Vol. 10, No. 5, 2016

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
K3 surfaces over finite fields with given $L$-function

Lenny Taelman

Vol. 10 (2016), No. 5, 1133–1146
Abstract

The zeta function of a K3 surface over a finite field satisfies a number of obvious (archimedean and -adic) and a number of less obvious (p-adic) constraints. We consider the converse question, in the style of Honda–Tate: given a function Z satisfying all these constraints, does there exist a K3 surface whose zeta-function equals Z? Assuming semistable reduction, we show that the answer is yes if we allow a finite extension of the finite field. An important ingredient in the proof is the construction of complex projective K3 surfaces with complex multiplication by a given CM field.

Keywords
K3 surfaces, zeta functions, finite fields
Mathematical Subject Classification 2010
Primary: 14J28
Secondary: 14G15, 14K22, 11G25
Milestones
Received: 17 August 2015
Revised: 27 November 2015
Accepted: 27 December 2015
Published: 28 July 2016
Authors
Lenny Taelman
Korteweg-de Vries Instituut
Universiteit van Amsterdam
P.O. Box 94248
1090 GE Amsterdam
Netherlands