ERRATA FOR "NEF CONES OF HILBERT SCHEMES OF POINTS ON SURFACES"

ALGEBRA AND NUMBER THEORY 10:2016, PP. 907-930

BARBARA BOLOGNESE, JACK HUIZENGA, YINBANG LIN, ERIC RIEDL, BENJAMIN SCHMIDT, MATTHEW WOOLF, AND XIAOLEI ZHAO

In Section 5 it was erroneously claimed that the Weyl group acts transitively on the extremal rays of the nef cone of a del Pezzo surface X of degree 1. In fact, there are two orbits.

Proposition. For $k \geq 2$, let X_k be the del Pezzo surface $X_k \cong \operatorname{Bl}_{p_1,\ldots,p_k} \mathbb{P}^2$, where p_1,\ldots,p_k are distinct points such that $-K_{X_k}$ is ample. Then the Weyl group acts on the extremal rays of $\operatorname{Nef}(X_k)$, and there are two orbits. The classes H and $H - E_1$ are orbit representatives.

Proof. Since the Weyl group preserves the intersection pairing and H and $H - E_1$ are extremal nef divisors with different self-intersections, there are at least two orbits.

For k = 2, the nef cone is spanned by $H, H - E_1, H - E_2$. The Weyl group $\mathbb{Z}/2\mathbb{Z}$ fixes H and exchanges $H - E_1$ and $H - E_2$, so there are two orbits.

Now suppose k > 2 and N is an extremal nef divisor on X_k . Then N is orthogonal to a face of NE(X), so there is a (-1)-curve orthogonal to N. Since k > 2, we may use the Weyl group to assume this (-1)-curve is E_k . Then N is a pullback $N = \pi^* N'$ along the blowdown map $\pi : X_k \to X_{k-1}$ contracting E_k . Since N is an extremal nef divisor on X_k , N' is an extremal nef divisor on X_{k-1} : a nontrivial decomposition N' = A + B with A, B nef would pullback to a nontrivial decomposition of N. Continuing in this fashion we see that up to the action of the Weyl group N is the pullback of H or $H - E_1$ from X_2 .

In Section 5B, we may then assume the nef class N is either $H - E_1$ or H; the analysis of this second possibility must also be carried out. The corresponding $F_{[n]}$ -orthognal ray is

$$(n-1)(-K_X)^{[n]} + \frac{1}{3}H^{[n]} - \frac{1}{2}B,$$

and we have to show this ray is nef. If we choose

$$Q = \left(n - \frac{3}{2}\right)\left(-K_X\right) + \frac{1}{3}H,$$

this amounts to showing that the Gieseker wall for the (Q, K_X) -slice has center $(s_W, 0) = (-1, 0)$. This is easily proved by arguments identical to those used for the (P, K_X) -slice in section 5C.

After these modifications, all the stated results in Section 5 remain true without change.

Date: April 3, 2018.