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Multiple period integrals and cohomology
Roelof W. Bruggeman and Youngju Choie

We give a version of the Eichler–Shimura isomorphism with a nonabelian H 1

in group cohomology. Manin has given a map from vectors of cusp forms to a
noncommutative cohomology set by means of iterated integrals. We show that
Manin’s map is injective but far from surjective. By extending Manin’s map we
are able to construct a bijective map and remarkably this establishes the existence
of a nonabelian version of the Eichler–Shimura map.

1. Introduction

In the theory of modular forms the Eichler–Shimura isomorphism has played an
important role, with many applications. For instance, it gives integrality of eigenval-
ues for Hecke operators and algebraicity of the critical values of the L-functions of
modular forms, which, for example, enables the construction of p-adic L-functions
and gives a connection to Iwasawa theory as well as the computational aspects of
modular form theory. The Eichler–Shimura isomorphism relates spaces of cusp
forms of integral weight to a parabolic cohomology group, namely,

Sk(SL2(Z))⊕ Sk(SL2(Z))∼= H 1
par(SL2(Z),Ck−2[X, Y ]),

where Ck−2[X, Y ] is the SL2(Z)-module of homogeneous polynomials of degree
k− 2 in the indeterminates X , Y , and where Sk(SL2(Z)) (resp. Sk(SL2(Z))) is the
space of holomorphic (resp. antiholomorphic) cusp forms of weight k.

The Eichler–Shimura isomorphism was eventually extended in [Knopp 1974]
and [Knopp and Mawi 2010] by establishing a canonical isomorphism between
1-cohomology of cofinite discrete subgroups 0 of SL2(R) with appropriate holo-
morphic coefficients and the space of cusp forms with real weight.

Manin [2005] defined a “nonabelian” H 1 in group cohomology with values in
a nonabelian group, and a map from a product of spaces of cusp forms to this
cohomology set, in analogy to the Eichler–Shimura map. Manin’s construction uses
iterated integrals in the spirit of the multiple zeta values which have proved so useful
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in understanding zeta values and mixed Tate motives, for example. Manin’s integrals
give a way to express multiple L-values of modular forms and have been studied
by the second author [Choie 2014] and independently in the thesis of N. Provost
[2014] recently. In [Choie 2014] the period polynomials whose coefficients are
multiple L-values were treated as elements in a nonabelian H 1 for the first time.

In a recent talk at ICM, Brown [2014] mentioned a connection between the
iterated integrals of Manin and certain mixed motives. He explained how to interpret
motivic multiple zeta values as periods of the pro-unipotent fundamental groupoid
of the projective line minus three points X = P1

\ {0, 1,∞} via iterated integral
of smooth 1-forms on a differentiable manifold discussed by Chen [1977]. Hain
[2015] discussed the relation between Manin’s iterated integrals and the Hodge
theory of modular groups. However, it was not clear yet how to relate Manin’s
iterated integral and Eichler–Shimura theory. Manin’s map from spaces of cusp
forms to cohomology differs in two aspects from the Eichler–Shimura map: the
summand Sk(SL2(Z)) is absent and the map is injective but not surjective.

This paper addresses the second difference by extending Manin’s map to more
complicated combinations of spaces of cusp forms to obtain a variant of the Eichler–
Shimura isomorphism with values in a nonabelian cohomology H 1. Our main result
(Theorem 6.7) states that there is an extension of Manin’s map that is bijective
onto a noncommutative cohomology set. It is remarkable that there exists some
nonabelian version of the Eichler–Shimura map.

To obtain our main result we modify Manin’s construction [2005] in several ways
in the spirit of a variant Eichler–Shimura isomorphism established in [Knopp 1974;
Knopp and Mawi 2010]: first replace the finite-dimensional spaces of polynomials
by spaces of functions on the lower half-plane. Secondly, unlike in the classical
Eichler–Shimura isomorphism, antiholomorphic modular forms are not considered.
Thirdly, we allow automorphic forms for cofinite discrete subgroups 0 of SL2(R)

with arbitrary real weights and multiplier system. Finally, we collapse the number
of variables in the iterated integrals.

To be more precise consider the iterated integral

R`( f1, . . . , f`; y, x; t1, . . . , t`)

:=

∫ y

τ1=x
f1(τ1)(τ1− t1)w1

∫ τ1

τ2=x
f2(τ2)(τ2− t2)w2

· · ·

∫ τ`−1

τ`=x
f`(τ`)(τ`− t`)w` dτ` · · · dτ2 dτ1, (1-1)

where x , y are in the extended complex upper half-plane and each tj , 1≤ j ≤ `, is
in the lower half-plane. If the f j are cusp forms of even integral weight wj + 2, the
iterated integral defines a polynomial function in the tj , 1≤ j ≤ `, whose coefficients
are multiple L-values of f j . The resulting iterated integral is holomorphic in



Multiple period integrals and cohomology 647

(t1, . . . , t`) in the product of ` copies of the lower half-plane if the f j are cusp
forms of real weight. As the order ` of the iterated integral increases, the relations
between iterated integrals become more and more complicated. However, the
relations between iterated integrals of order ` look simple modulo all products of
iterated integrals of lower order. Manin [2005; 2006] has shown how to give a
neat formulation for all relations among iterated integrals of the type indicated in
(1-1). His approach works with formal series in noncommuting variables and can
be applied to much more general iterated integrals than studied here.

The factors (τj − tj )
wj in (1-1) occur also in the definition of cocycles attached

to cusp forms. Manin attaches to vectors of cusp forms ( f1, . . . , f`) a cocycle in a
noncommutative cohomology set, and thus gives a generalization of the Eichler–
Shimura map. The cohomology has values in a noncommutative subgroup N(A) of
the unit group of the noncommutative ring A of formal power series in noncommut-
ing variables A1, . . . , A` with coefficients in spaces of holomorphic functions on the
lower half-plane. The variables Aj correspond to spaces of cusp forms Swj+2(0, vj )

with positive real weights wj + 2 and corresponding multiplier systems vj . Then
Manin’s approach leads to a map

∏̀
j=1

Swj+2(0, vj )−→ H 1(0; N(A)) (1-2)

from a product of finitely many spaces of cusp forms to a noncommutative coho-
mology set. This (nonlinear) map is far from surjective. In Theorem 6.7 we show
that Manin’s map can be extended, and that all elements of the cohomology set
H 1(0; N(A)) can be related to combinations of cusp forms by means of iterated
integrals. The simplification t1 = · · · = t` in the iterated integrals is essential for
our methods to work.

Sections 2 and 3 have a preliminary nature. We review the approach of Knopp
[1974] of associating cocycles to any cusp form of real weight and the definition
of the iterated integrals that we use. Sections 4 and 5 discuss Manin’s approach
of using formal series in noncommuting variables to associate noncommutative
cocycles to vectors of cusp forms. In Section 6 we extend this approach in such
a way that the resulting map from collections of cusp forms to noncommutative
cohomology is bijective.

2. Cusp forms and theorem of Knopp and Mawi

Discrete group. Let 0 be a cofinite discrete subgroup of SL2(R) with translations.
Without loss of generality we assume that

(
−1

0
0
−1

)
∈ 0. For convenience we

conjugate 0 into a position for which ∞ is among its cusps and such that the
subgroup 0∞ of 0 fixing∞ is generated by T =

( 1
0

1
1

)
.
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Notation. For w ∈ R and v a corresponding unitary multiplier system, we denote
by Sw+2(0, v) the space of holomorphic cusp forms of weight w+2 and multiplier
system v. This is the finite-dimensional space of holomorphic functions f on
the upper half-plane satisfying f (γ z) = v(γ )(cz + d)w+2 f (z) for γ ∈ 0, with
exponential decay upon approach of the cusps. If the weight w+ 2 is integral, a
multiplier system is a character.

Functions with at most polynomial growth. By V (v,w), with w ∈ R and v a
corresponding multiplier system, we denote the space of holomorphic functions
on the lower half-plane H− with at most polynomial growth at the boundary P1

R

of H−, provided with the action of γ =
(a

c
b
d

)
∈ 0 given by

f |v,−wγ (t)= v(γ )(ct + d)−w f (γ t). (2-1)

The condition that f has polynomial growth on H− can be formulated as

| f (t)| ≤ C1|t |A+C2|Im t |−A for all t ∈ H−, for some A,C1,C2 ≥ 0. (2-2)

The action |v,−w of 0 preserves this condition.

Remarks. (a) In [Bruggeman et al. 2014, §1.4] we denoted the representation
V (v,w) of 0 by D−∞v,−w (actually we used r = w+ 2 as the main parameter, and
wrote D−∞v,2−r ).

(b) The polynomial growth condition in (2-2) can be formulated in terms of an
estimate by one function Q(t) = |Im t |/|t − i |2 as | f (t)| ≤ CQ(t)−A for some
A,C ≥ 0. See the discussion in [Bruggeman et al. 2014, §1.5].

Knopp’s cocycles associated to cusp forms. Knopp [1974] associated to cusp forms
f ∈ Sw+2(0, v) a cocycle ψ̄f given by

ψ̄f,γ (z)=
∫
∞

γ−1∞

f (τ )(τ − z̄)w dτ .

This cocycle takes values in the holomorphic functions on the upper half-plane H

that have at most polynomial growth on H in the sense of (2-2) (now with t replaced
by z ∈ H). We avoid the complex conjugation by taking a cocycle with values in
the holomorphic functions on the lower half-plane H− with at most polynomial
growth at the boundary:

ψf,γ (t)=
∫
∞

τ=γ−1∞

f (τ )(τ − t)w dτ. (2-3)

So ψf has values in the 0-module V (v,w).
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Theorem 2.1 [Knopp and Mawi 2010]. For real weight w+ 2 and corresponding
unitary multiplier system v, the map f 7→ [ψf ] determines a linear bijection

Sw+2(0, v)−→ H 1(0; V (v,w)).

Knopp [1974] conjectured this result, and proved it for many cases. Finally, the
remaining cases were completed in [Knopp and Mawi 2010].

Remarks. (a) A multiplier system v is called unitary if |v(γ )| = 1 for all γ ∈ 0.

(b) Since Sw+2(0, v)= {0} for w+2≤ 0, the theorem implies that the cohomology
groups vanish as well for w+ 2≤ 0.

(c) If w ∈ Z≥0, the cocycles take values in polynomial functions on H−, which for
the trivial multiplier system form a submodule of V (1, w) isomorphic to Cw[X, Y ].

If the multiplier system v has values only in {1,−1} then conjugation gives
cocycles in the same module. The Eichler–Shimura theory gives the parabolic coho-
mology group with values in polynomial functions of degree at most w as the direct
sum of the images of the two maps f 7→ [ψf ] and f 7→ [ψ̄f ]. However, in the large
module of polynomially growing functions, the cocycles ψ̄f become coboundaries.
Also the cocycles associated to Eisenstein series become coboundaries over the
module of functions with at most polynomial growth.

(d) Knopp [1974] shows that the parabolic cohomology group H 1
par(0; V (v,w)) is

equal to the cohomology group H 1(0; V (v,w)).

3. Iterated integrals

By taking t1 = · · · = t` = t we consider the following holomorphic function in t
running through the lower half-plane:

R`( f1, . . . , f`; y, x; t) :=
∫ y

τ1=x
f1(τ1)(τ1− t)w1

∫ τ1

τ2=x
f2(τ2)(τ2− t)w2

· · ·

∫ τ`−1

τ`=x
f`(τ`)(τ`− t)w` dτ` · · · dτ2 dτ1. (3-1)

It is a multilinear form on
∏`

j=1Swj+2(0, vj ) for ` pairs (v1, w1), . . . , (v`, w`) of
real numbers wj and corresponding unitary multiplier systems vj . The parameter t
is in the lower half-plane H−. The value of the iterated integral does not depend on
the path of integration, provided we take care to approach cusps along geodesic
half-lines (for instance, vertically).

The most interesting case is y=γ−1
∞, γ ∈0, and x=∞. For `=1 this gives the

valueψf1,γ of the cocycle in (2-3). That is why we call R`( f1, . . . , f`; γ−1
∞,∞; t)

a multiple period integral.
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Functions with at most polynomial growth. The condition of polynomial growth in
(2-2) is preserved by the action of 0 given for γ =

(a
c

b
d

)
by

h|v,−wγ (t)= v(γ )−1(ct + d)wh(γ t),

v(γ )= v1(γ )v2(γ ) · · · v`(γ ),

w = w1+w2+ · · ·+w`.

(3-2)

By V (v,w) we denote the vector space of holomorphic functions on H− with
the action |v,−w given in (3-2). Multiplication of functions gives a bilinear map
V (v;w)× V (v′;w′)→ V (vv′;w+w′). The action behaves according to the rule

(h|v,−wγ )(h′|v′,−w′γ )= (hh′)|vv′,−w−w′γ. (3-3)

Lemma 3.1. For f = ( f1, . . . , f`) ∈
∏`

j=1Swj+2(0, vj ), the multiple period inte-
gral R`( f ; y, x; · ) defines an element of V (v,w).

Proof. Each cusp form has at most polynomial growth on H, and has exponential
decay at cusps when the cusp is approached along a geodesic half-line. This implies
that the iterated integral in (3-1) has at most polynomial growth in t and τ`−1. Succes-
sively this also implies polynomial growth in τj−1 and t of the further integrals. �

Trivial relation. Directly from the definition we have

R`( f ; x, x; t)= 0. (3-4)

Lemma 3.2. For γ ∈ 0,

R`( f ; γ−1 y, γ−1x; t)= R`( f ; y, x; · )|v,−wγ (t). (3-5)

Proof. In the following computation all τj are replaced by γ τj , with γ =
(a

c
b
d

)
∈ 0:

R`( f ; x, y; · )|v,−wγ (t)

=

∏̀
j=1

(vj (γ )
−1(ct + d)wj )

∫ y

τ1=x
f1(τ1)(τ1− γ t)w1

∫ τ`−1

τ`=x
f`(τ`)(τ`− γ t)w`

dτ` · · · dτ1

=

∏̀
j=1

(vj (γ )
−1(ct + d)wj )

∫ γ−1 y

τ1=γ−1x
f1(γ τ1)

(τ1− t)w1

(cτ1+ d)w1(ct + d)w1∫ γ−1(γ τ`−1)

τ`=γ−1x
f`(γ τ`)

(τ`− t)w`

(cτ`+ d)w`(ct + d)w`
dτ`

(cτ`+ d)2
· · ·

dτ1

(cτ1+ d)2

= R`( f ; γ−1 y, γ−1x; t). �

Cocycles. For `= 1 we get the cocycle ψf in (2-3):

ψf,γ (t)=−R1( f ; γ−1
∞,∞; t). (3-6)
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Decomposition. It is easy to see that the cocycles in (2-3) satisfy the cocycle relation

cγ δ = cγ |δ+ cδ

for γ, δ ∈ 0: use the decomposition relation
∫ a

b +
∫ b

c =
∫ a

c for integrals together
with the invariance relation in Lemma 3.2.

There are decomposition relations for the iterated integrals in (3-1), which can be
obtained by application of the decomposition relation for integrals of one variable
to the subintegrals in (3-1). For the orders 2 and 3 these relations take the form

R2( f1, f2; z, y; t)+ R2( f1, f2; y, x; t)− R2( f1, f2; z, x; t)

= R1( f1; z, y; t)R1( f2; y, x; t), (3-7)

R3( f1, f2, f3; z, y; t)+ R3( f1, f2, f3; y, x; t)− R3( f1, f2, f2; z, x; t)

=−R1( f1; z, y; t)R2( f2, f3; y, x; t)+ R2( f1, f2; z, y; t)R1( f3; y, x; t). (3-8)

We have written these relations in such a way that the quantity on the left should be
zero if the standard decomposition would hold. On the right is a correction term
consisting of products of iterated integrals of lower order.

Example. The decomposition relations can be used to obtain relations between
values of multiple L-functions at special points, as studied in [Choie 2014] and in
the thesis by Provost [2014] independently.

Let us take 0 = SL2(Z), and assume that v1 = v2 = 1, and w1, w2 ∈ 2Z≥0. This
implies that the multiple integrals yield polynomial functions in the variable t . We
apply (3-7) with z = x =∞ and y = 0. With (3-4),

R2( f1, f2;∞, 0; t)+ R2( f1, f2; 0,∞; t)= R1( f1;∞, 0; t)R1( f2; 0,∞; t).

Using the binomial theorem, we see that R1( f ;∞, 0; t) is a polynomial in t with
coefficients that can be expressed in values of completed L-functions. In a similar
way, R2( f1, f2;∞, 0; t) is a polynomial in t with coefficients that can be expressed
in values of a completed multiple L-function of order 2 as defined in [Choie 2014,
(2.6)]. With Lemma 3.2,

R2( f1, f2; 0,∞; · )= R2( f1, f2;∞, 0; · )|−wS,

where S =
( 0

1
−1

0

)
. In this way, the decomposition relation (3-7) implies the equality

of two polynomials. Comparing coefficients leads to the relation in [Choie 2014,
Theorem 3.1].

This account is a simplification. The decomposition relations are valid for the
iterated integrals in (1-1), and lead for wj ∈ 2Z≥0 to polynomials in two variables.
Choie [2014] works in that generality.
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4. Formal series

Manin [2005; 2006] has indicated a way to give structure to the decomposition
relations of any order. His approach works in a general context of iterated integrals
associated to cusp forms. The factors (τj − t)w of the kernel in (3-1) and (τj − tj )

in (1-1) may be replaced by more general factors, for instance, by factors leading
to iterated L-integrals as studied in [Choie 2014]. Here we use Manin’s formalism
for the iterated integrals in (3-1).

We keep fixed ` combinations of a weight wj + 2 ∈ R and a corresponding
unitary multiplier system vj . For a vector f = ( f1, . . . , f`) ∈

∏`
j=1Swj+2(0, vj ) of

length `, we form iterated integrals of arbitrary order

Rn( fm1, fm2, . . . , fmn ; y, x; t) (4-1)

for any choice m = (m1, . . . ,mn) ∈ {1, . . . , `}n , for any n ≥ 0. For n = 0 we define
this quantity to be 1. The same f j may occur several times as fmi . So we do not
get linearity in f j . The result is a holomorphic function on H−, and has at most
polynomial growth by Lemma 3.1.

To formulate the 0-equivariance, we put for m = (m1,m2, . . . ,mn)

v(m) := vm1vm2 · · · vmn , w(m) := wm1 +wm2 + · · ·+wmn . (4-2)

We consider the iterated integral in (4-1) as an element of V (v(m),w(m)). For
the empty sequence m = () we put V (v(),w()) = C with the trivial action |1,0.
Multiplication follows the rule in (3-3). Lemma 3.2 can be applied.

Power series in noncommuting variables. We choose ` spaces of cusp forms
Swj+2(0, vj ) with wj + 2> 0 and unitary multiplier systems vj , for 1≤ j ≤ `. We
indicate this choice by the symbol A. For this choice A we take ` noncommuting
variables A1, A2, . . . , A`.

Let O(A) be the set of formal power series in the Aj for which the coefficient of
the monomial Am1 Am2 · · · Amn is in V (v(m),w(m)) for each m ∈ {1, . . . , `}n . The
constant term is in V (v(),w())= C. The relation (3-3) implies that O(A) is a ring.

Formal series associated to vectors of cusp forms. Following Manin we combine
all iterated integrals in (4-1) as coefficients of an element of the ring O(A). Let

SA(0)=
∏̀
j=1

Swj+2(0, vj ). (4-3)

For f = ( f1, . . . , f`) ∈ SA(0) define the formal series J ( f ; y, x; t) ∈ O(A) by

J ( f ; y, x; t)

= 1+
∑
n≥1

∑
m1,...,mn∈{1,...,`}

Rn( fm1, fm2, . . . , fmn ; y, x; t)Am1 Am2 · · · Amn . (4-4)
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Remarks. (a) J ( f ; z, w; · ) is an invertible element of O(A) since it has a nonzero
constant term.

(b) The coefficients Rn( fm1, . . . , fmn ; y, x; t) are continuous functions of y, x ∈H∗,
and are holomorphic in x, y ∈ H.

(c) The Aj codes for the space Swj+2(0, vj ). This approach differs from that in
[Manin 2005, §2]. There the formal variables code for linearly independent elements
of the space

∏
j Swj+2(0, vj ).

Action of 0. We define an action of 0 on O(A) by the action |v(m),−w(m) on the
coefficient of Am1 · · · Amn . Lemma 3.2 implies the relation

J ( f ; γ−1 y, γ−1x; · )= J ( f ; y, x; · )|γ for each γ ∈ 0. (4-5)

Multiplication properties. These formal series satisfy for z, y, x ∈ H∗

J ( f ; x, x; t)= 1, (4-6)

J ( f ; x, y; t)= J ( f ; y, x; t)−1, (4-7)

J ( f ; z, x; t)= J ( f ; z, y; t)J ( f ; y, x; t). (4-8)

We will prove a more general result in Proposition 6.3.
These relations encapsulate infinitely many relations between multiple period

integrals. The reader who takes the trouble to compare the coefficients of A1 A2 in
(4-8) obtains the relation (3-7). Similarly, relation (3-8) is given by the coefficient
of A1 A2 A3.

Commutative example. In the modular case we may look at w= N/2−2 for some
N ∈ Z≥1. As the corresponding multiplier system we choose vN/2 determined by

vN/2

(
1 1
0 1

)
= eπ i N/12, vN/2

(
0 −1
1 0

)
= e−π i N/4. (4-9)

For 1≤ N ≤ 24 the space of cusp forms is one-dimensional, in fact:

SN/2+2(0(1), vN/2)= CηN ,

where η(τ)= q1/24∏
n≥1(1− qn), q = e2π iτ , is the Dedekind eta function.

We take `= 1, with w1 = N/2− 2 and multiplier system vN/2. The ring O(A)
is a commutative ring of formal power series in one variable A. The coefficient
of Am is in the 0(1)-module V (vm N/2,m N/2− 2m).

If we take 1≤ N ≤ 24, then with f = (ηN ) we get in (4-4)

J ( f ; y, x; t)= 1+
∑
n≥1

Rn((η
N )×n
; y, x; t)An, (4-10)

where (ηN )×n means a sequence of n copies of ηN .
If N >24 we still can work with f = ( f ), but now f need not be a multiple of ηN .
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5. From cusp forms to noncommutative cohomology

Manin uses relation (4-8) to associate a noncommutative cocycle to the vector
f = ( f1, . . . , f`) of cusp forms. We first reformulate Manin’s description [2005,
§1] of noncommutative cohomology for a right action, and then determine the map
from vectors of cusp forms to noncommutative cohomology.

Noncommutative cohomology. Let G and N be groups, written multiplicatively,
and suppose that for each g ∈ G there is an automorphism n 7→ n|g of N such
that the map g 7→ |g is an antihomomorphism from G to the automorphism group
Aut(N ), i.e., n|(gh)= (n|g)|h for n ∈ N and g, h ∈ G.

A map ρ : G→ N is called a 1-cocycle if it satisfies

ρgh = (ρg|h)ρh for all g, h ∈ G. (5-1)

The set of such cocycles is called Z1(G; N ). It is not a group. Nevertheless it
contains the special element 1 : g 7→ 1.

The group N acts on Z1(G; N ) from the left, by ρ 7→ nρ defined by

nρg = (n|g)ρgn−1. (5-2)

The cohomology set H 1(G; N ) is the set of N -orbits in Z1(G; N ) for this action.
The orbit of the cocycle g 7→ 1 is called the set of coboundaries B1(G; N ).

Noncommutative cocycles attached to a sequence of cusp forms. As the group N
we use the subgroup N(A) of the group of those units in O(A)∗ that have constant
term equal to 1. The series J ( f ; y, x; · ) in (4-4) is an element of N(A).

Following Manin we define for f = ( f1, . . . , f`) ∈ SA(0) and x ∈ H∗

9( f )xγ (t)= J ( f ; γ−1x, x; t). (5-3)

The properties (4-5) and (4-8) imply that this defines a noncommutative cocycle
9( f )x ∈ Z1(0; N(A)), and that its cohomology class CohA( f ) ∈ H 1(0; N(A))
does not depend on the choice of the base-point x . We write 9( f )=9( f )∞.

Proposition 5.1. The map

CohA : SA(0)→ H 1(0; N(A)) (5-4)

is injective.

Proof. Suppose that the cocycles 9( f1, . . . , f`) and 9( f ′1, . . . , f ′`) are in the same
cohomology class. Then there is an n ∈ N(A) such that for all γ ∈ 0

9( f ′1, . . . , f ′`)γ = (n|γ )9( f1, . . . , f`)γ n−1. (5-5)
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We denote the coefficient of Aj in n by nj ∈ V (vj , wj ). In relation (5-5) we consider
only the constant term and the term with Aj , and work modulo all other terms:

1−ψf ′j ,γ Aj ≡ (1+ nj Aj )(1−ψf j ,γ Aj )(1− nj Aj ).

Taking the factor of Aj gives

−ψf ′j ,γ = nj |vj ,−wjγ −ψf j ,γ − nj .

In other words, ψf ′j and ψf j differ by a coboundary. We have used the noncommuta-
tive relation (5-5) in N(A) to get a commutative relation in V (vj , wj ).

By the theorem of Knopp and Mawi (Theorem 2.1) we conclude that f ′j = f j

for all j . Hence CohA is injective. �

Remarks. (a) Implicit in the proof is the quotient of A by the ideal generated by
all monomials in the Aj with degree 2. The corresponding quotient of N(A) is
isomorphic to the direct sum of the V (vj , wj ).

(b) The injectivity of the map from cusp forms to cocycles is a point in common
for this result, the theorem of Knopp and Mawi, and the classical Eichler–Shimura
result. The bijectivity in the theorem of Knopp and Mawi is not shared by the
classical result, where conjugates of cocycles also determine cohomology classes.
In the next section we will see that the whole group H 1(0; N(A)) can be described
with cusp forms, but in a more complicated way than by the map CohA.

Commutative example. Toward the end of page 653 we considered the case `= 1.
Then N(A) is a commutative group, and H 1(0; N(A)) is a cohomology group.

When 0 = 0(1), with the choices and notations indicated on page 653, the
cocycle 9(ηN ) vanishes on

( 1
0

1
1

)
(hence may be called a parabolic cocycle), and is

determined by its value on S =
( 0

1
−1

0

)
:

9(ηN )S(t)= J (ηN
; 0,∞; t)= 1+

∑
n≥1

Rn((η
N )×n
; 0,∞; t)An. (5-6)

The coefficient of An is an iterated period integral of ηN . The cocycle satisfies the
well known relations (9(ηN )S|S)9(ηN )S=1 and9(ηN )S=9(η

N )S|T ′9(ηN )S|T ,
with T ′ =

( 1
1

0
1

)
= TST .

6. Noncommutative cocycles and collections of cusp forms

The proof of Proposition 5.1 is based on the fact that the vector of cusp forms f can
be recovered from the terms of degree 1 in the formal series J ( f ; γ−1

∞,∞; t).
In this section we associate to collections of cusp forms noncommutative cocycles
of a more general nature.
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We keep fixed the choice A of positive weights w1 + 2, . . . , w` + 2 and cor-
responding multiplier systems v1, . . . , v`. To each monomial B = Am1 · · · Amd

in O(A) we associate the shifted weight w(B) := w(m) and the multiplier system
v(B) := v(m) as defined in (4-2) for m = (m1, . . . ,md) ∈ {1, . . . , `}d . So w(B)
and v(B) depend only on the factors Ami occurring in B, not on their order.

Definition 6.1. We call the degree d(B) of the monomial B = Am1 · · · Amd the
number d of factors Aj (1≤ j ≤ `) occurring in it.

Let B(A) be the set of all monomials B in A1, . . . , A` with d(B)≥ 1 for which
Sw(B)+2(0, v(B)) 6= {0}. We put

S(A;0) :=
∏

B∈B(A)

Sw(B)+2(0, v(B)). (6-1)

Remarks. (a) The space of cusp forms Sw(B)+2(0, v(B)) may be zero. In fact, this
is necessarily the case if w(B) ≤ −2. For w(B) > −2 it may also happen to be
zero, depending on 0 and v(B).

(b) The set B(A) is often infinite. We recall that elements of infinite direct sums of
vector spaces have zero components at all but finitely many B ∈ B(A). Here we
use the product. Its elements may have nonzero components for all B.

(c) We denote elements of S(A;0) by h, with component h(B) in the factor
corresponding to the monomial B.

(d) There may be more than one monomial B for which Sw(B)+2(0, v(B)) is equal
to a given space of cusp forms. See (f2) below for an example where this happens
for infinitely many monomials.

(e) The space SA(0)=
∏`

j=1Swj+2(0, vj ) in (4-3) may be considered as a subspace
of S(A;0). To do this we define for a given f = ( f1, . . . , f`) ∈ SA(0) the element
h ∈ S(A;0) by

h(Aj )= f j , h(B)= 0, if d(B)≥ 2.

(f) In the commutative case ` = 1 we have B(A) ⊂ {An
: n ∈ Z≥1}. We consider

three specializations of the example on page 653.

(f1) Take N = 24. So B(A)={An
: n ∈Z≥1}, w(B)= 10n and v(B)= v12= v0= 1.

Hence
S(A;0(1))=

∏
n≥1

S10n+2(0(1), 1). (6-2)

(f2) Take N = 4. So w(An)= 0 for all n ≥ 1 and the space S2(0(1), v2n) is equal
to Cη4 if n ≡ 1 mod 6 and zero otherwise. This implies that

B(A)= {An
≥ 1 : n ≡ 1 mod 6}.
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Since v(B)= vn = v2 for n ≡ 1 mod 6, we obtain

S(A;0(1))=
∏
n≥1

n≡1 mod 6

S2(0(1), v2). (6-3)

(f3) Take N =1. So w(B)=w1=−
3
2 , and nw1<−2 for n≥2. Hence B(A)={A},

v(B)= v1/2, and

S(A;0(1))= S1/2(0(1), v1/2)= Cη, (6-4)

with η(τ)= eπ iτ/12∏
n≥1(1− e2π inτ ).

Lemma 6.2. For each h ∈ S(A;0), the series

J (h; y, x; t)

:= 1+
∑
n≥1

∑
B1,...,Bn∈B(A)

Rn(h(B1), h(B2), . . . , h(Bn); y, x; t)B1 B2 · · · Bn (6-5)

converges and defines an element of N(A).

Proof. The degree of B1 B2 · · · Bn is at least n. For convergence in O(A) there
should be for each D ≥ 0 only finitely many terms with degree at most D. This
restricts n to n ≤ D, and the Bj to monomials of degree bounded by D, of which
there are only finitely many.

The terms with n ≥ 1 cannot contribute to the constant term, hence we obtain an
element of N(A). �

Remarks. (a) If h(Bi ) = 0 for some i in the iterated integral in (6-5), then the
integral vanishes. In (6-5) we could have restricted the Bi in the sum by the condition
h(Bi ) 6= 0. In particular, J (0; y; x; t)= 1.

(b) Definition (6-5) extends definition (4-4). If f ∈ SA(0) is considered as an
element h ∈ S(A;0), as in remark (e) to Definition 6.1, then

J ( f ; y, x; t)= J (h; y, x; t). (6-6)

Proposition 6.3. For all h ∈ S(A;0), γ ∈ 0, z, y, x ∈ H∗,

J (h; γ−1 y, γ−1x; · )= J (h; y, x; · )|γ, (6-7)

J (h; x, x; t)= 1, (6-8)

J (h; z, x; t)= J (h; z, y; t)J (h; y, x; t), (6-9)

J (h; x, y; t)= J (h; y, x; t)−1. (6-10)

Proof. The relations (6-7) and (6-8) follow directly from Lemma 3.2 and (3-1). We
will prove relation (6-9) in a sequence of lemmas, and finally will derive relation
(6-10) from relation (6-9).
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Relation (6-9). This relation holds in a general context of iterated integrals; auto-
morphic properties are not needed. Our proof follows [Manin 2006, Proposition 1.2]
closely. We first show relation (6-9) for x, y, z ∈ H.

Lemma 6.4. For h ∈ S(A;0) put

�(h; z; t) :=
∑

B∈B(A)

(z− t)w(B)h(B; z) dz · B. (6-11)

This formal series of O(A)-valued differential forms converges, and for z ∈ H

dz J (h; z, x; t)=�(h; z; t)J (h; z, x; t). (6-12)

Proof. The sum in (6-11) is infinite in most cases. The convergence follows from
the fact that the number of monomials with a given degree is finite. The differential
of a nonconstant term in (6-5) is given by

dz Rn(h(B1), h(B2), . . . , h(Bn); z, x; t)B1 B2 · · · Bn

= h(B1; z)(z− t)w(B1)B1 Rn−1(h(B2), . . . , h(Bn); z, x; t)B2 · · · Bn.

With a renumbering in the summation this gives (6-12). �

Lemma 6.5. dz J (h; z, x; t)−1
=−J (h; z, x; t)−1�(h; z; t).

Proof. The inverse is defined by the relation

1= J (h; z, x; t)−1 J (h; z, x; t).

Taking the differential of both sides gives, with (6-12),

0= (dz J (h; z, x; t)−1)J (h; z, x; t)+ J (h; z, x; t)−1�(h; z; t)J (h; z, x; t).

Right multiplication by J (h; z, x; t) gives the relation in the lemma. �

Lemma 6.6. For fixed x and y, put K (z) = J (h; z, y; t)−1 J (h; z, x; t). Then
K (z)= J (h; y, x; t).

Proof. With Lemmas 6.4 and 6.5 we find

dz K (z)=−J (h;z,y;t)−1�(h;z;t)J (h;z,x;t)+J (h;z,y;t)−1�(h;z;t)J (h;z,x;t)
= 0.

Hence K (z) is constant. By (6-8), its value is

K (y)= J (h; y, y; t)−1 J (h(y, x; t)= J (h; y, x; t). �

Completion of the proof of relation (6-9). The relation

K (z)= J (h; y, x; t)= J (h; z, y; t)−1 J (h; z, x; t)

implies the desired result for z, y, x ∈ H. By continuity it holds for z, y, x ∈ H∗.



Multiple period integrals and cohomology 659

Relation (6-10). This relation follows from (6-8) and (6-9). This ends the proof of
Proposition 6.3. �

Noncommutative cocycle. From (6-7) and (6-9) it follows that for any h ∈ S(A;0)

9(h)γ := J (h; γ−1
∞,∞; t) (6-13)

defines a cocycle γ →9(h)γ in Z1(0; N(A)).
If we replace ∞ in (6-13) by another base-point x ∈ H∗ we get a cocycle

in the same cohomology class. So h 7→ 9(h) induces a map from S(A;0) to
the noncommutative cohomology set H 1(0; N(A)), extending the map CohA in
Proposition 5.1.

The main result of this paper is the bijectivity of this map:

Theorem 6.7. Let A denote the choice of finitely many positive weights w1 + 2,
w2+2, . . . , w`+2 and corresponding multiplier systems v1, . . . , v` of 0. For each
noncommutative cohomology class c ∈ H 1(0; N (A)) there is a unique element
h ∈ S(A;0) such that 9(h) ∈ c.

Proof. The induction runs over k≥0. We start with a cocycle X0
∈ Z1(0; N(A)), and

replace it in the course of an induction procedure by cocycles X1,X2, . . . in the same
cohomology class. During the induction we form a sequence h0, h1, . . . , hk, . . .

of elements of S(A;0), and a strictly increasing sequence of integers c0, c1, . . . .
The connection between the induction quantities Xk , hk and ck is given by the
requirement that at each stage of the induction the following conditions hold:

(H) hk(B)= 0 for all B with d(B) > ck .

(XPs) If Xk
γ −9(hk)γ =

∑
B a(γ, B)B, where the sum B runs over all noncom-

mutative polynomials in A1, . . . , A`, then for each γ ∈ 0

a(γ, B)= 0 for all B with d(B)≤ k.

Either at a certain stage k in the induction procedure the process stops, and we
take h = hk , or the process goes on indefinitely, in which case we construct h as
a limit of the hk . In both cases we show that 9(h) is in the cohomology class of
the Xk , and that the element h is uniquely determined.

Start of the induction. For a given cocycle X0 in the cohomology class c we put
h0 = 0 and ck = 0. Then for all γ ∈ 0

X0
γ −9(h0)γ = X0

γ − 1

has no constant term, and conditions (H) and (XPs) are trivially satisfied.

Has the end of the induction process been reached? If Xk
=9(hk), we have found

a description of the class c as required in the theorem. This may happen already at
the start of the induction if X0 is the trivial cocycle γ 7→ 1.
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Induction, choice of ck+1. If the process has not ended, then the difference Yk
:=

Xk
−9(hk) determines a nonzero map γ 7→Yk

γ from 0 to O(A). It is not a cocycle.
We define ck+1 as the minimum degree such that Yk

γ ∈ O(A) has nonzero terms
of degree ck+1 in A1, . . . , A` for some γ ∈ 0. Since condition (XPs) holds for k
we have ck+1 > ck .

Cocycle relation. The cocycle relations for the noncommutative cocycles Xk and
9(hk) give

Yk
γ δ =

(
(Yk
γ +9(hk)γ )|δ

)
(Yk
δ +9(hk)δ)− (9(hk)γ |δ)9(hk)δ

= (Yk
γ |δ)9(hk)δ + (9(hk)γ |δ)Y

k
δ + (Y

k
γ |δ)Y

k
δ . (6-14)

By condition (XPs) and the choice of ck+1, the element Yk
γ ∈ O(A) has no terms

with degree less than ck+1. We denote by Ȳk
γ the sum of the terms of Yk

γ with exact
degree ck+1. We consider relation (6-14) modulo terms with degree strictly larger
than ck+1:

Ȳk
γ δ ≡ (Ȳ

k
γ |δ)9(hk)δ + (9(hk)γ |δ)Ȳ

k
δ + 0. (6-15)

In the two products only the constant term 1 of 9(hk)γ and 9(hk)δ is relevant, and
we obtain

Ȳk
γ δ = Ȳk

γ |δ+ Ȳk
δ . (6-16)

So the noncommutative cocycle relations for Xk and 9(hk) imply that γ 7→ Ȳk
γ is

a commutative cocycle with values in the additive group of O(A).
The elements Ȳk

γ have the form

Ȳk
γ =

K∑
n=1

ϕn
γCn, Cn = Apn,1 Apn,2 · · · Apn,ck+1

, (6-17)

with ϕn
γ ∈ V (v(Cn),w(Cn)). The Cn have degree ck+1 in A1, . . . , A`. For each n

there is some γ ∈0 for which ϕn
γ 6= 0. Relation (6-16) implies that each component

of Ȳk is a cocycle: ϕn
∈ Z1

(
0; V (v(Cn),w(Cn))

)
. By Theorem 2.1 there exist

an ∈ V (v(Cn),w(Cn)) and unique cusp forms gn ∈ Sw(Cn)+2(0, v(Cn)) such that
for all γ ∈ 0

ϕn
γ =−ψgn,γ + an|v(Cn),−w(Cn)(γ − 1). (6-18)

Induction, choice of Xk+1. Take

Hk = 1−
K∑

n=1

anCn. (6-19)

This is an element of N(A). We define the cocycle Xk+1 in the same class as Xk by

Xk+1
γ = (Hk |γ )X

k
γ H−1

k . (6-20)
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Induction, choice of hk+1. It may happen that Cn 6∈ B(A) for some n ∈ {1, . . . , k}.
Then Sw(Cn)+2(0, v(Cn))= 0, and ϕn is a coboundary and gn = 0.

By condition (H) we have hk(Cn)= 0 for 1≤ n≤ K . We construct hk+1 from hk

by taking hk+1(Cn)= gn for those n for which Cn ∈ B(A), and hk+1(B)= hk(B)
otherwise. So hk(B) = hk+1(B) for all B with d(B) > ck+1, and condition (H)
stays valid for k+ 1. If Cn 6∈ B(A) for all n, then hk+1 = hk .

Induction, check of condition (XPs) for k+ 1. Modulo terms of order larger than
ck+1, we have

Xk+1
γ ≡

(
1−

∑
n

an|γCn

)
(9(hk)γ + Ȳk

γ )

(
1+

∑
n

anCn

)
(by (6-20), (XPs))

≡9(hk)γ + Ȳk
γ −

∑
n

an|γCn +
∑

n

anCn

≡9(hk)γ +
∑

n

(
−ψgn,γ + an|(γ − 1)− an|γ + an

)
Cn (by (6-17), (6-18))

=9(hk)γ +
∑

n

R1(gn; γ
−1
∞,∞)Cn (by (3-6)). (6-21)

By (6-13) and (6-5), we have

9(hk+1)γ

= 1+
∑
m≥1

∑
B1,...,Bm∈B(A)

Rm(hk+1(B1), hk+1(B2), . . . , hk+1(Bm); γ
−1
∞,∞; t)

× B1 B2 · · · Bm,

in which we can leave out the terms in which a Bi occurs with d(Bi ) > ck+1,
by condition (H). If we leave out the terms with a Bi for which d(Bi ) > ck , we
obtain 9(hk)γ . If there is a Bi with d(Bi ) > ck this is one of the Cn in (6-17),
with d(Bi )= d(Cn)= ck+1. Working modulo terms with degree larger than ck+1

we obtain

9(hk+1)γ −9(hk)γ ≡
∑

1≤n≤K
Cn∈B(A)

R1(hk+1(Cn); γ
−1
∞,∞; t)Cn

=

∑
1≤n≤K

Cn∈B(A)

R1(gn; γ
−1
∞,∞; t)Cn. (6-22)

A comparison of (6-21) and (6-22) gives condition (XPs) for k+ 1.

The induction may halt. It may happen that the induction stops at stage k; namely,
if Xk
=9(hk). Then we have found an element h = hk ∈ S(A;0) such that 9(h)

is in the class c.
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The induction may have infinitely many steps. It may also happen that we have
obtained after infinitely many steps an infinite sequence of cocycles Xk in the
class c, an infinite sequence of hk , and a strictly increasing sequence of ck satisfying
conditions (H) and (XPs) for all k. For each monomial B ∈ B(A) there is at most
one k such that hn(B)= 0 for n ≤ k, and hn(B)= hk+1(B) for n ≥ k+ 1. So the
componentwise limit h := limk→∞ hk exists.

The construction of the sequence (Xk)k implies that

Xk
γ = ((Hk−1 Hk−2 · · · H0)|γ )X

0
γ (Hk−1 Hk−2 · · · H0)

−1,

with Hk as in (6-19). The infinite product H = · · · H2 H1 H0 converges in N(A),
since each Hk equals 1 plus a term in degree ck+1. Similarly, J (h; γ−1

∞,∞; t) is
the limit of the J (hk; γ

−1
∞,∞; t) as k→∞, since enlarging k we change only

terms of degrees larger than ck . Condition (XPs) is valid for all k, so the conclusion
is that, in the limit,

(H |γ )X0 H−1
=9(h). (6-23)

Uniqueness. Let X0
=9(h′) for some h′ ∈ S(A;0). We claim that, in the induction

procedure described above applied to this cocycle X0, we have at each stage

hk(B)= h′(B) for all B ∈ B(A) with d(B)≤ ck; (6-24)

Xk
≡9(h′) modulo terms of degree larger than ck . (6-25)

This is true at the start of the induction (use c0 = 0).
At stage k, the nonzero terms with lowest degree in

Yk
γ = J (h′; γ−1

∞,∞; t)− J (hk; γ
−1
∞,∞; t)

are due to the C ∈ B(A) with degree equal to ck+1. So

Ȳγ =
∑

C∈B(A)
d(C)=ck+1

R1(h′(B); γ−1
∞,∞; t)C. (6-26)

Let us number the monomials in this sum as C1, . . . ,CK . Then ϕn
γ in (6-18) is

equal to −ψh′(Cn),γ , and an = 0, Hk = 1. This implies that hk+1(C) = h′(C) for
the monomials C ∈ B(A) with degree ck+1, and Xk+1

= Xk
≡9(h′) modulo terms

with degree larger than ck+1.
At the end of the induction process we have B=B′, thus obtaining uniqueness. �

Concluding remarks. (a) Manin [2005; 2006] used formal series similar to those
in (4-4) to get a simple description of relations among iterated integrals. In that
approach the noncommutative cohomology set H 1(0; N(A)) is a tool. In this paper
we further study the cohomology set H 1(0; N(A)).
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(b) One may apply the approach of this paper to weights in Z≥2 and trivial multiplier
systems. Then the iterated integrals are polynomial functions. These are in a much
smaller 0-module than the functions with polynomial growth that we employ. The
consequence is that the theorem analogous to the theorem of Knopp and Mawi
(Theorem 2.1) does not hold. Cocycles attached to conjugates of holomorphic cusp
forms have to be considered as well (see [Knopp 1974]). However, iterated integrals
in which occur both holomorphic and antiholomorphic cusp forms satisfy more
complicated decomposition relations. We think that Manin’s formalism does not
work in that situation.

(c) The same problem occurs if we use the modules in Theorems B and D of
[Bruggeman et al. 2014], unless we pick the weights wj + 2 in such a way that the
elements w(C) that occur in the sums defining J (B; y, x; t) are never in Z≥0.

(d) We work with iterated integrals of the type in (3-1). Equation (1-1) defines
iterated integrals depending on variables t1, . . . , t` all running independently through
the lower half-plane. It would be nice to have results for the corresponding noncom-
mutative cocycles. These cocycles can be defined, and one can show injectivity
of the map from cusp forms to cohomology, like in Proposition 5.1. We did not
manage to adapt the proof of Theorem 6.7 to cocycles of this type. The problem is
to construct formal sequences of the type in (6-5) such that they have the lowest
degree terms in a prescribed summand in the decomposition of the tensor products
V (v1, w1)⊗ · · ·⊗ V (v`, w`) into submodules.
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