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Effective cones of cycles
on blowups of projective space

Izzet Coskun, John Lesieutre and John Christian Ottem

In this paper we study the cones of higher codimension (pseudo)effective cycles
on point blowups of projective space. We determine bounds on the number of
points for which these cones are generated by the classes of linear cycles and
for which these cones are finitely generated. Surprisingly, we discover that for
(very) general points the higher codimension cones behave better than the cones
of divisors. For example, for the blowup Xn

r of Pn , n > 4 at r very general points,
the cone of divisors is not finitely generated as soon as r > n+ 3, whereas the
cone of curves is generated by the classes of lines if r ≤ 2n . In fact, if Xn

r is a Mori
dream space then all the effective cones of cycles on Xn

r are finitely generated.

1. Introduction

In recent years, the theory of cones of cycles of higher codimension has been the
subject of increasing attention [Chen and Coskun 2015; Debarre et al. 2011; 2013;
Fulger and Lehmann 2014a; 2014b]. However, these cones have been computed
only for a very small number of examples, mainly because the current theory is
hard to apply in practice. The goal of this paper is to provide some much-needed
examples.

Let 0 be a set of r distinct points on Pn . Let Xn
0 denote the blowup of Pn

along 0. When 0 is a set of r very general points, we denote Xn
0 by Xn

r . For a
smooth variety Y , we write Eff

k
(Y ) for the pseudoeffective cone of codimension-k

cycles on Y , and Effk(Y ) for the pseudoeffective cone of dimension-k cycles. In
this paper, we study the cones Effk

(
Xn
0

)
when the points of 0 are either in linearly

general or very general position. We also investigate the cones when 0 contains
points in certain special configurations.
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Cones of positive divisors on Xn
0 provide an important source of examples in

the study of positivity. These cones are particularly attractive since they have
concrete interpretations in terms of subvarieties of projective space, yet still have
very complicated structure. However, even the cones of divisors on blowups of
P2 at 10 or more points are far from well-understood, and several basic questions
remain open, including the Nagata conjecture [1959] and the Segre–Harbourne–
Gimigliano–Hirschowitz (SHGH) conjecture [Gimigliano 1987; Harbourne 1986;
Hirschowitz 1989]. We expect the cones of higher codimension cycles on Xn

0 to be
an equally rich source of examples.

Surprisingly, these cones are simpler than one might expect. Effective cones of
low-dimensional cycles are generated by the classes of linear spaces for r well into
the range for which Xn

r ceases to be a Mori dream space. For example, Eff1
(
Xn

r
)

is generated by classes of lines for r ≤ 2n even though Eff
1(

Xn
r
)

is not finitely
generated for r ≥ n+ 4 when n ≥ 5. We now describe our results in greater detail.

Definition 1.1. We say that Effk
(
Xn
0

)
is linearly generated if it is the cone spanned

by the classes of k-dimensional linear spaces in the exceptional divisors and the strict
transforms of k-dimensional linear subspaces of Pn , possibly passing through the
points of 0. We say Effk

(
Xn
0

)
is finitely generated if it is a rational polyhedral cone.

Theorem 3.1. Let 0 be a set of r points in Pn in linearly general position. If
r ≤max(n+ 2, n+ n/k), then Effk

(
Xn
0

)
is linearly generated.

There exist configurations of 2n+ 2− k points in linearly general position in Pn

for which Effk
(
Xn
0

)
is not linearly generated (see Example 3.4). In particular,

Theorem 3.1 is sharp for 1-cycles. We expect that this bound can be improved to
r ≤ 2n+ 1− k, and prove this in the case that 0 is a very general configuration of
points (Theorem 4.5). We obtain the following consequence.

Corollary 4.7. If Xn
r is a Mori dream space, then Effk

(
Xn

r
)

is finitely generated.

In general, Mori dream spaces may have effective cones of intermediate dimen-
sional cycles which are not finitely generated; the corollary shows that this does not
happen for blowups of Pn . A good example is [Debarre et al. 2011, Example 6.10],
attributed to Tschinkel. Let Xb be the blowup of P4 along a smooth quartic K3
surface Yb ⊂ P3

⊂ P4. Then Xb is Fano, hence, by [Birkar et al. 2010], a Mori
dream space. On the other hand, Eff2(Xb) has infinitely many extremal rays when
Eff1(Yb) does. Quartic K3 surfaces may have infinitely many (−2)-curves or even
a round cone of curves. This example also shows that the property of having finitely
generated higher codimension cones can fail countably many times in a family.

The bounds can be exponentially improved (at least for 1-cycles) if we assume
that 0 is a set of very general points.

Proposition 4.1. The cone Eff1
(
Xn

r
)

is linearly generated if and only if r ≤ 2n .
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As a consequence of Proposition 4.1, we conclude that Effk
(
Xn

r
)

is not linearly
generated if r ≥ 2n−k+1

+k (Corollary 4.2). This specializes to the fact that the cone
of divisors of Xn

r is not linearly generated as soon as r > n+ 2 (see Theorem 2.7).
Mukai [2004] shows that the cone of divisors of Xn

r is not finitely generated if
r ≥ n+ 4 and n ≥ 5 (one needs r ≥ 9 for n = 2 or 4, and r ≥ 8 for n = 3). Mukai
explicitly constructs infinitely many extremal divisors on Eff

1(
Xn

r
)

as the orbit
of one of the exceptional divisors under the action of Cremona transformations.
However, in higher codimensions it is more difficult to prove that the corresponding
cones become infinite.

Many questions about cones of higher codimension cycles appear to be intractable,
quickly reducing to difficult questions about cones of divisors. For example, the
interesting part of the cone of curves of P3 blown up at 9 points is given by curves
lying on the unique quadric Q through the 9 points. The blowup of Q is isomorphic
to the blowup of P2 at 10 points, and the curves which are extremal on X3

9 are
certain KQ-positive ones contained in Q. Hence understanding Eff1

(
X3

9

)
requires

understanding the KX2
10
-positive part of Eff1

(
X2

10

)
, running immediately into the

SHGH conjecture (see Conjecture 5.1). We are able to show this nonfiniteness only
for cones of codimension-2 cycles, and then assuming the SHGH conjecture on the
cone of curves of P2 blown up at 10 points.

Corollary 5.7. Assume the SHGH conjecture holds for blowups of P2 at 10 points,
then Eff

2(
Xn

r
)

is not finitely generated if r ≥ n+ 6 and n ≥ 3.

Finally, in the last section, we compute Effk
(
Xn
0

)
when 0 is a set of points in

certain special positions. Using these computations, we show that linear and finite
generation of Effk

(
Xn
0

)
are neither open nor closed in families (see Corollaries 6.6

and 6.7). This generalizes analogous jumping behavior exhibited for divisors and
Mori dream spaces to all codimensions.

The organization of the paper. In Section 2, we collect basic facts concerning the
cohomology of Xn

0 , cones of divisors, the action of Cremona transformations, and
some preliminary lemmas. In Section 3, we prove Theorem 3.1 and study the linear
generation of the cones Effk

(
Xn
0

)
when 0 is a linearly general set of points. In

Section 4, we study the linear generation of the cones Effk
(
Xn

r
)
. In Section 5, we

prove that Eff
2(

Xn
r
)

is not finitely generated for r ≥ n + 6 assuming the SHGH
conjecture. In Section 6, we discuss the cones Xn

0 when 0 contains points in certain
special configurations and study the variation of Effk

(
Xn
0

)
in families.

2. Preliminaries

In this section, we recall basic facts about the cohomology of Xn
0 and cones of

codimension-1 cycles. We will work over the complex numbers C.
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The cohomology of Xn
0. Let 0 be a set of r points p1, . . . , pr in Pn , and let

π : Xn
0 = Bl0 Pn

→ Pn

denote the blowup of Pn along 0. Let H denote the pullback of the hyperplane
class and let Ei denote the class of the exceptional divisor over pi . The exceptional
divisor Ei is isomorphic to Pn−1 and OEi (Ei ) ∼= OPn−1(−1). Consequently, we
have the following intersection formulas:

H n
= (−1)n−1 En

i = 1, H · Ei = 0, Ei · E j = 0, i 6= j.

Notation 2.1. In order to simplify notation, we make the convention that Hk is the
class of a k-dimensional linear space in Pn and Ei,k is the class of a k-dimensional
linear space contained in the exceptional divisor Ei . We then have the relations

H n−k
= Hk, (−1)n−k+1 En−k

i = Ei,k, Ei · Ei,k =−Ei,k−1.

On Xn
0 homological, numerical, and rational equivalence coincide. For 0< k< n,

we write Nk
(
Xn
0

)
for the R-vector space of k-dimensional cycles on Xn

0, modulo
numerical equivalence. Dually, N k

(
Xn
0

)
denotes the space of codimension-k cycles

modulo numerical equivalence. They are both (r+1)-dimensional vector spaces.
A class in Nk

(
Xn
0

)
is said to be pseudoeffective if it is the limit of classes

of effective cycles. We write Effk
(
Xn
0

)
for the closed convex cone in Nk

(
Xn
0

)
containing pseudoeffective classes. If V is an (irreducible) k-dimensional subvariety
of Xn

0 , we write [V ] for the class of V in Nk
(
Xn
0

)
, although when confusion seems

unlikely we omit the brackets.
A set of points in Pn is said to be linearly general if no k+2 points are contained

in a linear subspace Pk
⊂ Pn for 1≤ k ≤ n− 1. A claim holds for a very general

configuration of points if it holds for all points in the complement of a countable
union of proper configurations of points.

Convention 2.2. It is occasionally useful to compare the cones Effk
(
Xn
0

)
and

Effk
(
Xm
1

)
, where Xn

0 and Xm
1 are the blowups of Pn and Pm along sets of points

0 and 1, respectively. If n > k, we can identify Nk
(
Xn
0

)
with the abstract vector

space spanned by Hk and Ei,k for 1≤ i ≤ r , irrespective of n and 0 provided that
0 has cardinality r . We can thus view the cones Effk

(
Xn
0

)
as cones in the same

abstract vector space and compare the effective cones of different blowups after
this identification. In the rest of the paper, we will do so without further comment.

We will often use the following easy lemma implicitly.

Lemma 2.3. Let Y ⊂ Xn
0 be a k-dimensional subvariety:

(1) If Y ⊂ Ei for some 1≤ i ≤ r , then [Y ] = bi Ei,k for bi > 0.

(2) Otherwise, [Y ] = aHk −
∑r

i=1 bi Ei,k with a ≥ bi ≥ 0. The coefficient bi is
equal to the multiplicity of π(Y ) in Pn at the point pi .
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Proof. If Y ⊂ Ei , then Y is a subvariety of Ei ∼= Pn−1. Hence its class is a positive
multiple of the class of a k-dimensional linear space. The linear system H − Ei

defines the projection from the point pi and is a basepoint-free linear system. Hence
the intersection of k general members of H − Ei with Y is either empty or finitely
many points. Therefore, (H − Ei )

k
· [Y ] = a− bi ≥ 0. Similarly, the intersection

Y ∩ Ei is a (possibly empty) effective cycle of dimension k − 1 contained in Ei .
Hence by the first part of the lemma, bi ≥ 0. That bi in fact coincides with the
multiplicity is [Fulton 1998, Corollary 6.7.1]. �

The cones Effk
(
Xn
0

)
satisfy a basic semicontinuity property under specialization.

Lemma 2.4. Suppose that V ⊂ Pn
× T is a closed subvariety, flat over T , with

fibers of dimension k, and let p : T → Pn be a section. Then multp(t)(Vt) is an
upper semicontinuous function on T .

Proof. It suffices to prove this in the case that T has dimension 1. Let π :Y→Pn
×T

be the blowup along p(T ), with exceptional divisor E , and let Ṽ be the strict
transform of V on Y . Since Ṽ is irreducible and dominates T , this family is flat.
The intersection of a flat family of cycles with a Cartier divisor is constant in t
[Fulton 1998, Proposition 10.2.1], and so (−1)k+1 Ek

· Ṽt is independent of t .
The general fiber Ṽt is irreducible, but a special fiber Ṽ0 may have additional

components in the exceptional divisor E0. Write Ṽ0 = V 0
∪
⋃

i Wi , where the Wi

are contained in E0. Then (−1)k+1 Ek
· V 0
=multp(0) V0. The class (−1)k+1 Ek

0 is
a linear space in E0, and so (−1)k+1 Ek

0 ·Wi ≥ 0. This shows that multp(0) V0 ≥

(−1)k+1 Ek
· Ṽt =multp(t) Vt , and so the multiplicity is upper semicontinuous. �

Corollary 2.5. Let 0 be a configuration of r distinct points on Pn . Then

Effk
(
Xn

r
)
⊆ Effk

(
Xn
0

)
.

Proof. Let 0t be a very general one-parameter family of configurations of points
in Pn with 00 = 0. If a k-cycle class W is effective for very general T , then by
a Hilbert scheme argument there exists a flat family Vt ⊂ Bl0t Pn over T with
[Vt ] =W for general T . Since the multiplicity of Wt can only increase at t = 0 by
Lemma 2.4, the class W is also effective on X0. �

Cones. Taking cones will be a useful method to generate interesting cycles. Let 0′

be a very general configuration of r + 1 points p′0, . . . , p′r in Pn+1. The projection
of the points p′1, . . . , p′r from p′0 is then a set 0 of r very general points p1, . . . , pr

in Pn . Suppose that V is a k-cycle on Xn
0 , with class aHk−

∑r
i=1 bi Ei,k . The image

of V in Pn has degree a and multiplicity bi at the points of 0. We may form the
cone CV over V inside Pn+1 with vertex at p′0. This is a (k+1)-dimensional variety
of degree a. It has multiplicity a at the cone point and multiplicity bi along the
lines spanned by pi and p′i for 1≤ i ≤ r . In particular, the cycle CV has degree a
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and multiplicities a, b1, . . . , br at the points of 0′. Its proper transform has class
aHk+1− aE0,k+1−

∑r
i=1 bi Ei,k+1.

We define a map C : Nk
(
Xn

r
)
→ Nk+1

(
Xn+1

r+1

)
by C(Hk) = Hk+1− E0,k+1 and

C(Ei,k)= Ei,k+1. With this definition, C([V ]) is the class of the cone over V with
vertex p′0, and so C

(
Effk

(
Xn

r
))
⊆ Effk+1

(
Xn+1

r+1

)
with respect to the identification

discussed in Convention 2.2.
The following computation of a dual cone will be useful on a number of occasions.

Lemma 2.6. Suppose that v= (a,−b1, . . . ,−br ) ∈ Zr+1 is a vector satisfying
(1) a, bi ≥ 0,

(2) a ≥ bi for every i ,

(3) na ≥
∑r

i=1 bi .

Then v is a positive linear combination of the vectors ei , for 1 ≤ i ≤ r , and
h I = e0−

∑
i∈I ei with |I | ≤ n. When r ≥ n, we may assume each term has |I | = n.

Proof. Note first that the vectors h I = e0−
∑

i∈I ei with |I |< n are positive linear
combinations of the given vectors. We now proceed by induction on a. The case
a = 1 is clear since by (2) a ≥ bi for each i , each bi is either 0 or 1. By (3) there
are at most n nonzero bi , and the vector is of the form claimed.

Suppose that a > 1. Let J be the set of indices i such that bi > 0, and let
j =min(n, |J |). Let I be a set of j indices {i1, . . . , i j } such that bi1 ≥ · · ·≥ bi j ≥ bi

for any i 6∈ I . Then the vector h I is a nonnegative linear combination of the given
vectors. Set v′ = (a′,−b′1, . . . ,−b′r )= v− h I . If j ≥ n, then v′ still satisfies all of
the inequalities in question since a′ = a−1 and

∑
b′i =

∑
bi −n. If j < n, then in

view of inequality (2), the inequality (3) can be improved to ja ≥
∑r

i=1 bi . Then v′

satisfies these improved inequalities. This completes the proof by induction on a. �

Lemma 2.6 implies that the cone Effk
(
Xn

r
)

is linearly generated if and only if
the class (k+ 1)Hn−k −

∑r
i=1 Ei,n−k is nef.

The codimension-1 cones and Cremona actions. We are primarily interested in
the question of when the cones of cycles on Xn

0 are linearly or finitely generated.
For cones of divisors, the answers to these questions were worked out by Castravet
and Tevelev [2006] and Mukai [2004].

Theorem 2.7 [Castravet and Tevelev 2006; Mukai 2004]. Let 0 be a set of r very
general points in Pn . The cone Eff

1(
Xn
0

)
is linearly generated if and only if r ≤n+2,

and finitely generated if and only if
(1) n = 2 and r ≤ 8,

(2) n = 3 and r ≤ 7,

(3) n = 4 and r ≤ 8,

(4) n ≥ 5 and r ≤ n+ 3.
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The characterization of cases when the effective cone of divisors is finitely
generated is based on the study of the action of Cremona transformations on the
pseudoeffective cone. The Coxeter group W corresponding to a T-shaped Dynkin
diagram of type T2,n+1,r−n−1 acts on N 1

(
Xn
0

)
and preserves the pseudoeffective

cone Eff
1(

Xn
0

)
. This is an infinite group if 1

2 +
1

n+1 +
1

r−n−1 < 1, which happens as
soon as n ≥ 5 and r ≥ n+ 4. (When n = 2 or 4, we need r ≥ 9; while when n = 3,
we require r ≥ 8). The orbit of a single exceptional divisor class gives an infinite
set of divisors spanning other extremal rays. For details on this group action, we
refer to [Dolgachev 2011] (see also [Coble 1982]).

Unfortunately, there does not seem to be a simple way to use the Cremona
action to understand cones of cycles of higher codimension. The standard Cremona
involution acts on Xn

r by a map with codimension 2 indeterminacy, so it does not
define an action preserving the cone Eff

k(
Xn

r
)

for any k > 1. For example, suppose
that L is a line through two blown up points. The class of L defines an extremal ray
on Eff1

(
Xn

r
)
. The strict transform of L under a Cremona transformation centered

at n+ 1 other points is a rational normal curve in Pn passing through n+ 3 points.
If n ≥ 3, this is no longer an extremal ray on Eff1

(
Xn

r
)
, since it is in the interior of

the subcone generated by classes of lines through 2 of the n+ 3 points.
One might attempt to construct interesting codimension-2 cycles on X r

n by
taking the intersections of a fixed divisor with an infinite sequence of (−1)-divisors
(i.e., divisors in the orbit of Ei under the action of W ) of increasing degree. However,
the next lemma shows that the intersection of a (−1)-divisor with any other effective
divisor on Xn

r is in the span of the classes of codimension-2 linear cycles.

Lemma 2.8. Suppose that D1 is a (−1)-divisor and that D2 is an irreducible effec-
tive divisor distinct from D1. Then [D1∩ D2] is in the span of linear codimension-2
cycles.

Proof. Consider the pairing on N 1
(
Xn

r
)

defined by (H, H)= n− 1, (H, Ei )= 0,
(Ei , Ei )=−1, and (Ei , E j )= 0 if i 6= j . This pairing is invariant under the action
of W on N 1

(
Xn

r
)

[Mukai 2004; Dolgachev 2011].
We first show that (D1, D2) ≥ 0. Since the pairing ( , ) is invariant under the

action of W on N 1
(
Xn

r
)
, we may apply a suitable element of W and assume that

D1 = E1 is an exceptional divisor. If D2 = E j is an exceptional divisor different
from E1, then (D1, D2)= 0. Otherwise, [D2] = aH −

∑r
i=1 bi Ei , with bi ≥ 0, in

which case (D1, D2)= bi ≥ 0.
For the second part, write D1 = aH −

∑r
i=1 bi Ei and D2 = cH −

∑r
i=1 di Ei .

That (D1, D2)≥ 0 yields

(n− 1)ac ≥
r∑

i=1

bi di .
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By Lemma 2.6, this means that the codimension-2 cycle [D1 ∩ D2] = acH −∑r
i=1 bi di is contained in the span of linear cycles. �

Easy lemmas. Here we collect a couple of geometric lemmas that we will use
repeatedly.

Lemma 2.9. Suppose that E is an effective divisor and that P is a nef divisor. If Y
is an irreducible, effective variety of dimension k which is not contained in E , then
Pk−1

· E · Y ≥ 0.

Proof. The intersection E · Y is a (possibly empty) cycle of dimension k − 1 by
assumption. Since P is nef, it follows that Pk−1

· E · Y ≥ 0. �

Lemma 2.10. Let Y ⊂ Xn
0 be an irreducible variety of dimension k, not contained

in any exceptional divisor Ei , with class aHk −
∑e

i=1 bi Ei,k . If bi + b j > a for two
indices i 6= j , then Y contains the line through pi and p j with multiplicity at least
bi + b j − a.

Proof. The base locus of the linear system |H − Ei − E j | is the line li, j spanned
by pi and p j . Consequently, the intersection (H − Ei − E j )

k−1
· Y is an effective

1-cycle Z . Express
Z = αli, j + u,

where u is a 1-cycle not containing li, j . Since

−α ≤ (H − Ei − E j ) · Z = a− bi − b j < 0,

we conclude that α≥ bi+b j−a. Hence Y must have multiplicity at least bi+b j−a
at every point of li, j . �

3. Points in linearly general position

In this section, we study Effk
(
Xn
0

)
when the cardinality of 0 is small and the points

of 0 are in linearly general position. Our main theorem is the following.

Theorem 3.1. Let 0 be a set of r points in Pn in linearly general position. If

r ≤max
(

n+ 2, n+ n
k

)
,

then Effk
(
Xn
0

)
is linearly generated.

The proof will be by induction on k and n. We first single out the case k = 1.

Lemma 3.2. Let 0 be a set of r ≤ 2n points in Pn in linearly general position. Then
Eff1

(
Xn
0

)
is linearly generated.
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Proof. Let B be an irreducible curve. By Lemma 2.3, we may assume that B is
not contained in any of the exceptional divisors and has class aH1−

∑r
i=1 bi Ei,1

with a ≥ bi ≥ 0. Any r ≤ 2n points in linearly general position are cut out by
quadrics [Harris 1995, Lecture 1]. Consequently, there is a quadric whose proper
transform has class [Q] = 2H −

∑r
i=1 Ei in Xn

0 and does not contain B. Hence B
has nonnegative intersection with Q and satisfies 2a ≥

∑r
i=1 bi . By Lemma 2.6,

the class of B is spanned by the classes of lines. �

Next, we study the case when r ≤ n+1. In this case, Xn
0 is toric and the effective

cones are generated by torus-invariant cycles (see e.g., [Li 2015, Proposition 3.1]).
For the reader’s convenience we will give a simple independent proof.

Lemma 3.3. Let 0 be a set of r ≤ n+ 1 linearly general points in Pn . The cone
Effk

(
Xn
0

)
is linearly generated for any k.

Proof. Let 0′ ⊂ 0 be two sets with cardinality r and n + 1, respectively. Then
the proper transform of any effective cycle in Xn

0′ is an effective cycle in Xn
0.

Consequently, if Effk
(
Xn
0

)
is linearly generated, then Effk

(
Xn
0′

)
is also linearly

generated. Hence, without loss of generality, we may assume that r = n+ 1. Let Y
be an irreducible k-dimensional variety in Xn

0 with class

[Y ] = aHk −

n+1∑
i=1

bi Ei,k .

By Lemma 2.3, we may assume that Y is not contained in an exceptional divisor
and that a ≥ bi ≥ 0. We proceed by induction on k and n. After reordering the
points, we may assume b1 ≥ b2 ≥ · · · ≥ bn+1. Let L be the proper transform of
the Pn−1 spanned by the first n points. First, suppose Y is contained in L . Since
L is isomorphic to the blowup of Pn−1 in n points, by induction on n with base
case Theorem 2.7, we conclude that the class of Y is in the span of linear spaces.
Otherwise, Y ∩ L is an effective cycle of dimension k− 1 in L . Write HL ,k−1 and
EL ,i,k−1 for the restriction of Hk to L and the (k−1)-dimensional linear space in
the exceptional divisor EL ,i of the blowup of L at pi . Then we have

[Y ∩ L] = aHL ,k−1−

n∑
i=1

b′i EL ,i,k−1,

with b′i ≥bi . By induction on n with base case Lemma 3.2, Y∩L is in the span of lin-
ear spaces. In particular, ka ≥

∑n
i=1 b′i . Hence (k+1)a ≥

∑n+1
i=1 bi . By Lemma 2.6,

the class of Y is in the span of linear spaces. This concludes the proof. �

We can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We preserve the notation from the proof of Lemma 3.3 and
argue similarly. It suffices to check the result in the case r =max(n+ 2, n+ n/k).



1992 Izzet Coskun, John Lesieutre and John Christian Ottem

Suppose that Y is an irreducible k-dimensional variety on Xn
0 with class

[Y ] = aHk −

r∑
i=1

bi Ei,k .

We may assume that Y is not contained in an exceptional divisor and, by reordering
the points, we have that

a ≥ b1 ≥ · · · ≥ br ≥ 0.

Let L be the Pn−1 passing through the points p1, . . . , pn . If Y is contained in L ,
then its class is linearly generated by Lemma 3.3. Otherwise, Y ∩ L is an effective
cycle of dimension k− 1 with class

[Y ∩ L] = aHL ,k−1−

n∑
i=1

b′i EL ,i,k−1,

with b′i ≥ bi . This class and hence aHL ,k−1−
∑n

i=1 bi EL ,i,k−1 is linearly generated
by Lemma 3.3. Therefore, it can be written as a combination of linear classes
HL ,k−1−

∑
|I |=k EL ,i,k−1 and EL ,i,k−1,

a∑
j=1

α j

(
HL ,k−1−

∑
|I |=k

EL ,i,k−1

)
+

n∑
j=1

β j EL , j,k−1.

Each of the classes in this sum is effective, with those on the left the classes of
Pk−1 through k of the points in L . By taking cones over these classes, we obtain a
Pk on X , passing through an additional one of the points pi with i > n. Since there
are a planes available, if

∑r
i=n+1 bi ≤ a, the class Y can be expressed as a sum of

linear cycles.
Observe that

ak ≥
n∑

i=1

bi ≥ nbn, and so b j ≤ bn ≤
ak
n

for j ≥ n.

This implies that if (r −n)k/n ≤ 1 or equivalently if r ≤ n+n/k, the classes of all
effective cycles are in the span of the classes of linear spaces.

If k ≤ n/2, then n+ 2 ≤ n+ n/k and the theorem is proved. If k > n/2, then
n+1< n+n/k < n+2 and we need to settle the case r = n+2. There is a rational
normal curve through any n+ 3 points in linearly general position in Pn [Harris
1995, Lecture 1]. Consequently, given an effective divisor D, there exists a rational
normal curve C containing the points but not contained in D. Hence C · D ≥ 0 and
all effective divisors satisfy na ≥

∑n+2
i=1 bi . We recover the linear generation result

of Theorem 2.7. By Lemma 3.2, the curve classes are also linearly generated. By
induction assume that for all m < n and all k < m, the effective cone of k cycles
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of the blowup of Pm in m + 2 linearly general points is linearly generated. We
carry out the inductive step for Pn . Let Y, L be as above. By Lemma 3.3, we may
assume that Y is not contained in L . If bn+1+ bn+2 ≤ a, then we already proved
that the class of Y is linearly generated. If bn+1+ bn+2 > a, then, by Lemma 2.10,
Y contains the line ln+1,n+2 spanned by pn+1 and pn+2 with multiplicity at least
bn+1 + bn+2 − a. Let p0 denote the point of intersection L ∩ ln+1,n+2. Then the
proper transform of L∩Y is an effective cycle in the blowup of L in p0, p1, . . . , pn

with class

aHL ,k−1− (bn+1+ bn+2− a+ c)EL ,0,k−1−

n∑
i=1

bi EL ,i,k−1,

where c ≥ 0. By induction on n, this class is linearly generated. Hence

ka ≥ bn+1+ bn+2− a+ c+
n∑

i=1

bi , therefore (k+ 1)a ≥
n+2∑
i=1

bi .

By Lemma 2.6, the class of Y is linearly generated. This concludes the proof. �

Example 3.4. Lemma 3.2 is sharp in the sense that there exist sets 0 of r > 2n
points in general linear position such that Eff1

(
Xn
0

)
is not linearly generated. For

example, let 0 be r > 2n points on a rational normal curve C in Pn . Points on a
rational normal curve are in general linear position [Harris 1995]. Then the class of
the proper transform of C is

nH1−

r∑
i=1

Ei,1.

Since r > 2n, this class cannot be in the span of the classes of lines. In the
next section we will see that we can improve the bounds for linear generation
exponentially if instead of assuming that 0 is linearly general we assume 0 is a set
of very general points in Pn .

More generally, let Y be the cone over a rational normal curve of degree n−k+1
with vertex V a Pk−2. Let 0 be the union of a set of k−1 general points p1, . . . , pk−1

in V and a set of r − k+ 1 general points pk, . . . , pr on Y . Then 0 is in general
linear position. The class of the proper transform of Y is

(n− k+ 1)Hk −

k−1∑
i=1

(n− k+ 1)Ei,k −

r∑
i=k

Ei,k,

which cannot be in the span of linear spaces if r > 2n− k+ 1. Consequently, we
conclude the following.
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Proposition 3.5. There exist sets 0 of r > 2n − k + 1 points in general linear
position in Pn such that Effk

(
Xn
0

)
is not linearly generated.

In view of Proposition 3.5, it is natural to ask whether the bound in Theorem 3.1
can be improved to r ≤ 2n− k+ 1.

Question 3.6. Assume that 0 is a set of r linearly general points in Pn such that

max
(

n+ 2, n+ n
k

)
< r ≤ 2n− k+ 1.

Is Effk
(
Xn
0

)
linearly generated?

The answer is affirmative for curves and divisors. We will shortly check that for
2-cycles in P4 the answer is also affirmative. In Theorem 4.5 we will see that the
answer is also affirmative if the points are very general. In view of this evidence,
we expect the answer to Question 3.6 to be affirmative.

Remark 3.7. The dimension of the space Sn−k,k+1(P
n) of scrolls of dimension

n− k and degree k+ 1 in Pn is

2n+ 2nk− k2
− 2

[Coskun 2008, Lemma 2.4]. There are scrolls in Sn−k,k+1(P
n) passing through

2n−k+2 points (see [Coskun 2006] for the surface case). Hence the family of scrolls
passing through 2n− k+1 points covers Pn . By Lemma 2.6, an affirmative answer
to Question 3.6 is equivalent to the statement that every effective k-dimensional
cycle intersects the proper transform of a scroll passing through the 2n − k + 1
points nonnegatively.

Question 3.8. Let 0 be 2n−k+1 linearly general points in Pn . For every effective
k-cycle Y in Xn

0, does there exist a scroll S of dimension n− k and degree k+ 1
such that the proper transform S in Xn

0 intersects Y in finitely many points?

By Remark 3.7, an affirmative answer to Question 3.8 implies an affirmative
answer to Question 3.6.

Effective 2-cycles on the blowup of P4 at 7 points. We now verify that the answer
to Question 3.6 is affirmative for two-cycles in P4. The argument is subtle because
we need to verify linear generation for every configuration of 7 points in linear
general position, rather than just very general configurations of points.

Theorem 3.9. Let 0 be 7 linearly general points on P4. Then the cone Eff2
(
X4
0

)
is

linearly generated.

Proof. There is a unique rational normal quartic curve R containing 7 linearly
general points in P4 [Harris 1995]. The secant variety, Sec(R), to R is a cubic
hypersurface which has multiplicity two along R. Hence its proper transform Sec(R)
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in X4
0 has class 3H−

∑7
i=1 2Ei . In fact, this secant variety is a (−1)-divisor on X4

0;
it is in the Cremona orbit of one of the exceptional divisors.

Let Y be an irreducible surface in X4
0 . Without loss of generality, we may assume

that Y is not contained in an exceptional divisor and has class aH2−
∑7

i=1 bi Ei,2

with a ≥ bi ≥ 0. First, suppose that Y is not contained in Sec(R). The class of a
quadric [Q] = 2H −

∑7
i=1 Ei is nef, and so by Lemma 2.9 we have

Y · Q ·Sec(R)= 6a−
7∑

i=1

2bi ≥ 0.

Lemma 2.6 implies that [Y ] is in the span of the classes of planes.
We are reduced to showing that if Y ⊂ Sec(R), then [Y ] is in the span of the

classes of planes. Let S3 denote the space of cubic surface scrolls containing the
points of 0. We will show the following.

Theorem 3.10. The proper transform S of a general member S ∈ S3 intersects
Sec(R) in an irreducible curve B whose projection to Sec(R) is a degree 9 curve
with multiplicity two at the points of 0. Furthermore, the curve B can be made to
pass through a general point of Sec(R).

Assume Theorem 3.10. Let p ∈ Sec(R) be a general point not contained in Y .
Hence an irreducible curve B passing through p intersects Y in finitely many points.
Let S be the proper transform of a scroll S ∈ S3 containing p and intersecting
Sec(R) in an irreducible curve. We conclude that S and Y intersect in finitely many
points, hence their intersection number is nonnegative. Therefore,

[S] · [Y ] =
(

3H2−

7∑
i=1

Ei,2

)
·

(
aH2−

7∑
i=1

bi Ei,2

)
= 3a−

7∑
i=1

bi ≥ 0.

By Lemma 2.6, we conclude that [Y ] is in the span of the classes of planes.
There remains to prove Theorem 3.10, which we will do via a series of claims.

We first set some notation.

Notation 3.11. Let li, j denote the line spanned by pi , p j ∈0 and let5i1,...,il denote
the linear space spanned by pi1, . . . , pil ∈ 0. Let 0i1,...,il denote the set of points
pi1, . . . , pil . Let l be the line of intersection 51,2,3,4∩55,6,7 and, for 5≤ i < j ≤ 7,
let zi, j denote the point of intersection 51,2,3,4∩ li, j . Since the points are in linearly
general position, the line l does not intersect the lines li, j for 1 ≤ i < j ≤ 4 and
intersects the planes5i, j,k , for 1≤ i< j< k≤4, in a unique point different from zi, j .

Next, we recall a compactification S3 of S3. Every irreducible cubic scroll
induces a degree 3 rational curve in the Grassmannian G(1, 4) of lines in P4. We
can compactify the space of degree 3 rational curves in G(1, 4) via the Kontsevich
moduli space. Hence we can take the closure of S3 in the Kontsevich moduli space
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(see [Coskun 2006, §3] for details). More precisely, let M0,7(G(1, 4), 3) denote the
Kontsevich moduli space of 7-pointed genus-0 maps of degree 3 to G(1, 4). It is
equipped with 7 evaluation morphisms evi :M0,7(G(1, 4), 3)→G(1, 4), 1≤ i ≤ 7.
Define

S3 =

7⋂
i=1

ev−1
i (63(pi )),

where 63(pi ) denotes the Schubert variety of lines containing pi .

Claim 3.12. The space S3 is irreducible of dimension 4.

Proof. The locus T = ∩4
i=1 ev−1

i (pi ) in the Kontsevich moduli space M0,4(P
3, 3)

of 4-pointed genus 0 maps of degree 3 to P3 provides a compactification of the
space of twisted cubic curves in 51,2,3,4 containing 01,2,3,4. Since M0,4(P

3, 3) is
irreducible of dimension 16, every component of T has dimension at least 4.

If a twisted cubic T is irreducible, then any finite set of points on T is linearly
general. Furthermore, given 6 linearly general points in P3, there is a unique
twisted cubic curve containing them. Consider the incidence correspondence
I = {(T, q1, q2)|q1, q2 ∈ T }, where T is a twisted cubic curve containing the
set of points 01,2,3,4 and q1, q2 are points such that 01,2,3,4∪{q1, q2} are in linearly
general position. The incidence correspondence I is irreducible of dimension 6
since it is isomorphic to an open subset of P3

× P3. It dominates the space of
twisted cubic curves containing p1, . . . , p4 via the first projection. Since the fibers
of the first projection are two-dimensional, we conclude that the space of irreducible
twisted cubics containing 01,2,3,4 is irreducible of dimension 4.

Since there are no connected curves of degree two or one containing 4 points in
linearly general position in P3, any map in T is birational to its image. If there is
a reducible curve of degree 3 containing 01,2,3,4, either a degree two curve must
contain 3 of the points or a line must contain two of the points. In either case, it
is easy to see that there is a 3-dimensional family of reducible cubics containing
01,2,3,4. Hence these cannot form a component of T and T is irreducible.

Furthermore, 2 additional points q1 and q2 impose independent conditions on
twisted cubics unless they are coplanar with 3 of the points in 01,2,3,4 or 1 of the
points is collinear with 2 of the points in 01,2,3,4. If q1 is collinear with p1 and p2,
then there is a 1-parameter family of reducible cubics containing the line l1,2.
Similarly, if q1 and q2 are in51,2,3 but no 4 of the points are collinear, then there is a
1-parameter family of reducible cubics containing the conic through 01,2,3∪{q1, q2}.
If q1 and q2 are collinear with p1 and p2, there is a 3-parameter family of reducible
cubics containing l1,2. Recall that l =51,2,3,4∩55,6,7. In particular, the subset of T
that parametrizes twisted cubics incident or secant to l has dimension 3 or 2 respec-
tively, since any pair of distinct points impose independent conditions on twisted cu-
bics. Similarly, the locus of twisted cubics in T passing through z5,6 has dimension 2.
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Since M0,7(G(1, 4), 3) is irreducible of dimension 25 [Coskun 2006, §2], every
irreducible component of S has dimension at least 4. Let T be a twisted cubic curve
containing 01,2,3,4, not secant to the line l, and not containing the points z5,6, z5,7

and z6,7. Then there is a unique cubic scroll S containing T and passing through
p5, p6, p7 [Coskun 2006, Example A1]. Briefly, take a general P3 containing55,6,7.
This P3 intersects T in 3 points r1, r2, r3. There is a unique twisted cubic curve T ′

containing r1, r2, r3 and 05,6,7. The curves T and T ′ are both isomorphic to P1

and there is a unique isomorphism φ taking ri ∈ T to ri ∈ T ′. Then the surface
ST,T ′ swept out by lines joining the points that correspond under φ is the unique
cubic scroll containing T and 05,6,7. If T contains the point z5,6 or is secant to the
line l, then there is a 1-parameter family of choices for T ′. Once we fix T and T ′,
the scroll is uniquely determined by a similar construction. Since the locus of T
containing z5,6 or secant to l has codimension 2, this locus cannot form a component
of S3. Finally, reducible cubic surfaces containing 0 must contain a plane through 3
of the points and a quadric surface through the remaining 4 points. There is a
2-dimensional family of such surfaces and they do not give rise to a component
in S3 (see [Coskun 2006]). We conclude that S3 is irreducible of dimension 4. �

Claim 3.13. There exists a dense open set U ⊂ S3 such that S 6⊂ Sec(R) for S ∈U.
Furthermore, S can be made to pass through a general point of Sec(R).

Proof. It suffices to exhibit one S ∈ S3 such that S 6⊂ Sec(R). Given 7 points in
general linear position and 2 general additional points, [Coskun 2006, Example A1]
shows that there are 2 cubic scrolls containing these nine points. In particular, if
we take one of the two additional points outside Sec(R), we obtain a scroll not
contained in Sec(R). Furthermore, a general twisted cubic in 51,2,3,4 containing
01,2,3,4 intersects Sec(R) in a another point q. Consequently, the construction in
the proof of Claim 3.12 exhibits a cubic scroll containing q and not contained in
Sec(R). Since the space S3 is irreducible, the general scroll containing a general
point of Sec(R) and 0 will not be contained in Sec(R). �

Claim 3.14. There exists a dense open set U ⊂ S3 such that for S ∈U :

(1) The intersection S∩Sec(R)∩Ei is a finite set of points in X4
0 for every 1≤ i ≤7.

(2) The scroll S does not contain any lines li, j for 1≤ i < j ≤ 7.

(3) The scroll S does not contain any conics through 3 of the points in 0.

(4) The scroll S does not contain a twisted cubic curve through 5 of the points of 0.

(5) The scroll S does not contain the rational normal quartic R.

(6) The scroll S does not contain a quintic curve double at one of the points of 0
and passing through the others.

(7) The directrix of the scroll does not contain any of the points in 0.
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Proof. Since each of these conditions are closed conditions and S3 is irreducible, it
suffices to exhibit one element S ∈S3 satisfying each condition. For (1), there exists
a twisted cubic containing 01,2,3,4 with any tangent line at p1 (for example, the
reducible twisted cubic consisting of any line through p1 and a conic through 02,3,4).
Hence the tangent spaces to the scrolls at p1 sweep out E1 and there exists S such
that S ∩ E1 6⊂ Sec(R). By permuting indices, we conclude (1).

For (2) and (3), take the scroll ST,T ′ constructed in the proof of Claim 3.12.
Since 51,2,3,4 ∩ ST,T ′ = T , this scroll does not contain any of the linear li, j with
1≤ i < j ≤ 4 or any conic passing through any of the three points in 01,2,3,4. By
permuting indices, we conclude (2) and (3).

Since a twisted cubic curve spans a P3 and the points are in linearly general
position (4) is clear. For (5), (6) and (7), it is more convenient to exhibit a reducible
scroll satisfying these properties. Let S be the union of the plane 55,6,7 and a
general quadric surface Q containing l and 01,2,3,4. After choosing a point of l,
this surface determines a point p of S3 [Coskun 2006]. The directrix line is then
the unique line on the quadric Q intersecting l at p. Hence (7) holds. Since R is
irreducible and nondegenerate, it cannot be contained in this surface. Suppose there
is a quintic curve F in S containing 0 and double at p1. Since p5, p6, p7 are not
collinear, F must intersect 55,6,7 in a curve of degree at least 2. Hence F intersects
Q in a curve of degree 3 containing 02,3,4 and double at p1. Any cubic double at p1

must contain the line of ruling through p1. Since 01,2,3,4 are linearly general there
cannot be a degree 2 curve through these points on Q. After permuting indices, we
conclude (6) holds. �

Claim 3.15. There exists a dense open set U ⊂ S3 such that for S ∈U the intersec-
tion S ∩Sec(R) is an irreducible degree 9 curve double along 0.

Proof. By Claims 3.13 and 3.14, we can find a scroll S 6⊂ Sec(R) satisfying the
conclusions of Claim 3.14. The intersection S ∩ Sec(R) is a curve B of degree 9
double along 0. We need to show that B is irreducible. Recall that a smooth cubic
scroll is isomorphic to the blowup of P2 at a point. Its Picard group is generated
by the directrix e (the curve of self-intersection −1) and the class of a fiber line f .
The intersection numbers are

e2
=−1, e · f = 1, f 2

= 0.

The effective cone is spanned by e and f . The canonical class is −2e− 3 f and
the class of B is 3e+ 6 f . The degree of a curve ke+m f is k+m. If k > m, then
any representative contains e with multiplicity k−m. By adjunction, the arithmetic
genus of a curve in the classes e+m f , 2e+m f , and 3e+m f are 0, m − 2, and
2m− 5, respectively.

It is now straightforward, but somewhat tedious, to check that B cannot be
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class the number of the number of remaining reasondouble points of 0 points of 0, respectively

e 0 0 Claim 3.14 (7)
e+ f 0 2 Claim 3.14 (3,2)
e+ 2 f 0 or 1 4 or 1 Claim 3.14 (4,3,2)
e+ 3 f 0, 1 or 2 6, 3 or 0 Claim 3.14 (7,5,4,3,2)
e+ 4 f 0, 1 or 2 7, 5 or 2 Claim 3.14 (7,5,4,3,2)

Table 1. Possible curves with class e+m f .

reducible. Indeed, suppose that B is reducible. Write B = B1 ∪ B2, where the
class of B1 is ke+m f with 2 ≤ k ≤ 3 and assume that B1 does not contain any
fibers as components. Furthermore, if k = 3, we may assume that B1 is irreducible.
Otherwise, we can regroup a component with class e+m′ f with B2. Then the class
of B2 is (3− k)e+ (6−m) f and every fiber component of B is included in B2. By
Claim 3.14 (2), a curve with class m f can be double at most in 0≤ d ≤m/2 points
of 0 in which case it can contain at most m− 2d of the remaining points of 0. We
tabulate the possibilities for curves with class e+m f , see Table 1.

First, suppose B1 has class 3e+m f . By assumption, it is irreducible and by
arithmetic genus considerations can have at most 2m− 5 nodes. On the other hand,
B2 can pass through at most 6−m of the points. We have 2m−5+6−m=m+1< 7
if m < 6. Hence such a curve cannot be double at all the points of 0.

We may therefore assume that the class of B1 is 2e+m f and the class of B2 is
e+(6−m) f . If B1 is reducible, then it can have at most 2 components with classes
e+m1 f and e+m2 f . An inspection of Table 1 shows that it is not possible to make
B double at all points of 0. If B1 is irreducible, then m ≥ 2 and its arithmetic genus
is m− 2. Hence the maximal number of double points on B1 is m− 2. If m = 2,
then B1 can contain at most 6 of the points of 0 by Claim 3.14 (5) and it is smooth
at those points. Hence B cannot be made double at all points of 0 by the last line of
the table. If m = 3 and B1 has a double point, then by Claim 3.14 (6) B1 contains
at most 5 other points of 0. By the second to last row of the table, B cannot be
double at all points of 0. If m ≥ 4, an easy inspection of the first three rows of the
table show that B can have at most 6 double points. Hence B is irreducible. �

This concludes the proof of Theorem 3.10 and consequently of Theorem 3.9.

4. Nonlinearly generated cones

Recall that Xn
r denotes the blowup of Pn in r very general points. In this section, we

study the cones of effective cycles on Xn
r . Our first result completely characterizes

when the cone of curves is linearly generated.
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Proposition 4.1. The cone Eff1
(
Xn

r
)

is linearly generated if and only if r ≤ 2n .

Proof. We first observe that the linear system of quadrics through 2n very general
points is nef. Choose n general quadrics Q1, . . . , Qn in Pn . By Bertini’s theorem,
the intersection of these quadrics is a set of 2n points in Pn . Let X0 be the blowup
of Pn at these points. We claim that D = 2H −

∑2n

i=1 Ei is nef on X0. Note that
the proper transforms of Qi have class D and D has positive degree on curves
contained in exceptional divisors Ei . Since the intersection Q1 ∩ · · · ∩ Qn is finite,
if B is a curve on X0 not contained in an exceptional divisor, there is a quadric Qi

whose proper transform does not contain B. Consequently, D · B ≥ 0 and D is nef.
By [Lazarsfeld 2004, Proposition 1.4.14], 2H −

∑2n

i=1 Ei is nef for very general
configurations of 2n points as well. We conclude that if r ≤ 2n , an effective curve
class in Xn

r satisfies the inequalities in the assumptions of Lemma 2.6, and so every
curve class is a linear combination of classes of lines.

The top self-intersection of the class Q = 2H −
∑r

i=1 Ei on Xn
r is given by

2n
− r . Hence if r > 2n , the top self-intersection of Q is negative and Q cannot be

nef by Kleiman’s Theorem [Lazarsfeld 2004, Theorem 1.4.9]. Suppose the class of
every effective curve is in the span of the classes of lines. The cone generated by
the classes of lines is a closed cone. Hence the effective and the pseudoeffective
cones coincide. Since every line has nonnegative intersection with Q, we conclude
that Q is nef. This contradiction shows that there must exist effective curves whose
classes are not spanned by the classes of lines. �

Corollary 4.2. If r ≥ 2n−k+1
+ k, then Effk

(
Xn

r
)

is not linearly generated.

Proof. Let 0 be a set of r very general points. Project 0 from the first k − 1
points p1, . . . , pk−1 and let 0′ be the set of points in Pn−k+1 consisting of the
images of the remaining points. Then 0′ is a set of r − k+ 1 very general points
in Pn−k+1. If r − k+ 1> 2n−k+1, the cone Eff1

(
Xn−k+1

r−k+1

)
is not linearly generated

by Proposition 4.1. Fix a 1-cycle B with class aH1−
∑r

i=k bi Ei,1 that is not in the
span of linear spaces. In particular, 2a <

∑r
i=k bi . Then the class

aHk −

k−1∑
i=1

aEi,k −

r∑
i=k

bi Ei,k

is represented in Xn
r by the proper transform of the cone over B with vertex the

span of p1, . . . , pk−1. The resulting k-cycle is not in the span of k-dimensional
linear spaces since (k+ 1)a < (k− 1)a+

∑r
i=k bi . �

Question 4.3. If r < 2n−k+1
+ k, is Effk

(
Xn

r
)

linearly generated?

Remark 4.4. The answer to Question 4.3 is affirmative for curves and divisors.
For cycles of intermediate dimension, we do not know any examples with r =
2n−k+1

+ k− 1 where the cone is linearly generated.
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There has been a great deal of interest in the construction of cycles that are
nef but not pseudoeffective. Such cycles were constructed on abelian varieties in
[Debarre et al. 2011], and on hyperkähler varieties in [Ottem 2015]. If Question 4.3
has an affirmative answer, this would give many examples of nef classes that are
not pseudoeffective. For example, if Eff3

(
X6

r
)

is linearly generated for 16< r < 19,
then the class 4H3−

∑r
i=1 Ei,3 would be nef but not pseudoeffective; indeed, the

self-intersection of this class is negative.

We can, however, give a linear bound.

Theorem 4.5. The cone Effk
(
Xn

r
)

is linearly generated if r ≤ 2n− k+ 1.

Proof. The theorem is true for k = 1 by Proposition 4.1 and for divisors by
Theorem 3.1. We will prove the general case by induction on n. Assume that the
theorem is true for Effk

(
Xm

r
)

for r ≤ 2m − k + 1 and all k < m < n. Let 0 be a
set of r points such that 0 consists of r − 2 very general points p1, . . . , pr−2 in
a hyperplane L = Pn−1 and two very general points pr−1, pr not contained in L .
Let L ′ denote the proper transform of L in Xn

0 . Note that L ′ ∼= Xn−1
r−2 . Let Y be an

irreducible k-dimensional subvariety of Xn
0 not contained in an exceptional divisor

with class aHk +
∑r

i=1 bi Ei on Xn
0 . If Y is contained in L ′, then Y ⊂ Xn−1

r−2 . Since
r − 2 ≤ 2(n − 1)− k + 1, by the induction hypothesis the class of Y is linearly
generated and (k+ 1)a ≥

∑r
i=1 bi . If Y is not contained in L ′, then Z = Y ∩ L ′ is

an effective cycle of dimension k− 1. Let p0 denote the intersection of the line l1,2

spanned by pr−1 and pr with L . Let β = max(0, br−1 + br − a). Consider the
blowup Xn−1

r−1 of L along p0, p1, . . . , pr−2. Then the proper transform of Z is an
effective cycle in Xn−1

r−1 with class

aHk−1− (β + c)E0,k−1−

r−2∑
i=1

bi Ei,k−1,

for some c ≥ 0. Since r ≤ 2n− k+ 1, the inductive hypothesis r − 1≤ 2(n− 1)−
(k − 1)+ 1 is satisfied. We conclude that this class is linearly generated. Conse-
quently,

ka ≥ β +
r−2∑
i=1

bi and hence (k+ 1)a ≥
r∑

i=1

bi .

By Lemma 2.6, the class of Y is linearly generated. By Corollary 2.5, Effk
(
Xn

r
)
⊂

Effk
(
Xn
0

)
and Effk

(
Xn

r
)

is linearly generated. This concludes the induction and the
proof of the theorem. �

The cone Eff2
(

X4
8
)
. In this subsection we prove that Eff2

(
X4

8

)
is linearly generated.

Theorem 4.6. The cone Eff2
(
X4

8

)
is linearly generated.
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The fact that the points are now very general means that we are in position
to apply degeneration arguments. These sorts of arguments work because of the
semicontinuity of multiplicities in families; a surface S on the very general X4

8
violating the inequality 3a ≥

∑
bi will specialize to an effective 2-cycle with the

same property (Lemma 2.4).
To illustrate the range of applicable techniques we give two different degeneration

arguments to prove Theorem 4.6.

Proof 1. Let 0 be a configuration of 8 points in P4 such that p1, . . . , p7 are very
general points and p8 is a general point on Sec(R), where Sec(R) is the secant
variety of the rational normal curve R through the points p1, . . . , p7. Let Y be an
irreducible surface in X0 . If Y is not contained in the strict transform Sec(R), then
Y ∩Sec(R) is a curve and the class 3aH1−

∑7
i=1 2bi Ei,1−b8 E8,1 is effective. We

claim that the linear system Q = 2H −
∑7

i=1 Ei − 2E8 is nef on Sec(R). Granting
this, Q · Sec(R) · Y = 6a− 2

∑8
i=1 bi ≥ 0, and so Y is in the span of planes. We

may therefore assume that Y ⊂ Sec(R).
To prove that Q is nef on Sec(R) it suffices to show that the linear system

of quadrics double at p8 and passing through p1, . . . , p7 in P4 has base locus
consisting of 8 lines, none of which are contained in Sec(R). Then Q restricts to
a semiample, and in particular, nef class on Sec(R). Since p8 is general, the only
line through p8 incident to R and contained in Sec(R) is the unique secant line l
to R through p8. Suppose there was another line p8 ∈ l ′ ⊂ Sec(R) incident to R,
then the plane spanned by l and l ′ would intersect Sec(R) in a completely reducible
cubic curve singular along the three points of intersection with R and at p8. This is
clearly impossible.

Since p8 is general, we may assume that the secant line l does not contain any of
the points p1, . . . , p7. Any effective member of the linear system Q is a quadric cone
with vertex at p8. Let q1, . . . , q7 denote the projection of p1, . . . , p7 through p8.
These are very general 7 points in P3. The base locus of the linear system of
quadrics passing through q1, . . . , q7 in P3 is 8 points q, q1, . . . , q7, contained in the
smooth locus of the projection R′ of R. (The curve R′ is a complete intersection of
2 quadrics. There is a three-dimensional linear system of quadrics passing through
q1, . . . , q7. Any quadric in this linear system not containing R′ intersects R′ at a
further point q in the smooth locus of R′.) By taking cones over these quadrics
with vertex p8, we see that the base locus of Q in P4 are the 8 lines spanned by p8

and one of q, q1, . . . , q7. Since these are lines through p8 incident to R and distinct
from the secant line containing p8, none of them are contained in Sec(R).

To prove the theorem we need to show that S ·Y = 3a−
∑8

i=1 bi ≥ 0 for a cubic
scroll S. It suffices to show that there is some scroll S which intersects Y in finitely
many points. We may further assume that Y ⊂ Sec(R).
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Let us consider the family of cubic scrolls through these 8 points. Through the
first 7 points, p1, . . . , p7 there is a 4-dimensional space of scrolls. There is an
open set of this parameter space parametrizing scrolls S such that the intersection
Sec(R)∩ S = B is an irreducible curve. There exists such a curve through a general
eighth point, by Claim 3.13, and so there must in fact be an irreducible curve
through a general eighth point. In all, picking p8 general, we have that the space
of cubic scrolls containing p1, . . . , p8 is of dimension 2 and there is a nonempty
open subset of scrolls such that the proper transform of a scroll S intersects Sec(R)
in an irreducible curve.

Now, taking a general point q of Sec(R), there exists two scrolls containing the 9
points q, p1, . . . , p8 [Coskun 2006]. Since varying q gives a 2-dimensional family
of scrolls, we conclude that by choosing S generic, the curve B can be made to pass
through a general ninth point of Sec(R). In particular, we can choose a scroll so that
B is not contained in Y . As the curve B is irreducible and not contained in Y , we see
that S and Y generically intersect in finitely many points and so their intersection
number is nonnegative. We conclude that the effective cone is linearly generated. �

Proof 2. We will degenerate to a configuration where the 8 points lie on two rank 3
quadrics.

Let x0, . . . , x4 be coordinates on P4 and let p1 = (1, 0, 0, 0, 0), . . . , p5 =

(0, 0, 0, 0, 1) denote the coordinate points. Consider the two quadrics q1 = {x0x1+

x0x2+x1x2= 0} and q2={x2x3+x2x4+x3x4= 0}. Here q1 is a cone over a smooth
conic in the x0x1x2-plane with the vertex being the line {x0 = x1 = x2 = 0}, and
similarly for q2. Note that q1 and q2 both contain the points p1, . . . , p5. Moreover,
q1 and q2 respectively contain p4, p5 and p1, p2 with multiplicity two. We now
choose the remaining three points p6, p7, p8 to be general on the intersection q1∩q2.

On the blowup at these points the strict transform of q1 is an irreducible divisor
Q1 with class 2H −

∑8
i=1 Ei − E4− E5. Consider the divisor

D1 = 3H − 2
8∑

i=1

Ei + E4+ E5;

it satisfies [Q1] · [D1] = 2(3H 2
−
∑8

i=1 Ei,2). A computation gives that the linear
system |D1| is 2-dimensional. Moreover, the base locus of D1 is 1-dimensional and
has 18 components: 15 lines and 3 quartic normal curves. One checks that none of
these curves lie on Q1. Indeed, these statements are easy to verify for one particular
configuration (and thus it follows a general 8-tuple as above). In particular, D1|Q1

has only finitely many base-points, and hence is nef on Q1.
Now, suppose that Y ⊂ X is an irreducible surface with class aH 2

−
∑8

i=1 bi Ei,2.
Then, if Y is not contained in Q1, the intersection i∗Y is represented by an effective
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1-cycle on Q1 (here i : Q1→ X is the inclusion). As D1|Q1 is nef, we have

0≤ D1|Q1 · i
∗Y = 6a−

8∑
i=1

2bi ,

as desired. A symmetric argument (with Q2 = 2H −
∑8

i=1 Ei − E1 − E2 and
D2 = 3H −2

∑8
i=1 Ei + E1+ E2), shows that the conclusion also holds if Y is not

contained in Q2.
We therefore reduce to the case where Y ⊆ Q1 ∩ Q2. Note that Q1 ∩ Q2 is an

irreducible surface, so Y = Q1 ∩ Q2. Now

[Q1][Q2] = 4H 2
− 2E1,2− 2E2,2− 2E3,2− 2E4,2− E5,2− E6,2− E7,2− E8,2,

which is equivalent to a sum of 4 planes. This completes the proof. �

We immediately deduce the following corollary.

Corollary 4.7. If Xn
r is a Mori dream space, then Effk

(
Xn

r
)

is finitely generated.

Remark 4.8. Combining Theorem 4.6 with the degeneration argument of Theorem
4.5, it follows that Eff2

(
Xn

r
)

is linearly generated for r ≤ 2n as long as n ≥ 4.

We will see in the next section that Eff2
(
X4

10

)
is not finitely generated, assuming

the SHGH conjecture holds for blowups of P2 at 10 points. The only remaining
case in dimension 4 is

Question 4.9. Is the cone Eff2
(
X4

9

)
linearly generated?

It is not easy to find explicit curves in Xn
r which are not in the span of lines. The

following example gives a construction in the case of 9 very general points in P3.

Example 4.10. The class CC M = 57H1−
∑10

i=1 18Ei,1 on X2
10 is represented by a

unique irreducible plane curve of genus 10, by [Ciliberto and Miranda 2011]. On X3
9

there is a unique divisor Q in the class 2H1−
∑9

i=1 Ei,1, given by the strict transform
of the unique quadric through the 9 points. There is a morphism i : X2

10 → X3
9

identifying the proper transform of Q with the blowup of P2 at 10 points.
A quick calculation shows that the pushforward of the class of CC M to X3

9 is

i∗(CC M)= 78H1− 21E1,1−

9∑
i=2

18Ei,1.

We have 21+ 8(18) = 165, while 2 · 78 = 156. Hence this curve is not in the
span of the lines. It does not, however, define an extremal ray on Eff1

(
X3

9

)
. In the

next section we will use a similar construction to show that, assuming the SHGH
conjecture, the cone Eff1

(
X3

9

)
is not finitely generated.

By repeatedly taking cones over i∗(CC M), we obtain explicit nonlinearly gen-
erated codimension-two cycles on Xn

n+6 for every n ≥ 3.
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Complete intersections also provide examples of nonlinearly generated pseudo-
effective curve classes, provided that the number of points is large.

Example 4.11. Assume that dn
≥ r > 2dn−1 for some integer d > 2. Then the

divisor class D = d H −
∑r

i=1 Ei is nef on Xn
r by the argument given in the proof

of Proposition 4.1. The (n−1)-fold self-intersection of the class is

Dn−1
= dn−1 H1−

r∑
i=1

Ei,1.

Since r > 2dn−1, this class is not in the span of lines. On the other hand, the class
is pseudoeffective. A small perturbation of D is ample. Hence a sufficiently high
multiple is very ample and the (n−1)-fold self-intersection is an effective curve. It
follows that the class Dn−1 is pseudoeffective.

5. Nonfinitely generated cones

The cone of curves of the blowup of P2 at 10 or more very general points is not
entirely understood, and we will find it useful to assume the following standard
conjecture.

Conjecture 5.1 (Segre–Harbourne–Gimigliano–Hirschowitz (SHGH) conjecture
[Gimigliano 1987]). Suppose that r ≥ 10 and that m1 ≥ m2 ≥ · · · ≥ mr and
d > m1+m2+m3. Then

H 0
(

X2
r , d H1−

r∑
i=1

mi Ei,1

)
=

(
d + 2

2

)
−

r∑
i=1

(
mi + 1

2

)
.

We next prove that the cone of codimension-2 cycles on Xn
r is not finitely

generated for r ≥ n+ 6, assuming the SHGH conjecture. The calculation relies on
the following observation of de Fernex.

Theorem 5.2 [de Fernex 2010, Proposition 3.4]. Assume the SHGH conjecture
holds for 10 points. Let P ⊂ N 1(X2

10) be the positive cone

P = {D ∈ N 1(X2
10
)
: D2
≥ 0, D · H ≥ 0},

where H is an ample divisor. Then

Eff1
(
X2

10
)
∩ K≥0 = P ∩ K≥0.

Let Q ⊂ X3
9 be the strict transform of the unique quadric passing through the 9

points and let i denote the inclusion of Q in X3
9 . Note that Q is isomorphic to X2

10,
and so Conjecture 5.1 provides some information about the cone Eff1(Q). However,
the map N1(Q)→ N1

(
X3

9

)
is not injective, since the two rulings of the quadric both
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map to the class of a line in P3. The next lemma gives a criterion to show that certain
extremal rays on Eff1(Q) nevertheless push forward to extremal rays on Eff1

(
X3

9

)
.

Write r1 and r2 for the classes of the two rulings on the quadric, and let fi = Ei|Q

be the exceptional curves. Let `i j = r1− fi − f j ∈ N1(Q), this class is not effective
on Q, but i∗`i j is effective in N1

(
X3

9

)
since it is the class of a line through the

points pi and p j .

Theorem 5.3. Suppose that D is a class in N1(Q) which satisfies:

(1) D is nef , and if γ ∈ Eff1(Q) has D · γ = 0, then γ is a multiple of D.

(2) D · r1 = D · r2.

(3) D · `i j > 0 for all i and j .

Then i∗D is nonzero and spans an extremal ray on Eff1
(
X3

9

)
.

Proof. That i∗D is nonzero follows from the fact that D is nef, since if H is ample
then so is i∗H and then i∗D · H = D · i∗H > 0. We claim next that D lies on a
two-dimensional extremal face of the cone

6 = Eff1(Q)+
∑
i, j

R≥0[`i j ] +R[r1− r2] ⊂ N1(Q).

More precisely, if D = α+β with α, β ∈6, then

α = a1 D+ b1(r1− r2) and β = a2 D+ b2(r1− r2),

where a1 and a2 are positive. Note that D is nef, D · (r1− r2)= 0, D · `i j > 0 for
all i, j , and D · fk > 0. Hence D is contained in the dual cone of 6. By conditions
(1) and (2), the classes in 6 with D ·C = 0 are precisely R≥0 D+R(r1− r2).

We claim next that

Eff1
(
X3

9
)
= i∗ Eff1(Q)+

∑
i, j

R≥0i∗[`i j ] = i∗6.

Suppose that 0 is an irreducible effective cycle on Eff1
(
X3

9

)
. If Q ·0 < 0, then 0

must be contained in Q, and so [0] is contained in i∗ Eff1(Q). If Q ·0 ≥ 0, then 0
satisfies 2a ≥

∑
i bi , which means that [0] is in the span of classes of lines i∗[`i j ]

and lines i∗[ fk] in the exceptional divisors, by Lemma 2.6. Each fk is numerically
equivalent to a curve in the quadric.

Suppose now that i∗D = α+β, where α and β are pseudoeffective classes on
Eff1

(
X3

9

)
. Using the decomposition above, we can write α = i∗αQ +

∑
ci j i∗[`i j ]

and β = i∗βQ +
∑

di j i∗[`i j ], where αQ and βQ are classes in Eff1(Q).
We claim now that

D = αQ +βQ +
∑

(ci j + di j )`i j + f (r1− r2),
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for some constant f . Indeed, the two sides differ by an element of the kernel of
i∗ : N1(Q)→ N1

(
X3

9

)
, which is generated by r1− r2, giving rise to the constant f .

Since D2
= 0, D · (r1 − ei − e j ) > 0 for any i and j , and D · (r1 − r2) = 0, it

must be that ci j = di j = 0 for all i and j . We conclude that

αQ = a1 D+ b1(r1− r2) and βQ = a2 D+ b2(r1− r2).

Hence α = i∗αQ = a1i∗D and β = i∗βQ = a2i∗D. This shows that i∗D is extremal.
�

The requirement that D is nef makes it difficult to exhibit classes D on X2
10 with

the necessary properties without assuming the description of Eff1
(
X2

10

)
provided

by the SHGH conjecture.

Theorem 5.4. Assume that the SHGH conjecture holds for blowups of P2 at 10 very
general points. Then there exist infinitely many classes D satisfying the hypotheses
of Theorem 5.3.

Proof. It is convenient to fix an identification Q ∼= X2
10 and rewrite the hypotheses

in the basis for N 1(Q) arising from this identification. The strict transforms of the
two rulings through the point p1 give disjoint (−1)-curves on Q, and these can be
contracted. The other 8 exceptional curves fi can then be contracted to give a map
to P2. Let e0 and e1 be the first two (−1)-curves contracted, and let e j = f j for
2≤ j ≤ 8. With respect to this new basis, we have r1− f1 = e0 and r2− f1 = e1,
and f1 = h− e0− e1, where h denotes the class of a line on P2.

While the first condition in Theorem 5.3 is independent of the basis, the last two
can be rewritten as:

(2′) D · e0 = D · e1.

(3′) D · e0 > D · e j for any j > 1, and D · (h− e1− ei − e j ) > 0 for any i, j > 1.

The first part of (3′) arises when i = 1< j , while the second case is when 1< i < j .

Fix any 1
√

10
<δ < 1

3 , and let δ′=
√

1
8(1− 2δ2). Observe that 3

10 <
1
6

√
7
2 <δ

′<δ

for δ in this range. Consider the divisor

Dδ = h− δ(e0+ e1)− δ
′

9∑
j=2

e j .

We check each of the hypotheses in turn. To simplify notation, for the rest of
this proof set X = X2

10.

(1) First we check that Dδ is nef. The cone theorem implies that

Eff1(X)= Eff1(X)KX≥0+
∑

i

R≥0[Ci ],
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where the Ci are KX -negative curves. According to Theorem 5.2,

Eff1(X)∩Eff1(X)KX≥0 = P ∩ K≥0.

Hence it suffices to show that Dδ ·C ≥ 0 if C is KX -negative, and that Dδ ·C ≥ 0 if
C has C2

≥ 0 and C · H > 0.
First, suppose that C is a pseudoeffective class with KX ·C < 0. We have

3Dδ − KX = (3δ− 1)(e0+ e1)+ (3δ′− 1)
9∑

j=2

e j ,

and so

3Dδ ·C = KX ·C + ((3δ− 1)(e0+ e1)+ (3δ′− 1)
9∑

j=2

e j ) ·C.

However, since δ < 1
3 , the number 3δ−1 is negative. It is easy to check that δ′ < 1

3
as well, and so the divisor on the right is a sum of exceptional divisors with negative
coefficients. If C is any curve other than one of the ei , then both terms on the right
are negative. If C is one of the curves ei , then Dδ ·C > 0 because δ and δ′ are both
positive.

It remains to check that Dδ ·C > 0 if C is a class with positive self-intersection.
This follows from the Cauchy–Schwartz inequality. Suppose that d2

≥
∑

a2
i and

e2
≥
∑

b2
i , then de ≥

∑
ai bi . Moreover, equality is achieved if and only if C is a

multiple of Dδ.

(2′) Since Dδ is of the form h− δe0− δe1− · · ·, we have D · e0 = D · e1.

(3′) Because δ > δ′, we have D · e0 > D · e j for any j > 1. We also have

D · (h− e1− ei − e j )= 1− δ− 2δ′ > 0,

since δ′ < δ < 1
3 . �

Remark 5.5. One can even arrange that Dδ is a rational class through judicious
choice of δ. For example,

D 226
692
= h− 226

692
(e0+ e1)−

217
692

9∑
i=2

ei .

In general such classes are not expected to have any effective representatives.

Assuming the SHGH conjecture, we can now conclude that Eff
2(

Xn
r
)

is not
finitely generated if r ≥ n+ 6. We need the following lemma, which guarantees
that cones over extremal classes in Effk

(
Xn

r
)

are extremal in Effk+1
(
Xn+1

r+1

)
.
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Lemma 5.6. Suppose that D = aHk −
∑r

i=1 ai Ei,k spans an extremal ray on
Effk

(
Xn

r
)
. Then CD = aHk+1 − aE0,k+1 −

∑r
i=1 ai Ei,k+1 spans an extremal ray

on Effk+1
(
Xn+1

r+1

)
. In particular, if Effk

(
Xn

r
)

has infinitely many extremal rays, then
so does Effk+1

(
Xn+1

r+1

)
.

Lemma 5.6 immediately implies the following.

Corollary 5.7. Assume the SHGH conjecture for the blowup of P2 at 10 points.
Then Eff

2(
Xn

r
)

is not finitely generated if r ≥ n+ 6.

Proof of Lemma 5.6. Given r + 1 very general points p0, . . . , pr in Pn+1, their
projection from p0 gives r very general points in Pn . Let Di be effective cycles
arbitrarily close to D in Effk

(
Xn

r
)
. Then the classes of the cones CDi over Di

converge to CD. Hence CD ∈ Effk+1
(
Xn+1

r+1

)
.

Conversely, we claim that if CD = aHk+1− aE0−
∑r

i=1 bi Ei,k+1 is a pseudo-
effective (k+1)-cycle on X r+1

n+1, then D = aHk −
∑r

i=1 bi Ei,k is a pseudoeffective
k-cycle on X r

n . The class CD + εHk+1 is effective for any ε > 0. Let Vε be
a (rational) cycle representing the class CD + εHk+1. Let `0 j denote the strict
transform on X r+1

n+1 of the line through p0 and p j . By Lemma 2.10, Vε contains the
line `0 j with multiplicity β j ≥ b j − ε. Let L ⊂ Xn+1

r+1 be the proper transform of a
general hyperplane in Pn+1. The lines l0 j intersect L in r very general points p.
The proper transform of the intersection L ∩ Vε gives an effective cycle with class
(a+ ε)Hk −

∑ j
i=1 β j E j,k . Letting ε tend to 0, we see that aHk −

∑r
i=1 bi Ei,k is

pseudoeffective in Xn
r , as required.

Now, suppose that D = aHk −
∑r

i=1 bi Ei,k spans an extremal ray of Effk
(
Xn

r
)
.

We claim that CD = aHk+1− aE0,k+1−
∑r

i=1 bi Ei,k+1 spans an extremal ray of
Effk+1

(
Xn+1

r+1

)
. Suppose CD = α + β, where α and β are both pseudoeffective

(k+1)-cycles on Xn+1
r+1 . Since any pseudoeffective class has a ≥ b0, it must be that

α= cHk+1−cE0,k+1−

r∑
i=1

ci Ei,k+1 and β = d Hk+1−d E0,k+1−

r∑
i=1

di Ei,k+1.

Then

α0 = cHk −

r∑
i=1

ci Ei,k and β0 = d Hk −

r∑
i=1

ei Ei,k .

are pseudoeffective on Xn
r . Hence α0 and β0 are proportional to D. It follows that

α and β are proportional to CD and CD is extremal. �

There are several interesting remaining questions concerning the finite generation
of cones of higher codimension.

Question 5.8. Can one show that Effn−2
(
Xn

r
)

is not finitely generated for r ≥ n+6
independently of the SHGH conjecture?
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Question 5.9. Fix n and k. Does there exist r for which Effk
(
Xn

r
)

is not finitely
generated? How does r depend on n and k?

In particular, we have the following fundamental question:

Question 5.10. For every n, does there exist r for which Eff1
(
Xn

r
)

is not finitely
generated?

If Eff1
(
Xn

r
)

is not finitely generated for r ≥ r0, then by Lemma 5.6 Effk
(
Xn+k−1

r+k−1

)
is not finitely generated for r ≥ r0. Hence an affirmative answer to Question 5.10
implies an affirmative answer to Question 5.9.

6. Blowups at points in special position

Until now we have considered blowups of Pn at linearly general or very general
points. It is also interesting to consider cones of effective cycles on blowups of Pn

at special configurations of points. The dependence of the cones on the position
of the points can be subtle, which makes degeneration arguments difficult. We
will see that the property of the effective cone being finite is neither an open nor
closed condition, even in families where the vector space of numerical classes of
k-dimensional cycles has constant dimension.

Proposition 6.1. Let 0 be a set of r points whose span is Pm
⊂Pn . Let Xn

0 and Xm
0

denote the blowup of Pn and Pm along 0, respectively, then

(1) Effk
(
Xn
0

)
is linearly generated for m ≤ k ≤ n− 1 and

(2) Effk
(
Xn
0

)
= Effk

(
Xm
0

)
for k < m.

Proof. Since Xm
0 embeds in Xn

0 as the proper transform of the Pm spanned by 0,
any effective cycle Z ⊂ Xm

0 is also an effective cycle in Xn
0 with the same class.

Hence Effk
(
Xm
0

)
⊆ Effk

(
Xn
0

)
for k <m. Conversely, suppose that k <m. Let Z be

an effective cycle in Pn of dimension k with class [Z ]. We may assume that Z is
not contained in an exceptional divisor. Choose a general point p. Let qi denote
the projection of pi from p and let Z ′ be the projection of Z from p. Then Z ′

and Z have the same degree and the multiplicities of Z ′ at qi are greater than or
equal to the multiplicities of Z at pi . Repeatedly projecting Z to Pm from general
points, we obtain an effective cycle contained in Pm . Since [Z ] differs from the
class of this cycle by a positive combination of exceptional linear spaces Ei,k ,
we conclude that [Z ] is effective on Xm

0 . Taking closures, we obtain the reverse
inclusion Effk

(
Xn
0

)
⊆ Effk

(
Xm
0

)
.

If k ≥ m, let L be a k-dimensional linear space containing 0. Then the proper
transform L of L has class Hk −

∑r
i=1 Ei,k . Since a k-dimensional variety not

contained in an exceptional divisor has class aHk−
∑r

i=1 bi Ei,k , with a≥bi ≥0, we
conclude that any k-dimensional effective cycle is a nonnegative linear combination
of [L] and Ei,k , 1≤ i ≤ r . �
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By taking m = 1, we obtain the following corollary.

Corollary 6.2. Suppose 0 is a set of r collinear points in Pn . Then Effk
(
Xn
0

)
is

linearly generated for every 1≤ k ≤ n− 1.

Remark 6.3. It was shown in [Ottem 2011] that the blowup of P2 in collinear points
is a Mori dream space (and indeed its Cox ring can be computed). Consequently, the
cone of curves and divisors are finite polyhedral. The previous corollary generalizes
this to all cycles.

Let L ∼= Pn−1 be a hyperplane in Pn . Let 0′ ⊂ L be a set of points p1, . . . , pr

and let p0 ∈Pn be a point not contained in L . Let 0 = 0′∪{p0}. Let Xn
0 and Xn−1

0′

denote the blowup of Pn and Pn−1 along 0 and 0′, respectively. Taking cones with
vertex at p0, we generate a subcone CEffk

(
Xn−1
0′

)
⊂ Effk+1

(
Xn
0

)
.

Proposition 6.4. The cone Effk+1
(
Xn
0

)
is generated by CEffk

(
Xn−1
0′

)
, Effk+1

(
Xn−1
0′

)
,

and E0,k+1. Furthermore, the extremal rays of CEffk
(
Xn−1
0′

)
are also extremal in

Effk+1
(
Xn
0

)
.

Proof. Let Z = aHk+1 −
∑r

i=0 bi Ei,k+1 be an irreducible (k+1)-dimensional
variety in Xn

0 . We may assume that Z is not contained in any exceptional divisors.
Otherwise, its class is a positive multiple of Ei,k+1. The proper transform of L
in Xn

0 is isomorphic to Xn−1
0′ . If Z is contained in Xn−1

0′ , then the class of Z is
in Effk+1

(
Xn−1
0′

)
. Otherwise, Z ∩ Xn−1

0′ is an effective k cycle with class α′ =
aHk−

∑r
i=1 b′i Ei,k , where b′i ≥ bi . Consequently, the class α= aHk−

∑r
i=1 bi Ei,k

is effective. Then the cone C(α) is an effective class in Xn
0 and, since b0 ≤ a, [Z ]

is in the span of E0,k+1 and C(α).
Let Z be a cycle that generates an extremal ray of CEffk

(
Xn−1
0′

)
. Suppose

[Z ] = α + β in Effk+1
(
Xn
0

)
. Since b0 ≤ a holds on Effk+1

(
Xn
0

)
and b0 = a on

CEffk
(
Xn−1
0′

)
, we must have that both α and β satisfy b0=a. We can perturb α and β

by εHk+1 to obtain rational effective classes. Since the coefficient of E0,k+1 of any
class contained in Effk+1

(
Xn−1
0′

)
is 0, the coefficients of any component of the class

contained in Effk+1
(
Xn−1
0′

)
are bounded by ε. Taking cones over the classes of the

hyperplane sections of the remaining subvarieties and letting ε tend to zero, we see
that both α and β are contained in CEffk g

(
Xn−1
0′

)
. By the extremality of Z , we

conclude that they are both proportional to [Z ]. �

Corollary 6.5. Let 0 be a set of points {q1, . . . , q9, p1, . . . , ps−1} such that the
qi are general points in a plane P ⊂ Pn and the pi are linearly general points
with span disjoint from P. Then Effk

(
Xn
0

)
is not finitely generated for k ≤ s and is

linearly generated for k > s.

Proof. When r ≥ 9, the blowup of P2 at r general points has infinitely many
(−1)-curves, which span extremal rays of the effective cone of curves. Applying
Proposition 6.4 (k−1)-times, the cones over the classes of (−1)-curves with vertex
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p1, . . . , pk−1 provide infinitely extremal rays of Effk
(
Xn
0

)
for k ≤ s. The linear

generation of Effk
(
Xn
0

)
for k > s follows from Proposition 6.1. �

Corollary 6.6. (1) Linear generation of Effk
(
Xn
0

)
is not closed in smooth families.

(2) Finite generation of Effk
(
Xn
0

)
is not closed in smooth families.

Proof. Let n ≥ k+ 8. Take a general smooth curve B in (Pn)k+8 which avoids all
the diagonals and contains a point 0 ∈ B where 9 of the points are general points in
a plane P and the remaining points are in linearly general position with span not
intersecting P . Such curves exist by Bertini’s Theorem since the diagonals have
codimension n ≥ 2. Consider the family X → B, where Xb is the blowup of Pn

in the k + 8 points 0b parametrized by b ∈ B. If the points in 0b are in linearly
general position, then by Lemma 3.3 the cone Effk

(
X0b

)
is linearly generated. In

particular, the cone is finite. However, by Corollary 6.5, Effk
(
X00

)
is not finitely

generated. In particular, the cone is not linearly generated. �

Corollary 6.7. (1) Linear generation of Effk
(
Xn
0

)
is not open in smooth families.

(2) Finite generation of Effk
(
Xn
0

)
is not open in smooth families.

Proof. Let B be a smooth curve parametrizing 9 general points in a plane P
becoming collinear at 0 ∈ B. Let 0′ be k− 1 points in general linear position in Pn

whose span is disjoint from P . Let 0b be the union of 0′ and the points parametrized
by b. Consider the family X → B obtained by blowing up Pn along 0b. When the
points are collinear, Effk

(
X00

)
is linearly generated. However, for the general point

of B, Effk
(
X0b

)
is not finitely generated by Corollary 6.5. �

Remark 6.8. Corollary 6.7 is well-known for cones of divisors. For example,
Castravet and Tevelev [2006] prove that the blowup of Pn at points on a rational
normal curve is a Mori dream space. In particular, if we specialize a large number
of points to lie on a rational normal curve, we see that being a Mori dream space is
not an open condition.

One can ask for the finite/linear generation of Effk
(
Xn
0

)
for 0 any special set of

points. Perhaps the following question is the most interesting among them.

Question 6.9. Let 0 be a set of points contained in a rational normal curve in Pn .
Is Effk

(
Xn
0

)
finitely generated? Is Effk

(
Xn
0

)
generated by the classes of cones over

secant varieties of projections of the rational normal curve?

By results of Castravet and Tevelev, the answer to Question 6.9 is affirmative for
curves and divisors. The cone of curves Eff1

(
Xn
0

)
is generated by the class of the

proper transform of the rational normal curve nH1−
∑r

i=1 Ei,1 and the classes of
lines. The rational normal curve is cut out by quadrics. If a curve B has positive
intersection with a quadric containing the points, then by Lemma 2.6 the class of
B is spanned by the classes of lines. Otherwise, B is contained in the base locus
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of all the quadrics containing the rational normal curve. Hence B is a multiple
of the rational normal curve. Castravet and Tevelev [2006] show that the classes
of divisors are generated by linear spaces and codimension-1 cones over secant
varieties of the projection of the rational normal curve. We do not know whether
Eff2

(
Xn
0

)
is generated by the classes of planes and cones over the rational normal

curve with vertex a point of 0.
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