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The existential theory of
equicharacteristic henselian valued fields

Sylvy Anscombe and Arno Fehm

We study the existential (and parts of the universal-existential) theory of equi-
characteristic henselian valued fields. We prove, among other things, an existential
Ax–Kochen–Ershov principle, which roughly says that the existential theory of an
equicharacteristic henselian valued field (of arbitrary characteristic) is determined
by the existential theory of the residue field; in particular, it is independent of the
value group. As an immediate corollary, we get an unconditional proof of the
decidability of the existential theory of Fq((t)).

1. Introduction

We study the first order theory of a henselian valued field (K , v) in the language of
valued fields. For residue characteristic zero, this theory is well-understood through
the celebrated Ax–Kochen–Ershov (AKE) principles, which state that, in this case,
the theory of (K , v) is completely determined by the theory of the residue field Kv
and the theory of the value group vK (see, e.g., [Prestel and Delzell 2011, §4.6]). In
other words, if a sentence holds in one such valued field, then it holds in any other
with elementarily equivalent residue field and value group (the transfer principle).
As a consequence, one gets that the theory of (K , v) is decidable if and only if the
theory of the residue field and the theory of the value group are decidable.

Some of this theory can be carried over to certain mixed characteristic henselian
valued fields such as the fields of p-adic numbers Qp, whose theory was axioma-
tised and proven to be decidable by Ax–Kochen and Ershov in 1965. However,
for henselian valued fields of positive characteristic, no such general principles
are available. For example, in [Kuhlmann 2001], it is shown that the theory of
characteristic p> 0 henselian valued fields with value group elementarily equivalent
to Z and residue field Fp is incomplete. It is not known whether there is a suitable
modification of the AKE principles that hold for arbitrary henselian valued fields
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of positive characteristic, and the decidability of the field of formal power series
Fq((t)) is a long-standing open problem.

For the first problem, the most useful approximations are AKE principles for
certain classes of valued fields, most notably F.-V. Kuhlmann’s recently published
work [2014] on the model theory of tame fields. For the second problem, the best
known result is by Denef and Schoutens [2003], who proved that resolution of
singularities in positive characteristic would imply that the existential theory of
Fq((t)) is decidable (i.e., Hilbert’s tenth problem for Fq((t)) has a positive solution).

In this work, we take a different approach at deepening our understanding of
the positive characteristic case: instead of limiting ourselves to certain classes of
valued fields, we attempt to prove results for arbitrary equicharacteristic henselian
valued fields, but (having results like Denef–Schoutens in mind) instead restrict
to existential or slightly more general sentences. The technical heart of this work
is a study of transfer principles for certain universal-existential sentences, which
builds on the aforementioned [Kuhlmann 2014]; see the results in Section 5. While
some of these general results will have applications for example in the theory of
definable valuations (see [Anscombe and Koenigsmann 2014; Cluckers et al. 2013;
Fehm 2015; Prestel 2015] for some of the recent developments), in this work we
then restrict this machinery to existential sentences and deduce the following result
(cf. Theorem 6.5):

Theorem 1.1. For any field F , the theory T of equicharacteristic henselian non-
trivially valued fields with residue field which models both the existential and
universal theories of F is ∃-complete, i.e., for any existential sentence φ either
T |H φ or T |H ¬φ.

Note that the value group plays no role here: the existential theory of an equichar-
acteristic henselian nontrivially valued field is determined solely by its residue field.
From this theorem, we obtain an AKE principle for ∃-sentences (cf. Corollary 7.2):

Corollary 1.2. Let (K , v), (L , w) be equicharacteristic henselian nontrivially val-
ued fields. If the residue fields Kv and Lw have the same existential theory, then so
do the valued fields (K , v) and (L , w).

Moreover, we conclude the following corollary on decidability (cf. Corollary 7.5):

Corollary 1.3. Let (K , v) be an equicharacteristic henselian valued field. The
following are equivalent:

(1) The existential theory of Kv in the language of rings is decidable.

(2) The existential theory of (K , v) in the language of valued fields is decidable.

As an immediate consequence, we get the first unconditional proof of the de-
cidability of the existential theory of Fq((t)) (cf. Corollary 7.7). Note, however,
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that the conditional result in [Denef and Schoutens 2003] is for a language with a
constant for t — Section 7 also contains a brief discussion of this difference.

As indicated above, these results are essentially known in residue characteristic
zero (cf. Remark 7.3), but are new in positive characteristic. However, each of
the above results fails if “equicharacteristic” is dropped or replaced by “mixed
characteristic”, in contrast to the mixed characteristic AKE principles mentioned
above (cf. Remark 7.4 and Remark 7.6).

2. Valued fields

For a valued field (K , v) we denote by vK = v(K×) its value group, by Ov its
valuation ring, and by Kv = {av | a ∈Ov} its residue field. For standard definitions
and facts about henselian valued fields we refer the reader to [Engler and Prestel
2005]. As a rule, if L/K is a field extension to which the valuation v can be
extended uniquely, we denote also this unique extension by v. This applies in
particular if v is henselian, and for the perfect hull L = K perf of K . We will make
use of the following well-known fact:

Lemma 2.1. Let (K , v) be a valued field and let F/Kv be any field extension. Then
there is an extension of valued fields (L , w)/(K , v) such that Lw/Kv is isomorphic
to the extension F/Kv.

Proof. See, e.g., [Kuhlmann 2004, Theorem 2.14]. �

The next lemma is also probably well known, but for lack of reference we sketch
a proof, which closely follows [Kuhlmann 2011, Lemma 9.30].

Definition 2.2. Let (K , v) be a valued field. A partial section (of the residue
homomorphism) is a map f : E → K , for some subfield E ⊆ Kv, which is an
Lring-embedding such that ( f (a))v = a for all a ∈ E . It is a section if E = Kv.

Lemma 2.3. Let (K , v) be an equicharacteristic henselian valued field, let E ⊆ Kv
be a subfield of the residue field, and suppose that there is a partial section
f : E→ K . If F/E is a separably generated subextension of Kv/E then we may
extend f to a partial section F→ K .

Proof. Write L1 := f (E). Let T be a separating transcendence base for F/E and,
for each t ∈ T , choose st ∈ K such that stv= t . Then S := {st | t ∈ T } is algebraically
independent over L1. Thus we may extend f to a partial section E(T )→ L1(S)
by sending t 7→ st .

Let L2 be the relative separable algebraic closure of L1(S) in K . By Hensel’s
lemma, L2v is separably algebraically closed in Kv. Thus F is contained in L2v.
Since v is trivial on L2, the restriction of the residue map to L2 is an isomorphism
L2→ L2v. Thus the restriction to F of the inverse of the residue map is a partial
section F→ K which extends f , as required. �
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Recall that a valued field (K , v) of residue characteristic p is tame if it is
henselian, the value group vK is p-divisible, the residue field Kv is perfect, and
(K , v) is defectless, i.e., for every finite extension L/K ,

[L : K ] = [Lv : Kv] · [vL : vK ].

Proposition 2.4. Let (K , v) be a valued field. There exists an extension (K t , vt) of
(K , v) such that (K t , vt) is tame, K t is perfect, vt K t

=
1

p∞ vK , and K tvt
= Kvperf.

Proof. In the special case char(K )= char(Kv), any maximal immediate extension
of K perf satisfies the claim. In general, [Kuhlmann et al. 1986, Theorem 2.1,
Proposition 4.1, and Proposition 4.5(i)] gives such a K t that is in addition algebraic
over K . �

3. Model theory of valued fields

Let
Lring = {+,−, ·, 0, 1}

be the language of rings and let

Lvf = {+
K ,−K , ·K , 0K , 1K ,+0, <0, 00,∞0,+k,−k, ·k, 0k, 1k, v, res}

be a three sorted language for valued fields (like the Denef–Pas language, but
without an angular component) with a sort K for the field itself, a sort 0 ∪ {∞}
for the value group with infinity, and a sort k for the residue field, as well as both
the valuation map v and the residue map res, which we interpret as the constant 0k

map outside the valuation ring. For a field C , we let Lring(C) and Lvf(C) be the
languages obtained by adding symbols for elements of C . In the case of Lvf(C),
the constant symbols are added to the field sort K .

A valued field (K , v) gives rise in the usual way to an Lvf-structure

(K , vK ∪ {∞}, Kv, v, res),

where vK is the value group, Kv is the residue field, and res is the residue map.
For notational simplicity, we will usually write (K , v) to refer to the Lvf-structure it
induces. For further notational simplicity, we write (K , D) instead of (K , (dc)c∈C),
where D = {dc | c ∈ C} is the set of interpretations of the constant symbols.
Combining these two simplifications, we write (K , v, D) for the Lvf(C)-structure

(K , vK ∪ {∞}, Kv, v, res, (dc)c∈C).

We also write Dv for the set of residues of elements from D.
As usual, we say that an Lvf(C)-formula is an ∃-formula if it is logically equiv-

alent to a formula in prenex normal form with only existential quantifiers (over
any of the three sorts). We say that an Lvf(C)-sentence is an ∀k

∃-sentence if it is
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logically equivalent to a sentence of the form ∀x ψ(x), where ψ is an ∃-formula
and the universal quantifiers range over the residue field sort.

Let (K , v, D) ⊆ (L , w, E) be an extension of Lvf(C)-structures. Note that
dc = ec for all c ∈ C . We say that certain Lvf(C)-sentences φ go up from K to L
if (K , v, D) |H φ implies that (L , w, E) |H φ. For examples, ∃-sentences always
go up every extension. Furthermore, if (L , w)/(K , v) is an extension of valued
fields such that Lw/Kv is trivial, then ∀k

∃-Lvf(K )-sentences go up from (K , v)
to (L , w). Although the previous statement is not referenced directly, it underlies
many of the arguments in Section 5.

Lemma 3.1. Let L/K be an extension of fields. If K �∃ L , then K perf
�∃ Lperf.

Proof. This is clear, since K perf
=
⋃

n K p−n
and Lperf

=
⋃

n L p−n
, and the Frobenius

gives that K p−n
�∃ L p−n

for all n. �

F.-V. Kuhlmann [2014] proves the following on the model theory of tame fields:

Proposition 3.2. The elementary class of tame fields has the relative embedding
property. That is, for tame fields (K , v) and (L , w) with common subfield (F, u), if

(1) (F, u) is defectless,

(2) (L , w) is |K |+-saturated,

(3) vK/uF is torsion-free and Kv/Fu is separable, and

(4) there are embeddings ρ : vK → wL (over uF) and σ : Kv→ Lw (over Fu),

then there exists an embedding ι : (K , v)→ (L , w) over (F, u) which respects ρ
and σ .

Proof. See [Kuhlmann 2014, Theorem 7.1]. (Note that this result is stated in the
language

L′vf = {+,−, ·,
−1, 0, 1, O},

where O is a binary predicate which is interpreted in a valued field (K , v) so that
O(a, b) if and only if va ≥ vb. However, the exact choice of language does not
directly affect us.) �

From Proposition 3.2, Kuhlmann deduces the following AKE principle:

Theorem 3.3. The class of tame fields is an AKE�-class: if (L , w)/(K , v) is an
extension of tame fields with vK � wL and Kv � Lw, then (K , v)� (L , w).

Proof. See [Kuhlmann 2014, Theorem 1.4]. �
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4. Power series fields

For a field F and an ordered abelian group 0 we denote by F((0)) the field of
generalised power series with coefficients in F and exponents in 0; see, e.g., [Efrat
2006, §4.2]. We identify F((Z)) with the field of formal power series F((t)) and
denote the power series valuation on any subfield of any F((0)) by vt .

Lemma 4.1. A field (F((0)), vt) of generalised power series is maximal. In partic-
ular, it is tame if and only if F is perfect and 0 is p-divisible.

Proof. See [Efrat 2006, Theorem 18.4.1] and note that maximal implies henselian
and defectless. �

Proposition 4.2. Let A be a complete discrete (i.e., with value group Z) equicharac-
teristic valuation ring. Let F ⊆ A be a set of representatives for the residue classes
which forms a field. Let s ∈ A be a uniformiser (i.e., an element of least positive
value). Then A is isomorphic to F[[s]] by an isomorphism which fixes F pointwise.

Proof. See [Serre 1979], Chapter 2 Proposition 5 and the discussion following the
example. �

Corollary 4.3. Let F be a field and let E/F((t)) be a finite extension such that
Evt = F. Then (E, vt , F) is isomorphic to (F((s)), vs, F). This applies in particu-
lar to finite extensions of F((t)) inside F((Q)).

Proof. We are already provided with a section since F ⊆ F((t))⊆ E and Evt = F .
Since E/F((t)) is finite, E is also a complete discrete equicharacteristic valued
field (cf. [Serre 1979, Chapter 2 Proposition 3]). By Proposition 4.2, there is an
F-isomorphism of valued fields E→ F((s)). �

Definition 4.4. We denote by F(t)h the henselization of F(t) with respect to vt ,
i.e., the relative algebraic closure of F(t) in F((t)), and by F((t))Q the relative
algebraic closure of F((t)) in F((Q)).

Lemma 4.5. For any field F we have (F(t)h, vt)�∃ (F((t)), vt).

Proof. See [Kuhlmann 2014, Theorem 5.12]. �

The following proposition may be deduced from the more general [Kuhlmann
2014, Lemma 3.7], but we give a proof in this special case for the convenience of
the reader.

Proposition 4.6. If F is perfect, then F((t))Q is tame.

Proof. We have that F((t))Qvt=F is perfect and vt F((t))Q=Q is p-divisible. More-
over, as an algebraic extension of the henselian field F((t)), F((t))Q is henselian.
It remains to show that F((t))Q is defectless.

Let E/F((t))Q be a finite extension of degree n. Since F((Q)) is perfect, so
is F((t))Q, and hence F((Q))/F((t))Q is regular. Therefore, if E ′ = F((Q)) · E
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denotes the compositum of F((Q)) and E in an algebraic closure of F((Q)), then
[E ′ : F((Q))] = n. Since F((Q)) is maximal (Lemma 4.1), E ′/F((Q)) is defectless.
So since (F((Q)), vt) is henselian and vt F((Q)) = Q is divisible, we get that
[E ′vt : F] = n. Since E ′vt/F is separable, we can assume without loss of generality
that F ′ := E ′vt ⊆ E ′ (Lemma 2.3).

F((Q)) n E ′ E ′

F((t))Q n

reg.

E

reg.

E F ′

F n F ′

The extension E ′/E is also regular, since E/F((t))Q is algebraic. In particular, E
is relatively algebraically closed in E ′; so since E F ′/E is algebraic we have that
F ′ ⊆ E . Thus Evt = F ′, which shows that E/F((t))Q is defectless. �

In particular, Theorem 3.3 implies that F((t))Q � F((Q)). We therefore get the
following picture:

F(t)
alg.

F(t)h
�∃ F((t))

alg.
F((t))Q

�

F((Q))

5. The transfer of universal-existential sentences

Throughout this section F/C will be a separable extension of fields of characteris-
tic p. We show that the truth of ∀k

∃-sentences transfers between various valued
fields. Usually the valued fields considered will have only elementarily equivalent
residue fields. However, for convenience, we will sometimes discuss ∃-sentences
with additional parameters from the residue field.

Lemma 5.1 (going down from F((0))). Suppose that F is perfect. Let φ be an
∃-Lvf(F)-sentence, let F � F be an elementary extension, and let 0 be an ordered
abelian group. If (F((0)), vt , F) |H φ, then (F(t)h, vt , F) |H φ.

Proof. Without loss of generality we may assume that 0 is nontrivial. For notational
simplicity, we suppress the parameters F from the notation. Let 1 be the divisible
hull of 0. Then (F((0)), vt)⊆ (F((1)), vt), and existential sentences “go up”, so
(F((1)), vt) |H φ.

Choose an embedding of Q into 1; this induces an embedding (F((Q)), vt)⊆

(F((1)), vt), and therefore (F((t))Q, vt)⊆ (F((1)), vt). Since the theory of divis-
ible ordered abelian groups is model complete (see, e.g., [Prestel and Delzell 2011,
Thm. 4.1.1]),

vt F((t))Q =Q�1= vt F((1)).
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Moreover,
F((t))Qvt = F � F = F((1))vt .

Thus, since (F((t))Q, vt) is tame by Proposition 4.6 and (F((1)), vt) is tame by
Lemma 4.1, Theorem 3.3 implies that

(F((t))Q, vt)� (F((1)), vt).

Therefore, (F((t))Q, vt) |H φ.
Let E be a finite extension of F((t)) that contains witnesses to the truth of φ in

(F((t))Q, vt). Thus (E, vt) |H φ. By Corollary 4.3, there is an Lvf(F)-isomorphism

f : (E, vt)→ (F((t)), vt).

Thus (F((t)), vt) |H φ. By Lemma 4.5,

(F(t)h, vt)�∃ (F((t)), vt),

hence (F(t)h, vt) |H φ, as claimed. �

Definition 5.2. Let H(F/C) be the class of tuples (K , v, D, i), where (K , v, D)
is an Lvf(C)-structure and i : F→ Kv is a map such that

(1) (K , v) is an equicharacteristic henselian nontrivially valued field,

(2) c 7→ dc is an Lring-embedding C→ K ,

(3) the valuation is trivial on D, and

(4) i : (F,C)→ (Kv, Dv) is an Lring(C)-embedding.

Lemma 5.3 (going up from F(t)h). Let φ be an ∃-Lvf-sentence with parameters
from C and the residue sort of (F(t)h, vt), and suppose that (F(t)h, vt ,C) |H φ.
Then, for all (K , v, D, i)∈H(F/C), we have that (K , v, D) |Hφ (where we replace
the parameters from the residue sort by their images under the map i).

Proof. Write φ = ∃x ψ(x; c, β) for some quantifier-free formula ψ and parameters
c from C and β from F(t)hvt . Note that the variables in the tuple x may be from
any sorts. Let a be such that

(F(t)h, vt ,C) |H ψ(a; c, β).

Since F(t)h is the directed union of fields E0(t)h for finitely generated subfields
E0 of F , there exists a subfield E of F containing C such that E/C is finitely
generated, a ∈ E(t)h , and β ∈ E(t)hvt . Thus

(E(t)h, vt ,C) |H ψ(a; c, β).

Since F/C is separable and E/C is finitely generated, E is separably generated
over C . Thus i(E)/Dv is separably generated. Note that the map Dv→ D given
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by dcv 7→ dc is a partial section. By Lemma 2.3 we may extend it to a partial
section g : i(E)→ K . Let h := g ◦ i |E be the composition. Then

h : (E, v0,C)→ (K , v, D)

is an Lvf(C)-embedding, where v0 denotes the trivial valuation on E :

Kv Kresoo

F i // i(F)

E
i |E // i(E)

g // h(E)

C
∼= // Dv

∼= // D

Since (K , v) is nontrivial, there exists s ∈ K× with v(s) > 0, which must be
transcendental over h(E), since v is trivial on h(E). As the rational function field
E(t) admits (up to equivalence) only one valuation which is trivial on E and positive
on t , we may extend h to an Lvf(C)-embedding

h′ : (E(t), vt ,C)→ (K , v, D)

by sending t 7→ s. Since (K , v) is henselian, there is a unique extension of h′ to an
Lvf(C)-embedding

h′′ : (E(t)h, vt ,C)→ (K , v, D).

So, since existential sentences “go up”,

(K , v, D) |H ψ(h′′(a); h′′(c), h′′(β)),

and thus (K , v, D) |H φ, as claimed. �

Definition 5.4. We let RF/C be the Lring(C)-theory of F and let R1
F/C be the subthe-

ory consisting of existential and universal sentences. Let TF/C (respectively, T 1
F/C )

be the Lvf(C)-theory consisting of the following axioms (expressed informally
about a structure (K , v, D)):

(1) (K , v) is an equicharacteristic henselian nontrivially valued field,

(2) c 7→ dc is an Lring-embedding C→ K ,

(3) the valuation v is trivial on D, and

(4) (Kv, Dv) is a model of RF/C (respectively, R1
F/C ).
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The “1” is intended to suggest that the sentences considered contain only one type
of quantifier. Note that for any (K , v, D) |H T 1

F/C , the map dcv 7→ dc is a partial
section of the residue map. Let φ be an ∀k

∃-sentence and write φ = ∀k x ψ(x) for
some ∃-formula ψ(x) with free variables x belonging to the residue field sort. Let
xKv denote the set of x-tuples from Kv. Then we observe that (K , v, D) |H φ if
and only if xKv ⊆ψ(K ). In this next proposition we show that, roughly, if TF/C is
consistent with the property “ xF ⊆ ψ” then in fact TFperf/Cperf entails “ xF ⊆ ψ”.

Proposition 5.5 (main proposition). Let ψ(x) be an ∃-Lvf(C)-formula with free
variables x belonging to the residue field sort. Suppose there exists

(K , v, D) |H TF/C ∪ {∀
k x ψ(x)}.

Then, for all (L , w, E, i) ∈ H(Fperf/Cperf), we have xi(F)⊆ ψ(L).

Proof. Since (K , v, D) models TF/C , we have (Kv, Dv)≡ (F,C). Passing, if nec-
essary, to an elementary extension of (K , v, D), there is an elementary embedding

f : (F,C)
�
→ (Kv, Dv).

As noted after the definition of TF/C , the map g0 : Dv→ D given by dcv 7→ dc is
a partial section. Since F/C is separable, f (F)/Dv is also separable. Thus
any finitely generated subextension of f (F)/Dv is separably generated. By
Lemma 2.3 we may pass again, if necessary, to an elementary extension and extend
g0 to a partial section g : f (F)→ K . Note that g is also an Lring(C)-embedding
( f (F), Dv)→ (K , D).

Let h := g ◦ f . Then h : (F,C) → (K , D) is an Lring(C)-embedding. Be-
cause g is a section, the valuation v is trivial when restricted to the image of h.
Thus, if v0 denotes the trivial valuation on F , the map h is an Lvf(C)-embedding
(F, v0,C)→ (K , v, D). The induced embedding of residue fields h̄ : Fv0→ Kv
is the composition of the elementary embedding f with an isomorphism. Thus
h̄ : Fv0→ Kv is an elementary embedding. From now on we identify (F, v0,C)
with its image under h as a substructure of (K , v, D), noting that the residue field
extension is an elementary extension.

Kv Kresoo

F
f // f (F)

g // h(F)

C
∼= // Dv

sep

g0 // D
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Choose an extension (K t , vt)/(K , v) as in Proposition 2.4. Since K t is per-
fect, we can embed Dperf into K t over D so that (K t , vt , Dperf) is an Lvf(Cperf)-
structure. Furthermore (Fperf, v0,Cperf) is naturally (identified with) a substructure
of (K t , vt , Dperf). Since Fv0 � Kv, Lemma 3.1 gives that

Fperfv0 = Fvperf
0 �∃ Kvperf

= K tvt .

Thus there is an elementary extension Fperfv0� F and an embedding σ : K tvt
→ F

over Fperfv0; see the diagram below.
Now we consider the two valued fields (K t , vt) and (F((vt K t)), vt)with common

subfield (Fperf, v0). Note that K t is tame by definition, and F((vt K t)) is tame by
Lemma 4.1. As a trivially valued field, (Fperf, v0) is defectless. The extension of
value groups vt K t/v0 Fperf is isomorphic to vt K t , thus it is torsion-free. The exten-
sion K tvt/Fperfv0 is separable since Fperfv0 is isomorphic to Fperf which is perfect.
Let (F((vt K t)), vt)

∗ be a |K |+-saturated elementary extension of (F((vt K t)), vt).
We have satisfied the hypotheses of Proposition 3.2, thus there exists an embedding

ι : (K t , vt)→ (F((vt K t)), vt)
∗

over (Fperf, v0). As existential sentences “go up”, we get that (F((vt K t)), vt)
∗, and

therefore also (F((vt K t)), vt), models the existential Lvf(Fperf)-theory of (K t , vt).

F((vt K t))∗

F((vt K t))

�

K t

ι

99

res
// K tvt σ // F

K K perf

F Fperf ∼= // Fperfv0

�∃
�

C Cperf

Our assumption was that ψ(x) is an ∃-Lvf(C)-formula with free variables x be-
longing to the residue field sort, and that (K , v, D) |H ∀k x ψ(x), i.e., xKv ⊆ψ(K ).
Then xFv ⊆ xKv ⊆ ψ(K ) (note that we write Fv rather than F because we have



676 Sylvy Anscombe and Arno Fehm

identified F with a subfield of K ). Let

9F := {ψ(a) | a ∈ xFv}.

Then9F is a set of ∃-Lvf(C)-sentences (with additional parameters from Fv) which
is equivalent to the property that “ xFv ⊆ ψ”. We may now restate our assumption
as (K , v) |H 9F . Since existential sentences “go up”, (K t , vt) |H 9F . By the
result of the previous paragraph, we have (F((vt K t)), vt) |H9F . By an application
of Lemma 5.1, (Fperf(t)h, vt) |H 9F . By Lemma 5.3, (L , w) |H 9F (where we
replace the parameters from Fv by their images under the map i). This shows that
xi(F)⊆ ψ(L), as claimed. �

Corollary 5.6 (near ∀k
∃-C-completeness). Let ψ(x) be an ∃-Lvf(C)-formula with

free variables x belonging to the residue field sort. Suppose there exists

(K , v, D) |H TF/C ∪ {∀
k x ψ(x)}.

Then there exists n ∈ N such that xLw ⊆ ψ(L p−n
) for all (L , w, E) |H TF/C .

Proof. Let (L , w, E) |H TF/C . As F/C is separable and (Lw, Ew) ≡ (F,C)
as Lring(C)-structures, Lw/Ew is also separable. In particular, both (K , v, D)
and (L , w, E) are models of TLw/Ew, and thus we may apply the conclusion of
Proposition 5.5 to

(Lperf, w, Eperf, id) ∈ H(Lwperf/Ewperf).

Thus we have that xLw ⊆ ψ(Lperf). To find n, we use a simple compactness
argument, as follows.

Write the formula ψ(x) as ∃ y ρ(x, y, c), for a quantifier-free Lvf-formula ρ. For
each n ∈ N, let ψn(x) be the formula ∃ y ρ(x pn

, y, cpn
) and consider the Lvf(C)-

structure (L p−n
, w, E) which extends (L , w, E). Then, for a ∈ xLw, a ∈ ψ(L p−n

)

if and only if a ∈ψn(L). Let p(x) be the set of formulas {¬ψn(x) | n ∈N}. If p(x)
is a type, i.e., p(x) is consistent with TF/C , then we may realise it by a tuple a in
a model (L , w, E) |H TF/C . Thus a /∈ ψ(L p−n

), for all n ∈ N. Since Lperf is the
directed union

⋃
n∈N L p−n

(even as Lvf(C)-structures), we have that a /∈ ψ(Lperf).
This contradicts the result of the previous paragraph.

Consequently, there exists n ∈N such that TF/C entails ∀k x ψn(x). Equivalently,
for all (L , w, E) |H TF/C , we have xLw ⊆ ψ(L p−n

), as required. �

Corollary 5.7 (perfect residue field, ∀k
∃-C-completeness). Suppose that F is per-

fect. Then TF/C is ∀k
∃-C-complete, i.e., for any ∀k

∃-Lvf(C)-sentence φ, either
TF/C |H φ or TF/C |H ¬φ.

Proof. Suppose that there is (K , v, D) |H TF/C ∪ {φ} and let (L , w, E) |H TF/C .
Then (K , v, D) |H TLw/Ew and

(L , w, E, id) ∈ H(Lw/Ew)= H(Lwperf/Ewperf).
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We write φ = ∀k x ψ(x) for some ∃-Lvf(C)-formula ψ(x) with free variables x
belonging to the residue field sort. Then (K , v, D) |H φ means that xKv ⊆ ψ(K ).
Applying Proposition 5.5, we have that xLw ⊆ ψ(L). Thus (L , w, E) |H φ. This
shows that TF/C |H φ, as required. �

Remark 5.8. We do not know whether the assumption that F is perfect is necessary
in Corollary 5.7. However, note that Corollary 5.7 cannot be extended from ∀k

∃-
sentences to arbitrary ∀∃-sentences (even without parameters and with only one
universal quantifier). For example, the sentence

∀x∃y (v(x)= v(y2))

expresses 2-divisibility of the value group, so is satisfied in F((Q)) but not in F((t)).
On the other hand, one could generalise Corollary 5.7 by slightly adapting the

proof to allow also sentences with more general quantifiers over the residue field,
namely Qk

∃-Lvf(C)-sentences, i.e., sentences of the form

∃
k x1∀

k y1 . . . ∃
k xn∀

k yn ψ(x1, y1, . . . , xn, yn)

with ψ(x1, y1, . . . , xn, yn) an ∃-Lvf(C)-formula.

6. The existential theory

We now restrict the machinery of the previous section to existential sentences and
prove Theorem 1.1 from the introduction. We fix a field F , let C be the prime field
of F , and write TF = TF/C , H(F)= H(F/C).

Lemma 6.1. TF is ∃-complete, i.e., for any ∃-Lvf-sentence φ, either TF |H φ or
TF |H ¬φ.

Proof. Suppose that TF ∪ {φ} is consistent. Thus there exists (K , v) |H TF ∪ {φ}.
Simply viewing φ as an ∀k

∃-formula ∀k x ψ(x) with ψ(x) = φ, we have that
Kv ⊆ψ(K ). By Corollary 5.6 there exists n ∈N such that, for every (L , w) |H TF ,
Lw ⊆ ψ(L p−n

). In particular, ψ(L p−n
) is nonempty. Since no parameters appear

in ψ , we may apply the n-th power of the Frobenius map to get that ψ(L) is
nonempty, for every (L , w) |H TF . Viewing φ as an ∃-sentence again, we have that
(L , w) |H φ. Thus TF |H φ, as required. �

For the proof of Theorem 1.1 it remains to show that T 1
F already entails those

existential and universal sentences which are entailed by TF .

Definition 6.2. We define two subtheories of T 1
F . Let T ∃F be the Lvf-theory consist-

ing of the following axioms (expressed informally about a structure (K , v)):

(1) (K , v) is an equicharacteristic henselian nontrivially valued field and

(2) Kv is a model of the existential Lring-theory of F .
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Let T ∀F be the Lvf-theory consisting of the following axioms (again expressed
informally):

(1) (K , v) is an equicharacteristic henselian nontrivially valued field and

(2) Kv is a model of the universal Lring-theory of F .

Note that T 1
F ≡ T ∃F ∪ T ∀F .

Lemma 6.3. Let φ be an existential Lvf-sentence. If TF |H φ then T ∃F |H φ.

Proof. Let (K , v) |H T ∃F . Then Kv is a model of Th∃(F); equivalently the theory
of Kv is consistent with the atomic diagram of F . Thus there is an elementary
extension (K , v)� (K ∗, v∗) with an embedding σ : F→ K ∗v∗, cf. [Marker 2002,
Lemma 2.3.3]. Note that (K ∗, v∗, σ ) ∈ H(F) and that (F(t)h, vt) |H TF , hence
(F(t)h, vt) |Hφ. Therefore, Lemma 5.3 implies that (K ∗, v∗) |Hφ; thus (K , v) |Hφ.
This shows that T ∃F |H φ. �

Lemma 6.4. Let φ be a universal Lvf-sentence. If TF |H φ then T ∀F |H φ.

Proof. Let (K , v) |H T ∀F . Then Kv |H Th∀(F). There exists F ′ ≡ F with an
embedding σ : Kv→ F ′ (see [Marker 2002, Exercise 2.5.10]). Using Lemma 2.1,
we may choose an equicharacteristic nontrivially valued field (L , w) which extends
(K , v) and is such that Lw is isomorphic to F ′. In particular Lw≡ F . Let (L , w)h

be the henselisation of (L , w); then we have (L , w)h |H TF , so (L , w)h |H φ. Since
φ is universal, we conclude that (K , v) |H φ. �

Theorem 6.5 (∃-completeness). T 1
F is ∃-complete, i.e., for any ∃-Lvf-sentence φ

either T 1
F |H φ or T 1

F |H ¬φ.

Proof. Let φ be an existential Lvf-sentence. By Lemma 6.1, either TF |H φ or
TF |H¬φ. In the first case we apply Lemma 6.3 and find that T ∃F |H φ; in the second
case we apply Lemma 6.4 and find that T ∀F |H ¬φ. Since T 1

F ≡ T ∃F ∪ T ∀F , in either
case T 1

F “decides” φ, and we are done. �

Remark 6.6. Let χ(x) be an existential Lring-formula with one free variable. In
[Anscombe and Fehm 2016], we apply Theorem 6.5 to the following ∃- or ∀-Lvf-
sentences:

(1) ∀x (χ(x)→ v(x)≥ 0),

(2) ∀x (χ(x)→ v(x) > 0), and

(3) ∃x (v(x) > 0∧ x 6= 0∧χ(x)).

We also apply Corollary 5.6 to the ∀k
∃-Lvf-sentence

(4) ∀k x∃y (res(y)= x ∧χ(y)).



The existential theory of equicharacteristic henselian valued fields 679

7. An “existential AKE principle” and existential decidability

Theorem 6.5 shows that the existential (respectively, universal) theory of an equichar-
acteristic henselian nontrivially valued field depends only on the existential (re-
spectively, universal) theory of its residue field. We formulate this in the following
“existential AKE principle”.

Theorem 7.1. Let (K , v) and (L , w) be equicharacteristic henselian nontrivially
valued fields. Then

(K , v) |H Th∃(L , w) if and only if Kv |H Th∃(Lw).

Proof. (⇒): Note that the maximal ideal is defined by the quantifier-free formula
v(x)>0. Therefore any existential statement about the residue field can be translated
into an existential statement about the valued field.
(⇐): If Kv |H Th∃(Lw) then (K , v) |H T ∃Lw. By Lemma 6.1, TLw entails

the existential theory of (L , w), and by Lemma 6.3, T ∃Lw entails the existential
consequences of TLw. Combining these two statements, we have that T ∃Lw entails the
existential theory of (L , w). Thus (K , v)models the existential theory of (L , w). �

Corollary 7.2. Let (K , v) and (L , w) be equicharacteristic henselian nontrivially
valued fields. Then

Th∃(K , v)= Th∃(L , w) if and only if Th∃(Kv)= Th∃(Lw).

Proof. This follows from Theorem 7.1, since Th∃(K , v)= Th∃(L , w) if and only
if both (K , v) |H Th∃(L , w) and (L , w) |H Th∃(K , v), and Th∃(Kv)= Th∃(Lw) if
and only if both Kv |H Th∃(Lw) and Lw |H Th∃(Kv). �

Note that Corollary 7.2 is in fact simply a reformulation of Theorem 6.5. Note
moreover that, by the usual duality between existential and universal sentences, the
same principle holds with “∃” replaced by “∀”.

Remark 7.3. The reader has probably noticed that as opposed to the usual AKE
principles, the value group does not occur here. However, since the existential theory
of a valued field determines the existential theory of its value group, Corollary 7.2
could also be phrased as

Th∃(K , v)= Th∃(L , w) if and only if

Th∃(Kv)= Th∃(Lw) and Th∃(vK )= Th∃(wL).

In fact, all nontrivial ordered abelian groups have the same existential theory (which
follows immediately from the completeness of the theory of divisible ordered
abelian groups; see also [Gurevich and Kokorin 1963]). In residue characteristic
zero, this special form of the existential AKE principle was known before; see,
e.g., [Koenigsmann 2014, p. 192].



680 Sylvy Anscombe and Arno Fehm

Remark 7.4. In mixed characteristic the situation is very different. Fix a prime
p and let (K , v) and (L , w) be henselian nontrivially valued fields. Just as in
Remark 7.3, the existential theory of a valued field determines the existential theory
of the residue field and the value group, i.e.,

Th∃(K , v)=Th∃(L , w) H⇒ Th∃(Kv)=Th∃(Lw) and Th∃(vK )=Th∃(wL).

However, in mixed characteristic the converse fails. For example, consider the
valued fields (K , v)= (Qp, vp) and (L , w)= (Qp(

√
p), vp). Both residue fields

Kv and Lw are equal to Fp and both value groups are isomorphic to Z, but the
existential theories of (K , v) and (L , w) are not equal since Qp does not contain
a square-root of p. In particular, both Theorem 6.5 and Corollary 7.2 fail if we
replace “equicharacteristic” by “mixed characteristic”.

One feature of mixed characteristic is that the existential theory of (K , v) deter-
mines the existential theory of (vK , vp), which is the ordered abelian group vK
together with the distinguished nonzero element vp. Therefore, if (K , v) and (L , w)
are both of characteristic zero and residue characteristic p, we have the implication

Th∃(K , v)= Th∃(L , w) =⇒

Th∃(Kv)= Th∃(Lw) and Th∃(vK , vp)= Th∃(wL , wp). (∗)

Note that not all ordered abelian groups with a distinguished nonzero element have
the same existential theory. For example, Th∃(Z, 1) 6= Th∃(Z, 2). Nevertheless, we
claim that the implication (∗) is not invertible. To prove this claim we need a new
counterexample because vp p is minimal positive in vpQp but vp p = 2vp

√
p in

vpQp(
√

p), and so

Th∃(vpQp, vp p)= Th∃(Z, 1) 6= Th∃(Z, 2)= Th∃(vpQp(
√

p), vp p).

Instead, we cite the example of two valued fields (L1, v) and (F1, v) which were
constructed in [Anscombe and Kuhlmann 2016, Theorem 1.5]. Both are tame and
algebraic extensions of (Q, vp), both residue fields L1v and F1v are equal to Fp,
and both value groups vL1 and vF1 are equal to the p-divisible hull of 1

p−1(vp p)Z.
Nevertheless (L1, v) 6≡ (F1, v). In fact, since L1 and F1 are algebraic, we have that
Th∃(L1, v) 6= Th∃(F1, v). This example shows that the converse to (∗) does not
hold, even under the additional hypothesis that (K , v) and (L , w) are tame.

Next we deduce Corollary 1.3 from Theorem 6.5.

Corollary 7.5. Let (K , v) be an equicharacteristic henselian valued field. The
following are equivalent.

(1) Th∃(Kv) is decidable.

(2) Th∃(K , v) is decidable.
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Proof. 2=⇒ 1: As before, residue fields are interpreted in valued fields in such a
way that existential statements about Kv remain existential statements about (K , v).
Therefore, if (K , v) is ∃-decidable, then Kv is ∃-decidable.

1=⇒ 2: Write F := Kv and suppose that F is ∃-decidable. If v is trivial, then
(K , v)= (F, v) is also ∃-decidable, so suppose that v is nontrivial. We may recur-
sively enumerate the existential and universal theory R1

F of F , so T 1
F is effectively

axiomatisable. By Theorem 6.5, T 1
F is an ∃-complete subtheory of Th(K , v). Thus

we may decide the truth of existential (and universal) sentences in (K , v). �

Remark 7.6. If we replace “equicharacteristic” by “mixed characteristic” then the
statement of Corollary 7.5 is no longer true. To see this, let P be an undecidable set
of primes, let K be the extension of Qp generated by a family of l-th roots of p, for
l ∈ P , and let v be the unique extension of vp to K . Then Kv = Fp, so Th∃(Kv) is
decidable, but Th∃(vK , vp) is undecidable, hence so is Th∃(K , v). At present, we
do not know of an example of a mixed characteristic henselian valued field (K , v)
for which Th∃(Kv) and Th∃(vK , vp) are decidable but Th∃(K , v) is undecidable.

Let Lvf(t) be the language of valued fields with an additional parameter t , and
let q be a prime power. In [Denef and Schoutens 2003], it is shown that resolution
of singularities in characteristic p would imply that the existential Lvf(t)-theory
of Fq((t)) is decidable. Using our methods we can prove the following weaker but
unconditional result.

Corollary 7.7. The existential theory of Fq((t)) in the language of valued fields is
decidable.

First proof. We can apply Corollary 7.5, noting that Th∃(Fq) is decidable. �

For the sake of interest, we present a more direct proof of this special case.
However, note that this “second proof” uses the decidability of Fq , while the “first
proof” used only the decidability of the existential theory of Fq .

Second proof. As an equicharacteristic tame field (Proposition 4.6) with decidable
residue field and value group, (Fq((t))Q, vt) is decidable, by [Kuhlmann 2014,
Theorem 7.7(a)]. Since (Fq((t))Q, vt) is the directed union of structures isomorphic
to (Fq((t)), vt) (Corollary 4.3), in fact (Fq((t)), vt) and (Fq((t))Q, vt) have the same
∃-Lvf-theory. Thus, to decide the existential Lvf-theory of (Fq((t)), vt), it suffices
to apply the decision procedure for the Lvf-theory of (Fq((t))Q, vt). �

Remark 7.8. Since Corollary 7.7 shows decidability of the existential theory of
Fq((t)) in the language of valued fields Lvf, in which the valuation ring is definable
by a quantifier-free formula, we also get decidability of the existential theory of
the ring Fq [[t]]. It might however be interesting to point out that it was proven only
recently that already decidability of the existential theory of Fq((t)) in the language
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of rings would imply decidability of the existential theory of the ring Fq [[t]]; see
[Anscombe and Koenigsmann 2014, Corollary 3.4].

Remark 7.9. The ∃-Lvf(t)-theory of (Fq((t)), vt) is equivalent to the ∀K
1 ∃-Lvf-

theory of (Fq((t)), vt). This “equivalence” is meant in the sense that there is a truth-
preserving effective translation between ∃-Lvf(t)-sentences and ∀∃-Lvf-sentences
which have only one universal quantifier ranging over the valued field sort (and
arbitrary existential quantifiers). In this argument we make repeated use of the
fact that, for all a ∈ Fq((t)) with vt(a) > 0 and a 6= 0, there is an Lvf-embedding
Fq((t))→ Fq((t)) which sends t 7→ a.

Let φ(t) be an existential Lvf(t)-sentence. We claim that φ(t) is equivalent to
the ∀K

1 ∃-Lvf-sentence

∀u ((v(u) > 0∧ u 6= 0)→ φ(u)).

This follows from the fact about embeddings stated above.
On the other hand, let ψ(x) be an ∃-Lvf-formula in one free variable x in the

valued field sort and consider the ∃-Lvf(t)-sentence χ which is defined to be

∃y∃z0 . . . ∃zq−1

(
yt = 1∧ψ(y)∧

∧
j

zq
j = z j∧

∧
i 6= j

zi 6= z j∧
∧

j
ψ(z j+t)∧

∧
j
ψ(z j )

)
.

Written more informally, the sentence χ expresses that

ψ(t−1)∧
∧

z∈Fq

(ψ(z+ t)∧ψ(z)).

We claim that ∀x ψ(x) and χ are equivalent. First suppose that Fq((t)) |H ∀x ψ(x).
By choosing (z j ) to be an enumeration of Fq , we immediately have that Fq((t)) |Hχ .

In the other direction, suppose that Fq((t)) |H χ and let a ∈ Fq((t)). If vt(a) < 0
then consider the embedding which sends t 7→ a−1. Since ψ(t−1) holds, applying
the embedding shows thatψ(a) also holds. On the other hand suppose that vt(a)≥0.
If a ∈ Fq then χ already entails that ψ(a). Now suppose that a /∈ Fq and let z be the
residue of a. Consider the embedding which sends t 7→ a− z (note that a− z 6= 0).
Since ψ(z+ t) holds, applying the embedding shows that ψ(a) also holds. This
completes the proof that Fq((t)) |H ∀x ψ(x).
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