Vol. 10, No. 5, 2016

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
Editors' interests
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author index
To appear
Other MSP journals
Hoffmann's conjecture for totally singular forms of prime degree

Stephen Scully

Vol. 10 (2016), No. 5, 1091–1132

One of the most significant discrete invariants of a quadratic form ϕ over a field k is its (full) splitting pattern, a finite sequence of integers which describes the possible isotropy behavior of ϕ under scalar extension to arbitrary overfields of k. A similarly important but more accessible variant of this notion is that of the Knebusch splitting pattern of ϕ, which captures the isotropy behavior of ϕ as one passes over a certain prescribed tower of k-overfields. We determine all possible values of this latter invariant in the case where ϕ is totally singular. This includes an extension of Karpenko’s theorem (formerly Hoffmann’s conjecture) on the possible values of the first Witt index to the totally singular case. Contrary to the existing approaches to this problem (in the nonsingular case), our results are achieved by means of a new structural result on the higher anisotropic kernels of totally singular quadratic forms. Moreover, the methods used here readily generalize to give analogous results for arbitrary Fermat-type forms of degree p over fields of characteristic p > 0.

quadratic forms, quasilinear $p$-forms, splitting patterns, canonical dimension
Mathematical Subject Classification 2010
Primary: 11E04
Secondary: 14E05, 15A03
Received: 7 August 2015
Revised: 24 February 2016
Accepted: 24 March 2016
Published: 28 July 2016
Stephen Scully
Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton AB T6G 2G1