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Steinberg groups as amalgams
Daniel Allcock

For any root system and any commutative ring, we give a relatively simple
presentation of a group related to its Steinberg group Gt. This includes the case
of infinite root systems used in Kac—-Moody theory, for which the Steinberg group
was defined by Tits and Morita—Rehmann. In most cases, our group equals Gt,
giving a presentation with many advantages over the usual presentation of Gt.
This equality holds for all spherical root systems, all irreducible affine root
systems of rank > 2, and all 3-spherical root systems. When the coefficient ring
satisfies a minor condition, the last condition can be relaxed to 2-sphericity.

Our presentation is defined in terms of the Dynkin diagram rather than the
full root system. It is concrete, with no implicit coefficients or signs. It makes
manifest the exceptional diagram automorphisms in characteristics 2 and 3,
and their generalizations to Kac—Moody groups. And it is a Curtis—Tits style
presentation: it is the direct limit of the groups coming from 1- and 2-node
subdiagrams of the Dynkin diagram. Over nonfields this description as a direct
limit is new and surprising. Our main application is that many Steinberg and
Kac—Moody groups over finitely generated rings are finitely presented.
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1792 Daniel Allcock

1. Introduction

In this paper we give a presentation for a Steinberg-like group, over any commutative
ring, for any root system, finite or not. For many root systems, including all finite
ones, it is the same as the Steinberg group &t. This is the case of interest, for then
it gives a new presentation of Gt and associated Chevalley and Kac—-Moody groups.
Our presentation

(1) is defined in terms of the Dynkin diagram rather than the set of all (real) roots
(Sections 2 and 7);

(i1) is concrete, with no coefficients or signs left implicit;

(iii) generalizes the Curtis—Tits presentation of Chevalley groups to rings other
than fields (Corollary 1.3);

(iv) is rewritable as a finite presentation when R is finitely generated as an abelian
group (Theorem 1.4);

(v) is often rewritable as a finite presentation when R is merely finitely generated
as a ring (Theorem 1.4);

(vi) allows one to prove that many Kac—Moody groups are finitely presented
(Theorem 1.5); and

(vii) makes manifest the exceptional diagram automorphisms that lead to the Suzuki
and Ree groups, and allows one to construct similar automorphisms of Kac—
Moody groups in characteristic 2 or 3 (Section 3).

More precisely, given any generalized Cartan matrix A, in Section 7 we give two
definitions of a new group functor. We call it the pre-Steinberg group PGSt because
it has a natural map to St4. This will be obvious from the first definition, which
mimics Tits’ definition [1987] of the Steinberg group Gty, as refined by Morita
and Rehmann [1990]. The difference is that we leave out most of the relations.
If the root system is finite then both P&St, and Sty coincide with Steinberg’s
original group functor, so they coincide with each other too. Our perspective is
that SPSt, (R) is interesting if and only if PSt, (R) = Gta(R) is an isomorphism,
when our second definition of ‘P&t provides a new and useful presentation of Gty.
We will discuss this second definition after listing some cases in which

PSt,(R) = Gta(R).

Theorem 1.1 (coincidence of Steinberg and pre-Steinberg groups). Suppose R is
a commutative ring and A is a generalized Cartan matrix. Then the natural map
PGS, (R) — Gty (R) is an isomorphism in any of the following cases:

(1) if A is spherical; or

(1) if A is irreducible affine of rank > 2; or
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(iii) if A is 3-spherical; or
(iv) if A is 2-spherical and (if A has a multiple bond) R has no quotient [, and
(if A has a triple bond) R has no quotient [F3.

Language. We pass between Cartan matrices and Dynkin diagrams whenever
convenient. The rank rk A of A means the number of nodes of the Dynkin diagram.
A is called spherical if its Weyl group is finite; this is equivalent to every component
of the Dynkin diagram being one of the classical ABCDEFG diagrams. A is called
k-spherical if every subdiagram with < k nodes is spherical.

As mentioned above, case (i) in Theorem 1.1 is obvious once BGSt is defined.
Cases (iii)—(iv) are proven in Section 11. By considering the list of affine Dynkin
diagrams, one sees that these cases imply case (ii) except in rank 3 when R has a
forbidden [, or F3 quotient. Proving (ii) requires removing this restriction on R,
for which we refer to [Allcock 2016]. An early version of the present paper was
used in [Allcock and Carbone 2016] to establish Theorem 1.1 for certain hyperbolic
Dynkin diagrams. Those diagrams are now covered by case (iv).

Our second “definition” of PGSt (R) is the following theorem, giving a presenta-
tion for it. It is a restatement of Theorem 7.12, whose proof occupies Sections 7-9.
The proof relies on an understanding of root stabilizers under a certain extension of
the Weyl group, which appears to be a new ingredient in Lie theory. To give the
flavor of the result, the full presentation appears in Table 1.1 if A is simply laced
without A; components. In this case we have ‘PGSt,(R) = Gty (R) by the previous
theorem, so it is a new presentation for Gt4(R).

Theorem 1.2 (presentation of pre-Steinberg groups). For any commutative ring R
and any generalized Cartan matrix A, *B3St, (R) has a presentation with generators

S; and X;(t), where i varies over the simple roots and t varies over R, and relators
(7-1)—(7-26).

Table 1.1 shows that the presentation is less intimidating than a list of 26 relations
would suggest. See Section 2 for the B, and G, cases. Each relator (7-1)—(7-26)
involves at most two distinct subscripts. This proves the following.

Corollary 1.3 (Curtis-Tits presentation for pre-Steinberg groups). Let A be a gen-
eralized Cartan matrix and R a commutative ring. Consider the groups PGStz (R)
and the obvious maps between them, as B varies over the 1 x 1 and 2 X 2 submatrices
of A coming from singletons and pairs of nodes of the Dynkin diagram. The direct
limit of this family of groups equals *BFSt, (R). U

In any of the cases in Theorem 1.1, we may replace PGSt by Gty everywhere in
Corollary 1.3, yielding a Curtis—Tits style presentation for Gt4. This is the source
of our title Steinberg groups as amalgams. We learned after writing this paper
that Dennis and Stein [1974, Theorem B] announced Corollary 1.3 for finite root
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X; ()X (u) = X; (t +u)
all i [S2, X; ()] =1
Si = X;(DS; X: (1)S; X; (1)

SiS; = S;S;
all (i, j) with i 5 j unjoined [Si, X;(0)]=1
[Xi (1), Xj(w)] =1
SiS;Si = 8;8;S;
57887 =S;"

X:(1)S;S; = S; i X; (1)
S2X;(1)S72 = X; (1)~
[X: (), S X;w)S7 =1
[X: (1), X;(w)] = S; X; (tu)S;”

all (i, j) with i # j joined

Table 1.1. Our defining relations for the Steinberg group Gt (R),
when A is any simply laced generalized Cartan matrix, without A
components, and R is any commutative ring. The generators are
X;i(t) and S;, where i varies over the nodes of the Dynkin diagram
and ¢ over R.

systems. They did not publish a proof, and from their announcement it appears that
their approach was not via our Theorem 1.2.

In the A, Ay, By and G, cases, we write out our presentation of PGSty (R) =
Gt4(R) explicitly in Section 2. We do this to make our results as accessible
as possible, and to show in Section 3 that our presentation makes manifest the
exceptional diagram automorphisms in characteristics 2 and 3. Namely, the arrow-
reversing diagram automorphism of the B, or G, Dynkin diagram yields a self-
homomorphism of the corresponding Steinberg group if the coefficient ring R has
characteristic 2 or 3, respectively. If R is a perfect field then this self-homomorphism
is the famous outer automorphism that leads to the Suzuki and (small) Ree groups.

Because of the direct limit property (Corollary 1.3), one obtains the corresponding
self-homomorphisms of Fy in characteristic 2 with no more work. That is, the
defining relations for Gtp, are those for Gtp,, two copies of Gt,, and three copies of

GtA% = (‘SfA] X 6’(,41.

The diagram automorphism transforms the B, relations as in the previous paragraph
and sends the other relations into each other. The same argument applies to many
Kac—Moody groups. By work of Hée, this leads to Kac—Moody-like analogues of
the Suzuki and Ree groups, discussed briefly in Section 3.
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An application of the theory we have described is that Steinberg groups and
Kac—Moody groups are finitely presented under quite weak hypotheses on their
Dynkin diagrams and coefficient rings. We state the Steinberg group result in terms
of PG&t, (R), keeping in mind that the interesting case is when PGSt, (R) coincides
with Gt4(R). See Section 12 for the proof.

Theorem 1.4 (finite presentation of pre-Steinberg groups). Let R be a commutative
ring and A a generalized Cartan matrix. Then 3St, (R) is finitely presented in any
of the following cases:

(1) if R is finitely generated as an abelian group; or

(i1) if A is 2-spherical without A components, and R is finitely generated as a
module over a subring generated by finitely many units; or

(ii1) if R is finitely generated as a ring, and any two nodes of A lie in an irreducible
spherical diagram of rank > 3.

Many authors have studied the finite presentation of Steinberg groups and related
groups. Our Theorem 1.4 is inspired by work of Splitthoff [1986]. See [Kiralis
et al. 1996; Zhang 1991; Li 1989] for some additional results.

The Kac-Moody group version of Theorem 1.4 concerns the group functors &p
constructed by Tits [1987] (he wrote & p). They were his motivation for generalizing
the Steinberg groups beyond the case of spherical Dynkin diagrams. He defined the
“simply connected” Kac—Moody groups as certain quotients of Steinberg groups,
and arbitrary Kac—-Moody groups are only slightly more general. Specifying a Kac—
Moody group requires specifying a root datum D, which is slightly more refined
information than D’s associated generalized Cartan matrix A. But the choice of D
doesn’t affect any of our results.

Our final theorem shows that a great many Kac—Moody groups over rings are
finitely presented. This is surprising because one thinks of Kac—Moody groups
over (say) R as infinite-dimensional Lie groups, so the same groups over (say) Z
should be some sort of discrete subgroups. There is no obvious reason why a
discrete subgroup of an infinite-dimensional Lie group should be finitely presented.
See Section 12 for the definition of the Kac—Moody groups, and the proof of the
following theorem.

Theorem 1.5 (finite presentation of Kac—-Moody groups). Suppose A is a general-
ized Cartan matrix and R is a commutative ring whose group of units R* is finitely
generated. Let D be any root datum with generalized Cartan matrix A. Then Tits’
Kac—Moody group &p(R) is finitely presented if Sts(R) is.

In particular, this holds if one of (1)-(v) from Theorem 1.1 holds and one of
(1)-(iii) from Theorem 1.4 holds.
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The paper is organized as follows. Sections 2 and 3 are expository and not
essential for later sections. Section 2 is really a continuation of the introduction,
writing down the essential cases of our presentation of PGSt (R). These can be
understood independently of the rest of the paper. Section 3 treats the exceptional
diagram automorphisms: their existence is hardly even an exercise.

Sections 4-6 give necessary background. Section 4 gives a little background on
the Kac—Moody algebra g4. Section 5 is mostly a review of results of Tits about
a certain extension W* C Aut(g4) of the Weyl group W. But we also use a more
recent result of Brink [1996] on Coxeter groups to describe generators for root
stabilizers in W*, and how they act on the corresponding root spaces (Theorem 5.7).
Section 6 reviews Tits’ definition of Gt4 and its refinement by Morita and Rehmann.

Sections 7-9 are the technical heart of the paper, establishing Theorem 1.2. In
Section 7 we define 8&t, and then establish a presentation for it. We do this by
defining a group functor ®,4 by a presentation and proving ‘P&St, = B4. As the
notation suggests, this is the last in a chain of group functors &y, ..., &4 that give
successively better approximations to 3&t,. Lemma 7.4 and Theorems 7.5, 7.11
and 7.12 give “intrinsic” descriptions of &, &;, &3 and B4, the last one being the
same as Theorem 1.2 above. See Section 2 for a quick overview of the meanings of
these intermediate groups. The proof for & is trivial, the proofs for &, and &3
occupy Sections 8 and 9, and the proof for &, appears in Section 7.

Section 10 reviews work of Rémy [2002] on the adjoint representation of a
Kac—Moody group, regarded as a representation of the corresponding Steinberg
group. The definition of Gt is as the direct limit of a family of unipotent groups,
and we use the adjoint representation to show that the natural maps from these
groups to Gt are embeddings. This is necessary for the proof of Theorem 1.1 in
Section 11. Finally, in Section 12 we discuss finite presentability of pre-Steinberg
groups and Kac—Moody groups. In particular, we prove Theorems 1.4 and 1.5. The
result for pre-Steinberg groups relies heavily on work of Splitthoff.

2. Examples

In this section we give our presentation of P&St,(R) = Gt4(R) when R is a
commutative ring and A = A, A,, By or G;. It is mostly a writing-out of the
general construction in Section 7. Because of the direct limit property of the
pre-Steinberg group (Corollary 1.3), understanding these cases, together with

Pt = PO, x PO,

is enough to present BSt, whenever A is 2-spherical. As usual, we are mainly
interested in the presentation when PGSt and St coincide. This happens in any of
the cases of Theorem 1.1.
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For generators we take formal symbols S, S, X (¢) and X'(r), with ¢ varying
over R. The primed generators should be omitted in the A; case. We divide the
relations into batches O through 4, with several intermediate groups having useful
descriptions. At the end of the section we give an overview of these descriptions.
For now we make only brief remarks. The batch O relations make the S’s generate
something like the Weyl group. The batch 1 relations make the X (¢)’s additive
in ¢. The batch 2 relations describe the interaction between the S’s and the X (¢)’s.
These are the essentially new component of our approach to Steinberg groups. The
batch 3 relations are Chevalley relations, describing commutators of conjugates of
the X (¢)’s by various words in the S’s. Finally, the batch 4 relations are Steinberg’s
Aj-specific relations, and relations identifying the S’s with the generators of the
“Weyl group” inside the Steinberg group.

In the presentations we write x = y to indicate that x and y commute. The
notation “(& primed)” next to a relation means to also impose the relation got from
it by the typographical substitution S <> §" and X (¢) <> X'(¢).

Example 2.1 (A;). We take generators S and X (¢), with ¢ varying over R. There
are no batch 0 or batch 3 relations:

Batch 1: XOXw) =Xt +u) (2-1)
Batch 2: =040 (2-2)
Batch 4: S=35(1) (2-3)
h(r)-X @) -h(r)~™" = X (%) (2-4)

h(r)-SX()S ' h(r)y ' =8X@2)s™! (2-5)

These relations hold for all #, u € R and all r in the unit group R* of R, where
S5(r):=X@r)-SXA/r)S™ - X(r),
h(r) :=5r)5(=1).

This is essentially Steinberg’s original presentation (the group G’ on page 78 of
[Steinberg 1968]), with a slightly different generating set.

Example 2.2 (A;). We take generators S, §’, X (t) and X'(¢), with ¢ varying over R:

Batch 0: 5§'S=S5'8S (2-6)
§2.8.872=9"" (& primed) (2-7)

Batch 1: XOXw)y=X{t+u) (& primed) (2-8)
Batch 2: S2= X (1) (& primed) (2-9)
2. X'(1)-S72=X'(—1) (& primed) (2-10)

SS'X (1) =X'(1)SS’ (& primed) (2-11)
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Batch 3: [X (1), X' (u)] = SX (tu)S ™" (& primed) (2-12)
X(t) = SX' w)S™! (& primed) (2-13)
Batch 4: S=XMSX()S'X(1) (& primed) (2-14)

As before, these relations hold for all ¢, u € R. The diagram automorphism is given
by S < 8 and X (¢) < X'(¢).

Example 2.3 (B,). We take generators S, S’, X (t) and X'(¢), with ¢ varying over R.
Unprimed letters correspond to the short simple root and primed letters to the
long one:

Batch 0: 5§'SS' = S'SS'S (2-15)
= (2-16)

§2.5.82=g"1 (2-17)

Batch 1: XX ) =Xt +u) (& primed) (2-18)
Batch 2: 2= X(1) (& primed) (2-19)
2= X'(1) (2-20)

§?.X(1t)- S =X(-1) (2-21)

SS'S = X'(1) (& primed) (2-22)

Batch 3: SX'(1)S~ ' = §'Xw)S ! (2-23)
X'(1) = SX' w)S™! (2-24)

(X)), S'Xw)S 1= SX'(—2tu)S™! (2-25)

[X(1), X' )] = S'X(—tu)S~" - SX'(12u)S~! (2-26)

Batch 4: S=XMSXM)S™'X(1) (& primed) (2-27)

Example 2.4 (G,). We take generators S, ', X(¢) and X'(¢) as in the B, case:

Batch 0: 55'S8'SS' =S§'8S'SS'S (2-28)
§2.5.82=g"! (& primed) (2-29)

Batch 1: XOHXw)=X({t+u (& primed) (2-30)
Batch 2: 2= X(1) (& primed) (2-31)
S2.X'(1)- ST = X'(—1) (& primed) (2-32)

SS8'SS'S = X'(1) (& primed) (2-33)

Batch 3: X' @)= 8SX w)s st (2-34)

SS'X()S s = 8'sX (u)s~'s! (2-35)
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SX'(HS' = 8 X (u)S ™! (2-36)
[X'(1), SX'()S™ 1= §'SX ' (tu)S~' 8! (2-37)
(X (1), SS'X(u)S 'S 1= SX'Bru)S™! (2-38)

[X(2), S'Xu)S' ™= 88X (—2tu)s'~ 57!
- SX'(=3t%u)s~!
- 8'SX' (=3tu*)s~ s ! (2-39)
[X (1), X' (u)] = S8'X (12u)S'~' 57!
S'X (1) ST SX'(Pu)s™!
- S'SX (—Put)sT s (2-40)
Batch 4: S=XMSXMS'X() (& primed) (2-41)

Now we explain the meaning of the batches. The group with generators S and S,
modulo the batch 0 relations, is what we call W in Section 7. It is an extension of the
Weyl group W, slightly “more extended” than a better-known extension of W intro-
duced by Tits [1966a]. We write W* for Tits’ extension and discuss it in Section 5.
“More extended” means that W — W factors through W*. The kernel of W* — W
is an elementary abelian 2-group, while the kernel of W — W can be infinite and
nilpotent of class 2. These details are not needed for a general understanding.

The group with generators X (r) and X’(z), modulo the batch 1 relations, is what
we call & (R) in Section 7. It is just a free product of copies of the additive group
of R, one for each simple root.

The group generated by S, S’ and the X (¢) and X'(¢), modulo the relations
from batches 0 through 2, is what we call &,(R) in Section 7. It is isomorphic
to (kgedp R) X W by Theorem 7.5, where @ is the set of all roots. In fact, this
theorem applies to any generalized Cartan matrix A. This is the main technical
result of the paper, and the batch 2 relations are the main new ingredient in our
treatment of the Steinberg groups. Furthermore, Theorem 7.5 generalizes to groups
with a root group datum in the sense of [Tits 1992; Caprace and Rémy 2009]; see
Remark 7.6. This should lead to generalizations of our results with such groups in
place of Kac—Moody groups.

The batch 3 relations are a few of the Chevalley relations, written in a man-
ner due to Demazure; see Section 7 for discussion and references. No batch 3
relations are present in the A| case. In the A,, B> and G cases, adjoining them
yields Gt(R) x W, by Theorem 7.11. For any generalized Cartan matrix A, the
corresponding presentation is called &3(R) in Section 7, and Theorem 7.11 asserts
that it is isomorphic to PSS (R) x W. Here PSLI is the “pre-" version of Tits’
version of the Steinberg group. See Section 7 for more details.
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Adjoining the batch 4 relations yields the group called B4(R) in Section 7. In
all four examples this coincides with Gt4(R). This result is really the concatena-
tion of Theorem 7.12, that B4 equals BSt, (for any A), with the isomorphism
PBSt, = Gty when A is spherical.

3. Diagram automorphisms

In this section we specialize our presentations of Gtp,(R) and &tg,(R) when the
ground ring R has characteristic 2 or 3, respectively. The exceptional diagram
automorphisms are then visible. These results are not needed later in the paper.

We begin with the B, case, so assume 2 =0 in R. Then X (¢) = X (—¢) for all ¢.
In particular, the right side of (2-27) is its own inverse, so S and §’ have order 2.
The relations involving S2 or S’? are therefore trivial and may be omitted. Also, the
right side of (2-25) is the identity, so that (2-25) is the primed version of (2-24). In
summary, the defining relations for Gt are now the following, with ¢ and u varying
over R:

S8'SS' =8'SS'S (3-1)
XX ) =Xt +u) (& primed) (3-2)
SS'S = X'(1) (& primed) (3-3)

SX' (S '= X w)s ! (3-4)
X' (1) = SX'(u)S™! (& primed) (3-5)

(X(1), X' )] =S8X(—tu)S~" - SX'(12u)S™! (3-6)
S=XMSX)S'X) (& primed) (3-7)

Theorem 3.1. Suppose R is a ring of characteristic 2. Then the map S < S/,
X'(t) = X(t) — X'(t?) extends to an endomorphism ¢ of Stp,(R). If R is a
perfect field then ¢ is an automorphism.

Proof. One must check that each relation (3-1)—(3-7) remains true after the substitu-
tion S <> S, X'(t) — X (1) — X'(¢?). It is easy to check that every relation maps
to its primed form (except that some #’s and u’s are replaced by their squares). The
relations (3-1), (3-4) and (3-6) are their own primed forms. Only (3-6) deserves
any comment: we must check the identity

[X'(+2), X(w)] = SX'(*2u> S~ 8'X (1Pu)S"™!

in Gt. The left side equals [X («), X'(t>)]~". The identity follows by expanding
the commutator using (3-6).

Now suppose R is a perfect field. By a similar argument, one can check that
there is an endomorphism v/ of Gt that fixes S and S, and for each ¢ € R sends X ()
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to X (/1) and X'(t) to X'(+/1). (Because R is a perfect field of characteristic 2,
square roots exist and are unique, and ¢ — +/7 is a field automorphism.) Since
Y o ¢ o ¢ sends each generator to itself, ¢ and i must be isomorphisms. O

Now we consider the G case, so suppose 3 =0 in R. The main simplifications of
Section 2’s presentation of Gt are that the right side of (2-38) is the identity, so (2-38)
is the primed version of (2-34), and that the last two terms on the right of (2-39) are
trivial, so that (2-39) is the primed version of (2-37). So the relations simplify to:

SS'SS'SS = S'SS'SS'S (3-8)
§2.5.82=g"! (& primed) (3-9)
XOXw) =X +u) (& primed) (3-10)

S22 X (1) (& primed) (3-11)

S2.X'(1)- 72 =X'(—1) (& primed) (3-12)
SS'SS'S = X'(1) (& primed) (3-13)

X't = 8SX (w)s~'s ! (& primed) (3-14)
SS'X1)S 'S = §'sX (u)s! s ! (3-15)
SX' (S ' = X w)s ! (3-16)

[X'(1), SX' (w)S™ 1= 8'SX (tu)S~' s~ (& primed) (3-17)

(X (1), X'(w)] = S$S'X (t*u)s'~'s~!
S’ X (—tu)S"' - SX'(Pu)s~!
- S'SX'(—Pu?)sT s ! (3-18)
S=XMSX(MS'Xx(1) (& primed) (3-19)
The following theorem is proven just like the previous one.

Theorem 3.2. Suppose R is a ring of characteristic 3. Then the map S <> S/,
X'(t) = X(t) — X'(t%) extends to an endomorphism ¢ of Stg,(R). If R is a
perfect field then ¢ is an automorphism. ([

The exceptional diagram automorphisms lead to the famous Suzuki and Ree
groups. If R is the finite field F, where g = 2044 then the Frobenius automorphism
of R (namely squaring) is the square of a field automorphism &. Writing & also for
the induced automorphism of Gtp, (R), the Suzuki group is defined as the subgroup
where & agrees with ¢. The same construction with Fy in place of B, yields the
large Ree groups, and in characteristic 3 with G, yields the small Ree groups. These
groups are “like” groups of Lie type in that they admit root group data in the sense
of [Tits 1992] or [Caprace and Rémy 2009], but they are not algebraic groups.
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Hée generalized this [2008]. He showed that when a group with a root group
datum admits two automorphisms that permute the simple roots’ root groups, and
satisfy some other natural conditions, then the subgroup where they coincide also
admits a root group datum. Furthermore, the Weyl group for the subgroup may
be computed in a simple way from the Weyl group for the containing group. For
example, over [, with g = 2044 the Kac-Moody group

—— ---——e . > . . -—--—0

contains a Kac—Moody-like analogue of the Suzuki groups. By Hée’s theorem, its
Weyl group is
8

. . . -—--—2e

Hée [1990] constructs diagram automorphisms in a different way than we do, and
discusses the case “G4” in some detail.

4. The Kac-Moody algebra

In this section we begin the technical part of the paper, by recalling the Kac—Moody
algebra and some notation from [Tits 1987]. All group actions are on the left. We
will use the following general notation:

a bilinear pairing
group generated by the elements enclosed

<
<
|-

xyx~'y~1if x and y are group elements

[

>
>
> a group presentation
vl
*

free product of groups (possibly with amalgamation)

The Steinberg group is built from a generalized Cartan matrix A, for which we will
use the following notation:

I an index set (the nodes of the Dynkin diagram)
i, j will always indicate elements of /
A=(A;j) a generalized Cartan matrix: an integer matrix satisfying A;; = 2,
A,'j <0ifi ;éj,andA,j =O<:>Aj,' =0
m;; numerical edge labels of the Dynkin diagram: m;; =2, 3,4, 6 or oo,
according to whether A;;A;; =0, 1,2, 3 or > 4, except that m;; =1
W the Coxeter group <{sic; | (s;5;)™ = 1if m;; # 00)
7' the free abelian group with basis «;¢;, called the simple roots; W acts
on Z! by s;(« ;) = o — Ajja; (this action is faithful by the theory of
the Tits cone [Bourbaki 2002, Chapter V, §4.4])
@ the set of (real) roots: all wa; with w € W andi € 1
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The Kac—Moody algebra g = g4 associated to A means the complex Lie algebra

with generators e;c;, ficr, hic; and defining relations
[hi,ej] = Aijej,  [hi, fill=—Aijfi, [hi,hj1=0, [e;, fil = —h,
and, fori # j,
lei, f1=0, (ade))' ™Y (e;) = (ad f)' i (f;) =0.

(Note: (ad x)(y) means [x, y]. Also, Tits’ generators differ from Kac’s generators
[1990] by a sign on f;.) For any i the linear span of ¢;, f; and h; is isomorphic

to s, C, via
01 00 - 1 0

We equip g with a grading by Z/, with i; € go, e; € 0o, and f; € g_q,. For a € 7!
we refer to g, as its root space, and abbreviate g,, to g;. We follow [Tits 1987] in
saying “root” for “real root” (meaning an element of ®). Imaginary roots play no
role in this paper.

5. The extension W* C Aut g of the Weyl group

The Weyl group W does not necessarily act on g, but a certain extension of it
called W* does. In this section we review its basic properties. The results through
Theorem 5.5 are due to Tits. The last result is new: it describes the root stabilizers
in W* The proof relies on Brink’s study [1996] of reflection centralizers in Coxeter
groups, in the form given in [Allcock 2013].

It is standard [Kac 1990, Lemma 3.5] that ad ¢; and ad f; are locally nilpotent
on g, so their exponentials are automorphisms of g. Furthermore,

(expade;)(expad f;)(expade;) = (expad f;)(expade;)(expad f;). (5-1)

We write s for this element of Autg and W* for {s;_;> € Autg. One shows [Kac
1990, Lemma 3.8] that 57 (g ) = g, («) for all @ € Z'. This defines a W*-action on Z/,
with s* acting as s;. Since W acts faithfully on Z/ this yields a homomorphism
W* — W. Using W¥, the general theory [Kac 1990, Proposition 5.1] shows that g,
is 1-dimensional for any o € .

Let Z'V be the free abelian group with basis the formal symbols ;. and
define a bilinear pairing Z'¥ x Z! — Z by (a;’, @;> = A;;. We define an action
of W on Z'V by s; (ozjv) =« jv — Ajia;’. One can check that this action satisfies
(wa, wp) =<aV, B). There is a homomorphism Ad : Z! — Aut g, with Ad(a")
acting on gg by (=1)$*"B) where g € Z!. The proof of the next lemma is easy
and standard.
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Lemma 5.1. Ad: 72"V — Autg is W*-equivariant in the sense that
w*- Ad(@") - w*™! = Adwa"),
where o € Z"Y and w is the image in W of w* € W* O
Lemma 5.2. The following identities hold in Aut g:
() s = Ad()).
(i) s7(s)%s; " = ()7 (s7) 7>,
Proof sketch. (i) Identifying the span of e;, f;, h; with sl,C as in (4-1) identifies

s;k2 with (_(1) _?) € SL, C. One uses the representation theory of SL; C to see how
this acts on g’s weight spaces.

(i1) Use (1) to identify s*2 with Ad(ozv) then Lemma 5.1 to identify s; Ad(av)s* !
with Ad(s, (ozv)) then the formula deﬁnmg S (ozv) and finally (i) again to convert
back to s;* and s O

To understand the relations satisfied by the s it will be useful to have a char-
acterization of them in terms of the choice of ¢; (together with the grading on g).
This is part of Tits’ “trijection” [1966b, §1.1]. In the notation of the next lemma,
s; is s;. (or equally well s}‘i).

Lemma 5.3. Ifa € ® and e € g4 — {0} then there exists a unique [ € g_o such that
= (expade)(expad f)(expade)

exchanges g+o. Furthermore, s} coincides with sf and exchanges e and f. Finally, if
¢ € Autg permutes the ggco then ¢s; ¢~ 1— s¢(e) ([

Lemma54. (i) Ifm;; =3 then *s¥(ej) =e;.

(i) If mijj =2, 4 or 6 then e; zsﬁxed by s}, l* *s* or sfs]*sl*sj*sf, respectively.

Proof. Part (i) follows from direct calculation in s[3C. In the m;; = 2 case of (ii)
we have (ade;)(e;) = (ad f;)(ej) =0, and s/ (e;) = e; follows immediately. The
remaining cases involve careful tracking of signs. We will write (sl,C); for the
span of ¢;, fi, h;.

If m;; =4 then {A;;, Aj;} ={—1, —2} and «; and «; are simple roots for a B,
root system. Using Lemma 5.3,

51757 (e) = 515t 51 e) = 0 (Ad ) (€)= (=Dt (e, (5-2)

Suppose first that A;; = —2. Then «; is the short simple root, «; the long one, and
s; (aj) is a long root orthogonal to c;. We have

Syee) = (expads](ej))(expad s (fj))(expads] (¢))) € expad(s] ((sL0)))).
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Now, s7*((s[>C);) annihilates g; because its root string through «; has length 1. So
ST ) fixes e; and (5-2) becomes

sistsi(e)) = (—DMej = (—1)¢; =e¢;.

On the other hand, if A;; = —1 then «; and s;(c;) are orthogonal short roots. Now
the root string through o; for s7((s2C);) has length 3, so the s;((s5[2C);)-module
generated by e; is a copy of the adjoint representation. In particular,

* o kok k—1
Ssie) = Si5jSi

acts on g; by the same scalar as on the Cartan subalgebra s (Ch i) of s¥((sh0);).
This is the same scalar by which s* acts on Ch j» which is —1. So 5% | negates e;

J s (ej) J
and (5-2) reads

sistsi(e)) = (=D (—e)) = (=) (—¢j) =¢;.

Now suppose m;; = 6, so that {A;;, A;;} = {—1, =3}, o; and «; are simple roots
for a G root system, and s;s;(c;) L ;. Then

sisTsisTs)(ej) = (s]'s's) s¥ e s

* ok
P00 0j i i2j ei”j i j

/875757 (¢))

ok % %2 x—1 *2,
_Ssi*s;‘(e,-)o(si S S )Osi (ej)
% *2 k=245 42,
_ss;ks;(ei)osj s; os; " (ej)
K *2 xdor8,
—Ss;‘x;‘(ei)osj 8; (ej)

= S;}Sf(et)(e])'
The root string through o; for sl.*s;‘((slzC) ;) has length 1, so arguing as in the B;

* .
case shows that Sirsten fixes e;. O

Theorem 5.5 [Tits 1966a, §4.6]. The s; satisfy the Artin relations of M. That
is, if m;j # oo then s;ks;." cee= sjfksl?k -+ -, where there are m;; factors on each side,
alternately s} and s;-k.

Proof. For m;; =3 we start with e; =s7's ;.k (e;) from Lemma 5.4(i). Using Lemma 5.3
yields

* k% _oakok ok k1 x—1 _ x x x x—1 _x—1
s; =5, —ss,.*s;(e,-) =8;8;8,,8; S =S;8/8;8 S
The other cases are the same. O

We will need to understand the W*-stabilizer of a simple root ¢; and how it acts
on g;. The first step is to quote from [Allcock 2013] a refinement of a theorem of
Brink [1996] on reflection centralizers in Coxeter groups. Then we will “lift” this
result to W* by keeping track of signs.
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Both theorems refer to the “odd Dynkin diagram” A°Y, which means the graph
with vertex set I, where vertices i and j are joined just if m;; = 3. For y an edge
path in A% with i, . .., i, the vertices along it, we define

Py = (Si,_18i,) (i s Sin_y) -+ (SiySin) (SigSiy ) (5-3)

(If y has length O then we set p, =1.) Fori € I we write A‘l?dd for its component
of A%,

Theorem 5.6 [Allcock 2013, Corollary 8]. Suppose i € I, Z is a set of closed edge
paths based at i that generate 1 (A?dd, i), and §; is an edge path in A‘i’dd from i
to j, for each vertex j of A‘i’dd. For each such j and each k € I with mjy, finite and
even, define
Sk
ik = P(s_jl 1 SkSjSk  ( ° Ds; (5-4)
SkSjSkSjSk

according to whether mj; =2, 4 or 6. Then the W-stabilizer of the simple root «; is
generated by the rji and the pc7z. ([l

It is easy to see that the rj; and p, stabilize ;. In fact, this is the “image under
W* — W” of the corresponding part of the next theorem.

Theorem 5.7. Suppose i, Z and the §; are as in Theorem 5.6. Define p3 and rj*}(
by attaching x to each s, p and r in (5-3) and (5-4). Then the p}_, and rj*k fix ej,
and together with the sl*ezl they generate the W*-stabilizer of o;. (By Lemma 5.2(i),
sl*2 acts on e; by (—1)41).

Proof. The W*-stabilizer of «; is generated by ker(W* — W) and any set of
elements of W* whose projections to W generate the W-stabilizer of «;. Now,
the slf“z normally generate the kernel because of the Artin relations. Lemma 5.2(i1)
shows that the subgroup they generate is normal, hence equal to this kernel. Since
the p*’s and r*’s project to the p’s and r’s of Theorem 5.6, our generation claim
follows from that theorem. To see that the p?’s fix e;, apply Lemma 5.4(i) repeatedly.
The same argument proves pf{j (e;) = e;. Then using Lemma 5.4(ii) shows that e; is

fixed by s, spsisg or spsisgsis; according to whether mjy is 2, 4 or 6. Applying
p:{j_l sends e; back to e;, proving rj*k (e;) =e;. O

6. The Steinberg group St

In this section we give an overview of the Steinberg group Gty, as defined by Tits
[1987] and refined by Morita and Rehmann [1990]. The purpose is to be able to
compare the pre-Steinberg group PGSt (see Section 7) with Gty. For example,
Theorem 1.1 gives many cases in which the natural map PGSt (R) — St (R) is
an isomorphism.
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The Morita—Rehmann definition is got from Tits’ definition by imposing some
additional relations. These are also due to Tits, but he imposed them only later in
his construction, when defining Kac—-Moody groups in terms of Gt4. In the few
places where we need to distinguish between the definitions, we will write Gtgi“ for
Tits’ version and &t4 for the Morita—Rehmann version. In the rest of this section
we will regard A as fixed and omit it from the subscripts.

2000 denotes the additive group, regarded as a group scheme over Z. That is, it
is the functor assigning to each commutative ring R its underlying abelian group.
The Lie algebra of 2000 is canonically isomorphic to Z.

For each a € @, g, N W*({e;cr}) consists of either one vector or two antipodal
vectors. This is [Tits 1987, (3.3.2)] and its following paragraph, which relies on
[Tits 1974, §13.31]. Alternately, it follows from our Theorem 5.7. We write g, 7z for
the Z-span in g, of this element or antipodal pair, and E,, for the set of its generators
(a set of size 2). The symbol e will always indicate an element of some E,. We
define i, as the group scheme over Z which is isomorphic to 200 and has Lie
algebra g, 7. That is, i, is the functor assigning to each commutative ring R the
abelian group g,z ® R = R. For i € I we abbreviate {{1,, to £ly;.

If « € ® and e € E, then we define r, as the isomorphism 2400 — 4l,, whose
corresponding Lie algebra isomorphism identifies 1 € Z with e € g,,7. For fixed R
this amounts to

() :=e®1 € gy7 @R =4y,.

If R =R or C then one may think of r.(¢) as exp(te). For i € I we abbreviate g,
tor; and 1y tor;.

Tits calls a set of roots W C @ prenilpotent if some chamber in the open Tits
cone lies on the positive side of all their mirrors and some other chamber lies on the
negative side of all of them. (Equivalently, some element of W sends W into the
set of positive roots and some other element of W sends W into the set of negative
roots.) It follows that W is finite. If W is also closed under addition then it is called
nilpotent. In this case gy := P,y go is a nilpotent Lie algebra [Tits 1987, p. 547].

Lemma 6.1 [Tits 1987, §3.4]. If ¥ C ® is a nilpotent set of roots, then there is a
unique unipotent group scheme ly over Z with these properties:
(i) Uy contains all the Uy cy.

(i1) Yy (C) has Lie algebra gy.

(iii) For any ordering on W, the product morphism [ |,cy Yo — Yy is an isomor-
phism of the underlying schemes. ([

Tits” version Gt of the Steinberg group functor is defined as follows. For each

prenilpotent pair «, B of roots, 6(«, B) is defined as (N + NB) N & where N =

{0, 1,2, ...}. Consider the groups Uy, g) With {a, B} varying over all prenilpotent
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pairs. If y €0 (a, B) then there is a natural injection i, — Ly, gy, yielding a diagram
of inclusions of group functors. Gt is defined as the direct limit of this diagram.
Every automorphism of g that permutes the subgroups g, z induces an automorphism
of the diagram of inclusions of group functors, hence an automorphism of G,
In particular, W* acts on StT',

As Tits points out, a helpful but less canonical way to think about StTS(R) is
to begin with the free product %qc¢ 1y (R) and impose relations of the form

[te, ). 2, =[] e, (Capyt™u" (6-1)
y=ma+nf

for each prenilpotent pair «, 8 € ®. Here y = ma + nf runs over 6(«, 8) — {«, B},
so in particular m and n are positive integers. Also, e, eg and the various e, lie in
E,, Eg and the various E,,, and must be chosen before the relation can be written
down explicitly. The C,g,, are integers that depend on the position of y relative to
a and B, the choices of ey, eg and the e,,, and the ordering of the product; compare
(3) of [Tits 1987]. Usually (6-1) is called “the Chevalley relation of o and 8. It
is really a family of relations parametrized by ¢ and u, and (strictly speaking) not
defined without the various choices being fixed.

Unfortunately, Tits’ version of the Steinberg group is different from Steinberg’s
original group when the Dynkin diagram has A; components. Therefore, we follow
[Morita and Rehmann 1990] in defining the Steinberg group functor Gt. That is,
we impose the additional relations (6-5), which correspond to the relations (B’)
in [Steinberg 1968] or [Morita and Rehmann 1990]. These relations make the
“maximal torus” and “Weyl group” act on the root groups i, in the expected
manner. If A is 2-spherical without A; components then the Morita—Rehmann
relations already hold in Gt and this part of the construction can be skipped, by
[Tits 1987, (a4), p. 550].

The relators involve the following elements of G, If « € ® and e € E, then
recall from Lemma 5.3 that there is a distinguished f € E_,. As the notation
suggests, if e = ¢; then f = f;. For any r € R* we define

Se(r) :==re(N)rr(1/r)re(r), (6-2)
he(r) :=5e(r).(—1). (6-3)
We abbreviate special cases in the usual way: ﬁii (r) for ﬁei (r) and h (1), S+i(r)
for s, (r) and 57, (r), 54; for 51;(1), and s, for 5.(1). It is useful to note several

immediate consequences of the definitions: 5.(—r) = 5, r~, fle(l) =1, and

$e(r)5e(r") ! = he(r)ho (r) 7" (6-4)
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Conceptually, the relations we will impose on Gt to get St force the conjugation
maps of the various §,(r) to be the same as certain automorphisms of ST So we
will describe these automorphisms and then state the relations.

Recall from Lemma 5.1 and its preceding remarks that Z’" is the free abelian
group generated by formal symbols «,”,. Also, the bilinear pairing 7V x7l -7
given by <al.v, ajy = A;j is W-invariant. We defined a map Ad : 7"V — Autg,
which we generalize to Ad : (R* ® 7™y — Aut(skgeq Uy) as follows. For any
oY €7V, re R*and B € ®, Ad(r ® ") acts on g = R by multiplication by
r<¢"-#> ¢ R* One recovers the original Ad by taking r = —1.

The Chevalley relations have a homogeneity property, namely that Ad(r ® a“)
permutes them. This is most visible when they are stated in the form (6-1). Therefore,
the action Ad of R* @ Z! on %yco 4y descends to an action on GtUS(R).

It is standard that there is a W-equivariant bijection « + «" from the roots
® C 7! to their corresponding coroots in Z'V. As the notation suggests, the
coroots corresponding to the simple roots «; are our basis o, for Z'. In view
of W-equivariance this determines the bijection uniquely. For « € ® and r € R*
we define hy (r) € Aut StT(R) as Ad(r ® ). As usual, we abbreviate hy, (r)
to h;(r).

We define the Steinberg group functor Gt as follows. Informally, Gt(R) is the
quotient of GtTitS(R) got by forcing every S, (r) to act on every Ug(R) by hy(r)os),
where « is the root with e € E,. Formally, it is the quotient by the subgroup
normally generated by the elements

Se(ruse) ™" ((ha(r) 055 ) ™ (6-5)

as a, B vary over ®, e over E,, r over R* and u over Ug(R). This set of relators
is visibly W*-invariant, so W* acts on &t.

Remark 6.2. Because 5.(r) = fze(r)ie, an equ@valent way to impose the relations
(6-5) is by quotienting by the subgroup of Gt™(R) normally generated by all

Eeufe_l ‘s;“(u)_1 (6-6)
he(PYuhe(r) ™" - (ho(r)(u)) ™" (6-7)

Remark 6.3. Our relations differ slightly from the relations (B’) of [Morita and
Rehmann 1990], because we follow Tits’ convention for the presentation of g, while
they follow Kac’s convention (see Section 4). Our relations also differ from Tits’
relations [1987, §3.6] in the definition of his Kac—-Moody group functor, even taking
into account that our fz,- (r) corresponds to his ri. This is because Rémy observed
[2002, §8.3.3] that Tits’ relator (6), namely §; (r)~'-5 - rM, is in error. Rémy fixed
it by replacing the first r by 1/r. Our repair, by exchanging the last two terms,
is equivalent.
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Theorem 6.4 (alternative defining relations for &t). The kernel of the natural map
St (R) — St(R) is the smallest normal subgroup containing the elements

hi () i (r) ™"t~ (6-8)
hi (5505 b ()7 (i 05T (6-9)
Sius7 sy (6-10)

oralli,jel, r € R* t € R and u € g, where 8 may be any root. Furthermore,
B
the identities

§ihj ()57 = hirA) T (), (6-11)
[hi(r), by ()] = hy (Y ) iy (') ™! (6-12)
hold in St(R), foralli, j €I, r,r' € R*

Remark 6.5 (applicability to 8&t). The proof below does not use the relations
defining ST, So it shows that the subgroup of %qc¢ LUy (R) normally generated
by the relators (6-5) is the same as the one normally generated by (6-8)—(6-10), and
that (6-11)—(6-12) hold in the quotient. This is useful because we will use the same
relations when defining the pre-Steinberg group B&t in the next section.

Proof. We begin by showing that (6-8)—(6-10) are trivial in Gt(R). First, (6-10) is
got from (6-5) by taking ¢ = ¢; and r = 1. Next, recall the definition of ﬁi(r) as
5;(r)s;(—1) in (6-3), and that the defining relations (6-5) for Gt(R) say how §;(r)
acts on every g. So hi(r) acts on every g as

hi(r)osfohi(—1)os} =hl~(r)oh,-(—l)o(s;k)2 =hi(r)oh;(—=1)oh;(—1) =h;(r).

Taking B = o; gives (6-8). For (6-9), take B = —«; and use the fact that 5; swaps
ilio,j (since it acts as sj’.“). This finishes the proof that (6-8)—(6-10) are trivial in
GH(R).

Now we write N for the smallest normal subgroup of GtT"(R) containing
(6-8)—(6-10) and = for equality modulo N. We will show that (6-11)-(6-12) hold
modulo N and that the relators (6-6)—(6-7) are trivial modulo N. We will use relator
(6-10) without explicit mention: modulo N, each §; acts on every g as s

First we establish (6-11)—(6-12). Starting from the definition of 5;(r"), we have

S0 =51/ ) =5 ) -5/ r)5 g o).
Now the relators (6-8)—(6-9) give

hi(N)3;(rYhi(r) ™t = 5;(r Y1), (6-13)
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Taking r’ = 1, left-multiplying by &;(r)~!, right-multiplying by EJ._I, and then
inverting both sides and using (6-4), gives
S35 =55 AN T hi(r) = by ) T (). (6-14)
Exchanging i and j establishes (6-11). Also, (6-13), (6-3) and (6-4) show that
hi ()b (Y () =5 Yie)s (r i) T =y ARy (r A T

Right-multiplication by / i’ )~ gives (6-12).
Now we will prove (6-7) for all e;. That is: modulo N, h;(r) acts on every g by
hi(r). To prove this, write E for |_J ped Ejg and consider for any e € E the condition

hi(reOhir) ' =1, Pt)  foralliel,reR* and t€ R, (6-15)

where B is the root with e € Eg. The set of e € E satisfying this condition is closed
under negation, because r—.(f) = r.(—1). This set contains ¢; € Ey; and f; € E_,
for every j € I, by relations (6-8)—(6-9). The next paragraph shows that it is closed
under the action of W*. Therefore, all e € E satisfy (6-15), establishing (6-7) for
all e =¢;.

Here is the calculation that if e € E satisfies (6-15), and j is any element of I,
then s;‘ (e) also satisfies (6-15). We must establish it for all i, so fix some i € I.
We have

hi (M)t 0 Ohi (1)~
= hi ()1 oy 1y ORI (1) by (5)* = h;j(=1)
= hi (5]t (=D P D)5 Ry (r) !
= 571G 05 e (=D P 0GR ()75
=57 By M) T i (r)Ee (=D P ) (hir) Ry (1)) by (6-14)
=5 ke (1) P2 D A B 5, by (6-15) for e
= £ o (= DS ) = a0
= ;S;(ohj(_l)(e)((_1)<°‘f’ﬁ>r<a,-v,ﬂ>r—/4if SR
=1 (o' By =A< By )

The right side of (6-15) for s jfk (e) has a similar form. Establishing equality amounts
to showing (e, — Aijajv, B> = <a,s;j(B)y. This follows from s;(8) = B —
<ozjv, B>a;, finishing the proof of (6-15) forall e € E.
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For e equal to any +e;, we were given (6-6) and we have proven (6-7). The
same results for all e follow by W* symmetry. More precisely, we claim that, for
all j € I, if (6-6) and (6-7) hold for some e € E then they hold for sj’.k (e) too. We
give the details for (6-7), and the argument is the same for (6-6). Suppose r € R*
and u € | Bed ig. Then the left and right “sides” of the known relation (6-7) for e
lie in | pea Hp, so conjugating the left by s; has the same result as applying s j’.k to
the right. That is,

1

§j§eu§*1§j— =57 o5} (u)
-1
(sjse )(sjus )(sJ . )_ ]*os*os;k os}“(u),

Y (e) J SHOIC *(e)) '=s *(e)(s (u)).

As u varies over all of | Bed g, so does s;‘ (u). This verifies relation (6-7) for
s¥(e). O
J

7. The pre-Steinberg group P St

In this section we define the pre-Steinberg group functor &t in the same way as
Gty, but omitting some of its Chevalley relations. So it has a natural map to Gty.
Then we will write down another group functor as a concrete presentation, and show
in Theorem 7.12 that it equals *PSt,. Since PSt, — Gty is often an isomorphism
(Theorem 1.1), this often gives a new presentation for Gt4. As discussed in the
Introduction, it is simpler and more explicit than previous presentations, and special
cases of it appear in Table 1.1 and Section 2. In the rest of this section we suppress
the subscript A.

We call two roots «, 8 classically prenilpotent if (Qa + Q8) N @ is finite and
o + B # 0. Then they are prenilpotent, and lie in some Aj, A%, A»p, By or G, root
system. We define the pre-Steinberg group functor P&t exactly as we did the
Steinberg functor Gt (Section 6), except that when imposing the Chevalley relations
we only vary «, 8 over the classically prenilpotent pairs rather than all prenilpotent
pairs. We still impose the relations (6-5) of Morita—Rehmann, or equivalently
(6-6)—(6-7) or (6-8)—(6-10). (See Remark 6.5 for why Theorem 6.4 applies with
PGSt in place of Gt.) Just as for Gt, W* acts on PGSt because it permutes the
defining relators.

There is an obvious natural map St — Gt, got by imposing the remaining
Chevalley relations, coming from prenilpotent pairs that are not classically pre-
nilpotent. If ® is finite then every prenilpotent pair is classically prenilpotent, so
PGSt — Gtis an isomorphism.

The rest of this section is devoted to writing down a presentation for St. We
start by defining an analogue W of the Weyl group. It is the quotient of the free
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group on formal symbols S;c; by the subgroup normally generated by the words

(SiSj- ) (S8 ) if m;j # oo, (7-1)
5788728 if Aj; is even, (7-2)
S28;872.S; if Aj; is odd, (7-3)

where i, j vary over I, and (7-1) has m;; terms inside each pair of parentheses,
alternating between S; and §;. These are called the Artin relators, for example,
S,’SjS,’ . (SjSiSj)_l ifm,-j =3.

Remark 7.1. We chose these defining relations so that W would have four proper-
ties. First, it maps naturally to W*, so that it acts on g and %xyc¢ {y. Second, the
kernel of W — W is generated (not just normally) by the Sl.z. This plays a key role
in the proof of Theorem 7.5 below. Third, each relation involves just two subscripts,
which is needed for the Curtis—Tits property of PGSt (Corollary 1.3). And fourth,
the §; € &t, defined in (7-27), satisfy the same relations. (Formally: S; — §; extends
to a homomorphism W — Gt.) The first two properties are established in the next
lemma, the third is obvious, and the fourth is part of Theorem 7.12.

Lemma 7.2 (basic properties of W). (1) S; = s defines a surjection W— W
(i) S; Sl.sz*l = Sl-2 (resp. SJ.ZSl.Z) if Ajj is even (resp. odd).
(iii) The Si2 generate the kernel of the composition W— W*— W.

Proof. We saw in Theorem 5.5 that the s satisfy the Artin relations. Rewriting
Lemma 5.2(ii)’s relation in W* with i and j reversed gives

5769 = ()26
Multiplying on the left by s;‘*l and on the right by (si*)*z, then inverting, gives
(57)%s7 (57) 72 = (s))2(s]) 4 (s]) 72s) = (s) 124

In the second step we used the fact that sl?“ and sj’.“ commute. Using sj*4 =1,
the right side is s;‘ if A;; is even and sj’.“_1 if A;; is odd. This shows that S; > s7*
sends the relators (7-2)—(7-3) to the trivial element of W*, proving (i).

One can manipulate (7-2)—(7-3) in a similar way, yielding (ii). It follows im-
mediately that the subgroup gE:Perated by the Sl.2 is normal. Because of the Artin

relations, this is the kernel of W — W. So we have proven (iii). O

Remark 7.3. Though we don’t need them, the following relations in W show that
W is “not much larger” than W*. First (7-2)—(7-3) imply the centrality of every S4
Second, if some A;; is odd then (7-3) shows that S; 4 are conjugate; since both are
central they must be equal, so S; 8 = 1. Third, the relation obtained at the end of
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the proof implies [S?, Sl.z] =1or S;.‘, according to whether A;; is even or odd. In
particular, these commutators are central. Finally, we can use this twice:
{ 1 if A;j is even 1 if Ay is even}

(82, §7] = [5%. 2 =
S* if Ay s odd }_[S Sl =157 57 {s,.—“ if Aj; is odd

In particular, if both A;; and A;; are odd then S;‘ and S]‘.‘ are equal. If A;; is even
while Aj; is odd then we get S;‘ =1.

Now we begin our presentation in earnest. Ultimately, 8St(R) will have gen-
erators S; and X;(¢), with i varying over I and ¢ varying over R, and relators
(7-1)—(7-26).

We first define a group functor & by declaring that &;(R) is the quotient of the
free group on the formal symbols X;(t), by the subgroup normally generated by
the relators

Xi(OXi(u) - Xi (¢ +u)~! (7-4)

foralli € I and ¢, u € R. The following description of & is obvious.
Lemma 7.4. & = x;c; 4;, via the correspondence X;(t) <> r;(t). O

Next we define a group functor &, as a certain quotient of the free product
&1 x W. Namely, &,(R) is the quotient of &(R) x W by the subgroup normally
generated by the following relators, with i and j varying over I and ¢ over R:

S2X; (18,72 (X (= 1)Air)) ™ (7-5)

[Si, X;(2)] ifm;; =2, (7-6)

S8 X; () - (X))~ if mij =3, (7-7)

[S:S;Si, X;(1)] if m;; =4, (7-8)
[S:5;5:S;Si, Xj(0)] if m;; = 6. (7-9)

The next theorem is the key step in our development; see Section 8 for the proof.
Although it is not at all obvious, we have presented (skgee Lly) X w. Therefore, we
“have” the root groups LI, for all ¢, not just simple «. This sets us up for imposing
the Chevalley relations in the next step.

Theorem 7.5. &, is the semidirect product of *kgco Uy by W, where W acts on the
free product via its homomorphism to W* and W*’s action on xyco Uy is induced

by its action on | ,cq 90,7

Remark 7.6 (groups with a root group datum). A Kac—-Moody group over a field
is an example of a group G with a “root group datum”. This means: a generating
set of subgroups il, parametrized by the roots o of a root system, permuted by
(some extension W of) the Weyl group W of that root system, and satisfying some
additional hypotheses. See [Tits 1992] or [Caprace and Rémy 2009] for details.
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Examples include the Suzuki and Ree groups and isotropic forms of algebraic
groups (or Kac—Moody groups) over fields. In many of these cases, some of the
root groups are noncommutative. The heart of the proof of Theorem 7.5 is our
understanding of root stabilizers in W* (Theorem 5.7), which would still apply
in this more general setting. So there should be an analogous presentation of
(kaeop Uy) X W. The main change would be to replace (7-4) by defining relations
for 4(;, and interpret the parameter ¢ of X;(¢) as varying over some fixed copy of il;,
rather than over R. Since G is a quotient of (skyeq Lly) X W, analogues of the rest
of this section presumably yield a presentation of G.

Next we adjoin Chevalley relations corresponding to finite edges in the Dynkin
diagram. That is, we define &3(R) as the quotient of &,(R) by the subgroup
normally generated by the relators (7-10)—(7-23) below, for all #, u € R. These
are particular cases of the standard Chevalley relators, written in a form due to
Demazure (see Remark 7.8 below).

When i, j € I with m;; =2,
[Xi (1), X;(u)] (7-10)
When i, j € I with m;; =3,
[X; (1), $; X;(u)S; '] (7-11)
[X; (1), Xj )] - 8; X;(—tu)S; ! (7-12)

When s, € I, mg; =4 and s is the shorter root of the B>,

[S: X1 (1)ST", S X (u)S; '] (7-13)
[X;(t), Sy X1 (u)S; '] (7-14)
[X (1), S Xs(u)S; T S, X, (2tu) S, (7-15)

[Xs (1), X;)]- S X; (—1*u)S;" - § X (tw) S (7-16)

When s, € I, mg; = 6 and s is the shorter root of the G,

[X;(1), SiSs X (u)S; S, (7-17)

[S:8i Xs(1)S 'St 818, X (u) S S (7-18)
(S, X1 (1)S;", 1 X (u)S; 1] (7-19)

[Xi(t), Sy X1 (u)S; 1 S Sy X (—tu) S, S (7-20)

[X(t), SsSi X (u)S; ' ST+ Sy X (—3tu) S, ! (7-21)
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(X, (1), Si X (u)S; ']~ 88 X, Btu?) S S, - S, X (31%u) S
- S8 X 2tu) S, S (7-22)

[Xs(0), Xi@)]- S;Ss X (@u?) S8 - 8 Xy (=2u) S
S X (tu)S; - S8 X (—12u) S, S ! (7-23)

N

Remark 7.7 (asymmetry in the A, relators). The relators (7-11)—(7-12) are not
symmetric in i and j. Since mj; = 3 whenever m;; = 3, we are using both these
relators and the ones got from them by exchanging i and j.

Remark 7.8 (Demazure’s form of the Chevalley relations). Our relators are written
in a form due to Demazure (Propositions 3.2.1, 3.3.1 and 3.4.1 in [SGA 3y 1970,
Exposé XXIII]). They appear more complicated than the more usual one (for
example, [Carter 1972, Theorem 5.2.2]), but have two important advantages. First,
there are no implicit signs to worry about, and second, the presentation refers only
to the Dynkin diagram, rather than the full root system.

One can convert (7-10)—(7-23) to a more standard form by working out which
root groups contain the terms on the “right-hand sides” of the relators. For example,
the term S; X (tu)Sl_1 of (7-23) lies in S;l Sl_1 = o, +o, because reflection in oy
sends o to g + ;. Applying the same reasoning to the other terms, (7-23) equals
[Xs(¢), X;(u)] times a particular element of 34 420, Yoo, +a; - Hoyter * L2y +0 -
The advantages of Demazure’s form of the relators come from the fact that no
identifications of these root groups with R is required. We simply use the already-
fixed identifications of the simple root groups with R, and transfer them to these
other root groups by conjugation by Sy and S;.

Remark 7.9 (diagram automorphisms in characteristics 2 and 3). Some of the
relators can be written in simpler but less symmetric ways. For example, (7-13) is
the Chevalley relator for the roots ss(«;) and s;(ces) of By, which make angle 7 /4.
As we will see in the proof of Theorem 7.11, one could replace this pair of roots by
any other pair of roots in the span of oy, «; that make this angle. So, for example,
one could replace (7-13) by the simpler relator [S;X;(¢)S;” U X,(w)]. We prefer
(7-13) because it maps to itself under the exceptional diagram automorphism in
characteristic 2; see Section 3 for details. Similar considerations informed our
choice of relators (7-18)—(7-19), and the ordering of the last four terms of (7-23).

Remark 7.10 (redundant relations). In practice, most of the relators coming from
absent and single bonds in the Dynkin diagram, i.e., (7-10)—(7-12), can be omitted.
Usually this reduces the size of the presentation greatly. See Propositions 9.1
and 9.2.

In Section 9 we prove the following more conceptual description of 3. To be
able to state it we use the temporary notation B&St"® for the group functor defined
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in the same way as Gt"'® (see Section 6), but only using classically prenilpotent
pairs rather than all prenilpotent palrs So PGS is related to St in the same
way that PGSt is related to Gt. W acts on PSS for the same reason it acts
on G,

Theorem 7.11. The group functor PStTS x W coincides with ®3. More precisely,
under the identification By = (kgeco Uy) X W of Theorem 7.5, the kernels of
By — B3 and (kgeqp Uy) X W — ‘BG’LT“S x W coincide.

Finally, we define &4 as the quotient of &3 by the smallest normal subgroup
containing the relators

hi(r) X (i (r)™" - X (ri) ! (7-24)
hi(r)S;X; ) S7 i (r) ™t - 8 X; oMy s (7-25)
S-S5~ (7-26)

where r varies over R*, ¢ over R and i, j over /. We are using the definitions
Si(r) ==X () SiXi(1/r) S Xi (r), (7-27)
hi(r) = 5;(r)5; (=1). (7-28)

Note that this definition of §;(r) is compatible with the one in Section 6, because
X;(r) € &3 corresponds to x,, (r) € ‘BGtTi‘S under the isomorphism of Lemma 7.4,
while SiXi(l/r)Slfl corresponds to s*(x., (1/r)) =7 (1/r). As before, we will
abbreviate 5; (1) to §;.

The following theorem is the main result of this section and a restatement of
Theorem 1.2 from the Introduction.

Theorem 7.12 (presentation of the pre-Steinberg group B&St). The group functor
PGSt coincides with G4. In particular, for any commutative ring R, SBSt(R) has
a presentation with generators S; and X;(t) for i € I and t € R, and relators
(7-1)—(7-26).

Proof. By definition, &4 is the quotient of &3 by the relations (7-24)—(7-26).
Because S; acts on each {lg by s* (Theorem 7.5), imposing (7-26) forces §; to also
act this way. We consider the intermediate group &35, of fleeting interest, got
from &3 by imposing (7-24)—(7-25) and the relations that s; acts on every g as
s; does. In other words, we are imposing on PStTES € PSETS W= B3 the
relations (6-8)—(6-10). Theorem 6.4 and Remark 6.5 show that this reduces &3 to
PStx W.

So B, is the quotient of B3 5 =PSt x W by the relations S; = §;. We use Tietze
transformations to eliminate the S; from the presentation, in favor of the ;. So
B4 is the quotient of 3Gt by the subgroup normally generated by the words got
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by replacing S; by §; in each of the relators (7-1)—(7-25). All of these relators are
already trivial in PSt, so B4 = PGSt.

In more detail, (7-1) requires the §; to satisfy the Artin relations, which they do
in PGSt by [Tits 1987, (d) on p. 551]. The remaining relations (7-2)—(7-25) involve
the S; only by their conjugacy action. For example, (7-17) says that X;(#) commutes
with the conjugate of X;(u) by a certain word in Sy and §;. Since S; acts as s/ by
Theorem 7.5 and §; acts the same way by the definition of B&t, these relations still
hold after replacing each S; by the corresponding s;. (When defining W, we were
careful not to impose any relations on the S; except those which are also satisfied
by the 5;.) ([

Remark 7.13 (redundant relators). In most cases of interest, A is 2-spherical
without A; components. Then one can forget the relators (7-24)—(7-25) because
they follow from previous relations. More specifically, suppose m;; is 3, 4 or 6.
Then the relators (7-24)—(7-25) are already trivial in &3. The same holds if i = j
and there exists some k € I with m;; € {3, 4, 6}. See [Tits 1987, (as), p. 550] for
details.

Remark 7.14 (more redundant relators). One need only impose the relators (7-26)
for a single i in each component  of the “odd Dynkin diagram” A°% considered
in Section 5. This is because if m;; = 3 then §;S; conjugates S; to S; and X; () to
X (). This uses relators (7-1) and (7-7).

Remark 7.15 (precautions against typographical errors). We found explicit matrices
for our generators, in standard representations of the A%, Ay, By and G, Chevalley
groups over Z[r*!, ¢, u]. Then we checked on the computer that they satisfy the
defining relations (7-1)—(7-26).

8. The isomorphism &; = (e $g) X 114

In this section we will suppress the dependence of group functors on the base ring R,
always meaning the group of points over R. Our goal is to prove Theorem 7.5,
namely that the group &, with generators S; and X;(¢), i € [ and ¢t € R, modulo the
subgroup normally generated by the relators (7-1)—(7-9), is (skgeop Ue) X W. The
genesis of the theorem is the following elementary principle. It seems unlikely to
be new, but I have not seen it before.

Lemma 8.1. Suppose G = (skqeco Uy) X H, where ® is some index set, the U, are
groups isomorphic to each other, and H is a group whose action on the free product
permutes the displayed factors transitively. Then G = (Us X Hoo) *p, H, where
00 is some element of ® and Hy is its H-stabilizer.

Proof. The idea is that Uy, X Hoo = (Uso X Hoo) *g, H is a sort of free-product
analogue of inducing a representation from Hy, to H. We suppress the subscript co
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from Uy. Take a set Z of left coset representatives for Hy, in H, and for u € U and
z € Z define u, :=zuz~' € G. The u. for fixed z form the free factor zUz ! = U ()
of (keeop Uy) € G. Assuming U # 1, every displayed free factor occurs exactly
once this way, since H’s action on @ is the same as on Hy,’s left cosets. So the
maps u; zuz” ! € (U % Hao) *p  H define a homomorphism (skyeqp Uy) —
(U % Hyo) *p, H. This homomorphism is obviously H-equivariant, so it extends
to a homomorphism G — (U x Hy) *g, H. It is easy to see that this is inverse to
the obvious homomorphism (U % Hy) *g H — G. [l

Now we begin proving Theorem 7.5 by reducing it to Lemma 8.2 below, which
is an analogue of Theorem 7.5 for a single component of the “odd Dynkin diagram”
A°4 introduced in Section 5. It is well-known that two generators s;, s; of W
(i, j € I) are conjugate in W if and only if i and j lie in the same component
of A°M. (If m;; = 3 then s;s;5; = s;5;5; implies the conjugacy of s; and s;, while
distinct components of A°d correspond to different elements of the abelianization
of W.)

Let €2 be one of these components, and write ®(£2) € & for the roots whose
reflections are conjugate to some (hence any) s;cq. Because ®(£2) is a W-invariant
subset of ®, we may form the group (skyea (@) Uo) X Wjust as we did (skgep HUy) X w.
We will write &, q for the group having generators S;, with i € 1, and X;(t), with
i €2 and ¢ € R, modulo the subgroup normally generated by the relators (7-1)—(7-3),
and those relators (7-4)—(7-9) with i € . Note that (7-7) is relevant only if m;; =3,
in which case i € Q if and only if j € 2, so the relator makes sense. Caution: the
subscripts on S vary over all of /, while those on X vary only over 2 C /.

Lemma 8.2. For any component Q of A°%,
G20 = (keea@ Ua) X W.

Proof of Theorem 7.5, given Lemma 8.2. An examination of the presentation of &,
reveals that the X’s corresponding to different components of A°% don’t interact.
Precisely: &, is the amalgamated free product of the &, g, where €2 varies over the
components of A and the amalgamation is that the copies of W in the B, q are
identified in the obvious way. Lemma 8.2 shows that &, o = (kyeca (@) Ua) X W for
each Q. Taking their free product, amalgamated along their copies of W, obviously
yields (kgep o) X W. O

The rest of the section is devoted to proving Lemma 8.2. So we fix a component 2
of A° and phrase our problem in terms of the free product F := (x jea i) * w.
This is the group with generators S;¢; and X;cq(7), whose relations are (7-1)—(7-3)
and those cases of (7-4) with i € Q. The heart of the proof of Lemma 8.2 is to
define normal subgroups M, N of F and show they are equal. M turns out to be
normally generated by the relators from (7-5)—(7-9) for which i € Q. Given this,
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8, o = F/M by definition. The other group F/N has a presentation like the one
in Lemma 8.1. But it requires some preparation even to define, so we begin with
an informal overview.

Start with the presentation of &, g, and distinguish some point co of €2 and a
spanning tree T for 2. We will use the relators (7-7) coming from the edges of T to
rewrite the Xjcq_ (00} (#) in terms of X, (7), and then eliminate the X;cq_ (o0 () from
the presentation. This “uses up” those relators and makes the other relators messier
because each X () must be replaced by a word in X (¢) and elements of w.
We studied the W*-stabilizer of aoo in Theorem 5.7, and how it acts on g.., hence
on . It turns out that the remaining relatlons in B, g are exactly the relations
that the W—stablhzer W of 0o acts on Ly, via W S W W C Autg. That i is,
Br.0= (Ueo X Woo) *i W. Then Lemma 8.1 identifies this with (kaed(@) ta) X w.

Now we proceed to the formal proof, beginning by defining some elements of F.
For y an edge path in €2, with iy, ..., i, the vertices along it, define «(y) = ip and
w(y) =i, as its initial and final endpoints, and define P, by (5-3) with S’s in place
of s’s. For k € I evenly joined to the end of y (i.e., M () finite and even), define

Sk
—1
R},,k = Py . SkSw(y)Sk . Py
SkSw () SkSw(y) Sk

according to whether my, ) =2, 4 or 6. (We get R, ; from (5-4) by replacing s’s
and p’s by S’s and P’s, and j by w(y).) Next, for t € R we define

-1
Cy (1) == Py Xa() @) - (Xoph (O Py)

and for k € I evenly joined to w(y) we define

Dy i (1) == [Ry &, Xa(y) ()]

For ease of reference we will also give the name

Byj(t) = SIX; (07> X;((=DA1) !
to the word (7-5), where i € I and j € Q2. We will suppress the dependence of the
Xj, Bjj, C, and D, ; on t except where it plays a role.

The following formally meaningless intuition may help the reader; Lemma 8.3
below gives it some support. The relation C,, = 1 declares that the path y conjugates
the X “at” the beginning of y to the X “at” the end. And the relation D, ; =1
declares that the X “at” the beginning of y commutes with a certain word that
corresponds to going along y, going around some sort of “loop based at the endpoint
of y”, and then retracing y.

Our first normal subgroup M of F is defined as the subgroup normally generated
by all the B;;, the C, for all y of length 1, and the D, ; for all y of length 0.
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Unwinding the definitions shows that these elements of F are exactly the ones we
used in defining &, o. For example, if y is the length-1 path from one vertex j
of € to an adjacent vertex i then P, = §;S; and C,, is the word (7-7). And if i € 2
is evenly joined to j € I then we take y to be the zero-length path at i, and D,, ;
turns out to be the relator (7-6), (7-8) or (7-9). Which one of these applies depends
onm;; €{2,4,6}. So F/M = &, q.

Before defining the other normal subgroup N, we explain how to work with the
C’s and D’s by thinking in terms of paths rather than complicated words.

Lemma 8.3. Suppose y| and y, are paths in Q with w(y) = a(y2), and let y be
the path which traverses y| and then y;:

(1) Any normal subgroup of F containing two of C,,, C,, and C,, contains the
third.

(i1) Suppose k € I is evenly joined to w(y»). Then any normal subgroup of F
containing C,, and one of D,, y and D, ; contains the other as well.

Proof. Both identities
-1
CV = (PVZCVI Pyz )Cyzv
—1 -1 —1
Dy = Py| ((Ry, .k Cy, Ryz,k)Dyz,kCyl )Py,
unravel to tautologies, using P, = P, P,,. These imply (i) and (ii), respectively. []

To define N we refer to the base vertex oo and spanning tree 7" that we introduced
above. For each j € Q we take §; to be the backtracking-free path in 7' from oo
to j. For each edge of 2 not in 7, choose an orientation of it, and define £ as the
corresponding set of paths of length 1. For y € £ we write z(y) for the corresponding
loop in €2 based at 0o. That is, z(y) is 84(y) followed by y followed by the reverse
of 8, (). We define Z as {z(y) | y € £}, which is a free basis for the fundamental
group 11 (€2, 0o). We define N as the subgroup of F' normally generated by all B;
with i € I, all C;ez, the Cs; with j € , and all Dj,  where j € Q2 and k € [ are
evenly joined. We will show M = N; one direction is easy:

Lemma 8.4. M contains N.

Proof. Since M contains C,, for every length-1 path y, repeated applications of
Lemma 8.3(i) show that it contains the Cs, and C.,cz. Since M contains D, x
for every y of length O, part (ii) of the same lemma shows that M also contains
the Ds; k. Since M contains all the B;;, not just the B, the proof is complete. [

Now we set about proving the reverse inclusion. For convenience we use = to
mean “equal modulo N”’. We must show that each generator of M is = 1.

Lemma 8.5. C, =1 for every length-1 subpath y of every §;.
Proof. This follows from Lemma 8.3(i) because 84, followed by y is 84 p). U
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Lemma 8.6. By =1 foralli € I andk € Q.

Proof. We claim that if y is a length-1 path in €2, such that C,, =1 and Bjy(,) =1
for every i € I, then also B;,(,) =1 for every i € I. Assuming this, we use the fact
that B;oo = 1 for all i € I and also C,, =1 for every length-1 subpath y of every §;
(Lemma 8.5). Since every k € Q2 is the end of chain of such y’s starting at oo, the
lemma follows by induction.

So now we prove the claim, writing i for some element of / and j and k for the
initial and final endpoints of y. We use C), =1, i.e., §; 8, X (t) = X (1) S; S, to get

ST Xi(1)S; % = STS; S X (1) S, 'S8

= S Sil(S; 'S SP S S X; (S 81872 SIS S (8-1)
Ajj _
We rewrite the relation from Lemma 7.2(ii) as ijlSisz = S;fl) ! 1Sl.z. Then we
use it and its analogues with subscripts permuted to simplify the first parenthesized
term in (8-1). We also use Aj;x = —1, which holds since j and k are joined. The
result is

112 o= (=DM (=DM =1 =1 (= DAk 2
S¢ ' STISESi Sk =S, S; S, S7.

Note that each exponent is 0 or £2.

The bracketed term in (8-1) is the conjugate of X;(z) by this. We work this
out in four steps, using our assumed relations B;; = B;; = By; = 1. Conjugation
by Sl.2 changes X;(¢) to Xj((—l)A"-ft). Because Ay; = —1, conjugating Xj((—l)A"-ft)

(—D)Aik—1 .
by S, sends it to

itself if Ajx is even, because (—1)4* —1 =0,
X;(—(=1)%it) if Ay is odd, because (—1)4 — 1 = —2.

We write this as X; ((—I)A"k(—l)A"ft). In the third step we conjugate by an even
power of S;, which does nothing. The fourth step is like the second, and introduces
a second factor (—1)4i. The net result is that the bracketed term of (8-1) equals
X;((—1)%#¢) modulo N.

Plugging this into (8-1) and then using the conjugacy relation C,, = 1 between
X; and X yields

SPX (D87 = ;S X; (D0 S ST = X (=)o),
We have established the desired relation B;; = 1. 0

Lemma 8.7. Suppose y is a length-1 path in Q with C,, = 1. Then Creyerse(y) = 1
also.

Proof. Suppose y goes from j to k. We begin with our assumed relation C, =1,
ie., §;8;X;(t) = X (2)Sj Sk, rearrange and apply the relation from Lemma 7.2(ii)
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with A = odd:

Xi(t) = S;SiX; (1) S, 'S,

SKSiXi(t) = (SkS7 S HSEX ()8 ST = (ST SEX; (1SS

Now we simplify the right side using Lemma 8.6’s B;; = By; = 1 with A;; = odd:
(SESHSEX;(0) S 'S = SEST X (—0) S8 'S
= SiX; (=S} - SiStS!
= X;()S7S7 - S8 'S
= X; ()87 S - Sss!
= X;(1)SLS;.
We have shown Cieyerse(y) = 1, as desired. O
Lemma 8.8. M = N. In particular, &, q is the quotient of F = (x jeq U;) * W by N.

Proof. We showed N € M in Lemma 8.4. To show the reverse inclusion, recall that
M is normally generated by all B;;, the C,, for all y of length 1, and the D,, ; for
all y of length 0. We must show that each of these is = 1. We showed B;; =1 in
Lemma 8.6.

Next we show that C,, =1 for every length-1 path y in T. If y is part of one of
the paths §; in T based at oo, then C), = 1 by Lemma 8.5, and then Cieyerse(y) = 1
by Lemma 8.7.

Lemma 8.3(i) now shows C,, = 1 for every path y in T.

Next we show C,, =1 for every length-1 path y not in T. Recall that we chose
a set £ of length-1 paths, one traversing each edge of 2 notin 7. For y € £ we
wrote z(y) for the corresponding loop in €2 based at 0o, namely 4(,) followed
by y followed by reverse(d,(,)). Recall that N contains C,(,) by definition, and
contains C(;a(w and Creverse(s,( ) by the previous paragraph. So a double application
of Lemma 8.3(i) proves C,, € N. And another use of Lemma 8.7 shows that N also
contains Creyerse(y)- This finishes the proof that C,, =1 for all length-1 paths y in €2.

It remains only to show D, ; = 1 for every length-0 path y in € and each k € 1
joined evenly to the unique point of y, say j. Since N contains Cs; and Ds; by
definition, and §; followed by y is trivially equal to §;, Lemma 8.3(ii) shows that
N contains D,, i also. ]

We now review the general form of the description F/N of &, q that we have
just established. The generators are the S;c; and the X;cq(7), with r € R. The
relations are the addition rules defining the &l;, the relations on the S; defining W,
and the Bjoo, C;cz, Cs; and Ds; k. where i varies over I, j over Q, and k € I is
evenly joined to j. The relations B, = 1 say that Sl.2 centralizes or inverts every
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Xoo(t). Each relation C, = 1 says that a certain word in W conjugates every Xoo (1)
to itself. The relations Dj; x = 1 say that certain other words in W also commute
with every Xoo(¢). Finally, for each j, the relatio/r\ls Cs; = 1 express the X; (1) as
conjugates of the X (¢) by still more words in W. The obvious way to simplify
the presentation is to use this last batch of relations to eliminate the X0 (¢) from
the presentation. We make this precise in the following lemma.

Lemma 8.9. Define Fyo = o * W and let Noo be the subgroup normally generated
by the Bi, (i € 1), the C, (z € Z), and the Ds; i (j € Q and k € I evenly joined).
Then the natural map Fso/Nso — F/N is an isomorphism.

Proof. We begin with the presentation /N from the previous paragraph and apply
Tietze transformations. The relation C,;j (t) =1 reads

X;(t) =P, Xoo(t)P(;;l.

For j = oo this is the trivial relation X, (f) = X (¢), which we may discard.
For j # oo we use it to replace X;(7) by Ps; Xoo (t)PB;1 everywhere else in the
presentation, and then discard X; (r) from the generators and Cs, (r) from the relators.

The only other occurrences of Xj+00(t) in the presentation are in the relators
defining ;. After the replacement of the previous paragraph, these relations read

Xoo(t)P(S;l - Py, Xoo(u)P(S;l = P5, Xoo(t + u)P(S;l.

These relations can be discarded because they are the Ps;-conjugates of the relations
Xoo(t) Xoo (1) = Xoo(t +u). What remains is the presentation Fio/Neo. [l

Proof of Lemma 8.2. The previous lemma shows G, g = Foo/Noo. S0 87  is the
quotient of L * w by relations asserting that certain elements of W act on Yo
by certain automorphisms. The relations B;s = 1 make 52 act on Uy by (— 1)Aic,
The relations C, = Ds; =1 make the words P, and Rg  centralize 3l

By Lemma 7.2(iii), the 52 generate the kernel of W Ww. By Theorem 5.7,
the images of the P; and Rs, x in W generate the W stabilizer of the simple root
oo € I. Therefore, the 52 P, and Rs; i generate the W-stabilizer W of 0o. Their
actions on i, are the same as the ones glven by the homomorphlsm W — W, by
Theorem 5.7. Therefore, &, o = (Lo X Woo) K W. And Lemma 8.1 identifies
this with (sgea (@) te) X W, as desired. O

9. The isomorphism &3 & PStTts W

We have two goals in this section. The first is to start from Theorem 7.5, that
By = (kgeo Ug) X W, and prove Theorem 7.11, that &3 = ‘BG’(T“S x W. The
second is to explain how one may discard many of the Chevalley relations; for
example, for E,>¢ one can get away with imposing the relations for a single unjoined
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pair of nodes of the Dynkin diagram, and for a single joined pair. The latter material
is not necessary for our main results.

Proof of Theorem 7.11. First we show that the relators (7-10)—(7-23), regarded as
elements of B = (kgecop Uy) X W, become trivial in &t" x W. Then we will show
that they normally generate the whole kernel of &, — Gt1® x w.

If o, B are a prenilpotent pair of roots with 6 (o, 8) = {«, 8}, then the Chevalley
relation for & and B is [y, Ug] = 1. This shows that relators (7-10), (7-11), (7-13),
(7-14), (7-17), (7-18) and (7-19) become trivial in &tT 5 W. Careful calculation
verifies that the remaining relators are equivalent to those given by Demazure in
[SGA 3y 1970, Exposé XXIII]. Here are some remarks on the correspondence
between his notation and ours. In the A, case (his Proposition 3.2.1), his « and
correspond to our «; and «;, his X, and Xg to our e; and e;, his X_, and X_g to
our —f; and — f;, and his p, (¢) and pg(¢) to our X;(¢) and X; (7). His w, and wg
are not the same as our S; and §; (which are not even elements of sk, cq i, ),
but their actions on the i, are the same, so his pyyg(t) := wg pq (t)wﬂ_1 corre-
sponds to our §; X;(7)S;” ! One can now check that our (7-12) is equivalent to his
Proposition 3.2.1(iii).

In the B; case (his Proposition 3.3.1), his @ and 8 correspond to our ¢ and oy,
his X, and Xg to our e; and e;, his X_, and X_g to our —fs and — f;, and his p, (¢)
and pg(t) to our X(¢t) and X;(#). His w, and wg correspond to our S; and S; in
the same sense as above. It follows that his p,1g(f) and pyy4(f) correspond to
our S; X (t)Sl_1 and S X; (t)Ss_l. Then our (7-15) and (7-16) are equivalent to his
Proposition 3.3.1. The G, case is the same (his Proposition 3.4.1), except that his
Pa+p (@), pra+p(1), P3a+8 (#) and P3a+26(1) correspond to our

SIXo(0)S7 SSXo(0)S7ST, S Xi(—0)S7' and 88X (—1)S;7 'S

N

Then our (7-20)—(7-23) are among the relations in his Proposition 3.4.1(iii).

As a check (indeed a second proof that our relations are the Chevalley relations)
we constructed our elements of the various root groups in explicit representations
of the Chevalley groups SL, x SL,, SL3, Sp, and G, over R = Z[t, u], faithful on
the unipotent subgroups of their Borel subgroups. As mentioned in Remark 7.15,
we used a computer to check that our relators map to the identity. By functoriality,
the same holds with R replaced by any ring. In addition to our relations, the
root groups satisfy the Chevalley relations, by construction. By the isomorphism
Ug(a,p) = ]_[V o) i, of underlying schemes (Lemma 6.1), the only relations
having the form of the Chevalley relations that can hold are the Chevalley relations
themselves. So our relations are among them.

It remains to prove that the Chevalley relators of any classically prenilpotent pair
o', B’ € @ become trivial in &3. By classical prenilpotency, @ := (Qa’ +QB" )N P
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isan Aq, A%, As, By or G, root system. In the A case we have o’ = 8’ and the
Chevalley relations amount to the commutativity of f,. This follows from I, = R.
So we consider the other cases. There exists w € W sending @, to the root system
®g C @ generated by some pair of simple roots. (Choose simple roots for ;. Then
choose a chamber in the Tits cone which has two of its facets lying in the mirrors
of those roots, and which lies on the positive sides of these mirrors. Choose w to
send this chamber to the standard one.)

We choose a pair of roots o, § € ® as follows. First, they should have the same
relative configuration as ', B’ have. (That is, they should have the same short/long
root status, and make the same angle.) And second, their Chevalley relators should
appear among (7-10)—(7-23). Such «, § can always be chosen. For example, in
the G, case, (7-17)—(7-23) are, respectively, the Chevalley relations for two long
roots with angle /3, a short and a long root with angle 77 /6, two orthogonal roots,
two long roots with angle 27 /3, two short roots with angle /3, two short roots
with angle 27 /3, and a short and a long root with angle 5 /6. The other cases are
similarly exhaustive. By refining the choice of w, we may suppose that it sends
{o/, B’} to {a, B}. Now choose w € w lying over w. The Chevalley relators for
o, B’ are the w~'-conjugates of the Chevalley relators for o, 8. Since the latter
become trivial in &3, so do the former. O

The proof of Theorem 7.11 exploited the W-action on *aecd Uy to obtain the
Chevalley relators for all classically prenilpotent pairs from those listed explicitly in
(7-10)—(7-23). One can further exploit this idea to omit many of the relators coming
from the cases m;; = 2 or 3. Our method derives from the notion of an ordered
pair of simple roots being associate to another pair, due to [Brink and Howlett
1999] and [Borcherds 1998]. But we need very little of their machinery, so we
will argue directly. There does not seem to be any similar simplification possible if
mi; = 4 or 6.

Proposition 9.1. Suppose i, j, k € I form an A1 A, diagram, with j and k joined.
Then imposing the relation [4;, 4;] =1 on &2 = (kgeop o) X W also imposes
[, Y 1= 1. More formally, the normal closure of the relators (7-10) in &, contains
the relators got from them by replacing j by k.

Proof. Some element of the copy of W(A») generated by s; and s; sends «; to a,
and of course it fixes ;. Choose any lift of it to w. Conjugation by it in &, fixes il;
and sends ; to ;. So it sends the relators (7-10) to the relators got from them by
replacing j by k. O

The lemma shows that imposing on &, the relations (7-10) for a few well-chosen
unordered pairs {i, j} in I with m;; = 2 automatically imposes the corresponding
relations for all such pairs. As examples, for spherical Dynkin diagrams it suffices
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to impose these relations for

3 such pairs (that is, all of them) for Dy,
2 such pairs for By>4, Cy>4 OF Dy>s,
1 such pair for A>3, B3, C3, E, or Fy.

Proposition 9.2. Suppose i, j, k € I form an Az diagram, with i and k unjoined.
Then the normal closure of the relators (7-11)—(7-12) in &7 = (kgeo Uy) X W
contains the relators got from them by replacing i and j by j and k, respectively.

Proof. The argument is the same as for Proposition 9.1, using an element of
W (A3) that sends o; and o to j and ax. An example of such an element is the
“fundamental element” (or “long word”) of <s;, s;», followed by the fundamental
element of {s;, s;, sy ». The first transformation sends «; and o; to —o; and —a;.
The second sends «;, aj and o to —ay, —a; and —q;. O

Similarly to the m;; = 2 case, imposing on &; the relations (7-11)—(7-12) for
some well-chosen ordered pairs (i, j) in [ with m;; = 3 automatically imposes the
corresponding relations for all such pairs. For spherical diagrams, it suffices to
impose these relations for

4 such pairs (that is, all of them) for Fy,
2 such pairs for Ap>2, By>3 or Cpy>3,
1 such pair for Dy>4 or E,,.

10. The adjoint representation

A priori, it is conceivable that for some commutative ring R # 0 and some gener-
alized Cartan matrix A, the Steinberg group Gt4 (R) might collapse to the trivial
group. That this doesn’t happen follows from work of Tits [1987, §4] and Rémy
[2002, Chapter 9] on the “adjoint representation” of Gt4. We will improve their
results slightly by proving that the unipotent group scheme ily embeds in the
Steinberg group functor Gt4, for any nilpotent set of roots W. We need this result
in the next section, in our proof that PSt, (R) — St4(R) is often an isomorphism.

Recall that Lemma 6.1 associates to W a unipotent group scheme LIy over Z.
Furthermore, there are natural homomorphisms 4, — {ly for all y € W, and the
product map ]_[y cw Yy — Uy is an isomorphism of the underlying schemes, for
any ordering of the factors.

Also in Section 6, we defined Tits” Steinberg functor Gt5*
of the group schemes i1, and iy, where y varies over ®, and W varies over the
nilpotent subsets of ® of the form WV = 6(«, B), with «, B a prenilpotent pair of
roots. Composing with Gtxits — Gty, we have natural maps ty — Gty for such V.
A special case of the following theorem is that these maps are embeddings. We
would like to say that the same holds for W an arbitrary nilpotent set of roots. But

as the direct limit
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“the same holds” doesn’t quite have meaning, because the definition of Gty doesn’t
provide a natural map $ly — Gty for general W. So we phrase the result as follows.

Theorem 10.1 (injection of unipotent subgroups into Gty). Suppose A is a gen-
eralized Cartan matrix and V is a nilpotent set of roots. Then there is a unique
homomorphism gy — GSts whose restriction to each Yyey is the natural map
to Gtu, and it is an embedding.

Uniqueness is trivial, by the isomorphism of underlying schemes by =[],y Yo
Existence is easy: every pair of roots in W is prenilpotent, their Chevalley relations
hold in &t, and these relations suffice to define {ly as a quotient of skgey Upg. So
we must show that this homomorphism is an embedding. Our proof below relies on
a linear representation of Gt4, functorial in R, called the adjoint representation. Its
essential properties are developed in [Rémy 2002, Chapter 9], relying on a Z-form
of the universal enveloping algebra of g introduced in [Tits 1987, §4].

Following Tits and Rémy we will indicate all ground rings other than Z explicitly,
in particular writing g¢ for the Kac—-Moody algebra g. We write U for its universal
enveloping algebra. Recall from Section 6 that for each root o € ® we distinguished
a subgroup go 7 = Z of g,.c and the set E, consisting of the two generators for g, 7.

Generalizing work of Kostant [1966] and Garland [1978], Tits defined an integral
form of U, meaning a subring I/ with the property that the natural map 4 ® C — Uc
is an isomorphism. It is the subring generated by the divided powers e} /n! and
f{'/n!, as i varies over I, together with the *“binomial coefficients”

() :=h(h—1)---(h—n+1)/n,
where h varies over the Z-submodule of go ¢ with basis h;.

Remark 10.2 (the role of the root datum). Although it isn’t strictly necessary, we
mention that lurking behind the scenes is a choice of root datum. It is the one which
Rémy calls simply connected [2002, §7.1.2] and Tits calls “simply connected in
the strong sense” [1987, Remark 3.7(c)]. A choice of root datum is necessary to
define U/, hence the adjoint representation, and the choice does matter. For example,
SL, and PGL, have the same Cartan matrix, but different root data. Their adjoint
representations are distinct in characteristic 2, when we compare them by regarding
both as representations of SL, via the central isogeny SL, — PGL,. Similarly, they
provide distinct representations of Gty,. For us the essential fact is that each /z;
generates a Z-module summand of U, as explained in the next paragraph. As an
example of what could go wrong, using the root datum for PGL, would lead to
h;/2 € U and spoil the proof of Theorem 10.1 in characteristic 2.

In the sense Tits used, an integral form of a C-algebra need not be free as a
Z-module. For example, Q is a Z-form of C since @ ®7 C — C is an isomorphism.
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But U/ is free as a Z-module. To see this, one uses the following ingredients from
[Tits 1987, §4.4]. First, the Z/-grading makes it easy to see that

Uy ={el/n!lielandn>0}) and U_:=<{f"/n!|ielandn >0}

are free as Z-modules, and that {e;<;} and { f;<;} extend to bases of them. Second,
the universal enveloping algebra Uy ¢ of the Cartan algebra go ¢ is a polynomial
ring. This makes it easy to see that

Uo = ({(!) | h € @, Zh; and n > 0})

is free as a Z-module. Indeed, Proposition 2 of [Bourbaki 1975, Chapter VIII, §12.4]
extends {h;c;} to a Z-basis for U. Finally, U_ @ Uy @ U+ — U is an isomorphism
by [Tits 1987, Proposition 2]. One can obtain a Z-basis for ¢/ by tensoring together
members of bases for U/_, Uy and U .

A key property of U is its stability under (ade;)"* /n! and (ad f;)"/n! foralln >0
(see [Tits 1987, equation (12)]). The local nilpotence of ade; and ad f; on g¢
implies their local nilpotence on Uc. As exponentials of locally nilpotent derivations,
exp ad e; and exp ad f; are automorphisms of Ug. Since they preserve its subring U,
they are automorphisms of it. Since the generators s; for W* are defined in terms
of them by (5-1), W* also acts on .

Because U/ is free as a Z-module, Ur :=U ® R is free as an R-module. It is
the R-module underlying the adjoint representation of Gt4(R) in Theorem 10.3
below, which we will now develop. For each root « we define an exponential map
exp : Uy (R) — Aut(Ug) as follows. Recall that Ll,(R) was defined as g7 ® R. If
x is an element of this, then we choose e € E, and define r € R by x =re. Then we
define exp x to be the R-module endomorphism of Ug given by Y -, 1" (ade)" /n!.
The apparent dependence on the choice of e is no dependence at all, because if one
makes the other choice —e then one must also replace ¢t by —¢. As shown in [Rémy
2002, §9.4], exp x is an R-algebra automorphism of /g, not merely an R-module
endomorphism.

Theorem 10.3 (adjoint representation). For any commutative ring R, there exists a
homomorphism Ad : Gt (R) — AutUp, functorial in R and characterized by the
following property. For every root « the exponential map exp : iy, (R) — AutlUpy
factors as the natural map 4, (R) — Gta(R) followed by Ad.

Proof. This is from Sections 9.5.2-9.5.3 of [Rémy 2002]. We remark that he
used Tits’ version of the Steinberg functor (what we call Gtgits) rather than the
Morita—Rehmann version (what we call Gt4). But his Theorem 9.5.2 states that
Ad is a representation of Tits’ Kac—Moody group Gp(R). Since the extra relations
in the Morita—Rehmann version of the Steinberg group are among those defining
Gp(R), we may regard Ad as a representation of Gty (R).
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A few comments are required to identify our relations with (some of) his. Gp (R)
is defined in [Rémy 2002, §8.3.3] as a quotient of the free product of ‘BG‘LE“(R)
with a certain torus 7. Rémy’s third relation identifies our /2; () from (6-3) with the
element of 7 that Rémy calls . Rémy’s first relation says how 7 acts on each &1,
and amounts to our (6-8). Rémy’s fourth relation is our (6-10), saying that each §;
acts as s; on every Ug. Rémy’s second relation says how each 5; acts on 7, and in
particular describes s;r rhig=1 . Together with the known action of hi(r) on 4; and
the fact that 5; exchanges Lli j» this describes how h (r) acts on L_;, and recovers
our relation (6-9). By Theorem 6.4, this shows that all the relations in our Gt(R)
hold in Gp(R). O

Proof of Theorem 10.1. By induction on |W|. The base case, with W = &, is trivial.
So suppose || > 0. Since W is nilpotent, there is some chamber pairing positively
with every member of W and another one pairing negatively with every member. It
follows that there is a chamber pairing positively with one member and negatively
with all the others. In other words, after applying an element of W* we may suppose
that W contains exactly one positive root. We may even suppose that this root is
simple, say «;. Write Wq for ¥ — {«;}.

Consider the adjoint representation ly (R) — Gt(R) — Autlp, in particular
the action of x € Uy (R) on f; € Ug. If x € Ly, (R) then the component of x( f;)
in the subspace of U graded by 0 € Z/ is trivial, since f; and the B € ¥ are all
negative roots. On the other hand, we can work out the action of r; (¢) as follows.
A computation in ¢/ shows

(ade;)(f;) =—hi, 5(ade)*(fi)=e;, and -L(ade)"(f;) =0
for n > 2. Therefore, we have

(ad e,

Ad@ () (fiy =Y 1" (fi) = fi —thi +1%e;.

n=0

Recall that f;, h; and e; are three members of a Z-basis for U. So their images
in Ug are members of an R-basis. If # % O then the component of Ad(x;(¢))(f;)
graded by 0 € Z! is the nonzero element —th; of Uy.

Therefore, only the trivial element of 4[; (R) maps into the image of ly,(R) in
AutUpg. So the same is true with Gt(R) in place of Autifg. From induction and
the bijectivity of the product map &l; (R) x Ly, (R) — Ly (R) it follows that $ly (R)
embeds in Gt(R). O

11. BSt — St is often an isomorphism

The purpose of this section is to prove parts (iii)—(iv) of Theorem 1.1, showing
that the natural map PSSt (R) — Gt4(R) is an isomorphism for many choices of
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generalized Cartan matrix A and commutative ring R. These cases include most
of part (ii) of the same theorem; see [Allcock 2016] for the complete result. And
part (i) of the theorem is the case that A is spherical. As remarked in Section 7, in
this case B&St, and Gty are the same group by definition.

In the case that R is a field, Abramenko and Miihlherr [1997] proved our (iv)
with Kac—Moody groups in place of Steinberg groups. Our proof of (iv) derives
from the proof of their Theorem A; with the following preparatory lemma, the
argument goes through in our setting. For (iii) we use a more elaborate form of the
idea, with Lemma 11.2 as preparation.

Lemma 11.1 (generators for unipotent groups in rank 2). Let R be a commutative
ring, ® be a rank-2 spherical root system equipped with a choice of simple roots, and
@t be the set of positive roots. If ® has type A% or Aj then g+ (R) is generated
by the root groups of the simple roots.

If ® has type B, then write ag and «; for the short and long simple roots, and
oy (resp. ay) for the image of o (resp. o) under reflection in «; (vesp. o). Then
e+ (R) is generated by 5(R), U;(R) and either one of Uy (R) and Uy (R). If R
has no quotient [, then LU (R) and L;(R) suffice.

If ® has type G, then, using notation as for B, e+ (R) is generated by $;(R),
;(R) and Uy (R). If R has no quotient Fy or F3 then 35 (R) and $1;(R) suffice.

Proof. We will suppress the dependence of group functors on R, always meaning
groups of points over R. The A% case is trivial because the simple roots are the
only positive roots.

In the A, case we write «; and «; for the simple roots. The only other positive
root is a; + a;j. As in Section 6, we choose ¢; € E; and ¢; € E;. Then we can
use the notation X;(7), X;(¢) for the elements of {{; and i;, where ¢ varies over R.
The Chevalley relation (7-12) is [X;(7), X;(u)] = S; X; (tu)S;” !, Therefore, every
element of Siilj(R)Si_l lies in (4; (R), LL;(R)). Since S;4; Sl._1 = 4y, +q;, the proof
is complete.

In the B, and G, cases we choose e¢; € E; and ¢; € E;, so we may speak of
X, (1) ety and X;(u) € ;. We write X (¢) for S; X (t)Sl_1 and X (¢) for S, X (t)Ss_l.
In the G, case we also define

X (1) = SySi X, (0)S;7'S7 and  Xp(r) = $S: X (1) S S

S

Rather than mimicking the direct computation of the A, case, we use the well-
known fact that a subset of a nilpotent group generates that group if and only if its
image in the abelianization generates the abelianization. We will apply this to the
subgroup of e+ generated by Ll ULl;. Namely, we write Q for the quotient of the
abelianization of g+ by the image of <{ilg, 4l;>. Under the hypotheses about R
having no tiny fields as quotients, we will prove Q = 0. In this case it follows that
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Uy, 4> maps onto the abelianization and is therefore all of $p+. We must also
prove, this time with no hypotheses on R, that ${p+ = (iU, L, Ll > and (in the By
case) that L+ = (U, Ly, Ll >. This uses the same argument, with calculations so
much simpler that we omit them.

First consider the B, case. Among the Chevalley relators defining g+ are (7-15)
and (7-16), namely

[X,(), Xy ()] - Xp(2tu)
(X, (1), X1 ()] - Xp(—t%u) Xy (tu)

for all ¢z, u € R. The remaining Chevalley relations say that various root groups
commute with various other root groups. Therefore, the abelianization of i+ is
the quotient of the abelian group

8y x 8 x 8y x 8y = R

by the images of the displayed relators. We obtain Q by killing the image of 1l x 41;.

So, changing to additive notation, Q is the quotient of iy @ Iy = R? by the
subgroup generated by 0 @ 2R and all (fu, —t%u), where ¢, u vary over R. Taking
t = 1 in the latter shows that 2R @ 0 also dies in Q. So Q is the quotient of
(R/2R)?* by the subgroup generated by all (fu, —t>u). That is, Q is (the abelian
group underlying) the quotient of (R/2R)? by the submodule(!) generated by all
(t, —t?). This submodule contains (1, —1), so it is equally well-generated by it and
all (7, —t>) —1(1, —1) = (0, —£%). We may discard the first summand R /2R from
the generators and (1, —1) from the relators. So Q is the (abelian group underlying)
the quotient of R/2R by the ideal I generated by all ¢ — . To prove Q = 0 we
will suppose Q # 0 and derive a contradiction. As a nonzero ring with identity,
R/I has some field as a quotient, in which # = > holds identically. The only field
with this property is [, which is a contradiction since we supposed that R has no
such quotient.

For the G, case the Chevalley relators include

[X:(t), X )]+ Xy (—tu)
[X, (1), Xgr ()] - X (—3tu)

[Xs(1), Xy )] Xpr Btu) Xy (3t°u) X, (2tu)

[X,(6), X1()] - Xpr (Pu®) Xy (=) Xy (tu) X (—12u)
[Xy (£), Xy (u)] - Xpr (—3tu)

for all z, u € R. The first four relations are from (7-20)—(7-23). The fifth is the
conjugate of (7-21) by S;, which commutes with L[, and sends X;(¢) to Xy (¢) and
Xp(—3tu) to X;»(—3tu), by their definitions. All the remaining Chevalley relations
say that various root groups commute with each other.
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Proceeding as in the B; case, we see that Q is the quotient of the abelian group
Uy @ Uy @ Uy @ Uy by the subgroup generated by the relators (0, 0, 0, —tu),
(—3tu,0,0,0), (3t%u,2tu,0,3tu?), (—t3u, —tu, tu, t*u®) and (0,0, 0, —3tu),
where ¢, u vary over R. Because of the first relator, we may discard the {;» summand.
This leads to the following description of Q: the quotient of R by the R-submodule
spanned by the relators (—3¢, 0, 0), (3t2, 2t,0) and (—t3, —t2, 1), where ¢ varies
over R. Using (—1, —1, 1) in the same way we used (1, —1) in the B, case shows
that Q is the quotient of R? by the submodule generated by all (-3¢, 0), (312, 21)
and (3 —t,t> —t). This is the same as the quotient of R/3R @ R/2R by the
submodule generated by all (1> — ¢, t> — ). Now, R/3R @ R/2R is isomorphic to
R/6R by (a, b) <> 2a+3b. So Q is the quotient of R/6R by the ideal I generated
by 23 — 1) +3(t? — 1) for all 7. As in the B, case, if Q # 0 then it has a further
quotient that is a field F, obviously of characteristic 2 or 3. In F, either 1> =t
holds identically or #> = ¢ holds identically, according to these two possibilities. So
F =T, or F3, a contradiction. O

Lemma 11.2 (generators for unipotent groups in rank 3). Let R be a commutative
ring, ® be a spherical root system of rank 3, {Bic1} be simple roots for it, and ®+
be the corresponding set of positive roots. Write s; for the reflection in B;, and for
each ordered pair (i, j) of distinct elements of I write y; ; for s;(B;). Then Ugp+(R)
is generated by the {Ug, (R) and the ilyw. (R).

Proof. As in the previous proof, we suppress the dependence of group functors
on R. If & is reducible then we apply the previous lemma. So it suffices to treat
the cases ® = A3, B3 and C3. We write U for the subgroup of L+ generated by
the £lg; and &1, .. We must show that it is all of $lg+.

For type A3 we describe ® by using four coordinates summing to zero, and take
the simple roots 8; to be (+—00), (0+—0) and (00+—), where = are short for +1.
The y; ; are the roots (+0—0) and (0+0—). The only remaining positive root is
(4+00—). This is the sum of (+0—0) and (00+—). So the A, case of Lemma 11.1
shows that its root group lies in the U.

For type B3 we take the simple roots f; to be (+—0), (0+—) and (00+). The y; ;
are (+0—) and (040). The remaining positive roots are (4+00), (++0), (+0+)
and (0++). First, (004), (04-0) and (0+—) are three of the four positive roots of a
B; root system in &, including a pair of simple roots for it. Since U contains $4yp,
$o+o and Uy, —, Lemma 11.1 shows that U also contains a root group corresponding
to the fourth positive root, namely (0+4-). Second, applying the A, case of that
lemma to oy, ;o € U shows that U also contains $(, . Third, repeating this
using 0,04, Yo+— € U shows that U contains 3, ¢. Finally, using the B; case
again, the fact that U contains ooy, £o— and 1494 shows that U contains .
We have shown that U contains all the positive root groups, so U = g+, as desired.
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The Cs case is the same: replacing the short roots (1, 0, 0), (0, 1, 0) and (0, 0, 1)
by (2,0, 0), (0,2, 0) and (0, 0, 2) does not affect the proof. O

The next proof uses the geometric language of the Tits cone (or Coxeter complex),
its subdivision into chambers, and the combinatorial distance between chambers.
Here is minimal background; see [Rémy 2002, Chapter 5] for more. The root
system @ lies in Z/ € R!. The fundamental (open) chamber is the set of elements
in Hom(R/, R) having positive pairing with all simple roots. We defined an action
of the Weyl group W on Z' in Section 4, so W also acts on this dual space. A
chamber means a W-translate of the fundamental chamber, and the Tits cone means
the union of the closures of the chambers. It is tiled by them. W’s action is properly
discontinuous on the interior of this cone. A gallery of length n means a sequence
of chambers Cy, ..., C,, each C; sharing a facet with C;_; fori =1, ..., n. The
gallery is called minimal if there is no shorter gallery from Cy to C,,.

To each root a € @ corresponds a halfspace in the Tits cone, namely those points
in it having positive pairing with «. We write the boundary of this halfspace as o™
We will identify each root with its halfspace, so we may speak of roots containing
chambers. In this language, a set of roots is prenilpotent if there is some chamber
lying in all of them, and some chamber lying in none of them.

Proof of Theorem 1.1(iii)—(iv). We suppress the dependence of group functors on R,
always meaning groups of points over R. Recall that &t is obtained from LSt
by adjoining the Chevalley relations for the prenilpotent pairs of roots that are
not classically prenilpotent. So we must show that these relations already hold
in ‘PGSt. For W any nilpotent set of roots we will write Gy for the subgroup of ‘PGSt
generated by the $,cy. Theorem 10.1 shows that the subgroup of Gt generated by
these 4, is a copy of Lly, so we will just write $ly for it.

We will prove by induction the following assertion (N,>1): Suppose Co, ..., C,
is a minimal gallery, for each k =1, ..., n let o be the root which contains Cy but
not Cx_1, and define ¥ = {«y, ..., a,} and Wy = V¥ — {«,}. Then 4, normalizes

Gy, in Gy. (The N stands for “normalizes”. Also, it is easy to see that W is the
set of all roots containing C,, but not Co, so it is nilpotent, and similarly for Wy. So
Gy and Gy, are defined.)

Assuming (N,) for all n > 1, it follows that, for W of this form, the mul-
tiplication map ,, x --- X Yy, — Gy in PGSt is surjective. We know from
Lemma 6.1 and Theorem 10.1 that the corresponding multiplication map in &t,
namely o, x -+ x o, — Hy, is bijective. Since Gy — Ly is surjective, it
must also be bijective, hence an isomorphism. Now, if & and 8 are a prenilpotent
pair of roots then we may choose a chamber in neither of them and a chamber
in both of them. We join these chambers by a minimal gallery (Cy, ..., C,). As
mentioned above, the corresponding nilpotent set W of roots consists of all roots
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which contain C,, but not Cy. In particular, ¥ contains & and 8. We have shown
that Gy — Yy is an isomorphism. Since the Chevalley relation of o and 8 holds
in Ly (by the definition of $ly), it holds in Gy too. This shows that the Chevalley
relations of all prenilpotent pairs hold in PGS, so PGSt — Gt is an isomorphism,
finishing the proof.

It remains to prove (N,). First we treat a special case that does not require
induction. By hypothesis, A is S-spherical, where § is 2 (resp. 3) for part (iv)
(resp. (iii)) of the theorem. To avoid degeneracies we suppose rk A > §; the case
rk A < § is trivial because then A is spherical and the isomorphism P&t — Gt is

tautological. Suppose that all the chambers in some minimal gallery (Co, ..., Cy)
have a face F with codimension < S in common. By S-sphericity, the mirrors o+
of only finitely many o € ® contain F. Therefore, any pair from «;, ..., o, is

classically prenilpotent. Their Chevalley relations hold in P&t by definition. The
fact that 4,, normalizes Gy, in Gy follows from these relations.

Now, for any minimal gallery of length n < §, its chambers have a face of
codimension # < § in common. (It is a subset of ozlL Nn---N anl.) So the previous
paragraph applies. This proves (N,) for n < §, which we take as the base case of
our induction. For the inductive step we take n > S, assume (Ny), ..., (N,—1), and
suppose (Co, ..., Cy) is a minimal gallery. For 1 <k <[/ <n we write Gy ; for

Wy o Uy S PG

We must show that 4[, normalizes G ,_;.

Consider the subgallery (C,,_gs, ..., C,) of length S. These chambers have a
codimension-S face F in common. Write Wg for its W-stabilizer, which is finite
by S-sphericity. Among all chambers having F as a face, let D be the one closest
to Cy. By [Abramenko and Brown 2008, Proposition 5.34] it is unique and there is
a minimal gallery from Cy to C,_; having D as one of its terms, such that every
chamber from D to C,_; contains F. By replacing the subgallery (Co, ..., C,_1)
of our original minimal gallery with this one, we may suppose without loss of
generality that D = C,, for some 0 <m <n — S and that C,,, ..., C, all contain F.
(This replacement may change the ordering on ¥y = {1, ..., @,—1}, which is
harmless.) The special case shows that $l,, normalizes Gp,41,,—1. So it suffices to
show that [, also normalizes G .

At this point we specialize to proving part (iv) of the theorem. In this case F has
codimension 2. There are two chambers adjacent to C,, that contain F. One is
Cn+1 and we call the other one C, 41~ We write a, 4 for the root that contains
C ,’n 41 but not C,,. Recall that C,,, was the unique chamber closest to Co, of all those
containing F. It follows that (C, ..., Ci, C,, ) is a minimal gallery. By a double
application of (N,,41), which we may use because m <n —§ =n—2, both i, .,
and ila;m normalize G1 ,,. Since a1 and a;n 4 are simple roots for Wg, and o, is
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positive with respect to them, Lemma 11.1 shows that {,, lies in <y, ., ila;m >.
This uses the hypotheses on R to deal with the possibility that Wr has type B;
or G,. Therefore, 4, normalizes G, ,,, completing the proof of part (iv).

Now we prove part (iii). F has codimension 3. So there are three chambers
adjacent to C,, that contain F. Write C;/n 41 for any one of them (possibly C,41)
and define B as the root containing C,, , but not C,,. The three possibilities for 8
form a system X of simple roots for Wr. With respect to X, the positive roots
of Wy are exactly the ones that do not contain C,,, for example, o,.

There are two chambers adjacent to C,, | that contain F, besides C,,. Write C;, .,
for either of them and y for the root containing C,, ., but not C;, ., ;. Because C,, is
the unique chamber containing F that is closest to Co, (Co, ..., Cp, C/ C,.»)

m+1’
is a minimal gallery. In particular, y is a positive root with respect to EJ.F

We claim that g and &, normalize G1,,. For B this is just induction using
(Nmm+1). For y, we appeal to (N,42), but all this tells us is that {{, normalizes
Mg, G,y In particular, it conjugates G, into this larger group. To show that
4, normalizes G ;, it suffices to show for every k =1, ..., m that the Chevalley
relation for y and « has no g term. That is, it suffices to show that 8 ¢ 0 (a, y).
Suppose to the contrary. Then § is an N-linear combination of o and y. So
o 1s a (-linear combination of § and y, and in particular its mirror contains F.
Of the Weyl chambers for W, the one containing Cy is the same as the one
containing C,,, since C,, is as close as possible to Cy. Since o does not contain Cy,
it does not contain C,, either. So, as a root of Wp, it is positive with respect
to X. Now we have the contradiction that the simple root 8 of W is an N-linear
combination of the positive roots a; and y. This proves ¢ 6(ax, y), so i,
normalizes G .

We have proven that {g and 4(, normalize G ,,. Letting 8 and y vary over all
possibilities gives all the roots called g; and y; ; in Lemma 11.2. By that lemma,
the group generated by these root groups contains the root groups of all positive
roots of Wr. In particular, £, normalizes G, as desired. This completes the
proof of (iii). O

12. Finite presentations

In this section we prove Theorems 1.4 and 1.5: pre-Steinberg groups, Steinberg
groups and Kac—-Moody groups are finitely presented under various hypotheses.
Our strategy is to first prove parts (ii)—(iii) of Theorem 1.4, and then prove part (i)
together with Theorem 1.5.

For use in the proof of Theorem 1.4(ii)—(iii), we recall the following result of
Splitthoff, which grew from earlier work of Rehmann and Soulé [1976]. Then we
prove Theorem 12.2, addressing finite generation rather than finite presentation,
using his methods. Then we will prove Theorem 1.4(ii)—(iii).
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Theorem 12.1 [Splitthoff 1986, Theorem I]. Suppose R is a commutative ring and
A is one of the ABCDEFG Dynkin diagrams. If either

(i) tk A > 3 and R is finitely generated as a ring, or

(i1) tk A > 2 and R is finitely generated as a module over a subring generated by
finitely many units,

then Gt4(R) is finitely presented. ([

Theorem 12.2. Suppose R is a commutative ring and A is one of the ABCDEFG
Dynkin diagrams. If either

(1) tk A > 2 and R is finitely generated as a ring, or

(i) rk A > 1 and R is finitely generated as a module over a subring generated by
finitely many units,

then Gty (R) is finitely generated.

Proof. In light of Splitthoff’s theorem, it suffices to treat the cases A = A,, B>, G2
in (i) and the case A = A1 in (ii). For (i) it suffices to treat the case R=7[z1, ..., Zx],
since Gta(R) — GSta(R/1) is surjective for any ideal /. In the rest of the proof
we abbreviate Gt4(R) to Gt. Keeping our standard notation, @ is the root system,
and Gt is generated by groups i, = R with « varying over ®. As discussed in
Section 6, writing down elements X, (¢) of I, requires choosing one of the two
elements of E,, but the sign issues coming from this choice will not affect the
proof. For each p > 1 we write 4, , for the subgroup of i, consisting of all X, (¢)
where ¢ € R is a polynomial of degree < p.

Aj case: If a, B € ® make angle 277/3 then their Chevalley relation reads

[Xa (1), Xp(u)] = Xayp(Etu),

where the unimportant sign depends on the choices of elements of E,, Eg and
Eqyp. It follows that [, ,, g 4] contains Uy p14. An easy induction shows
that Gt is generated by the 4, | = 7" with « varying over ®.

By case: We write g ,, (resp. 4 ,) for the subgroup of Gt generated by all &, ,
with o a short (resp. long root). If o, A are short and long roots with angle 37 /4,
then we recall their Chevalley relation from (7-16) as

[Xo (1), X5.()] = Xpyo (—11) X5 120 (P0). (12-1)

Here we have implicitly chosen some elements of E,, E;, E4, and E) 25 SO
that one can write down the relation explicitly. Note that the first term on the
right lies in a short root group and the second lies in a long root group. Recall
that n is the number of variables in the polynomial ring R. We claim that &t
equals (s ,,, LUy ,42) and is therefore finitely generated. The case n = 0 is trivial,
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so suppose n > 0. Our claim follows from induction using the following two
ingredients.

First, for any p > 1, (Us ,, U ,42) contains Us ,41. To see this let g € R be
any monomial of degree p + 1 and write it as fu for monomials 7, u € R of degrees
1 and p. Then (12-1) yields

Xito (8) = Xor2o (2w [ X (1), Xo ()] € Up pya - [8r p, s 1].

Letting g vary shows that [, 1, ,+1 € (Us p, Uz p42). Then letting o, A vary over
all pairs of roots making angle 37 /4, so that A + o varies over all short roots, shows
that g , 11 € (Us, p, Ur, p42), as desired.

Second, for any p > n, (Us ,41, 4 p42) contains LUy, ,43. To see this let g € R
be any monomial of degree p + 3 and write it as t*u for monomials ¢, u € R of
degrees 2 and p — 1. This is possible because p + 3 is at least 3 more than the
number of variables in the polynomial ring R. Then (12-1) can be written

X420 (8) = Xogo (tu)[ X (1), X (u)] € Us py1 - [Us 2, Up, p—1].

Varying g and the pair (o, 1) as in the previous paragraph establishes

U p13 € (Us pr1, UL, py).

G case: Defining s , and U , as in the B, case, it suffices to show that &t
equals (87 1, ). The A, case shows that [; | equals the union &(; ~ of all
the 47 ,. So it suffices to prove that if p > n then ({; «, s, ,) contains g ;1.
If o, A € ® are short and long simple roots then their Chevalley relation (7-23) can
be written

[Xo(@), X;(u)] = Xy (t2u)Xg/(—tu) - (long-root-group elements),

where o’, o’ are the short roots o + A and 20 + A. As before, we have implicitly
chosen elements of E,, E;, E, and E,». Given any monomial g € R of degree
p+ 1, by using p+ 1 > n we may write it as #2u, where ¢ has degree 1 and u has
degree p — 1. So every term in the Chevalley relation except X~ (¢2u) lies in g, »
or iy . Therefore, (Us ,, U ) contains X,~(g), hence LUy~ 1 (by varying g),
hence ilg , 11 (by varying o and A so that o” varies over the short roots).

Aj case: in this case we are assuming there exist units xy, . .., x, of R and a finite
set Y of generators for R as a module over Z[xlil, ..., xX]. We suppose without
loss that Y contains 1. We use the description of Gt4, from Section 2, and write
G for the subgroup generated by S and the X (x{"' ---x,"y) with my, ..., m, €
{0, £1} and y € Y. By construction, G contains the § (x,fl), and it contains §(—1)
since Y contains 1. Therefore, G contains every fz(xle). Relation (2-4) shows that
if G contains X (1) for some u, then it also contains every X (x,fczu). It follows that
G contains every X(x;"‘ coxpmy) withmy, ..., m, € Z. Therefore, G = &t. O
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Proof of Theorem 1.4(i1)—(iii). We abbreviate PBSt, (R) to PGSt . We begin with (ii),
so A is assumed 2-spherical without A; components, and R is finitely generated as
a module over a subring generated by finitely many units. We must show that PSt,
is finitely presented. Let G be the direct limit of the groups ‘P&t with B varying
over the singletons and irreducible rank-2 subdiagrams. By 2-sphericity, each
PGSty is isomorphic to the corresponding Gtp. Also G is generated by the images
of the Gtp with |B| =2, because every singleton lies in some irreducible rank-2
diagram. By Splitthoff’s theorem, each of these Gtp is finitely presented. And
Theorem 12.2 shows that each Gtp with |B| =1 is finitely generated. Therefore,
the direct limit G is finitely presented.

Now we consider all A;A; subdiagrams {i, j} of A. For each of them we impose
on G the relations that (the images in G of) &t(;; and &t(;; commute. Because
these two groups are finitely generated (Theorem 12.2 again), this can be done with
finitely many relations. This finitely presented quotient of G is then the direct limit
of the groups Gtp with B varying over all subdiagrams of A of rank < 2. Again
using 2-sphericity, we can replace the Gtp’s by SPGStg’s. Then Corollary 1.3 says
that the direct limit is B&t,. This finishes the proof of (ii).

Now we prove (iii), in which we are assuming R is a finitely generated ring.
Consider the direct limit of the groups BG&t; with B varying over the irreducible
spherical subdiagrams of rank > 2. Because every node and every pair of nodes
lies in such a subdiagram, this direct limit is the same as B&t,. Because every
B is spherical, we may replace the groups PGSty by Gtp. By hypothesis on A,
G is generated by the Gtp with | B| > 2, which are finitely presented by Splitthoft’s
theorem. And Theorem 12.2 shows that those with |B| = 2 are finitely generated.
So the direct limit is finitely presented. U

Now we turn to Kac—Moody groups. For our purposes, Tits’ Kac—Moody
group &4 (R) may be defined as the quotient of Gt4(R) by the subgroup normally
generated by the relators

hi(u)h; (v) - hi (uv) ™! (12-2)

with i € I and u, v € R* See [Rémy 2002, §8.3.3] or [Tits 1987, §3.6] for the more
general construction of &p(R) from a root datum D. In the rest of this section, R*
will be finitely generated, and under this hypothesis the choice of root datum has no
effect on whether &p (R) is finitely presented. (We are using the root datum which
Rémy calls simply connected [2002, §7.1.2] and Tits calls “simply connected in
the strong sense” [1987, Remark 3.7(c)].)

The following technical lemma shows that when R* is finitely generated, killing
a finite set of relators (12-2) kills all the rest too. The reason it assumes only some of
the relations present in 3&t, (R) is so we can use it in the proof of Theorem 1.4(i).
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There, the goal is to deduce the full presentation of BSt, (R) from just some of its
relations.

Lemma 12.3. Suppose R is a commutative ring and ry, ..., ry, are generators
for R*, closed under inversion. Suppose G is the group with generators S and X (t),
with t € R, subject to the relations

hHXOh(H) ' = X (%1, (12-3)
h(r)SX (S 'h(r)™ ' =SX@t/rH)S™!, (12-4)
forallr =ry,...,ryandallt € R, where

h(r) =55~ and §50r):=X@E)SX1/r)ST X ().

Then all P, , = ﬁ(uv)fz(u)_lfz(v)_l, with u,v € R¥, lie in the subgroup of G
normally generated by some finite set of them.

Proof. Define N as the subgroup of G normally generated by the following finite
set of Py p:
ﬁ(rkrlp' ceerbmy -l~z(r1p' . -rnlz’")_lfl(rk)_l,

with k = 1,...,m and py,..., pn € {0,1}. We write = to indicate equality
modulo N. As special cases we have [ﬁ (re), fz(rl)] =1, fz(r,f) = iz(rk)z, and that
if p1,..., pm € {0, 1} then fz(rf] ---rh™) lies in the abelian subgroup Y of G/N
generated by fz(rl), e, fz(rm).

We claim that every P, , lies in Y. Since Y is finitely generated abelian, we
may therefore kill all the P, ,’s by killing some finite set of them, proving the
theorem. To prove the claim it suffices to show that every h(u) lies in Y, which we
do by induction. That is, supposing A (u) € ¥ we will prove fz(r,?u) € Y for each
k=1, ...,m. The following calculations in G mimic the proof of (6-12), paying
close attention to which relations are used. First, (12-3)—(12-4) imply

h(r)5@)h(r) ™" = §(rfu).
From the definition of ﬁ(u) we get
h(ri)hh(r) ™" = h(rfwheH) ™"
Right-multiplying by h(u)™! yields [h(ry), h ()] =P, Now, h(u) € Y implies
[A(r), h(w)] =1, so P’f’u =1,s0 h(r,fu) = h(u)h(r,f) €Y, as desired. O

Corollary 12.4. Suppose R is a commutative ring with finitely generated unit
group R*, and A is any generalized Cartan matrix. Then the subgroup of BSt,(R)
normally generated by all relators (12-2) is normally generated by finitely many
of them. O
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Proof of Theorem 1.5. We must show that &p(R) is finitely presented, assuming
that Gt4 (R) is and that R* is finitely generated. For &4 (R) this is immediate from
Corollary 12.4. Also, its subgroup H generated by the images of the /; () with i €
and r € R* is finitely generated abelian. For a general root datum D, one obtains
®p(R) by the following construction. First one quotients &4 (R) by a subgroup
of H. Then one takes the semidirect product of this by a torus 7 (a copy of (R*)").
Then one identifies the generators of H with certain elements of 7. Since R* is
finitely generated, none of these steps affects finite presentability. U

Proof of Theorem 1.4(1). We must show that if R is finitely generated as an abelian
group, then PE&St, (R) is finitely presented for any generalized Cartan matrix A.
Suppose R is generated as an abelian group by #,...,#,. Then PG&St,(R) is
generated by the S; and X;(#), so it is finitely generated. Because R is finitely
generated as an abelian group, its multiplicative group R* is also. At its heart, this
is the Dirichlet unit theorem. See [Lang 1983, Corollary 7.5] for the full result. Let
ri, ..., I, be aset of generators for R* closed under inversion.

Let N be the central subgroup of ‘BSt, (R) normally generated by all relators
(12-2). It is elementary and well-known that if a group is finitely generated, and
a central quotient of it is finitely presented, then it is itself finitely presented.
(See [Johnson 1997, §10.2] for the required background.) Therefore, the finite
presentability of LSty (R) will follow from that of SP&St,(R)/N. The relators
defining the latter group are (7-1)—(7-26) and (12-2). We will show that finitely
many of them imply all the others.

In the definition of VT/, there are only finitely many relations (7-1)—(7-3). The
addition rules (7-4) in (; = R can be got by imposing finitely many relations on
the X; (). Relations (7-5)—(7-9) describe how certain words in the S; conjugate
arbitrary X;(¢). By the additivity of X; () in ¢, it suffices to impose only those with ¢
among #1, ..., t,. The Chevalley relations (7-10)—(7-23) may be imposed using
only finitely many relations, because the Borel subgroup of any rank-2 Chevalley
group over R is polycyclic (since R is).

Now for the tricky step: we impose relations (7-24)—(7-25) forr =ry, ..., r,; and
t=ty,...,t,. The additivity of X;(¢) in 7 implies these relations for r =ry, ..., ry
and arbitrary ¢+ € R. These are exactly the relations (12-3)—(12-4) assumed in
the statement of Lemma 12.3. That lemma shows that we may impose all the
relations (12-2) by imposing some finite number of them. Working modulo these,
ﬁi(r) is multiplicative in r, for each i. Therefore, our relations (7-24)—(7-25) for
r=ri,...,, imply the same relations for arbitrary r.

Starting with the generators S;, X;(¢), withi € [ and t =1, ..., t,, we have
found finitely many relations from (7-1)—(7-26) and (12-2) that imply all the others.
Therefore, PSt, (R)/N is finitely presented, so the same holds for P St (R) itself.

O



1842 Daniel Allcock

Acknowledgements

The author is very grateful to the Japan Society for the Promotion of Science and to
Kyoto University, for their support and hospitality, and to Lisa Carbone, for getting
him interested in Kac—Moody groups over Z.

References

[Abramenko and Brown 2008] P. Abramenko and K. S. Brown, Buildings: theory and applications,
Graduate Texts in Mathematics 248, Springer, New York, 2008. MR 2439729 Zbl 1214.20033

[Abramenko and Miihlherr 1997] P. Abramenko and B. Miihlherr, “Présentations de certaines BN -
paires jumelées comme sommes amalgamées”, C. R. Acad. Sci. Paris Sér. I Math. 325:7 (1997),
701-706. MR 1483702 Zbl 0934.20024

[Allcock 2013] D. Allcock, “Reflection centralizers in Coxeter groups”, Transform. Groups 18:3
(2013), 599-613. MR 3084328 Zbl 1283.20042

[Allcock 2016] D. Allcock, “Presentation of affine Kac—Moody groups over rings”, Algebra Number
Theory 10:3 (2016), 533-556. MR 3513130 Zbl 06596319

[Allcock and Carbone 2016] D. Allcock and L. Carbone, “Presentation of hyperbolic Kac—-Moody
groups over rings”, J. Algebra 445 (2016), 232-243. MR 3418056 Zbl 1333.20050

[Borcherds 1998] R. E. Borcherds, “Coxeter groups, Lorentzian lattices, and K 3 surfaces”, Internat.
Math. Res. Notices 19 (1998), 1011-1031. MR 1654763 Zbl 0935.20027

[Bourbaki 1975] N. Bourbaki, Eléments de mathématique, XXXVIII: Groupes et algébres de Lie
(Chapitre VII: Sous-algebres de Cartan, éléments réguliers;, Chapitre VIII: Algebres de Lie semi-
simples déployées), Actualités Scientifiques et Industrielles, No. 1364., Hermann, Paris, 1975.
MR 0453824 Zbl 0329.17002

[Bourbaki 2002] N. Bourbaki, Lie groups and Lie algebras, Chapters 4—6, Springer, Berlin, 2002.
MR 1890629 Zbl 0983.17001

[Brink 1996] B. Brink, “On centralizers of reflections in Coxeter groups”, Bull. London Math. Soc.
28:5 (1996), 465-470. MR 1396145 Zbl 0852.20033

[Brink and Howlett 1999] B. Brink and R. B. Howlett, “Normalizers of parabolic subgroups in
Coxeter groups”, Invent. Math. 136:2 (1999), 323-351. MR 1688445 Zbl 0926.20024

[Caprace and Rémy 2009] P.-E. Caprace and B. Rémy, “Groups with a root group datum”, Innov.
Incidence Geom. 9 (2009), 5-77. MR 2658894 Zbl 1221.20021

[Carter 1972] R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics 28, John Wiley
& Sons, London-New York-Sydney, 1972. MR 0407163 Zbl 0248.20015

[Dennis and Stein 1974] R. K. Dennis and M. R. Stein, “Injective stability for K, of local rings”,
Bull. Amer. Math. Soc. 80 (1974), 1010-1013. MR 0371880 Zbl 0299.18007

[Garland 1978] H. Garland, “The arithmetic theory of loop algebras”, J. Algebra 53:2 (1978), 480—
551. Correction in 63:1 (1980), 285. MR 502647 Zbl 0383.17012

[Hée 1990] J.-Y. Hée, “Construction de groupes tordus en théorie de Kac-Moody”, C. R. Acad. Sci.
Paris Sér. I Math. 310:3 (1990), 77-80. MR 1044619 Zbl 0707.22008

[Hée 2008] J.-Y. Hée, “Torsion de groupes munis d’une donnée radicielle”, J. Algebra 319:11 (2008),
4738-4758. MR 2416741 Zbl 1148.22016

[Johnson 1997] D. L. Johnson, Presentations of groups, 2nd ed., London Mathematical Society
Student Texts 15, Cambridge University Press, 1997. MR 1472735 Zbl 0906.20019

[Kac 1990] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.
MR 1104219 Zbl 0716.17022


http://dx.doi.org/10.1007/978-0-387-78835-7
http://msp.org/idx/mr/2439729
http://msp.org/idx/zbl/1214.20033
http://dx.doi.org/10.1016/S0764-4442(97)80044-4
http://dx.doi.org/10.1016/S0764-4442(97)80044-4
http://msp.org/idx/mr/1483702
http://msp.org/idx/zbl/0934.20024
http://dx.doi.org/10.1007/s00031-013-9236-7
http://msp.org/idx/mr/3084328
http://msp.org/idx/zbl/1283.20042
http://dx.doi.org/10.2140/ant.2016.10.533
http://msp.org/idx/mr/3513130
http://msp.org/idx/zbl/06596319
http://dx.doi.org/10.1016/j.jalgebra.2015.08.012
http://dx.doi.org/10.1016/j.jalgebra.2015.08.012
http://msp.org/idx/mr/3418056
http://msp.org/idx/zbl/1333.20050
http://dx.doi.org/10.1155/S1073792898000609
http://msp.org/idx/mr/1654763
http://msp.org/idx/zbl/0935.20027
http://msp.org/idx/mr/0453824
http://msp.org/idx/zbl/0329.17002
http://msp.org/idx/mr/1890629
http://msp.org/idx/zbl/0983.17001
http://dx.doi.org/10.1112/blms/28.5.465
http://msp.org/idx/mr/1396145
http://msp.org/idx/zbl/0852.20033
http://dx.doi.org/10.1007/s002220050312
http://dx.doi.org/10.1007/s002220050312
http://msp.org/idx/mr/1688445
http://msp.org/idx/zbl/0926.20024
http://msp.org/idx/mr/2658894
http://msp.org/idx/zbl/1221.20021
http://msp.org/idx/mr/0407163
http://msp.org/idx/zbl/0248.20015
http://dx.doi.org/10.1090/S0002-9904-1974-13614-1
http://msp.org/idx/mr/0371880
http://msp.org/idx/zbl/0299.18007
http://dx.doi.org/10.1016/0021-8693(78)90294-6
http://msp.org/idx/mr/502647
http://msp.org/idx/zbl/0383.17012
http://msp.org/idx/mr/1044619
http://msp.org/idx/zbl/0707.22008
http://dx.doi.org/10.1016/j.jalgebra.2007.09.028
http://msp.org/idx/mr/2416741
http://msp.org/idx/zbl/1148.22016
http://dx.doi.org/10.1017/CBO9781139168410
http://msp.org/idx/mr/1472735
http://msp.org/idx/zbl/0906.20019
http://dx.doi.org/10.1017/CBO9780511626234
http://msp.org/idx/mr/1104219
http://msp.org/idx/zbl/0716.17022

Steinberg groups as amalgams 1843

[Kiralis et al. 1996] G. Kiralis, S. Krstié, and J. McCool, “Finite presentability of ®, (G), GL,(ZG)
and their elementary subgroups and Steinberg groups”, Proc. London Math. Soc. (3) 73:3 (1996),
575-622. MR 1407462 Zbl 0865.20025

[Kostant 1966] B. Kostant, “Groups over Z”, pp. 90-98 in Algebraic Groups and Discontinuous
Subgroups (Boulder, CO, 1965), edited by A. Borel and G. D. Mostow, Amer. Math. Soc., Providence,
RI, 1966. MR 0207713 Zbl 0199.06903

[Lang 1983] S. Lang, Fundamentals of Diophantine geometry, Springer, New York, 1983. MR 715605
Zbl 0528.14013

[Li 1989] F. A. Li, “Finite presentability of Steinberg groups over group rings”, Acta Math. Sinica
(N.S.) 5:4 (1989), 297-301. MR 1037850 Zbl 0688.16028

[Morita and Rehmann 1990] J. Morita and U. Rehmann, “A Matsumoto-type theorem for Kac—-Moody
groups”, Tohoku Math. J. (2) 42:4 (1990), 537-560. MR 1076175 Zbl 0701.19001

[Rehmann and Soulé 1976] U. Rehmann and C. Soulé, “Finitely presented groups of matrices”, pp.
164-169. Lecture Notes in Math., Vol. 551 in Algebraic K -theory (Northwestern Univ., Evanston,
IL, 1976), edited by M. R. Stein, Springer, Berlin, 1976. MR 0486175 Zbl 0445.20025

[Rémy 2002] B. Rémy, Groupes de Kac—-Moody déployés et presque déployés, Astérisque 277,
Société Mathématique de France, Paris, 2002. MR 1909671 Zbl 1001.22018

[SGA 3y 1970] M. Demazure and A. Grothendieck, Schémas en groupes, Tome Ill: Structure
des schémas en groupes réductifs, Exposés XIX-XXVI (Séminaire de Géométrie Algébrique du
Bois Marie 1962-1964), Lecture Notes in Math. 153, Springer, Berlin, 1970. MR 43 #223c
Zbl 0212.52810

[Splitthoff 1986] S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley
groups”, pp. 635-687 in Applications of algebraic K -theory to algebraic geometry and number
theory, Part 11 (Boulder, CO, 1983), edited by S. J. Bloch et al., Contemp. Math. 55, Amer. Math.
Soc., Providence, RI, 1986. MR 862658 Zbl 0596.20034

[Steinberg 1968] R. Steinberg, Lectures on Chevalley groups, edited by J. Faulkner and R. Wilson,
Yale University, New Haven, CT, 1968. MR 0466335 Zbl 1196.22001

[Tits 1966a] J. Tits, “Normalisateurs de tores, I: Groupes de Coxeter étendus”, J. Algebra 4 (1966),
96-116. MR 0206117 Zbl 0145.24703

[Tits 1966b] J. Tits, “Sur les constantes de structure et le théoreme d’existence des algebres de Lie
semi-simples”, Inst. Hautes Etudes Sci. Publ. Math. 31 (1966), 21-58. MR 0214638 Zbl 0145.25804

[Tits 1974] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics
386, Springer, Berlin-New York, 1974. MR 0470099 Zbl 0295.20047

[Tits 1987] J. Tits, “Uniqueness and presentation of Kac—Moody groups over fields”, J. Algebra
105:2 (1987), 542-573. MR 873684 Zbl 0626.22013

[Tits 1992] J. Tits, “Twin buildings and groups of Kac—-Moody type”, pp. 249-286 in Groups,
combinatorics & geometry (Durham, 1990), edited by M. Liebeck and J. Saxl, London Math. Soc.
Lecture Note Ser. 165, Cambridge University Press, 1992. MR 1200265 Zbl 0851.22023

[Zhang 1991] H. Zhang, “Finite presentability of Steinberg group St, (LI1)”, Northeast. Math. J. 7:3
(1991), 317-325. MR 1164086 Zbl 0767.19001

Communicated by Edward Frenkel
Received 2016-03-29 Accepted 2016-06-11

allcock@math.utexas.edu Department of Mathematics, University of Texas at Austin,
RLM 8.100, 2515 Speedway Stop C1200, Austin, TX 78712,
United States

mathematical sciences publishers :'msp


http://dx.doi.org/10.1112/plms/s3-73.3.575
http://dx.doi.org/10.1112/plms/s3-73.3.575
http://msp.org/idx/mr/1407462
http://msp.org/idx/zbl/0865.20025
http://msp.org/idx/mr/0207713
http://msp.org/idx/zbl/0199.06903
http://dx.doi.org/10.1007/978-1-4757-1810-2
http://msp.org/idx/mr/715605
http://msp.org/idx/zbl/0528.14013
http://dx.doi.org/10.1007/BF02107706
http://msp.org/idx/mr/1037850
http://msp.org/idx/zbl/0688.16028
http://dx.doi.org/10.2748/tmj/1178227573
http://dx.doi.org/10.2748/tmj/1178227573
http://msp.org/idx/mr/1076175
http://msp.org/idx/zbl/0701.19001
http://msp.org/idx/mr/0486175
http://msp.org/idx/zbl/0445.20025
http://bremy.perso.math.cnrs.fr/TwistedKM.pdf
http://msp.org/idx/mr/1909671
http://msp.org/idx/zbl/1001.22018
http://www.msri.org/publications/books/sga/sga/pdf/sga3-3.pdf
http://www.msri.org/publications/books/sga/sga/pdf/sga3-3.pdf
http://msp.org/idx/mr/43:223c
http://msp.org/idx/zbl/0212.52810
http://dx.doi.org/10.1090/conm/055.2/1862658
http://dx.doi.org/10.1090/conm/055.2/1862658
http://msp.org/idx/mr/862658
http://msp.org/idx/zbl/0596.20034
http://msp.org/idx/mr/0466335
http://msp.org/idx/zbl/1196.22001
http://dx.doi.org/10.1016/0021-8693(66)90053-6
http://msp.org/idx/mr/0206117
http://msp.org/idx/zbl/0145.24703
http://www.numdam.org/item?id=PMIHES_1966__31__21_0
http://www.numdam.org/item?id=PMIHES_1966__31__21_0
http://msp.org/idx/mr/0214638
http://msp.org/idx/zbl/0145.25804
http://msp.org/idx/mr/0470099
http://msp.org/idx/zbl/0295.20047
http://dx.doi.org/10.1016/0021-8693(87)90214-6
http://msp.org/idx/mr/873684
http://msp.org/idx/zbl/0626.22013
http://dx.doi.org/10.1017/CBO9780511629259.023
http://msp.org/idx/mr/1200265
http://msp.org/idx/zbl/0851.22023
http://msp.org/idx/mr/1164086
http://msp.org/idx/zbl/0767.19001
mailto:allcock@math.utexas.edu
http://msp.org




Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology

Dave Benson
Richard E. Borcherds
John H. Coates

J-L. Colliot-Thélene
Brian D. Conrad
Hélene Esnault
Hubert Flenner
Sergey Fomin
Edward Frenkel
Andrew Granville
Joseph Gubeladze
Roger Heath-Brown
Craig Huneke

Kiran S. Kedlaya
Janos Kollar

Yuri Manin

Philippe Michel

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California
Berkeley, USA

BOARD OF EDITORS

University of Aberdeen, Scotland
University of California, Berkeley, USA
University of Cambridge, UK

CNRS, Université Paris-Sud, France
Stanford University, USA

Freie Universitit Berlin, Germany
Ruhr-Universitit, Germany

University of Michigan, USA
University of California, Berkeley, USA
Université de Montréal, Canada

San Francisco State University, USA
Oxford University, UK

University of Virginia, USA

Univ. of California, San Diego, USA
Princeton University, USA

Northwestern University, USA

Ecole Polytechnique Fédérale de Lausanne

Susan Montgomery
Shigefumi Mori
Raman Parimala

Jonathan Pila
Anand Pillay

Victor Reiner

Peter Sarnak

Joseph H. Silverman
Michael Singer

Vasudevan Srinivas
J. Toby Stafford

Ravi Vakil
Michel van den Bergh

Marie-France Vignéras

Kei-Ichi Watanabe
Efim Zelmanov

Shou-Wu Zhang

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

University of Southern California, USA
RIMS, Kyoto University, Japan

Emory University, USA

University of Oxford, UK

University of Notre Dame, USA
University of Minnesota, USA
Princeton University, USA

Brown University, USA

North Carolina State University, USA
Tata Inst. of Fund. Research, India
University of Michigan, USA

Stanford University, USA

Hasselt University, Belgium

Université Paris VII, France

Nihon University, Japan

University of California, San Diego, USA

Princeton University, USA

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2016 is US $290/year for the electronic version, and $485/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOoW® from MSP.

PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/

© 2016 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/

Algebra & Number Theory

Volume 10 No. 8 2016

Tropical independence, II: The maximal rank conjecture for quadrics 1601
DAVID JENSEN and SAM PAYNE
Algebraicity of normal analytic compactifications of C? with one irreducible curve at 1641
infinity
PINAKI MONDAL
The local lifting problem for A4 1683

ANDREW OBUS

Syntomic cohomology and p-adic regulators for varieties over p-adic fields 1695
JAN NEKOVAR and WIESEAWA NIZIOL
Appendix: LAURENT BERGER and FREDERIC DEGLISE

Steinberg groups as amalgams 1791
DANIEL ALLCOCK

0:8;1-H

1937-0652(2016)1



	1. Introduction
	2. Examples
	3. Diagram automorphisms
	4. The Kac–Moody algebra
	5. The extension W*Autg of the Weyl group
	6. The Steinberg group St
	7. The pre-Steinberg group PSt
	8. The isomorphism G2.5-.5.5-.5.5-.5.5-.5(=-.35ex[3] -.27ex[2] -.17ex[2].5mu -.15ex[2].5mu U)W"0362W
	9. The isomorphism G3.5-.5.5-.5.5-.5.5-.5PStTitsW"0362W
	10. The adjoint representation
	11. PStSt is often an isomorphism
	12. Finite presentations
	Acknowledgements
	References
	
	

