F-linearly and inner faithfully on Z . If p> dimH
and H preserves Z(m) for all m, then H is a group algebra.

Proof. The proof is the same as that of [Cuadra et al. 2016, Theorem 3.2]. Indeed,
the only properties of the fields Z pm

used in that proof are that their intersection is
F and that the degree of Z over Z pm

is a power of p. �

We will also need the lemma below from commutative algebra. We first introduce
the following notation. Let WN =WN (F) :=W (F)/(pN ) be the N -th truncated Witt
ring of F (WN is an algebra over Z/pN Z; cf. [Cuadra et al. 2016, Subsection 2.1]).
Let Y be an irreducible smooth affine algebraic variety over F with structure algebra
A := O(Y ), and Ỹ be a flat deformation of Y over WN . Let 1 ≤ m ≤ N , and let
Am := O(Ỹ )/(pm) (a free Z/pmZ-module); thus A1 = A and Am−1 = Am/(pm−1)

for m ≥ 2. Let
dm : Am→�Am/Wm

be the differential.

Lemma 3.3. For 1≤ m ≤ N , the image of ker(dm) in A is Apm
.

Proof. It is clear that the image of ker(dm) contains Apm
, so it remains to establish

the opposite inclusion. We do so by induction in m.
The base of induction is the equality ker(d|A) = Ap, which is the Cartier iso-

morphism in degree zero [Katz 1970, Section 7]. Alternatively, here is a direct
proof. Since A is integrally closed in its quotient field L := Frac(A), we may
replace A with L . Note that L can be represented as a finite separable extension
of F(y1, . . . , yn), where n = dim Y . Given f ∈ L such that d f = 0, consider the
minimal polynomial P(t)= tr

+ar−1tr−1
+· · ·+a0 of f over E := F(y1, . . . , yn).

Applying the differential to the equation P( f )= 0, we get
∑r−1

j=0 f j da j = 0. Since
P is the minimal polynomial, this implies that da j = 0 for all j . Thus a j ∈ E p (as
the statement in question is easy for purely transcendental fields). Thus, E p( f ) is
a finite separable extension of E p (as P is a separable polynomial). But E p( f )
is a purely inseparable extension of E p( f p). Hence, E p( f ) = E p( f p), that is,
f ∈ E p( f p)⊂ L p, as desired.

To perform the induction step, suppose f ∈ ker(dm). Our job is to show that the
image f̄ of f in A is contained in Apm

. By the induction assumption we know that
f̄ = bpm−1

for some b ∈ A, so it remains to show that b = cp for some c ∈ A.
For this, we expand f in a power series in some local coordinate system

y1, . . . , yn on Ỹ . It is easy to see by looking at monomials that if g∈Wm[[y1, . . . , yn]]
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and dg = 0, then the reduction ḡ of g modulo p lies in F[[y pm

1 , . . . , y pm

n ]]. In
particular, F[[y pm

1 , . . . , y pm

n ]] contains the power series expansion of f̄ in yi . This
means that the power series expansion of b is in F[[y p

1 , . . . , y p
n ]]. Thus, db= 0. By

the base of induction we conclude that b = cp for some c ∈ A, which completes
the induction step. �

Moreover, we will need the result below.

Lemma 3.4. Let B be an algebra with PI reductions, and let Dp denote the full
localization (i.e., the ring of fractions) of the reduction Bp of B, for p� 0. Then
the center Z of Dp is a finitely generated field extension of Fp.

Proof. Let v1, . . . , vN be a basis of Dp over Z , and let b1, . . . , bn be generators
of Bp. Then bsvi =

∑N
j=1 β

j
siv j for β j

si ∈ Z . Let K denote the field Fp(β
j

si ).
Now take z ∈ Z . Then z ∈ Dp, so z= c−1b, and hence cz= b for some b, c ∈ Bp

with c 6= 0. Since b, c ∈ Bp, they are noncommutative polynomials in b1, . . . , bn

over Fp. So, bvi =
∑
β

j
i v j , cvi =

∑
γ

j
i v j , with β j

i , γ
j

i ∈ K . But γ j
i z = β j

i and
γ

j
i are not all zero. So, z ∈ K and hence Z = K . Thus, Z is a finitely generated

extension of Fp. �

3C. Hopf actions on nondegenerate quantizations. Now let B be a filtered quan-
tization with PI reductions.

Theorem 3.5. If B is a nondegenerate algebra with PI reductions, then any finite
dimensional Hopf action on B factors through a group action (i.e., the condition
that H is semisimple in Theorem 2.4 can be dropped).

Proof. The proof is obtained by combining the proofs of Theorem 2.4 and [Cuadra
et al. 2016, Theorem 1.1] with the following modifications.

1. In [Cuadra et al. 2016, Lemma 2.5] and below, xi , yi should be replaced by any
finite set of generators L1, . . . , Lr of B, and the number 2n in the proof of [Cuadra
et al. 2016, Lemma 4.3] should be replaced by r (cf. [Cuadra et al. 2016, proof of
Theorem 1.2]).

2. The discussion in [Cuadra et al. 2016, Subsection 2.4, Lemma 4.7, Proposi-
tion 4.8] (needed to justify the assumptions of [Cuadra et al. 2016, Theorem 3.2])
becomes unnecessary. Instead, note that if a ∈ Dpm is central modulo pm−1 for some
m ≥ 2, then a p is central. Hence Z(m)⊃ Z(m− 1)p, implying that Z(m)⊃ Z pm−1

and therefore [Z : Z(m)] is finite (by Lemma 3.4) and is a power of p. Now the
proof proceeds by invoking Theorem 3.2, whose assumptions are satisfied by the
nondegeneracy property of B and using a straightforward generalization of [Cuadra
et al. 2016, Lemma 4.6].
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3. The rest of the proof of [Cuadra et al. 2016, Theorem 1.1] is modified as in the
proof of Theorem 2.4. Namely, we use the PI reduction condition and [Etingof
2016, Corollary 3.2], which says that the PI degree of Bp is a power of p. �

The next theorem shows that the nondegeneracy assumption is satisfied, in
particular, when gr(B)= O(X), where X is generically symplectic.

Theorem 3.6. Let B be a quantization with PI reductions. Assume gr(B)= O(X),
where X is a generically symplectic Poisson variety. Then any action of a finite
dimensional Hopf algebra H on B factors through a group action.

Proof. By Theorem 3.5, it suffices to show that B is a nondegenerate quantization,
i.e., that

⋂
m≥1 Z(m)= Fp for p� 0.

Recall Notation 1.3. Let C be the center of Bp; thus, by Posner’s theorem
[McConnell and Robson 2001, Theorem 13.6.5], the field Frac(C) of fractions of
C is Z . Let Cm be the center of Bpm , and C(m) be its image in Bp.

Let a ∈ Bpm be central modulo p (i.e., the image ā of a in Bp lies in C). Then a p

is central modulo p2, a p2
is central modulo p3, and so on. Hence, C pm−1

⊂ C(m).
Let C ′m be the preimage of C pm−1

in Cm . Then the image of C ′m in Bp is C pm−1
.

We claim that
Z(m)= Frac(C(m)). (3)

Indeed, it is clear that Frac(C(m)) ⊆ Z(m). On the other hand, observe that any
element a ∈ Dpm can be written as a = c−1b, where c ∈ C ′m is nonzero modulo
p, and b ∈ Bpm (as this can be done modulo p, since Dp = Z pm−1

Bp). Now
given z ∈ Z(m), let z̃ be its lift to Zm . Writing z̃ = c−1b as above, we see that
b := cz̃ ∈ Cm . Let b̄ ∈ C(m) and c̄ ∈ C pm−1

⊂ C(m) be the reductions of b and c
modulo p, respectively. We have b̄= c̄z, hence z= c̄−1b̄ ∈ Frac(C(m)), as claimed.

Now let B0pm := gr(Bpm ). This is a Poisson algebra over the truncated Witt
ring Wm,p. Let C0m be the Poisson center of B0pm , and C0(m) be the image of C0m

in B0p. Then gr(Cm)⊂ C0m and hence

gr(C(m))⊂ C0(m). (4)

Let Z0 := Frac(B0p). Since X is generically symplectic, C0m coincides with the
set of all f ∈ B0pm such that d f = 0. By Lemma 3.3 (taking Ỹ to be the reduction
modulo pm of a symplectic dense affine open subset U ⊂ X ), this implies that

Frac(C0(m))⊂ Z pm

0 . (5)

Now suppose that z ∈
⋂

m≥1 Z(m) with z 6= 0. Then by (3), for each m, we have
z = fm/gm for fm, gm ∈ C(m). Let f 0

m, g0
m ∈ gr(C(m)) be the leading terms of

fm, gm . By (4), f 0
m, g0

m ∈ C0(m). Then for any m, n we have f 0
m g0

n = f 0
n g0

m since
fm gn = fngm . So z0 := f 0

m/g0
m is independent of m and by (5) belongs to Z pm

0 for
all m ≥ 0. As

⋂
m≥1 Z pm

0 is a perfect field that is finitely generated over Fp, we get
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that
⋂

m≥1 Z pm

0 = Fp. So, z0 ∈ Fp is a nonzero constant, and f 0
m = z0g0

m for all m;
in particular,

deg( fm)= deg(gm). (6)

Now z−z0= ( fm−z0gm)/gm , and the numerator has degree strictly less than deg gm .
This violates (6), so z− z0 = 0, i.e., z ∈ Fp. This proves the theorem. �

Corollary 3.7. Let B be one of the following algebras:

(i) a quotient of a finite W-algebra by a central character;

(ii) a Hamiltonian reduction of a Weyl algebra by a reductive group action; in
particular, the coordinate ring of a quantized quiver variety;

(iii) a spherical symplectic reflection algebra H1,c(G, V ); or

(iv) the tensor product of any of the algebras in (i)–(iii).

Then any action of a finite dimensional Hopf algebra H on B factors through a
group action.

Proof. It is explained in Section 2B that in examples (i)–(iv), we have gr(B)=O(X),
where X is generically symplectic. This implies the corollary. �

Proposition 3.8. Theorems 2.4, 3.1, 3.5, and 3.6 remain valid if B is replaced by
its quotient division algebra Frac(B).

Proof. The proofs are obtained by combining the proofs of Theorems 2.4, 3.1, 3.5,
and 3.6 with the proof of [Cuadra et al. 2015, Proposition 4.4]. (The exact form
of the generators of B used in the proof of [Cuadra et al. 2015, Proposition 4.4] is
irrelevant for the argument.) �

4. Semisimple Hopf actions on quantum polynomial algebras

We now turn to finite dimensional Hopf actions on quantum polynomial algebras

kq[x1, . . . , xn] := k〈x1, . . . , xn〉/(xi x j − qi j x j xi ),

where q = (qi j ), qi j ∈ k× with qi i = 1 and qi j q j i = 1. We view q as a point of the
algebraic torus (k×)n(n−1)/2 with coordinates qi j , i < j . Let 〈q〉 be the subgroup
in (k×)n(n−1)/2 generated by q, and let Gq be its Zariski closure. Let G0

q be the
connected component of the identity in Gq .

Theorem 4.1. Let H be a semisimple Hopf algebra of dimension d. If the order of
Gq/G0

q is coprime to d!, then any H-action on B := kq[x1, . . . , xn] factors through
a group action.

Proof. We may assume that H acts on B := kq[x1, . . . , xn] inner faithfully. Let
R ⊂ k be a finitely generated subring containing qi j , let BR := Rq[x1, . . . , xn] be
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the quantum polynomial algebra defined over R, and let HR be a Hopf R-order
with an action on BR which becomes the action of H on B upon tensoring with k.

Similarly to the proof of Theorem 2.4, we need to control the PI degree of BR

after reducing modulo p; we employ a version of the number-theoretic result of
A. Perucca (as presented in the Appendix) to do so.

Given a number field K and a ring homomorphism ξ : R→ K , let R′ := ξ(R),
HR′ := HR⊗R R′, BR′ := BR⊗R R′= R′ξ(q)[x1, . . . , xn]. Then HR′ acts on BR′ inner
faithfully. For a generic choice of ξ , any multiplicative relation satisfied by ξ(qi j ) is
already satisfied by qi j , so by Example A.3, we have |Gq/G0

q | = |Gξ(q)/G0
ξ(q)|. By

Corollary A.2, there exist infinitely many primes p with prime ideals p⊂ R′ lying
over them such that, for a generic homomorphism ψ : R′→ Fp annihilating p, the
order N := Np of ψ ◦ξ(q) is finite and relatively prime to d!. Let Hp := HR′⊗R′ Fp

and Bp := BR′ ⊗R′ Fp be the corresponding reductions of H and B modulo p. For
large enough p, the Hopf algebra Hp is semisimple and cosemisimple by [Cuadra
et al. 2015, Lemma 2.5], and Bp is a PI domain with PI degree dividing N n (as x N

i
are central elements in Bp). Moreover, Hp acts on Bp inner faithfully by a version
of [Cuadra et al. 2015, Proposition 2.4] adapted to the algebra B (with the same
proof).

Let Dp be the quotient division algebra of Bp. Then the PI degree of Dp

divides N n , and is therefore coprime to d!. Further, Hp acts inner faithfully on Dp.
Hence, [Cuadra et al. 2015, Proposition 3.3(ii)] implies that Hp is cocommutative.
Since this happens for infinitely many primes, we conclude that HR′ is cocommuta-
tive. Since this happens for generic maps ξ , this implies that HR is cocommutative.
Thus H is cocommutative, i.e., H is a group algebra. �

Corollary 4.2. The conclusion of Theorem 4.1 holds when qi j = qmi j , where
mi j =−mj i are integers, and the order of q ∈ k× is infinite or is coprime to d!.

Proof. This is a special case of Theorem 4.1. �

Example 4.3. The assumption in Theorem 4.1 and Corollary 4.2 that the order of
Gq/G0

q is coprime to d! cannot be removed. For instance, there exists an inner
faithful action of the 8-dimensional noncommutative noncocommutative semisimple
Hopf algebra on the quantum polynomial algebra k−1[x, y]; see [Kirkman et al.
2009, Example 7.6]. In this case, |Gq/G0

q | = 2.

5. Finite dimensional Hopf actions on quantum polynomial algebras

Let us now extend the results of the previous section to not necessarily semisimple
Hopf algebras, under some additional assumptions.

First of all, when the action of H on B is Hopf–Galois, we can remove in
Theorem 4.1 the assumption that H is semisimple, and also weaken the coprimeness
assumption, replacing d! with d .
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Proposition 5.1. Suppose that a finite dimensional Hopf algebra H acts on B :=
kq[x1, . . . , xn], and the order of Gq/G0

q is coprime to d. If this action gives rise to
an H∗-Hopf–Galois extension B H

⊂ B, then the action of H on B factors through
a group algebra.

Proof. The proof is parallel to the proof of Theorem 3.1. The weaker coprimeness
assumption suffices since by the Hopf–Galois condition, [Dp : DH

p ] = d (not just
≤ d). Here, p� 0 and Dp is the full localization of B reduced modulo p via the
method in the proof of Theorem 4.1. �

Let us now give a generalization of Theorem 4.1 to the nonsemisimple case
under a nondegeneracy assumption.

Theorem 5.2. Let H be a finite dimensional Hopf algebra of dimension d acting
on B := kq[x1, . . . , xn]. Assume that the order of Gq/G0

q is coprime to d!, and q is
nondegenerate. Then the action of H on B factors through a group action.

Proof. The proof is obtained by combining the proofs of Theorems 3.5 and 4.1. Let
us describe the necessary changes.

We argue as in the proof of Theorem 4.1. Fix a generic character ξ : R→ K
from R to a number field K , and set R′ = ξ(R). By Corollary A.2, there exist
infinitely many primes p with prime ideals p⊂ R′ lying over them such that, for a
generic homomorphism ψ : R′→ Fp annihilating p, the order N := Np of ψ ◦ ξ(q)
is finite and coprime to d!.

Consider the image Z(m) of the center Zm of Dpm in Dp (thus, Z(1) = Z ).
By a straightforward generalization of [Cuadra et al. 2016, Lemma 4.6], Z(m) is
preserved by the action of Hp. It is clear that Z(m) is generated by the monomials
xm1

1 · · · x
mn
n such that

∏
j qm j

i j = 1 in the truncated ring of Witt vectors Wm,p (see
[Cuadra et al. 2016, Section 2.1]). Let W ′m,p be the kernel of the natural map of
multiplicative groups W×m,p→ F×p . Then every element of W ′m,p has order a power
of p. Hence, [Z : Z(m)] is a power of p. Also it is clear from the nondegeneracy
condition for q that

⋂
m Z(m)=Fp. Thus, Theorem 3.2 applies, and yields that Hp is

cocommutative. Hence HR′ is cocommutative, implying that HR is cocommutative
and ultimately that H is cocommutative, i.e., a group algebra. �

Remark 5.3. If qi j = qmi j , where q is not a root of unity, then q is nondegenerate
if and only if det(mi j ) 6= 0. Theorem 5.2 applies in this case. This gives a general-
ization of [Chan et al. 2014, Theorem 0.4] to nonhomogeneous Hopf actions for
even n.

Proposition 5.4. Theorem 4.1, Corollary 4.2, and Theorem 5.2 remain valid if the
quantum polynomial algebra B is replaced by the quantum torus kq[x±1

1 , . . . , x±1
n ]

or the division algebra of quotients Frac(B).
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Proof. In the case of the quantum torus, the proof is analogous to the proof of
Theorem 4.1. The case of the division algebra of quotients is obtained using the
same argument as in the proof of [Cuadra et al. 2015, Proposition 4.4]. �

Example 5.5. The condition that H is semisimple cannot be dropped in Theorem 4.1,
and the condition that q is nondegenerate cannot be dropped in Theorem 5.2.

Namely, let A= A0⊕A1 be a Z/2Z-graded domain with a nonzero central element
z ∈ A1, and take H to be the 4-dimensional Sweedler Hopf algebra generated by a
group-like element g and a (g, 1)-skew-primitive element u with g2

= 1, u2
= 0

and gu+ ug = 0.

(1) Then there is an action of H on A (not preserving the grading of A) given by
g ·a= (−1)deg aa, and u ·a= 0 if a ∈ A0 and u ·a= za if a ∈ A1. It is easy to check
that this action is well-defined, and it is inner faithful since u acts by a nonzero
operator.

(2) In particular, we have an inner faithful action of H on the quantum polynomial
algebra kq [x, y], for q a root of unity of any odd order 2m− 1, m > 0; namely, we
can take z = x2m−1.

(3) This gives an inner faithful action of H on the quantum torus kq [x±1
1 , . . . , x±1

n ]

if n is odd: we can take the central element

z = x1x−1
2 x3 · · · x−1

n−1xn.

For even n, such an action is impossible if q is not a root of unity by Theorem 5.2.
Indeed, the matrix mi j := sign( j − i) is nondegenerate if and only if n is even (see
Remark 5.3).

(4) Finally, this gives an inner faithful Sweedler Hopf algebra action on the Weyl
algebra An(F) when char(F)= p ≥ 3; the Z/2Z grading is defined by giving the
generators degree 1, and we can take, for instance, z = x p

1 . (Note that by [Cuadra
et al. 2016, Theorem 1.1], this is impossible in characteristic zero; indeed, the center
of An(k) is k.)

6. Semisimple Hopf actions on twisted homogeneous coordinate rings
and 3-dimensional Sklyanin algebras

Now let us consider semisimple Hopf actions on twisted homogeneous coordinate
rings of abelian varieties. We keep the notation of Section 1D.

Let H be a Hopf algebra over k of dimension d.

Theorem 6.1. We have the following statements.

(i) If H is semisimple, and if the order of Gσ/G0
σ is coprime to d!, then any

H-action on B := B(X, σ,L) factors through a group action.
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(ii) Moreover, part (i) holds for the H-action on the division algebra of quotients
Frac(B) of B.

(iii) Part (i) also holds for not necessarily semisimple H if the order of Gσ/G0
σ is

coprime to d and the H-action gives rise to a Hopf–Galois extension.

Proof. The proofs of the statements (i)–(iii) are parallel to the proofs of Theorem 4.1,
Proposition 5.4, and Proposition 5.1, respectively, where we use that the PI degree
of B equals the order of σ . The only difference is that Corollary A.2 is applied to
the abelian variety X with subgroup {si

}i∈Z rather than the torus (k×)n(n−1)/2 with
subgroup 〈q〉. �

In particular, if X =: E is an elliptic curve, Theorem 6.1 holds if the order of σ
is coprime to d! or infinite. Moreover, if σ has infinite order, the assumption that
H is semisimple can be dropped.

Theorem 6.2. Let E be an elliptic curve, and take σ ∈ Aut(E) given by translation
by a point of infinite order. Then any finite dimensional Hopf action on B(E, σ,L)
factors through a group action.

Proof. The proof repeats the proofs of Theorems 5.2 and 3.5 without significant
changes. �

Finally, let us consider semisimple Hopf actions on 3-dimensional Sklyanin
algebras [Artin et al. 1990; Odesskiı̆ and Feı̆gin 1989]. Let F be an algebraically
closed field of characteristic not equal to 2 or 3.

Definition 6.3. Let a, b, c ∈ F× be such that

(3abc)3 6= (a3
+ b3
+ c3)3.

The 3-dimensional Sklyanin algebra, denoted by S(a, b, c) is generated over F by
x , y, z with defining relations

ayz+ bzy+ cx2
= azx + bxz+ cy2

= axy+ byx + cz2
= 0.

It is known that S(a, b, c) is Koszul with Hilbert series (1− t)−3 (see [Artin
et al. 1990, Theorems 6.6(ii) and 6.8(i)] and a result of J. Zhang [Smith 1996,
Theorem 5.11]), so that S(a, b, c) is a flat deformation of the algebra of polynomials
in three variables (see, e.g., [Tate and Van den Bergh 1996, Theorem 1.1]). Moreover,
the center of S(a, b, c) contains an element T of degree 3, and S(a, b, c)/(T ) =
B(E, σ,L), where E is the elliptic curve in P2 given by the equation

(a3
+ b3
+ c3)xyz = abc(x3

+ y3
+ z3),

σ is given by translation by the point (a : b : c)∈ E , and L is a line bundle of degree
3 on E .
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Theorem 6.4. Let S(a, b, c) be a 3-dimensional Sklyanin algebra over k and let H
be a semisimple Hopf algebra over k of dimension d. If the order of σ ∈ Aut(E) is
coprime to d! or infinite, then any H-action on S(a, b, c) factors through a group
action.

Proof. It is known from the theory of Sklyanin algebras that if σ has order N ,
then S(a, b, c) is PI with PI degree N (see [Artin et al. 1994, part 5 of theorem
on page 7]). Therefore, Theorem 6.4 is proved similarly to Theorem 4.1, using
Corollary A.2 for elliptic curves, as in Theorem 5.2. �

Remark 6.5. The semisimplicity condition on H in Theorem 6.1 and the infinite
order condition in Theorem 6.2 cannot be dropped, as there exists a Sweedler
Hopf algebra action on B := B(X, σ,L) if σ has odd order N . Namely, we take
a sufficiently large odd number m such that the line bundle L⊗m is very ample (it
exists since L is ample). Now B[mN ] 6= 0 and there exists an eigenvector f of σ
in B[mN ]. We then take z = f N, a nonzero central element of odd degree mN 2, so
that a desired action is given by Example 5.5.

Also, the semisimplicity assumption in Theorem 6.4 cannot be dropped, as
there exists a Sweedler Hopf algebra action on S(a, b, c) for any a, b, c, given by
Example 5.5 where we use the central element T in place of the element z.

Appendix

The goal of this Appendix is to provide number-theoretic results needed in Section 4.
We start by quoting a result from [Perucca 2009] (in which we take F to be the
number field K itself).

Theorem A.1 [Perucca 2009, Theorem 7]. Let G be the product of an abelian
variety and a torus defined over a number field K . Let g ∈ G(K ) be a K-rational
point on G such that the Zariski closure Gg of the subgroup 〈g〉 ⊂ G(K ) generated
by g is connected. Fix a positive integer r . Then there exists a positive Dirichlet
density of primes p of K such that the order of g modulo p is coprime to r . �

Corollary A.2. Let K ,G be as in Theorem A.1, let g∈G(K ), and let ` := |Gg/G0
g|,

where G0
g is the connected component of the identity in Gg (i.e., Gg/G0

g = Z/`Z).
Fix a positive integer r coprime to `. Then there exists a positive Dirichlet density
of primes p of K such that the order of g modulo p is coprime to r .

The corollary above is used in the proof of Theorem 4.1, where d! is r and Np is
the order of g modulo p.

Proof. The order of g in Gg/G0
g is `, so Gg` = G0

g. Now the statement follows by
applying Theorem A.1 to g`. �

Example A.3. Let G be a split m-dimensional torus, and consider an element
g := (q1, . . . , qm) ∈ G. We have the following statements.
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(1) The group Gg is connected if and only if the group 0 generated by q1, . . . , qm

in K× is free, i.e., does not contain nontrivial roots of unity. Indeed both conditions
are equivalent to the condition that any character χ of G which maps g to an `-th
root of unity satisfies χ(g)= 1.

(2) More generally, |Gg/G0
g| = ` if and only if the group of roots of unity generated

by χ(g), where χ runs through characters of G such that χ(g) is a root of unity,
is µ`. In other words, ` is the order of the torsion subgroup in Zm/g⊥, where g⊥ is
the subgroup of characters χ such that χ(g)= 1. In particular, ` depends only on
the multiplicative relations satisfied by qi j .

(3) If dim G = 1 (i.e., G = Gm or an elliptic curve), then Gg is connected if and
only if g has infinite order or g = 1. More generally, |Gg/G0

g| = ` > 1 if and only
if g has order `.
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