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Extremality of loci of hyperelliptic curves
with marked Weierstrass points

Dawei Chen and Nicola Tarasca

The locus of genus-two curves with n marked Weierstrass points has codimension
n inside the moduli space of genus-two curves with n marked points, for n ≤ 6. It
is well known that the class of the closure of the divisor obtained for n = 1 spans
an extremal ray of the cone of effective divisor classes. We generalize this result
for all n: we show that the class of the closure of the locus of genus-two curves
with n marked Weierstrass points spans an extremal ray of the cone of effective
classes of codimension n, for n ≤ 6. A related construction produces extremal
nef curve classes in moduli spaces of pointed elliptic curves.

Every smooth curve of genus two has a unique map of degree two to the projective
line, ramified at six points, called Weierstrass points. It follows that the locus Hyp2,n

of curves of genus two with n marked Weierstrass points has codimension n inside
the moduli space M2,n of smooth curves of genus two with n marked points, for
1 ≤ n ≤ 6. In this paper, we study the classes of the closures of the loci Hyp2,n

inside the moduli space of stable curves M2,n .
The cone of effective codimension-one classes on M2,1 is explicitly described

in [Rulla 2001; 2006], and encodes the rational contractions of M2,1. It is thus
natural to study cones of effective classes of higher codimension. The following is
one of the first results in this direction.

Theorem 1. For 1≤ n ≤ 6, the class of Hyp2,n is rigid and extremal in the cone of
effective classes of codimension n in M2,n .

Theorem 1 motivates the computation of the classes of the loci Hyp2,n . The class
of the divisor Hyp2,1 has been computed in [Eisenbud and Harris 1987], and the
class of the codimension-two locus Hyp2,2 has been computed in [Tarasca 2015].
In Section 5 we study the next nontrivial case.
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Theorem 2. In A3(M2,3), we have

[Hyp2,3] =
(
(3ω1− λ− δ1) · (3ω2− λ− δ1)

− (δ0:{1,2}+ δ0:3) · (3ω1− λ− δ1)− γ1:∅− γ1:{3}
)

· (3ω3− λ− δ1− δ0:{1,3}− δ0:{2,3})

−γ1:{1} ·(2ψ1−δ1:{1})−γ1:{2} ·(2ψ2−δ1:{2})−γ1:∅ ·(ψ1−δ0:{1,3}).

For elliptic curves, the difference of two ramification points of a degree-2 map
to the projective line can be regarded as a 2-torsion point. In a somewhat similar
fashion, we consider in general the locus of points on elliptic curves whose pairwise
differences are k-torsion points. More precisely, for k ≥ 2 and 2≤ n ≤ k2, consider
the following one-dimensional locus in M1,n:

Tor k
1,n := {[C, p1, . . . , pn] ∈M1,n | kp1 ∼ · · · ∼ kpn}.

Note that Tor k
1,n might be reducible: Tord

1,n is a subcurve of Tor k
1,n for all divisors

d of k.
The class of the divisor Tor2

1,2 is in the interior of the two-dimensional cone of
effective divisor classes in M1,2 and spans an extremal ray of the cone of nef divisor
classes in M1,2 [Rulla 2001].

Theorem 3. For k ≥ 2 and 2 ≤ n ≤ k2, the class of Tor k
1,n spans an extremal ray

of the cone of nef curve classes in M1,n , and this ray does not dependent on k.

Structure of the paper. The proof of Theorem 3 is in Section 1 — this section is
independent from the rest of the paper. In Section 2 we collect some classical results
on classes of hyperelliptic loci which are needed later on. The proof of Theorem 1
in the case n = 2 is in Section 4.2 and is based on the explicit description of the
codimension-two class [Hyp2,2] presented in Section 4.1. In Section 3 we prove a
recursive argument that works in a more general context, and we thus complete the
proof of Theorem 1. Finally, we prove Theorem 2 in Section 5 using the description
of the classes [Hyp2,1] and [Hyp2,2] from Section 4.1.

Notation. We use throughout the following notation for divisor classes on Mg,n .
The class ψi is the cotangent class at the marked point i , and the class ωi is the
pullback of the class ψi via the map ρi :Mg,n→Mg,1 obtained by forgetting all
marked points but the point i . The class δirr is the class of the closure of the locus
of nodal irreducible curves. We denote by λ the pullback of the first Chern class of
the Hodge bundle over Mg. For i ∈ {0, . . . , g} and J ⊆ {1, . . . , n}, we denote by
δi :J the class of the divisor 1i :J whose general element has a component of genus
i containing the points marked by indices in J and meeting a component of genus
g− i containing the remaining marked points. One has δi :J = δg−i :J c . We denote
by δi : j the sum of all distinct divisor classes δi :J such that |J | = j , and by δi the
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sum of all distinct classes δi : j for all possible values of j . Let πk :Mg,n→Mg,n−1

be the map obtained by forgetting the k-th marked point. Note that π∗k (δi )= δi on
Mg,n for n ≥ 2.

We also use the following codimension-two tautological classes on Mg,n . For
J ⊆ {1, . . . , n}, let γ1:J be the class of the locus 01:J of curves whose general
element has an elliptic component containing exactly the points marked by indices
in J , and meeting in two points a component of genus g−2 containing the remaining
marked points.

Throughout we work over an algebraically closed field of characteristic 0. All
cycle classes are stack fundamental classes, and all cohomology and Chow groups
are taken with rational coefficients. We implicitly assume real coefficients when
we consider nef classes and closures of cones of effective classes.

1. Extremal nef curve classes on M1,n

In this section we show that the class of the one-dimensional locus Tor k
1,n spans

an extremal ray of the cone Nef n−1(M1,n) of nef curve classes on M1,n , for k ≥ 2
and 2≤ n ≤ k2.

By definition, the cone Nef n−1(M1,n) is dual to the cone of pseudoeffective
divisors Eff1(M1,n). A subcone S of Eff1(M1,n) is extremal in Eff1(M1,n) if
whenever E1+ E2 ∈ S, then E1, E2 ∈ S. We first show that the cone generated by
the boundary divisor classes is extremal in Eff1(M1,n).

Lemma 4. The cone generated by the classes δ0:J for J ⊆ {1, . . . , n} is extremal in
Eff1(M1,n) for n ≥ 2.

Proof. We follow the strategy of [Rulla 2001, Corollary 1.4.7], where Rulla
shows that the cone generated by the boundary divisor classes on Mg is extremal
in Eff1(Mg).

We first show that the classes δ0:{i, j} are extremal in Eff1(M1,n), for n ≥ 3 and
i, j ∈ {1, . . . , n}. Consider the one-dimensional family of curves C{i, j} obtained by
attaching a rational component containing the points with markings i and j at a
moving point of an elliptic curve containing the remaining n− 2 marked points.
The curve C{i, j} is a moving curve in 10:{i, j}, and one has C{i, j} · δ0:{i, j} < 0. It
follows that δ0:{i, j} is rigid and extremal in Eff1(M1,n). Moreover, C{i, j} has empty
intersection with δ0:J for |J | = 2 and J 6= {i, j}. From [Rulla 2001, Lemma 1.4.6],
the cone generated by the classes δ0:J for |J | = 2 is extremal in Eff1(M1,n).

We then use the following recursion on k, for 3≤ k ≤ n− 1. Suppose that the
cone generated by all classes δ0:J with |J |< k < n is extremal in Eff1(M1,n). For
i1, . . . , ik ∈ {1, . . . , n}, consider the one-dimensional family C{i1,...,ik} obtained by
attaching a rational component containing the points with markings i1, . . . , ik at a
moving point of an elliptic curve containing the remaining n−k marked points. One



1938 Dawei Chen and Nicola Tarasca

has C{i1,...,ik} ·δ0:{i1,...,ik} < 0 and C{i1,...,ik} ·δ0:J = 0 for |J | ≤ k and J 6= {i1, . . . , ik}.
Again from [Rulla 2001, Lemma 1.4.6], the cone generated by the classes δ0:J for
|J | ≤ k is thus extremal in Eff1(M1,n).

Finally, let us consider the class δ0:{1,...,n} for n≥2. Consider the one-dimensional
family E obtained by attaching a rational curve containing all marked points to a
base point of a pencil of plane cubics. One has E · δ0:{1,...,n} < 0 and E · δ0:J = 0 for
|J |< n. Hence, the cone generated by δ0:{1,...,n} and δ0:J with |J |< n is extremal
in Eff1(M1,n). �

We are now ready to prove Theorem 3.

Proof of Theorem 3. Singular elements in Tor k
1,n do not have rational tails. Indeed,

consider a singular pointed curve [C, p1, . . . , pn] inside the closure of Tor k
1,n . The

condition kpi ∼kp j means that there exists an admissible cover π :C→P1 of degree
k totally ramified at pi and p j . Suppose C has a rational tail R containing pi and p j .
By the Riemann–Hurwitz formula, R does not contain any other ramification point
of π . Since C \ R has arithmetic genus 1, one has deg(π |C\R) > 1. Hence, the tail
R has to meet the other components of C in more than one point, a contradiction. It
follows that [Tor k

1,n] has zero intersection with all divisor classes δ0:J . Note that by
the projection formula relative to the natural map M1,n→M1,1, the class [Tor k

1,n]

has positive intersection with the divisor class λ.
From Lemma 4, the cone generated by the classes δ0:J is extremal in Eff1(M1,n),

hence by duality the class [Tor k
1,n] spans an extremal ray of Nef n−1(M1,n), and

this ray does not depend on k. �

2. On hyperelliptic loci

In the following, we collect some well-known facts about classes of hyperelliptic
loci which we will use later. For g ≥ 2 and 0≤ n ≤ 2g+ 2, let

Hypg,n := {[C, p1, . . . , pn] ∈Mg,n | C is hyperelliptic

and h0(C,OC(2pi ))≥ 2, for i = 1, . . . , n}

be the locus of hyperelliptic curves of genus g with n marked Weierstrass points. The
locus Hypg,n has codimension g−2+n in the moduli space Mg,n of smooth curves
of genus g with n marked points. The class of the closure Hypg,n is tautological
on the moduli of stable curves Mg,n [Faber and Pandharipande 2005].

Let Mrt
g,n be the moduli space of curves with rational tails. From [Faber and Pand-

haripande 2005] or [Graber and Vakil 2005], the tautological group Rg−2+n(Mrt
g,n)

is one-dimensional. When n= 0, Rg−2(Mg) is one-dimensional and is generated by
the class of the hyperelliptic locus Hypg, or equivalently the class κg−2 [Looijenga
1995; Faber 1999]. Let Hyprt

g,n be the restriction of Hypg,n to Mrt
g,n . Since the
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pushforward of [Hyprt
g,n] via the natural map Mrt

g,n→Mg is a positive multiple of
[Hypg], it follows that [Hyprt

g,n] is nonzero and generates Rg−2+n(Mrt
g,n).

Equivalently, Rg−2+n(Mrt
g,n) is generated by the decorated class δg,ψg−1 defined

in the following way. Consider the gluing map

ξ :Mg,1→Mg,n

obtained by attaching a chain of n− 1 rational components at the marked point of
an element in Mg,1. We fix the markings in an increasing order, from the inner
rational component to the outer one. From the rational equivalence of points in
M0,n+1, the classes of the loci obtained by permuting the markings on the image
of ξ are all rationally equivalent. The class δg,ψg−1 is defined as the pushforward of
the class ψg−1 in Rg−1(Mg,1) via the map ξ .

Let π :Mg,1→Mg and πn :Mg,n→Mg,n−1 be the natural maps. Note that
(πn)∗δg,ψg−1 = δg,ψg−1 in Rg−2+n−1(Mg,n−1) for n ≥ 3, and (π2)∗δg,ψg−1 = ψg−1.
Since κg−2 := π∗(ψ

g−1) is nonzero in Rg−2(Mg), we conclude δg,ψg−1 is nonzero
in Rg−2+n(Mrt

g,n).

Example. In the case g = 2, for 2≤ n ≤ 6 we have

[Hyprt
2,n] =

6!
2·(6−n)!

δ2,ψ ∈ Rn(Mrt
2,n).

Indeed, let us write [Hyprt
2,n] = αδ2,ψ in Rn(Mrt

2,n). In order to determine the coeffi-
cient α, we intersect both sides of the equation with a test space. Let C be a smooth
curve of genus 2, and let C[n] be the n-th Fulton–MacPherson compactification of
the space of n distinct points of C [Fulton and MacPherson 1994]. The natural map
C[n+ 1] → C[n] gives an n-dimensional family of genus-two curves with rational
tails. Weierstrass points on C are ramification points of the hyperelliptic double
covering. Analyzing the Hurwitz space of admissible double coverings, it is easy to
see that the intersection [Hyprt

2,n]·C[n] corresponds to all ordered n-tuples of Weier-
strass points in C , and is transversal. We deduce that [Hyprt

2,n] ·C[n] = 6!/(6− n)!.
On the other hand, one has δ2,ψ ·C[n] = ψ · ξ∗(C[n])= ψ ·C[1] = 2, whence the
statement.

3. A recursive argument

Let N k(Mg,n) be the group of codimension-k cycles on Mg,n modulo numerical
equivalence. We denote by Effk(Mg,n) ⊂ N k(Mg,n) the cone of effective cycle
classes, and by REffk(Mg,n) ⊆ Effk(Mg,n) the subcone of effective tautological
classes (see [Faber and Pandharipande 2005] for tautological classes on Mg,n).

A cycle class E inside a cone K ⊂ N k(Mg,n) is called extremal in K if whenever
two cycle classes E1 and E2 in K are such that E = E1+ E2, then both E1 and
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E2 lie in the ray spanned by E . An effective cycle class E is called rigid if any
effective cycle with class m E is supported on the support of E .

Theorem 5. Given g ≥ 2, if [Hypg,2] is rigid and extremal in REffg(Mg,2), then
[Hypg,n] is rigid and extremal in REffg−2+n(Mg,n), for 3≤ n ≤ 2g+ 2.

Proof. Let n ≥ 3 and assume that the statement is true for Hypg,n−1. Suppose that

[Hypg,n] =
∑

i

ai [X i ], (1)

with ai > 0, X i irreducible, tautological, effective of codimension n, and [X i ] not
proportional to [Hypg,n], for all i .

Since Rg−2+n(Mrt
g,n) is generated by δg,ψg−1 (see Section 2), we can express the

class of each X i as
[X i ] = ciδg,ψg−1 + Bi ,

where ci is a nonnegative coefficient, and Bi is a (not necessarily effective) cycle
class in Rg−2+n(Mg,n) with Bi = 0 in Rg−2+n(Mrt

g,n). Let π j :Mg,n→Mg,n−1

be the map obtained by forgetting the point j . Applying (π j )∗ to (1), we have

(2g+ 2− (n− 1))[Hypg,n−1] =
∑

i

ai (π j )∗[X i ]. (2)

Pick a locus X i appearing on the right side of (1). Consider two cases. First,
suppose (π1)∗[X i ] = · · · = (πn)∗[X i ] = 0. Note that (π j )∗δg,ψg−1 = δg,ψg−1 in
Rg−2+n−1(Mrt

g,n−1), for all j = 1, . . . , n. Since Bi = 0 in Rg−2+n(Mrt
g,n), using

the exact sequence

Ag−2+n(Mg,n \Mrt
g,n)→ Ag−2+n(Mg,n)→ Ag−2+n(Mrt

g,n)→ 0,

we can assume that Bi is represented by a linear combination of cycle classes
supported in Mg,n \Mrt

g,n . An element in the support of such a cycle does not
have an irreducible and smooth component of genus g, hence (π j )∗Bi = 0 in
Ag−2+n−1(Mrt

g,n−1), for all j = 1, . . . , n. We deduce that ci = 0, that is, [X i ] = 0
in Rg−2+n(Mrt

g,n).
For the other case, suppose (π1)∗[X i ] is nonzero. Since the class [Hypg,n−1] is

rigid and extremal in REffg+n−3(Mg,n−1), from (2) we deduce that (π1)∗[X i ] is a
positive multiple of the class of Hypg,n−1 and, moreover, X i ⊂ (π1)

−1Hypg,n−1.
This implies that (π2)∗[X i ], . . . , (πn)∗[X i ] are also nonzero. It follows that X i is in
the intersection of all the (π j )

−1Hypg,n−1, for j = 1, . . . , n. In particular, any n−1
marked points in a general element of X i are distinct Weierstrass points. Hence, all
n marked points must be distinct Weierstrass points. (Note that n ≥ 3.) This forces
[X i ] to be a positive multiple of [Hypg,n], a contradiction.
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Finally, the above steps show that [X i ] = 0 in Rg−2+n(Mrt
g,n), for all i . This

yields a contradiction since [Hypg,n] 6= 0 in Rg−2+n(Mrt
g,n) (see Section 2), hence

[Hypg,n] is extremal in REffg−2+n(Mg,n).
Suppose that E := m[Hypg,n] is effective. Since

(π j )∗(E)= (2g− n+ 3)m[Hypg,n−1],

and since [Hypg,n−1] is rigid, (π j )∗(E) is supported on Hypg,n−1, for j = 1, . . . , n.
This implies that E is supported on the intersection of all the (π j )

−1Hypg,n−1, for
j = 1, . . . , n. We conclude that E is supported on Hypg,n and [Hypg,n] is rigid. �

Remark 6. The classes [Hyp3], [Hyp3,1], and [Hyp4] are known to be extremal
in Eff1(M3) [Rulla 2001], Eff2(M3,1), and Eff2(M4) [Chen and Coskun 2015], re-
spectively. It is natural to wonder whether [Hypg,n] is extremal in REffg−2+n(Mg,n),
for all g≥ 2 and 0≤ n≤ 2g+2. By Theorem 5, it is enough to study the cases n≤ 2.

4. Loci of Weierstrass points on curves of genus 2

In this section, we complete the proof of Theorem 1. It is enough to show that
[Hyp2,n] is rigid and extremal in REffn(M2,n), and to use the fact that for small val-
ues of n, REff∗(M2,n)= Eff∗(M2,n). Indeed, according to [Petersen and Tommasi
2014; Petersen 2016, Theorem 3.8], all even cohomology of M2,n is tautological
for n < 20. Note that the Betti numbers of M2,n for n ≤ 7 have been computed in
[Getzler 1998; Bergström 2009].

4.1. The classes for n = 1, 2. When n= 1, the class of the divisor Hyp2,1 in M2,1

is
[Hyp2,1] = 3ω− 1

10δirr−
6
5δ1 = 3ω− λ− δ1 ∈ Pic(M2,1) (3)

[Eisenbud and Harris 1987, Theorem 2.2], and [Hyp2,1] is rigid and extremal in
Eff1(M2,1) [Rulla 2001]. When n = 2, the class of the double ramification locus
Hyp2,2 in M2,2 is

[Hyp2,2] = 6ψ1 ·ψ2−
3
2(ψ

2
1 +ψ

2
2 )

−(ψ1+ψ2) ·
(21

10δ1:1+
3
5δ1:0+

1
20δirr

)
∈ A2(M2,2) (4)

and Hyp2,2 is not a complete intersection [Tarasca 2015]. Expressing products of
divisor classes in terms of decorated boundary strata classes, we have

[Hyp2,2] = 5δ2,w + 9δ11|+
5
8δ01|−

1
8(δ01|1+ δ01|2+ δ01|12)+ 2γ1:∅+

1
24δ00. (5)

Here, δ2,w is the class of the locus of curves with a rational tail containing both
marked points attached at a Weierstrass point on a component of genus 2; δ11| is the
class of the locus of curves whose general element has two elliptic tails attached at
a rational component containing both marked points; δ01|, δ01|1, δ01|2, δ01|12 are the
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classes of the loci of curves whose general element has an elliptic tail attached at a
nodal rational component with the points distributed in the following way: for the
class δ01| both marked points are on the rational component, for δ01|i the point i is
on the elliptic component and the other marked point is on the rational component,
and for δ01|12 both marked points are on the elliptic component; γ1:∅ is the class
of the locus of curves with an elliptic component meeting in two points a rational
component containing both marked points; and finally, δ00 is the class of the locus
whose general element is a rational curve with two nondisconnecting nodes.

In Section 4.2, we will use in a crucial way the expression in (5). In Section 5,
we will also use the following description. Let πi :M2,2 →M2,1 be the map
obtained by forgetting the point i , for i = 1, 2.

Lemma 7. The following equality holds in A2(M2,2):

π∗1 [Hyp2,1] ·π
∗

2 [Hyp2,1] = [Hyp2,2] + γ1:∅+ δ2,w.

In particular, π−1
1 (Hyp2,1)∩π

−1
2 (Hyp2,1) is the union of the supports of [Hyp2,2],

γ1:∅, and δ2,w.

Proof. The desired equality follows from (3) and (4). Since the supports of [Hyp2,2],
γ1:∅, and δ2,w are contained in π−1

i (Hyp2,1), for i = 1, 2, the statement follows. �

Note that
δ2,w = δ0:2 ·π

∗

1 [Hyp2,1] = δ0:2 · (3ω1− λ− δ1).

Hence, we can write

[Hyp2,2] = π
∗

1 (3ω2− λ− δ1) ·π
∗

2 (3ω1− λ− δ1)− δ0:2 · (3ω1− λ− δ1)− γ1:∅

= (3ω2− λ− δ1) · (3ω1− λ− δ1)− δ0:2 · (3ω1− λ− δ1)− γ1:∅. (6)

4.2. The extremality for n = 2. By Theorem 5, in order to show that [Hyp2,n] is
rigid and extremal in REffn(M2,n) for 2≤ n≤ 6, it is enough to show that [Hyp2,2]

is rigid and extremal in Eff2(M2,2).

Theorem 8. [Hyp2,2] is rigid and extremal in Eff2(M2,2).

Proof. Suppose that
[Hyp2,2] =

∑
i

ai [X i ], (7)

where ai > 0 and X i is an irreducible codimension-two effective cycle on M2,2

with [X i ] not proportional to [Hyp2,2], for all i . Let π j :M2,2→M2,1 be the map
forgetting the point j , for j = 1, 2, and π :M2,2→M2 be the map forgetting both
marked points. Applying (π j )∗ to (7), we obtain

5[Hyp2,1] =
∑

i

ai (π1)∗[X i ]. (8)
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Pick a locus X i appearing on the right side of (7). If (π1)∗[X i ] = (π2)∗[X i ] = 0,
then either X i is contained in the inverse image via π of a codimension-two effective
cycle on M2, or a general point of X i contains a smooth rational component with
two marked points and two singular points. Note that a codimension-two locus
in M2 is a curve, and the cone of effective curves in M2 is known to be spanned
by the two one-dimensional boundary strata. We deduce that [X i ] is in the cone
generated by the boundary strata classes δ01|, δ01|1, δ01|2, δ01|12, δ00, δ11|, and γ1:∅.

Suppose (π1)∗[X i ] is nonzero. Since [Hyp2,1] is rigid and extremal in Eff1(M2,1),
from (8) we deduce that X i ⊂ π

−1
1 (Hyp2,1). Hence, (π2)∗[X i ] is also nonzero,

and X i ⊂ π
−1
1 (Hyp2,1) ∩ π

−1
2 (Hyp2,1). From Lemma 7 we conclude that [X i ]

is supported on the locus of curves with a rational tail containing both marked
points attached at a Weierstrass point of a genus-two curve, hence [X i ] is a positive
multiple of δ2,w.

From (5), the class of Hyp2,2 lies outside the cone generated by δ2,w, δ01|, δ01|1,
δ01|2, δ01|12, δ00, δ11|, and γ1:∅. Indeed, the coefficient of δ01|1+ δ01|2 + δ01|12 is
negative. Hence [Hyp2,2] is extremal in Eff2(M2,2).

The rigidity of [Hyp2,2] follows from a similar argument. Suppose that for
some positive m, E := m[Hyp2,2] is effective. Since (π j )∗(E)= 5m[Hyp2,1] and
[Hyp2,1] is rigid, we have that (π j )∗(E) is supported on Hyp2,1, for j = 1, 2.
Hence, the support of E is in π−1

1 (Hyp2,1)∩π
−1
2 (Hyp2,1). From Lemma 7, E is

supported on the union of the loci Hyp2,2, 01:∅, and 12,w. Since E = m[Hyp2,2],
E is supported only on Hyp2,2, and the statement follows. �

5. The class of Hyp2,3

The aim of this section is to compute the class of Hyp2,3 in A3(M2,3). We first
discuss a recursive relation between the classes of a partial closure of Hyp2,n

and Hyp2,n−1.
Recall the map πi :Mg,n→Mg,n−1 obtained by forgetting the i-th marked point,

and the map ρi :Mg,n→Mg,1 obtained by forgetting all but the i-th marked point.

5.1. A recursive relation. Let Mo
g,n be the open locus in Mg,n of stable curves

with at most one nondisconnecting node. Let Hypo
g,n be the closure of Hypg,n

in Mo
g,n . For 2≤ n ≤ 6, we note the following identity in An(Mo

2,n):

π∗n (Hypo
2,n−1) · ρ

∗

n (Hyp2,1)≡Hypo
2,n +

n−1∑
i=1

π∗n (Hypo
2,n−1) · δ0:{i,n}. (9)

Indeed, the intersection on the left-hand side consists of genus-two curves with
a choice of n ordered Weierstrass points, the first n− 1 being distinct. The compo-
nent Hypo

2,n corresponds to curves with all n points distinct, and the component
π∗n (Hypo

2,n−1) · δ0:{i,n} corresponds to curves with the n-th point coinciding with
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the i-th point, for i = 1, . . . , n− 1. A Weierstrass point on a smooth hyperelliptic
curve of genus g has weight g(g− 1)/2. This explains the coefficient of Hypo

2,n .
Since the right-hand side is symmetric with respect to the first n− 1 points, it is
clear that all the components π∗n (Hypo

2,n−1) · δ0:{i,n} have equal multiplicity, which,
forgetting the point n, must equal 1.

Using (9), one can recursively express the class of Hypo
2,n in terms of products

of divisor classes. In the following, we derive a complete expression for the class
of Hyp2,3 in A3(M2,3).

5.2. A set-theoretic description. To extend (9) with n = 3 over M2,3, we need to
consider loci of curves with at least two nondisconnecting nodes. Let 4i be the
closure of the locus of curves with an elliptic component [E, pi , x, y] such that
2pi ∼ x + y, and a rational component containing the other two marked points
p j , pk , and meeting E at the points x, y. Let 2 be the closure of the locus of
curves whose general element has a rational component [R, p1, p2, p3, x, y] such
that 2p1 ∼ 2p2 ∼ x + y, and an elliptic component meeting R at the points x, y.

Proposition 9. We have

π∗3 (Hyp2,2)∩ ρ
∗

3 (Hyp2,1)

=Hyp2,3 ∪π
∗

3 (Hyp2,2)|10:{1,3} ∪π
∗

3 (Hyp2,2)|10:{2,3} ∪41 ∪42 ∪2.

Proof. The intersection

π∗3 (Hyp2,2)∩ ρ
∗

3 (Hyp2,1)

consists of stable curves [C, p1, p2, p3] with three marked Weierstrass points and
with p1 and p2 corresponding to two different Weierstrass points. If the three points
correspond to three different Weierstrass points, then [C, p1, p2, p3] is in Hyp2,3.
If p3 and p1 correspond to the same Weierstrass point, then [C, p1, p2, p3] is in
the restriction of π∗3 (Hyp2,2) to 10:{1,3}. The case when p3 and p2 correspond
to the same Weierstrass point is similar. Finally, restricting the intersection to
the codimension-two boundary strata and using admissible covers to describe
Weierstrass points on singular curves, we deduce that 41, 42, and 2 are the only
additional components contained in the intersection, hence the statement. �

5.3. The multiplicities. Since the left-hand side of the expression in Proposition 9
is symmetric with respect to the first two marked points, we conclude that the
contributions of π∗3 [Hyp2,2] · δ0:{1,3} and π∗3 [Hyp2,2] · δ0:{2,3} on the right-hand side
are equal. Similarly for 41 and 42. Hence we have, for some coefficients α, β, γ, δ,

π∗3 [Hyp2,2] · ρ
∗

3 [Hyp2,1]

= α[Hyp2,3] +β(δ0:{1,3}+ δ0:{2,3}) ·π
∗

3 [Hyp2,2] + γ ([41] + [42])+ δ[2]. (10)
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F
1

2
3

Figure 1. How the general element of the family moves.

Forgetting the first marked point in (10), the left-hand side is

5(π∗1 [Hyp2,1] ·π
∗

2 [Hyp2,1])= 5([Hyp2,2] + γ1:∅+ δ2,w)

by Lemma 7, hence we have

5([Hyp2,2] + γ1:∅+ δ2,w)= (4α+β)[Hyp2,2] + (4γ + δ)γ1:∅+ 5βδ2,w.

We deduce α = β = 1 and 4γ + δ = 5.
In order to compute γ and δ, we consider the restriction of (10) to the following

three-dimensional test family. Attach at two points of an elliptic curve E a rational
tail containing the points marked by 2 and 3, and an elliptic tail F containing
the point marked by 1. Consider the family obtained by varying E in a pencil of
degree 12, by varying the point of intersection with the rational tail on the central
elliptic component in which it lies, and by varying the point marked by 1 on F (see
Figure 1). The base of this family is Y × F , where Y is the blow-up of P2 at the
nine points of intersection of two general cubics.

Let H be the pullback of the hyperplane class in P2, let 6 be the sum of the
nine exceptional divisors, and let E0 be one of them. Denote by π : Y × F→ F
the natural projection, and let q = E ∩ F be the singular point on F . The divisor
classes on M2,3 restrict as follows:

ψ1 = π
∗(q),

δirr = 36H − 126 = 12λ,

δ0:{2,3} =−3H +6− E0,

δ1:{1} =−3H +6− E0−π
∗(q),

δ1:0 = E0+π
∗(q).

From (3) and (4), it follows that

ρ∗3 [Hyp2,1] ·π
∗

3 [Hyp2,2] = −
(
3δ0:{2,3}+

1
10δirr+

6
5(δ1:{1}+ δ1:0)

)
·
(
−6ψ1 · δ0:{2,3}−

3
2δ

2
0:{2,3}− (ψ1− δ0:{2,3}) ·

( 21
10δ1:{1}+

3
5δ1:0+

1
20δirr

))
= 27,
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and similarly,
π∗3 [Hyp2,2] · δ0:{2,3} =−9.

Note that this family meets 41 when E degenerates to one of the 12 rational nodal
fibers, the rational tail is attached at a point colliding with the nondisconnecting
node, and the point marked by 1 differs from q in F by a nontrivial torsion point of
order 2 in Pic0(F). The intersection is transverse at each point, hence we have

41 = 12 · 3.

All other classes in (10) are disjoint from this family. We deduce the relation

27=−9β + 36γ,

and hence conclude that α = β = γ = δ = 1. We have thus proved the following
statement.

Proposition 10. One has

[Hyp2,3] = π
∗

3 [Hyp2,2] · (ρ
∗

3 [Hyp2,1] − δ0:{1,3}− δ0:{2,3})− [41] − [42] − [2].

5.4. The boundary components. It remains to compute the classes of 41, 42,
and 2. Recall the classes γ1:J defined in the introduction.

Lemma 11. The following equalities hold in A3(M2,3):

[4i ] = (2ψi − δ1:{i}) · γ1:{i} for i = 1, 2,

[2] = γ1:∅ · (ψ1− δ0:{1,3})= γ1:∅ · (ψ2− δ0:{2,3}).

Proof. Consider the divisor Di of curves [E, pi , x, y] in M1,3 such that 2pi ∼ x+ y.
From [Belorousski and Pandharipande 2000, §2.6] or [Chen and Coskun 2014,
Proposition 3.1], one has [Di ] = 2ψi − δ1:{i} in Pic(M1,3). The locus 4i is the
pushforward of Di ×M0,4 ⊂M1,3×M0,4 via the natural map

M1,3×M0,4→ 01:{i} ⊂M2,3.

Similarly, consider the map ξ :M1,2×M0,5→ 01:∅ ⊂M2,3 defined as

([E, x1, y1], [R, p1, p2, p3, x2, y2]) 7→ [E ∪x1∼x2,y1∼y2 R, p1, p2, p3].

The locus2 is the pushforward via ξ of the locus M1,2×π
∗

3 (point)⊂M1,2×M0,5,
where π3 :M0,5 →M0,4 is the map obtained by forgetting the point p3. The
statement follows. �

From (3), (6), and Lemma 11, the resulting expression in Proposition 10 gives
the statement in Theorem 2.
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