
Algebra &
Number
Theory

Volume 11

2017
No. 10

msp



Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


msp
ALGEBRA AND NUMBER THEORY 11:10 (2017)

dx.doi.org/10.2140/ant.2017.11.2213

Tate cycles on
some unitary Shimura varieties mod

David Helm, Yichao Tian and Liang Xiao

Let F be a real quadratic field in which a fixed prime p is inert, and E0 be
an imaginary quadratic field in which p splits; put E = E0 F. Let X be the
fiber over Fp2 of the Shimura variety for G(U (1, n − 1)×U (n − 1, 1)) with
hyperspecial level structure at p for some integer n≥ 2. We show that under some
genericity conditions the middle-dimensional Tate classes of X are generated by
the irreducible components of its supersingular locus. We also discuss a general
conjecture regarding special cycles on the special fibers of unitary Shimura
varieties, and on their relation to Newton stratification.
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1. Introduction

The study of the geometry of Shimura varieties lies at the heart of the Langlands
program. Arithmetic information of Shimura varieties builds a bridge relating the
world of automorphic representations and the world of Galois representations.

One of the interesting topics in this area is to understand the supersingular
locus of the special fibers of Shimura varieties, or more generally, any interesting
stratifications (e.g., Newton or Ekedahl–Oort stratification) of the special fibers
of Shimura varieties. The case of unitary Shimura varieties has been extensively

MSC2010: primary 11G18; secondary 11R39, 14C17, 14C25, 14G35.
Keywords: Supersingular locus, Special fiber of Shimura varieties, Deligne–Lusztig varieties, Tate

conjecture.
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studied. Vollaard and Wedhorn [2011] showed that the supersingular locus of the
special fiber of the GU (1, n− 1)-Shimura variety at an inert prime is a union of
Deligne–Lusztig varieties. Further, Howard and Pappas [2014] studied the case
of GU (2, 2) at an inert prime, and Rapoport, Terstiege and Wilson proved similar
results for GU (n− 1, 1) at a ramified prime. Finally, we remark that Görtz and He
[2015] studied the basic loci in a slightly more general class of Shimura varieties.

In all the work mentioned above, the authors use the uniformization theorem of
Rapoport–Zink to reduce the problem to the study of certain Rapoport–Zink spaces.
In this paper, we take a different approach. Instead of using the uniformization
theorem, we study the basic locus (or more generally other Newton strata) of certain
unitary Shimura varieties by considering correspondences between unitary Shimura
varieties of different signatures. This method was introduced by the first author in
[Helm 2010; 2012], and applied successfully to quaternionic Shimura varieties by
the second and the third authors [Tian and Xiao 2016].

Another new aspect of this work is that we study not only the global geometry
of the supersingular locus, but also their relationship with the Tate conjecture for
Shimura varieties over finite fields. We show that the basic locus contributes to
all “generic” middle-dimensional Tate cycles of the special fiber of the Shimura
variety. Similar results have been obtained by the second and the third authors
for even-dimensional Hilbert modular varieties at an inert prime [Tian and Xiao
2014]. We believe that, this phenomenon is a general philosophy which holds for
more general Shimura varieties. Our slogan is: irreducible components of the basic
locus of a Shimura variety should generate all Tate classes under some genericity
condition on the automorphic representations.

We explain in more detail the main results of this paper. Let F be a real quadratic
field, E0 be an imaginary quadratic field, and E = E0 F. Let p be a prime number
inert in F, and split in E0. Let p, p̄ denote the two places of E above p so that Ep and
Ep̄ are both isomorphic to Qp2 , the unique unramified quadratic extension of Qp. For
an integer n≥1, let G be the similitude unitary group associated to a division algebra
over E equipped with an involution of second kind. In the notation of Section 3.6,
our G is denoted G1,n−1. This is an algebraic group over Q such that G(Qp) '

Q×p×GLn(Ep) and G(R) is the unitary similitude group with signature (1, n−1) and
(n−1, 1) at the two archimedean places. (For a precise definition, see Section 2.2.)

Let A denote the ring of finite adeles of Q, and A∞ be its finite part. Fix a
sufficiently small open compact subgroup K ⊆G(A∞)with Kp=Z×p×GLn(Zp2)⊆

G(Qp), where Zp2 is the ring of integers of Qp2 . Let Sh(G)K be the Shimura
variety associated to G of level K.1

1Strictly speaking, the moduli space Sh(G)K is # ker1(Q,G)-copies of the classical Shimura
variety whose C-points are given by the double coset space G(Q) \G(A)/K∞K, where K∞ ⊆ G(R)
is the maximal compact subgroup modulo center. See [Kottwitz 1992b, page 400] for details.
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According to Kottwitz [1992b], when K p is neat, Sh(G)K admits a proper
and smooth integral model over Zp2 which parametrizes certain polarized abelian
schemes with K -level structure (See Section 2.3). Let Sh1,n−1 denote the special
fiber of Sh(G)K over Fp2 . This is a proper smooth variety over Fp2 of dimension
2(n− 1). Let Shss

1,n−1 denote the supersingular locus of Sh1,n−1, i.e., the reduced
closed subvariety of Sh1,n−1 that parametrizes supersingular abelian varieties. We
will see in Proposition 4.14 that Shss

1,n−1 is equidimensional of dimension n− 1.
Fix a prime ` 6= p. There is a natural action by Gal(Fp/Fp2)×Q`[K \G(A∞)/K ]

on the `-adic étale cohomology group H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n−1)). We will take
advantage of the Hecke action to consider a variant of the Tate conjecture for Sh1,n−1.

Fix an irreducible admissible representation π of G(A∞) (with coefficients in Q`).
The K -invariant subspace of π , denoted by πK, is a finite-dimensional irreducible
representation of the Hecke algebra Q`[K \G(A∞)/K ]. We denote the πK -isotypic
component of H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n− 1)) by H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n− 1))π

and put

H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n−1))fin
π :=

⋃
Fq/Fp2

H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n−1))Gal(Fp/Fq )
π ,

where Fq runs through all finite extensions of Fp2 . By projecting to the πK -isotypic
component, we have an `-adic cycle class map:

cln−1
π : An−1(Sh1,n−1,Fp

)⊗Z Q`→ H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n− 1))fin
π , (1.0.1)

where An−1(Sh1,n−1,Fp
) is the abelian group of codimension n− 1 algebraic cycles

on Sh1,n−1,Fp
. Then the Tate conjecture for Sh1,n−1 predicts that the above map is

surjective. Our main result confirms exactly this statement under some “genericity”
assumptions on π .

From now on, we assume that π satisfies Hypothesis 2.5 to ensure the non-
triviality of the π-isotypic component of the cohomology groups. In particu-
lar, π is the finite part of an automorphic cuspidal representation of G(A), and
H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n−1))π 6=0. Let πp denote the p-component of π , which is

an unramified principal series as Kp is hyperspecial. Since G(Qp)'Q×p×GLn(Ep),
we write πp = πp,0⊗πp, where πp,0 is a character of Q×p and πp is an irreducible
admissible representation of GLn(Ep).

Our main theorem is the following.

Theorem 1.1. Suppose π is the finite part of an automorphic representation of
G(A) that admits a cuspidal base change to GLn(AE)×A×E0

, and the Satake param-
eters of πp are distinct modulo roots of unity. Then H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n−1))fin

π

is generated by the cohomological classes of the irreducible components of the
supersingular locus Shss

1,n−1. In particular, the cycle class map (1.0.1) is surjective.
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This theorem will be restated in a more precise form in Theorem 4.18. Here,
the assumption that the Satake parameters of πp are distinct modulo roots of unity
is crucial for our method. It is closely tied to our geometric description of the
irreducible components. This condition will be reformulated in Theorem 4.18 in
terms of the Frobenius eigenvalues of certain Galois representation attached to
πp via the unramified local Langlands correspondence. The other automorphic
assumption on π is of technical nature. It is imposed here to ensure certain equalities
on the automorphic multiplicity on π (See Remark 4.19). The method of our paper
may be extended to more general representations π if we have more knowledge of
the multiplicity of automorphic forms on unitary groups.

What we will prove is more precise than stated in Theorem 1.1. We need another
unitary group G ′ = G0,n over Q for E/F as in Lemma 2.9, which is the unique
inner form of G such that G ′(A∞)' G(A∞) and the signatures of G ′ at the two
archimedean places are (0, n) and (n, 0). Let Sh0,n denote the (zero-dimensional)
Shimura variety over Fp2 associated to G ′. We will show in Proposition 4.14
that the supersingular locus Shss

1,n−1 is a union of n closed subvarieties Yj with
1 ≤ j ≤ n such that each of Yj admits a fibration over Sh0,n of the same level
K ⊆ G(A∞) ' G ′(A∞) with fibers isomorphic to a certain proper and smooth
closed subvariety in a product of Grassmannians. In other words, each Yj is an
algebraic correspondence between Sh1,n−1 and Sh0,n:

Sh0,n← Yj → Sh1,n−1 .

This can be viewed as a geometric realization of the Jacquet–Langlands corre-
spondence between G and G ′ in the sense of [Helm 2010]. Alternatively, we
may view these Yj as Hecke correspondences between special fibers of unitary
Shimura varieties of different signatures. To prove Theorem 1.1, it suffices to
show that, when the Satake parameters of πp are distinct modulo roots of unity,
H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n − 1))fin

π is generated by the cohomology classes of the
irreducible components of Yj . The key point is to show that the π -projection of the
intersection matrix of Yj is nondegenerate under the assumption above on πp.

We briefly describe the structure of this paper. In Section 2, we consider a more
general setup of unitary Shimura varieties, and propose a general conjecture, which
roughly predicts the existence of certain algebraic correspondences between the
special fibers of Shimura varieties with hyperspecial level at p associated to unitary
groups with different signatures at infinity (Conjecture 2.12). Theorem 1.1 is a
special case of Conjecture 2.12. We believe that our conjecture will provide a new
perspective to understand the special fibers of Shimura varieties. In Section 3, we
review some Dieudonné theory and Grothendieck–Messing deformation theory
that will be frequently used in later sections. Section 4 is devoted to the study of
the supersingular locus Shss

1,n−1, and constructing the subvarieties Yj mentioned
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above. In Section 5, we compute certain intersection numbers on products of
Grassmannian varieties. These numbers will play a fundamental role in our later
computation of the intersection matrix of the Yj . In Section 6, we will compute
explicitly the intersection matrix of the Yj (Theorem 6.7), and show that its π-
isotypic projection of the intersection matrix is nondegenerate as long as the Satake
parameters of πp are distinct (as opposed to being distinct modulo roots of unity).
Then an easy cohomological computation allows us to conclude the proof of our
main theorem. In Section 7, we will generalize the construction of the cycles Yj to
the Shimura variety associated to unitary group for E/F of signature (r, s)× (s, r)
at infinity. In this case, we only obtain some partial results on these cycles predicted
by Conjecture 2.12: the union of these cycles is exactly the supersingular locus of
the unitary Shimura variety in question (Theorem 7.8).

2. The conjecture on special cycles

We will only discuss certain unitary Shimura varieties so that the description
becomes explicit. We will discuss after Conjecture 2.12 on how to possibly extend
this conjecture to more general Shimura varieties.

2.1. Notation. We fix a prime number p throughout this paper. We fix an isomor-
phism ιp :C−→

∼ Qp. Let Qur
p be the maximal unramified extension of Qp inside Qp.

Let F be a totally real field of degree f in which p is inert. We label all real
embeddings of F, or equivalently (via ιp), all p-adic embeddings of F (into Qur

p ) by
τ1, . . . , τ f so that post-composition by the Frobenius map takes τi to τi+1. Here the
subindices are taken modulo f . Let E0 be an imaginary quadratic extension of Q in
which p splits. Put E = E0 F. Denote by v and v̄ the two p-adic places of E0. Then
p splits into two primes p and p̄ in E , where p (resp. p̄) is the p-adic place above v
(resp. v̄). Let qi denote the embedding E→ Ep

∼= Fp
τi−→Qp and q̄i the analogous

embedding which factors through Ep̄ instead. Composing with ι−1
p , we regard qi

and q̄i as complex embeddings of E , and we put 6∞,E = {q1, . . . , q f , q̄1, . . . , q̄ f }.

2.2. Shimura data. Let D be a division algebra of dimension n2 over its center E ,
equipped with a positive involution ∗ which restricts to the complex conjugation c
on E . In particular, Dopp ∼= D⊗E,c E. We assume that D splits at p and p̄, and we
fix an isomorphism

D⊗Q Qp 'Mn(Ep)×Mn(Ep̄)∼=Mn(Qp f )×Mn(Qp f ),

where ∗ switches the two direct factors. We use e to denote the element of D⊗Q Qp

corresponding to the (1, 1)-elementary matrix2 in the first factor. Let a•= (ai )1≤i≤ f

2By a (1, 1)-elementary matrix, we mean an n× n-matrix whose (1, 1)-entry is 1 and whose other
entries are zero.
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be a tuple of f numbers with ai ∈ {0, . . . , n}. Assume that there exists an element
βa• ∈ (D

×)∗=−1 such that the following condition is satisfied:3

Let Ga• be the algebraic group over Q such that Ga•(R) for a Q-algebra R
consists of elements g ∈ (Dopp

⊗Q R)× with gβa•g
∗
= c(g)βa• for some c(g) ∈ R×.

If G1
a• denotes the kernel of the similitude character c : Ga• → Gm,Q, then there

exists an isomorphism

G1
a•(R)'

f∏
i=1

U (ai , n− ai ),

where the i-th factor corresponds to the real embedding τi : F ↪→ R.
Note that the assumption on D at p implies that

Ga•(Qp)'Q×p ×GLn(Ep)∼=Q×p ×GLn(Qp f ).

We put Va• = D and view it as a left D-module. Let 〈−,−〉a• : Va• × Va•→Q be
the perfect alternating pairing given by

〈x, y〉a• = TrD/Q(xβa• y
∗) for x, y ∈ Va• .

Then Ga• is identified with the similitude group associated to (Va•, 〈−,−〉a•), i.e.,
for all Q-algebra R, we have

Ga•(R)= {g ∈ EndD⊗Q R(Va•⊗Q R) | 〈gx,gy〉a• = c(g)〈x,y〉a• for some c(g) ∈ R×}.

Consider the homomorphism of R-algebraic groups h : ResC/R(Gm)→ Ga•,R

given by

h(z)=
f∏

i=1

Diag(z, . . . , z︸ ︷︷ ︸
ai

, z̄, . . . , z̄︸ ︷︷ ︸
n−ai

), for z = x +
√
−1y. (2.2.1)

Let µh : Gm,C→ Ga•,C be the composite of hC with the map

Gm,C→ ResC/R(Gm)C ∼= C××C×, z 7→ (z, 1).

Here, the first copy of C× in ResC/R(Gm)C is the one indexed by the identity element
in AutR(C), and the other copy of C× is indexed by the complex conjugation.

Let Eh be the reflex field of µh , i.e., the minimal subfield of C where the
conjugacy class of µh is defined. It has the following explicit description. The
group AutQ(C) acts naturally on 6∞,E , and hence on the functions on 6∞,E .
Then Eh is the subfield of C fixed by the stabilizer of the Z-valued function a on
6∞,E defined by a(qi )= ai and a(q̄i )= n− ai . The isomorphism ιp : C−→

∼ Qp

3As explained in the proof of [Harris and Taylor 2001, Lemma I.7.1], when n is odd, such βa•
always exists, and when n is even, existence of βa• depends on the parity of a1+ · · ·+ a f . See also
the proof of Lemma 2.9.
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defines a p-adic place ℘ of Eh . By our hypothesis on E , the local field Eh,℘ is
an unramified extension of Qp contained in Qp f , the unique unramified extension
over Qp of degree f .

2.3. Unitary Shimura varieties of PEL-type. Let OD be a ∗-stable order of D and
3a• an OD-lattice of Va• such that 〈3a•,3a•〉a• ⊆ Z and 3a• ⊗Z Zp is self-dual
under the alternating pairing induced by 〈−,−〉a• . We put Kp =Z×p ×GLn(OEp)⊆

Ga•(Qp), and fix an open compact subgroup K p
⊆Ga•(A

∞,p) such that K =K p Kp

is neat, i.e., Ga•(Q)∩ gK g−1 is torsion free for any g ∈ Ga•(A
∞).

Following [Kottwitz 1992b], we have a unitary Shimura variety Sha• defined
over Zp f ;4 it represents the functor that takes a locally noetherian Zp f -scheme S to
the set of isomorphism classes of tuples (A, λ, η), where

(1) A is an f n2-dimensional abelian variety over S equipped with an action of
OD such that the induced action on Lie(A/S) satisfies the Kottwitz determi-
nant condition, that is, if we view the reduced relative de Rham homology
H dR

1 (A/S)◦ := eH dR
1 (A/S) and its quotient Lie◦A/S := e ·LieA/S as a module

over Fp ⊗Zp OS ∼=
⊕ f

i=1 OS , they, respectively, decompose into the direct
sums of locally free OS-modules H dR

1 (A/S)◦i of rank n and, their quotients,
locally free OS-modules Lie◦A/S,i of rank n− ai ;

(2) λ : A→ A∨ is a prime-to-p OD-equivariant polarization such that the Rosati
involution induces the involution ∗ on OD;

(3) η is a collection of, for each connected component S j of S with a geometric
point s̄ j , a π1(S j , s̄ j )-invariant K p-orbit of isomorphisms η j :3a• ⊗Z Ẑ(p) '

T (p)(As̄ j ) such that the following diagram commutes for an isomorphism
ν(η j ) ∈ Hom(Ẑ(p), Ẑ(p)(1)):

3a• ⊗Z Ẑ(p)×3a• ⊗Z Ẑ(p)

η j×η j

��

〈−,−〉
// Ẑ(p)

ν(η j )

��

T (p)As̄ j × T (p)As̄ j

Weil pairing
// Ẑ(p)(1),

where Ẑ(p) =
∏
6̀=p Z` and T (p)(As̄ j ) denotes the product of the `-adic Tate

modules of As̄ j for all ` 6= p.

The Shimura variety Sha• is smooth and projective over Zp f of relative dimension
d(a•) :=

∑ f
i=1 ai (n− ai ). Note that if ai ∈ {0, n} for all i , then Sha• is of relative

dimension zero; we call it a discrete Shimura variety.

4Although one can descend Sha• to the subring OEh,℘ of Zp f , we ignore this minor improvement.
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We denote by Sha•(C) the complex points of Sha• via the embedding

Zp f ↪→Qp
ι−1

p
−→ C.

Let K∞ ⊆ Ga•(R) be the stabilizer of h (2.2.1) under the conjugation action, and
let X∞ denote the Ga•(R)-conjugacy class of h. Then K∞ is a maximal compact-
modulo-center subgroup of Ga•(R). According to [Kottwitz 1992b, page 400], the
complex manifold Sha•(C) is the disjoint union of # ker1(Q,Ga•) copies of

Ga•(Q) \ (Ga•(A
∞)× X∞)/K ∼= Ga•(Q) \Ga•(A)/K × K∞. (2.3.1)

Here, if n is even, then ker1(Q,Ga•)= (0), while if n is odd then

ker1(Q,Ga•)= Ker(F×/Q×NE/F (E×)→ A×F /A
×NE/F (A

×

E )).

In either case, ker1(Q,Ga•) depends only on the CM extension E/F and the parity
of n but not on the tuple a•.

Let Sha• := Sha• ⊗Zp f Fp f denote the special fiber of Sha• , and let Sha• :=

Sha• ⊗Fp f Fp denote the geometric special fiber.

2.4. `-adic cohomology. We fix a prime number ` 6= p, and an isomorphism
ι` : C ' Q`. Let ξ be an algebraic representation of Ga• over Q`, and ξC be the
base change via ι−1

` . The theory of automorphic sheaves [Milne 1990, Section III]
or just reading off from the rational `-adic Tate modules of the universal abelian
variety allows us to attach to ξ a lisse Q`-sheaf Lξ over Sha• . For example, if ξ is
the representation of Ga• on the vector space Va• (Section 2.2), the corresponding
`-adic local system is given by the rational `-adic Tate module (tensored with Q`)
of the universal abelian scheme over Sha• .

We assume that ξ is irreducible. Let HK = H(K ,Q`) be the Hecke algebra
of compactly supported K -bi-invariant Q`-valued functions on Ga•(A

∞). The
étale cohomology group H d(a•)

et (Sha•,Lξ ) is equipped with a natural action of
HK × Gal(Fp/Fp f ). Since Sha• is proper and smooth, there is no continuous
spectrum and we have a canonical decomposition of HK ×Gal(Fp/Fp f )-modules
(see, e.g., [Harris and Taylor 2001, Proposition III.2.1])

H d(a•)
et (Sha•,Lξ )=

⊕
π∈Irr(Ga• (A

∞))

ι`(π
K )⊗ Ra•,`(π), (2.4.1)

where Irr(Ga•(A
∞)) is the set of irreducible admissible representations of Ga•(A

∞)

with coefficients in C, πK is the K -invariant subspace of π ∈ Irr(Ga•(A
∞)) and

Ra•,`(π) is a certain `-adic representation of Gal(Fp/Fp f ) which we specify below.
We write H d(a•)

et (Sha•,Lξ )π for the π-isotypic component of the cohomology
group, that is, the direct summand of (2.4.1) labeled by π . We make the following
assumptions on π .
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Hypothesis 2.5. (1) We have πK
6= 0.

(2) There exists an admissible irreducible representation π∞ of Ga•(R) such that
π ⊗π∞ is a cuspidal automorphic representation of Ga•(A),

(2a) π∞ is cohomological in degree d(a•) for ξ in the sense that

H d(a•)(Lie(Ga•(R)), K∞, π∞⊗ ξC) 6= 0, 5 (2.5.1)

where K∞ is a maximal compact subgroup of Ga•(R),
(2b) and π⊗π∞ admits a base change to a cuspidal automorphic representation

of GLn(AE)×A×E0
.

Note that Hypothesis 2.5(1) implies that the p-component πp is unramified.
Hypothesis 2.5 (2a) ensures that Ra•,`(π) is nontrivial. Moreover, by [Caraiani
2012, Theorem 1.2], this hypothesis implies that the base change of π ⊗ π∞ to
GLn,E is tempered at all finite places, and hence πp is tempered.

We recall now an explicit description, due to Kottwitz [1992a], of the Galois
module Ra•,`(π). As Ga•(Qp) = Q×p ×GLn(Ep), we may write πp = πp,0⊗ πp,
where πp,0 is a character of Q×p trivial on Z×p , and πp is an irreducible admissible
representation of GLn(Ep) such that πGLn(OEp )

p 6= 0. Choose a square root
√

p of
p in Q. Depending on this choice of

√
p, one has an (unramified) local Langlands

parameter attached to πp:

ϕπp = (ϕπp,0, ϕπp) :WQp →
L(Ga•,Qp)' C×× (GLn(C)

Z/ f Z oGal(Qp/Qp)).

Here, WQp is the Weil group of Qp, and Gal(Qp/Qp) permutes cyclically the f
copies of GLn(C) though the quotient Gal(Qp f /Qp) ∼= Z/ f Z. The image of
ϕπp |WQ p f

lies in (L Ga•)
◦
'C××GLn(C)

Z/ f Z. The cocharacterµh :Gm,Eh→Ga•,Eh

induces a character µ̌h of (L Ga•)
◦ over Eh . Let rµh denote the algebraic representa-

tion of (L Ga•)
◦ with extreme weight µ̌h . Denote by Frobp f a geometric Frobenius

element in WQp f . Let Q`

(
1/2

)
denote the unramified representation of WQp f which

sends Frobp f to (
√

p)− f . Then Ra•,`(π) can be described in terms of ϕπp as follows.

Theorem 2.6 [Kottwitz 1992a, Theorem 1]. Under the hypothesis and notation
above, we have an equality in the Grothendieck group of WQp f -modules:

[Ra•,`(π)] = # ker1(Q,Ga•)ma•(π)
[
ι`(rµh ◦ϕπp)⊗Q`

(
−

1
2 d(a•)

)]
,

where ma•(π) is a certain integer related to the automorphic multiplicities of
automorphic representations of Ga• with finite part π . 6

5This automatically implies that π∞ has the same central and infinitesimal characters as the
contragradient of ξC.

6Rigorously speaking, Kottwitz’s theorem describes the direct sum of the π-component of all
cohomological degrees. Since our πp is tempered, so π appears only in the middle degree for purity
reasons because Sha• is compact.
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In our case, one can make Kottwitz’s theorem more transparent. Define an `-adic
representation

ρπp = ι`(ϕ
(1),∨
πp

)⊗Q`

( 1
2(1− n)

)
:WQp f → GLn(Q`), (2.6.1)

where ϕ(1),∨πp : WQp f → GLn(C) denotes the contragredient of the projection to
the first (or any) copy of GLn(C). Both ϕπp and Q`

( 1
2

)
depend on the choice of

√
p, but ρπp does not. Explicitly, ρπp(Frobp f ) is semisimple with the characteristic

polynomial given by [Gross 1998, (6.7)]:

Xn
+

n∑
i=1

(−1)i (Np)i(i−1)/2a(i)p Xn−i , (2.6.2)

where a(i)p is the eigenvalue on π
GLn(OEp )

p of the Hecke operator

T (i)
p = GLn(OEp) ·Diag(p, . . . , p︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
n−i

) ·GLn(OEp).

An easy computation shows that rµh = Std−1
Q×p
⊗
⊗ f

i=1(∧
ai Std∨). Since the projec-

tion of ϕπp |WQ
p f

to each copy of GLn(C) is conjugate to all others, Theorem 2.6 is
equivalent to

[Ra•,`(π)]

= # ker1(Q,Ga•) ·ma•(π)
[
ρa•(πp)⊗χ

−1
πp,0
⊗Q`

(∑
i

1
2ai (ai − 1)

)]
, (2.6.3)

where ρa•(πp)= ra• ◦ρπp with ra• =
⊗ f

i=1 ∧
ai Std, and χπp,0 denotes the character

of Gal(Fp/Fp f ) sending Frobp f to ι`(πp,0(p f )).

Remark 2.7. The reason why we normalize the Galois representation as above is the
following: By Hypothesis 2.5, π is the finite part of an automorphic representation
of Ga•(A) which admits a base change to a cuspidal automorphic representation
5⊗χ of GLn(AE)×A×E0

. If ρ5 denotes the Galois representation of Gal(Q/E)
attached to 5, then ρπp is the semisimplification of the restriction of ρ5 to WEp

(See [Caraiani 2012, Theorem 1.1]).

2.8. Tate conjecture. We recall first the Tate conjecture [1966] over finite fields.
Let X be a projective smooth variety over a finite field Fq of characteristic p. Put
X = XFp

. For each prime ` 6= p and integer r ≤ dim(X), we have a cycle class map

clrX : Ar (X)⊗Z Q`→ H 2r
et (X ,Q`(r))Gal(Fp/Fq ),

where Ar (X) denotes the abelian group of codimension r algebraic cycles in X
defined over Fq . Then the Tate conjecture predicts that this map is surjective. One



Tate cycles on some unitary Shimura varieties mod p 2223

has a geometric variant of the Tate conjecture, which claims that the geometric
cycle class map:

clrX : Ar (X)⊗Z Q`→ H 2r
et (X ,Q`(r))fin

:=

⋃
m≥1

H 2r
et (X ,Q`(r))Gal(Fp/Fqm )

is surjective. Here, the superscript “fin” means the subspace on which Gal(Fp/Fq)

acts through a finite quotient. Note that the surjectivity of clr
X

implies that of clrX
by taking the Gal(Fp/Fq)-invariant subspace.

Consider the case X = Sha• with d(a•) even. Let π be an irreducible admissible
representation of Ga•(A

∞) as in Theorem 2.6. By Theorem 2.6, the π-isotypic
component of H d(a•)

et
(
Sha•,Q`

( 1
2 d(a•)

))fin is, up to Frobenius semisimplification7,
isomorphic to dim(πK ) · # ker1(Q,Ga•) ·ma•(π) copies of(

ρa•(πp)⊗χ
−1
πp,0
⊗Q`

(
(n− 1)

2

f∑
i=1

ai

))fin

. (2.8.1)

Note that χπp,0(Frobp f ) = πp,0(p f ) is a root of unity. Hence, the dimension of
(2.8.1) is equal to the sum of the dimensions of the Frobp f -eigenspaces of ρa•(πp)

with eigenvalues (p f )(n−1)/2
∑

i ai ζ for some root of unity ζ . In many examples,
this space is known to be nonzero.

For instance, when f = 2, a1 = r and a2 = n− r for some 1 ≤ r ≤ n− 1, we
have d(a•)= 2r(n− r) and

ρa•(πp)=∧
rρπp ⊗∧

n−rρπp .

Let Vπp,a• denote the space of representation ρa•(πp). If ρπp(Frobp f ) has distinct
eigenvalues α1, . . . , αn , then the eigenvalues of Frobp f on Vπp,a• are given by
αi1 · · ·αir · α j1 · · ·α jn−r , for distinct subscripts i1, . . . , ir and distinct subscripts
j1, . . . , jn−r . This product is exactly (p f )n(n−1)/2a(n)p (note that a(n)p is a root of
unity) if the set {i1, . . . , ir } and the set { j1, . . . , jn−r } are the complement of each
other as subsets of {1, . . . , n}. On the other hand, if the subsets {i1, . . . , ir } and
{ j1, . . . , jn−r } are not the complement of each other and if the αi are “sufficiently
generic”8, the eigenvalue αi1 · · ·αir · α j1 · · ·α jn−r is not a root of unity. In other
words, the dimension of (2.8.1) is “generically” equal to

(n
r

)
. As predicted by the

Tate conjecture, these cohomology classes should come from algebraic cycles. Our
main conjecture addresses exactly this, and it predicts that those desired “generic”

7Conjecturally, the Frobenius action on the étale `-adic cohomology groups of a projective smooth
variety over a finite field is always semisimple.

8For example, if r = 1 and α1 = α2, the eigenvalues α1 ·α1α3α4 · · ·αn is equal to α1 · · ·αn and
hence is pn(n−1) times a root of unity. So to be in the generic case, we will need to require that αi/α j
for i 6= j is not a root of unity if r = 1. For another example, if r = 2, “generic” will mean that αi/α j
for i 6= j and αiαi ′/α jα j ′ for {i, i ′} 6= { j, j ′} are not roots of unity.
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algebraic cycles can be given by the irreducible components of the basic locus, and
are birationally equivalent to certain fiber bundles over the special fiber of some
other Shimura varieties associated to inner forms of Ga• . To make this precise, we
need the following lemma.

Lemma 2.9. Let b•= (bi )1≤i≤ f be a tuple with bi ∈ {0, . . . , n} such that
∑ f

i=1 bi ≡∑ f
i=1 ai (mod 2) if n is even. Then there exists βb• ∈ (D

×)∗=−1 such that

• the alternating D-Hermitian space (Vb•, 〈−,−〉b•) defined using βb• in place
of βa• is isomorphic to (Va•, 〈−,−〉a•) when tensored with A∞, and

• if Gb• denotes the corresponding algebraic group over Q defined in the similar
way with βa• replaced by βb• , then

G1
b•(R)'

f∏
i=1

U (bi , n− bi ).

Proof. We reduce the problem to the existence of a certain cohomology class.
Note that G1

a• = Aut(Va•, 〈−,−〉a•) is the Weil restriction to Q of a unitary group
Ua• over F. The cohomology set H 1(Q,G1

a•)
∼= H 1(F,Ua•) is in bijection with

the isomorphism classes of one-dimensional skew-Hermitian D-modules V. As
Ua• ×F E ' GLn,E , Hilbert’s Theorem 90 for GLn implies that the inflation map
induces an isomorphism

H 1(E/F,Ua•)−→
∼ H 1(F,Ua•).

Denote by g 7→ g]βa• = βa•g
∗β−1

a• the involution on D induced by the alternating
pairing 〈−,−〉a• . Then a 1-cocycle of Gal(E/F) with values in Ua• is given by an
element α ∈ D× such that α = α]βa• , and α1, α2 ∈ D× define the same cohomology
class in H 1(F,Ua•) if and only if there exists g ∈ D× such that gα1g]βa• = α2.
Explicitly, given such an α, the corresponding skew-Hermitian D-module is given
by V = D equipped with the alternating pairing

〈−,−〉α : V × V →Q, (x, y) 7→ TrD/Q(xαβa• y
∗).

For a place v of F, we denote by

locv : H 1(F,Ua•)→ H 1(Fv,Ua•)

the canonical localization map. By [Helm 2012, Proposition 8.1], if
∑ f

i=1 bi ≡∑ f
i=1 ai mod 2, there exists a cohomology class [α] ∈ H 1(F,Ua•) such that

• locv([α]) is trivial for every finite place v of F, and

• if v = τi with 1≤ i ≤ n is an archimedean place, one has an isomorphism of
unitary groups over R: Aut(V ⊗F,τi R, 〈−,−〉α)'U (bi , n− bi ).

Then the element βb• = αβa• meets the requirements of Lemma 2.9. �
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In the sequel, we always fix a choice of βb• , and as well as an isomorphism
γa•,b• : Va• ⊗Q A∞ −→∼ Vb• ⊗Q A∞, which induces an isomorphism Ga•(A

∞) '

Gb•(A
∞). Recall that we have chosen a lattice 3a• ⊆ Va• to define the moduli

problem for Sha• . We put 3b• := Vb• ∩ γa•,b•(3a• ⊗Z Ẑ). Then applying the
construction of Section 2.3 to the lattice 3b• ⊆ Vb• and the open compact subgroup
K p
⊆ Ga•(A

∞,p)' Gb•(A
∞,p), we get a Shimura variety Shb• over Zp f of level

K p as well as its special fiber Shb• . Moreover, an algebraic representation ξ of
Ga• over Q` corresponds, via the fixed isomorphism Ga•(A

∞)' Gb•(A
∞), to an

algebraic representation of Gb• over Q`. We use the same notation Lξ to denote
the étale sheaf on Sha• and Shb• defined by ξ .

2.10. Gysin/trace maps. Before stating the main conjecture of this paper, we recall
the general definition of Gysin maps. Let f :Y→ X be a proper morphism of smooth
varieties over an algebraically closed field k. Let dX and dY be the dimensions
of X and Y respectively. Recall that the derived direct image R f∗ on the derived
category of constructible `-adic étale sheaves has a left adjoint f !. Since both X
and Y are smooth, the `-adic dualizing complex of X (resp. Y ) is Q`(dX )[2dX ]

(resp. Q`(dY )[2dY ]). Therefore, one has

f !(Q`(dX )[2dX ])=Q`(dY )[2dY ].

The adjunction map R f∗ f !Q`→Q` induces a canonical morphism

Tr f : R f∗Q`→Q`(dX − dY )[2(dX − dY )].

More generally, if L is a lisse Q`-sheaf on X, it induces a Gysin/trace map

R f∗( f ∗L)∼= L⊗ R f∗(Q`)
1⊗Tr f
−−−→ L(dX − dY )[2(dX − dY )],

where the first isomorphism is the projection formula [SGA 42 1972, XVII 5.2.9].
When f is flat with equidimensional fibers of dimension dY − dX , this is the trace
map as defined in [SGA 42 1972, XVIII 2.9]. When f is a closed immersion
of codimension r = dX − dY, it is the usual Gysin map. For any integer q, the
Gysin/trace map induces a morphism on cohomology groups:

f! : H
q
et(Y, f ∗L)→ Hq+2(dX−dY )

et (X,L(dX − dY )). (2.10.1)

2.11. Representation theory of GLn. As suggested by the description of Galois
representations appearing in the middle cohomology group of Shimura varieties
in Theorem 2.6, as well as by the Tate conjecture, we need to understand the
representation theory of GLn embedded diagonally into the Langlands dual group

(L Ga•)
◦
' C××GLn(C)

Z/ f Z.
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The Hodge cocharacterµ of Ga• gives rise to the representation ra•=
⊗ f

i=1(∧
ai Std)

of the diagonal GLn . If λ is a dominant weight of GLn (with respect to the usual
diagonal torus and upper triangular Borel subgroup) appearing in ra• , we can write
this weight λ as the sum of f dominant minuscule weights ωb1 + · · ·+ωb f , where
ωi for 0 ≤ i ≤ n is the weight of GLn that takes Diag(t1, . . . , tn) to t1 · · · ti . The
set {b1, . . . , b f } (counted with multiplicity) is unique, which we denote by Bλ.
Explicitly, if λ takes Diag(t1, . . . , tn) to tβ1

1 · · · t
βn
n (necessarily β1 ≤ f ), then

Bλ = {n, . . . , n︸ ︷︷ ︸
βn

, n− 1, . . . , n− 1︸ ︷︷ ︸
βn−1−βn

, . . . , 1, . . . , 1︸ ︷︷ ︸
β1−β0

, 0, . . . , 0︸ ︷︷ ︸
f−β1

}.

Moreover, we always have
∑

ai =
∑

bi . In particular, this implies by Lemma 2.9
that the Shimura variety Shb• makes sense, and the étale sheaf Lξ is well defined
on Shb• .

We write mλ(a•) for the multiplicity of the weight λ in ra• .

Conjecture 2.12. Let Sha• and Lξ be as in Section 2.4. Let λ be a dominant weight
that appears in the representation ra• as in Section 2.11. Define Bλ and mλ(a•) as
in Section 2.11.

Then there exist varieties Y1, . . . , Ymλ(a•) of dimension 1
2(d(a•)+ d(b•)) over

Fp f , equipped with natural action of prime-to-p Hecke correspondences, such that
each Yj fits into a diagram

Yj pr
b( j)
•

((

pr( j)
a•
vv

Sha• Shb( j)
•

satisfying the following properties.

(1) For each j, b( j)
•
= (b( j)

1 , . . . , b( j)
f ) is a reordering of the elements of the

set Bλ, and both pr( j)
a• and prb( j)

•
are equivariant for the prime-to-p Hecke

correspondences.

(2) The morphism pr( j)
a• is a proper morphism and is birational onto the image.

The morphism prb( j)
•

is proper and generically smooth of relative dimension
1
2(d(a•)− d(b•)) (note that d(b•)≡ d(a•) (mod 2) since

∑
i ai =

∑
i bi ).

(3) There exists a p-isogeny of abelian schemes over Yj

φb( j)
• ,a•
: pr∗

b( j)
•

(Ab( j)
•
)→ pr( j),∗

a• (Aa•),

where Aa• and Ab( j)
•

denote respectively the universal abelian scheme on Sha•
and Shb( j)

•
. Let

φb( j)
• ,a•,∗

: pr∗
b( j)
•

Lξ −→∼ pr( j),∗
a• Lξ .
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be the isomorphism of the `-adic sheaves induced by φb( j)
• ,a•

via the construc-
tion in Section 2.4.9

(4) Let π be an irreducible admissible representation of Ga•(A
∞)'Gb( j)

•
(A∞) sat-

isfying Hypothesis 2.5 for both a• and b•, and assume that ma•(π)= mb( j)
•
(π)

for all j 10. Suppose that the n eigenvalues α1, . . . , αn of ρπp(Frobp f ) are
“sufficiently generic” in the sense that the generalized eigenspace decomposition
of ρa•(FrobpN ) for any large N is the same as the weight space decomposition
of the algebraic representation ra• . Then the natural homomorphism of π-
isotypic components11 of the cohomology groups

mλ(a•)⊕
j=1

H d(b•)
et

(
Shb( j)

•
,Lξ

( 1
2 d(b•)

))Frobp f =λ

π

⊕ pr∗
b( j)
•

−−−−→

mλ(a•)⊕
j=1

H d(b•)
et

(
Y j , pr∗

b( j)
•

Lξ
( 1

2 d(b•)
))Frobp f =λ

π

⊕φ
b( j)
• ,a•,∗

−−−−−−→

mλ(a•)⊕
j=1

H d(b•)
et

(
Y j , pr∗a• Lξ

(1
2 d(b•)

))Frobp f =λ

π

∑
pr( j)

a•,!
−−−−→ H d(a•)

et
(
Sha•,Lξ

( 1
2 d(a•)

))Frobp f =λ

π

is an isomorphism, where pr( j)
a•,! is the Gysin map (2.10.1) and the superscript

Frobp f = λ means taking the (direct sum of ) generalized Frobp f -eigenspace
with eigenvalues in the Weyl group orbit

λ ◦ ρπp(Frobp f ) ·χ−1
πp,0
(p f )(

√
p)− f (n−1)

∑
i bi .

Here, since the semisimple conjugacy classes of GLn(Q`) is in natural bijection
with the orbits of T (Q`) under the Weyl group of GLn , it makes sense to
evaluate a dominant weight of T on ρπp(Frobp f ) to get an orbit under the
action of the Weyl group of GLn; hence the notation λ ◦ ρπp(Frobp f ).

In particular, when ξ is the trivial representation and the weight λ is a power
of the determinant (so automatically,

∑
i ai is divisible by n, and d(a•) is even),

the cycles given by the images of Y1, . . . , Ymλ(a•) parameterized by the discrete
Shimura varieties Shb( j)

•
, generate the Tate classes of H d(a•)

et
(
Sha•,Q`

( 1
2 d(a•)

))
π

when ρπp(Frobp f ) is “sufficiently generic”.

9This isomorphism depends on the choice of the isomorphism γa•,b• made earlier.
10This assumption is satisfied when π is the finite part of an automorphic cuspidal representation

of Ga•(A) which admits a base change to a cuspidal automorphic representation of GLn(AE )×A×E .
Indeed, in this case, White [2012, Theorem E] proved that ma•(π)= m

b( j)
•

(π)= 1.
11The π -isotypic component is the same as the π p-isotypic component according to Lemma 4.17.
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Remark 2.13. (1) A key feature of this conjecture is that the codimension of the cy-
cle map pra• :Yj→Sha• is the same as the fiber dimension of prb( j)

•
:Yj→Shb( j)

•
.

(2) It seems that the fiber of prb( j)
•
: Yj → Shb( j)

•
over a generic point η ∈ Shb( j)

•
is

likely to be isomorphic to a certain “iterated Deligne–Lusztig variety,” that is,
a tower of maps Y j,η = Zα→ · · · → Z0 = η such that each Zi → Zi−1 is a
fiber bundle with certain Deligne–Lusztig varieties as fibers.

(3) Xinwen Zhu pointed out to us that since the universal abelian varieties Aa•
and Ab• are isogenous over each Yj , the union of the images of Y1, . . . , Ymλ(a•)

on Sha• is contained in the closure of the Newton strata, where the slope is the
same as the µ-ordinary slope of the universal abelian varieties on Shb( j)

•
(for

different j, they have the same µ-ordinary slopes). In fact, one should expect
the union of images to be the same as the closure of this Newton stratum.

When λ is central (i.e., a power of the determinant), Conjecture 2.12 says:
irreducible components of the basic locus of the special fiber of a Shimura
variety, generically, contribute to all Tate cycles in the cohomology. Implicitly,
this means that the dimension of the basic locus is half of the dimension of the
Shimura variety if and only if the Galois representations of the Shimura variety
has generically nontrivial Tate classes. Here two appearances of “generic”
both mean that we only consider those π-isotypic components where the
Satake parameter for πp is sufficiently generic as in Conjecture 2.12(4). For
example, the supersingular locus of Hilbert modular surface at a split prime
or the supersingular locus of a Siegel modular variety (over Q) is not half the
dimension. This is related to the fact that the π-isotypic component of the
cohomology of the Shimura varieties are not expected to have Tate classes, at
least when the Satake parameter of πp is sufficiently general.12

(4) These varieties Yj may be viewed as Hecke correspondences at p between
the special fibers of two different Shimura varieties Sha• and Shb( j)

•
. These

correspondences certainly cannot be lifted to characteristic zero. We hope that
the conjecture will bring interests into the study of such Hecke correspondences.

Remark 2.14. (1) The assumption on the decomposition of the place p in E/Q
and working with unitary Shimura varieties is to simplify our presentation and
to get to a situation where most terms can be defined. We certainly expect the
validity of analogous conjectures for the special fibers of Shimura varieties
of PEL-type or more generally of abelian type (using the integral model of
M. Kisin [2010]). This would be a more precise version of the Tate conjecture
in the context of special fibers of Shimura varieties: if ShG and ShG ′ are the

12The Siegel varieties are Shimura varieties associated to GSp2g(Q). The Langlands dual group
is isogenous to Spin(2g+ 1) and the associated representation rµ is the spin representation, which is
minuscule and hence does not contain trivial weight subspace.
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special fibers of two unitary Shimura varieties associated to the groups G and
G ′ such that G(A f ) ' G ′(A f ), then, generically, the cycles on the product
ShG ×ShG ′ predicted by the Tate conjectures are likely to be constructed by
understanding the “isogenies” between the corresponding universal abelian
varieties, and are closely related to the Newton stratifications of ShG and ShG ′ .
In the case of Shimura varieties of abelian type, we expect some technical
difficulties in reinterpreting the meaning of isogenies of abelian varieties in
terms of certain “G-crystals”.

For example, consider a real quadratic field F/Q in which a prime p is inert.
Let ShG denote the special fiber of the Hilbert–Siegel modular variety for G :=
ResF/Q GSp2g, with hyperspecial level structure at p. Then by Langlands’s
prediction of the cohomology of ShG , we should look at the representation r⊗2

spin
of the “essential part” Spin2g+1 of the Langlands dual group, where rspin is
the 2g-dimensional spin representation.13 The central weight space of r⊗2

spin has
dimension 2g. So we expect that the supersingular locus of ShG is the union of
2g collection of varieties parameterized by the discrete Shimura variety ShG ′

where G ′ is the inner form of G which is split at all finite places and is compact
modulo center at both archimedean places. Unfortunately, the moduli problem
that describes G ′ uses a different division algebra from that describing G. We do
not know how to interpret the meaning of isogenies of universal abelian varieties
in this case, and the method of our paper does not apply directly to this case.

(2) Xinwen Zhu pointed out to us that even if p is ramified, we should expect
Conjecture 2.12 continue to hold for (the special fiber of) the “splitting models”
of Pappas and Rapoport [2005]. Some evidences of this have already appeared
in the case of Hilbert modular varieties; see [Rapoport et al. 2014; Reduzzi
and Xiao 2017].

(3) In our setup, we took advantage of many coincidences that ensures that for
example the Shimura variety is compact and there is no endoscopy. It would be
certainly an interesting future question to study the case involving Eisenstein
series, as well as the case when the representations come from endoscopy
transfers.

(4) As explained in Remark 2.13(3), the images of Yj are expected to form
the closure of a certain Newton polygon where the slopes are related to λ.
Conjecture 2.12(1)–(3) may have a degenerate situation: when

∑
i ai is not

divisible by n, the representation Va• does not contain a weight corresponding
to a power of the determinant (which corresponds to the basic locus). So our

13As pointed out above, we have to work with the Hilbert–Siegel setup as opposed to the usual
Siegel setup because rspin is a minuscule representation.
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conjecture does not describe the basic locus of Sha• , and it is indeed not of
half dimension of Sha• .

Yet, this basic locus may still have a good description as the union of
some fiber bundles over the special fibers of some other Shimura varieties for
reductive groups which are not quasisplit at p. For example, the supersingular
locus of modular curve is related to the Shimura variety associated to the
definite quaternion algebra which is ramified at p, by a theorem of Serre and
Deuring [Serre 1996]. More such examples are given in [Tian and Xiao 2016]
and [Vollaard and Wedhorn 2011].

2.15. Known cases of Conjecture 2.12. Conjecture 2.12 is largely inspired by the
work of Tian and Xiao [2014; 2016], where we proved the analogous conjecture
for the special fibers of the Hilbert modular varieties assuming that p is inert in the
totally real field.

Another strong evidence of Conjecture 2.12 is the work of Vollaard and Wedhorn
[2011], where they considered certain stratification of the supersingular locus of the
Shimura variety for GU (1, n− 1) with s ∈ N at an inert prime p. What concerns
us is the case when n− 1 is even. In this case, it is hidden in the writing of their
Section 6 that one gets a correspondence (in the notation of loc. cit.)

I (Q) \ Nn ×
C (n)

p J (Qp)×G(A
(p)
f )/C p

tt ))

I (Q) \ I (A f )/C pC (n)
p Mss

C p ⊂MC p .

(2.15.1)

Note that I (A f ) ' G(A f ). Here Nn is a certain Deligne–Lusztig variety. In
[Vollaard and Wedhorn 2011], the parameterizing space, namely the first term
in (2.15.1), is interpreted very differently, in terms of Bruhat–Tits building. The
method of this paper should be applicable to their situation to verify the analogous
Conjecture 2.12. In fact, in their case, there will be only one collection of cycles as
given by (2.15.1), but the computation of the intersection matrix (only essentially
one entry in this case) of them requires some nontrivial Schubert calculus similar
to Section 5.

When n− 1 is odd, the result of [Vollaard and Wedhorn 2011] is related to the
degenerate version of the Conjecture 2.12 in the sense of Remark 2.14(4).

The aim of the rest of the paper is to provide evidence for Conjecture 2.12
for some large rank groups. In particular, we will construct cycles in the case
of the unitary group G(U (r, s)×U (s, r)) with s, r ∈ N (Section 7). While we
expect these cycles to verify Conjecture 2.12, we do not know how to compute
the “intersection matrix” in general. Nonetheless, when r = 1, we are able to
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make the computation and prove Conjecture 2.12 (with trivial coefficients for the
sake of a simple presentation) in this case; see Section 4–6. We point out that our
method should be applicable to many other examples, and even in general reduce
Conjecture 2.12 to a question of a combinatorial nature. This combinatorics problem
is the heart of the question. In the Hilbert case [Tian and Xiao 2014], we model
the combinatorics question by the so-called periodic semimeander (for GL2). The
generalization of the usual (as opposed to periodic) semimeander to other groups
has been introduced; see [Fontaine et al. 2013] for the corresponding references.
The straightforward generalization to the periodic case does seem to agree with
some of our computations with small groups. Nonetheless, the corresponding Gram
determinant formula seems to be extremely difficult. Even in the nonperiodic case,
we only know it for a special case; see [Di Francesco 1997].

We also mention that in a very recent work [Xiao and Zhu 2017] of Zhu and
the last author, we relate Conjecture 2.12 with the geometric Satake theory of Zhu
[2017] in mixed characteristic, and we proved many new cases of Conjecture 2.12.

3. Preliminaries on Dieudonné modules and deformation theory

We first introduce the basic tools that we will use in this paper.

3.1. Notation. Recall that we have an isomorphism

OD⊗Z Zp f ∼=

f⊕
i=1

(OD⊗OE ,qi Zp f ⊕OD⊗OE ,q̄i Zp f )'

f⊕
i=1

(Mn(Zp f )⊕Mn(Zp f )).

Let S be a locally noetherian Zp f -scheme. An OD ⊗Z OS-module M admits a
canonical decomposition

M =
f⊕

i=1

(Mqi ⊕Mq̄i ),

where Mqi (resp. Mq̄i ) is the direct summand of M on which OE acts via qi (resp.
via q̄i ). Then each Mqi has a natural action by Mn(OS). Let e denote the element of
Mn(OS) whose (1, 1)-entry is 1 and whose other entries are 0. We put M◦i := eMqi ,
and call it the reduced part of Mqi .

Let A be an f n2-dimensional abelian variety over an Fp f -scheme S, equipped
with an OD-action. The de Rham homology H dR

1 (A/S) has a Hodge filtration

0→ ωA∨/S→ H dR
1 (A/S)→ LieA/S→ 0,

compatible with the natural action of OD⊗ZOS on H dR
1 (A/S). We call H dR

1 (A/S)◦i
(resp. ω◦A∨/S,i , Lie◦A/S,i ) the reduced de Rham homology of A/S (resp. the reduced
invariant 1-forms of A∨/S, the reduced Lie algebra of A/S) at qi . In particular, the
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former is a locally free OS-module of rank n and the latter is a subbundle14 of the
former; when A→ S satisfies the moduli problem in Section 2.3, ω◦A∨/S,i is locally
free of rank ai .

The Frobenius morphism A→ A(p) induces a natural homomorphism

V : H dR
1 (A/S)◦i → H dR

1 (A/S)◦,(p)i−1 ,

where the index i is considered as an element of Z/ f Z, and the superscript “(p)”
means the pullback via the absolute Frobenius of S. The image of V is exactly
ω
◦,(p)
A∨/S,i−1. Similarly, the Verschiebung morphism A(p) → A induces a natural

homomorphism15

F : H dR
1 (A/S)◦,(p)i−1 → H dR

1 (A/S)◦i .

We have Ker(F)= Im(V ) and Ker(V )= Im(F).
When S = Spec(k) with k a perfect field containing Fp f , let W (k) denote the

ring of Witt vectors in k. Let D̃(A) denote the (covariant) Dieudonné module
associated to the p-divisible group of A. This is a free W (k)-module of rank
2 f n2 equipped with a Frob-linear action of F and a Frob−1-linear action of V
such that FV = V F = p. The OD-action on A induces a natural action of OD on
D̃(A) that commutes with F and V. Moreover, there is a canonical isomorphism
D̃(A)/pD̃(A)∼= H dR

1 (A/k) compatible with all structures on both sides. For each
i ∈ Z/ f Z, we have the reduced part D̃(A)◦i := eD̃(A)qi . The Verschiebung and the
Frobenius induce natural maps

V : D̃(A)◦i → D̃(A)◦i−1, F : D̃(A)◦i → D̃(A)◦i+1.

Note that D̃(A)qi = (D̃(A)◦i )
⊕n, and

⊕
i∈Z/ f Z D̃(A)qi is the covariant Dieudonné

module of the p-divisible group A[p∞].
For any f n2-dimensional abelian variety A′ over k equipped with an OD-action,

an OD-equivariant isogeny A′→ A induces a morphism D̃(A′)◦i → D̃(A)◦i compat-
ible with the actions of F and V. Conversely, we have the following.

Proposition 3.2. Let A be an abelian variety of dimension f n2 over prefect field k
which contains Fp f , equipped with an OD-action and an OD-compatible prime-to-p
polarization λ. Suppose given an integer m ≥ 1 and a W (k)-submodule Ẽi ⊆ D̃(A)◦i
for each i ∈ Z/ f Z such that

pmD̃(A)◦i ⊆ Ẽi , F(Ẽi )⊆ Ẽi+1, and V (Ẽi )⊆ Ẽi−1. (3.2.1)

14Here and after, by a subbundle of a locally free coherent sheaf, we mean a locally free coherent
sheaf that is Zariski locally a direct factor.

15The notation F for Frobenius was also used to denote the real quadratic field. But we think the
chance for confusion is minimal.
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Then there exists a unique abelian variety A′ over k (depending on m) equipped
with an OD-action, a prime-to-p polarization λ′, and an OD-equivariant p-isogeny
φ : A′→ A such that the natural inclusion Ẽi ⊆ D̃(A)◦i is naturally identified with
the map φ∗,i : D̃(A′)◦i → D̃(A)◦i induced by φ and such that φ∨ ◦ λ ◦ φ = pmλ′.
Moreover, we have

(1) If dimω◦A∨/k,i = ai and lengthW (k)(D̃(A)◦i /Ẽi )= `i for i ∈ Z/ f Z, then

dimω◦A′∨/k,i = ai + `i − `i+1. (3.2.2)

(2) If A is equipped with a prime-to-p level structure η in the sense of Section 2.3(1),
then there exists a unique prime-to-p level structure η′ on A′ such that η=φ◦η′.

Proof. By Dieudonné theory, the Dieudonné submodule⊕
i∈Z/ f Z

(Ẽi/pmD̃(A)◦i )
⊕n
⊆

⊕
i∈Z/ f Z

(D̃(A)◦i /pmD̃(A)◦i )
⊕n

corresponds to a closed subgroup scheme Hp⊆ A[pm
]. The prime-to-p polarization

λ induces a perfect pairing

〈−,−〉λ : A[pm
]× A[p̄m

] → µpm .

Let Hp̄= H⊥p ⊆ A[p̄m
] denote the orthogonal complement of Hp. Put Hp= Hp⊕Hp̄.

Let ψ : A→ A′ be the canonical quotient with kernel Hp, and φ : A′→ A be the
quotient with kernel ψ(A[pm

]) so that ψ ◦ φ = pm idA′ and φ ◦ψ = pm idA. By
construction, Hp ⊆ A[pm

] is a maximal totally isotropic subgroup. By [Mumford
2008, §23, Theorem 2], there is a prime-to-p polarization λ′ on A′ such that pmλ=

ψ∨◦λ′◦ψ . It follows also that pmλ′=φ∨◦λ◦φ. The fact that φ∗,i : D̃(A′)◦i → D̃(A)◦i
is identified with the natural inclusion Ẽi ⊆ D̃(A)◦i follows from the construction.
The existence and uniqueness of the tame level structure is clear. The dimension of
the differential forms can be computed as follows:

dimkω
◦

A′∨/k,i = dimk
V(D̃(A′)◦i+1)

pD̃(A′)◦i
= dimk

V(Ẽi+1)

pẼi

= dimk
V(D̃(A)◦i+1)

pD̃(A)◦i
−lengthW (k)

V(D̃(A)◦i+1)

V(Ẽi+1)
+lengthW (k)

pD̃(A)◦i
pẼi

= ai−`i+1+`i . �

3.3. Deformation theory. We shall frequently use Grothendieck–Messing defor-
mation theory to compare the tangent spaces of moduli spaces. We make this
explicit in our setup.

Let R̂ be a noetherian Fp f -algebra and Î ⊂ R̂ an ideal such that Î 2
= 0. Put

R = R̂/ Î. Let CR̂ denote the category of tuples ( Â, λ̂, η̂), where Â is an f n2-
dimensional abelian variety over R̂ equipped with an OD-action, λ̂ is a polarization
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on Â such that the Rosati involution induces the ∗-involution on OD , and η̂ is a level
structure as in Section 2.3(3). We define CR in the same way. For an object (A, λ, η)
in the category CR , let H cris

1 (A/R̂) be the evaluation of the first relative crystalline
homology (i.e., dual crystal of the first crystalline cohomology) of A/R at the
divided power thickening R̂→ R, and H cris

1 (A/R̂)◦i := eH cris
1 (A/R̂)qi be the i-th

reduced part. We denote by Def(R, R̂) the category of tuples (A, λ, η, (ω̂◦i )i=1,..., f ),
where (A, λ, η) is an object in CR , and ω̂◦i ⊆ H cris

1 (A/R̂)◦i for each i ∈ Z/ f Z is
a subbundle that lifts ω◦A∨/R,i ⊆ H dR

1 (A/R)◦i . The following is a combination of
Serre–Tate and Grothendieck–Messing deformation theory.

Theorem 3.4 (Serre–Tate, Grothendieck–Messing). The functor

( Â, λ̂, η̂) 7→ ( Â⊗R̂ R, λ, η, ω◦
Â∨/R̂,i

),

where λ and η are the natural induced polarization and level structure on Â⊗R̂ R,
is an equivalence of categories between CR̂ and Def(R, R̂).

Proof. The main theorem of the crystalline deformation theory (cf., [Grothendieck
1974, pp. 116–118], [Mazur and Messing 1974, Chapter II §1]) says that the category
CR̂ is equivalent to the category of objects (A, λ, η) in CR together with a lift of
ωA∨/R ⊆ H cris

1 (A/R) to a subbundle ω̂ of H cris
1 (A/R̂), such that ω̂ is stable under

the induced OD-action and is isotropic for the pairing on H cris
1 (A/R̂) induced by

the polarization λ. But the additional information ω̂ is clearly equivalent to the
subbundles ω̂◦i ⊆ H cris

1 (A/R̂)◦i lifting ω◦A∨/R,i . �

Corollary 3.5. If Aa• denotes the universal abelian variety over Sha• , then the
tangent space TSha•

of Sha• is

f⊕
i=1

Lie◦A∨a•/Sha• ,i
⊗Lie◦Aa•/Sha• ,i

.

Proof. Even though this is a well-known statement often referred to as the Kodaira–
Spencer isomorphism (e.g., [Lan 2013, Proposition 2.3.4.2]), we include a short
proof, as the proof serves as a toy model of many arguments later. Let R̂ be
a noetherian Fp f -algebra and Î ⊂ R̂ an ideal such that Î 2

= 0; put R = R̂/ Î.
By Theorem 3.4, to lift an R-point (A, λ, η) of Sha• to an R̂-point, it suffices
to lift, for i = 1, . . . , f , the differentials ω◦A∨,i ⊆ H cris

1 (A/R)◦i to a subbundle
ω̂i ⊆ H cris

1 (A/R̂)◦i . Such lifts form a torsor for the group

HomR(ω
◦

A∨/R,i ,Lie◦A/R,i )⊗R Î .
It follows from this

TSha•
∼=

f⊕
i=1

Hom(ω◦A∨a•/Sha• ,i
,Lie◦Aa•/Sha• ,i

)∼=

f⊕
i=1

Lie◦A∨a•/Sha• ,i
⊗Lie◦Aa•/Sha• ,i

.

Note that this proof also shows that Sha• is smooth. �
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3.6. Notation in the real quadratic case. For the rest of the paper, we assume
f = 2 so that F is a real quadratic field in which p is inert. For nonnegative integers
r ≤ s such that n = r+ s, we denote by Gr,s the algebraic group previously denoted
by Ga• with a1 = r and a2 = s; in particular, Gr,s(R) = G(U (r, s) × U (s, r)).
If r ′, s ′ is another pair of nonnegative integers such that n = r ′ + s ′ and r ′ ≤ s ′,
Lemma 2.9 gives an isomorphism Gr,s(A

∞)' Gr ′,s′(A
∞).

Let Shr,s be the Shimura variety over Zp2 attached to Gr,s defined in Section 2.3
of some fixed sufficiently small prime-to-p level K p

⊆ Gr,s(A
∞,p). Let Shr,s

denote its special fiber over Fp2 . Let A=Ar,s denote the universal abelian variety
over Shr,s . It is a 2n2-dimensional abelian variety, equipped with an action of OD

and a prime-to-p polarization λA. Moreover, ω◦A∨/Shr,s ,1 (resp. ω◦A∨/Shr,s ,2) is a
locally free module over Shr,s of rank r (resp. rank s).

Remark 3.7. When r = 0 and s = n, the universal abelian variety A=A0,n over
Sh0,n is supersingular. Indeed, for each Fp-point z of Sh0,n , the Kottwitz condition
implies that the Frobenius induces isomorphisms

D̃(Az)
◦

1
F
−→ D̃(Az)

◦

2
F
−→ pD̃(Az)

◦

1.

In particular, (1/p)F2 induces a σ 2-linear automorphism of D̃(Az)
◦

1. By Hilbert’s
Theorem 90, there exists a Zp2-lattice L of D̃(Az)

◦

1 that is invariant under the action
of (1/p)F2; in other words, F2 acts by multiplication by p for a basis chosen from
this lattice. It follows that all slopes of the Frobenius on D̃(Az) are 1

2 , and hence
Az is supersingular.

4. The case of G(U(1, n− 1)×U(n− 1, 1))

We will verify Conjecture 2.12 for Sh1,n−1, namely the existence of some cycles Yj

having morphisms to both Sh0,n and Sh1,n−1 and generating Tate classes of Sh1,n−1

under a certain genericity hypothesis on the Satake parameters. We always fix an
isomorphism G1,n−1(A

∞)' G0,n(A
∞), and write G(A∞) for either group.

Notation 4.1. For a smooth variety X over Fp2 , we denote by TX the tangent bundle
of X, and for a locally free OX -module M, we put M∗ =HomOX (M,OX ).

4.2. Cycles on Sh1,n−1. For each integer j with 1 ≤ j ≤ n, we first define the
variety Yj we briefly mentioned in the introduction. Let Yj be the moduli space over
Fp2 that associates to each locally noetherian Fp2-scheme S, the set of isomorphism
classes of tuples (A, λ, η, B, λ′, η′, φ), where

• (A, λ, η) is an S-point of Sh1,n−1,

• (B, λ′, η′) is an S-point of Sh0,n and

• φ : B→ A is an OD-equivariant isogeny whose kernel is contained in B[p],
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such that

• pλ′ = φ∨ ◦ λ ◦φ,

• φ ◦ η′ = η and

• the cokernels of the maps

φ∗,1 : H dR
1 (B/S)◦1→ H dR

1 (A/S)◦1 and φ∗,2 : H dR
1 (B/S)◦2→ H dR

1 (A/S)◦2

are locally free OS-modules of rank j − 1 and j, respectively.

There is a unique isogeny ψ : A→ B such that ψ ◦φ= p · idB and φ◦ψ = p · idA.
We have

Ker(φ∗,i )= Im(ψ∗,i ) and Ker(φ∗,i )= Im(ψ∗,i ),

where ψ∗,i for i = 1, 2 is the induced homomorphism on the reduced de Rham
homology in the evident sense. This moduli space Yj is represented by a scheme of
finite type over Fp2 . We have a natural diagram of morphisms:

Yj pr′j
((

pr j
uu

Sh1,n−1 Sh0,n,
(4.2.1)

where pr j and pr′j send a tuple (A, λ, η, B, λ′, η′, φ) to (A, λ, η) and to (B, λ′, η′),
respectively. Letting K p vary, we see easily that both pr j and pr′j are equivariant
under prime-to-p Hecke actions given by the double cosets K p

\G(A∞,p)/K p.

4.3. Some auxiliary moduli spaces. The moduli problem for Yj is slightly com-
plicated. We will introduce a more explicit moduli space Y ′j below and then show
they are isomorphic.

Consider the functor Y ′j which associates to each locally noetherian Fp2-scheme S
the set of isomorphism classes of tuples (B, λ′, η′, H1, H2), where

• (B, λ′, η′) is an S-valued point of Sh0,n;

• H1 ⊂ H dR
1 (B/S)◦1 and H2 ⊂ H dR

1 (B/S)◦2 are OS-subbundles of rank j and
j − 1 respectively such that

V−1(H (p)
2 )⊆ H1, H2 ⊆ F(H (p)

1 ). (4.3.1)

Here,

F : H dR
1 (B/S)◦,(p)1 −→∼ H dR

1 (B/S)◦2 and V : H dR
1 (B/S)◦1 −→∼ H dR

1 (B/S)◦,(p)2

are respectively the Frobenius and Verschiebung homomorphisms, which are
actually isomorphisms because of the signature condition on Sh0,n .
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It follows from the moduli problem that the quotients H1/V−1(H (p)
2 ), F(H (p)

1 )/H2

are both locally free OS-modules of rank one.
There is a natural projection π ′j : Y

′

j → Sh0,n given by (B, λ′, η′, H1, H2) 7→

(B, λ′, η′).

Proposition 4.4. The functor Y ′j is representable by a scheme Y ′j smooth and
projective over Sh0,n of dimension n− 1. Moreover, if (B, λ′, η′,H1,H2) denotes
the universal object over Y ′j , then the tangent bundle of Y ′j is

TY ′j
∼=
(
(H1/V−1(H(p)

2 )
)∗
⊗
(
H dR

1 (B/Sh0,n)
◦

1/H1
)
⊕
(
H∗2⊗ F(H(p)

1 )/H2
)
.

Proof. For each integer m with 0≤m≤n and i=1, 2, let Gr(H dR
1 (B/Sh0,n)

◦

i ,m) be
the Grassmannian scheme over Sh0,n that parametrizes subbundles of the universal
de Rham homology H dR

1 (B/Sh0,n)
◦

i of rank m. Then Y ′j is a closed subfunctor of
the product of the Grassmannian schemes

Gr(H dR
1 (B/Sh0,n)

◦

1, j)× Gr(H dR
1 (B/Sh0,n)

◦

2, j − 1).

The representability of Y ′j follows. Moreover, Y ′j is projective.
We show now that the structural map π ′j : Y ′j → Sh0,n is smooth of relative

dimension n− 1. Let S0 ↪→ S be an immersion of locally noetherian Fp2-schemes
with ideal sheaf I satisfying I 2

= 0. Suppose we are given a commutative diagram

S0
g0
//

��

Y ′j

π ′j

��

S
h
//

g
==

Sh0,n

with solid arrows. We have to show that, locally for the Zariski topology on S0,
there is a morphism g : S→ Y ′j making the diagram commute. Let B be the abelian
scheme over S given by h, and B0 be the base change to S0. The morphism g0

gives rises to subbundles H 1 ⊂ H dR
1 (B0/S0)

◦

1 and H 2 ⊂ H dR
1 (B0/S0)

◦

2 with

F(H (p)
1 )⊃ H 2, V−1(H (p)

2 )⊂ H 1.

Finding g is equivalent to finding a subbundle Hi ⊂ H dR
1 (B/S)◦i which lifts each

H i for i = 1, 2 and satisfies (4.3.1); this is certainly possible when passing to small
enough affine open subsets of S0. Thus π ′j : Y

′

j → Sh0,n is formally smooth, and
hence smooth. We note that F∗S :OS→OS factors through OS0 . Hence V−1(H (p)

2 )

and F(H (p)
1 ) actually depend only on H 1, H 2, but not on the lifts H1 and H2.

Therefore, the possible lifts H2 form a torsor under the group

HomOS0
(H 2, F(H (p)

1 )/H 2)⊗OS0
I,
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and similarly the possible lifts H1 form a torsor under the group

HomOS0
(H 1/V−1(H (p)

2 ), H dR
1 (B0/S0)

◦

1/H 1)⊗OS0
I.

To compute the tangent bundle TY ′j , we take S=Spec(OS0[ε]/ε
2) and I = εOS . The

morphism g0 : S0→ Y ′j corresponds to an S0-valued point of Y ′j , say y0. Then the
possible liftings g form the tangent space TY ′j at y0, denote by TY ′j ,y0 . The discussion
above shows that

TY ′j ,y0
∼=HomOS0

(H2,F(H
(p)
1 )/H2)⊕HomOS0

(H1/V−1(H (p)
2 ),H dR

1 (B0/S0)
◦

1/H1),

which is certainly a vector bundle over S0 of rank j−1+(n− j)= n−1. Applying
this to the universal case when g0 : S0→ Y ′j is the identity morphism, the formula
of the tangent bundle follows. �

Remark 4.5. Let (B, λ′, η′, H1, H2) be an S-point of Y ′j .

(a) If j = n, H1 has to be H dR
1 (B/S)◦1, and H2 is a hyperplane of H dR

1 (B/S)◦2.
Condition (4.3.1) is trivial. In this case, Y ′n is the projective space over Sh0,n

associated to H dR
1 (B/Sh0,n)

◦

2, where B is the universal abelian scheme over Sh0,n .
So it is geometrically a union of copies of Pn−1

Fp
.

(b) If j = 1, then H1 is a line in H dR
1 (B/S)◦1 and H2 = 0. So Y ′1 is the projective

space over Sh0,n associated to (H dR
1 (B/Sh0,n)

◦

1)
∗.

(c) If j = 2, H2 ⊆ H dR
1 (B/S)◦2 is a line, and H1 ⊆ H dR

1 (B/S)◦1 is a subbundle
of rank 2 such that F(H (p)

1 ) contains both H2 and F(V−1(H (p)
2 )(p)). Therefore,

if H2 6= F(V−1(H (p)
2 ))(p), H1 is determined up to Frobenius pullback. If H2 =

F(V−1(H (p)
2 )(p)), then H1 could be any rank 2 subbundle containing V−1(H (p)

2 ).
We fix a geometric point z = (B, λ′, η′) ∈ Sh0,n(Fp). It is possible to find good

bases for H dR
1 (B/Fp)

◦

1, H dR
1 (B/Fp)

◦

2 such that F,V : H dR
1 (B/Fp)

◦

1→ H dR
1 (B/Fp)

◦

2
are both given by the identity matrix. With these choices, we may identify the fiber
Y ′2,z = π

′−1
2 (z) with a closed subvariety of

Gr(Fn
p, 2)× Gr(Fn

p, 1).

Moreover, one may equip Gr(Fn
p, 1)∼=Pn−1

Fp
with an Fp2-rational structure such that

H2 = F(V−1(H (p)
2 )(p)) if and only if [H2] ∈ Pn−1

Fp
is an Fp2-rational point. So Y ′2,z

is isomorphic to a “Frobenius twisted” blow-up of Pn−1
Fp

at all of its Fp2-rational
points. Here, “Frobenius twisted” means that each irreducible component of the
exceptional divisor has multiplicity p. For instance, when n = 3, each Y2,z is
isomorphic to the closed subscheme of P2

Fp
×P2

Fp
defined by

a1 bp
1 + a2 bp

2 + a3 bp
3 = 0, a p

1 b1 + a p
2 b2 + a p

3 b3 = 0,

where (a1 : a2 : a3) and (b1 : b2 : b3) are the homogeneous coordinates on the two
copies of P2.
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Lemma 4.6. Let (A, λ, η, B, λ′, η′, φ) be an S-point of Yj . Then the image of φ∗,1
contains both ω◦A∨/S,1 and F(H dR

1 (A/S)◦,(p)2 ), and the image of φ∗,2 is contained
in both ω◦A∨/S,2 and F(H dR

1 (A/S)◦,(p)1 ).

Proof. By the functoriality, φ2,∗ sends ω◦B∨/S,2 to ω◦A∨/S,2. Since ω◦B∨/S,2 =

H dR
1 (B/S)◦2 by the Kottwitz determinant condition, it follows that Im(φ∗,2) in

contained in ω◦A∨/S,2. Similar arguments by considering ψ∗,1 shows that ω◦A∨/S,1 ⊆

Ker(ψ∗,1) = Im(φ∗,1). The fact that Im(φ∗,2) is contained in F(H dR
1 (A/S)◦,(p)1 )

follows from the commutative diagram

H dR
1 (B/S)◦,(p)1

F ∼=

��

φ
(p)
∗,1 // H dR

1 (A/S)◦,(p)1

F
��

H dR
1 (B/S)◦2

φ∗,2
// H dR

1 (A/S)◦2

(4.6.1)

and the fact that the left vertical arrow is an isomorphism. Similarly, the inclusion
F(H dR

1 (A/S)◦,(p)2 ) ⊆ Im(φ∗,1) = Ker(ψ∗,1) can be proved using the functoriality
of Verschiebung homomorphisms. �

4.7. A morphism from Yj to Y ′j . There is a natural morphism α : Yj → Y ′j for
1≤ j ≤ n defined as follows. For a locally noetherian Fp2-scheme S and an S-point
(A, λ, η, B, λ′, η′, φ) of Yj , we define

H1 :=φ
−1
∗,1(ω

◦

A∨/S,1)⊆H dR
1 (B/S)◦1, H2 :=ψ∗,2(ω

◦

A∨/S,2)⊆H dR
1 (B/S)◦2. (4.7.1)

In particular, H1 and H2 are OS-subbundles of rank j and j −1, respectively. Also,
there is a canonical isomorphism ω◦A∨/S,2/ Im(φ∗,2)−→∼ H2. From the commutative
diagram (4.6.1), it is easy to see that F(H (p)

1 )⊆Ker(φ∗,2)= Im(ψ∗,2), but compar-
ing the rank forces this to be an equality. It follows that H2 ⊆ F(H (p)

1 ). Similarly,
V−1(H (p)

2 ) is identified with Im(ψ∗,1)=Ker(φ∗,1), hence V−1(H (p)
2 )⊆ H1. From

these, we deduce two canonical isomorphisms:

H1/V−1(H (p)
2 )−→∼ ω◦A∨/S,1,

F(H (p)
1 )/H2 −→

∼ H dR
1 (A/S)◦2/ω

◦

A∨/S,2
∼= Lie◦A/S,2 .

(4.7.2)

Therefore, we have a well-defined map α : Yj → Y ′j given by

α : (A, λ, η, B, λ′, η′, φ) 7→ (B, λ′, η′, H1, H2).

Moreover, it is clear from the definition that π ′j ◦α = pr′j .

Proposition 4.8. The morphism α is an isomorphism.

Proof. Let k be a perfect field containing Fp2 . We first prove that α induces a
bijection of points α : Yj (k) −→

∼ Y ′j (k). It suffices to show that there exists a



2240 David Helm, Yichao Tian and Liang Xiao

morphism of sets β : Y ′j (k)→ Yj (k) inverse to α. Let y = (B, λ′, η′, H1, H2) ∈

Y ′j (k). We define β(y) = (A, λ, η, B, λ′, η′, φ) as follows. Let Ẽ1 ⊆ D̃(B)◦1 and
Ẽ2 ⊆ D̃(B)◦2 be respectively the inverse images of V−1(H (p)

2 ) ⊆ H dR
1 (B/k)◦1 and

F(H (p)
1 )⊆ H dR

1 (B/k)◦2 under the natural reduction maps

D̃(B)◦i → D̃(B)◦i /pD̃(B)◦i ∼= H dR
1 (B/k)◦i for i = 1, 2.

The condition (4.3.1) ensures that F(Ẽi ) ⊆ Ẽ3−i and V (Ẽi ) ⊆ Ẽ3−i for i = 1, 2.
Applying Proposition 3.2 with m=1, we get a triple (A, λ, η) and an OD-equivariant
isogeny ψ : A→ B, where A is an abelian variety over k with an action of OD , λ
is a prime-to-p polarization on A, and η is a prime-to-p level structure on A, such
that ψ∨◦λ′◦ψ = pλ, pη′=ψ ◦η and such that ψ∗,i : D̃(A)◦i → D̃(B)◦i is naturally
identified with the inclusion Ẽi ↪→ D̃(B)◦i for i = 1, 2. Moreover, the dimension
formula (3.2.2) implies that ω◦A∨/k,1 has dimension 1, and ω◦A∨/k,2 has dimension
n− 1. Therefore, (A, λ, η) is a point of Sh1,n−1. Finally, we take φ : B→ A to be
the unique isogeny such that φ ◦ψ = p · idA and ψ ◦ φ = p · idB . Thus we have
φ ◦ η′ = η. This finishes the construction of β(y). It is direct to check that β is the
set theoretic inverse to α : Yj (k)→ Y ′j (k).

We show now that α induces an isomorphism on the tangent spaces at each
closed point; as we have already shown that Y ′j is smooth, it will then follow that
α is an isomorphism. Let x = (A, λ, η, B, λ′, η′, φ) ∈ Yj (k) be a closed point.
Consider the infinitesimal deformation over k[ε] = k[t]/t2. Note that (B, λ′, η′)
has a unique deformation (B̂, λ̂′, η̂′) to k[ε], namely the trivial deformation. By
the Serre–Tate and Grothendieck–Messing deformation theory (cf., Theorem 3.4),
giving a deformation ( Â, λ̂, η̂) of (A, λ, η) to k[ε] is equivalent to giving free k[ε]-
submodules ω̂◦A∨,i ⊆ H cris

1 (A/k[ε])◦i for i = 1, 2 which lift ω◦A∨/k,i . The isogeny φ
and the polarization λ deform to an isogeny φ̂ : B̂→ Â and a polarization λ̂ : Â∨→ Â
(satisfying pλ̂′ = φ̂∨ ◦ λ̂ ◦ φ̂), necessarily unique if they exist, if and only if

ω̂◦A∨,2 ⊇ φ
cris
∗,2
(
H cris

1 (B/k[ε])◦2
)

and
(
φcris
∗,1 (H

cris
1 (B/k[ε])◦1)

)∨
⊆ (ω̂◦A∨,1)

∨,

where the second inclusion comes from the consideration at the embedding q̄2 by tak-
ing duality using the polarization λ and is equivalent to ω̂◦A∨,1⊆φ

cris
∗,1

(
H cris

1 (B/k[ε])◦1
)
.

As discussed before Proposition 4.8, we have Ker(φ∗,1) = V−1(H (p)
2 ) and

F(H (p)
1 )= Ker(φ∗,2)= Im(ψ∗,2). Then according to the relation between ω◦A∨/k,i

and H1 in (4.7.1), giving such ω̂◦A∨,i for i = 1, 2 is equivalent to lifting each Hi

to a free k[ε]-submodule Ĥi ⊆ H dR
1 (B/k)◦i ⊗k k[ε] ∼= H cris

1 (B/k[ε])◦i for i = 1, 2
such that Ĥ1 ⊇ V−1(H (p)

2 )⊗k k[ε] and Ĥ2 ⊆ F(H (p)
1 )⊗k k[ε]. This is exactly the

description of the tangent space of Y ′j at α(x). This concludes the proof. �

In the sequel, we will always identify Yj with Y ′j and pr′j with π ′j . Before
proceeding, we prove some results on the structure of Sh0,n(Fp).
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We turn to the study of the Shimura variety Sh0,n . The following proposition
was suggested by an anonymous referee of this article.

Proposition 4.9. (1) The Shimura variety Sh0,n is finite and étale over Zp2 . In
particular, the reduction map induces a bijection of geometric points

Sh0,n(Qp)−→
∼ Sh0,n(Fp).

(2) Let x̃i = (B̃i , λ̃i , η̃i ) ∈ Sh0,n(Qp) for i = 1, 2 be two geometric points in
characteristic 0, and xi = (Bi , λi , ηi ) ∈ Sh0,n(Fp) be their reductions. Then
the reduction map on

HomOD (B̃1, B̃2)−→
∼ HomOD (B1, B2)

is an isomorphism.

Proof. (1) Let z̃∈ (B̃, λ̃, η̃)∈Sh0,n(C). Put H =H1(B̃(C),Q). It is a left D-module
of rank 1 equipped with an alternating D-Hermitian pairing 〈−,−〉λ̃ induced by
the polarization λ̃. Let (V0,n = D, 〈−,−〉0,n) be the left D-module together with
its alternating D-Hermitian pairing as in the definition of Sh0,n . By results of
Kottwitz [1992b, §8], for every place v of Q, the skew-Hermitian DQv

-modules
HQv

and V0,n,Qv
are isomorphic.16 Then EndOD (B̃C)Q consists of the elements of

Dopp
= EndD(H) that preserves the complex structure on H1,R ' V0,n,R induced

the Deligne homomorphism by h :C×→G0,n(R). Since h(i) is necessarily central
(because G1

0,n is compact), it follows that EndOD (B̃C)Q = Dopp, and

D⊗E Dopp
'Mn2(E)⊆ End(B̃)Q.

For dimension reasons, the inclusion above is an equality, and B̃ is isogenous to
the product of n2-copies of abelian varieties with complex multiplication by E .
Therefore, B̃ is defined over a number field and has potentially good reduction
everywhere. This implies that Sh0,n is proper over Zp2 .

To see that Sh0,n is finite and étale over Zp2 , it remains to show its étaleness
over Zp2 . But this is clear from the description of its relative differential sheaf
in Corollary 3.5, which is trivial as LieA∨/Sh0,n,1 = LieA/Sh0,n,2 = 0 by Kottwitz’s
determinant condition.

(2) In general, the reduction map

HomOD (B̃1, B̃2) ↪→ HomOD (B1, B2)

is injective. It remains to see that every element f ∈ HomOD (B1, B2) lifts to a
homomorphism f̃ ∈ HomOD (B̃1, B̃2). Note that points x̃1, x̃2 can be viewed over

16Note that the two skew-Hermitian forms (H, 〈−,−〉)
λ̃

and (V0,n, 〈−,−〉0,n) are not necessarily
isomorphic over Q. However, they differ at most only by a scalar in F, hence define the same
similitude unitary group. See [Kottwitz 1992b, p. 400] for details.
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W (Fp). As recalled in Section 3, to show that f lifts to a map f̃ : B̃1 → B̃2, it
suffices to see that the induced map on crystalline homology

f ∗ : H cris
1 (B2/W (Fp))→ H cris

1 (B1/W (Fp))

preserves the Hodge filtrations

ωB̃∨i
⊆ H dR

1 (B̃i/W (Fp))∼= H cris
1 (Bi/W (Fp)).

It is clear that f ∗ preserves the decomposition

H dR
1 (B̃i/W (Fp))= H dR

1 (B̃i/W (Fp))1⊕ H dR
1 (B̃i/W (Fp))2

according to the two embeddings of OE into W (Fp). By the Kottwitz’s determinant
condition for Sh0,n , the Hodge filtrations on H dR

1 (B̃i/W (Fp)) are trivial, namely,

ω◦
B̃∨i /W (Fp),1

= 0, and ω◦
B̃∨i /W (Fp),2

= H dR
1 (B̃i/W (Fp))

◦

2 for i = 1, 2.

It is clear now f ∗ preserves this trivial Hodge filtration, since it does so when
tensoring with Fp. �

Fix a geometric point z = (B, λ, η) ∈ Sh0,n(Fp). Put C = EndOD (B)Q, and
denote by † the Rosati involution on C induced by λ. Let I be the algebraic group
over Q such that

I (R)= {x ∈ C ⊗Q R | xx†
∈ R×}, for all Q-algebras R. (4.9.1)

Corollary 4.10. We have an isomorphism of algebraic groups over Q: I ' G0,n .

Proof. Let z̃ = (B̃, λ̃, η̃) ∈ Sh0,n(Qp) denote the unique lift of z according to
Proposition 4.9 (1). By 4.9 (2), we have a canonical isomorphism

EndOD (B̃)Q −→∼ EndOD (B)Q = C.

In the proof of 4.9, we have seen that C = Dopp. Moreover, the Rosati involution
on C corresponds to the involution b 7→ b]β0,n = β0,nb∗β−1

0,n on Dopp, where β0,n is
the element in the definition of 〈−,−〉0,n . It follows immediately that I ' G0,n . �

Let Isog(z) ⊆ Sh0,n(Fp) denote the subset of points z′ = (B ′, λ′, η′) such that
there exists an OD-equivariant quasi-isogeny φ : B ′→ B such that φ∨ ◦λ◦φ= c0λ

′

for some c0 ∈Q>0. We denote such a quasi-isogeny by φ : z′→ z for simplicity.

Corollary 4.11. There exists a natural bijection of sets

2z : Isog(z)−→∼ G0,n(Q) \G0,n(A
∞)/K

Proof. First, we give the construction of 2z . Put V (p)(B) = T (p)(B)⊗
Ẑ(p)

A∞,p.
Then η determines an isomorphism

η̃ : V (p)
0,n ⊗Q A∞,p −→∼ V (p)(B),
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modulo right translation by K p. For any z′ = (B ′, λ′, η′) ∈ Isog(z) and a choice of
φ : B ′→ B as above. The quasi-isogeny φ induces an isomorphism φ∗ :V (p)(B ′)−→∼

V (p)(B). Then there exists a g p
∈ G0,n(A

∞,p), unique up to right multiplication
by elements of K p, such that the K p-orbit of φ−1

∗
◦ η̃ ◦ g gives η′.

We put

Lz = D̃(B)◦,F
2
=p

1 = {v ∈ D̃(B)◦1 : F
2(v)= pv}. (4.11.1)

Since B is supersingular (See Remark 3.7), this is a free Zp2-module of rank
n, and we have D̃(B)◦1 = Lz ⊗Zp2 W (Fp). Put Lz[1/p] = Lz ⊗Zp2 Qp2 . Then
φ induces an isomorphism φ∗ : Lz′[1/p] −→∼ Lz[1/p]. Fix a Zp2-basis for Lz .
Then there exists a gL ∈ GLn(Qp2) such that φ∗(Lz′)= gL(Lz), and the right coset
gL GLn(Zp2) is independent of the choice of such a basis. We put gp = (c0, gL) ∈

Q×p ×GLn(Qp2)' G0,n(Qp), which is well defined up to right multiplication by
elements of Kp = Z×p2 ×GLn(Zp2).

Finally, note that the quasi-isogeny φ′ : B ′→ B is well determined by z′ up to left
composition with an element γ ∈ I (Q)= G0,n(Q). If we replace φ by γ ◦φ, then
g := (g p, gp) ∈ G0,n(A

∞) is replaced by γ g = (γ g p, γ gp). Therefore, the map

2z : Isog(z)→ G0,n(Q) \G0,n(A
∞)/K , z′ 7→ G0,n(Q)gK

is well defined. The fact that 2z is a bijection follows from the similar classical
statement in characteristic 0. �

Remark 4.12. It follows from Proposition 4.9 and the description of Sh0,n(C) in
Section 2.3 that Sh0,n(Fp) consists of # ker1(Q,G0,n) isogeny classes of abelian
varieties equipped with additional structures.

Lemma 4.13. Let N be a fixed nonnegative integer. Up to replacing K p by an
open compact subgroup of itself , the following properties are satisfied: if (B, λ, η)
is an Fp-point of Sh0,n and f : B→ B is an OD-quasi-isogeny such that pN f ∈
EndOD (B), f ∨ ◦ λ ◦ f = λ and f ◦ η = η, then f = id.

Proof. It suffices to prove the lemma for (B, λ, η) in a fixed isogeny class Isog(z)
of Sh0,n(Fp). We write G0,n(A

∞) =
∐

i∈I G0,n(Q)gi K with K = K p Kp, where
gi = g p

i gi,p, with g p
i ∈ G0,n(A

∞,p) and gi,p ∈ G0,n(Qp), runs through a finite set
of representatives of the double coset

G0,n(Q) \G0,n(A
∞)/K .

Let (B, λ, η) be a point of Sh0,n corresponding to G0,n(Q)gi K for some i ∈ I, and
f be an OD-quasi-isogeny of B as in the statement. Then f is given by an element
of G1

0,n(Q). The condition that f ◦ η = η is equivalent to saying that the image
of f in G0,n(A

∞,p) lies in g p
i K pgi

p,−1. Moreover, pN f ∈ EndOD (B) implies that
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the image of f in G0,n(Qp) belongs to
∐
δ gi,p(KpδKp)g−1

i,p , where δ runs through
the set{
(1,Diag(pa1, pa2, . . . , pan )) ∈ G0,n(Qp)'Q×p ×GLn(Qp2)

∣∣
0≥ a1 ≥ a2 ≥ · · · ≥ an ≥−N

}
.

Write
∐
δ KpδKp =

∐
j∈J h j Kp for some finite set J. Hence, it suffices to show

that there exists an open compact subgroup K ′p ⊆ K p such that for all gi ,

G1
0,n(Q)∩ gi (K ′p · h j Kp)g−1

i = {1}

if h j Kp = Kp, and empty otherwise. Since K is neat, we have

G1
0,n(Q)∩ gi (K ′p Kp)g−1

i = {1} for any gi and any K ′p ⊆ K p.

Note that this implies that, for each i ∈ I, G1
0,n(Q)∩ gi (K p

· h j Kp)g−1
i contains at

most one element (because if it contains both x and y, then x−1 y is contained in
G1

0,n(Q)∩ gi K g−1
i = {1}). Let S ⊂ I × J be the subset consisting of (i, j) such

that h j Kp 6= Kp and G1
0,n(Q) ∩ gi (K p

· h j Kp)g−1
i indeed contains one element,

say xi, j . Then xi, j 6= 1 for all (i, j) ∈ S. Hence, one can choose a normal open
compact subgroup K ′p ⊆ K p so that xi, j /∈ g p

i K ′pg p,−1
i for all i . We claim that

this choice of K ′p will satisfy the desired property. Indeed, if K p
=
∐

l bl K ′p, then
the double coset G0,n(Q) \ G0,n(A

∞)/K ′p Kp has a set of representatives of the
form gi bl . Here, by abuse of notation, we consider bl as an element of K with
p-component equal to 1. Then one has, for h j Kp 6= Kp,

G1
0,n(Q)∩ gi bl(K ′ph j Kp)b−1

l g−1
i = G1

0,n(Q)∩ gi (K ′ph j Kp)g−1
i =∅.

The first equality uses the fact that K ′p is normal in K p. This finishes the proof. �

We come back to the discussion on the cycles Yj ⊆ Sh1,n−1 for 1≤ j ≤ n.

Proposition 4.14. Let (A, λ, η,B, λ′, η′, φuniv) denote the universal object on Yj

for 1≤ j ≤ n, and Hi ⊂ H dR
1 (B/Sh0,n) for i = 1, 2 be the universal subbundles on

Y ′j ∼= Yj .

(1) The induced map TYj → pr∗j TSh1,n−1 is universally injective, and we have
canonical isomorphisms

NYj (Sh1,n−1) := pr∗j TSh1,n−1/TYj

∼=
(
H1/V−1(H(p)

2 )
)∗
⊗ V−1(H(p)

2 )

⊕
(
F(H(p)

1 )/H2
)
⊗
(
H dR

1 (B/Sh0,n)
◦

2/F(H(p)
1 )

)∗
∼= Lie◦A∨,1⊗Coker(φuniv

∗,1 )⊕Lie◦A,2⊗ Im(φuniv
∗,2 )

∗.
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(2) Assume that K p is sufficiently small so that the consequences of Lemma 4.13
hold for N = 1. For each fixed closed point z ∈ Sh0,n , the map pr j,z :=

pr j |Y j,z : Y j,z→ Sh1,n−1 is a closed immersion, or equivalently, the morphism
(pr j , pr′j ) : Yj → Sh1,n−1×Spec(Fp2 ) Sh0,n is a closed immersion.

(3) The union of the images of pr j for all 1≤ j ≤ n is the supersingular locus of
Sh1,n−1, i.e., the reduced closed subscheme of Sh1,n−1 where all the slopes of
the Newton polygon of the p-divisible group A[p∞] are 1/2.

Proof. (1) Let S be an affine noetherian Fp2-scheme and let y= (A,λ,η,B,λ′,η′,φ)
be an S-point of Yj . Put Ŝ = S×Spec(Fp2 ) Spec(Fp2[t]/t2). Then we have a natural
bijection

Def(y, Ŝ)∼= 0(S, y∗TYj ),

where Def(y, Ŝ) is the set of deformations of y to Ŝ. Similarly, Def(pr j ◦y, Ŝ)∼=
0(S, y∗ pr∗j TSh1,n−1). To prove the universal injectivity of TYj → pr∗j TSh1,n−1 , it
suffices to show that the natural map Def(y, Ŝ) → Def(pr j ◦y, Ŝ) is injective.
By crystalline deformation theory (Theorem 3.4), giving a point of Def(y, Ŝ) is
equivalent to giving OŜ-subbundles ω̂◦A∨,i ⊆H cris

1 (A/Ŝ)◦i over Ŝ for i=1, 2 such that

• ω̂◦A∨,i lifts ω◦A∨/S,i ;

• ω̂◦A∨,1 ⊆ Im(φ∗,1)⊗ Fp2[t]/t2 and Im(φ∗,2)⊗ Fp2[t]/t2
⊆ ω̂◦A∨,2 are locally

direct factors.

Hence, one sees easily that

Def(y, Ŝ)∼= HomOS (ω
◦

A∨/S,1, Im(φ∗,1)/ω◦A∨/S,1)

⊕HomOS (ω
◦

A∨/S,2/ Im(φ∗,2), H dR
1 (A/S)◦2/ω

◦

A∨/S,2)

∼= Lie◦A∨/S,1⊗(Im(φ∗,1)/ω
◦

A∨/S,1)⊕ (ω
◦

A∨/S,2/ Im(φ∗,2))∗⊗Lie◦A/S,2 .

Similarly, Def(pr j ◦y, Ŝ) is given by the lifts of ω◦A∨/S,i to Ŝ for i = 1, 2. These lifts
are classified by HomOS (ω

◦

A∨/S,i , H dR
1 (A/S)◦i /ω

◦

A∨/S,i )
∼= Lie◦A∨/S,i ⊗k Lie◦A/S,i .

Hence, Def(pr j ◦y, Ŝ) is canonically isomorphic to

Lie◦A∨/S,1⊗OS Lie◦A/S,1⊕Lie◦A∨/S,2⊗OS Lie◦A/S,2 .

The natural map Def(y, Ŝ)→ Def(pr j ◦y, Ŝ) is induced by the natural maps

Im(φ∗,1)/ω◦A∨/S,1 ↪→ H dR
1 (A/S)◦1/ω

◦

A∨/S,1
∼= Lie◦A/S,1,

(ω◦A∨/S,2/ Im(φ∗,2))∗ ↪→ ω
◦,∗
A∨/S,2

∼= Lie◦A∨/S,2 .

It follows that Def(y, Ŝ)→ Def(pr j ◦y, Ŝ) is injective. To prove the formula for
NYj (Sh1,n−1), we apply the arguments above to affine open subsets of Yj . We see
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easily that

NYj (Sh1,n−1)∼= Lie◦A∨,1⊗OYj
Coker(φuniv

∗,1 )⊕Lie◦A,2⊗OYj
Im(φuniv

∗,2 )
∗

∼=
(
H1/V−1(H(p)

2 )
)∗
⊗ V−1(H(p)

2 )

⊕
(
F(H(p)

1 )/H2
)
⊗
(
H dR

1 (B/Yj )
◦

2/F(H(p)
1 )

)∗
.

Here, the last step uses (4.7.2) and the isomorphism

Im(φuniv
∗,2 )
∼= H dR

1 (B/Yj )
◦

2/Ker(φuniv
∗,2 )
∼= H dR

1 (B/Yj )
◦

2/F(H(p)
1 ).

(2) By statement (1), pr j,z induces an injection of tangent spaces at each closed
points of Y j,z . To complete the proof, it suffices to prove that π j,z induces injections
on the closed points. Write z = (B, λ′, η′) ∈ Sh0,n(Fp). Assume y1 and y2 are two
closed points of Y j,z with π j (y1)= π j (y2)= (A, λ, η). Let φ1, φ2 : B→ A be the
isogenies given by y1 and y2. Then the quasi-isogeny φ1,2 = φ

−1
2 φ1 ∈ EndOD (B)Q

satisfies the conditions of Lemma 4.13 for N = 1. Hence, we get φ1,2 = idB , which
is equivalent to y1 = y2. This proves that π j,z is injective on closed points.

(3) The proof resembles the work of Vollaard and Wedhorn [2011]. Since all the
points of Sh0,n(Fp) are supersingular by Remark 3.7, it is clear that the image of
each pr j lies in the supersingular locus of Sh1,n−1. Suppose now we are given a
supersingular point x = (A, λ, η) ∈ Sh1,n−1(Fp). We have to show that there exists
(B, λ′, η′) ∈ Sh0,n and an isogeny φ : B→ A such that (A, λ, η, λ′, η′;φ) lies in
Yj for some 1≤ j ≤ n.

Consider
LQ = (D̃(A)◦1[1/p])F2

=p
= {a ∈ D̃(A)◦1[1/p] | F2(a)= pa}.

Since x is supersingular, LQ is a Qp2-vector space of dimension n by the Dieudonné–
Manin classification, and D̃(A)◦1[1/p] = LQ ⊗Qp2 W (Fp)[1/p]. We put Ẽ◦1 =
(LQ ∩ D̃(A)◦1)⊗Zp2 W (Fp), and Ẽ◦2 = F(Ẽ◦1 ) ⊆ D̃(A)◦2. Thus Ẽ◦ = Ẽ◦1 ⊕ Ẽ◦2 is a
Dieudonné submodule of D̃(A)◦. We claim that Ẽ◦ contains pD̃(A)◦ as a submodule.
Then applying Proposition 3.2 with m = 1, we get an OD-abelian variety (B, λ′, η′)
together with an OD-isogeny φ : B→ A with φ∨◦λ◦φ= pλ. It is easy to see in this
case that (A, λ, η, B, λ′, η′, φ) defines a point in Yj with j = dimFp

(D̃(A)◦2/Ẽ
◦

2 ).
It then suffices to prove the claim that pD̃(A)◦ ⊆ Ẽ◦. Suppose not, then

D̃(A)◦ * (1/p)Ẽ◦. Consider Mi := D̃(A)◦i /Ẽ
◦

i for i = 1, 2. For any integer α ≥ 0,
its pα-torsion submodule is

Mi [pα] =
(
D̃(A)◦i ∩

1
pα

Ẽ◦i
)
/Ẽ◦i .

It follows easily that

Mi [pα+1
]/Mi [pα] ∼=

( 1
pα+1 Ẽ

◦

i ∩

(
D̃(A)◦i +

1
pα

Ẽ◦i
))/ 1

pα
Ẽ◦i .
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On the other hand, the Kottwitz’s signature condition implies that both F and
V : D̃(A)◦1→ D̃(A)◦2 have cokernel isomorphic to Fp, and both F and V : Ẽ◦1 → Ẽ◦2
are isomorphism. Therefore, the two induced morphisms

F and V : M1→ M2

are injective and both have cokernel isomorphic to Fp. It follows that the induced
maps on the graded pieces

F and V :
( 1

pα+1 Ẽ
◦

1 ∩

(
D̃(A)◦1+

1
pα

Ẽ◦1
))/ 1

pα
Ẽ◦1

→

( 1
pα+1 Ẽ

◦

2 ∩

(
D̃(A)◦2+

1
pα

Ẽ◦2
))/ 1

pα
Ẽ◦2 (4.14.1)

are injective maps, and are isomorphisms for all α ≥ 0 except for exactly one α.17

The assumption D̃(A)◦ * (1/p)Ẽ◦ implies that there are at least two α ≥ 0 for
which the right hand side of (4.14.1) is nonzero. So there exists α ≥ 0 such that
(4.14.1) are isomorphisms of nonzero Fp-vector spaces. Multiplication by pα gives
isomorphisms:

F and V :
( 1

p
Ẽ◦1 ∩

(
pαD̃(A)◦1+ Ẽ◦1

))
→

( 1
p
Ẽ◦2 ∩

(
pαD̃(A)◦2+ Ẽ◦2

))
. (4.14.2)

Now, Hilbert 90 theorem implies that L′=
(
(1/p)Ẽ◦1 ∩(p

αD̃(A)◦1+ Ẽ◦1 )
)F2
=p in fact

generates the source of (4.14.2). On the other hand, it is obvious that L′ ⊂ LQ and
L′ ⊆ pαD̃(A)◦1+ Ẽ◦1 ⊆ D̃(A)◦1. This means that L′, and hence LQ∩ D̃(A)◦1, generates
the entire (1/p)Ẽ◦1 ∩(p

αD̃(A)◦1+ Ẽ◦1 ), i.e., one has (1/p)Ẽ◦1 ∩(p
αD̃(A)◦1+ Ẽ◦1 )= Ẽ◦1 .

But this contradicts with the nontriviality of the vector spaces in (4.14.1) by our
choice of α. Now the proposition is proved. �

Corollary 4.15. The morphism pr1 (resp. prn) is a closed immersion, and it identi-
fies Y1 (resp. Yn) with the closed subscheme of Sh1,n−1 defined by the vanishing of
V : ω◦A∨,2→ ω

◦,(p)
A∨,1 (resp. V : ω◦A∨,1→ ω

◦,(p)
A∨,2).

Proof. We just prove the statement for pr1, and the case of prn is similar. Let Z1 be
the closed subscheme of Sh1,n−1 defined by the condition that V : ω◦A∨,2→ ω

◦,(p)
A∨,1

vanishes. We show first that pr1 : Y1 → Sh1,n−1 factors through the natural
inclusion Z1 ↪→ Sh1,n−1. Let y = (A, λ, η, B, λ′, η′, φ) be an S-valued point
of Y1. By Lemma 4.6, Im(φ2,∗) has rank n − 1 and contains both ω◦A∨/S,2 and
F(H dR

1 (A/S)◦,(p)1 ), which are both OS-subbundles of rank n − 1. This forces
ω◦A∨/S,2 = F(H dR

1 (A/S)◦,(p)1 ), and therefore V : ω◦A∨/S,2→ ω
◦,(p)
A∨/S,1 vanishes. This

shows that pr1(y) ∈ Z1.

17We point out that, for (4.14.1), F is an isomorphism if and only if V is an isomorphism, because
this is equivalent to requiring the source and the target to have the same dimension.
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To prove that pr1 :Y1→ Z1 is an isomorphism, as Y1 is smooth, it suffices to show
that it induces a bijection between closed points and tangent spaces of Y1 and Z1.
For any perfect field k containing Fp2 , one constructs a map θ : Z1(k)→ Y1(k)
inverse to pr1 : Y1(k) → Z1(k) as follows. Given x = (A, λ, η) ∈ Z1(k). Let
Ẽ◦1 = D̃(A)◦1 and Ẽ◦2 ⊆ D̃(A)◦2 be the inverse image of ω◦A∨/k,2 ⊆ D̃(A)◦2/pD̃(A)◦2.
Then the condition that y ∈ Z1 implies that Ẽ◦1 ⊕ Ẽ◦2 is stable under F and V.
Applying Proposition 3.2 with m = 1, we get a tuple (B, λ′, η′, φ) such that y =
(A, λ, η, B, λ′, η′, φ) ∈ Y1(k). It is immediate to check that x 7→ y and pr1 are the
set theoretic inverse of each other. It remains to show that pr1 induces a bijection
between TY1,y and TZ1,x . Proposition 4.14 already implies that we have an inclusion
TY1,y ↪→ TZ1,x ↪→ TSh1,n−1,x . It suffices to check that dim TZ1,x = n−1. The tangent
space TZ1,x is the space of deformations ( Â, λ̂, η̂) over k̂ = k[ε]/(ε2) of (A, λ, η)
such that V : ω◦

Â∨/k̂,2
→ ω

◦,(p)
Â∨/k̂,1

= ω
◦,(p)
A∨/k,1⊗k k̂ vanishes. This uniquely determines

the lift ω̂◦A∨,2=ω
◦
Â∨/k̂,2. So by deformation theory (Theorem 3.4), the tangent space

TZ1,x is determined by the liftings ω̂◦A∨,1=ω
◦
Â∨/k̂,1 of ω◦A∨/k,1. So it is of dimension

n− 1. This concludes the proof of the corollary. �

4.16. Geometric Jacquet–Langlands morphism. Let ` 6= p be a prime number.
For 1≤ j ≤ n, the diagram (4.2.1) gives rise to a natural morphism

JL j : H 0
et(Sh0,n,Q`)

pr′∗j
−→ H 0

et(Y j ,Q`)
pr j,!
−−→ H 2(n−1)

et (Sh1,n−1,Q`(n−1)), (4.16.1)

where pr j,! is (2.10.1), whose restriction to each H 0
et(Y j,z,Q`) for z∈Sh0,n(Fp) is the

Gysin map associated to the closed immersion Y j,z ↪→Sh1,n−1. It is clear that the im-
age of JL j is the subspace generated by the cycle classes of [Y j,z] ∈ An−1(Sh1,n−1)

with z ∈ Sh0,n(Fp). According to [Helm 2010], JL j should be considered as a
certain geometric realization of the Jacquet–Langlands transfer from G0,n to G1,n−1.
Putting all the JL j together, we get a morphism

JL=
∑

j

JL j :

n⊕
j=1

H 0
et(Sh0,n,Q`)→ H 2(n−1)

et (Sh1,n−1,Q`(n− 1)). (4.16.2)

Recall that we have fixed an isomorphism G1,n−1(A
∞) ' G0,n(A

∞), which we
write uniformly as G(A∞). Denote by H(K p,Q`)=Q`[K p

\G(A∞,p)/K p
] the

prime-to-p Hecke algebra. Then the homomorphism (4.16.2) is a homomorphism
of H(K p,Q`)-modules.

For an irreducible admissible representation π of G(A∞), we write π =π p
⊗πp,

where π p (resp. πp) is the prime-to-p part (resp. the p-component) of π .

Lemma 4.17. Let π1 and π2 be two admissible irreducible representations of
G(A∞), and (ri , si ) for i = 1, 2 be two pairs of integers with 0 ≤ ri , si ≤ n and
r1+ s1 ≡ r2+ s2 mod 2. Assume that π1 satisfies Hypothesis 2.5 with a• = (r1, s1),
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and there exists an admissible irreducible representation π2,∞ of G(r2,s2)(R) such
that π2⊗π2,∞ is a cuspidal automorphic representation of G(r2,s2)(A). If π p

1 and
π

p
2 are isomorphic as representations of G(Ap,∞), then π1,p ' π2,p, and π2⊗π2,∞

admits a base change to a cuspidal automorphic representation of GLn(AE)×A×E0
;

in particular, π2 satisfies Hypothesis 2.5 for a• = (r2, s2).

Proof. By assumption on π1, there exists an irreducible admissible representation
π1,∞ of G(r1,s1)(R) such that π1⊗π1,∞ is a cuspidal automorphic representation of
Gr1,s1(A), which base changes to a cuspidal automorphic representation (51, χ1)

of GLn(AE)×A×E0
. On the other hand, by [Shin 2014, Theorem 1.1], there exists

always a base change of π2⊗π2,∞ to an automorphic representation (52, χ2) of
GLn(AE)× A×E0

. The base changes (5i , χi ) with i = 1, 2 satisfy the following
properties:

• 5i is conjugate self-dual,

• for every unramified rational prime x , the x-component of (5i , ψi ) depends
only on the x-component of πi and

• if πi,p = πi,0⊗πi,p as representation of G(Qp)'Q×p ×GLn(Ep), then 5i,p =

(πi,p⊗ π̌
c
i,p) as a representation of GLn(E ⊗Qp)∼= GLn(Ep)×GLn(Ep̄), and

ψi,p = πi,0⊗π
−1
i,0 as a representation of (E0⊗Qp)

×
=Q×p ×Q×p . Here, π̌ c

i,p
denotes the complex conjugate of the contragredient of πi,p.

As π p
1 ' π

p
2 , (51, ψ1) and (52, ψ2) are isomorphic at almost all finite places.

By the strong multiplicity one theorem for GLn [Jacquet and Shalika 1981], we
have (51, ψ1)' (52, ψ2); in particular, (52, ψ2) is cuspidal. By the description
of (5i,p, ψi,p), it follows immediately that π1,p ' π2,p. �

Let AK be the set of isomorphism classes of irreducible admissible representa-
tions π of G(A∞) satisfying Hypothesis 2.5 with a• = (0, n). In particular, each
π ∈AK is the finite part of an automorphic cuspidal representation of G0,n(A).

We fix such a π ∈AK . Let

JLπ :
n⊕

i=1

H 0
et(Sh0,n,Q`)π p → H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π p

denote the homomorphism on the (π p)K p
-isotypic components induced by JL,

where for an H(K p,Q`)-module M we put

Mπ p := HomH(K p,Q`)
((π p)K p

,M)⊗ (π p)K p
.

Then Lemma 4.17 implies that π is completely determined by its prime-to-p part.
Hence, taking the π p-isotypic components is the same as taking the π-isotypic
components. We can thus write Mπ instead of Mπ p for a H(K ,Q`)-module M.
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Recall that the image of JLπ is included in H 2(n−1)
et (Sh1,n−1,Q`(n − 1))fin

π ,
which is the maximal subspace of H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π where the action
of Gal(Fp/Fp2) factors through a finite quotient. Note that, at this moment, it is not
clear if the target of JLπ is nonzero. But this will follow from the proof of our
main Theorem 4.18 below.

Our main result claims that this inclusion is actually an equality under certain
genericity conditions on πp. To make this precise, write πp = πp,0 ⊗ πp as a
representation of G(Qp)'Q×p ×GLn(Ep). Let

ρπp :WQp2 → GLn(Q`)

be the unramified representation of the Weil group of Qp2 defined in (2.6.1). It
induces a continuous `-adic representation of Gal(Fp/Fp2), which we denote by
the same notation. Then ρπp(Frobp2) is semisimple with characteristic polynomial
(2.6.2). Using this, we get an explicit description of H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π
and H 0

et(Sh0,n,Q`)π in terms of ρπp by (2.4.1) and (2.6.3).
We can now state our main theorem.

Theorem 4.18. Fix a π in AK. Let απp,1,...,απp,n be the eigenvalues of ρπp(Frobp2).

(1) If απp,1,...,απp,n are distinct, then the map JLπ is injective;

(2) Let m1,n−1(π) (resp. m0,n(π)) denote the multiplicity for π appearing in
Theorem 2.6 for a•= (1, n−1) (resp. for a•= (0, n)). Assume that m1,n−1(π)=

m0,n(π) and that απp,i/απp, j is not a root of unity for all 1 ≤ i, j ≤ n. Then
the map

JLπ :
n⊕

j=1

H 0
et(Sh0,n,Q`)π → H 2(n−1)

et (Sh1,n−1,Q`(n− 1))fin
π

is an isomorphism. In other words, H 2(n−1)
et (Sh1,n−1,Q`(n−1))fin

π is generated
by the cycle classes of the irreducible components of Yj for 1≤ j ≤ n.

The proof of this theorem will be given at the end of Section 6.

Remark 4.19. The equality m1,n−1(π) = m0,n(π) is conjectured to be true ac-
cording to Arthur’s formula on the automorphic multiplicities of unitary groups,
and is known to hold when π is the finite part of an automorphic representation
of G1,n−1(A) whose base change to GLn(AE)× A×E0

is cuspidal, and G1,n−1 is
quasisplit at all finite places. See for instance [White 2012, Theorem E].

On the other hand, Theorem 4.18(1) gives partial results towards the equality
m1,n−1(π)= m0,n(π). Indeed, when combining with Kottwitz’s description 2.6 of
the π-isotypic components of the cohomology groups, Theorem 4.18(1) implies
(under the assumption that the Satake parameters of πp are distinct) that m1,n−1(π)≥

m0,n(π) without using Arthur’s trace formula. If we use only the fact that JLπ
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is nonzero (which is an easy consequence of our computation of the intersection
matrix in Theorem 6.7), we get the implication m0,n(π) 6= 0⇒ m1,n−1(π) 6= 0.

5. Fundamental intersection numbers

In this section, we will compute some intersection numbers on certain Deligne–
Lusztig varieties. These numbers will play a key role in the computation in the next
section of the intersection matrix of the cycles Yj on Sh1,n−1.

Notation 5.1. Let X be an algebraic variety of pure dimension N over Fp. For an
integer r ≥ 0, let Ar (X) (resp. Ar (X)) denote the group of algebraic cycles on X of
codimension r (resp. of dimension r ) modulo rational equivalences. If Y ⊆ X is a
subscheme equidimensional of codimension r , we denote by [Y ] ∈ Ar (X) the class
of Y. We put A?(X)=

⊕N
r=0 Ar (X). For a zero-dimensional cycle η ∈ AN (X), we

denote by

deg(η)=
∫

X
η

the degree of η. Let V be a vector bundle over X. We denote by cr (V) ∈ Ar (X)
the r-th Chern class of V for 0≤ r ≤ N, and put c(V)=

∑N
r=0 cr (V)tr in the free

variable t .

5.2. A special Deligne–Lusztig variety. We fix an integer n ≥ 1. For an integer
0 ≤ k ≤ n, we denote by Gr(n, k) the Grassmannian variety over Fp classifying
k-dimensional subspaces of F⊕n

p . Given an integer k with 1≤ k ≤ n, let Z 〈n〉k be the
subscheme of Gr(n, k)× Gr(n, k − 1) whose S-valued points are isomorphism
classes of pairs (L1, L2), where L1 and L2 are respectively subbundles of O⊕n

S of
rank k and k− 1 satisfying L2 ⊆ L(p)1 and L(p)2 ⊆ L1 (with locally free quotients).
The same arguments as in Proposition 4.4 show that Z 〈n〉k is a smooth variety over
Fp of dimension n− 1. We denote the natural closed immersion by

ik : Z
〈n〉
k ↪→ Gr(n, k)× Gr(n, k− 1).

Let L1 and L2 denote the universal subbundles on Gr(n, k) × Gr(n, k − 1)
coming from the two factors, and Q1 and Q2 the universal quotients, respectively.
When there is no confusion, we still use Li and Qi for i = 1, 2 to denote their
restrictions to Z 〈n〉k . We put

Ek = (L1/L
(p)
2 )∗⊗L(p)2 ⊕ (L

(p)
1 /L2)⊗Q∗,(p)1 , (5.2.1)

which is a vector bundle of rank n− 1 on Z 〈n〉k . (This vector bundle is modeled on
the description of the normal bundle NYj (Sh1,n−1) in Proposition 4.14(1), which is
how our computation will be used in the next section; see Proposition 6.4.) We have
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the top Chern class cn−1(Ek) ∈ An−1(Z 〈n〉k ). We define the fundamental intersection
number on Z 〈n〉k as

N (n, k) :=
∫

Z 〈n〉k

cn−1(Ek). (5.2.2)

The main theorem we prove in this section is the following:

Theorem 5.3. For integers n, r with 0≤ r ≤ n, let(n
r

)
q
=
(qn
− 1)(qn−1

− 1) · · · (qn−r+1
− 1)

(q − 1)(q2− 1) · · · (qr − 1)

be the Gaussian binomial coefficients, and let d(n, k)= (2k− 1)n− 2k(k− 1)− 1
denote the dimension of Gr(n, k)× Gr(n, k− 1). Then, for 1≤ k ≤ n, we have

N (n, k)= (−1)n−1
min{k−1,n−k}∑

δ=0

(n− 2δ)pd(n−2δ,k−δ)
(n
δ

)
p2
. (5.3.1)

Remark 5.4. We point out that this theorem seems to be more than a technical
result. It is at the heart of the understanding of these cycles we constructed.

Proof. We first claim that N (n, k)= N (n, n+ 1− k) for 1 ≤ k ≤ n. Let (L1, L2)

be an S-valued point of Gr(n, k)×Gr(n, k−1), and Qi =O⊕n
S /L i for i = 1, 2 be

the corresponding quotient bundles. Then (L1, L2) 7→ (Q∗2, Q∗1) defines a duality
isomorphism

θ : Gr(n, k)× Gr(n, k− 1)−→∼ Gr(n, n+ 1− k)× Gr(n, n− k).

Since L(p)2 ⊆ L1 (resp. L2⊆ L(p)1 ) is equivalent to Q∗1⊆Q∗,(p)2 (resp. to Q∗,(p)1 ⊆Q∗2),
θ induces an isomorphism between Z (n)k and Z (n)n+1−k . It is also direct to check that
Ek = θ

∗(En+1−k). This verifies the claim. Now since the right hand side of (5.3.1)
is also invariant under replacing k by n+ 1− k, it suffices to prove the theorem
when k ≤ 1

2(n+ 1).
We reduce the proof of the theorem to an analogous situation where the twists

are given on one of the L i . Let Z̃ 〈n〉k be the subscheme of Gr(n, k)×Gr(n, k− 1)
whose S-valued points are the isomorphism classes of pairs (L̃1, L̃2), where L̃1 and
L̃2 are respectively subbundles of O⊕n

S of rank k and k− 1 satisfying L̃2 ⊆ L̃1 and
L̃(p

2)

2 ⊆ L̃1. The relative Frobenius morphisms on the two Grassmannian factors
induce two morphisms

Z 〈n〉k
ϕ

// Z̃ 〈n〉k
ϕ̂
// (Z 〈n〉k )(p)

(L1, L2)
� // (L(p)1 , L2)

(L̃1, L̃2)
� // (L̃1, L̃(p)2 ),
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such that the composition is the relative Frobenius on Z̃ 〈n〉k . Using a simple defor-
mation computation, we see that ϕ has degree pn−k and ϕ̂ has degree pk−1. Let L̃1

and L̃2 denote the universal subbundles on Gr(n, k)×Gr(n, k−1) when restricted
to Z̃ 〈n〉k ; let Q̃1 and Q̃2 denote the universal quotients, respectively. We put

Ẽk = (L̃1/L̃
(p2)

2 )∗⊗ L̃(p
2)

2 ⊕ (L̃1/L̃2)⊗ Q̃∗1, (5.4.1)

which is a vector bundle of rank n− 1 on Z̃ 〈n〉k .
Note that

ϕ∗(Ẽk)= (L
(p)
1 /L(p

2)

2 )∗⊗L(p
2)

2 ⊕ (L(p)1 /L2)⊗Q∗,(p)1 .

Comparing with Ek , we see that cn−1(ϕ
∗(Ẽk)) = pk−1cn−1(Ek), where the factor

pk−1 comes from the Frobenius twist on the first factor. Thus, we have∫
Z̃ 〈n〉k

cn−1(Ẽk)= (degϕ)−1
∫

Z 〈n〉k

cn−1(ϕ
∗(Ẽk))

= pk−n
∫

Z 〈n〉k

pk−1cn−1(Ek)= p2k−n−1 N (n, k). (5.4.2)

Since d(n− 2δ, k− δ)+ 2k− n− 1= 2(k− δ− 1)(n− k− δ+ 1), the theorem is
in fact equivalent to the following (for each fixed k). �

Proposition 5.5. For 1≤ k ≤ (n+ 1)/2, we have

∫
Z̃ 〈n〉k

cn−1(Ẽk)= (−1)n−1
k−1∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2
. (5.5.1)

Remark 5.6. Before giving the proof of this proposition, we point out a variant of
the construction of Z̃ 〈n〉k . Let Z̃ ′〈n〉k be the subscheme of Gr(n, k)× Gr(n, k − 1)
whose S-valued points are the isomorphism classes of pairs (L̃ ′1, L̃ ′2), where L̃ ′1 and
L̃ ′2 are respectively subbundles of O⊕n

S of rank k and k− 1 satisfying L̃ ′2 ⊆ L̃ ′1 and
L̃ ′2 ⊆ L̃ ′(p

2)

1 (Note that the twist is on L ′1 as opposed to be on L ′2). This is again a
certain partial-Frobenius twist of Z 〈n〉k ; it is smooth of dimension n− 1. Define the
universal subbundles and quotient bundles L̃′1, L̃′2, Q̃′1, and Q̃′2 similarly. We put

Ẽ ′k = (L̃
′

1/L̃
′

2)
∗
⊗ L̃′2⊕ (L̃

′(p2)

1 /L̃′2)⊗ (Q̃
′∗

1 )
(p2).

Using the same argument as above, we see that, for every fixed k,∫
Z̃ ′〈n〉k

cn−1(Ẽ ′k)= pn+1−2k N (n, k).
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Note that the exponent is different from (5.4.2). So Proposition 5.5 for each fixed k
is equivalent to∫

Z̃ ′〈n〉k

cn−1(Ẽ ′k)= (−1)n−1
k−1∑
δ=0

(n− 2δ)p2(k−δ)(n−k−δ)
(n
δ

)
p2
,

as 2(k− δ)(n− k− δ)= d(n− 2δ, k− δ)+ n− 2k+ 1.

Proof of Proposition 5.5. We first prove it in the case of k = 1, 2 and then we
explain an inductive process to deal with the general case.

When k = 1, Z̃ 〈n〉1 classifies a line subbundle L̃1 of O⊕n
S with no additional

condition (as L̃2 is zero); so Z̃ 〈n〉1
∼= Pn−1 and L̃1 =OPn−1(−1). The vector bundle

Ẽ1 is equal to L̃1⊗ Q̃∗1. It is straightforward to check that

c(Ẽ1)=
(
1+ c1(OPn−1(−1))

)n and hence
∫

Z̃ 〈n〉1

cn−1(Ẽ1)= (−1)n−1n;

the proposition is proved in this case.
When k = 2, we consider a forgetful morphism

ψ : Z̃ 〈n〉2 → Z̃ 〈n〉1 , (L̃1, L̃2) 7→ L̃2.

This morphism is an isomorphism over the closed points x ∈ Z̃ 〈n〉1 (Fp) for which
L̃2,x 6= L̃(p

2)

2,x , because in this case L̃1,x is forced to be L̃2,x + L̃(p
2)

2,x . On the
other hand, for a closed point x ∈ Z̃ 〈n〉1 (Fp) where L̃2,x = L̃(p

2)

2,x , i.e., for x ∈
Z̃ 〈n〉1 (Fp2)∼= Pn−1(Fp2), ψ−1(x) is the space classifying a line L̃1 in F⊕n

p /L̃2,x ; so
ψ−1(x)' Pn−2. A simple tangent space computation shows that ψ is the blowup
morphism of Z̃ 〈n〉1

∼=Pn−1 at all of its Fp2-points. We use E to denote the exceptional
divisors, which is a disjoint union of

(n
1

)
p2 copies of Pn−2.

Note that the vanishing of the morphism L̃2→ L̃1/L̃
(p2)

2 defines the divisor E
(as we can see using deformation); so

OZ̃ 〈n〉2
(E)∼= L̃1/L̃

(p2)

2 ⊗ L̃−1
2 .

Put η = c1(L̃2)= ψ
∗c1(OPn−1(−1)) and ξ = c1(E). Then

c(Ẽ2)= c
(
(L̃1/L̃

(p2)

2 )∗⊗ L̃(p
2)

2

)
· c
(
(L̃1/L̃2)⊗ Q̃∗1

)
= (1− ξ + (p2

− 1)η) · (1+ ξ + p2η)n/(1+ ξ + (p2
− 1)η), (5.6.1)

where the computation of the second term comes from the following two exact
sequences

0→ (L̃1/L̃2)⊗ Q̃∗1→ (L̃1/L̃2)
⊕n
→ (L̃1/L̃2)⊗ L̃∗1→ 0;

0→OZ̃ 〈n〉2
→ (L̃1/L̃2)⊗ L̃∗1→ (L̃1/L̃2)⊗ L̃∗2→ 0.
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Note that
∫

Z̃ 〈n〉2
ξ iη j
= 0 unless (i, j)= (n− 1, 0) or (0, n− 1), in which case∫

Z̃ 〈n〉2

ηn−1
= (−1)n−1 and

∫
Z̃ 〈n〉2

ξ n−1
= (−1)n

(n
1

)
p2
.

Here, to prove the last formula, we used the fact that the restriction of OZ̃ 〈n〉2
(E) to

each irreducible component Pn−2 of E is isomorphic to OPn−2(−1). So it suffices
to compute

• the ξ n−1-coefficient of (5.6.1), which is the same as the ξ n−1-coefficient of
(1− ξ)(1+ ξ)n−1 and is equal to 2− n; and

• the ηn−1-coefficient of (5.6.1), which is the same as the ηn−1-coefficient of
(1+(p2

−1)η)(1+ p2η)n/(1+(p2
−1)η)= (1+ p2η)n and is equal to np2(n−1).

To sum up, we see that∫
Z̃ 〈n〉2

cn−1(Ẽ2)= (−1)n−1np2(n−1)
+ (−1)n(2− n)

(n
1

)
p2
,

which is exactly (5.5.1) for k = 2.
In general, we make an induction on k. Assume that the proposition is proved

for k− 1≥ 1 and we now prove the proposition for k (assuming that k ≤ 1
2(n+ 1)).

By Remark 5.6, we get the similar intersection formula for Ẽ ′k−1 on Z̃ ′〈n〉k−1:∫
Z̃ ′〈n〉k−1

cn−1(Ẽ ′k−1)= (−1)n−1
k−2∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2
. (5.6.2)

We consider the moduli space W over Fp2 whose S-points are tuples (L̃1, L̃2 =

L̃ ′2, L̃ ′3), where L̃1, L̃2 and L̃ ′3 are respectively subbundles of O⊕n
S of rank k, k− 1

and k−2 satisfying L̃ ′3⊂ L̃2⊂ L̃1 and L̃ ′3⊂ L̃(p
2)

2 ⊂ L̃1. It is easy to use deformation
theory to check that W is a smooth variety of dimension n − 1. There are two
natural morphisms

W
ψ23

  

ψ12

��

(L̃1, L̃2 = L̃ ′2, L̃ ′3)0

xx

�

&&

Z̃ 〈n〉k Z̃ ′〈n〉k−1 (L̃1, L̃2) (L̃ ′2, L̃ ′3).

Let E denote the subspace of W whose closed points x ∈ W (Fp) are those such
that L̃2,x = L̃(p

2)

2,x , i.e., L̃2,x is an Fp2-rational subspace of F⊕n
p2 of dimension k− 1.

It is clear that E is a disjoint union of
( n

k−1

)
p2 copies (corresponding to the choices

of L̃2) of Pn−k
×Pk−2 (corresponding to the choice of L̃1 and L̃ ′3 respectively). It

gives rise to a smooth divisor on W.
For a point x ∈ (W \ E)(Fp), we have L̃2,x 6= L̃(p

2)

2,x and hence it uniquely deter-
mines both L̃1,x and L̃ ′3,x ; so ψ12 and ψ23 are isomorphisms restricted to W \E . On
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the other hand, when restricted to E , ψ12 contracts each copy of Pn−k
×Pk−2 of E

into the first factor Pn−k ; whereas ψ23 contracts each copy of Pn−k
×Pk−2 of E into

the second factor Pk−2. It is clear from this (with a little bit of help from a deforma-
tion argument) that ψ12 is the blowup of Z̃ 〈n〉k along ψ12(E) and ψ23 is the blowup
of Z̃ ′〈n〉k−1 along ψ23(E); the divisor E is the exceptional divisor for both blowups.

A simple deformation theory argument shows that the normal bundle of E
in W when restricted to each component Pn−k

×Pk−2 is OPn−k (−1)⊗OPk−2(−1).
Moreover, we can characterize E as the zero locus of either one of the following
natural homomorphisms

L̃(p
2)

2 /L̃′3→ L̃1/L̃2, L̃2/L̃′3→ L̃1/L̃
(p2)

2 .

So as a line bundle over W, we have

OW (E)∼= (L̃
(p2)

2 /L̃′3)
−1
⊗ (L̃1/L̃2)∼= (L̃2/L̃′3)

−1
⊗ (L̃1/L̃

(p2)

2 ).

We want to compare∫
Z̃ 〈n〉k

cn−1(Ẽk)=

∫
W

cn−1(ψ
∗

12(Ẽk)) and∫
Z̃ ′〈n〉k−1

cn−1(Ẽ ′k−1)=

∫
W

cn−1(ψ
∗

23(Ẽ
′

k−1)).

(5.6.3)

We will show that they differ by (2k− n− 2)(−1)n
( n

k−1

)
p2 and this will conclude

the proof of the proposition by inductive hypothesis (5.6.2). Indeed, we have

c
(
ψ∗12(Ẽk)

)
= c

(
(L̃1/L̃

(p2)

2 )∗⊗ L̃(p
2)

2

)
· c
(
(L̃1/L̃2)⊗ Q̃∗1

)
, (5.6.4)

c
(
ψ∗23(Ẽ

′

k−1)
)
= c

(
(L̃2/L̃′3)

∗
⊗ L̃′3

)
· c
(
(L̃(p

2)

2 /L̃′3)⊗ Q̃∗,(p
2)

2

)
, (5.6.5)

where Q̃1 and Q̃2 are the universal quotient vector bundles. Consider the following
two exact sequences where the two last terms are identified:

OW (E)⊗(L̃1/L̃
(p2)

2 )−1
⊗L̃(p

2)

2
OO

∼=
��

0 // (L̃2/L̃′3)
−1
⊗L̃′3 // (L̃2/L̃′3)

−1
⊗L̃(p

2)

2
// (L̃2/L̃′3)

−1
⊗(L̃(p

2)

2 /L̃′3) //

OO

∼=
��

0

0 // (L̃1/L̃2)⊗Q̃∗1 // (L̃1/L̃2)⊗Q̃
∗,(p2)

2
OO

∼=
��

// (L̃1/L̃2)⊗(Q̃
∗,(p2)

2 /Q̃∗1) // 0.

OW (E)⊗(L̃
(p2)

2 /L̃′3)⊗Q̃
∗,(p2)

2
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Here the right vertical isomorphism is given by

(L̃1/L̃2)⊗ (Q̃
∗,(p2)

2 /Q̃∗1)∼= (L̃1/L̃2)⊗ (L̃1/L̃
(p2)

2 )−1

∼=
(
(L̃(p

2)

2 /L̃′3)⊗OW (E)
)
⊗
(
(L̃2/L̃′3)⊗OW (E)

)−1

∼= (L̃2/L̃′3)
−1
⊗ (L̃(p

2)

2 /L̃′3).

From these two exact sequences we see that

c
(
(L̃2/L̃′3)

−1
⊗ L̃′3

)
· c
(
OW (E)⊗ (L̃

(p2)

2 /L̃′3)⊗ Q̃∗,(p
2)

2

)
= c

(
(L̃1/L̃2)⊗ Q̃∗1

)
· c
(
OW (E)⊗ (L̃1/L̃

(p2)

2 )−1
⊗ L̃(p

2)

2

)
.

Comparing this with (5.6.5) and (5.6.4), we get

cn−1(ψ
∗

12(Ẽk))−cn−1(ψ
∗

23(Ẽ
′

k−1))

=
(
ck−1((L̃1/L̃

(p2)

2 )−1
⊗L̃(p

2)

2 )−ck−1(OW (E)⊗(L̃1/L̃
(p2)

2 )−1
⊗L̃(p

2)

2 )
)
·cn−k((L̃1/L̃2)⊗Q̃∗1)

−ck−2((L̃2/L̃′3)
−1
⊗L̃′3)·

(
cn−k+1((L̃

(p2)

2 /L̃′3)⊗Q̃
∗,(p2)

2 )−cn−k+1(OW (E)⊗(L̃
(p2)

2 /L̃′3)⊗Q̃
∗,(p2)

2 )
)
.

Recall that E is the exceptional divisor for the blow-up ψ12 centered at a disjoint
union of Pn−k ; so c1(E) kills ψ∗12(A

i (Z̃ 〈n〉k )) for i ≥ n−k+1. Similarly, c1(E) kills
ψ∗23(A

i (Z̃ ′〈n〉k−1)) for i ≥ k − 1. As a result, we can rewrite the above complicated
formula as

cn−1(ψ
∗

12(Ẽk))− cn−1(ψ
∗

23(Ẽ
′

k−1))

=−c1(E)k−2
|E · cn−k((L̃1/L̃2)⊗ Q̃∗1)+ ck−2((L̃2/L̃′3)

−1
⊗ L̃′3) · c1(E)n−k

|E

= (−1)k−1cn−k((L̃1/L̃2)⊗ Q̃∗1)|ψ12(E)+ (−1)n−kck−2((L̃2/L̃′3)
−1
⊗ L̃′3)|ψ23(E).

For the first term, over each Pn−k of ψ12(E), it is to take the top Chern class of the
canonical subbundle of rank n− k twisted by OPn−k (−1); so the degree of the first
term is (−1)n−k(n− k+1) on each Pn−k. Similarly, for the second term, over each
Pk−2, it is the top Chern class of the canonical subbundle of rank k− 2 twisted by
OPk−2(−1); so the degree of the second term is (−1)k−2(k− 1) on each Pk−2. To
sum up, we have∫

W
cn−1(ψ

∗

12(Ẽk))−

∫
W

cn−1(ψ
∗

23(Ẽ
′

k−1))

= (−1)k−1(−1)n−k(n−k+1)
( n

k−1

)
p2
+(−1)n−k(−1)k−2(k−1)

( n
k−1

)
p2

= (−1)n−1(n−2k+2)
( n

k−1

)
p2
. (5.6.6)
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So by the inductive hypothesis,∫
Z̃ 〈n〉k

cn−1(Ẽk)
(5.6.3)
=

∫
W

cn−1(ψ
∗

12(Ẽk))

(5.6.6)
=

∫
W

cn−1(ψ
∗

23(Ẽk))+ (−1)n−1(n− 2k+ 2)
( n

k−1

)
p2
.

(5.6.3)
=

∫
Z̃ ′〈n〉k−1

cn−1(Ẽ ′k−1)+ (−1)n−1(n− 2k+ 2)
(

n
k− 1

)
p2

= (−1)n−1
k−2∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2

+ (−1)n−1(n− 2k+ 2)
( n

k−1

)
p2

= (−1)n−1
k−1∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2
.

This shows the statement of the proposition for k and hence concludes the proof. �

6. Intersection matrix of supersingular cycles on Sh1,n−1

Throughout this section, we fix an integer n≥ 2 and keep the notation as in Section 4.
We will study the intersection theory of cycles Yj for 1≤ j≤n on Sh1,n−1 considered
in Section 4. For this, we may assume the following:

Hypothesis 6.1. We assume that the tame level structure K p is taken sufficiently
small so that Lemma 4.13 holds with N = 2.

6.2. Hecke correspondences on Sh0,n. Recall that we have an isomorphism

G(Qp)'Q×p ×GLn(Ep)∼=Q×p ×GLn(Qp2).

Put Kp =GLn(OEp) and Kp = Z×p × Kp. The Hecke algebra Z[Kp \GLn(Ep)/Kp]

can be viewed as a subalgebra of Z[Kp \ G(Qp)/Kp] (with trivial factor at the
Q×p -component).

For γ ∈GLn(Ep), the double coset Tp(γ ) := Kpγ Kp defines a Hecke correspon-
dence on Sh0,n . It induces a set theoretic Hecke correspondence

Tp(γ ) : Sh0,n(Fp)→ S(Sh0,n(Fp)),

where S(Sh0,n(Fp)) denotes the set of subsets of Sh0,n(Fp). By Remark 4.12,
Sh0,n(Fp) is a union of # ker1(Q,G0,n)-isogeny classes of abelian varieties. Fix a
base point z0 ∈ Sh0,n(Fp). Let

2z0 : Isog(z0)−→
∼ G0,n(Q) \ (G(A∞,p)×G(Qp))/K p

× Kp.
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be the bijection constructed as in Corollary 4.11. Write Kpγ Kp =
∐

i∈I γi Kp.
If z ∈ Isog(z0) corresponds to the class of (g p, gp) ∈ G(A∞,p) × G(Qp) with
gp = (gp,0, gp), then Tp(γ )(z) consists of points in Isog(z0) corresponding to the
class of (g p, (gp,0, gpγi )) for all i ∈ I.

Alternatively, Tp(γ ) has the following description. Write z= (A, λ, η), and let Lz

denote the Zp2-free module D̃(A)◦,F
2
=p

1 . Then a point z′ = (B, λ′, η′) ∈ Sh0,n(Fp)

belongs to Tp(γ )(z) if and only if there exists an OD-equivariant p-quasi-isogeny
φ : B ′→ B (i.e., pmφ is an isogeny of p-power order for some integer m) such that

(1) φ∨ ◦ λ ◦φ = λ′,

(2) φ ◦ η′ = η,

(3) φ∗(Lz′) is a lattice of Lz[1/p] = Lz ⊗Zp2 Qp2 with the property: there exists a
Zp2-basis (e1, . . . , en) for Lz such that (e1, . . . , en)γ is a Zp2-basis for φ∗(Lz′).

When γ = Diag(pa1, . . . , pan ) with ai ∈ {−1, 0, 1}, For given z and z′, such a φ is
necessarily unique if it exists, by Lemma 4.13 (with N = 2). Therefore, Tp(γ )(z)
is in natural bijection with the set of Zp2-lattices L′ ⊆ Lz[1/p] satisfying property
(3) above.

For each integer i with 0≤ i ≤ n, we put

T (i)
p = Tp(Diag(p, . . . , p︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
n−i

)).

By the discussion above, one has a natural bijection

T (i)
p (z)−→∼ {Lz′ ⊆ Lz[1/p] | pLz ⊆ Lz′ ⊆ Lz, dimFp2 (Lz/Lz′)= i}

for z ∈ Sh0,n(Fp). Note that T (0)
p = id, and we put Sp := T (n)

p . Then the Satake
isomorphism implies Z[Kp \GLn(Ep)/Kp]

∼= Z[T (1)
p , . . . , T (n−1)

p , Sp, S−1
p ]. More

generally, for 0≤ a ≤ b ≤ n, we put

R(a,b)p = Tp(Diag(p2, . . . , p2︸ ︷︷ ︸
a

, p, . . . , p︸ ︷︷ ︸
b−a

, 1, . . . , 1︸ ︷︷ ︸
n−b

)).

Note that R(0,i)p = T (i)
p , and R(a,b)p S−1

p is the Hecke operator

Tp(Diag(p, . . . , p︸ ︷︷ ︸
a

, 1, . . . , 1︸ ︷︷ ︸
b−a

, p−1, . . . , p−1︸ ︷︷ ︸
n−b

)).

For the explicit relations between R(a,b)p and T (i)
p , see Proposition A.1.

6.3. Refined Gysin homomorphism. For an algebraic variety X over Fp of pure
dimension N and any integer r ≥ 0, we write Ar (X) = AN−r (X) to denote the
group of dimension r (codimension N−r ) cycles in X modulo rational equivalence.
Recall that the restriction of pr j : Yj → Sh1,n−1 to each Y j,z for z ∈ Sh0,n(Fp) and
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1 ≤ j ≤ n is a regular closed immersion (into Sh1,n−1). There is a well-defined
Gysin homomorphism

pr!j : An−1(Sh1,n−1)→ A0(Y j )=
⊕

z∈Sh0,n(Fp)

A0(Y j,z), (6.3.1)

whose composition with the natural projection A0(Y j )→ A0(Y j,z) is the refined
Gysin map (pr j |Y j,z )

! defined in [Fulton 1998, 6.2] for regular immersions. Let
X ⊆ Sh1,n−1 be a closed subvariety of dimension n − 1. Consider the Cartesian
diagram

Y j ×Sh1,n−1
X

gX
//

g j

��

X

��

Y j

pr j
// Sh1,n−1.

Assume that the restriction of gX to each Y j,z ×Sh1,n−1
X with z ∈ Sh0,n(Fp) is a

regular closed immersion as well. Then pr!j ([X ]) ∈ A0(Y j ) can be described as
follows. Put NY j,z (Sh1,n−1) := pr∗j (TSh1,n−1

)/TY j,z , and we define NY j,z×Sh1,n−1
X (X)

in a similar way. We define the excess vector bundle as

E(Y j,z, X) := g∗j NY j,z (Sh1,n−1)/NY j,z×Sh1,n−1
X (X).

This is a vector bundle on Y j,z×Sh1,n−1
X. Let r be its rank function, which is equal

to the dimension of Y j ×Sh1,n−1
X on each of its connected component. Then the

excess intersection formula [Fulton 1998, 6.3] shows that

pr!j ([X ])=
∑

z∈Sh0,n(Fp)

∫
Y j,z×Sh1,n−1

X
cr (E(Y j,z, X)), (6.3.2)

where cr (E(Y j,z, X)) is the top Chern class of E(Y j,z, X) over Y j,z ×Sh1,n−1
X. The

integration should be understood as the sum over all connected components of
Y j,z ×Sh1,n−1

X of the degrees of cr (E(Y j,z, X)).

Proposition 6.4. Let i, j be integers with 1≤ i ≤ j ≤ n and z, z′ ∈ Sh0,n(Fp).

(1) The subvarieties Yi,z and Y j,z′ of Sh1,n−1 have nonempty intersection if and
only if there exists an integer δ with 0 ≤ δ ≤ min{n − j, i − 1} such that
z′ ∈ R( j−i+δ,n−δ)

p S−1
p (z), or equivalently z ∈ R(δ,n+i− j−δ)

p S−1
p (z′), where R(a,b)p

and Sp are the Hecke operators defined in Section 6.2.

(2) If the condition in (1) is satisfied for some δ, then Yi,z×Sh1,n−1
Y j,z′ is isomorphic

to the variety Z 〈n+i− j−2δ〉
i−δ defined in Section 5.2. Moreover, the excess vector

bundles E(Yi,z, Y j,z′) and E(Y j,z′, Yi,z) are both isomorphic to the vector bundle
(5.2.1) on Z 〈n+i− j−2δ〉

i−δ .



Tate cycles on some unitary Shimura varieties mod p 2261

Proof. Let (Bz, λz, ηz) and (Bz′, λz′, ηz′) be the universal polarized abelian varieties
on Sh0,n at z and z′, respectively. Then Yi,z ×Sh1,n−1

Y j,z′ is the moduli space of
tuples (A, λ, η, φ, φ′) where φ : Bz → A and φ′ : Bz′ → A are isogenies such
that (A, λ, η,Bz, λz, ηz, φ) and (A, λ, η,Bz′, ηz′, φ

′) are points of Yi,z and Y j,z′

respectively.
Assume first that Yi,z ×Sh1,n−1

Y j,z′ is nonempty, and let (A, λ, η, φ, φ′) be an
Fp-valued point of it. Denote by ω̃◦A∨,k ⊆ D̃(A)◦k for k = 1, 2 the inverse image of
ω◦

A∨/Fp,k
⊆ H dR

1 (A/Fp)
◦

k
∼= D̃(A)◦k/pD̃(A)◦k . We identify D̃(Bz)

◦

k and D̃(Bz′)
◦

k with

their images in D̃(A)◦k via φz,∗,k and φz′,∗,k . Then we have a diagram of inclusions
of W (Fp)-modules:

D̃(Bz)
◦

1 � s

δ

%%

pD̃(A)◦1
� � 1

// ω̃◦A∨,1
� �n− j−δ

// D̃(Bz)
◦

1 ∩ D̃(Bz′)
◦

1

+ �

j−i+δ
99

� s

δ

%%

D̃(Bz)
◦

1+ D̃(Bz′)
◦

1
� �i−δ−1

// D̃(A)◦1.

D̃(Bz′)
◦

1

+ �

j−i+δ
99

(6.4.1)

Here the numbers on the arrows indicate the Fp-dimensions of the cokernel of the
corresponding inclusions, which we shall compute below. By the definition of Yi

and Yj , we have

dimFp
(D̃(A)◦1/D̃(Bz)

◦

1)= dimFp
Coker(φ∗,1)= i − 1,

and similarly, dimFp
(D̃(Bz′)

◦

1/ω̃
◦

A∨,1)= n− j. Therefore, if we put

δ = dimFp

(
D̃(Bz)

◦

1+ D̃(Bz′)
◦

1
)
/D̃(Bz)

◦

1 = dimFp
D̃(Bz′)

◦

1/
(
D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1
)
,

we have 0≤ δ ≤min{i − 1, n− j}. Moreover, the quasi-isogeny φz,z′ = φ
−1
◦φ′ :

Bz′→ Bz makes Bz′ an element of Isog(z). We identify Lz′ defined in (4.11.1) with
a Zp2-lattice of Lz[1/p] via φz′,z,∗,1. Then

dimFp2 (Lz ∩ Lz′)/pLz = dimFp
(D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1)/pD̃(Bz)
◦

1 = n+ i − j − δ.

Take a Zp2-basis (e1, . . . , en) of Lz such that the image of (e j−i+δ+1, . . . , en) in
Lz/pLz form a basis of (Lz ∩Lz′)/pLz and such that p−1en−δ+1, . . . , p−1en form a
basis of (Lz + Lz′)/Lz . Then

(pe1, . . . , pe j−i+δ, e j−i+δ+1, . . . , en−δ, p−1en−δ+1, . . . , p−1en) (6.4.2)

is a basis of Lz′ , that is z′ ∈ R( j−i+δ,n−δ)
p S−1

p (z) according to the convention of
Section 6.2.
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Conversely, assume that there exists δ with 1 ≤ δ ≤ min{i − 1, n − j} such
that the point z′ ∈ R( j−i+δ,n−δ)

p S−1
p (z). We have to prove statement (2), then the

nonemptiness of Yi,z×Sh1,n−1
Y j,z′ will follow automatically. Let φz′,z : Bz′→ Bz be

the unique quasi-isogeny which identifies Lz′ with a Zp2-lattice of Lz[1/p]. By the
definition of R( j−i+δ,n−δ)

p S−1
p , there exists a basis e1, . . . , en of Lz such that (6.4.2)

is a basis of Lz′ . One checks easily that p(Lz + Lz′)⊆ Lz ∩ Lz′ . We put

Mk =
(
D̃(Bz)

◦

k ∩ D̃(Bz′)
◦

k
)/

p
(
D̃(Bz)

◦

k + D̃(Bz′)
◦

k
)

for k = 1, 2. Then one has

dimFp
(Mk)= dimFp2 (Lz ∩ Lz′)/p(Lz + Lz′)= n+ i − j − 2δ.

The Frobenius and Verschiebung on D̃(Bz) induce two bijective Frobenius semilinear
maps F :M1→M2 and V−1

:M2→M1. We denote their linearizations by the same
notation if no confusions arise. Let Zδ(M•) be the moduli space which attaches
to each locally noetherian Fp-scheme S the set of isomorphism classes of pairs
(L1, L2), where L1⊆ M1⊗Fp

OS and L2⊆ M2⊗Fp
OS are subbundles of rank i−δ

and i − 1− δ respectively such that

L2 ⊆ F(L(p)1 ), V−1(L(p)2 )⊆ L1.

Note that there exists a basis (εk,1,...,εk,n+i− j−2δ) of Mk for k = 1, 2 under which
the matrices of F and V−1 are both identity. Indeed, by solving a system of equations
of Artin–Schreier type, one can take a basis (ε1,`)1≤`≤n+i− j−2δ for M1 such that

V−1(F(ε1,`))= ε1,` for all 1≤ `≤ n+ i − j − 2δ.

We put ε2,`= F(ε1,`). Using these bases to identify both M1 and M2 with F
n+i− j−2δ
p ,

it is clear that Zδ(M•) is isomorphic to the variety Z 〈n+i− j−2δ〉
i−δ considered in

Section 5.2.
We have to establish an isomorphism between Zδ(M•) and Yi,z×Sh1,n−1

Y j,z′ . Let
(L1, L2) be an S-point of Zδ(M•). Note that there is a natural surjection(

(D̃(Bz)
◦

k ∩ D̃(Bz′)
◦

k)/pD̃(Bz)
◦

k
)
⊗Fp

OS→ Mk ⊗Fp
OS.

We define Hz,k for k= 1, 2 to be the inverse image of Lk under this surjection. Then
Hz,k can be naturally viewed as a subbundle of D(Bz)

◦

k⊗Fp
OS of rank i+1−k, and

we have Hz,2 ⊆ F(H (p)
z,1 ) and V−1(H (p)

z,2 ) ⊆ Hz,1 since the pair (L1, L2) verifies
similar properties. Therefore, (L1, L2) 7→ (Bz,S, λz,S, ηz,S, Hz,1, Hz,2) gives rise to
a well-defined map ϕ′i,z : Zδ(M•)→ Y ′i,z , where (Bz,S, λz,S, ηz,S) is the base change
of (Bz, λz, ηz) to S. Similarly, we have a morphism ϕ′j,z′ : Zδ(M•)→ Y ′j,z′ defined
by (L1, L2) 7→ (Bz′,S, λz′,S, ηz′,S, Hz′,1, Hz′,2), where Hz′,k is the inverse image of
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Lk under the natural surjection:(
(D̃(Bz)

◦

k ∩ D̃(Bz′)
◦

k)/pD̃(Bz′)
◦

k
)
⊗Fp

OS→ Mk ⊗Fp
OS.

By Proposition 4.8, we get two morphisms

ϕi,z : Zδ(M•)→ Yi,z, ϕ j,z′ : Zδ(M•)→ Y j,z′ .

We claim that pri ◦ϕi,z = pr j ◦ϕ j,z , so that (ϕi,z, ϕ j,z′) defines a map

ϕ : Zδ(M•)→ Yi,z ×Sh1,n−1
Y j,z′ .

Since Yi,z ×Sh1,n−1
Y j,z′ is separated, the locus where pri ◦ϕi,z coincides with

pr j ◦ϕ j,z is a closed subscheme of Zδ(M•). As Zδ(M•) is reduced, it is enough to
show pri (ϕi,z(x)) = pr j (ϕ j,z(x)) for each closed geometric point x = (L1, L2) ∈

Zδ(M•)(Fp). Let (A, λ, η,Bz, λz, ηz, φ) and (A′, λ′, η′,Bz′, λz′, η
′

z′, φ
′) be respec-

tively the image of (L1, L2) under ϕi,z and ϕ j,z′ . To prove the claim, we have to
show that there is an isomorphism (A, λ, η) ∼= (A′, λ′, η′) as objects of Sh1,n−1.
We identify D̃(Bz′), D̃(A), D̃(A′) with W (Fp)-lattices of D̃(Bz)[1/p] via the quasi-
isogenies φz′,z : Bz′ → Bz , φ−1

: A→ Bz and φ−1
z′,z ◦ φ

′
: A′→ Bz . Then by the

construction of A (cf., the proof of Proposition 4.8), D̃(A)◦1 and ω̃◦A∨,1 fit into the
diagram (6.4.1) such that there is a canonical isomorphism

L1 ∼= ω̃
◦

A∨,1
/

p
(
D̃(Bz)

◦

1+ D̃(Bz′)
◦

1
)

⊆
(
D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1
)/

p
(
D̃(Bz)

◦

1+ D̃(Bz′)
◦

1
)
= M1. (6.4.3)

Similarly, we have

L2 ∼= pω̃◦A∨,2/p
(
D̃(Bz)

◦

2+ D̃(Bz′)
◦

2
)

⊆
(
D̃(Bz)

◦

2 ∩ D̃(Bz′)
◦

2
)/

p
(
D̃(Bz)

◦

2+ D̃(Bz′)
◦

2
)
= M2. (6.4.4)

It is easy to see that such relations determine D̃(A) uniquely from (L1, L2). But
the same argument shows that the same relations are satisfied with A replaced
by A′. Hence, we see that the quasi-isogeny f induces an isomorphism between
the Dieudonné modules of A and A′. As f is a p-quasi-isogeny, this implies
immediately that f is an isomorphism of abelian varieties, proving the claim.

It remains to prove that ϕ : Zδ(M•)−→
∼ Yi,z ×Sh1,n−1

Y j,z′ is an isomorphism. It
suffices to show that ϕ induces bijections on closed points and tangents spaces.
The argument is similar to the proof of Proposition 4.8. Indeed, given a closed
point x = (A, λ, η, φ, φ′) of Yi,z ×Sh1,n−1

Y j,z′ , one can construct a unique point
y= (L1, L2) of Zδ(M•) with ϕ(y)= x by the relations (6.4.3) and (6.4.4). It follows
immediately that ϕ induces a bijection on closed points. Let x and y be as above. By
the same argument as in Proposition 4.4, the tangent space of Zδ(M•) at y is given by

TZδ(M•),y
∼= (L1/V−1(L(p)2 ))∗⊗ (M1/L1)⊕ L∗2⊗ F(L(p)1 )/L2.



2264 David Helm, Yichao Tian and Liang Xiao

On the other hand, using Grothendieck–Messing deformation theory, one sees easily
that the tangent space of Yi,z ×Sh1,n−1

Y j,z′ at x is given by

TYi,z×Sh1,n−1
Y j,z′ ,x

∼= HomFp

(
ω◦A∨,1,

(
D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1
)/
ω̃◦A∨,1

)
⊕HomFp

(
ω̃◦A∨,2

/(
D̃(Bz)

◦

2+ D̃(Bz′)
◦

2
)
, D̃(A)◦2/ω̃

◦

A∨,2
)
.

From (6.4.3) and (6.4.4), we see easily that

ω◦A∨,1
∼= L1/V−1(L(p)2 ), D̃(Bz′)

◦

1)/ω̃
◦

A∨,1
∼= M1/L1,

ω̃◦A∨,2
/(

D̃(Bz)
◦

2+ D̃(Bz′)
◦

2
)
∼= L2, D̃(A)◦2/ω̃

◦

A∨,2
∼= F(L(p)1 )/L2.

It follows that ϕ induces a bijection between TZδ(M•),y and TYi,z×Sh1,n−1
Y j,z′ ,x . This

finishes the proof of Proposition 6.4. �

6.5. Applications to cohomology. Recall that we have a morphism JL j (4.16.1)
for each j = 1, . . . , n. We consider another map in the opposite direction:

ν j : H
2(n−1)
et (Sh1,n−1,Q`(n− 1))

pr∗j
−→ H 2(n−1)

et (Y j ,Q`)−→
∼ H 0

et(Sh0,n,Q`),

where the second isomorphism is induced by the trace map

Trpr′j : R
2(n−1) pr′j,∗Q`(n− 1)−→∼ Q`.

For 1≤ i, j ≤ n, we define

mi, j=ν j◦JLi :H 0
et(Sh0,n,Q`)

JLi
−−→H 2(n−1)

et (Sh1,n−1,Q`(n−1))
ν j
−→H 0

et(Sh0,n,Q`).

Putting all the morphisms JLi and ν j together, we get a sequence of morphisms:

n⊕
i=1

H 0
et(Sh0,n,Q`)

JL
−→ H 2(n−1)

et (Sh1,n−1,Q`(n− 1))

ν=(ν1,...,νn)
−−−−−−−→

n⊕
j=1

H 0
et(Sh0,n,Q`). (6.5.1)

We see that the composed morphism above is given by the matrix M= (mi, j )1≤i, j≤n ,
and we call it the intersection matrix of cycles Yj on Sh1,n−1. All these morphisms
are equivariant under the natural action of the Hecke algebra H(K p,Q`). We de-
scribe the intersection matrix in terms of the Hecke action of Q`[Kp\GLn(Ep)/Kp]

on H 0
et(Sh0,n,Q`).

The group H 0
et(Sh0,n,Q`) is the space of functions on Sh0,n(Fp) with values

in Q`. For z ∈ Sh0,n(Fp), let ez denote the characteristic function of z. Then the
image of z under Kpγ Kp for γ ∈ GLn(Ep) is

[Kpγ Kp]∗(ez)=
∑

z′∈Tp(γ )(z)

ez′,
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where Tp(γ )(z)means the set theoretic Hecke correspondence defined in Section 6.2.
In the sequel, we will use the same notation Tp(γ ) to denote the action of [Kpγ Kp]

on H 0
et(Sh0,n,Q`). In particular, we have Hecke operators T (i)

p , Sp, R(a,b)p , . . . .

Proposition 6.6. For 1≤ i ≤ j ≤ n, we have

mi, j =

min{i−1,n− j}∑
δ=0

N (n+ i − j − 2δ, i − δ)R( j−i+δ,n−δ)
p S−1

p ,

m j,i =

min{i−1,n− j}∑
δ=0

N (n+ i − j − 2δ, i − δ)R(δ,n+i− j−δ)
p S−1

p ,

where N (n+ i − j − 2δ, i − δ) are the fundamental intersection numbers defined
by (5.2.2).

Proof. We have a commutative diagram:

An−1(Y i )
pri,∗

//

cl
��

An−1(Sh1,n−1)
pr!j

//

cl
��

A0(Y j )

cl
��

H 0
et(Y i ,Q`)

Gyspri
// H 2(n−1)

et (Sh1,n−1,Q`(n− 1))
pr∗j
// H 2(n−1)

et (Y j ,Q`).

(6.6.1)

Here, the vertical arrows are cycle class maps, and pr!j is the refined Gysin map
defined in (6.3.1). For z ∈ Sh0,n(Fp), the image of ez under mi, j is given by

mi, j (ez)= Trpr′j pr∗j Gyspri
cl([Yi,z])= Trpr′j

(
cl(pr!j pri,∗[Yi,z])

)
= Trpr′j

( ∑
z′∈Sh0,n(Fp)

cl
(
cr(z,z′)(E(Y j,z′, Yi,z))

)
· cl(Y j,z′ ×Sh1,n−1

Yi,z)

)

=

∑
z′∈Sh0,n(Fp)

(∫
Y j,z′×Sh1,n−1 Yi,z

cr(z,z′)(E(Y j,z′, Yi,z))

)
ez′,

where r(z, z′) is the rank of E(Y j,z′, Yi,z), and we used (6.3.2) in the second step.
Indeed, Proposition 6.4(1) says that the schematic intersection Yi,z ×Sh1,n−1

Y j,z′ is
smooth, so the closed immersion Yi,z ×Sh1,n−1

Y j,z′ ↪→ Y j,z′ is a regular immersion
and the assumptions for (6.3.2) are thus satisfied here.

By Proposition 6.4(1), ez′ has a nonzero contribution to the summation above
if and only if there exists an integer δ with 0 ≤ δ ≤ min{i − 1, n − j} such that
z′ ∈ R( j−i+δ,n−δ)

p S−1
p (z). In that case, Proposition 6.4(2) implies that the coefficient

of ez′ is nothing but the fundamental intersection number N (n+ i − j − 2δ, i − δ)
defined in (5.2.2). The formula for mi, j now follows immediately. The formula for
m j,i is proved in the same manner. �
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If we express mi, j in terms of the elementary Hecke operators T (k)
p , we get the

following.

Theorem 6.7. Put d(n, k)= (2k−1)n−2k(k−1)−1 for integers 1≤ k ≤ n. Then,
for 1≤ i ≤ j ≤ n, we have

mi, j =

min{i−1,n− j}∑
δ=0

(−1)n+1+i− j (n+i− j−2δ)pd(n+i− j−2δ,i−δ)T ( j−i+δ)
p T (n−δ)

p S−1
p ,

m j,i =

min{i−1,n− j}∑
δ=0

(−1)n+1+i− j (n+i− j−2δ)pd(n+i− j−2δ,i−δ)T (δ)
p T (n+i− j−δ)

p S−1
p .

Proof. We prove only the statement for mi, j , and that for m j,i is similar. By
Proposition A.1 in Appendix A, the right hand side of the first formula above is

min{i−1,n− j}∑
δ=0

(−1)n+1−i− j (n+ i − j − 2δ)pd(n+i− j−2δ,i−δ)

·

( δ∑
k=0

(n+i− j−2δ+2k
k

)
p2

R( j−i+δ−k,n−δ+k)
p S−1

p

)

=

min{i−1,n− j}∑
r=0

(?)R( j−i+r,n−r)
p S−1

p .

Here, we have put r = δ− k, and the expression ? in the parentheses is

?=

min{i−1−r,n− j−r}∑
k=0

(−1)n+1+i− j (n+ i − j − 2r − 2k)

· pd(n+i− j−2r−2k,i−r−k)
(n+i− j−2r

k

)
p2

= N (n+ i − j − 2r, i − r).

Here, the last equality is Theorem 5.3. The statement for mi, j now follows from
Proposition 6.6. �

Example 6.8. We write down explicitly the intersection matrices when n is small.

(1) Consider first the case n = 2. This case is essentially the same as the Hilbert
quadratic case studied in [Tian and Xiao 2014], and the intersection matrix can be
written:

M =

(
−2p T (1)

p

T (1)
p S−1

p −2p

)
.
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(2) When n = 3, Theorem 6.7 gives

M =

 3p2
−2pT (1)

p T (2)
p

−2pT (2)
p S−1

p 3p4
+ T (1)

p T (2)
p S−1

p −2pT (1)
p

T (1)
p S−1

p −2pT (2)
p S−1

p 3p2

 .
(3) The intersection matrix for n = 4 can be written:

M=


−4p3 3p2T (1)

p −2pT (2)
p T (3)

p

3p2T (3)
p S−1

p −4p7
−2pT (1)

p T (3)
p S−1

p 3p4T (1)
p +T (2)

p T (3)
p S−1

p −2pT (2)
p

−2pT (2)
p S−1

p 3p4T (3)
p S−1

p +T (1)
p T (2)

p S−1
p −4p7

−2pT (1)
p T (3)

p S−1
p 3p2T (1)

p

T (1)
p S−1

p −2pT (2)
p S−1

p 3p2T (3)
p S−1

p −4p3

.
6.9. Proof of Theorem 4.18(1). Let π ∈AK as in the statement of Theorem 4.18(1).
Consider the (π p)K p

-isotypic direct factor of the H(K p,Q`)-equivariant sequence
(6.5.1):

n⊕
i=1

H 0
et(Sh0,n,Q`)π p

JLπ
−−→ H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π p

νπ
−→

n⊕
j=1

H 0
et(Sh0,n,Q`)π p . (6.9.1)

In particular, when i = j = 1, ν1 ◦JL1 is given by multiplication by −npn−1. So
the π p-isotypic component of (6.9.1) is nonzero. This implies that π p appears in
H 2(n−1)

et (Sh1,n−1,Q`(n−1)), i.e., there exist admissible irreducible representations
π ′p of G1,n−1(Qp) and π ′

∞
of G1,n−1(R), which is cohomological in degree n− 1,

such that π p
⊗ π ′p ⊗ π

′
∞

is a cuspidal automorphic representation π ′ ⊗ π ′
∞

of
G1,n−1(AQ). By Lemma 4.17, π ′'π satisfies Hypothesis 2.5(2) for a•= (1, n−1).
Thus, taking the π p-isotypic component of (6.9.1) is the same as taking its π-
isotypic component. From now on, we use subscript π in places of subscript π p.

If a(i)p denotes the eigenvalues of T (i)
p on πKp

p for each 1≤ i ≤ n, then T (i)
p acts

as the scalar a(i)p on all the terms in (6.9.1). Therefore, νπ ◦JLπ is given by the
matrix Mπ , which is obtained by replacing T (i)

p by a(i)p in each entry of M. By
definition, the απp,i are the roots of the Hecke polynomial (2.6.2):

Xn
+

n∑
i=1

(−1)i pi(i−1)a(i)p Xn−i .

Then Theorem 4.18(1) follows easily from the following.

Lemma 6.10. We have

det(Mπ )=±p
n(n2
−1)

3

∏
i< j (απp,i −απp, j )

2(∏n
i=1 απp,i

)n−1 .

Here, ± means that the formula holds up to sign. In particular, νπ ◦ JLπ is an
isomorphism if the απp,i are distinct.
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Proof. Put βi = απp,i/pn−1 for 1 ≤ i ≤ n. For i = 1, . . . , n, let si be the i-th
elementary symmetric polynomial in β1, . . . , βn . Then we have a(i)p = pi(n−i)si . It
follows from Theorem 6.7 that the (i, j)-entry of Mπ with 1≤ i ≤ j ≤ n is given by

mi, j (π)= s−1
n

min{i−1,n− j}∑
δ=0

(−1)n+1+i− j (n+ i − j − 2δ)

· pd(n+i− j−2δ,i−δ)+( j−i+δ)(n+i− j−δ)+δ(n−δ)s j−i+δsn−δ.

A direct computation shows that the exponent index on p in each term above is
independent of δ, and is equal to e(i, j) := (n+1)(i+ j−1)− (i2

+ j2). The same
holds when i > j. In summary, we get mi, j (π)= s−1

n pe(i, j)m′i, j (π) with

m′i, j (π)=

{∑min{i−1,n− j}
δ=0 (−1)n+1+i− j (n+ i − j − 2δ)s j−i+δsn−δ, if i ≤ j,∑min{ j−1,n−i}
δ=0 (−1)n+1+ j−i (n+ j − i − 2δ)sδsn+ j−i−δ, if i > j.

For any n-permutation σ , we have

n∑
i=1

e(i, σ (i))=
n(n2
− 1)

3
.

Thus we get det(Mπ )= pn(n2
−1)/3s−n

n det(m′i, j (π)). The rest of the computation is
purely combinatorial, which is the case q =−1 of Theorem B.1 in Appendix B. �

Remark 6.11. We point out that the determinant of the intersection matrix com-
puted by Theorem B.1 holds with an auxiliary variable q. A similar phenomenon
also appeared in the case of Hilbert modular varieties [Tian and Xiao 2014], where
the computation was related to the combinatorial model of periodic semimeanders.
These motivate us to ask, out of curiosity, whether there might be some quantum
version of the construction of cycles, or even Conjecture 2.12, possibly for the
geometric Langlands setup.

6.12. Proof of Theorem 4.18(2). Given Theorem 4.18(1), it suffices to prove that

n dim H 0
et(Sh0,n,Q`)π ≥ dim H 2(n−1)

et (Sh1,n−1,Q`(n− 1))fin
π . (6.12.1)

Actually, by (2.4.1) and (2.6.3), we have

H 0
et(Sh0,n,Q`)π =π

K
⊗R(0,n),`(π), H 2(n−1)

et (Sh1,n−1,Q`)π =π
K
⊗R(1,n−1),`(π).

Write πp = πp,0⊗πp as a representation of G(Qp)'Q×p ×GLn(Ep). Let χπp,0 :

Gal(Fp/Fp2)→ Q×` denote the character sending Frobp2 to πp,0(p2), and let ρπp
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be as in (2.6.1). According to (2.6.3), up to semisimplification, we have

[R(0,n),`(π)] = # ker1(Q,G0,n)m0,n(π) (6.12.2)[
∧

nρπp ⊗χ
−1
πp,0
⊗Q`

( 1
2 n(n− 1)

)]
,

[R(1,n−1),`(π)] = # ker1(Q,G1,n−1)m0,n(π) (6.12.3)[
ρπp ⊗∧

n−1ρπp ⊗χ
−1
πp,0
⊗Q`

( 1
2(n− 1)(n− 2)

)]
.

Note that

dim
(
ρπp ⊗∧

n−1ρπp ⊗χ
−1
πp,0
⊗Q`

(
(n−1)(n−2)

2

))fin

=

∑
ζ

dim(ρπp ⊗∧
n−1ρπp)

Frobp2=pn(n−1)ζ
,

where the superscript “fin” means taking the subspace on which Gal(Fp/Fp2) acts
through a finite quotient, and ζ runs through all roots of unity. If απp,i/απp, j is not
a root of unity for any pair i 6= j, the right hand side above is equal to the sum of the
multiplicities of

∏n
i=1 απp,i = pn(n−1)ζ as eigenvalues of (ρπp⊗∧

n−1ρπp)(Frobp2),
which is n. Therefore, under these conditions on the απp,i , we have by (6.12.3)

dim R(1,n−1),`(π)
fin
≤ n · # ker1(Q,G1,n−1) ·m1,n−1(π),

and the equality holds if Frobp2 is semisimple on R(1,n−1),`(π). On the other hand,
we have from (6.12.2)

dim R(0,n),`(π)= # ker1(Q,G0,n) ·m0,n(π).

By a result of White [2012, Theorem E], the multiplicity ma•(π) above is equal to 1
for a•= (1, n−1) and a•= (0, n). Now the inequality (6.12.1) follows immediately
from this and the fact that # ker1(Q,G1,n−1)= # ker1(Q,G0,n). This finishes the
proof of Theorem 4.18(2). �

7. Construction of cycles in the case of G(U(r, s)×U(s, r))

We keep the notation of Section 3.6. In this section, we will give the construction
of certain cycles on Shimura varieties for G(U (r, s)×U (s, r)). We always assume
that s ≥ r .

7.1. Description of the cycles in terms of Dieudonné modules. Let δ be a nonneg-
ative integer with δ ≤ r . We consider the case of Conjecture 2.12 when n = r + s,
a1= r , a2= s, b1= r−δ, and b2= s+δ. The representation ra• of GLn involved is

ra• =∧
r Std⊗∧s Std .
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The weight λ of Conjecture 2.12 is

λ= (2, . . . , 2︸ ︷︷ ︸
r−δ

, 1, . . . , 1︸ ︷︷ ︸
s−r+2δ

, 0, . . . , 0︸ ︷︷ ︸
r−δ

).

By elementary calculation of representations of GLn , the multiplicity of λ in ra•
is mλ(a•)=

(s−r+2δ
δ

)
. Then Conjecture 2.12 thus predicts the existence of

(s−r+2δ
δ

)
cycles Yj on Shr,s , each of dimension

1
2(dim Shr,s + dim Shr−δ,s+δ)=

1
2(2rs+ 2(r − δ)(s+ δ))= 2rs− (s− r)δ− δ2,

and each admits a rational map to Shr−δ,s+δ . The principal goal of this section is to
construct these cycles, at least conjecturally. We start with the description in terms
of the Dieudonné modules at closed points.

Consider the interval [r − δ, s + δ]; it contains s − r + 2δ unit segments with
integer endpoints. We will parametrize the cycles on the Shimura variety by the
subsets of these s−r+2δ unit segments of cardinality δ. There are exactly

(s−r+2δ
δ

)
such subsets. Let j be one of them. Then we can write the union of all the segments
in j as

[ j1,1, j1,2] ∪ [ j2,1, j2,2] ∪ · · · ∪ [ jε,1, jε,2] (7.1.1)

such that all jα,i are integers,

r − δ ≤ j1,1 < j1,2 < j2,1 < j2,2 < · · ·< jε,1 < jε,2 ≤ s+ δ,

and we have
∑ε

α=1( jα,2 − jα,1) = δ. For notational convenience, we put j0,1 =
j0,2 = 0.

We define Z j to be the subset of Fp-points z of Shr,s such that the reduced
Dieudonné modules D̃(Az)

◦

1 and D̃(Az)
◦

2 contain submodules Ẽ1 and Ẽ2 satisfying
(3.2.1) for m = ε, i.e.,

pεD̃(Az)
◦

i ⊆ Ẽi , F(Ẽi )⊆ Ẽ3−i , and V (Ẽi )⊆ Ẽ3−i , for i = 1, 2,

and the following condition for i = 1, 2:

D̃(Az)
◦

i /Ẽi ' (W (Fp)/pε)⊕ j1,i ⊕ (W (Fp)/pε−1)⊕( j2,i− j1,i )⊕ · · ·

· · · ⊕ (W (Fp)/p)⊕( jε,i− jε−1,i ). (7.1.2)

We refer to the toy model discussed in Example 7.3 for the motivation of this
condition. For technical reasons, we will not prove the set Z j is the set of Fp-points
of a closed subscheme of Shr,s ; instead we prove that a closely related subset of Z j
is. See Remark 7.5.

Applying Proposition 3.2 with m = δ, the submodules Ẽ1 and Ẽ2 give rise to a
polarized abelian variety (A′z, λ′z) over z with an OD-action and an OD-equivariant
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isogeny A′z→Az . Moreover, by (3.2.2), we have

dimω◦A′∨z /Fp,1
= dimω◦A∨z /Fp,1

+

ε−1∑
α=0

(
(ε−α)( jα+1,1− jα,1)−(ε−α)( jα+1,2− jα,2)

)
= r−δ

and similarly dimω◦A′∨z /Fp,2= s+δ. So A′z satisfies the moduli problem for Shr−δ,s+δ;
this suggests a geometric relationship between Z j and Shr−δ,s+δ that we make
precise in Definition 7.4.

We make an immediate remark that when δ = r , the abelian variety Az coming
from a point z of Z j is isogenous to an abelian variety A′z that is a moduli object for
the Shimura variety Sh0,n . Thus both A′z and Az are supersingular. So every Z j is
contained in the supersingular locus of Shr,s . In fact, we shall show in Theorem 7.8
that the supersingular locus of Shr,s is exactly the union of these Z j .

7.2. Towards a moduli interpretation. We need to reinterpret in a more geometric
manner the Dieudonné-theoretic condition defining Z j . For α= 0, . . . , ε, we define
submodules

Ẽα,1 := D̃(Az)
◦

1 ∩
1

pε−α
Ẽ1 and Ẽα,2 := D̃(Az)

◦

2 ∩
1

pε−α
Ẽ2

of D̃(Az)
◦

1 and D̃(Az)
◦

2. They are easily seen to satisfy condition (3.2.1) with m= α.
Thus, Proposition 3.2 generates a polarized abelian variety (Aα, λα) with OD-action
and an OD-equivariant isogeny Aα→Az , where

rα := dimω◦A∨α /Fp,1
= r −

α∑
α′=1

( jα′,2− jα′,1) and

sα := dimω◦A∨α /Fp,2
= n− dimω◦A∨α /Fp,1

(7.2.1)

by the formula (3.2.2). In particular r0 = r , s0 = s, rε = r − δ and sε = s+ δ.
In fact, applying Proposition 3.2 (with m = 1) to the sequence of inclusions

Ẽi = Ẽε,i ⊂ Ẽε−1,i ⊂ · · · ⊂ Ẽ0,i = D̃(Az)
◦

i ,

we obtain a sequence of isogenies (each with p-torsion kernels):

A′z = Aε
φε−→ Aε−1

φε−1−→· · ·
φ1−→ A0 =Az. (7.2.2)

We have kerφα ⊆ Aα[p], so that there exists a unique isogeny ψα : Aα−1→ Aα
such that ψαφα = p · idAα and φαψα = p · idAα−1 .

For each α, the cokernel of the induced map on cohomology

φα,∗,i : H dR
1 (Aα/Fp)

◦

i → H dR
1 (Aα−1/Fp)

◦

i

(resp. ψα,∗,i : H dR
1 (Aα−1/Fp)

◦

i → H dR
1 (Aα/Fp)

◦

i )
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is canonically isomorphic to Ẽα−1,i/Ẽα,i (resp. Ẽα,i/pẼα−1,i ), which has dimension
jα,i (resp. n− jα,i ) over Fp by a straightforward computation using (7.1.2).

The upshot is that all these numeric information of the chain of isogenies (7.2.2)
can be used to reconstruct Ẽi inside D̃(Az)

◦

i . This idea will be made precise after
this important example.

Example 7.3. We give a good toy model for the isogenies of Dieudonné modules.
This is the inspiration of the construction of this section. We start with the Dieudonné
module D̃(Aε)◦1 =

⊕n
i=1 W (Fp)ej and D̃(Aε)◦2 =

⊕n
j=1 W (Fp) fj . The maps V1 :

D̃(Aε)◦1→ D̃(Aε)◦2 and V2 : D̃(Aε)◦2→ D̃(Aε)◦1, with respect to the given bases,
are given by the diagonal matrices

Diag(1, . . . , 1︸ ︷︷ ︸
s+δ

, p, . . . , p︸ ︷︷ ︸
r−δ

) and Diag(1, . . . , 1︸ ︷︷ ︸
r−δ

, p, . . . , p︸ ︷︷ ︸
s+δ

),

respectively. Using the isogenies φα we may naturally identify D̃(Aα)◦i as lattices
in D̃(Aε)◦i [1/p] with induced Frobenius and Verschiebung morphisms. For our toy
model, we choose

D̃(Aα)◦1 = SpanW (Fp)

{ 1
pε−α

e1,...,
1

pε−α
ejα+1,1,

1
pε−α−1 ejα+1,1+1,...,

1
pε−α−1 ejα+2,1,

1
pε−α−2 ejα+2,1+1,...,

1
p

ejε,1,ejε,1+1,...,en

}
;

D̃(Aα)◦2 = SpanW (Fp)

{ 1
pε−α

f1,...,
1

pε−α
f jα+1,2

,
1

pε−α−1 f jα+1,2+1,...,
1

pε−α−1 f jα+2,2
,

1
pε−α−2 f jα+2,2+1,...,

1
p

f jε,2, f jε,2+1,..., fn
}
.

In particular, the Verschiebung V1 : D̃(Aα)◦1→ D̃(Aα)◦2 with respect to the bases
above is given by

Diag(1, . . . , 1︸ ︷︷ ︸
jα+1,1

, ∗ ∗ ∗ · · · ∗ ∗∗, p, . . . , p︸ ︷︷ ︸
r−δ

),

where the ∗∗∗ part is p if the place is in [ jα′,1+ 1, jα′,2] for some α′ ≥ α, and is 1
otherwise. Similarly, the Verschiebung V2 : D̃(A0)

◦

2→ D̃(A0)
◦

1 with respect to the
bases above is given by

Diag(1, . . . , 1︸ ︷︷ ︸
r−δ

, p, . . . , p︸ ︷︷ ︸
jα+1,1−r+δ

, ∗ ∗ ∗ · · · ∗ ∗∗, p, . . . , p︸ ︷︷ ︸
n− jαε,2

),

where the ∗∗∗ part is 1 if the place is in [ jα′,1+ 1, jα′,2] for some α′ ≥ α, and is p
otherwise.
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So the sheaf of differentials is given by

ω◦A∨α /Fp,1
= SpanFp

{ 1
pε−α

e1,...,
1

pε−α
er−δ,

1
pε−α

ejα,1+1,...,
1

pε−α
ejα,2,

1
pε−α−1 ejα+1,1+1,...,

1
p

ejε−1,2,ejε,1+1,...,ejε,2

}
;

ω◦A∨α /Fp,2
= SpanFp

{ 1
pε−α

f 1,...,
1

pε−α
f jα+1,1

,
1

pε−α−1 f jα+1,2+1,...,
1

pε−α−1 f jα+2,1
,

1
pε−α−2 f jα+2,1

,...,
1
p

f jε,1, f jε,2+1,..., f s+δ−1

}
.

Definition 7.4. Let j be as above. Define the numbers jα,i as in (7.1.1) and the
numbers rα, sα as in (7.2.1). Let Y j be the functor taking a locally noetherian
Fp2-scheme S to the set of isomorphism classes of tuples

(A0, . . . , Aε, λ0, . . . , λε, η0, . . . , ηε, φ1, . . . , φε, ψ1, . . . , ψε) (7.4.1)

such that:

(1) for each α, (Aα, λα, ηα) is an S-point of Shrα,sα ;

(2) for each α, φα is an OD-isogeny Aα→ Aα−1, with kernel contained in Aα[p],
which is compatible with the polarizations in the sense that pλα=φ∨α ◦λα−1◦φα

and with the tame level structures in the sense that φα ◦ ηα = ηα−1;

(3) ψα is the isogeny Aα−1→ Aα such that φαψα = p ·idAα and ψαφα = p ·idAα−1 ;

(4) the cokernel of the induced map φdR
α,∗,i : H

dR
1 (Aα/S)◦i → H dR

1 (Aα−1/S)◦i is a
locally free OS-module of rank jα,i for each α and i = 1, 2;

(5) the cokernel of the induced map ψdR
α,∗,i : H

dR
1 (Aα−1/S)◦i → H dR

1 (Aα/S)◦i is a
locally free OS-module of rank n− jα,i for each α and i = 1, 2;18

(6) for each α, Ker(φdR
α,∗,2) is contained in ω◦A∨α /S,2;

(7) for each α, the (rα−1− rα + rε + 1)-st Fitting ideal of the cokernel of φdR
α,∗,1 :

ω◦A∨α /S,1→ ω◦A∨α−1/S,1 is zero, or equivalently, Zariski locally on S, if we rep-
resent the map φdR

α,∗,1 : ω
◦

A∨α /S,1 → ω◦A∨α−1/S,1 by an rα−1 × rα-matrix (after
choosing local bases), then all (rα − rε + 1)× (rα − rε + 1)-minors vanish.

(8) the (rα−rε+1)-st Fitting ideal of the cokernel of ψdR
α,∗,1 :ω

◦

A∨α−1/S,1→ω◦A∨α /S,1
is zero for each α.

Note that conditions (6)–(8) are all closed conditions. So the moduli problem
Y j is represented by a proper scheme Yj of finite type over Fp2 . The moduli
space Yj admits natural maps to Shr,s and Shr−δ,s+δ by sending the tuple (7.4.1) to

18This is in fact a corollary of (2) and (4).
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(A0, λ0, η0) and (Aε, λε, ηε), respectively.

Yjpr j
vv

pr′j
**

Shr,s Shr−δ,s+δ

We also point out that conditions (2) and (3) together imply that, for each α and
i = 1, 2, we have Im(ψdR

α,∗,i )= Ker(φdR
α,∗,i ) and Im(φdR

α,∗,i )= Ker(ψdR
α,∗,i ). We shall

freely use this property later.

Remark 7.5. Conditions (6)–(8) in Definition 7.4 are satisfied by the toy model in
Example 7.3. They did not appear in moduli problem in Section 4.2 because they
trivially hold in that case. The purpose of keeping these conditions in the moduli
problem and carefully formulating them is so that the moduli space may hope to have
the correct irreducible components. We think the picture is the following: Z j is prob-
ably or at least heuristically the set of Fp-points of a closed subscheme of Shr,s . But
this scheme has many irreducible components, which may have overlaps with other
Z j ′ . Conditions (6)–(8) will help select one irreducible component that is “special”
for j. When taking the union of all images of the Yj , we should still get the union of
the Z j . This is verified in the case of supersingular locus (i.e., r = δ) in Theorem 7.8.

Notation 7.6. Let Yj as above. It will be convenient to introduce some dummy
notation:

• φ0 is the identity map on A0;

• ψε is the identity map on Aε .

We use Y ◦j to denote the open subscheme of Yj representing the functor that takes a
locally noetherian Fp2-scheme S to the subset of isomorphism classes of tuples

(A0, . . . , Aε, λ0, . . . , λε, η0, . . . , ηε, φ1, . . . , φε, ψ1, . . . , ψε)

of Yj (S) such that

(i) for each α = 1, . . . , ε, the sum φα,∗,2(ω
◦

A∨α /S,2) + Ker(φdR
α−1,∗,2) is an OS-

subbundle of H dR
1 (Aα−1/S)◦2 of rank

rankωA∨α /S,2− rank Ker(φdR
α,∗,2)+ rank Ker(φdR

α−1,∗,2)= sα − jα,2+ jα−1,2,

(ii) for each α= 1, . . . , ε, Ker(φdR
α,∗,1)+Ker(ψdR

α+1,∗,1) is an OS-subbundle of rank

rank Ker(φdR
α,∗,1)+ rank Ker(ψdR

α+1,∗,1)= jα,1+ (n− jα+1,1),

(iii) for each α, the cokernel of φdR
α,∗,1 : ω

◦

A∨α /S,1 → ω◦A∨α−1/S,1 is a locally free
OS-module of rank rα−1− (rα − rε),

(iv) for each α, the cokernel of ψdR
α,∗,1 : ω

◦

A∨α−1/S,1 → ω◦A∨α /S,1 is a locally free
OS-module of rank rα − rε .
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We note that the ranks in conditions (i) and (ii) are maximal possible and the ranks in
conditions (iii) and (iv) are minimal possible, under the conditions in Definition 7.4.
So Y ◦j is an open subscheme of Yj .

We point out an additional benefit of having conditions (ii)–(iv). By (iii),
ω◦A∨α /S,1 ∩Ker(φdR

α,∗,1) is an OS-subbundle of ω◦A∨α /S,1 of rank rε , for α = 1, . . . , ε;
by (iv), ω◦A∨α /S,1∩Ker(ψdR

α+1,∗,1) is an OS-subbundle of ω◦A∨α /S,1 of rank rα− rε , for
α = 0, . . . , ε − 1. Combining these two rank estimates and condition (ii) which
implies that Ker(φdR

α,∗,1) and Ker(ψdR
α+1,∗,1) are disjoint subbundles, we arrive at a

direct sum decomposition

ω◦A∨α /S,1 = (ω
◦

A∨α /S,1 ∩Ker(φdR
α,∗,1))⊕ (ω

◦

A∨α /S,1 ∩Ker(ψdR
α+1,∗,1)), (7.6.1)

for α = 1, . . . , ε− 1; and we know that ω◦A∨0 /S,1 ∩Ker(ψdR
1,∗,1) has rank r0− rε = δ

and ω◦A∨ε /S,1 ⊆ Ker(φdR
ε,∗,1).

We shall show below in Theorem 7.7 that Y ◦j is smooth. Unfortunately, we do not
know how to prove the nonemptiness of Y ◦j , nor do we know if some Yj is completely
contained in some other Yj ; but the fact that the Dieudonné modules in Example 7.3
satisfy conditions (i)–(iv) above is good evidence for this nonemptiness. Of course,
if one can compute the intersection matrix in the sense of Theorem 6.7 and calculate
the determinant, one can then probably show that these Yj are essentially different.
But the difficulties of this computation lie in understanding the singularities at
Yj \ Y ◦j , which seems to be very combinatorially involved.

Theorem 7.7. Each Y ◦j is smooth of dimension rs+ (r − δ)(s+ δ) (if not empty).

Proof. Let R̂ be a noetherian Fp2-algebra and Î ⊂ R̂ an ideal such that Î 2
= 0. Put

R = R̂/ Î. Say we want to lift an R-point

(A0, . . . , Aε, λ0, . . . , λε, η0, . . . , ηε, φ1, . . . , φε, ψ1, . . . , ψε)

of Y ◦j an R̂-point and we try to compute the corresponding tangent space. By Serre–
Tate and Grothendieck–Messing deformation theory we recalled in Theorem 3.4,
it is enough to lift, for i = 1, 2 and each α = 0, . . . , ε, the differentials ω◦A∨α /R,i ⊆

H dR
1 (Aα/R)◦i to a subbundle ω̂α,i ⊆ H cris

1 (Aα/R̂)◦i such that

(a) φcris
α,∗,i (ω̂α,i ) ⊆ ω̂α−1,i and ψcris

α,∗,i (ω̂α−1,i ) ⊆ ω̂α,i (so that both φα and ψα are
lifted, which would automatically imply Ker(φα) ∈ Aα[p]),

(b) ω̂α,2 ⊇ Ker(φcris
α,∗,2), and

(c) the R̂-modules ω̂α−1,1/φ
cris
α,∗,1(ω̂α,1) and ω̂α,1/ψcris

α,∗,1(ω̂α−1,1) are flat and of
rank rα−1− (rα − rε) and rα − rε , respectively.

We shall see that condition (i) of Notation 7.6 is automatic. Also, condition
(ii) already holds: since H cris

1 (Aα/R̂)◦1/(Ker(φcris
α,∗,1) + Ker(ψcris

α+1,∗,1)) is locally
generated by jα+1,1 − jα,1 elements after modulo Î, it is so prior to modulo Î
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by Nakayama’s lemma. Note that rank of Ker(φcris
α,∗,1) and Ker(ψcris

α+1,∗,1) and the
number of the generators of the quotient above add up to exactly n; it follows
that Ker(φcris

α,∗,1) + Ker(ψcris
α+1,∗,1) is a direct sum and the sum is a subbundle of

H cris
1 (Aα/R̂)◦1.
We separate the discussion of lifts at q1 and q2, and show that the tangent space

TY ◦j is isomorphic to T1⊕T2 for the contributions T1 and T2 from the two places. We
first look at q2, as it is easier. Note that condition (b) ω̂α,2⊇Ker(φcris

α,∗,2)= Im(ψcris
α,∗,2)

automatically implies that ψcris
α,∗,2(ω̂α−1,2)⊆ ω̂α,2; so we can proceed as follows:

Step 0: First lift ω◦A∨ε /R,2 to a subbundle ω̂ε,2 of H cris
1 (Aε/R̂)◦2 so that it contains

Ker(φcris
ε,∗,2),

Step 1: then lift ω◦A∨ε−1/R,2 to a subbundle ω̂ε−1,2 of H cris
1 (Aε−1/R̂)◦2 so that it

contains φcris
ε,∗,2(ω̂ε,2)+Ker(φcris

ε−1,∗,2),

Step(s) α: then lift ω◦A∨ε−α/R,2 to a subbundle ω̂ε−α,2 of H cris
1 (Aε−α/R̂)◦2 so that it

contains φcris
ε−α+1,∗,2(ω̂ε−α+1,2)+Ker(φcris

ε−α,∗,2),

Step ε: finally lift ω◦A∨0 /R,2 to a subbundle ω̂0,2 of H cris
1 (A0/R̂)◦2 so that it contains

φcris
1,∗,2(ω̂1,2).

At Step 0, the choices form a torsor for the group

HomR(ω
◦

A∨ε /R,2/Ker(φdR
ε,∗,2),Lie◦Aε/R,2)⊗R Î ;

the Hom space is a locally free R-module of rank (sε − jε,2)rε .
At Step α= 1, . . . , ε, we observe that condition (i) of the moduli problem Y ◦j im-

plies φε−α+1,∗,2(ω
◦

A∨ε−α+1/R,2)+Ker(φdR
ε−α,∗,2) is an R-subbundle of H dR

1 (Aε−α/R)◦2
of rank

sε−α+1− jε−α+1,2+ jε−α,2= sε−α+( jε−α+1,1− jε−α,2) if α=1,...,ε−1, (7.7.1)

and of rank s1 − j1,2 if α = ε. So φcris
ε−α+1,∗,2(ω̂ε−α+1,2)+Ker(φcris

ε−α,∗,2) is an R̂-
subbundle of H cris

1 (Aε−α/R̂)◦2 of the same rank. The choices of the lifts ω̂ε−α,2
form a torsor for the group

HomR
(
ω◦A∨ε−α/R,2/(φε−α+1,∗,2(ω

◦

A∨ε−α+1/R,2)+Ker(φdR
ε−α,∗,2)),Lie◦Aε−α/R,2

)
⊗R Î .

By (7.7.1), this Hom space is a locally free R-module of rank ( jε−α+1,1− jε−α,2)rε−α
if α = 1, . . . , ε − 1 and of rank (s0 − (s1 − j1,2))r0 if α = ε. This implies that
the contribution T2 to the tangent space TY ◦j at q2 admits a filtration such that the
subquotients are

Hom
(
ω◦A∨ε−α,2

/(φε−α+1,∗,2(ω
◦

A∨ε−α+1,2
)+Ker(φdR

ε−α,∗,2)),Lie◦Aε−α,2
)



Tate cycles on some unitary Shimura varieties mod p 2277

where the Aε−α are the universal abelian varieties and φε+1,∗,2(ω
◦

A∨ε+1,2
) is inter-

preted as zero. In particular, T2 is a locally free sheaf on Y ◦j of rank

(sε − jε,2)rε + (s0− (s1− j1,2))r0+

ε−1∑
α=1

( jε−α+1,1− jε−α,2)rε−α

= (sε − jε,2)rε + j1,1r0+

ε−1∑
α=1

( jα+1,1− jα,2)rα. (7.7.2)

We now look at the place q1. By condition (ii), φcris
α,∗,1 when restricted to

Ker(ψcris
α+1,∗,1) is a saturated injection of R̂-bundles; and ψcris

α,∗,1 when restricted
to Ker(φcris

α−1,∗,1) is also a saturated injection of R̂-bundles. We first recall from the
discussion in Notation 7.6 especially (7.6.1) that, when α = 1, . . . , ε− 1, ω◦A∨α /R,1
is the direct sum of

ω
◦,Kerφ
A∨α /R,1 := ω

◦

A∨α /R,1 ∩Ker(φdR
α,∗,1) and ω

◦,Kerψ
A∨α /R,1 := ω

◦

A∨α /R,1 ∩Ker(ψdR
α+1,∗,1),

which are locally free R-modules of rank rε and rα−rε , respectively. Similarly, put

ω
◦,Kerφ
A∨ε /R,1 := ω

◦

A∨ε /R,1, ω
◦,Kerψ
A∨ε /R,1 := 0, and ω

◦,Kerψ
A∨0 /R,1 = ω

◦

A∨0 /R,1 ∩Ker(ψdR
1,∗,1);

they have ranks rε , 0, and r0−rε , respectively. We shall avoid talking about ω◦,Kerφ
A∨0 /R,1

(as it does not make sense) but only psychologically understand it as the process
that enlarges ω◦,Kerφ

A∨0 /R,1 to ω◦A∨0 /R,1.

For α = 1, . . . , ε, the lift ω̂α,1 takes the form of ω̂Kerφ
α,1 ⊕ ω̂

Kerψ
α,1 , where the two

direct summands are R̂-subbundles of Ker(φcris
α,∗,1) and of Ker(ψcris

α+1,∗,1), lifting
ω◦,Kerφ

A∨α /R,1 and ω◦,Kerψ
A∨α /R,1, respectively. Whereas, the lift ω̂0,1 contains the lift ω̂Kerψ

0,1
of ω◦,Kerψ

A∨0 /R,1 as an R̂-subbundle of Ker(ψcris
1,∗,1). Now the compatibility conditions

φcris
α,∗,1(ω̂α,1)⊆ ω̂α−1,1 and ψcris

α,∗,1(ω̂α−1,1)⊆ ω̂α,1 together with the condition (c) are
equivalent to

φcris
α,∗,1(ω̂

Kerψ
α,1 )⊆ ω̂

Kerψ
α−1,1 and ψcris

α,∗,1(ω̂
Kerφ
α−1,1)⊆ ω̂

Kerφ
α,1 .

(The condition (c) on ranks of the quotients are also automatic.) In particular,
the tangent space T1 has three contributions, coming from the lifts ω̂Kerφ

α,1 (for
α = 1, . . . , ε), from the lifts ω̂Kerψ

α,1 (for α = 0, . . . , ε), and from lifting ω◦A∨0 /R,1

to an R̂-subbundle ω̂0,1 of H cris
1 (A0/R̂)◦1 containing ω̂Kerψ

0,1 . We shall use T Kerφ
1 ,

T Kerψ
1 , and T Kerφ,0

1 to denote these three parts of the tangent space; and they will
sit in an exact sequence

0→ T Kerφ,0
1 → T1→ T Kerφ

1 ⊕ T Kerψ
1 → 0. (7.7.3)

We first determine the lifts ω̂Kerφ
α,1 for α = 1, . . . , ε. For ω̂Kerφ

1,1 , it lifts ω◦,Kerφ
A∨1 /R,1 as

an R̂-subbundle of H cris
1 (A1/R̂)◦1 of rank rε (with no further constraint). Then due
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to the rank constraint (and the injectivity of ψcris
α,∗,1 when restricted to Ker(φcris

α+1,∗,1)),
the lift ω̂Kerφ

α,1 for each α = 2, . . . , ε is then forced to be equal to the image

ψcris
α,∗,1 ◦ · · · ◦ψ

cris
1,∗,1(ω̂

Kerφ
1,1 ).

So it suffices to consider the choices of the lift ω̂Kerφ
1,1 , which form a torsor for the

group
HomR(ω

◦,Kerφ
A∨1 /R,1,Ker(φdR

1,∗,1)/ω
◦,Kerφ
A∨1 /R,1)⊗R Î .

This Hom space is a locally free R-module of rank

rε( j1,1− rε). (7.7.4)

It follows that the tangent space T Kerφ
1 is simply just

Hom(ω◦,Kerφ
A∨0 ,1

,Ker(φdR
1,∗,1)/ω

◦,Kerφ
A∨0 ,1

).

We now determine the lifts ω̂Kerψ
α,1 for α = 0, . . . , ε following the steps below:

Step 0: We start with putting ω̂Kerψ
ε,1 = 0 because ω◦,Kerψ

A∨ε /R,1 is,

Step(s) α: liftω◦,Kerψ
A∨ε−α/R,1 to a subbundle ω̂Kerψ

ε−α,1 of Ker(ψcris
ε−α+1,∗,1) so that it contains

φcris
ε−α+1(ω̂

Kerψ
ε−α+1,1),

Step ε: finally lift ω◦,Kerψ
A∨0 /R,1 to a subbundle ω̂Kerψ

0,1 of Ker(ψcris
1,∗,1) so that it contains

φcris
1,∗,1(ω̂

Kerψ
1,1 ).

At Step α = 1, . . . , ε, the choices of the lifts ω̂Kerψ
ε−α,1 form a torsor for the group

HomR
(
ω
◦,Kerψ
A∨ε−α/R,1

/
φε−α+1,∗,1(ω

◦,Kerψ
A∨ε−α+1/R,1),Ker(ψdR

ε−α+1,∗,1)
/
ω
◦,Kerψ
A∨ε−α/R,1

)
⊗R Î .

This Hom space is a locally free R-module of rank(
(rε−α − rε)− (rε−α+1− rε)

)(
(n− jε−α+1,1)− (rε−α − rε)

)
.

This implies that the tangent space T Kerψ
1 admits a filtration such that the subquo-

tients are

Hom
(
ω
◦,Kerψ
A∨ε−α,1

/
φε+1−α,∗,1(ω

◦,Kerψ
A∨ε+1−α,1

),Ker(ψdR
ε+1−α,∗,1)/ω

◦,Kerψ
A∨ε−α,1

)
.

In particular, T Kerψ
1 is a locally free sheaf on Y ◦j of rank

ε∑
α=1

(
(rε−α − rε)− (rε−α+1− rε)

)(
(n− jε−α+1,1)− (rε−α − rε)

)
=

ε−1∑
α=0

(rα − rα+1)(sα − jα+1,1+ rε). (7.7.5)
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Finally, we discuss the R̂-module ω̂0,1 that lifts ω◦A∨0 /R,1 and contains ω̂Kerψ
0,1 we

obtained earlier. The lift is subject to one condition: ω̂0,1 ⊆ (ψ
cris
1,∗,1)

−1(ω̂
Kerφ
1,1 ). So

the choices of the lift form a torsor for the group

HomR
(
ω◦A∨0 /R,1/ω

◦,Kerψ
A∨0 /R,1, (ψ

dR
1,∗,1)

−1(ω
◦,Kerφ
A∨1 /R,1)/ω

◦

A∨0 /R,1

)
⊗R Î .

This implies that

T Kerφ,0
1 =Hom

(
ω◦A∨0 ,1

/ω
◦,Kerψ
A∨0 ,1

, (ψdR
1,∗,1)

−1(ω
◦,Kerφ
A∨1 ,1

)/ω◦A∨0 ,1
)
,

which is locally free of rank(
r0− (r0− rε)

)(
(rε + n− j1,1)− r0

)
= rε(s0+ rε − j1,1). (7.7.6)

To sum up, the tangent space TY ◦j , as the direct sum T1⊕T2 with T1 sitting in the
exact sequence (7.7.3), is a locally free sheaf of rank given by (7.7.6)+ (7.7.4)+
(7.7.5)+ (7.7.2), that is,

rε(s0+ rε − j1,1)+ rε( j1,1− rε)+
ε−1∑
α=0

(rα − rα+1)(sα − jα+1,1+ rε)

+ (sε − jε,2)rε + j1,1r0+

ε−1∑
α=1

( jα+1,1− jα,2)rα

= rεs0+

ε−1∑
α=0

rα(sα − jα+1,1+ rε)−
ε∑
α=1

rα(sα−1− jα,1+ rε)

+ (sε − jε,2)rε + j1,1r0+

ε−1∑
α=1

( jα+1,1− jα,2)rα

= rεs0+ r0(s0− j1,1+ rε)+ rε(sε−1− jε,1+ rε)+ (sε − jε,2)rε + j1,1r0

+

ε−1∑
α=1

rα((sα − jα+1,1+ rε)− (sα−1− jα,1+ rε)+ ( jα+1,1− jα,2)).

One easily checks that the first line adds up to rεsε + r0s0, and the second line
cancels to zero. This concludes the proof. �

In the special case of δ = r , each abelian variety Aα appearing in the moduli
problem of Yj is isogenous to Aε , which is a certain abelian variety parameterized
by the discrete Shimura variety Sh0,n and is hence supersingular (by Remark 3.7).
So in particular, the image pr j (Yj ) in this case is contained in the supersingular
locus of Shr,s . In fact, the converse is also true.

Theorem 7.8. Assume δ = r . The supersingular locus of Shr,s is the union of all
pr j (Yj ).
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Proof. We say a finite torsion W (Fp)-module has divisible sequence (a1, a2, . . . , aε)
with nonnegative integers a1 ≤ · · · ≤ aε if it is isomorphic to

(W (Fp)/pε)⊕a1 ⊕ (W (Fp)/pε−1)⊕(a2−a1)⊕ · · ·⊕ (W (Fp)/p)⊕(aε−aε−1).

The following is an elementary linear algebra fact, whose proof we omit.

Claim: If M1 ⊆ M2 are two torsion W (Fp)-modules with divisible sequences
(a1,i ,...,aε,i ) for i = 1, 2 respectively, then aα,1 ≤ aα,2 for all α = 1,...,ε.

The proof of the theorem is similar to the proof of Proposition 4.14(3), which is
a special case of this theorem. It suffices to look at the closed points of Shr,s . Let
z = (Az, λ, η) ∈ Shr,s(Fp) be a supersingular point. Consider

LQ = (D̃(Az)
◦

1[1/p])F2
=p
= {a ∈ D̃(Az)

◦

1[1/p] | F2(a)= pa}.

Since x is supersingular, LQ is a Qp2-vector space of dimension n, and D̃(Az)
◦

1[1/p]
may be identified with the extension of scalars of LQ from Qp2 to W (Fp)[1/p]. Put

Ẽ◦1 = (LQ ∩ D̃(Az)
◦

1)⊗Zp2 W (Fp) and Ẽ◦2 = F(Ẽ◦1 )= V (Ẽ◦1 )⊆ D̃(Az)
◦

2.

Then we have

D̃(Az)
◦

i /Ẽi ' (W (Fp)/pε)⊕ j1,i ⊕ (W (Fp)/pε−1)⊕( j2,i− j1,i )⊕ · · ·

· · · ⊕ (W (Fp)/p)⊕( jε,i− jε−1,i ), (7.8.1)

for nondecreasing sequences 0≤ j1,i ≤ j2,i ≤ · · · ≤ jε,i ≤ n with i = 1, 2; in other
words, D̃(Az)

◦

i /Ẽi has divisible sequence ( j1,i , . . . , jε,i ). Without loss of generality,
we assume that j1,1 and j1,2 are not both zero. The essential part of the proof
consists of checking the sequence of inequalities

0≤ j1,1 < j1,2 < j2,1 < j2,2 < · · ·< jε,1 < jε,2 ≤ n. (7.8.2)

We first prove (7.8.2) with all strict inequalities replaced by nonstrict ones.
Indeed, the obvious inclusion F(D̃(Az)

◦

i )⊆ D̃(Az)
◦

3−i implies that

F(D̃(Az)
◦

1/Ẽ1)= F(D̃(Az)
◦

1)/Ẽ2 ⊆ D̃(Az)
◦

2/Ẽ2, and

F(D̃(Az)
◦

2/Ẽ2)= F(D̃(Az)
◦

2)/pẼ1 ⊆ D̃(Az)
◦

1/pẼ1.

By (7.8.1), the first inclusion embeds a torsion W (Fp)-module with divisible
sequence ( j1,1, . . . , jε,1) into a torsion W (Fp)-module with divisible sequence
( j1,2, . . . , jε,2). The Claim above implies that jα,1 ≤ jα,2 for all α = 1, . . . , ε.
Similarly, by (7.8.1), the second inclusion embeds a torsion W (Fp)-module with
divisible sequence ( j1,2, . . . , jε,2) into a torsion W (Fp)-module with divisible se-
quence ( j1,1, . . . , jε,1, n). The Claim above implies that jα,2 ≤ jα+1,1 for all
α = 1, . . . , ε− 1, and jε,2 ≤ n.
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We now use the construction of LQ to show the strict inequalities in (7.8.2).
Suppose first that jα,1 = jα,2 for some α = 1, . . . , ε. Then it follows that the maps

F, V :
(

pε−αD̃(Az)
◦

1 ∩
1
p
Ẽ◦1
)
+ Ẽ◦1 →

(
pε−αD̃(Az)

◦

2 ∩
1
p
Ẽ◦2
)
+ Ẽ◦2 (7.8.3)

are both isomorphisms (due to an easy length computation as Ẽ◦2 = F(Ẽ◦1 )= V (Ẽ◦1 )).
By the definition of LQ and Ẽ◦1 , we must have((

pε−αD̃(Az)
◦

1 ∩
1
p
Ẽ◦1
)
+ Ẽ◦1

)F=V
⊆ LQ ∩ D̃(Az)

◦

1 ⊆ Ẽ◦1 .

But this is absurd because the isomorphisms (7.8.3) implies by Hilbert’s Theorem
90 that the left hand side above generates the source of (7.8.3), which is clearly not
contained in Ẽ◦1 .

Similarly, suppose that jα,2 = jα+1,1 for some α = 1, . . . , ε − 1. Then the
following morphisms are isomorphisms

F, V :
(

pε−αD̃(Az)
◦

2 ∩
1
p
Ẽ◦2
)
+ Ẽ◦2 → (pε−αD̃(Az)

◦

1 ∩ Ẽ
◦

1 )+ pẼ◦1 , (7.8.4)

since pẼ◦1 = F(Ẽ◦2 )= V (Ẽ◦2 ) and for length reasons. By the definition of LQ and Ẽ◦1 ,(
(pε−αD̃(Az)

◦

1 ∩ Ẽ
◦

1 )+ pẼ◦1
)F−1

=V−1

⊆ LQ ∩ pD̃(Az)
◦

1 ⊆ pẼ◦1 .

(Note that ε − α ≥ 1 now.) But this is absurd because the isomorphisms (7.8.4)
imply by Hilbert’s Theorem 90 that the left hand side above generates the target
of (7.8.4), which is clearly not contained in pẼ◦1 .

Summing up, we have proved the strict inequalities (7.8.2). So the jα,i define
a j as in the beginning of Section 7.1. We now construct a point of Yj which maps
to the point z ∈ Shr,s . Put

Ẽα,1 := D̃(Az)
◦

1 ∩
1

pε−α
Ẽ1 and Ẽα,2 := D̃(Az)

◦

2 ∩
1

pε−α
Ẽ2. (7.8.5)

Using the exact construction in Section 7.2, we get the sequence of isogenies of
abelian varieties

Aε
φε
// Aε−1

ψε

oo

φε−1
//
· · ·

ψε−1

oo

φ1
// A0 =Az,

ψ1

oo

such that Aα together with the induced polarization λα and the tame level structure
ηα gives an Fp-point of Shrα,sα , and D̃(Aα)◦i = Ẽα,i for all α and i = 1, 2.

Conditions (2)–(5) of Definition 7.4 easily follow from the description of the
quotients D̃(Az)

◦

i /Ẽi in (7.8.1). Condition (6) of Definition 7.4 is equivalent to

pD̃(Aα−1)
◦

2 ⊆ V (D̃(Aα)◦1).
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By the construction of these Dieudonné modules in (7.8.5), this is equivalent to

p
(
D̃(Az)

◦

2 ∩
1

pε−α+1 Ẽ2

)
⊆ V

(
D̃(Az)

◦

1 ∩
1

pε−α
Ẽ1

)
.

But this follows from pD̃(Az)
◦

2 ⊆ V D̃(Az)
◦

1 and Ẽ2 = V Ẽ1. Condition (7) of
Definition 7.4 is equivalent to ω◦A∨α /Fp,1 ∩Ker(φdR

α,∗,1) having dimension rε , which
is zero in our case. Translating it into the language of Dieudonné modules, this is
equivalent to

V D̃(Aα)◦2 ∩ pD̃(Aα−1)
◦

1 = pD̃(Aα)◦1.

By the construction of these Dieudonné module in (7.8.5), this is equivalent to(
V D̃(Az)

◦

2 ∩
1

pε−α
V Ẽ2

)
∩

(
pD̃(Az)

◦

1 ∩
1

pε−α
Ẽ1

)
= pD̃(Az)

◦

1 ∩
1

pε−α−1 Ẽ1,

which follows from observing that V D̃(Az)
◦

2⊇ pD̃(Az)
◦

1 and V Ẽ2= pẼ1. Condition
(8) of Definition 7.4 is equivalent to ω◦A∨α−1/Fp,1 ⊆ Ker(ψdR

α,∗,1) (note that rε = 0 in
our case). Translating it into the language of Dieudonné modules and using (7.8.5),
this is equivalent to

V D̃(Aα−1)
◦

2 ⊆ D̃(Aα)◦1, or equivalently,

V D̃(Az)
◦

2 ∩
1

pε−α+1 V Ẽ2 ⊆ D̃(Az)
◦

1 ∩
1

pε−α
Ẽ1,

which follows from observing that V D̃(Az)
◦

2 ⊆ D̃(Az)
◦

1 and V Ẽ2 = pẼ1. This
concludes the proof. �

Conjecture 7.9. The varieties Yj together with the natural morphisms to Shr−δ,s+δ

and Shr,s satisfy condition (3) of Conjecture 2.12. Moreover, the union of the images
of Yj in Shr,s is the closure of the locus where the Newton polygon of the universal
abelian variety has slopes 0 and 1 each with multiplicity 2(r − δ)n, and slope 1

2
with multiplicity 2(n− 2r + 2δ)n.

This conjecture in the case of r = δ = 1 was proved in Theorem 4.18.

Appendix A: An explicit formula in the local spherical Hecke algebra
for GLn

In this appendix, let F be a local field with ring of integers O, $ ∈ O be a
uniformizer, F = O/$O and q = #F. Fix an integer n ≥ 1. We consider the
spherical Hecke algebra HK = Z[K \GLn(F)/K ] with K = GLn(O). Here, the
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product of two double cosets u = K x K and v = K yK in HK is defined as

u · v =
∑
w

m(u, v;w)w, 19 (A.0.1)

where the sum runs through all the double cosets w = K zK contained in K x K yK,
and the coefficient m(u, v;w) ∈ Z is determined as follows: If K x K =

∐
i∈I xi K

and K yK =
∐

j∈J y j K, then

m(u, v;w)= #{(i, j) ∈ I × J | xi y j K = zK for a fixed element z in w}. (A.0.2)

By the theory of elementary divisors, all double cosets K x K are of the form

T (a1, . . . , an) := K Diag($ a1, . . . ,$ an )K for ai ∈ Z with a1 ≥ a2 ≥ · · · ≥ an.

They form a Z-basis of HK . We put

T (r)
= T (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
n−r

) for 0≤ r ≤ n,

R(r,s) = T (2, . . . , 2︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
s−r

, 0, . . . , 0︸ ︷︷ ︸
n−s

) for 0≤ r ≤ s ≤ n.

In particular, R(0,s) = T (s) and T (0)
= [K ].

Because of the lack of references, we include a proof of the following:

Proposition A.1. For 1≤ r ≤ n, let(n
r

)
q
=
(qn
− 1)(qn−1

− 1) · · · (qn−r+1
− 1)

(q − 1)(q2− 1) · · · (qr − 1)
(A.1.1)

be the Gaussian binomial coefficients, and put
(n

0

)
q = 1. Then for 0≤ r ≤ s ≤ n,

T (r)T (s)
=

min{r,n−s}∑
i=0

(s−r+2i
i

)
q

R(r−i,s+i).

Proof. We fix a set of representatives F̃ ⊆ O of F = O/$O which contains 0.
Then we have T (r)

=
∐

x∈S(n,r) x K , where S(n, r) is the set of n × n matrices
x = (xi, j )1≤i, j≤n such that

• r of the diagonal entries are $ and the remaining n− r ones are 1;

• if i 6= j, then xi, j = 0 unless i > j, xi,i = 1 and x j, j =$ , in which case xi, j

can take any values in F̃.

19 We may also view elements of HK as Z-valued locally constant and compactly supported
functions on GLn(F) which are bi-invariant under K, and define the product of f, g ∈ HK as
( f ∗ g)(x) =

∫
GLn(F) f (y)g(y−1x) dy, where dy means the unique bi-invariant Haar measure on

GLn(F) with
∫

K dy = 1. For the equivalence between these two definitions, see [Gross 1998, p. 4].
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For instance, the set S(3, 2) consists of matrices: 1 0 0
x2,1 $ 0
x3,1 0 $

 ,
$ 0 0

0 1 0
0 x3,2 $

 ,
$ 0 0

0 $ 0
0 0 1

 ,
with x2,1, x3,1, x3,2 ∈ F̃. We have a similar decomposition T (s)

=
∐

y∈S(n,s) yK. We
write T (r)T (s) as a linear combination of T (a1, . . . , an)with ai ∈Z and a1≥· · ·≥an .
By looking at the diagonal entries of xy, we see easily that only R(r−i,s+i) with
0≤ i ≤min{r, n− s} have nonzero coefficients, namely, we have

T (r)T (s)
=

min{r,n−s}∑
i=0

C (r,s)(n, i)R(r−i,s+i) for some C (r,s)(n, i) ∈ Z.

By (A.0.1), C (r,s)(n, i) is the number of pairs (x, y) ∈ S(n, r)×S(n, s) such that

xyK = Diag($ 2, . . . ,$ 2︸ ︷︷ ︸
r−i

,$, . . . ,$︸ ︷︷ ︸
s−r+2i

, 1, . . . , 1︸ ︷︷ ︸
n−s−i

)K .

In this case, x and y must be of the form

x =

$ Ir−i 0 0
0 A 0
0 0 In−s−i

 , y =

$ Ir−i 0 0
0 B 0
0 0 In−s−i

 ,
where Ik denotes the k × k identity matrix, and A ∈ S(s − r + 2i, i) and B ∈
S(s − r + 2i, s − r + i) satisfy AB ·GLs−r+2i (O) = $ Is−r+2i GLs−r+2i (O). By
(A.0.1), we see that C (r,s)(n, i)=C (i,s−r+i)(s−r+2i, i). Therefore, one is reduced
to proving the following lemma, which is a special case of our proposition. �

Lemma A.2. Under the notation and hypothesis of Proposition A.1, assume more-
over that n = r + s. Then the coefficient of R(0,n) in the product T (r)T (s) is

(n
r

)
q .

Proof. We induct on n ≥ 1. The case n = 1 is trivial. We assume thus n > 1, and
that the statement is true when n is replaced by n − 1. The case of r = 0 being
trivial, we may assume that r ≥ 1. We say a pair (x, y) ∈ S(n, r)×S(n, n− r) is
admissible if xyK =$ In K. We have to show that the number of admissible pairs
is equal to

(n
r

)
q . Let (x, y) be an admissible pair. Denote by I (resp. by J ) the

set integers 1 ≤ i ≤ n such that xi,i =$ (resp. yi,i =$ ). Note that (x, y) being
admissible implies that J = {1, . . . , n} \ I.

Assume first that x1,1 = 1. Then x and y must be of the form x =
( 1
∗

0
A

)
and

y =
(
$
0

0
B

)
where (A, B) ∈ S(n− 1, r)×S(n− 1, n− 1− r) admissible. Note that

xyK =$ In K always hold. We have xi,1 = 0 for i /∈ I, and xi,1 can take any values
in F for i ∈ I. Therefore, the number of admissible pairs (x, y) with x1,1 = 1 is
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equal to q#I
= qr times that of the admissible (A, B). The latter is equal to

(n−1
r

)
q

by the induction hypothesis.
Consider now the case x1,1 = $ . One can write x =

(
$
0

0
A

)
, and y =

( 1
∗

0
B

)
with (A, B) ∈ S(n− 1, r − 1)×S(n− 1, n− r) admissible. Put z = xy. Then an
easy computation shows that z j,1 = y j,1 if j ∈ J, and z j,1 = 0 if j /∈ J. Hence,
xyK =$ In K forces that y j,1= 0 for all j > 1. Therefore, the number of admissible
(x, y) in this case is equal to that of the admissible (A, B), which is

(n−1
r−1

)
q

by the
induction hypothesis. The lemma now follows immediately from the equality(n

r

)
q
= qr

(n−1
r

)
q
+

(n−1
r−1

)
q
. �

Appendix B: A determinant formula

In this appendix, we prove the following:

Theorem B.1. Let α1, . . . , αn be n indeterminates. For i = 1, . . . , n, let si denote
the i-th elementary symmetric polynomial in the α, and s0 = 1 by convention. Let
q be another indeterminate. We put qr = qr−1

+ qr−3
+ · · · + q1−r . Consider the

matrix Mn(q)= (mi, j ) given as follows:

mi, j =

{∑min{i−1,n− j}
δ=0 qn+i− j−2δs j−i+δsn−δ if i ≤ j;∑min{ j−1,n−i}
δ=0 qn+ j−i−2δsδsn+ j−i+δ if i > j.

Then we have
det(Mn(q))= α1 · · ·αn

∏
i 6= j

(
qαi −

1
q
α j

)
.

Proof. Let Nn(q) be the resultant matrix of the polynomials f (x)=
∏n

i=1(x+q−1αi )

and g(x)=
∏n

i=1(x + qαi ), that is, Nn(q) is the 2n× 2n matrix given by

Nn(q)=



s0 q−1s1 q−2s2 · · · q1−nsn−1 q−nsn 0 · · · 0
0 s0 q−1s1 · · · q2−nsn−2 q1−nsn−1 q−nsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · s0 q−1s1 q−2s2 · · · q−nsn

s0 qs1 q2s2 · · · qn−1sn−1 qnsn 0 · · · 0
0 s0 qs1 · · · qn−2sn−2 qn−1sn−1 qnsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · s0 qs1 q2s2 · · · qnsn


.

It is well known that det(Nn(q))=
∏

i, j (−q−1αi + qα j ). Thus it suffices to show
that det(Nn(q))= (q − q−1)n det(Mn(q)).

We first make the following row operations on Nn(q): subtract row i from row
n+ i for all i = 1, . . . , n. We obtain a matrix whose first column is all 0 except
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the first entry being 1; moreover, one can take out a factor (q − q−1) from row
n+ 1, . . . , 2n. Let N ′n(q) be the right lower (2n− 1)× (2n− 1) submatrix of the
remaining matrix. Then we have

N ′n(q)=



s0 q−1s1 q−2s2 · · · q1−nsn−1 q−nsn 0 · · · 0
0 s0 q−1s1 · · · q2−nsn−2 q1−nsn−1 q−nsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · s0 q−1s1 q−2s2 · · · q−nsn

q1s1 q2s2 q3s3 · · · qn−1sn−1 qnsn 0 · · · 0
0 q1s1 q2s2 · · · qn−2sn−2 qn−1sn−1 qnsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 q1s1 q2s2 · · · qnsn


with det(Nn(q)) = (q − q−1)n det(N ′n(q)). Thus we are reduced to proving that
det(N ′n(q))= det(Mn(q)). Consider the (2n− 1)× (2n− 1) matrix R =

( In−1
C

0
D

)
with the lower n× (2n− 1) submatrix given by

(
C D

)
=


−q1s1 −q2s2 ··· −qn−1sn−1 1 q−1s1 q−2s2 ··· q2−nsn−2 q1−nsn−1

0 −q1s1 ··· −qn−2sn−2 0 1 q−1s1 ··· q3−nsn−3 q2−nsn−2
...

...
. . .

...
...

...
...

. . .
...

...

0 0 ··· −q1s1 0 0 0 ··· 1 q−1s1

0 0 ··· 0 0 0 0 ··· 0 1

.

By a careful computation, one verifies without difficulty that RN ′n(q)=
(U

0
∗

Mn(q)

)
,

where U is an (n− 1)× (n− 1)-upper triangular matrix with all diagonal entries
equal to 1. Note that det(R) = det(D) = det(U ) = 1, and it follows immediately
that det(N ′n(q))= det(Mn(q)). �
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Complex conjugation and Shimura varieties
Don Blasius and Lucio Guerberoff

In this paper we study the action of complex conjugation on Shimura varieties and
the problem of descending Shimura varieties to the maximal totally real field of the
reflex field. We prove the existence of such a descent for many Shimura varieties
whose associated adjoint group has certain factors of type A or D. This includes
a large family of Shimura varieties of abelian type. Our considerations and
constructions are carried out purely at the level of Shimura data and group theory.

1. Introduction

The goal of this paper is to analyze some aspects of complex conjugation acting on
Shimura varieties. This topic has been studied for a long time by several authors,
notably Shimura, Deligne, Langlands, Milne, Shih, and more recently Taylor. In
general, given a Shimura variety Sh(G, X) defined by a Shimura datum (G, X), and
any automorphism α of C, Langlands [1979] conjectured that the conjugate variety
α Sh(G, X)= Sh(G, X)×C,α C can be realized as a Shimura variety Sh(αG, αX)
for a very explicit pair (αG, αX). This has been proved by Milne [1983] (see also
[Borovoı̆ 1983; 1987; Milne 1999]). The case of α = c (complex conjugation) has,
among other properties, the particularity that the pair (cG, c X) is very concrete.
Namely, it can be identified with (G, X), where X is obtained by composing the
elements of x with complex conjugation on the Deligne torus S. This simple
description is hard to find in the literature, and hence, we include a proof of how it
is deduced from the general constructions.

Assuming a few standard extra conditions on the Shimura datum (G, X), the
reflex field E can be seen to be either totally real or a CM field. The Shimura
variety has a canonical model Sh(G, X)E over E , and the Hecke operators are
defined over E as well. In this paper we investigate descent of these varieties to the
maximal totally real subfield E+ of E . The existence of such descent can be seen
as a nice generalization of the useful fact that the field obtained by adjoining to Q

the j-invariant of an order in an imaginary quadratic field has a real embedding.
From now on, assume that E is CM. We show in many cases that Sh(G, X) has
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a model over E+. Although the Hecke operators are not defined over E+, they can
nevertheless be characterized. The general framework for constructing such models
comes from the construction of descent data arising from automorphisms of G of
order 2 taking X to X . Using the classification of (adjoint) Shimura data in terms of
special nodes on Dynkin diagrams, our aim is to construct an involution of G that
induces the opposition involution on the based root datum (or the Dynkin diagram).
The construction we make follows from the classification of semisimple groups.
The groups G with which we work are, roughly speaking, those for which the simple
factors of Gad are of classical type A or D, and satisfy an extra condition on the
hermitian or skew-hermitian space defining them (see Definitions 4.1.4 and 4.2.1).
For example, a factor of type A is attached to a hermitian space over a central
division algebra D over a CM field K endowed with an involution of the second
kind J . We show that, if there exists an opposition involution on these groups,
then D must be either K or a quaternion division algebra, and the involution J is
easily described. We carry out the construction of involutions if we assume the
aforementioned extra condition, which in this case amounts to the existence of a basis
of the underlying vector space such that the matrix of the hermitian form is diagonal
with entries in K . In the quaternion algebra case, we can write D = D0 ⊗F K ,
where F is the maximal totally real subfield of K , and D0 is a quaternion division
algebra over F . We assume furthermore in this case that, if D0,v is not split for an
embedding v : F ↪→R, then the corresponding factor of Gad

R is compact. If D = K ,
the conditions in Definition 4.1.4 are automatically satisfied. For factors of type D,
there is a similar scenario, although we only restrict to groups of type DH as in the
Appendix of [Milne and Shih 1981]. This encompasses a large family of Shimura
varieties of abelian type. Under these assumptions, the existence of the involution
on the group G follows from a concrete construction of involutions on each of the
simple factors of Gad, which are explicitly given in terms of simple algebras.

To give a flavor of the type of involutions constructed in the paper, suppose that
SU(V, h) is a simple factor of type A, corresponding to a hermitian space (V, h)
of dimension n over a CM field K . Let F be the maximal totally real subfield
of K , and let ι be the nontrivial automorphism of K/F . We take an orthogonal
basis {v1, . . . , vn} of V , and we let I : V → V be the ι-semilinear map obtained
by applying ι to the coordinates of elements of V with respect to the given basis.
Then the map θ : SU(V, h)→ SU(V, h) given by

θ(g)= IgI

is an opposition involution.
We stress here that our methods are group-theoretic and we work purely at the

level of Shimura data, in the sense that we do not directly make use of a moduli
interpretation. However, the methods rely on Langlands conjugation of Shimura
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varieties, which in turn is proved using the moduli interpretation in terms of abelian
varieties [Milne 1990, §II.9]. An interesting question would be to consider factors
of type E6, which is the only other type apart from A or DH that contributes to the
reflex field being CM instead of totally real. We plan to investigate this question in
the future.

Let us describe the organization of the paper and outline the main argument. In
Section 2, we start by recalling the general formalism of conjugation of Shimura
varieties by an arbitrary automorphism of C, we study the special case of complex
conjugation explicitly, and we prove in this case that the conjugate Shimura datum
is (G, X), where X is the complex conjugate conjugacy class of X . We show
(Theorem 2.3.1) that, if (G, X) is a Shimura datum and θ : G→ G is an involution
such that θ(X)= X , then θ induces an isomorphism of algebraic varieties from the
complex conjugate c Sh(G, X) to Sh(G, X), defined over the reflex field E , that
constitutes a descent datum from E to E+.

In Section 3, we recall some basic facts about root data and opposition involutions,
and in Proposition 3.4.8, we lay the ground for the prototype of involutions θ :G→G
that we will construct. Roughly speaking, suppose that T ⊂ G is a maximal torus
of G, and x ∈ X factors through TR. If θ :G→G is an involution that preserves TR

and induces complex conjugation on the group of characters X∗(T ), then θ(x)= x
and thus θ(X)= X . This is basically the type of involution that we will construct,
with some slight changes. Since we will make use of the explicit classification of
semisimple groups, we need to work with either Gder or Gad. We let Gi be the
almost simple factors of Gder, and G̃i be their simply connected covers, so that
G̃i = ResFi/Q Hi , for certain groups Hi which are absolutely almost simple, simply
connected, over a totally real field Fi . We recall the classification of these groups
in Section 4, where we also construct opposition involutions on them preserving
specific maximal tori Si and inducing complex conjugation on their characters (for
noncompact places v of Fi ). We only do this for groups of type A or DH. These,
together with type E6, are the only ones that give a CM reflex field, as opposed to
totally real. Furthermore, as noted above, we impose some extra conditions in order
to construct the involutions. From the tori Si , we get maximal tori T ′ ⊂ Gder and
T ⊂ G, and an opposition involution θ ′ : Gder

→ Gder preserving T ′. As shown
in Proposition 3.4.8, θ ′ extends uniquely to an involution on G. To show that
θ(X) = X , we need to relate in some way the choice of our tori Si , which is a
priori unrelated to the Shimura datum, to the conjugacy class X . In Section 5, we
show that there always exists x ∈ X such that xad factors through the image of TR

in Gad
R . This is all we need for Proposition 3.4.8. In Theorem 5.2.2, we state the

existence of descent datum for Shimura varieties defined by groups (G, X) such
that the simple factors of Gad are of the type described in Section 4. We call these
strongly of type (ADH). Finally, we also note that involutions inducing the desired
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descent datum on Sh(G, X) can be constructed whenever G is adjoint and there
exists an opposition involution θ :G→G. This is always the case if G is quasisplit,
for example.

The existence of the involutions constructed in this paper should have interesting
applications, which will be explored in the future, for example, in the setting of
integral models and the zeta function problem, and periods of automorphic forms.

Notation and conventions. We fix an algebraic closure C of the real numbers R

and a choice of i =
√
−1, and we let Q denote the algebraic closure of Q in C. We

let c ∈ Gal(C/R) denote complex conjugation on C, and we use the same letter to
denote its restriction to Q. Sometimes we also write c(z)= z for z ∈ C.

Let k be a field. By a variety over k we will mean a geometrically reduced
scheme of finite type over k. We let Gm,k denote the usual multiplicative group
over k. For any algebraic group G over k, we let Lie(G) denote its Lie algebra.
For us, a reductive group will always be connected. If G is reductive, we let Gad

(resp. Gder) denote its adjoint group G/Z(G) (resp. its derived subgroup), where
Z(G) is the center of G. We let Gab

= G/Gder (a torus). If T ⊂ G is a torus, we
denote by T ad the image of T under the projection G→Gad. For any commutative
group scheme G, we denote by invG : G→ G the map g 7→ g−1.

We denote by A (resp. A f ) the ring of adèles of Q (resp. finite adèles). A CM
field K is a totally imaginary quadratic extension of a totally real field F .

We let S = RC/RGm,C. We denote by c = cS the algebraic automorphism
of S induced by complex conjugation. For any R-algebra A, this is c ⊗R idA :

(C⊗R A)×→ (C⊗R A)× on the points of S(A). This is often denoted by z 7→ z,
and on complex points it should not be confused with the other complex conjugation
idC⊗ c on S(C)= (C⊗R C)× on the second coordinate.

An involution of a group is an automorphism of order 2, whereas an involution
of a ring is an antiautomorphism of order 2. This should not cause any confusion.

We will denote by H the nonsplit quaternion algebra over R, identified with the
set of matrices of the form (

x y
−y x

)
in M2(C).

2. Shimura varieties, conjugation, and descent

We will first review some basic facts about Shimura varieties and conjugation by
an automorphism of C, specializing to the case of complex conjugation. Then
we set up our descent problem, describe some general considerations about reflex
fields and Dynkin diagrams, and explain how to construct descent data based on
involutions of a Shimura datum.
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2.1. Shimura varieties. A Shimura datum (G, X)will be understood in the sense of
Deligne’s axioms [1979, (2.1.1.1–3)]. We will assume moreover that the connected
component Z0 of the center Z of G splits over a CM field. For a compact open
subgroup K ⊂ G(A f ), we put ShK (G, X)(C) = G(Q)\X × G(A f )/K . For K
sufficiently small (which we assume from now on), this complex analytic space
is smooth and is equal to the complex points of a complex quasiprojective variety
ShK (G, X)C. Let E = E(G, X) ⊂ C be the reflex field of (G, X); under our
hypotheses, this is contained in a CM field, and thus, it is either a CM field or a totally
real field. In any case, we let E+ be the maximal totally real subfield of E . The
variety ShK (G, X)C admits a canonical model over E , denoted by ShK (G, X)E . We
use the same notation for the pro-objects Sh(G, X)(C), Sh(G, X)C, and Sh(G, X)E .
We denote by wX :Gm,R→GR the composition of x ∈ X with the weight morphism
w :Gm,R→S, for some (or any) x ∈ X , and call it the weight morphism of (G, X).
For x ∈ X , we let µx : Gm,C→ GC be the map given by µx(z)= xC(z, 1), under
the identification of SC

∼= Gm,C×Gm,C given by (z⊗ a) 7→ (za, za).
We will fix the following notation once and for all. Let p : G → Gad be the

projection onto Gad. The natural isogeny Z0
× Gder

→ G and the projection
G → Gab define an isogeny Z0

→ Gab. Let G1, . . . ,Gr be the almost simple
factors of Gder over Q, and let G̃i → Gi be their simply connected covers. We
can write G̃i = ResFi/Q Hi , where the fields Fi are totally real and the groups Hi

are simply connected, absolutely almost simple over Fi . For each embedding
v ∈ Ii =Hom(Fi ,C), we have groups Hi,v= Hi⊗Fi ,vR, and for a fixed i = 1, . . . , r ,
all these groups have the same Dynkin type Di , which will be called the Dynkin type
of G̃i (or of Gi or Hi ). We let Ii,c={v ∈ Ii : H ad

i,v(R) is compact} and we let Ii,nc be
its complement in Ii , which must be nonempty if Hi is nontrivial. We also have that
Gad is the direct product of the Gad

i = ResFi/Q H ad
i , and Gad

R is the direct product
of the H ad

i,v for i = 1, . . . , r and v ∈ Ii . Let X ad be the Gad(R)-conjugacy class
containing pR(X), and write X ad

=
∏

i,v X i,v with X i,v an H ad
i,v(R)-conjugacy class

of morphisms S→ H ad
i,v . For each i and each v ∈ Ii,nc, there is a special node si,v in

the Dynkin diagram Di,v of Hi,v attached to X i,v , which uniquely determines X i,v

as a conjugacy class with target H ad
i,v (in the sense that if Y is an H ad

i,v(R)-conjugacy
class satisfying Deligne’s axioms, for which its associated special node is si,v , then
Y = X i,v [Deligne 1979, §1.2.6]).

2.2. Conjugation. For the general properties of conjugation of Shimura varieties,
we mainly follow [Milne 1990; Milne and Shih 1982b; Deligne 1982; Milne and
Shih 1982a]; see also [Langlands 1979]. Let (G, X) be a Shimura datum. A special
pair (T, x) consists of a maximal torus T ⊂G and a point x ∈ X factoring through TR.
Fix x ∈ X a special point, and let σ ∈ Aut(C). We denote by (σ,x G, σ,x X) the
conjugate Shimura datum. We recall its construction below. By Theorem II.4.2 of
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[Milne 1990], there exists a unique isomorphism

ϕσ,x : σ Sh(G, X)C = Sh(G, X)C×C,σ C' Sh(σ,x G, σ,x X)C

satisfying certain conditions. Choosing a different special point gives canonically
isomorphic results [Milne 1990, Proposition II.4.3]. The reflex field of (σ,x G, σ,x G)
is σ(E), and ϕσ,x identifies σ Sh(G, X)E = Sh(G, X)E×E,σ σ(E) with the canoni-
cal model of Sh(σ,x G, σ,x G)C over σ(E) [Milne 1990, Theorem II.5.5]. In particular,
if σ(E)= E , then ϕσ,x defines an isomorphism

ϕσ,x : σ Sh(G, X)E ' Sh(σ,x G, σ,x X)E

over E . All of this also works at finite level: if K ⊂ G(A f ) is compact open,
ϕσ,x sends σ ShK (G, X)C to Shσ,x K (

σ,x G, σ,x X)C (same thing replacing C by E
and σ(E)), where σ,x K ⊂ σ,x G(A f ) is explicit (see below).

We are interested mainly in the case σ = c, but nevertheless it will be useful
to recall the general construction of (σ,x G, σ,x X). Let S be the (connected) Serre
group. This can be defined as the group of automorphisms of the forgetful fiber
functor from the Tannakian category of CM Q-Hodge structures to the category
of finite-dimensional Q-vector spaces. (Here a Q-Hodge structure is a Q-vector
space V such that V ⊗C is endowed with a Hodge structure; the structure is CM if
the algebra of elements of End(V ) which induce morphisms of Hodge structure
contains a commutative semisimple subalgebra of dimension dimQ(V ).) Let T
denote the Taniyama group, defined here as the group of automorphisms of the Betti
fiber functor in Deligne’s Tannakian category of CM motives for absolute Hodge
cycles over Q; this is the Tannakian category generated by Artin motives and by
the cohomology of abelian varieties over Q which are potentially CM. These are
proalgebraic groups, and there is a natural exact sequence

1→S→ T
π
−→ Gal(Q/Q)→ 1,

where the second arrow corresponds to the functor taking a CM motive M to its
CM Hodge structure HB(M), and π corresponds to the natural inclusion of the
category of Artin motives into the category of CM motives. The group Gal(Q/Q)
is to be considered as the proalgebraic group given by the inverse limit of the finite
constant groups Gal(L/Q), for L ⊂ C a finite Galois extension of Q. There is a
continuous section of π over A f denoted by

sp : Gal(Q/Q)→ T(A f ).

For a motive M , sp(σ ) corresponds to the automorphism of HB(M)⊗Q A f obtained
from the Galois action of σ on étale cohomology using the comparison isomorphism.
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Suppose that σ = c is complex conjugation. Then sp(c)∈T(A f ) can be described
as follows, as explained in [Deligne 1982, Lemme 5]. Suppose that M is a CM mo-
tive over Q, realized as the cohomology of an algebraic variety X over Q. The action
of complex conjugation on X (C) induces an involution F on the Betti realization
HB(M)= H i (X (C),Q). The automorphism sp(c) : HB(M)⊗A f → HB(M)⊗A f

is then equal to F ⊗Q idA f . This implies, in particular, that sp(c) ∈ T(Q).
For any σ ∈ Gal(Q/Q), we let σS = π−1(σ ). There is a cocharacter µcan :

Gm,C→SC, which in Tannakian terms gives rise to the Hodge cocharacter of the
Hodge structures on HB(M)⊗Q C.

Let G be any algebraic group over Q and ρ : S→ Gad be a homomorphism,
inducing an action of S on G by group automorphisms (conjugation). Let σ,ρG =
σS×S,ρ G be the group obtained by twisting G by the torsor σS. Thus, σ,ρG is
the fpqc sheaf associated with the presheaf sending a Q-algebra R to the group
σS(R)×S(R),ρ G(R), which is the quotient of σS(R)×G(R) by the right action
(s, g)s1 = (ss1, s−1

1 g) of S(R). The class of an element (s, g) in this quotient will
be denoted by s · g.

Lemma 2.2.1. Keep the notation and assumptions as above, with σ = c. There
exists a natural isomorphism c,ρG→ G.

Proof. As explained above, sp(c)∈ cS(Q), so cS is trivialized over Q. In particular,
the map sp(c)R · g 7→ g (for g ∈ G(R)) defines a group isomorphism between the
presheaves defining c,ρG and G. A fortiori, this defines an isomorphism c,ρG→G.

�

Remark 2.2.2. If H ⊂ G is a subgroup on which S acts trivially, then c,ρH is
canonically isomorphic to H (this is true for any σ ). This identification is compatible
with that of Lemma 2.2.1.

Remark 2.2.3. In [Milne 1990, §II.4], an isomorphism G(A f )→
c,ρG(A f ) is

constructed, which is denoted by g 7→ cg. When identifying c,ρG with G using
Lemma 2.2.1, this becomes the identity map. A similar remark applies to the
isomorphism g 7→ cg between GC and c,ρGC defined in [Milne 1990, §III.1] (note
that the element z∞(c) defined in [op. cit.] is equal to sp(c)C).

Suppose that (G, X) is a Shimura datum as before, and (T, x) is a special pair.
The map µx factors through TC, and there exists a unique homomorphism

ρad
x :S→ Gad

such that (ρad
x )C ◦ µcan = µ

ad
x . For σ ∈ Aut(C), the group σ,x G is defined to be

σ,ρad
x G in the previous notation (where we take the restriction of σ to Q). Since the

cocharacter σ(µx) of T = σ,ρx T commutes with its complex conjugate, it is the
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Hodge cocharacter associated with a map S→ σ,x GR which we denote by

σ x : S→ σ,x GR.

Finally, σ,x X is defined to be the σ,x G(R)-conjugacy class of σ x .
Assume now that σ = c. By Lemma 2.2.1, we can identify c,x G with G, and

hence, we can see cx : S→ c,x GR as a map

cx : S→ GR

with target GR. Let c = cS : S → S be complex conjugation on S. For any
h : S→ GR, let h = h ◦ c.

Lemma 2.2.4. In the notation above, we have that

cx = x .

Proof. It is enough to show that x(C) = (cx)(C) : S(C)→ G(C). Recall that we
are identifying S(C)= (C⊗R C)× with C××C× via the map (z⊗ a) 7→ (za, za).
Then c= cS :S(C)→S(C), which is given by c(z⊗a)= z⊗a, becomes the map
(a, b) 7→ (b, a). This is an algebraic automorphism of S. There is another complex
conjugation, which will be denoted by c′ here, on the complex points of S. Namely,

c′ : S(C)→ S(C),

which is induced by complex conjugation on C. It is given by c′(z⊗ a) = z⊗ a.
Then, as a map on C××C×, it is given by (a, b) 7→ (b, a).

Recall that µx(a)= x(C)(a, 1) for a ∈ C×. For readability purposes, we use the
notation xC(a, b) instead of x(C)(a, b) in what follows. Then, for a, b ∈ C×, we
have that

xC(a, b)= xC(b, a)= xC(b, 1)xC(1, a). (2.2.5)

Similarly,
(cx)C(a, b)= µcx(a)µcx(b). (2.2.6)

Now, by definition, µcx = c(µx), where c now denotes the action on cocharacters.
If we let g 7→ g denote the map on G(C) induced by c : C→ C, then

µcx(a)= µx(a)= xC(a, 1) (2.2.7)

for a ∈ C×. Since x is defined over R, it commutes with the maps on complex
points induced by c : C→ C. That is, the diagram

S(C) G(C)

S(C) G(C)

xC

c′ g 7→g

xC
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is commutative. From this and (2.2.7), it follows that

µcx(a)= xC(1, a). (2.2.8)

Similarly,
µcx(b)= cxC(b, 1)= (cx)C(1, b)= µc(cx)(b).

But µc(cx) = c(µcx)=µx , so this equals xC(b, 1). The proof finishes by combining
(2.2.5), (2.2.6), and (2.2.8). �

By the last lemma, we can identify c,x X with the G(R)-conjugacy class of x .
The map h 7→ h defines an antiholomorphic isomorphism between X and c,x X .
This does not depend on x , and from now on we let

X = {h : h ∈ X}.

Thus, the pair (c,x G, c,x X) becomes naturally identified with the pair (G, X).
The isomorphism ϕc,x becomes, under this identification, an isomorphism ϕ :

ShK (G, X)E×E,c E→ShK (G, X)E . On complex points, it defines an antiholomor-
phic isomorphism between ShK (G, X)(C) and ShK (G, X)(C), which we denote
by φ. For [h, g] ∈ShK (G, X)(C), we have that φ([h, g])=[h, g] ∈ShK (G, X)(C).

For example, suppose that E ⊂ R. Then there is an antiholomorphic involution
on ShK (G, X)(C) defined by complex conjugation acting on C. It follows from the
theory of canonical models that this involution takes the form [h, g] 7→ [η(h), g],
where η : X→ X is an antiholomorphic involution of the form η(g · x)= (gn) · x
for some n ∈ N (R) (here N is the normalizer in G of T ). See [Milne 1990, §II.7]
for details. In fact, the theory implies that there exists n ∈ N (R) such that cx = n · x ,
and thus, X = X . Then the map η becomes what we called φ; that is, η(h)= h for
any h ∈ X .

2.3. Involutions of Shimura data and descent. Fix a Shimura datum (G, X), with
reflex field E . For an involution θ : G→ G, let θ(X) be the G(R)-conjugacy class
{θ(h) : h ∈ X}, where θ(h)= θR ◦ h. Since we want to consider involutions θ that
send X to X 6= X , from now on, we will focus on the case where E is a CM field (if
E is totally real, the identity map on G takes X to X ). Let E+ ⊂ E be the maximal
totally real subfield, and let ι ∈ Gal(E/E+) be the nontrivial automorphism, i.e.,
the restriction of complex conjugation c to E .

Suppose that θ is an involution of G such that θ(X) = X . For a compact
open subgroup K ⊂ G(A f ), denote by θK = θ(K ) ⊂ G(A f ). Then θ induces
an isomorphism of algebraic varieties Sh(θ) : ShK (G, X)E → Shθ K (G, X)E . On
complex points, this takes [h, g] to [θR ◦ h, θ(g)]. Suppose that θK = K . Then
Sh(θ)−1

◦ϕ defines an isomorphism ψ : ι(ShK (G, X)E)= ShK (G, X)E ×E,ι E→
ShK (G, X)E .
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Let V be an arbitrary scheme over E . Recall that an E/E+-descent datum is a
pair of isomorphisms ψid : id(V )= V ×E,id E→ V and ψι : ιV = V ×E,ι E→ V
of schemes over E satisfying the cocycle condition

ψσ ◦ σ(ψτ )= ψστ

for all σ, τ ∈Gal(E/E+), using the natural identification σ(τ(V ))= (στ)V . Then
necessarily ψid is the first projection id(V )→ V , and thus, to give a descent datum
amounts to give an isomorphismψ=ψι : ι(V )→V such thatψ◦ι(ψ) : ι(ι(V ))→V
is equal to the identity map, when identifying ι(ι(V ))= V . By definition, such a
descent datum is effective if there exists a scheme V0 over E+ and an isomorphism
m : V → V0,E = V0×E+ E such that m ◦ψ = ι(m), after identifying ι(V0,E)= V0,E .
If V is a quasiprojective algebraic variety, then any descent datum for V is effective.
This was first proved by Weil [1956]. For a modern reference, see [Bosch et al.
1990, §6.2].

Theorem 2.3.1. The map ψ : ι(ShK (G, X)E)→ ShK (G, X)E obtained as above
from an involution θ : G → G such that θ(X) = X and θK = K is an effective
E/E+-descent datum on the Shimura variety ShK (G, X)E . Hence, there exists a
quasiprojective, smooth, algebraic variety ShK (G, X)E+ over E+, and an isomor-
phism m : ShK (G, X)E → ShK (G, X)E+ ×E+ E such that m ◦ψ = ι(m).

Proof. Let V = ShK (G, X)E and V = ShK (G, X)E , and let n : V → ι(ι(V )) be
the natural isomorphism. We need to check that ψ ◦ ι(ψ) ◦ n = idV , and for this
it is enough to see that both morphisms are equal on the set of complex points
V (C). Let cV : V (C)→ (ιV )(C) be the bijection that sends x : Spec(C)→ V
to p−1

ι,V ◦ x ◦ Spec(c), where pι,V : ιV → V is the first projection, and define
cιV : (ιV )(C)→ (ι(ιV ))(C) similarly. Then we have that n(C)= cιV ◦cV , ι(ψ)(C)=
cV ◦ ψ(C) ◦ c−1

ιV , and ψ satisfies that ψ(C) ◦ cV = Sh(θ)−1(C) ◦ φ. Recall that
φ : V (C)→ V (C) sends [h, g] to [h, g]. Putting all this together, we get that

(ψ ◦ ι(ψ) ◦ n)(C)= Sh(θ)−1(C) ◦φ ◦Sh(θ)−1(C) ◦φ,

and thus,
(ψ ◦ ι(ψ) ◦ n)(C)([h, g])=

[
θ−1(θ−1(h)

)
, θ−2(g)

]
.

But for any y ∈ X , θ−1(y)= θ−1
R ◦ y, and so

θ−1(θ−1(h)
)
= θ−1(θ−1

R ◦ h
)
= θ−1(θ−1

R ◦ h ◦ c
)
= θ−1(θ−1

R ◦h)= θ
−2
R ◦h= θ

−2(h),

and thus, (ψ◦ι(ψ)◦n)(C)([h, g])=[h, g], using the fact that θ2
= id. Finally, since

ShK (G, X)E is quasiprojective, the descent datum just constructed is effective. �

Remark 2.3.2. The model of Theorem 2.3.1 depends on the descent datum, which
in turns depends on the particular involution θ .
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We note that, by the nature of the descent datum, Hecke operators do not
descend to the model ShK (G, X)E+ . Given q ∈ G(A f ), the Hecke operator Tq is a
morphism of algebraic varieties Tq : ShK (G, X)E → Shq−1 K q(G, X)E , which on
complex points is given by Tq([h, g])= [h, gq]. Then Tθ(q) ◦Sh(θ)= Sh(θ) ◦ Tq :

ShK (G, X)E → Shθ(q)−1θ K θ(q)(G, X)E . The Hecke operator Tq descends to a map
ShK (G, X)E+→ Shq−1 K q(G, X)E+ if and only if Tθ(q) = Tq .

In the following sections we will construct several examples of involutions θ as
above, and explain a general framework for such constructions.

3. Opposition involutions

In this section we recall some basic facts about opposition involutions and prove
a few results that will be needed in the forthcoming sections. For the basic facts
regarding root data, see [Springer 1979].

3.1. Root data. Let 9 = (X,8, X∨,8∨) be a root datum with 8 6=∅. Let Q be
the subgroup of X generated by 8, and V = Q⊗Z Q. Let W =W (8) be the Weyl
group of the root system 8 in V . This can be naturally identified with the Weyl
group of 8∨ and with the subgroup of AutZ(X) generated by the reflections sα
for α ∈ 8. Choose a basis 1, and consider the associated based root datum
90 = (X,8,1, X∨,8∨,1∨).

There is an obvious notion of isomorphism of root data (resp. based root data)
9→9 ′ (resp. 90→9 ′0). It amounts to giving a Z-linear isomorphism f : X→ X ′

such that f (8) = 8′ and t f ( f (α)∨) = α∨ for all α ∈ 8 (resp. and f (1) = 1′).
Here t f denotes the transpose with respect to the root data pairings. We denote by
Aut(9) (resp. Aut(90)) the group of automorphisms of 9 (resp. 90). Each sα can
be seen as an automorphism of9, and thus, there is a natural inclusion W ⊂Aut(9).
We also denote by −1 ∈ Aut(9) the automorphism that sends x ∈ X to −x ∈ X .

Assume from now on that 8 is reduced. If 1 is a basis, let w0 be the longest
element of W with respect to it. Then w0(1)=−1, and thus, −w0 =−1 ◦w0 ∈

Aut(90). We call ? = −w0 the opposition involution of 90 (since w2
0 = 1 it is

indeed an involution). We denote the action of ? on elements x (which can be
characters of T , nodes of the Dynkin diagram, etc.) by x 7→ x?. When 8=∅, in
which case 9 is called toral, we directly define ?=−1 ∈ AutZ(X).

Remark 3.1.1. An isogeny (in particular, an isomorphism) of based root data will
commute with the corresponding opposition involutions. In particular, ? is a central
element of Aut90.

Remark 3.1.2. Let X0 ⊂ X denote the subgroup of X orthogonal to 8∨. The root
datum 9 is called semisimple when X0 = 0. If this is not the case, then there
exists a nonzero x ∈ X0, which hence must be invariant under W . In particular,
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x? =−x 6= x , so ? cannot be the identity map if the root datum is not semisimple.
In the same vein, if the root datum is toral, then ? 6= 1 unless 9 is trivial (that is,
also semisimple).

Suppose now that k is an algebraically closed field of characteristic 0, and let
G be a reductive group over k. Let T ⊂ G be a maximal torus, and 9 =9(G, T )
be the associated root datum, so that X = X∗(T ). Let B ⊃ T be a Borel subgroup,
and let 90 =90(G, T, B) be the corresponding based root datum. Let Aut(G) be
the group of automorphisms of G, and Inn(G)⊂ Aut(G) be the subgroup of inner
automorphisms (that is, defined by elements in G(k)). Thus, Inn(G)' Gad(k)'
G(k)/Z(k), where Z is the center of G. Then there is a split exact sequence

1→ Inn(G)→ Aut(G)→ Aut90→ 1 (3.1.3)

where, for f ∈Aut(G), the third arrow sends f to the automorphism of 90 induced
by f ′ ∈ Aut(G, T, B), where f ′ = int(g) ◦ f for any element g ∈ G(k) such that
int(g) f (B, T ) = (B, T ). We define an opposition involution of G (with respect
to (B, T )) to be any element θ ∈Aut(G) of order 1 or 2 that induces the opposition
involution ? in Aut90. Note that this definition does not require θ to preserve T or B.
If θ ′ is another such involution, then θ ′ = int(g) ◦ θ for some g ∈ G(k). If θ is an
opposition involution for (B, T ) and (B ′, T ′) is another Borel pair, then it is also an
opposition involution for (B ′, T ′). The exact sequence (3.1.3) is split by the choice
of a pinning. More precisely, let 1⊂8 be the set of simple roots corresponding
to B. For each α ∈1, let Uα ∈ G be the root group of α [Springer 1979, §2.3], and
let uα ∈Uα be a nontrivial element. The pinning is the datum {uα}α∈1 with respect
to (B, T ), and a splitting Aut90→ Aut(G) of (3.1.3) associated with this pinning
is given by an isomorphism Aut90 ' Aut(G, T, B, {uα}α∈1); two such splittings
differ by an automorphism int(t) for some t ∈ T (k). In particular, after choosing a
pinning, we can take θ ∈ Aut(G) to be the image of ? under the splitting and this
will be an opposition involution, which proves their existence. Note that we are
actually showing that there are opposition involutions in Aut(G) which preserve T
and B (and a fixed pinning).

Let k be any field of characteristic 0, and k be an algebraic closure of k. Let
0 = Aut(k/k). Let G be a reductive group over k, T ⊂ G a maximal torus, and
B ⊃ Tk a Borel subgroup of Gk . Let 9 = 9(Gk, Tk) and 90 = 90(Gk, Tk, B).
There is a natural action of 0 on X , denoted by χ 7→ γχ , where

γχ(t)= γ (χ(γ−1(t)))

for γ ∈ 0 and t ∈ T (k). We call it the usual action of 0 on X . It defines an
action of 0 on 9. Let γ ∈ 0. Then we define a second action µG(γ ) on X , the
∗-action, given by µG(γ )(χ)(t) = γχ(n−1tn) for t ∈ T (k), where n ∈ G(k) is
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an element such that int(n) sends the Borel pair (γ (B), γ (Tk)) to (B, Tk). For
example, if B is a Borel defined over k, then we can take n = 1 and the ∗-action
is just the usual action χ 7→ γχ . Going back to the general case, this gives a
morphism µG : 0→ Aut90, and it induces an action of 0 on Aut90 by taking
ρ 7→ µG(γ ) ◦ ρ ◦ µG(γ )

−1 for ρ ∈ Aut90. There is also an action of 0 on
Aut(Gk) given by γ · f = (idG ×Spec(k) Spec(γ−1)) ◦ f ◦ (idG ×Spec(k) Spec(γ )),
which on G(k)-points is simply g 7→ γ ( f (γ−1(g))). It preserves the subgroup
Inn(Gk)=G(k)/Z(k), where it acts as usual. The exact sequence (3.1.3) becomes

1→ Inn(Gk)→ Aut(Gk)→ Aut90→ 1 (3.1.4)

and is0-equivariant. We define an opposition involution of G to be an automorphism
θ ∈ Aut(G) of order 1 or 2 such that θk is an opposition involution on Gk .

There may not be a 0-equivariant splitting of (3.1.4), so it may not always be
possible to construct in this way an opposition involution of G. However, if G is
quasisplit and B is a Borel subgroup defined over k, it can be shown [Demazure
1965/66, §3.10] that there exists a 0-equivariant splitting. Since ? ∈ Aut90 is
central, it commutes with µG(γ ) for any γ ∈0, and thus, it is a 0-invariant element
in the last group of (3.1.4). Thus, for quasisplit reductive groups over k, there
always exist opposition involutions on G over k, but the condition of G being
quasisplit is far from necessary. There are many nonquasisplit cases where the
opposition involution is trivial (see below), and so obviously defined over k. There
are many nontrivial examples as well, as we will see later.

Remark 3.1.5. If G = T is a torus, then there exists one and only one opposition
involution θ ∈ Aut(G), namely θ = invG .

Lemma 3.1.6. If θ is an opposition involution of G, then θZ : Z → Z is equal
to invZ .

Proof. It is enough to see that both maps induce the same map on X∗(Z), that is,
that θ∗Z : X

∗(Z)→ X∗(Z) is multiplication by −1, and thus, we can assume that
k = k. Let (B, T ) be a Borel pair. Then Z ⊂ T . Let χ ∈ X∗(Z). Then there exists
µ∈ X∗(T ) such that µ|Z = χ . We claim that θ∗Z (χ)= (µ

?)|Z . Indeed, for z ∈ Z(k),
θ∗Z (χ)(z) = χ(θ(z)), whereas (µ?)|Z (z) = 90(θ)(µ)(z) = µ((int(g) ◦ θ)(z)) =
µ(θ(z)) (where g ∈ G(k) sends θ(B, T ) to (B, T )), which shows that θ∗Z = (µ

?)|Z .
On the other hand, if n0 ∈ NG(T )(k) represents w0 ∈W = NG(T )(k)/T (k), then

for z ∈ Z(k), µ?(z) = µ(n−1
0 z−1n0) = µ(z−1) = µ−1(z) because z ∈ Z(k). Thus,

θ∗Z (χ)=−χ , as desired, where we have switched back to the additive notation for
the group X∗(Z). �

Remark 3.1.7. The last lemma shows in particular that if the identity map is an
opposition involution, then Z is killed by 2. Then Z0 must be trivial; that is, G
must be semisimple (see also Remark 3.1.2).
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3.2. Dynkin diagrams and special nodes. Let 90 be a based root datum with
8 6= ∅ and reduced, and let D be its Dynkin diagram. Then the opposition
involution ? acts on D. We include for reference the list of connected Dynkin
diagrams and their opposition involutions; see [Bourbaki 2002] for notation of
nodes and more details. We also list the special nodes of each diagram (see
[Deligne 1979, §1.2.5], for the definition of special node). Also, note that if 9 is
semisimple, then ? is trivial on 90 if and only if it is trivial on D. For a Shimura
datum (G, X), the only factors of Gad that contribute to a CM reflex field are the
ones of type Al (l ≥ 2), Dl (l ≥ 5 odd), or E6. This follows from the list below and
Proposition 2.3.6 of [Deligne 1979]:

• D= Al (l ≥ 1).
α?i = αl+1−i (so ? is trivial if l = 1).
All nodes αi are special.

• D= Bl (l ≥ 2) or Cl (l ≥ 3).
? is trivial.
There is only one special node: α1 in the Bl case, and αl in the Cl case.

• D= Dl (l ≥ 4).
If l is even, ? is trivial.
If l is odd, α?i = αi for i < l − 1, and α?l−1 = αl .
The special nodes are α1, αl−1, and αl .

• D= E6.
α?1 = α6, α?2 = α2, α?3 = α5, and α?4 = α4.
The special nodes are α1 and α6.

• D= E7, E8, F4, or G2.
? is trivial.
Only E7 has a special node, which is α7.

3.3. Multiplicative groups of CM type. From now on let k=Q and 0=Gal(Q/Q).
Let T1 and T2 be algebraic groups over Q of multiplicative type, not necessarily con-
nected. Then there is a natural bijection Hom(T1, T2)'Hom0(X2, X1), where Aut0
means 0-equivariant morphisms for the natural Galois structures on X i = X∗(Ti ).
In particular, for T over Q of multiplicative type, there is a natural isomorphism
Aut(T )'Aut0(X), with X = X∗(T ). We let c∗T : X→ X be the map c∗T (χ)=

cχ .
We say T splits over an extension K ⊂Q of Q if Aut(Q/K ) acts trivially on X∗(T ).

Lemma 3.3.1. If T is a group of multiplicative type that splits over a CM field, then
c∗T ∈ Aut0(X).

Proof. Suppose that T splits over K ⊂ Q, a CM field. Let χ ∈ X . Then γχ = χ

for any γ ∈ Aut(Q/K ), and thus, γ1χ = γ2χ if γ1, γ2 ∈ 0 have the same restriction



Complex conjugation and Shimura varieties 2303

to K . For any γ ∈ 0, γ c and cγ have the same restriction to K , and so c∗T (
γχ)=

c(γχ)= cγχ = γ cχ = γ (c∗T (χ)). �

Under the assumptions of the last lemma, we let cT : T → T denote the unique
involution inducing c∗T on X . If T1 and T2 are groups of multiplicative type which
are split over a CM field, and f : T1→ T2 is a morphism, then f ◦ cT1 = cT2 ◦ f ,
because both maps induce the same morphism X2→ X1.

Suppose now that T is a group of multiplicative type over R. Using the same
procedure, there exists a unique involution cT :T→T inducing complex conjugation
on characters. If T is defined over Q and split over a CM field, these definitions
are compatible with base change from Q to R.

Example 3.3.2. For T = S over R, the map cS is given by cS(z⊗ a)= z⊗ a for
an R-algebra A and z⊗ a ∈ (C⊗R A)×.

Remark 3.3.3. If T is an anisotropic R-torus (that is, if T (R) is compact), then it
is easy to see that cχ = −χ for any χ ∈ X and thus cT = invT is the opposition
involution on T .

3.4. Involutions taking X to X. Let (G, X) be a Shimura datum. Recall that we
are assuming that Z0 splits over a CM field, and hence, we have the conjugation
involution cZ0 : Z0

→ Z0.

Remark 3.4.1. Let x ∈ X . From the fact that int(x(i)) : Gad
R → Gad

R is a Cartan
involution, it follows that Gad

R is an inner form of an anisotropic group H over R

(that is, H(R) is compact). A similar statement holds for Gder
R (the element x(i)

may not belong to Gder(R); however, over C, int(x(i)) can be replaced by int(x(i)′)
for some x(i)′ ∈ (T ∩Gder)(C)). The next lemma is well known.

Lemma 3.4.2. Let G be a reductive group over R, and assume that it is an inner
form of a group H over R which is anisotropic. Assume furthermore that T ⊂ G
is a maximal torus, and the inner automorphism of GC defining a cocycle for H is
given by int(t0) for some t0 ∈ T (C). Then the following hold.

(i) cT = invT .

(ii) For a Borel subgroup B ⊃ TC, the opposition involution acting on90(G, T, B)
is given by the ∗-action of c.

(iii) The subgroup c(B)⊂ GC is the opposite Borel subgroup of B; that is,

c(B)∩ B = TC.

Proof. By hypothesis, we can choose an isomorphism φ : GC → HC such that
f : GC → GC defined by f (g) = φ−1(φ(g)) is an inner automorphism of the
form int(t0), with t0 ∈ T (C). Then there exists a maximal torus TH ⊂ H such
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that TH,C = φ(TC), and we let BH = φ(B). Since TH (R) is compact, this im-
plies that T (R) is compact, so (i) follows from Remark 3.3.3. Let r = 90(φ) :

90(H, TH , BH ) → 90(G, T, B) be the induced isomorphism. It is Gal(C/R)-
equivariant for the ∗-actions, as follows from the fact that the forms are inner, and
it commutes with ?, so it is enough to prove part (ii) when G itself is anisotropic,
which is well known. For (iii), the fact that f preserves TC and B again allows us to
reduce to the case of G anisotropic, in which case the statement is well known. �

Remark 3.4.3. In the last lemma, if the group is quasisplit and B is a Borel
subgroup defined over R, the inner automorphism will not usually belong to T (C);
otherwise, we would have B = T . There are quasisplit semisimple groups with
B 6= T which are inner forms of anisotropic groups, for example SU(n, n). In
this case, the Cartan involution coming from a certain Shimura datum and special
pair will preserve the maximal torus and a Borel subgroup containing it, but not a
rational Borel subgroup.

Remark 3.4.4. Suppose that (G, X) is a Shimura datum, and let (T, x) be a special
pair. Then Gder

R satisfies all the hypotheses of the previous lemma. Here the inner
automorphism defining the cocycle is int(x(i)′) as before. Alternatively, we can
work with the adjoint group Gad

R and x(i).

Remark 3.4.5. Suppose that θ : G→ G is an involution such that there exists a
special pair (T, x) with the property that θ preserves T and induces cTR

on TR.
Then θR(x)= cTR

◦ x = x ◦ cS = x , and thus, θ(X)= X .

Lemma 3.4.6. Let G be a reductive group over R, and T ⊂ G a maximal torus. If
θ :G→G is an involution such that θ(T )⊂T and θ |T =cT , then θ(B)=c(B)⊂GC

for any Borel subgroup B ⊃ TC.

Proof. Let R ⊂ X = X∗(T ) denote the set of roots of (GC, TC). Let R+ denote the
set of positive roots with respect to B. Then θ(B) is the Borel subgroup whose Lie
algebra is Lie(TC)⊕

⊕
α∈R+ Lie(GC)α◦θ . Since α ◦ θ = cα, it follows that this is

the Lie algebra of c(B), and since both θ(B) and c(B) are connected, this proves
the lemma. �

The construction of involutions taking X to X that we will perform will be
based on involutions θ which will roughly be as in Remark 3.4.5. By the following
proposition, we need to look for opposition involutions on semisimple groups.

Proposition 3.4.7. Let (G, X) be a Shimura datum, and let θ : G → G be an
involution of G, such that there exists a special pair (T, x) with the property that
θ preserves T and induces cTR

on TR. Then θder
: Gder

→ Gder is an opposition
involution, and θ0 = θ |Z0 : Z0

→ Z0 is equal to cZ0 .

Proof. Suppose that θ is an involution with (T, x) as in the statement. To see that
θ0 = cZ0 , it is enough to see that θR,0 = cZ0

R
. Since Z0

R ⊂ TR and θR|TR
= cTR

,
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it follows that θ0,R = cZ0
R
. Let T ′ = T ∩ Gder, let B ⊂ GC be a Borel subgroup

containing TC, and B ′ = B ∩ Gder
C
⊃ T ′

C
. Let 9 ′0 = 90(Gder, T ′, B ′), and let

r=90(θ
der) :9 ′0→9 ′0 be the induced isomorphism. It is given by r(χ)=χ◦int(q)◦

θder
|T ′

C
for χ ∈ X ′ = X∗(T ′), where q ∈ Gder(C) is such that int(q)θder(T ′

C
, B ′)=

(T ′
C
, B ′). On the other hand, by Lemma 3.4.2(ii), ? : 9 ′0→ 9 ′0 is given by χ? =

cχ ◦ int(a−1), where a ∈ Gder(C) is such that int(a)c(T ′
C
, B ′) = (T ′

C
, B ′). By

Lemma 3.4.6, we can take a = q . Finally, the hypothesis that θder
|T ′ = cT ′ implies

that χ? = χ ◦ θ ◦ int(q−1). Thus, to see that r(χ) = χ?, it is enough to see that
θder
◦ int(q−1) and θder

◦ int(ϕ(q)) induce the same automorphism of T ′
C

, and this
follows from the fact that both elements θ−1(q) and q−1 conjugate the Borel pair
(T ′

C
, B ′) to the same Borel pair. �

The following proposition is a partial converse and the main result of this section.
Since our construction will be explicit using the classification of semisimple groups,
we need to work with either the derived group or the adjoint group. The idea is to
construct an involution on G taking X to X by extending an opposition involution
on Gder. Ideally we would want the involution to be as in Remark 3.4.5, but it is
enough to consider a weaker hypothesis, as stated in the proposition. Recall the
notation from Section 2.1. Suppose that for each i , Si ⊂ Hi is a maximal torus, and
let T̃i = ResFi/Q Si ⊂ G̃i , Ti ⊂ Gi its image in Gi , T ′ ⊂ Gder the image of their
product, and T = Z0T ′. Note that T ad

R = T
′ad

R =
∏

i,v Sad
i,v, where Si,v ⊂ Hi,v and

Sad
i,v is its image in H ad

i,v.

Proposition 3.4.8. Suppose that θi : Hi→ Hi is an opposition involution for each i .
Suppose moreover that θi (Si ) = Si and θ ad

i,v|Sad
i,v
= cSad

i,v
for every i and v ∈ Ii,nc.

Finally, assume that there exists x ∈ X such that xad factors through T ad
R . Then

there exists an involution θ : G→ G such that θ(X)= X.

Proof. For each i , the involution ResFi/Q θi defines an opposition involution of G̃i .
Moreover, the kernel Ki of the projection G̃i → Gi is contained in the center
of G̃i . By Lemma 3.1.6, ResFi/Q θi induces x 7→ x−1 on the center. In particular, it
preserves Ki and induces an opposition involution on Gi . Similarly, the product
of these involutions defines an opposition involution θ ′ : Gder

→ Gder. Let q :
Z0
× Gder

→ G be the natural isogeny. We can look at the product involution
θ ′× cZ0 : Gder

× Z0
→ Gder

× Z0. We claim that this preserves ker(q), and thus, it
induces an involution on G. To show this, we can work with C-points. The kernel
consists of pairs (g, z) such that zg = 1, so we need to check that if (g, z) is such
a pair, then θ ′(g)cZ0(z) = 1. The element g = z−1 belongs to Z0

∩Gder
⊂ ZGder .

The maps cZ0 : Z0
→ Z0 and cZGder : ZGder→ ZGder are equal on Z0

∩Gder, and by
part (i) of Lemma 3.4.2, cZGder = invZGder , so cZ0(z)= z−1. On the other hand, by
Lemma 3.1.6, θ ′ induces invZGder on ZGder , and so θ ′(g) = g−1

= z. This proves
that there exists a (unique) involution θ : G→ G such that θder

= θ ′ and θ0 = cZ0 .
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We also have that θ preserves T and θ ad
R =

∏
i,v θ

ad
i,v. Now, we know that there

exists x ∈ X such that xad factors through T ad
R . Let y = θR(x). Then yad

= θ ad
R (x

ad).
For v ∈ Ii,nc, we have θ ad

i,v(xi,v) = xi,v because θ ad
i,v induces cSad

i,v
and xi,v factors

through Sad
i,v. For v ∈ Ii,c, xi,v = 1. Thus, yad

= xad. Also, since θR induces
cZ0

R
on Z0

R, and q : Z0
→ Gab is an isogeny, it follows that θR induces cGab

R
on Gab

R .
From this it follows that y and x have the same projections to Gad

R and to Gab
R , and

thus, y = x (see for instance the proof of Proposition 5.7 of [Milne 2005]). Since
y = θR(x), this shows that θ(X)= X . �

4. Involutions on classical semisimple groups

In this section, we make use of several results regarding the classification of semi-
simple algebraic groups over totally real fields. For notation and terminology
regarding algebras with involutions and their associated groups, we freely follow our
main reference [Knus et al. 1998]. We are only interested in the explicit classification
of groups of type A and D in order to construct our desired involutions on certain
Shimura varieties. Furthermore, not all the groups in the general classification
appear in the theory of Shimura varieties, so we are only interested in classifying the
groups Hi (in the notation of Section 2.1) of type Al (l≥2) or Dl (l≥4 odd) that can
occur. Furthermore, in accordance with the previous section, we are also interested
in constructing, whenever possible, opposition involutions on these groups.

The following construction regarding quaternion algebras will be used often in the
following. Suppose that D is a quaternion division algebra over a number field K .
Let λ ∈ D× be a pure quaternion (that is, such that σ(λ)=−λ, where σ : D→ D
is the canonical involution), and choose another pure quaternion µ ∈ D× such that
λµ=−µλ. Then {1, λ, µ, λµ} is a standard basis of D. If we let L = K (λ), then L
is a maximal subfield of D (a quadratic extension of K ). We have an isomorphism
of L-algebras φ : D⊗K L→ M2(L) defined by

φ(λ⊗ 1)=
(
λ 0
0 −λ

)
and

φ(µ⊗ 1)=
(

0 µ2

1 0

)
.

Then the isomorphism φ sends L ⊗K L to the subalgebra of diagonal matrices
in M2(L).

Throughout this section, let F be a totally real field and H be an absolutely
almost simple, simply connected algebraic group over F . We let D be the Dynkin
diagram of HF (where F is some algebraic closure of F). We let I = Hom(F,R),
Ic = {v ∈ I : H ad

v (R) is compact}, and let Inc be its complement in I .
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4.1. Groups of type Al (l ≥ 2). Suppose that D= Al with l ≥ 2. Then there exists
a quadratic étale extension K/F (so K/F is a quadratic extension of fields, or
K = F× F), and a central simple algebra B over K , of degree l+1, endowed with
an involution τ : B→ B of the second kind (that is, inducing ι on K , where ι is
the nontrivial automorphism of K which fixes F) such that H = SU(B, τ ) [Knus
et al. 1998, Theorem 26.9]. If H is one of the Hi as above, then K must be a field.
Indeed, if otherwise, then H ' SL1(A) for some central simple algebra A over F
of degree l + 1. For each v ∈ Hom(F,R), we have

Av = A⊗F,v R' Ml+1(R) or Av ' M(l+1)/2(H).

In both cases, it follows that Hv is an inner form of SLl+1,R, so the ∗-action of c
is trivial (a condition that does not depend on the Borel pair), and thus, it cannot
be the opposition involution because l ≥ 2. From this and Lemma 3.4.2 it follows
that H cannot occur as one of the factors Hi . Thus, we have proved that K must
be a field. Moreover, a similar argument implies that K must be totally imaginary,
that is, K/F is a CM extension. The adjoint group H ad is PGU(B, τ ).

We can then write B = EndD(V ) for some central division algebra D over K ,
endowed with an involution J : D → D of the second kind, whose action we
denote by d 7→ d J , and a finite-dimensional right D-vector space V . There is a
nondegenerate hermitian form h : V × V → D inducing the involution τ : B→ B.
The pair (V, h) is called a hermitian space over D.

Suppose that θ : H → H is an opposition involution. There is a natural iso-
morphism between Aut(H) and the group of F-algebra automorphisms of B that
commute with τ [Knus et al. 1998, Theorem 26.9], and thus, there exists such an
automorphism γ : B→ B of order 2, inducing θ . If γ |K is the identity map on K ,
then γ = int(b0) for some b0 ∈ B× by the Skolem–Noether theorem, and b0 is
moreover a similitude for τ . The induced map θ : H → H would thus be an inner
automorphism, inducing the identity map on the Dynkin diagram, but the opposition
involution on Al is nontrivial for l ≥ 2. Hence, γ |K must be ι. Let B and D denote
the K -algebras B and D with ι-conjugate structure. Thus, γ : B→ B is a K -algebra
isomorphism. We let Br(K ) be the Brauer group of K and [B] = [D] ∈ Br(K ) be
the class of B in it. Then [D] = [B] = [B] = [D], which implies that there must
exist a ring automorphism α : D→ D inducing ι on K .

Proposition 4.1.1. Let D be a central division algebra over a CM extension K/F
of number fields, endowed with an involution J : D→ D of the second kind. Then
the following are equivalent:

(a) D = K or D is a quaternion division algebra over K .

(b) The order of [D] ∈ Br(K ) is 1 or 2.

(c) There exists a ring automorphism α : D→ D inducing ι on K .
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Moreover, in this case, α is unique up to composition with an inner automorphism
of D. Furthermore, it can be chosen to have order 2 and such that α J = Jα is either
idD if D = K or the canonical involution if D is a quaternion division algebra.

Proof. The fact that (a) implies (b) in the quaternion algebra case follows from the
existence of the canonical involution on D, which gives an isomorphism D→ Dop,
so [D] = [D]−1. To see that (b) implies (a), use [Scharlau 1985, 10.2.3].

Now suppose that (a) is true. If D = K , then take α = ι. If D is a quaternion
division algebra, let σ : D→ D be its canonical involution, and take α = Jσ = σ J
(they commute because Jσ J is a symplectic involution of the first kind on D, and
hence equal to σ ).

Finally, suppose that α : D→ D is as in (c). The involution J : D→ D induces
an isomorphism D → Dop, where D is the conjugate algebra λ · d = ι(λ)d for
λ ∈ K . Similarly, α induces an isomorphism D→ D, and thus, in the end we have
an isomorphism D→ Dop, which implies that the order of [D] is 1 or 2.

The uniqueness of α up to inner automorphism follows because if β is another
such automorphism, then αβ−1

: D→ D is a K -linear automorphism and hence
inner by the Skolem–Noether theorem. �

Remark 4.1.2. Suppose that D is a quaternion division algebra. Under the condi-
tions of the previous proposition, there exists a unique quaternion algebra D0 ⊂ D
over F such that D = D0 ⊗F K and J = σ0 ⊗F ι, where σ0 is the canonical
involution of D0 [Knus et al. 1998, §II.22]. Then the map α constructed in the proof
is α = idD0 ⊗F ι. We define the canonical conjugation α : D→ D (attached to J
or D0) to be α = idD0 ⊗F ι. If D = K , we also call α = ι the canonical conjugation.

Thus, we have shown that if there exists θ : H→ H an opposition involution, then
either D = K (and J = ι) or D is a quaternion division algebra (and J = σ0⊗F ι).
Conversely, suppose that D = K or D is a quaternion division algebra. We will
construct suitable opposition involutions under an additional assumption.

Remark 4.1.3. Suppose that D = K (and D0 = F) or D is a quaternion division
algebra. Let Is ⊂Hom(F,R) be the subset of places v ∈ I =Hom(F,R) such that
D0,v = D0⊗F,v R is split, and let Ins ⊂ I be its complement. We let Ic ⊂ I be the
subset of places v such that H ad

v (R) is compact, and Inc its complement. The group
HR can be written as a product of special unitary groups

∏
v∈I SU(pv, qv), and the

compact places are exactly the places where pvqv = 0.

Definition 4.1.4. We say that a hermitian space (V, h) over D (where D = K or a
quaternion division algebra) is strongly hermitian if there exists an h-orthogonal
D-basis β = {v1, . . . , vn} of V such that h(vi , vi ) ∈ K× for all i . In the quaternion
algebra case, we ask furthermore that Ins ⊂ Ic.

Remark 4.1.5. A hermitian space over D = K is always strongly hermitian.
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Remark 4.1.6. The existence of the basis β in Definition 4.1.4 is what allows us to
explicitly construct an opposition involution θ : H → H . In the quaternion algebra
case, this involution will define an involution θv : Hv→ Hv, and we want this to
induce complex conjugation on Sad

v when v ∈ Inc. The involution that we construct
does not satisfy this at places v ∈ Ins (see Remark 4.1.9). Since we only care about
noncompact places, we make the assumption Ins ⊂ Ic.

Suppose that (V, h) is strongly hermitian, and let β be a basis as in the definition.
Let I : V → V be the α-semilinear isomorphism obtained by applying α to the
coordinates of elements of V with respect to the basis β (this map is inspired by the
constructions of [Taylor 2012]). Then h(I (x), I (y))= α(h(x, y)). Let θ : H→ H
be given as θA(g)= IAgIA for an F-algebra A and a D⊗F A-linear automorphism g
of V ⊗F A. Let L ⊂ D be a maximal subfield. More precisely, if D = K , then
L = K , and if D is a quaternion division algebra, take L = K (λ), where λ is a pure
quaternion in D0. Let S = SL ,β be the subgroup of H defined as follows. For an
F-algebra A, H(A)⊂ AutD⊗F A(V ⊗F A), and we let

S(A)={h ∈ H(A) :h(vi⊗1)= (vi⊗1)λi for some λi ∈ (L⊗F A)× (i =1, . . . , n)}.

This is a maximal torus in H .

Proposition 4.1.7. With the above hypotheses, the following statements are true:

(a) The involution θ : H → H is an opposition involution.

(b) We have θ(S)= S and for every v ∈ Inc, θv : Hv→ Hv induces cSv on Sv.

In particular, θ ad
v : H

ad
v → H ad

v induces cSad
v

on Sad
v for v ∈ Inc.

Proof. For part (a), it suffices to see that θL : HL → HL is an opposition involution.
We can identify HK with SLV/D , where SLV/D(A) consists, for a K -algebra A, of
the D⊗K A-linear automorphisms of V⊗K A with reduced norm 1. Using the basis β,
we can further identify SLV/D(A)∼= SLn(D⊗K A). Let Q ∈GLn(K ) be the matrix
of h with respect to β. Then it is easy to see that θA :SLn(D⊗K A)→SLn(D⊗K A)
is explicitly given by the formula

θA(X)= Q−1(t X−1)σ Q,

where σ : D→ D is the canonical involution of D if D is a quaternion division
algebra, and σ = id if D = K . Note that Q is a diagonal matrix in GLn(K ).

If D = K , we denote by φ : D ⊗K L → L the unique obvious isomorphism.
If D is a quaternion division algebra, we take φ : D ⊗K L → M2(L) to be an
isomorphism of L-algebras taking L ⊗K L to the subalgebra of diagonal matrices
in M2(L), as constructed above (we use for this the pure quaternion λ ∈ D0 and
another pure quaternion µ ∈ D0 such that λµ=−µλ). In particular, σ preserves L .
The identification HK (A)∼=SLn(D⊗K A) sends SK (A) to the subgroup of matrices
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in SLn(D⊗K A)which are diagonal and have entries in L⊗K A. Since σ preserves L ,
it follows that θK sends the torus SK to itself. Moreover, if we now extend scalars
to L , the map φ provides an isomorphism

HL ∼= SLnm,L , (4.1.8)

where Snm,L is the usual group of nm×nm matrices of determinant 1; furthermore,
the torus SL maps to the torus of diagonal matrices in SLnm,L (so S is indeed a maxi-
mal torus, as claimed). If m= 1, then θL(X)= Q−1t X−1 Q for X ∈ SLn,L . Suppose
that m=2. Write Q=diag(q1, . . . , qn), and let Q̃=diag(q1, . . . , qn, q1, . . . , qn)∈

GL2n(K ). Write matrices X ∈ SL2n,L as blocks

X =
(

A B
C D

)
,

with A, B,C, D of size n× n. Then θL : SL2n,L → SL2n,L is explicitly given as

θL(X)= Q̃−1
( t D −t B
−

tC t A

)
Q̃.

From this explicit expression of θ as an involution of SLnm,L , it is easy to see
that it preserves the maximal torus SL of diagonal matrices and that it induces the
opposition involution on the root datum.

For part (b), fix v∈ Inc. We need to check that if χ ∈ X= X∗(Sv)=Hom(Sv×RC,

Gm,C), then χ ◦ θv,C = cχ . To compute cχ , we need to compute how complex
conjugation acts on Hv(C). Choose once and for all an extension τ : L ↪→ C

of v to L . Using the embedding τ and the isomorphism (4.1.8), we can identify
Hv ×R C= HL ×L ,τ C∼= SLnm,C. Moreover, the action of c on Hv(C)∼= SLnm(C)

is explicitly given as follows. Let Qv = diag(v(q1), . . . , v(qn)) ∈ GLn(R) and
Q̃v = diag(v(q1), . . . , v(qn), v(q1), . . . , v(qn)) ∈ GL2n(R). Let

γ =

(
0 In

−In 0

)
.

If m=1 and X ∈SLn(C), then c(X)=Q−1
v X∗,−1 Q. If m=2 and X ∈SL2n(C), then

c(X)= Q−1
v γ X∗,−1γ−1 Qv. The last case easily follows from (4.1.8) and the fact

that D0,v is split. We can identify X∗(Sv) in the standard way with Znm/L , where
L = {(k, k, . . . , k) : k ∈Z}. It then follows easily from our calculations of the action
of c that if χ ∈ X∗(Sv) is identified with the class of the tuple (a1, . . . , an) in the case
m = 1, respectively the class of the tuple (a1, . . . , an, b1, . . . , bn) in the case m = 2,
then cχ is identified with (−a1, . . . ,−an) or with (−b1, . . . ,−bn,−a1, . . . ,−an),
respectively. This, together with our formulas for θ , show that θv induces cSv on Sv ,
which is what we wanted to prove. �
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Remark 4.1.9. When D0,v is not split, there is also an explicit formula for c that
involves a matrix γ as above, but γ turns out to be a diagonal matrix. So in this
case θv does not induce cSv on Sv. We only care about noncompact places, hence
our assumption Ins ⊂ Ic.

Remark 4.1.10. Keep the assumptions and notation as above. For each v ∈ Inc,
we will construct a map y : S→ H ad

v satisfying Deligne’s axioms [1979, §1.2.1]
and factoring through Sad

v . Namely, fix τ : L ↪→ C an extension of v to L , and let
w = τ |K (so w = τ when D = K = L). Let Dw = D⊗K ,w C and Jw : Dw→ Dw

be defined by Jw(d⊗ z)= J (d)⊗ z. The group Hv(A) can be identified, using the
basis β, with the group of matrices X ∈ GLn(Dw ⊗R A) such that t X Jw Q X = Q
and Nrd(X)= 1. If m = 1, let φτ : Dw→ C be the unique isomorphism. If m = 2,
consider the C-algebra isomorphism φτ : Dw→ M2(C) given by

φτ (λ⊗K ,w 1)=
(
τ(λ)0

0 −τ(λ)

)
, φτ (µ⊗K ,w 1)=

(
0 v(µ2)

1 0

)
.

As above, for any R-algebra A, this induces an isomorphism GLn(Dw ⊗R A) ∼=
GLmn(C⊗R A) taking the subgroup of diagonal matrices with entries in Lw⊗R A
(where Lw = L ⊗K ,w C) to the subgroup of diagonal matrices in GLmn(C⊗R A).
Moreover, the corresponding involution X 7→ t X Jw gets identified with X 7→
γ X∗γ−1, where if m= 1, γ = In , and if m= 2, γ is the hermitian matrix defined by

γ =

(
0 i In

−i In 0

)
if v(λ2) > 0, and

γ =

(
−v(µ2)In 0

0 In

)
if v(λ2) < 0 (note that in this case, we must have v(µ2) > 0). In this way, we can
write

Hv(A)∼= {X ∈ GL2n(C⊗R A) : (γ X∗γ−1)Q′X = Q′, det(X)= 1},

where Q′ = Qv if m = 1 and Q′ = Q̃v = diag(v(q1), . . . , v(qn), . . . , v(q1), . . . ,

v(qn)) if m=2. Thus, we can identify Hv with the special unitary group SU(γ−1 Q′)
of the hermitian matrix γ−1 Q′, and the maximal torus Sv is the torus of diagonal
matrices. Note that H ad

v is also the adjoint group of the similitude unitary group
GU(γ−1 Q′). We define y′ : S→ GU(γ−1 Q′) as follows. For an R-algebra A and
z ∈ S(A), let

y′A(z)=
(

diag(y′A(z)1, . . . , y′A(z)n) 0
0 diag(y′A(z)1, . . . , y′A(z)n)

)
,

where y′A(z)i = z if v(qi )> 0 and y′A(z)i = z if v(qi )< 0. We let y= y′ad
:S→ H ad

v .
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Using the explicit computation of γ−1 Q′ in each case, the group GU(γ−1 Q′) is
isomorphic to a similitude unitary group GU(p, q) of a certain signature (p, q)
(furthermore, if m = 2, in our case where D0,v is split, the signature is always
(n, n), so the group Hv is in fact quasisplit). It is then standard that y′, and hence y,
satisfy Deligne’s axioms (see for instance the Appendix of [Milne and Shih 1981]).

4.2. Groups of type Dl (l ≥ 4 odd). Suppose that D = Dl with l ≥ 5 odd. Then
H = Spin(B, τ ), where B is a central simple algebra over F of degree 2l and τ
is an orthogonal involution [Knus et al. 1998, Theorem 26.15]. The adjoint group
is H ad

= PGO+(B, τ ). In order to avoid introducing spin groups, we will work
in this section with H ad. Since the map Aut(H)→ Aut(H ad) is an isomorphism,
an opposition involution on H ad will uniquely lift to an opposition involution
on H ; moreover, suppose that S ⊂ H is a maximal torus and the involution on H ad

preserves Sad and induces cSad
v

on Sad
v for every v ∈ Inc. Then the lifted involution

on H preserves S and also obviously induces cSad
v

on Sad
v for every v ∈ Inc. This

will allow us to concentrate on H ad and avoid spin groups.
Since F is a number field, it can be shown that B = EndD(3), where D = F

or a quaternion division algebra over F [Scharlau 1985, §8.2.3], and 3 is a right
D-vector space of finite dimension n. Let m = degF D. Moreover, the involution
τ : B→ B must be attached to a nondegenerate F-bilinear form q :3×3→ D. In
the case D = F (where dimF 3= 2l), q is a symmetric bilinear form. In the case
that D is a quaternion division algebra (where dimD 3= l), q is a skew-hermitian
form with respect to the canonical involution σ : D→ D. We will only treat the
case where D is a quaternion division algebra. Let Is ⊂ I = Hom(F,R) be the set
of v : F→ R such that Dv = D⊗F,v R is split, and let Ins be its complement in I .
For v ∈ Is , the skew-hermitian form qv on 3v defines a nondegenerate symmetric
bilinear form bv over a real vector space Wv of dimension 2n [Scharlau 1985], and
then we have that Ic ⊂ Is is the set of split places where bv is definite. As in the
Appendix of [Milne and Shih 1981] (type DH), we will assume that Ic = Is . We
call the pair (3, q) a skew-hermitian space over D. Note that n = l is odd.

Let β = {v1, . . . , vn} be a D-basis of 3, which is q-orthogonal. The group
H ad
= PGO+(3, q) can also be seen as the adjoint group of G = SO(3, q), where

G(A)= {g ∈ AutD⊗F A(3A) : Nrd(g)= 1 and
qA(g(x), g(y))= qA(x, y) for all x, y ∈3A}

for an F-algebra A. Here 3A =3⊗F A and Nrd is the reduced norm in EndD(3).
We let S′= S′β ⊂G be the subgroup of G defined as follows. For every i = 1, . . . , n,
let qi = q(vi , vi ). This is a pure quaternion in D, and so L i = F(qi ) is a quadratic
field extension of F . For an F-algebra A, let

S′(A)={g∈G(A) :g(vi⊗1)= (vi⊗1)λi for some λi ∈ (L i⊗F A)× (i=1, . . . , n)}.
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Then S′ ⊂ G is a maximal torus of G, and it defines maximal tori S ⊂ H and
Sad
= S′ad

⊂ H ad.
We will construct involutions on H modeled after our constructions for the case

of type Al . For this we need to make an analogous extra assumption.

Definition 4.2.1. We say that the skew-hermitian space (3, q) over D is strongly
skew-hermitian if there exists a q-orthogonal D-basis β = {v1, . . . , vn} of 3 and
an F-automorphism α : D→ D such that q(vi , v j )=−α(q(v j , vi )) and α2

= 1.

Remark 4.2.2. Any automorphism α : D→ D as above must be necessarily inner,
of the form α(d)= rdr−1 for some r ∈ D× such that r2

∈ F×. This implies that
rσ(r)−1

∈ F× as well (because F is the set of elements of D fixed by σ ). Moreover,
since q(vi , vi ) ∈ D×, r must be a pure quaternion in D. As in the previous case,
the existence of the basis β will allow us to construct an explicit involution. The
map α plays the role of the canonical conjugation of case Al .

Suppose that (3, q) is strongly hermitian, and let β and α = int(r) be as in
the definition. We then have ασ = σα. Let I : 3 → 3 be the α-semilinear
automorphism obtained by applying α to the coefficients of elements of 3 with
respect to the basis β. Then q(I (x), I (y))=−α(q(x, y)). Let θ :G→G be defined
by θA(g) = IAgIA for an F-algebra A and a (D ⊗F A)-linear automorphism g
of 3⊗F A.

Let L = F(r), where r ∈ D is as above. This is again a quadratic extension of F
(and a maximal subfield of D). Let S′ and Sad be the maximal tori of G and H ad

defined above using the basis β.

Proposition 4.2.3. With the above hypotheses, the following statements are true:

(a) The map θ : G→ G is an opposition involution (and hence so is θ ad).

(b) We have θ(S′)= S′ and for every v ∈ Inc, θv : Gv→ Gv induces cS′v on S′v.

In particular, θ ad
v : H

ad
v → H ad

v induces cSad
v

on Sad
v for v ∈ Inc.

Proof. For part (a), it suffices to see that θE : G E→ G E is an opposition involution,
for a convenient extension E/F . Using the basis β and the isomorphism φ :

D⊗F L→ M2(L) as constructed above, we can identify GL as follows. Implicit
in the construction of φ is the choice of a pure quaternion s ∈ D with rs = −rs,
and we let t = v(s2) ∈R. Let qi = q(vi , vi ). Since σ(qi )=−qi and rqir−1

=−qi ,
we have

φ(r)=
(

r 0
0 −r

)
∈ GL2(L)

and

φ(qi )=

(
0 bi

ci 0

)
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for some bi , ci ∈ L . The image in M2(L) under φ of L i ⊗F L ⊂ D⊗F L consists
of the matrices in M2(L) of the form(

x ybi

yci x

)
for some x, y ∈ L . Thus, the induced isomorphism φ : Mn(D⊗F L)→ M2n(L)
sends the subalgebra of diagonal matrices L1⊗F L × · · ·× Ln ⊗F L to the set of
matrices in M2n(L) of the form

X =
(

diag(x1, . . . , xn) diag(y1b1, . . . , ynbn)

diag(y1c1, . . . , yncn) diag(x1, . . . , xn)

)
(4.2.4)

with xi , yi ∈ L . Let

Q̃ =
(

0 diag(b1, . . . , bn)

diag(c1, . . . , cn) 0

)
∈ GL2n(L).

Then, for any L-algebra R, writing a matrix X ∈ GL2n(R) as X =
( A

C
B
D

)
, there is

an isomorphism

G(R)∼=
{

X ∈ GL2n(R) :
( t D −t B
−

tC t A

)
Q̃
(

A B
C D

)
= Q̃, det(X)= 1

}
(4.2.5)

that takes the subgroup S′ to the subgroup of matrices of the form (4.2.4) in the
right-hand side. Note that the equation is equivalent to t X Q̃′X = Q̃′, where

Q̃′ =
(

diag(c1, . . . , cn) 0
0 − diag(b1, . . . , bn)

)
(the matrix Q̃′ is the matrix of the associated bilinear form [Scharlau 1985, §10.3]).
Moreover, if

γ =

(
r In 0
0 −r In

)
,

then θR(X)= γ Xγ−1 for X ∈ G(R); in block matrix terms,

θR

(
A B
C D

)
=

(
A −B
−C D

)
.

It is clear then that θ preserves S′.
Let E/L be a field extension such that there exist elements ei , fi ∈ E with e2

i = ci

and f 2
i = bi (for example, take E = C with a fixed embedding of L). For elements

a1, . . . , an , let adiag(a1, . . . , an) be the antidiagonal matrix whose (i, n+ 1− i)-th
entry is ai , and let Jn = adiag(1, . . . , 1). Let

δ =

(
adiag(en, . . . , e1) adiag(− fn, . . . ,− f1)

diag(e1/2, . . . , en/2) diag( f1/2, . . . , fn/2)

)
∈ GL2n(E).
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Then the map X 7→ δXδ−1 sends G E (viewed inside GL2n,E via (4.2.5)) to the
special orthogonal group SO2n of the matrix J2n over E . The maximal torus S′E
maps to the subgroup of diagonal matrices in SO2n , and θ becomes conjugation by
the matrix

δγ δ−1
=

(
0 2r Jn

(r/2)Jn 0

)
inside GL2n . We identify in the usual way X∗(S′) ∼= Zn . As a Borel subgroup
of G E we take the subgroup B of upper-triangular matrices belonging to G E . The
map θ sends B to the subgroup B− of lower-triangular matrices. Let J ′2n be the
matrix obtained from J2n by swapping the rows n and n+ 1. Then it is easy to see
that J ′2n ∈ G(E) and sends B− to B. It follows that 90(θ)(χ)= χ ◦ int(J ′2n)◦ θ for
χ ∈ X∗(S′). If χ is parametrized by (a1, . . . , an), then90(θ)(χ) is parametrized by
(a1, . . . , an−1,−an)= (a1, . . . , an)

? [Bourbaki 2002, Plate IV]. Thus, θ : G→ G
is an opposition involution.

Let v : F ↪→R, and let τ : L ↪→C be an extension of v to L . If τ =τ , then τ(r)∈R.
Thus, τ(r)2 ∈ R>0, and this implies that Dv is split, so v ∈ Is = Ic. In part (b), we
only care for v ∈ Inc, so suppose from now on that τ 6= τ , so that τ(r) ∈ iR>0. By
the same reasoning we have that t = v(s2) < 0. We use τ to identify GC

∼= SO2n

as above. We first work out the induced complex conjugation on G(C)∼= SO2n(C).
Using the isomorphisms D ⊗F,v C ' (D ⊗F L)⊗L ,τ C ∼= M2(C) (the last one
coming from φ), it is easy to see that complex conjugation on D⊗F,vC corresponds
to taking a matrix X ∈ M2(C) to(

t 0
0 1

)(
X22 X21

X12 X11

)(
t−1 0
0 1

)
,

where t = v(s2) as above. Note that qi ∈ D ⊂ D ⊗F,v C, so this implies that
tτ(ci )= τ(bi ) and thus

tei/ f i =− fi/ei . (4.2.6)

It follows that the induced complex conjugation on G(C), viewed inside GL2n(C)

as in (4.2.5), is given by

X =
(

A B
C D

)
7→ c′(X)=

(
D tC

t−1 B A

)
.

Finally, we apply conjugation by δ to identify GC with SO2n . We only need to con-
sider the action of c on diagonal matrices. Let X=diag(x1, . . . , xn, x−1

n , . . . , x−1
1 )∈

SO2n(C). Then c(X)= δc′(δ)−1c′(X)c′(δ)δ−1, and a long but easy direct calcula-
tion using (4.2.6) shows that

δc′(δ)−1
=

(
2 adiag(en/ f n, . . . , e1/ f 1) 0

0 1
2 adiag( f1/e1, . . . , fn/en)

)
,
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and thus,

c(diag(x1, . . . , xn, x−1
n , . . . , x−1

1 ))= diag((x1)
−1, . . . , (xn)

−1, xn, . . . , x1).

This implies that, if χ ∈ X∗(S′) is parametrized by (a1, . . . , an) ∈ Zn , then cχ

is parametrized by (−a1, . . . ,−an). This is also easily seen to be the parameter
of χ ◦ θ , which shows that θv induces cS′v on S′v. �

Remark 4.2.7. Keep the assumptions and notation as above. For each v ∈ Inc, we
will construct a map y : S→ H ad

v satisfying Deligne’s axioms [1979, §1.2.1] and
factoring through Sad

v . Recall that t = v(s2), and let u = v(r2). Since v ∈ Inc, by
our assumptions Dv is not split. This implies that u < 0 and t < 0. Let ψ : Dv→H

be the isomorphism of R-algebras sending r ⊗ 1 to
√
−ue2 and s ⊗ 1 to

√
−te3.

Here e1, e2, e3, and e4 are the following elements of H:

e1 = I2, e2 =

(
i 0
0 −i

)
, e3 =

(
0 1
−1 0

)
, e4 = e2e3.

As above, we can write ψ(qi )=
( 0 yi

−yi 0

)
with yi ∈ C×. Let

T =
(

0 diag(y1, . . . , yn)

− diag(y1, . . . , yn) 0

)
.

We then have, for an R-algebra R,

Gv(R)∼=
{

X =
(

A B
−B A

)
∈GL2n(C⊗R R) : X∗T X = T, det(X)= 1

}
. (4.2.8)

The maximal torus S′ corresponds to the subgroup of matrices on the right-hand
side where A = diag(a1, . . . , an) and B = diag(b1 y1, . . . , bn yn) with ai , bi ∈ R.
We can actually see Hv as the adjoint group of G ′v , where G ′v(R) is isomorphic to{

X =
(

A B
−B A

)
∈ GL2n(C⊗R R) : X∗T X = ν(X)T, det(X)= ν(X)n

}
.

We define y′ : S→ G ′v by the formula

y′R(z)=

 Re(z)In diag
( Im(z)
|y1|

y1, . . . ,
Im(z)
|yn|

yn

)
diag

(
−

Im(z)
|y1|

yi , . . . ,−
Im(z)
|yn|

yn

)
Re(z)In


for z ∈ S(R). Conjugating by a suitable matrix U ∈ GL2n(C), we can write
G ′v ∼= GO∗(2n) and y becomes the map in the Appendix of [Milne and Shih 1981],
so it satisfies Deligne’s axioms, and hence also does y = y′ad.
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5. Involutions on certain Shimura varieties

In this section we combine all our previous results to prove the existence of descent
data on certain Shimura varieties Sh(G, X). As we said before, we only consider
the case where the simple groups Hi are of type A or DH. In the previous section,
we constructed opposition involutions on some of these groups, preserving a certain
maximal torus Si and inducing complex conjugation on its characters. Furthermore,
we constructed maps yi,v :S→ H ad

i,v for every v ∈ Ii,nc satisfying Deligne’s axioms
[1979, §1.2.1], factoring through Sad

i,v. We now show that we can always find an
element x ∈ X such that xi,v factors through Sad

i,v for every i and v ∈ Ii,nc. The
existence of descent data will follow by combining this with Proposition 3.4.8.

5.1. Existence of particular elements x ∈ X. Let H be an almost simple, simply
connected group over R (to play the role of one of the noncompact Hi,v). Suppose
that there exist morphisms y :S→ H ad satisfying Deligne’s axioms [1979, §1.2.1];
in particular, H is absolutely almost simple. Let D be the Dynkin diagram of HC

associated with a choice of maximal torus and Borel subgroup. To each H ad(R)-
conjugacy class Y of morphisms y as above, we can attach a special node sY ∈ D,
and sY = sY ′ if and only if Y = Y ′.

Lemma 5.1.1. Under the above conditions, there exist at most two H(R)-conjugacy
classes Y of morphisms satisfying Deligne’s axioms [1979, §1.2.1]. Moreover, given
such a conjugacy class Y , any morphism satisfying these axioms must belong to
either Y or Y−1.

Proof. Suppose first that D is not of type Al . This case is easy because there are not
too many special nodes. Indeed, assume first that H(R) is connected, and fix Y one
of the conjugacy classes. Then sY−1 = s?Y 6= sY [Deligne 1979, §1.2.8], and hence,
Y−1 and Y are two distinct conjugacy classes. Suppose that Z is a third conjugacy
class, that is, sZ is neither equal to sY nor to s?Y . Again by [Deligne 1979, §1.2.8],
sZ 6= s?Z , and thus, we have four distinct special nodes sY , s?Y , sZ , and s?Z . There
is no connected Dynkin diagram with four special nodes which is not of type Al ,
and thus, this is a contradiction. If H(R) is not connected, then sY = s?Y . If Z is
another conjugacy class, then again by [op. cit.] we must have sZ = s?Z . But for any
connected Dynkin diagram, there is at most one special node which is fixed under
the opposition involution, and thus Z = Y .

Suppose now that H is of type Al with l ≥ 2, so H = SU(p, q) for some nonzero
pair of integers p, q such that p+q= l+1. The isomorphism C⊗R C'C×C given
by z⊗ a 7→ (za, za) induces by projection on the first coordinate an isomorphism
HC ' SLl+1,C; fix the usual Borel pair here to define the Dynkin diagram. Define
a morphism

y0 : S→ H ad
= PGU(p, q)
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with y0(z) being the class of the matrix(
z Ip 0
0 z Iq

)
.

Then y0 satisfies Deligne’s axioms [1979, §1.2.1], and the special node s0 attached
to its H ad(R)-conjugacy class Y0 is αp. From the conjugate map y0 = y−1

0 we get
the special node αq associated with Y−1

0 . If Y is another conjugacy class, say with
special node αt , then there would be an isomorphism PGU(p, q)∼=PGU(t, l+1−t)
sending Y0 or Y−1

0 to Y . In particular, t = p or t = q , and we conclude that there are
at most two possible conjugacy classes of morphisms satisfying Deligne’s axioms
for the fixed form PGU(p, q) of PGLl+1,C (and there are exactly two in all cases
except when p = q , when there is only one). �

Going back to our general Shimura datum (G, X), for each i , let Si ⊂ Hi be
a maximal torus, T̃i = ResFi/Q Si ⊂ G̃i , Ti ⊂ Gi its image in Gi , T ′ ⊂ Gder the
image of their product, and T = Z0T ′. Note that T ad

R = T
′ad

R =
∏

i,v Sad
i,v, where

Si,v ⊂ Hi,v and Sad
i,v is its image in H ad

i,v.

Lemma 5.1.2. Suppose that T ⊂ G is the maximal torus defined above. Suppose
that for each v ∈ Ii,nc, there exists a morphism yi,v : S→ H ad

i,v satisfying axioms
[Deligne 1979, §1.2.1] and factoring through Sad

i,v. Then there exists an element
x ∈ X such that xad factors through T ad

R .

Proof. Let z ∈ X be an arbitrary element. The previous lemma implies that zi,v is
H ad

i,v(R)-conjugate to a map yi,v : S→ Sad
i,v . Thus, we can write zi,v = ui,v · yi,v for

ui,v ∈ H ad
i,v(R). We claim that, after possibly changing the yi,v, we can arrange for

ui,v to be in H ad
i,v(R)

+. Indeed, if ui,v is not in that connected component, then in
particular H ad

i,v(R) is not connected, and thus, there is only one conjugacy class in
question, with two connected components, one containing zi,v and the other one
containing yi,v. Thus, we only need to replace yi,v with y−1

i,v , which also factors
through Sad

i,v. For v ∈ Ii,c, let ui,v = 1. It follows that u = (ui,v) ∈ Gad(R)+, and
thus, there exists g ∈G(R) lifting u. Let x = g−1

· z ∈ X , so that xad
= (yi,v), which

factors through T ad
R as desired. �

5.2. The main theorem. In this subsection we put all the ingredients together to
obtain the main theorem on the existence of involutions of G taking X to X .

Definition 5.2.1. The Shimura datum (G, X) is said to be strongly of type (ADH)

if each of the groups Hi is either of type Al with l ≥ 2 and attached to a strongly
hermitian space (as in Definition 4.1.4), or of type Dl with l ≥ 5 odd and attached
to a strongly skew-hermitian space (as in Definition 4.2.1).
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For example, a Shimura variety defined by a similitude unitary group attached to
a hermitian space over a CM field is strongly of type (ADH). Note however that
the definition only restricts the semisimple part of G.

Theorem 5.2.2. Suppose that (G, X) is strongly of type (ADH). Then there exists
an involution θ : G → G such that θ(X) = X , and hence, there exists a model
of Sh(G, X) over E+ as in Theorem 2.3.1.

Proof. In Subsections 4.1 and 4.2, we constructed for every i , an opposition
involution θi : Hi → Hi and a maximal torus Si ⊂ Hi such that θi (Si ) = Si and
θ ad

i,v induces cSad
i,v

for every v ∈ Ii,nc. Moreover, by Remarks 4.1.10 and 4.2.7, for
every i and v ∈ Ii,nc, there is a map yi,v : S→ H ad

i,v satisfying Deligne’s axioms
[1979, §1.2.1], and factoring through Sad

i,v. The result then follows by combining
Proposition 3.4.8 and Lemma 5.1.2. �

Remark 5.2.3. The conclusion of the previous theorem holds in other cases as well.
For instance, if G is adjoint and there exists an opposition involution θ : G→ G
(which is always the case if G is also quasisplit, for example), then by the adjointness
of G, we conclude that θ(X)= X . On the other hand, the cases that we considered in
this paper are concretely given by simple algebras, and thus are intimately related to
moduli problems, even though we do not use the moduli interpretation explicitly. It
is an interesting problem to consider factors of other types, for instance of type E6,
and analyze whether it is possible to construct opposition involutions with the
desired properties in some of these cases. We plan to investigate this problem in
the future.
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A subspace theorem for subvarieties
Min Ru and Julie Tzu-Yueh Wang

We establish a height inequality, in terms of an (ample) line bundle, for a sum
of subschemes located in `-subgeneral position in an algebraic variety, which
extends a result of McKinnon and Roth (2015). The inequality obtained in this
paper connects the result of McKinnon and Roth (the case when the subschemes
are points) and the results of Corvaja and Zannier (2004), Evertse and Ferretti
(2008), Ru (2017), and Ru and Vojta (2016) (the case when the subschemes are
divisors). Furthermore, our approach gives an alternative short and simpler proof
of McKinnon and Roth’s result.

1. Introduction and statements

McKinnon and M. Roth [2015] introduced the approximation constant αx(L) to
an algebraic point x on an algebraic variety V with an ample line bundle L . The
invariant αx(L) measures how well x can be approximated by rational points on
V with respect to the height function associated to L . They showed that αx(L) is
closely related to the Seshadri constant εx(L) measuring the local positivity of L
at x . They also showed that the invariant αx(L) can be computed through another
invariant βx(L) in the height inequality they established (see Theorem 5.1 and
Theorem 6.1 in [McKinnon and Roth 2015]). By computing the Seshadri constant
εx(L) for the case of V = P1, their result recovers Roth’s theorem, so the height
inequality they established can be viewed as a generalization of this theorem to
arbitrary projective varieties.

In this paper, we provide a simpler proof of the above results. Furthermore,
we extend the results from the points of a projective variety to subschemes. The
generalized result in terms of subschemes connects, as well as gives a clearer
explanation to, the above mentioned result of McKinnon and Roth with the recent
Diophantine approximation results in terms of the divisors obtained in [Corvaja and
Zannier 2004; Evertse and Ferretti 2008; Levin 2014; Ru and Vojta 2016; Ru 2017].

We now state our result. Let V be a projective variety defined over a number
field k.

MSC2010: primary 11J97; secondary 11J87, 14G05.
Keywords: Schmidt’s subspace theorem, Roth’s theorem, Diophantine approximation, Vojta’s
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Definition 1.1. Let L be a line bundle over V with h0(V, NL)≥1 for N big enough.
Let Y be a proper closed subscheme of V and π : Ṽ → V be the blow-up along Y ,
and E be the exceptional divisor. We define

βL ,Y := lim inf
N→∞

∑
∞

m=1 h0(Ṽ , Nπ∗L −m E)
N · h0(V, NL)

.

Remark 1.2. (a) If Y is an effective Cartier divisor, then the blow-up is an iso-
morphism. Without loss of generality, we let π be the identity map, Ṽ = V
and E = Y .

(b) Let D be an effective divisor on V , we define βD,Y := βO(D),Y , where O(D)
is the line sheaf associated to D.

(c) In the case when L is big, the limN→∞ in the definition above exists. Indeed
(see [McKinnon and Roth 2015, pp. 544–545]), we have

βL ,Y =

∫ γeff

0

Vol(Lγ )
Vol(L)

dγ,

where Lγ := π∗L − γ E and γeff = sup{γ ≥ 0 | Lγ is effective}.

Definition 1.3. We say that the closed subschemes Y1, . . . , Yq of a projective variety
V are in `-subgeneral position if, for any x ∈ V , there are at most ` subschemes
among Y1, . . . , Yq which contain x .

Remark 1.4. In the case that Y1 = y1, . . . , Yq = yq are points (as in [McKinnon
and Roth 2015]), the condition that y1, . . . , yq are distinct implies that Y1, . . . , Yq

are in 1-subgeneral position (i.e., with `= 1).

We establish the following result.

Main Theorem. Let k be a number field and Mk be the set of places on k. Let
S ⊂ Mk be a finite subset containing all archimedean places. Let V be a projective
variety defined over k and Y1, . . . , Yq be closed subschemes of V defined over k in
`-subgeneral position. For any v ∈ S, choose a local Weil function λY j ,v for each
Y j , 1≤ j ≤ q. Let L be a big line bundle. Then for any ε > 0∑

v∈S

q∑
i=1

λYi ,v(x)≤ `(max
1≤i≤q
{β−1

L ,Yi
}+ ε)hL(x) (1-1)

holds for all x outside a proper Zariski-closed subset Z of V (k).

The following corollary of our main theorem recovers the main result of [Mc-
Kinnon and Roth 2015]. The proof will be given in Section 3.

Corollary 1.5 [McKinnon and Roth 2015, Theorem 6.1]. Let V be a projective
variety over k. Then for any ample line bundle L and any x ∈ V (k) either

• αx(L)≥ βL ,x or
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• there exists a proper subvariety Z ⊂ V , irreducible over k, with x ∈ Z(k) so
that αx,V (L) = αx,Z (L|Z), i.e., “αx(L) is computed on a proper subvariety
of V ”,

where αx(L) is the approximation constant defined in [McKinnon and Roth 2015,
Definition 2.9], and βL ,x is defined in Definition 1.1 (with Y taken as a point x).

We will show in Lemma 2.2 that for any line bundle L , x ∈ V

βL ,x ≥
n

n+1
εx(L), (1-2)

where n= dim V . We note that the Seshadri constant εx(L) does not decrease when
restricting to a subvariety [McKinnon and Roth 2015, Proposition 3.4], so we can
use induction to further get, from Corollary 1.5 and (1-2), the following result.

Corollary 1.6 [McKinnon and Roth 2015, Theorem 6.2, alternative statement]. Let
V be a projective variety over k. Let L be any ample line bundle and choose any
x ∈ V (k). Then for any δ > 0, there are only finitely many solutions y ∈ V (k) to

dv(x, y) < HL(y)−((n+1)/(nεx (L))+δ).

In the case when V =Pn and L =OPn (1), we have εx(L)= 1 for all x ∈Pn (see
[McKinnon and Roth 2015, Lemma 3.3]). Therefore the above result generalizes
the theorem of Roth.

We now turn to another extreme case when the subschemes Y1, . . . , Yq are
effective Cartier divisors D1, . . . , Dq . Let D := D1 + · · · + Dq . Assume that
each D j is linearly equivalent to a fixed ample divisor A. Then we have the
following relation of height functions hD = qh A+O(1). On the other hand, by the
Riemann–Roch theorem, with n = dim V ,

h0(N D)= h0(q N A)=
(q N )n An

n!
+ o(N n)

and

h0(N D−m D j )= h0((q N −m)A)=
(q N −m)n An

n!
+ o(N n).

Thus∑
m≥1

h0(N D−m D j )=
An

n!

q N−1∑
l=0

ln
+ o(N n+1)=

An(q N−1)n+1

(n+1)!
+ o(N n+1).

Hence

βD,D j = lim
N→∞

An(q N−1)n+1

(n+1)! + o(N n+1)

N (q N )n An

n! + o(N n+1)
=

q
n+ 1

.

Thus the Main Theorem, together with the above computation, implies the following
result of Chen, Ru, and Yan [2012] (see also [Corvaja and Zannier 2006]).
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Theorem 1.7. Let k be a number field and Mk the set of places on k. Let S ⊂ Mk

be a finite subset containing all archimedean places. Let V be a projective variety
of dimension n defined over k. Let D1, . . . , Dq be effective Cartier divisors in
`-subgeneral position on V . Assume that each D j , 1≤ j ≤ q , is linearly equivalent
to a fixed ample divisor A. For any v ∈ S, choose a Weil function λD j ,v for
each D j , 1≤ j ≤ q. Then for any ε > 0

∑
v∈S

q∑
i=1

λDi ,v(x)≤ `(n+ 1+ ε)h A(x) (1-3)

holds for all x outside a proper Zariski-closed subset Z of V (k). In particular, if
D1, . . . , Dq are in general position on V , then the inequality

∑
v∈S

q∑
i=1

λDi ,v(x)≤ n(n+ 1+ ε)h A(x) (1-4)

holds for all but finitely many x ∈ V (k).

In the general case when D1, . . . , Dq are only assumed to be big and nef, we
can also compute βD,D j . The details will be carried out in the next section.

We note that recently the first named author and P. Vojta [2016] obtained the
following sharp result in the case when D1, . . . , Dq are in general position and
when V is Cohen–Macaulay (for example when V is smooth).

Theorem 1.8 [Ru and Vojta 2016]. Let k be a number field and Mk be the set of
places on k. Let S ⊂ Mk be a finite subset containing all archimedean places. Let
V be a projective variety defined over k. Assume that V is Cohen–Macaulay. Let
D1, . . . , Dq be effective Cartier divisors in general position on V . For any v ∈ S,
choose a Weil function λD j ,v for each D j , 1≤ j ≤ q. Let L be a line bundle on V
with h0(V, NL)≥ 1 for N big enough. Then for any ε > 0∑

v∈S

q∑
i=1

λDi ,v(x)≤ (max
1≤i≤q
{β−1

L ,Di
}+ ε)hL(x) (1-5)

holds for all x outside a proper Zariski-closed subset Z of V (k).

Theorem 1.8, together with the above computation, recovers the result of [Evertse
and Ferretti 2002; 2008] in the case when V is smooth.

2. Computation of the constant βL,Y

We first compute the constant βL ,y , i.e., we let Y = y be a point in V (k). The
following lemma is a reformulation of Lemma 4.1 in [McKinnon and Roth 2015].
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Lemma 2.1. Let V be a projective variety and x be a point in V . Let π : Ṽ → V
be the blow-up along x , and E be the exceptional divisor. Let L be an ample line
bundle and m a positive integer. Then

(i) h0(Ṽ , Nπ∗L−m E)= 0 if m > N ·γeff,x , where γeff,x is defined in [McKinnon
and Roth 2015], and

(ii) h0(Ṽ , Nπ∗L −m E)≥ h0(V, NL)−mn multx V/n! + O(N n−1) for N � 0.

Proof. Write h0(Ṽ , Nπ∗L −m E) = h0(Ṽ , Nπ∗L − N · γ E), where γ = m/N .
The argument in [McKinnon and Roth 2015] shows that h0(Ṽ , Nπ∗L −m E) ≥
h0(V, NL)−mn multx V/n! + O(N n−1). �

The following is a restatement of Corollary 4.2 in [McKinnon and Roth 2015].

Lemma 2.2. For any ample line bundle L , x ∈ V and positive integer m, we have

βL ,x ≥
n

n+ 1

(
Ln

multx V

)1/n

≥
n

n+ 1
εx(L).

Proof. Choose a sufficiently large N . By Lemma 2.1 and the Riemann–Roch
theorem,

h0(Ṽ , π∗NL −m E)≥ h0(V, NL)
(

1−
multx V

Ln

(
m
N

)n)
+ O(N n−1). (2-1)

The right-hand side of (2-1) is less than zero when m > u = [N (Ln/multx V )1/n
],

hence
∞∑

m=1

h0(Ṽ , π∗NL−m E)≥h0(V, NL)
u∑

m=1

(
1−

multx V
Ln

(
m
N

)n)
+O(N n). (2-2)

Consequently,

βL ,x ≥
1
N

u∑
m=1

(
1−

multx V
Ln

(
m
N

)n)
+ O

(
1
N

)

=
1
N

(
u−

multx V
Ln ·

un+1

(n+ 1)N n

)
+ O

(
1
N

)
≥

nu
(n+ 1)N

+ O
(

1
N

)
. (2-3)

Let N run through all sufficiently large integers. Then we have

βL ,x ≥
n

n+ 1

(
Ln

multx V

)1/n

. �

Next we consider the case when Y j = D j , 1≤ j ≤ q, are effective big and nef
Cartier divisors on V .
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Definition 2.3. Suppose X is a complete variety of dimension n. Let D1, . . . , Dq

be effective Cartier divisors on X and let D = D1+ D2+ · · · + Dq . We say that
D has equidegree with respect to D1, D2, . . . , Dq if Di · Dn−1

= Dn/q for all
i = 1, . . . , q .

Lemma 2.4 [Levin 2009, Lemma 9.7]. Let V be a projective variety of dimension n.
If D j , 1 ≤ j ≤ q, are big and nef Cartier divisors on V , then there exist positive
real numbers r j such that D =

∑q
j=1 r j D j has equidegree.

Since divisors r j D j and D j have the same support, the above lemma tells us
that we can always make the given big and nef divisors have equidegree without
changing their supports. So now we assume that D :=D1+· · ·+Dq is of equidegree.
To compute βD,D j for j = 1, . . . , q , we use the following lemma.

Lemma 2.5 [Autissier 2009, Lemma 4.2]. Suppose E is a big and base-point free
Cartier divisor on a projective variety V and F is a nef Cartier divisor on V such
that F − E is also nef. Let δ > 0 be a positive real number. Then, for any positive
integers N and m with 1≤ m ≤ δN , we have

h0(N F −m E)

≥
Fn

n!
N n
−

Fn−1
· E

(n− 1)!
N n−1m+

(n− 1)Fn−2
· E2

n!
N n−2 min{m2, N 2

}+ O(N n−1),

where the implicit constant depends on β.

We compute
∑

m≥1 h0(N D − m Di ) for each 1 ≤ i ≤ q. Let n = dim V and
assume that n ≥ 2. Let b = Dn/(nDn−1

· Di ) and A = (n− 1)Dn−2
· D2

i . Then, by
Lemma 2.5,
∞∑

m=1

h0(N D−m Di )

≥

[bN ]∑
m=1

(
Dn

n!
N n
−

Dn−1
· Di

(n− 1)!
N n−1m+

A
n!

N n−2 min{m2, N 2
}

)
+ O(N n)

≥

(
Dn

n!
b−

Dn−1
· Di

(n− 1)!
b2

2
+

A
n!

g(b)
)

N n+1
+ O(N n)

=

(
b
2
+

A
Dn g(b)

)
Dn N n+1

n!
+ O(N n)

=

(
b
2
+α

)
Nh0(N D)+ O(N n),

where α := g(b)A/Dn and g : R+ → R+ is the function given by g(x) = x3/3
if x ≤ 1 and g(x) = x − 2

3 for x ≥ 1. Now from the assumption of equidegree
Di · Dn−1

= Dn/q, so b = q/n. Moreover, α > 0 since dim V ≥ 2 and the Di are
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big and nef divisors. Hence

βD,Di = lim inf
N

∑
m≥1 h0(N D−m Di )

Nh0(N D)
≥

b
2
+α.

Thus we have proved the following.

Proposition 2.6. Let V be a projective variety of dim V ≥ 2 and assume that
D :=

∑q
j=1 D j has equidegree with respect to D1, . . . , Dq which are big and nef.

Then

βD,Di = lim inf
N

∑
m≥1 h0(N D−m Di )

Nh0(N D)
>

q
2n
+α,

where α is a computable positive number.

Proposition 2.6, together with the Main Theorem, implies the following result.

Theorem 2.7 [Hussein and Ru 2018]. Let k be a number field and let S ⊆ Mk be
a finite set containing all archimedean places. Let V be a projective variety of
dimension ≥ 2 over k and let D1, . . . , Dq be effective, big, and nef Cartier divisors
on V defined over k, located in `-subgeneral position. Let ri > 0 be real numbers
such that D :=

∑q
i=1 ri Di has equidegree (such numbers exist due to Lemma 2.4).

Then, for ε0 > 0 small enough, the inequality

∑
v∈S

q∑
j=1

r jλDi ,v(x) < `
(

2 dim V
q
− ε0

)( q∑
j=1

r j hD j (x)
)

holds for all x ∈ V (k) outside a proper Zariski-closed subset of V .

3. Proof of the Main Theorem

We first recall some basic properties of local Weil functions associated to closed
subschemes from [Silverman 1987, Section 2]. We assume that the readers are
familiar with the notion of Weil functions associated to divisors (see [Lang 1983,
Chapter 10], [Hindry and Silverman 2000, B.8] or [Silverman 1987, Section 1]).

Let Y be a closed subscheme on a projective variety V defined over k. Then one
can associate to each place v ∈ Mk a function

λY,v : V \ supp(Y )→ R

satisfying some functorial properties (up to an Mk-constant) described in [Silverman
1987, Theorem 2.1]. Intuitively, for each P ∈ V and v ∈ Mk ,

λY,v(P)=−log(v-adic distance from P to Y ).

The following lemma indicates the existence of local Weil functions.
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Lemma 3.1. Let Y be a closed subscheme of V . There exist effective divisors
D1, . . . , Dr such that

Y = ∩Di .

Proof. See Lemma 2.2 from [Silverman 1987]. �

Definition 3.2. Let k be a number field, and Mk be the set of places on k. Let V be
a projective variety over k and let Y ⊂ V be a closed subscheme of V . We define
the (local) Weil function for Y with respect to v ∈ Mk as

λY,v =min
i
{λDi ,v}, (3-1)

when Y = ∩Di (such Di exist according to the above lemma).

Lemma 3.3 [Vojta 1987, Lemma 2.5.2; Silverman 1987, Theorem 2.1(h)]. Let Y
be a closed subscheme of V and let Ṽ be a blow-up of V along Y with exceptional
divisor E = π∗Y . Then λY,v(π(P))= λE,v(P)+ Ov(1) for P ∈ Ṽ .

Note that in the original statement of Lemma 2.5.2 in [Vojta 1987], V is assumed
to be smooth, but from the proof it is easy to see that it works for a general projective
variety from Theorem 2.1(h) in [Silverman 1987].

For our purpose, it suffices to fix a choice of local Weil functions λYi ,v for each
1≤ i ≤ q and v ∈ S.

Lemma 3.4. Let Y1, . . . , Yq be closed subschemes of a projective variety V in
`-subgeneral position. Then

q∑
i=1

λYi ,v(x)≤max
I

∑
j∈I

λYj ,v(x)+ Ov(1), (3-2)

where I runs over all index subsets of {1, . . . , q} with ` elements for all x ∈ V (k).

Proof. Let {i1, . . . , iq} = {1, . . . , q}. Since the Yi , 1≤ i ≤ q, are in `-subgeneral
position,

⋂`+1
t=1 Yit =∅. Then

min
1≤i≤`+1

{λYi ,v} = {λ
⋂`+1

t=1 Yit ,v
} = Ov(1). (3-3)

We note that the first equality follows from (3-1), the definition of the local Weil
function; and the second equality follows from Corollary 3.3 in [Lang 1983, Chap-
ter 10]. For x with the following ordering

λYi1 ,v
(x)≥ λYi2 ,v

(x)≥ · · · ≥ λYiq ,v
(x),

we have
q∑

i=1

λYi ,v(x)=
∑̀
i=1

λYi ,v(x)+ Ov(1).

Then assertion (3-2) follows directly as the number of subvarieties under consid-
eration is finite. �
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We also need the following generalized Schmidt subspace theorem.

Theorem 3.5 [Ru and Vojta 2016, Theorem 2.7]. Let k be a number field, S be
a finite set of places of k containing all archimedean places, X be a complete
variety over k, D be a Cartier divisor on X , W be a nonzero linear subspace of
H 0(X,O(D)), s1, . . . , sq be nonzero elements of W , ε > 0, and c ∈ R. For each
j = 1, . . . , q, let D j be the Cartier divisor (s j ) and λD j be a Weil function for D j .
Then there is a proper Zariski-closed subset Z of X , depending only on k, S, X ,
D, W , s1, . . . , sq , ε, c, and the choices of Weil and height functions, such that the
inequality ∑

υ∈S

max
J

∑
j∈J

λD j ,υ(x)≤ (dim W + ε)hD(x)+ c (3-4)

holds for all x ∈ (X \ Z)(k). Here the set J ranges over all subsets of {1, . . . , q}
such that the sections (s j )j∈J are linearly independent.

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. Let δ > 0 be a sufficiently small number. We may
choose a sufficiently large integer N such that, for i = 1, . . . , q ,

∞∑
m=1

h0(Ṽi , Nπ∗L − Ei )≥ (βL ,Yi − δ)Nh0(V, NL), (3-5)

where πi : Ṽi → V is the blow-up at Yi and Ei = π
−1(Yi ) is he exceptional divisor

of πi .
Let x ∈ V (k) and v ∈ S. Since the Yi , 1≤ i ≤ q , are in `-subgeneral position, it

follows from Lemma 3.4 that
q∑

i=1

λYi ,v(x)≤ `λYi0 ,v
(x)+ Ov(1), (3-6)

for some i0 with 1≤ i0 ≤ q, where the constant Ov(1) is independent of x . Note
that i0 depends on the point x , but Ov(1) is independent of x .

Write Ṽi0 as Ṽ , πi0 as π and Ei0 as E . We consider the following filtration.

H 0(Ṽ , π∗NL)⊇ H 0(Ṽ , π∗NL − E)⊇ H 0(Ṽ , π∗NL − 2E)⊇ · · · (3-7)

We identify H 0(V, NL) with H 0(Ṽ , π∗NL) as vector spaces (note: according to
the footnote on page 553 in [McKinnon and Roth 2015], if X is not normal, then
H 0(V, NL) may only be a proper subspace of H 0(Ṽ , π∗NL). However, since the
volume is a birational constant, the asymptotic calculations go through without
change). Choose regular sections s1, . . . , sM ∈ H 0(V, NL) successively so that
their pull-back π∗s1, . . . , π

∗sM ∈ H 0(Ṽ , π∗NL) form a basis associated to this
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filtration, where M = h0(Ṽ , Nπ∗L). For a section π∗s ∈ H 0(Ṽ , π∗NL −m E)
(regarded as a subspace of H 0(Ṽ , π∗NL)) we have

div(π∗s)≥ m E . (3-8)

Hence, λ(π∗s),v ≥ mλE,v + Ov(1). Note that although Ov(1) here depends on i0

(which depends on x), there are q choices of such i0 and V is compact, so we can
again make Ov(1) independent of x . Therefore, also using Lemma 3.3 and (3-5),

M∑
j=1

λ(π∗s j ),v

≥

∞∑
m=1

m(h0(Ṽ , π∗NL−m E)−h0(Ṽ , π∗NL−(m+1)E))λE,v+Ov(1)

=

∞∑
m=1

m(h0(Ṽ , π∗NL−m E)−h0(Ṽ , π∗NL−(m+1)E))λYi0 ,v
◦π+Ov(1)

=

∞∑
m=1

h0(Ṽ , π∗NL−m E)λYi0 ,v
◦π+Ov(1)

≥ (βL ,Yi0
−δ)Nh0(V, NL)λYi0 ,v

◦π+Ov(1).

The functorial property of Weil functions implies λ(π∗s j ),v = λ(s j ),v ◦ π + Ov(1).
Hence, the above inequality, together with (3-6), implies that

q∑
i=1

λYi ,v(x)

≤
`

N · h0(V, NL)(min1≤i≤q{βL ,Yi }− δ)
max

J

{∑
j∈J

λ(s j ),v(x)
}
+ Ov(1), (3-9)

where J is a subset containing M linearly independent sections taken among the
collection of sections {s j (i0, v)|1≤ i0 ≤ q, v ∈ S} coming from the claim (3-6). It
then follows from Theorem 3.5 and a suitable choice of δ that for a given ε > 0
there exists a proper algebraic subset Z of V defined over k such that∑

v∈S

q∑
i=1

λYi ,v(x)≤ (` · max
1≤i≤q
{β−1

L ,Yi
}+ ε)hL(x), (3-10)

for all x ∈ V (k) \ Z(k). �

Proof of Corollary 1.5. Let v be a place of k. The main point of the proof is to
reformulate the distance function dv( · , · ) defined on V (k) [McKinnon and Roth
2015, Section 2] into a product of several distance functions on V (K ), where K
is a finite extension of k. Following the construction in [McKinnon and Roth 2015,
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Section 2], we fix an extension of v to k. The place defines an absolute value ‖·‖v
on k. If K ⊂ k is a finite extension of k, then dv( · , · )K = dv( · , · )

[Kv : kv]
k . Here

dv( · , · )K refers to the distance function defined by using the same embedding
and normalizing with respect to K and dv( · , · )k the distance function normalized
with respect to k (see [McKinnon and Roth 2015, Proposition 2.1(b)]). Assume
that V ⊂ PN (given by the canonical map associated to the ample line bundle L).
For a given fixed point y = [y0 : · · · : yN ] ∈ V (k), let K be the Galois closure of
k(y0, . . . , yN ) over k. For each v ∈Mk , the inclusion map (iv)|K : K→ kv induces a
placew0 :=v of K over v, and other placesw of K over v are conjugates by elements
σw ∈ Gal(K/k) such that ‖σw(a)‖w = ‖a‖v for all a ∈ K . Then, for x, y ∈ K ,∏

w∈MK ,w|v

dw(σw(x), σw(y))K =
∏

w∈MK ,w|v

dv(x, y)K

=

∏
w∈MK ,w|v

dv(x, y)[Kv : kv]
k

= [K : k]dv(x, y)k,

i.e.,

dv(x, y)k =
∏

w∈MK ,w|v

dw(σw(x), σw(y))
1/[K : k]
K , for x, y ∈ K . (3-11)

To compute αy(L), we consider any sequence {xi } ⊆ V (k) of distinct points with
dv(y, xi )→ 0. By (3-11), we have dv(y, xi )k =

∏
w∈MK ,w|v

dw(σw(y), xi )
1/[K : k]
K .

(Here we extend σw ∈ Gal(K/k) to the map from V (K ) to V (K ) by acting on the
coordinates of the points.) The distance function dw(y, x) in [McKinnon and Roth
2015] is constructed by choosing an embedding φL : V → PN into a projective
space via the sections of L and measuring the distance in the embedded space. For
a fixed y we denote −log dw(y, · ) by λφ(y),w, which is a local Weil function on the
embedded space. We note that this fact can also be proved by a slight modification of
Lemma 2.6 in [McKinnon and Roth 2015]. By the functoriality of Weil functions of
closed subschemes [Silverman 1987, Theorem 2.1(h)] we have−log dw(σw(y), x)=
λσw(y),w(x)+ O(1). On the other hand, it is clear from the definition that βL ,y =

βL ,σw(y) for very σw ∈Gal(K/k). The Main Theorem then implies that for any ε >0

log dv(y, xi )=
1

[K : k]

∑
w∈MK ,w|v

log dw(y, xi )≥−({β
−1
L ,y}+ ε)hL(xi ) (3-12)

holds for all xi outside a proper Zariski-closed subset Z of V (K ) (note that, in this
case, `= 1). We note that Z is indeed defined over k since all the xi are in k. In
conclusion, we have shown that for all sequences {xi }⊆ V (k) of distinct points with
dv(y, xi )→ 0, if αy({xi }, L) < βL ,y , then all but finitely many of the points of {xi }

lie in Z . If (a) holds, then we are done. Therefore we assume that αy(L) > βL ,y .
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Then the previous conclusion shows, in this case, that αy(L)= αy,Z (L|Z ). To see
Z is irreducible over k, we first use Proposition 2.14(f) in [McKinnon and Roth
2015] to reduce Z to one of the irreducible components of Z over k, say Y such that
αy,Z (L|Z )=αy,Y (L|Y ). Without loss of generality we can assume that Z=Y , i.e., Z
itself is irreducible over k. We then apply Lemma 2.17 in [McKinnon and Roth 2015]
to conclude that Z is indeed geometrically irreducible, i.e., Z is irreducible over k. �

4. The complex case

In this section, we consider the analogous result of our Main Theorem in Nevanlinna
theory. Let V be a complex projective variety. We use the standard notation in
Nevanlinna theory (see, for example, [Ru 2016]). Note that the Weil function for
divisors has been defined, so the Weil function λY for a subscheme Y ⊂ V can also
be defined using Lemma 3.1, similar to Definition 3.2. We define, for a holomorphic
map f : C→ V with f (C) 6⊂ Y , the proximity function

m f (r, Y )=
∫ 2π

0
λY ( f (reiθ ))

dθ
2π
.

We note that all the properties used above about the Weil functions in the arithmetic
case hold for the complex case (see, for example, [Ru 2016; Ru and Vojta 2016]).

Theorem 4.1. Let V be a complex projective variety and Y1, . . . , Yq be closed
subschemes of V in `-subgeneral position. Let L be a big line bundle. Let f :C→V
be a holomorphic map with Zariski dense image. Then for any ε > 0

q∑
i=1

m f (r, Yi )≤ `(max
1≤i≤q
{β−1

L ,Yi
}+ ε)T f,L(r)

∥∥, (4-1)

where ‖ means that the inequality holds for all r ∈ (0,+∞) outside a set of finite
Lebesgue measure.

To prove the theorem, we need the following result.

Theorem 4.2 [Ru and Vojta 2016, Theorem 2.8]. Let X be a complex projective va-
riety, D be a Cartier divisor on X , W be a nonzero linear subspace of H 0(X,O(D)),
and s1, . . . , sq be nonzero elements of W . Let f : C→ X be a holomorphic map
with Zariski-dense image. Then∫ 2π

0
max

J

∑
j∈J

λ(s j )( f (reiθ ))
dθ
2π
≤ (dim W )T f,D(r)+O(log+ T f,D(r))+o(log r)

∥∥,
where the set J ranges over all subsets of {1, . . . , q} such that the sections (s j )j∈J

are linearly independent.
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Proof of Theorem 4.1. Similar to the proof of the Main Theorem, let δ > 0 be a
sufficiently small number. We choose N large enough that, for i = 1, . . . , q,

∞∑
m=1

h0(Ṽi , Nπ∗i L −m Ei )≥ (βL ,Yi − δ)Nh0(V, NL).

Let x ∈V . Since Yi , 1≤ i ≤q , are in `-subgeneral position, similar to Lemma 3.4,
we have

q∑
i=1

λYi (x)≤ `λYi0
(x)+ O(1), (4-2)

for some i0 with 1≤ i0≤q , where i0 depends on the point x , but O(1) is independent
of x .

Let π : Ṽ→ V be the blow-up at Yi0 and E =π−1(Yi0) be the exceptional divisor
of π . We consider the filtration of H 0(Ṽ , π∗NL) defined in (3-7). By identifying
H 0(V, NL) with H 0(Ṽ , π∗NL) as vector spaces, we can choose regular sections
s1, . . . , sM ∈ H 0(V, NL), where M = h0(V, NL), successively so that their pull-
backs π∗s1, . . . , π

∗sM ∈ H 0(Ṽ , π∗NL) form a basis associated to this filtration.
Then, in the same way as deriving (3-9), we can get

q∑
i=1

λYi (x)≤
`

N · h0(V, NL)(min1≤i≤q{βL ,Yi }− δ)

q∑
j=1

λ(s j )(x)+ O(1).

Note that the basis {s1, . . . , sM} depends only on i0, so the number of such choices
is finite, since i0 ∈ {1, . . . , q}, while x varies in (4-2). We denote the set of bases
as J1, . . . , JT . Thus we get, for every x ∈ V ,

q∑
i=1

λYi (x)≤
`

N · h0(V, NL)(min1≤i≤q{βL ,Yi }− δ)
max

1≤t≤T

∑
j∈Jt

λ(s j )(x)+ O(1).

By taking x = f (reiθ ) and then integrating, it then follows from Theorem 4.2 and
a suitable choice of δ that, for the given ε > 0,

q∑
i=1

∫ 2π

0
λYi ( f (reiθ ))

dθ
2π
≤ `(max

1≤i≤q
{β−1

L,Yi
}+ ε)T f,L(r)

∥∥.
This finishes the proof. �

Theorem 4.1, together with Lemma 2.2, implies the following corollary.

Corollary 4.3. Let V be a complex projective variety of dimension n and a1, . . . , aq

be distinct points on V . Let L be an ample line bundle. Let f : C→ V be a
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holomorphic map with Zariski dense image. Then for any ε > 0,
q∑

i=1

m f (r, ai )≤

(
n+1

n
max

1≤i≤q
{ε−1

ai
(L)}+ ε

)
T f,L(r)

∥∥,
where εx(L) is the Seshadri constant of L at the point x ∈ V .

In particular, if V = Pn , then for any ε > 0,
q∑

i=1

m f (r, ai )≤

(
n+1

n
+ ε

)
T f,L(r)

∥∥.
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Variation of
anticyclotomic Iwasawa invariants

in Hida families
Francesc Castella, Chan-Ho Kim and Matteo Longo

Building on the construction of big Heegner points in the quaternionic setting
by Longo and Vigni, and their relation to special values of Rankin–Selberg L-
functions established by Castella and Longo, we obtain anticyclotomic analogues
of the results of Emerton, Pollack and Weston on the variation of Iwasawa
invariants in Hida families. In particular, combined with the known cases of the
anticyclotomic Iwasawa main conjecture in weight 2, our results yield a proof
of the main conjecture for p-ordinary newforms of higher weights and trivial
nebentypus.
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Introduction

In the remarkable paper [Emerton et al. 2006], Emerton, Pollack and Weston
obtained striking results on the behavior of the cyclotomic Iwasawa invariants
attached to p-ordinary modular forms as they vary in Hida families. In particular,
combined with Greenberg’s conjecture on the vanishing of the µ-invariant, their
main result reduces the proof of the main conjecture to the weight two case. In
this paper, we develop analogous results for newforms base-changed to imaginary
quadratic fields in the definite anticyclotomic setting. In particular, combined with
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Vatsal’s result [2003] on the vanishing of the anticyclotomic µ-invariant, and the
known cases of the anticyclotomic main conjecture in weight 2 (thanks to the
works of Bertolini and Darmon [2005], Pollack and Weston [2011], and Skinner
and Urban [2014]), our results yield a proof of Iwasawa’s main conjecture for
p-ordinary modular forms of higher weights k > 2 and trivial nebentypus in the
anticyclotomic setting.

Let us begin by recalling the setup of [Emerton et al. 2006], but adapted to the
context at hand. Let

ρ : GQ := Gal(Q/Q)→ GL2(F)

be a continuous Galois representation defined over a finite field F of characteristic
p>3, and assume that ρ is odd and irreducible. After the proof of Serre’s conjecture
[Khare and Wintenberger 2009], we know that ρ is modular, meaning that ρ is
isomorphic to the mod p Galois representation ρ f0 associated to an elliptic newform
f0. Throughout this paper, it will be assumed that ρ ' ρ f0 for some newform f0 of

weight 2 and trivial nebentypus.
Let N (ρ) be the tame conductor of ρ, and let K/Q be an imaginary quadratic

field of discriminant prime −DK < 0 to pN (ρ). The field K then determines a
decomposition

N (ρ)= N (ρ)+ · N (ρ)−

with N (ρ)+ (resp. N (ρ)−) only divisible by primes which are split (resp. inert) in K.
We similarly define the decomposition M = M+ ·M− for any positive integer M
prime to DK .

As in [Pollack and Weston 2011], we consider the following conditions on a pair
(ρ, N−), where N− is a fixed square-free product of an odd number of primes inert
in K :

Assumption (CR). (1) ρ is irreducible;

(2) N (ρ)− | N−;

(3) ρ is ramified at every prime ` | N− such that `≡±1 (mod p).

Let H(ρ) be the set of all p-ordinary and p-stabilized newforms with mod p
Galois representation isomorphic to ρ, and let 0 := Gal(K∞/K ) denote the Galois
group of the anticyclotomic Zp-extension of K. Associated with each f ∈H(ρ) of
tame level N f with N−f = N−, defined over say a finite extension F/Qp with ring
of integers O, there is a p-adic L-function

L p( f/K ) ∈O[[0]]

constructed by Bertolini and Darmon [1996] in weight two, and by Chida and Hsieh
[2016] for higher weights. The p-adic L-function L p( f/K ) is characterized, as
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χ runs over the p-adic characters of 0 corresponding to certain algebraic Hecke
characters of K, by an interpolation property of the form

χ(L p( f/K ))= Cp( f, χ) · E p( f, χ) ·
L( f/K , χ, k/2)

� f,N−
,

where Cp( f, χ) is an explicit nonzero constant, E p( f, χ) is a p-adic multiplier, and
� f,N− is a complex period making the above ratio algebraic. (Of course, implicit in
all the above is a fixed choice of complex and p-adic embeddings C

ι∞
←↩Q

ιp
↪→Qp.)

The anticyclotomic Iwasawa main conjecture gives an arithmetic interpretation
of L p( f/K ). More precisely, let

ρ f : GQ→ AutF (Vf )' GL2(F)

be a self-dual twist of the p-adic Galois representation associated to f , fix an
O-stable lattice Tf ⊆ Vf , and set A f := Vf /Tf . Let Dp ⊆ GQ be the decompo-
sition group corresponding to our fixed embedding ιp, and let εcyc be the p-adic
cyclotomic character. Since f is p-ordinary, there is a unique one-dimensional
Dp-invariant subspace F+p Vf ⊆ Vf where the inertia group at p acts via εk/2

cycψ ,
with ψ a finite order character. Let F+p A f be the image of F+p Vf in A f and set
F−p A f := A f /F+p A f . Following the terminology in [Pollack and Weston 2011],
the minimal Selmer group of f is defined by

Sel(K∞, f ) := ker
{

H 1(K∞,A f )→
∏
w-p

H 1(K∞,w,A f )×
∏
w|p

H 1(K∞,w,F−p A f )

}
,

where w runs over the places of K∞. By standard arguments (see [Greenberg
1989], for example), one knows that the Pontryagin dual of Sel(K∞, f ) is finitely
generated over the anticyclotomic Iwasawa algebra3 :=O[[0]]. The anticyclotomic
main conjecture is then the following:

Conjecture 1. The Pontryagin dual Sel(K∞, f )∨ is 3-torsion, and

Ch3(Sel(K∞, f )∨)= (L p( f/K )).

For newforms f of weight 2 corresponding to elliptic curves E/Q with ordinary
reduction at p, and under rather stringent assumptions on ρ f which were later relaxed
by Pollack and Weston [2011], one of the divisibilities predicted by Conjecture 1
was obtained by Bertolini and Darmon [2005] using Heegner points and Kolyvagin’s
method of Euler systems. More recently, after the work of Chida and Hsieh [2015]
the divisibility

Ch3(Sel(K∞, f )∨)⊇ (L p( f/K ))

is known for newforms f of weight k 6 p− 2 and trivial nebentypus, provided the
pair (ρ f , N−f ) satisfies a mild strengthening of Hypotheses (CR). This restriction
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to small weights comes from the use of Ihara’s lemma [Diamond and Taylor 1994],
and it seems difficult to directly extend their arguments in [Chida and Hsieh 2015]
to higher weights. Instead, as we shall explain in the following paragraphs, in this
paper we will complete the proof of Conjecture 1 to all weights k≡2 (mod p−1) by
a different approach, using Howard’s big Heegner points in Hida families [Howard
2007], as extended by Longo and Vigni [2011] to quaternionic Shimura curves.

Associated with every f ∈ H(ρ) there are anticyclotomic Iwasawa invariants
µan(K∞, f ), λan(K∞, f ), µalg(K∞, f ), and λalg(K∞, f ). The analytic (resp. al-
gebraic) λ-invariants are the number of zeros of L p( f/K ) (resp. of a generator of
the characteristic ideal of Sel(K∞, f )∨), while the µ-invariants are defined as the
exponent of the highest power of $ (with $ ∈ O any uniformizer) dividing the
same objects. Our main results on the variation of these invariants are summarized
in the following. (Recall that we assume ρ ' ρ f0 for some newform f0 of weight 2
and trivial nebentypus.)

Theorem 2. Assume in addition that:

• ρ is irreducible;

• ρ is p-ordinary, “nonanomalous” and p-distinguished:

ρ|Dp '

(
ε ∗

0 δ

)
,

with ε, δ : Dp→ F× characters such that δ is unramified, δ(Frobp) 6= ±1 and
δ̄ 6= ε;

• N (ρ)− is the square-free product of an odd number of primes.

Let H−(ρ) :=HN (ρ)−(ρ) consist of all newforms f ∈H(ρ) with N−f = N (ρ)−, and
fix ∗ ∈ {alg, an}. Then the following hold:

(1) For all f ∈H−(ρ), we have

µ∗(K∞, f )= 0.

(2) Let f1, f2 ∈H−(ρ) lie on the branches T(a1), T(a2) (defined in §1D), respec-
tively. Then

λ∗(K∞, f1)− λ
∗(K∞, f2)=

∑
`|N+f1 N+f2

e`(a2)− e`(a1),

where the sum is over the split primes in K which divide the tame level of f1

or f2, and e`(a j ) is an explicit nonnegative invariant of the branch T(a j ) and
the prime `.
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Provided that p splits in K, and under the same hypotheses on ρ as in Theorem 2,
the work of Skinner and Urban [2014] establishes one of the divisibilities in
their “three-variable” Iwasawa main conjecture. Combining their work with our
Theorem 2, and making use of the aforementioned results of Bertolini and Darmon
[2005] and Pollack and Weston [2011] in weight 2, we obtain many new cases of
Conjecture 1 (cf., Corollary 5.5):

Corollary 3. Suppose that ρ is as in T heorem 2 and that p splits in K. Then
the anticyclotomic Iwasawa main conjecture holds for every f ∈H−(ρ) of weight
k ≡ 2 (mod p− 1) and trivial nebentypus.

Let us briefly explain the new ingredients in the proof of Theorem 2. As it
will be clear to the reader, the results contained in Theorem 2 are anticyclotomic
analogues of the results of Emerton, Pollack and Weston [Emerton et al. 2006] in
the cyclotomic setting. In fact, on the algebraic side the arguments of loc.cit. carry
over almost verbatim, and our main innovations in this paper are in the development
of anticyclotomic analogues of their results on the analytic side. Indeed, the analytic
results of [Emerton et al. 2006] are based on the study of certain two-variable p-adic
L-functions à la Mazur and Kitagawa, whose construction relies on the theory of
modular symbols on classical modular curves. In contrast, we need to work on a
family of Shimura curves associated with definite quaternion algebras, for which
cusps are not available. In the cyclotomic case, modular symbols are useful in two
ways: They yield a concrete realization of the degree-one compactly supported
cohomology of open modular curves, and provide a powerful tool for studying the
arithmetic properties of critical values of the L-functions attached to modular forms.
Our basic observation is that in the present anticyclotomic setting, Heegner points
on definite Shimura curves provide a similarly convenient way of describing the
central critical values of the Rankin L-series L( f/K , χ, s).

Also fundamental for the method of [Emerton et al. 2006] is the possibility to
“deform” modular symbols in Hida families. In our anticyclotomic context, the
construction of big Heegner points in Hida families was obtained in the work [Longo
and Vigni 2011] of one of us in collaboration with Vigni, while the relation between
these points and Rankin–Selberg L-values was established in the work [Castella
and Longo 2016] by two of us. With these key results at hand, and working over
appropriate quotients of the Hecke algebras considered in [Emerton et al. 2006] via
the Jacquet–Langlands correspondence, we are then able to develop analogues of
the arguments of loc. cit. in our setting, making use of the ramification hypotheses
on ρ to ensure a multiplicity one property of certain Hecke modules, similarly as in
the works of Pollack and Weston [2011] and one of us [Kim 2017].

We conclude this introduction with an overview of the contents of the paper.
In the next section, we briefly recall the Hida theory that we need, following the
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exposition in [Emerton et al. 2006, §1] for the most part. In Section 2, we describe
a key extension of the construction of big Heegner points of [Longo and Vigni
2011] to “imprimitive” branches of the Hida family. In Section 3, we construct two-
variable p-adic L-functions attached to a Hida family and to each of its irreducible
components (or branches), and prove Theorem 3.10 relating the two. This theorem
is the key technical result of this paper, and the analytic part of Theorem 2 follows
easily from this. In Section 4, we deduce the algebraic part of Theorem 2 using
the residual Selmer groups studied in [Pollack and Weston 2011, §3.2]. Finally,
in Section 5 we give the applications of our results to the anticyclotomic Iwasawa
main conjecture.

1. Hida theory

Throughout this section, we fix a positive integer N admitting a factorization

N = N+N−

with (N+, N−)= 1 and N− equal to the square-free product of an odd number of
primes. We also fix a prime p - 6N.

1A. Hecke algebras. For each integer k > 2, denote by hN ,r,k the Zp-algebra
generated by the Hecke operators T` for ` - N p, the operators U` for ` | N p, and the
diamond operators 〈a〉 for a ∈ (Z/pr Z)×, acting on the space Sk(00,1(N , pr ),Qp)

of cusp forms of weight k on 00,1(N , pr ) := 00(N ) ∩ 01(pr ). For k = 2, we
abbreviate hN ,r := hN ,r,2.

Let eord
:= limn→∞U n!

p be Hida’s ordinary projector, and define

hord
N ,r,k := eordhN ,r,k, hord

N ,r := eordhN ,r , hord
N := lim

←−−
r

hord
N ,r ,

where the limit is over the projections induced by the natural restriction maps.
Denote by TN−

N ,r,k the quotient of hord
N ,r,k acting faithfully on the subspace of

eordSk(00,1(N , pr ),Qp) consisting of forms which are new at all primes dividing
N−. Set TN−

N ,r := TN−
N ,r,2 and define

TN−
N := lim

←−−
r

TN−
N ,r .

Each of these Hecke algebras is equipped with natural Zp[[Z
×
p ]]-algebra structures

via the diamond operators, and by a well-known result of Hida, hord
N is finite and

flat over Zp[[1+ pZp]].

1B. Galois representations on Hecke algebras. For each positive integer M | N
we may consider the new quotient Tnew

M of hord
M , and the Galois representation

ρM : GQ→ GL2(T
new
M ⊗ L)
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described in [Emerton et al. 2006, Theorem 2.2.1], where L denotes the fraction
field of Zp[[1+ pZp]].

Let T′N be the Zp[[1+ pZp]]-subalgebra of TN−
N generated by the image under

the natural projection hord
N → TN−

N of the Hecke operators of level prime to N. As
in [Emerton et al. 2006, Proposition 2.3.2], one can show that the canonical map

T′N →
∏
M

Tnew
M ,

where the product is over all integers M > 1 with N− |M | N, becomes an isomor-
phism after tensoring with L. Taking the product of the Galois representations ρM

we thus obtain
ρ : GQ→ GL2(T

′

N ⊗L).

For any maximal ideal m of T′N , let (T′N )m denote the localization of T′N at m
and let

ρm : GQ→ GL2((T
′

N )m⊗L)

be the resulting Galois representation. If the residual representation ρm is irreducible,
then ρm admits an integral model (still denoted in the same manner)

ρm : GQ→ GL2((T
′

N )m)

which is unique up to isomorphism.

1C. Residual representations. Let ρ :GQ→GL2(F) be an odd irreducible Galois
representation defined over a finite field F of characteristic p > 3. As in the
introduction, we assume that ρ ' ρ f0 for some newform f0 of weight 2, level N,
and trivial nebentypus. Consider the following three conditions we may impose on
the pair (ρ, N−):

Assumption (SU). (1) ρ is p-ordinary: the restriction of ρ to a decomposition
group Dp ⊆ GQ at p has a one-dimensional unramified quotient over F;

(2) ρ is p-distinguished: ρ |Dp ∼
(
ε
0
∗

δ

)
with ε 6= δ;

(3) ρ is ramified at every prime ` | N−.

Fix once and for all a representation ρ satisfying Assumption (SU), together
with a p-stabilization of ρ in the sense of [Emerton et al. 2006, Definition 2.2.10].
Let V be the two-dimensional F-vector space which affords ρ, and for any finite
set of primes 6 that does not contain p or any factor of N−, define

N (6) := N (ρ)
∏
`∈6

`m`, (1)

where N (ρ) is the tame conductor of ρ, and m` := dimF V I` .
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Remark 1.1. By Assumption (SU) we have the divisibility N− | N (ρ); we will
further assume that (N−, N (ρ)/N−)= 1.

Combining [Emerton et al. 2006, Theorem 2.4.1] and [Emerton et al. 2006,
Proposition 2.4.2] with the fact that ρ is ramified at the primes dividing N−, one can
see that there exist unique maximal ideals n and m of TN−

N (6) and T′N (6), respectively,
such that

• n∩T′N (6) =m;

• (T′N (6))m ' (T
N−
N (6))n by the natural map on localizations;

• ρm ' ρ.

Define the ordinary Hecke algebra T6 attached to ρ and 6 by

T6 := (T
′

N (6))m.

Thus T6 is a local factor of T′N (6), and we let

ρ6 : GQ→ GL2(T6)

denote the Galois representation deduced from ρm.
Adopting the terminology of [Emerton et al. 2006, §2.4], we shall refer to

Spec(T6) as “the Hida family” H−(ρ) attached to ρ (and our chosen p-stabilization)
that is minimally ramified outside 6.

Remark 1.2. Note that by Assumption (SU), all the p-stabilized newforms in
H−(ρ) have tame level divisible by N−.

1D. Branches of the Hida family. If a is a minimal prime of T6 (for a finite set
of primes 6 as above), we put T(a) := T6/a and let

ρ(a) : GQ→ GL2(T(a))

be the Galois representation induced by ρ6 . As in [Emerton et al. 2006, Proposi-
tion 2.5.2], one can show that there is a unique divisor N (a) of N (6) and a unique
minimal prime a′ ⊆ Tnew

N (a) above a such that the diagram

T6 //

��

T′N (6)
//
∏

N−|M |N (6) Tnew
M

��
T6/a

= // T(a) // Tnew
N (a)/a

′

commutes. We call N (a) the tame conductor of a and set

T(a)◦ := Tnew
N (a)/a

′.

In particular, note that N− | N (a) by construction, and that the natural map
T(a)→ T(a)◦ is an embedding of local domains.
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1E. Arithmetic specializations. For any finite Zp[[1+ pZp]]-algebra T, we say
that a height one prime ℘ of T is an arithmetic prime of T if ℘ is the kernel of a
Zp-algebra homomorphism T→Qp such that the composite map

1+ pZp→ Zp[[1+ pZp]]
×
→ T×→Q×p

is given by γ 7→ γ k−2 on some open subgroup of 1+ pZp, for some integer k > 2.
We then say that ℘ has weight k.

Let a⊆ T6 be a minimal prime as above. For each n > 1, let an ∈ T(a)◦ be the
image of Tn under the natural projection hord

N (6)→ T(a)◦, and form the q-expansion

f (a)=
∑
n>1

anqn
∈ T(a)◦[[q]].

By [Hida 1986, Theorem 1.2], if ℘ is an arithmetic prime of T(a) of weight k,
then there is a unique height one prime ℘ ′ of T(a)◦ such that

f℘(a) :=
∑
n>1

(an mod ℘ ′)qn
∈O◦℘[[q]],

where O◦℘ :=T(a)◦/℘ ′, is the q-expansion of a p-ordinary eigenform f℘ of weight k
and tame level N (a) (see [Emerton et al. 2006, Proposition 2.5.6]).

2. Big Heegner points

As in Section 1, we fix an integer N > 1 admitting a factorization N = N+N−

with (N+, N−)= 1 and N− equal to the square-free product of an odd number of
primes, and fix a prime p -6N. Also, we let K/Q be an imaginary quadratic field of
discriminant −DK < 0 prime to N p and such that every prime factor of N+ (resp.
N−) splits (resp. is inert) in K.

In this section we describe a mild extension of the construction in [Longo and
Vigni 2011] (following [Howard 2007]) of big Heegner points attached to K. Indeed,
using the results from the preceding section, we can extend the constructions of
loc.cit. to branches of the Hida family which are not necessarily primitive (in the
sense of [Hida 1986, §1]). The availability of such an extension is fundamental for
the purposes of this paper.

2A. Definite Shimura curves. Let B be the definite quaternion algebra over Q of
discriminant N−. We fix once and for all an embedding of Q-algebras K ↪→ B,
and use it to identity K with a subalgebra of B. Denote by z 7→ z the nontrivial
automorphism of K, and choose a basis {1, j} of B over K such that

• j2
= β ∈Q× with β < 0;

• j t = t̄ j for all t ∈ K ;

• β ∈ (Z×q )
2 for q | pN+, and β ∈ Z×q for q | DK .
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Fix a square-root δK =
√
−DK , and define θ ∈ K by

θ := 1
2 D′+ δK , where D′ :=

{
DK if 2 - DK ;
1
2 DK if 2 | DK .

Note that OK = Z+Zθ , and for every prime q | pN+, define iq : Bq := B⊗Q Qq '

M2(Qq) by

iq(θ)=

(
Tr(θ) −Nm(θ)

1 0

)
, iq( j)=

√
β

(
−1 Tr(θ)

0 1

)
,

where Tr and Nm are the reduced trace and reduced norm maps on B, respectively.
On the other hand, for each prime q -N p we fix any isomorphism iq : Bq 'M2(Qq)

with the property that iq(OK ⊗Z Zq)⊂M2(Zq).
For each r > 0, let RN+,r be the Eichler order of B of level N+ pr with respect

to the above isomorphisms {iq : Bq 'M2(Qq)}q-N− , and let UN+,r be the compact
open subgroup of R̂×N+,r defined by

UN+,r :=

{
(xq)q ∈ R̂×N+,r | i p(x p)≡

(
1 ∗
0 ∗

)
(mod pr )

}
.

Consider the double coset spaces

X̃ N+,r = B× \ (HomQ(K , B)× B̂×)/UN+,r , (2)

where b ∈ B× acts on (9, g) ∈ HomQ(K , B)× B̂× by

b · (9, g)= (b9b−1, bg)

and UN+,r acts on B̂× by right multiplication. As is well known (see, e.g., [Longo
and Vigni 2011, §2.1]), X̃ N+,r may be naturally identified with the set of K -rational
points of certain genus zero curves defined over Q. Nonetheless, there is a nontrivial
Galois action on X̃ N+,r defined as follows: If σ ∈ Gal(K ab/K ) and P ∈ X̃ N+,r is
the class of a pair (9, g), then

Pσ := [(9, 9̂(a)g)],

where a ∈ K× \ K̂× is chosen so that recK (a)= σ . It will be convenient to extend
this action to an action of G K := Gal(Q/K ) in the obvious manner.

Finally, we note that X̃ N+,r is also equipped with standard actions of Up, Hecke
operators T` for ` - N p, and diamond operators 〈d〉 for d ∈ (Z/pr Z)× (see [Longo
and Vigni 2011, §2.4], for example).

2B. Compatible systems of Heegner points. For each integer c > 1, let Oc =

Z+ cOK be the order of K of conductor c.
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Definition 2.1. We say that a point P ∈ X̃ N+,r is a Heegner point of conductor c
if P is the class of a pair (9, g) with

9(Oc)=9(K )∩ (B ∩ gR̂N+,r g−1)

and

9p((Oc⊗Zp)
×
∩ (1+ prOK ⊗Zp)

×)=9p((Oc⊗Zp)
×)∩ gpUN+,r,pg−1

p ,

where UN+,r,p denotes the p-component of UN+,r .

Fix a decomposition N+OK =N+N+, and for each prime q 6= p define

• ςq = 1, if q - N+;

• ςq = δ
−1
K

(
θ θ

1 1

)
∈ GL2(Kq)= GL2(Qq), if q = qq splits with q |N+,

and for each s > 0, let

• ς
(s)
p =

(
θ −1
1 0

)(
ps 0
0 1

)
∈ GL2(Kp)= GL2(Qp), if p = pp splits in K ;

• ς
(s)
p =

(
0 1
−1 0

)(
ps 0
0 1

)
, if p is inert in K.

Set ς (s) := ς (s)p
∏

q 6=p ςq , viewed as an element in B̂× via the isomorphisms
{iq : Bq 'M2(Qq)}q-N− introduced in Section 2A. Let ıK : K ↪→ B be the inclusion.
Then one easily checks (see [Castella and Longo 2016, Theorem 1.2]) that for all
n, r > 0 the points

P̃pn,r := [(ıK , ς
(n+r))] ∈ X̃ N+,r

are Heegner points of conductor pn+r with the following properties:

• Field of definition: P̃pn,r ∈ H 0(L pn,r , X̃ N+,r ), where L pn,r := Hpn+r (µpr ) and
Hc is the ring class field of K of conductor c.

• Galois equivariance: for all σ ∈ Gal(L pn,r/Hpn+r ), we have

P̃σpn,r = 〈ϑ(σ)〉 · P̃pn,r ,

where ϑ : Gal(L pn,r/Hpn+r )→ Z×p /{±1} is such that ϑ2
= εcyc.

• Horizontal compatibility: if r > 1, then∑
σ∈Gal(L pn ,r/L pn−1,r )

α̃r (P̃σpn,r )=Up · P̃pn,r−1,

where α̃r : X̃ N+,r → X̃ N+,r−1 is the map induced by the inclusion UN+,r ⊆

UN+,r−1.



2350 Francesc Castella, Chan-Ho Kim and Matteo Longo

• Vertical Compatibility: if n > 0, then∑
σ∈Gal(L pn ,r/L pn−1,r )

P̃σpn,r =Up · P̃pn−1,r .

Remark 2.2. We will only consider the points P̃pn,r for a fixed a value of N−

(which amounts to fixing the quaternion algebra B/Q), but it will be fundamental
to consider different values of N+, and the relations between the corresponding
P̃pn,r (which clearly depend on N+) under various degeneracy maps.

2C. Critical character. Factor the p-adic cyclotomic character as

εcyc = εtame · εwild : GQ→ Z×p ' µp−1× (1+ pZp)

and define the critical character 2 : GQ→ Zp[[1+ pZp]]
× by

2(σ)= [ε
1/2
wild(σ )], (3)

where ε1/2
wild is the unique square root of εwild taking values in 1+ pZp, and the map

[ · ] : 1+ pZp→ Zp[[1+ pZp]]
× is given by the inclusion as group-like elements.

2D. Big Heegner points. Recall the Shimura curves X̃N+,pr from Section 2A,
and set

DN+,r := eord(Div(X̃ N+,r )⊗Z Zp).

By the Jacquet–Langlands correspondence, DN+,r is naturally endowed with an
action of the Hecke algebra TN−

N ,r . Let (TN−
N ,r )

† be the free TN−
N ,r -module of rank one

equipped with the Galois action via the inverse of the critical character 2, and set

D†
N+,r :=DN+,r ⊗TN−

N ,r
(TN−

N ,r )
†.

Let P̃pn,r ∈ X̃ N+,r be the system of Heegner points of Section 2B, and denote
by Ppn,r the image of eord P̃pn,r in DN+,r . By the Galois equivariance of P̃pn,r (see
[Longo and Vigni 2011, §7.1]), we have

Pσpn,r =2(σ) ·Ppn,r

for all σ ∈ Gal(L pn,r/Hpn+r ), and hence Ppn,r defines an element

Ppn,r ⊗ ζr ∈ H 0(Hpn+r ,D†
N+,r ). (4)

In the next section we shall see how this system of points, for varying n and r ,
can be used to construct various anticyclotomic p-adic L-functions.
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3. Anticyclotomic p-adic L-functions

3A. Multiplicity one. Keep the notation introduced in Section 2. For each integer
k > 2, denote by Lk(R) the set of polynomials of degree less than or equal to k− 2
with coefficients in a ring R, and define

JN+,r,k := eord H0(X̃ N+,r ,Lk(Zp)),

where Lk(Zp) is the local system on X̃ N+,r associated with Lk(Zp). The module
JN+,r,k is endowed with an action of the Hecke algebra TN−

N ,r,k and with perfect
“intersection pairing”:

〈 · , · 〉k : JN+,r,k × JN+,r,k→Qp (5)

(see [Chida and Hsieh 2016, Equation (3.9)]) with respect to which the Hecke
operators are self-adjoint.

Theorem 3.1. Let m be a maximal ideal of TN−
N ,r,k whose residual representation is

irreducible and satisfies Assumption (SU). Then (JN+,r,k)m is free of rank one over
(TN−

N ,r,k)m. In particular, there is a (TN−
N ,r,k)m-module isomorphism

(JN+,r,k)m
αN ,r,k
' (TN−

N ,r,k)m.

Proof. If k=2 and r=1, this follows by combining Theorem 6.2 and Proposition 6.5
of [Pollack and Weston 2011]. The general case will be deduced from this case in
Section 3C using Hida theory. �

Let f ∈ Sk(00,1(N , pr )) be an N−-new eigenform, and suppose that m is
the maximal ideal of TN−

N ,r,k containing the kernel of the associated Zp-algebra
homomorphism

π f : (T
N−
N ,r,k)m→O,

where O is the finite extension of Zp generated by the Fourier coefficients of f .
Composing π f with an isomorphism αN ,r,k as in Theorem 3.1, we obtain an O-
valued functional

ψ f : (JN+,r,k)m→O.

By the duality (5), the map ψ f corresponds to a generator g f of the π f -isotypical
component of JN+,r,k , and following [Pollack and Weston 2011, §2.1] and [Chida
and Hsieh 2016, §4.1] we define the Gross period � f,N− attached to f by

� f,N− :=
( f, f )00(N )

〈g f , g f 〉k
. (6)

Remark 3.2. By Vatsal’s work [2003] (see also [Pollack and Weston 2011, Theo-
rem 2.3] and [Chida and Hsieh 2016, §5.4]), the anticyclotomic p-adic L-functions
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L p( f/K ) in Theorem 3.14 below (normalized by the complex period � f,N−) have
vanishing µ-invariant. The preceding uniform description of ψ f for all f with a
common maximal ideal m will allow us to show that this property is preserved in
Hida families.

3B. One-variable p-adic L-functions. Denote by 0 the Galois group of the an-
ticyclotomic Zp-extension K∞/K. For each n, let Kn ⊂ K∞ be defined by
Gal(Kn/K )'Z/pnZ and let0n be the subgroup of0 such that0/0n'Gal(Kn/K ).

Let Ppn+1,r ⊗ ζr ∈ H 0(Hpn+1+r ,D†
N+,r ) be the Heegner point of conductor pn+1,

and define

Qn,r := CorHpn+1+r /Kn (Ppn+1,r ⊗ ζr ) ∈ H 0(Kn,D
†
N+,r ); (7)

with a slight abuse of notation, we also denote by Qn,r its image under the natural
map

H 0(Kn,D
†
N+,r )

⊆
−→DN+,r −→ JN+,r

composed with localization at m, where JN+,r := JN+,r,2.

Definition 3.3. For any open subset σ0n of 0, define

µr (σ0n) :=U−n
p ·Q

σ
n,r ∈ (JN+,r )m.

Proposition 3.4. The rule µr is a measure on 0.

Proof. This follows immediately from the “horizontal compatibility” of Heegner
points. �

3C. Gross periods in Hida families. Keep the notation of Section 3A, and let

(JN+)m := lim
←−−

r
(JN+,r )m,

which is naturally equipped with an action of the big Hecke algebra TN−
N = lim

←−−r TN−
N ,r .

Theorem 3.5. Let m be a maximal ideal of TN−
N whose residual representation is

irreducible and satisfies Assumption (SU). Then (JN+)m is free of rank one over
(TN−

N )m. In particular, there is a (TN−
N )m-module isomorphism

(JN+)m
αN
' (TN−

N )m.

Proof. As in [Emerton et al. 2006, Proposition 3.3.1]. Note that the version of
Hida’s control theorem in our context is provided by [Hida 1988, Theorem 9.4]. �

We can now conclude the proof of Theorem 3.1 just as in [Emerton et al. 2006,
§3.3]. For the convenience of the reader, we include the argument here.
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Proof of Theorem 3.1. Let ℘N ,r,k be the product of all the arithmetic primes of TN−
N

of weight k which become trivial upon restriction to 1+ pr Zp. By [Hida 1988,
Theorem 9.4], we then have

(JN+)m⊗TN−
N /℘N ,r,k ' (JN+,r,k)mr,k , (8)

where mr,k is the maximal ideal of TN−
N ,r,k induced by m. Since (JN+)m is free of

rank one over TN−
N by Theorem 3.5, it follows that (JN+,r,k)mr,k is free of rank one

over TN−
N /℘N ,r,k ' TN−

N ,r,k , as was to be shown. �

Remark 3.6. In the above proofs we made crucial use of [Hida 1988, Theorem 9.4],
which is stated in the context of totally definite quaternion algebras which are
unramified at all finite places, since this is the only relevant case for the study of
Hilbert modular forms over totally real number fields of even degree. However, the
proofs immediately extend to the (simpler) situation of definite quaternion algebras
over Q.

3D. Two-variable p-adic L-functions. By the “vertical compatibility” satisfied
by Heegner points, the points

U−r
p ·Qn,r ∈ (JN+,r )m

are compatible for varying r , thus defining an element

Qn := lim
←−−

r
U−r

p ·Qn,r ∈ (JN+)m.

Definition 3.7. For any open subset σ0n of 0, define

µ(σ0n) :=U−n
p ·Q

σ
n ∈ (JN+)m.

Proposition 3.8. The rule µ is a measure on 0.

Proof. This follows immediately from the “horizontal compatibility” of Heegner
points. �

Upon the choice of an isomorphism αN as in Theorem 3.5, we may regard µ as
an element

L(m, N ) ∈ (TN−
N )m⊗̂Zp Zp[[0]].

Denoting by L(m, N )∗ the image of L(m, N ) under the involution induced by
γ 7→ γ−1 on group-like elements, we set

L(m, N ) := L(m, N ) ·L(m, N )∗,

to which we will refer as the two-variable p-adic L-function attached to (TN−
N )m.



2354 Francesc Castella, Chan-Ho Kim and Matteo Longo

3E. Two-variable p-adic L-functions on branches of the Hida family. Let T6

be the universal p-ordinary Hecke algebra

T6 := (T
′

N (6))m ' (T
N−
N (6))n (9)

associated with a mod p representation ρ and a finite set of primes 6 as in
Section 1C.

Remark 3.9. Recall that N−|N (ρ) by Assumption (SU). Throughout the following,
it will be further assumed that every prime factor of N (6)/N− splits in K. In
particular, every prime ` ∈6 splits in K, and any f ∈H−(ρ)= Spec(T6) has tame
level N f with

N−f = N (ρ)− = N−.

The construction of the preceding section produces a two-variable p-adic L-
function

L(n, N (6)) ∈ (TN−
N (6))n⊗̂Zp Zp[[0]],

which combined with the isomorphism (9) yields an element

L6(ρ) ∈ T6⊗̂Zp Zp[[0]].

If a is a minimal prime of T6 , we thus obtain an element

L6(ρ, a) ∈ T(a)◦⊗̂Zp Zp[[0]]

by reducing L6(ρ) mod a (see Section 1D). On the other hand, if we let m denote
the inverse image of the maximal ideal of T(a)◦ under the composite surjection

TN−
N (a)→ Tnew

N (a)→ Tnew
N (a)/a

′
= T(a)◦, (10)

the construction of the preceding section yields an L-function

L(m, N (a)) ∈ (TN−
N (a))m⊗̂Zp Zp[[0]]

giving rise, via (10), to a second element

L(ρ, a) ∈ T(a)◦⊗̂Zp Zp[[0]].

It is natural to compare L6(ρ, a) and L(ρ, a), a task that is carried out in the next
section, and provides the key for understanding the variation of analytic Iwasawa
invariants.
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3F. Comparison. Write 6 = {`1, . . . , `n} and for each ` = `i ∈ 6, let e` be the
valuation of N (6)/N (a) at `, and define the reciprocal Euler factor E`(a, X) ∈
T(a)◦[X ] by

E`(a, X) :=


1 if e` = 0;
1− (T` mod a′)2−1(`)X if e` = 1;
1− (T` mod a′)2−1(`)X + `X2 if e` = 2.

Also, writing `= ll, define E`(a) ∈ T(a)◦⊗̂Zp Zp[[0]] by

E`(a) := E`(a, `−1γl) · E`(a, `−1γl), (11)

where γl, γl are arithmetic Frobenius maps at l, l in 0, respectively, and put E6(a) :=∏
`∈6 E`(a).
Recall that N− | N (a) | N (6) and set

N (a)+ := N (a)/N−, N (6)+ := N (6)/N−,

both of which consist entirely of prime factors which split in K. The purpose of
this section is to prove the following result.

Theorem 3.10. There is an isomorphism of T(a)◦-modules

T(a)◦⊗
(TN−

N (6))n
(JN (6)+)n ' T(a)◦⊗

(TN−
N (a))m

(JN (a)+)m

such that the map induced on the corresponding spaces of measures valued in these
modules sends L6(ρ, a) to E6(a) · L(ρ, a).

Proof. The proof follows closely the constructions and arguments in [Emerton et al.
2006, §3.8], suitably adapted to the quaternionic setting at hand. Let r > 1. If M
is any positive integer with (M, pN−)= 1, and d ′ | d are divisors of M, we have
degeneracy maps

Bd,d ′ : X̃ M,r → X̃ M/d,r

induced by (9, g) 7→ (9, πd ′g), where πd ′ ∈ B̂× has local component
(1

0
0

`val`(d′)

)
at

every prime ` | d ′ and 1 outside d ′. We thus obtain a map on homology

(Bd,d ′)∗ : eord H0(X̃ M,r ,Zp)→ eord H0(X̃ M/d,r ,Zp)

and we may define

εr : eord H0(X̃ N (6)+,r ,Zp)→ eord H0(X̃ N (a)+,r ,Zp) (12)

by εr := ε(`n) ◦ · · · ◦ ε(`1), where for every `= `i ∈6 we put

ε(`) :=


1 if e` = 0;
(B`,1)∗− (B`,`)∗`−1T` if e` = 1;
(B`2,1)∗− (B`2,`)∗`

−1T`+ (B`2,`2)∗`
−1
〈`〉N (a)p if e` = 2.
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As before, let M be a positive integer with (M, pN−)= 1 all of whose prime
factors split in K, and let `-Mp be a prime which also splits in K. We shall adopt the
following simplifying notation for the system of points P̃pn,r ∈ X̃ N+,r constructed
in Section 2B:

P := P̃ (M)pn,r ∈ X̃ M,r , P (`) := P̃ (M`)pn,r ∈ X̃ M`,r , P (`
2)
:= P̃ (M`

2)
pn,r ∈ X̃ M`2,r .

It is easy to check that we have the following relations in X̃ M,r :

(B`,1)∗(P (`))= P, (B`,`)∗(P (`))= Pσl, (B`2,1)∗(P
(`2))= P,

(B`2,`)∗(P
(`2))= Pσl, (B`2,`2)∗(P (`

2))= Pσ
2
l ,

where σl ∈ Gal(L pn,r/K ) is a Frobenius element at a prime l | `. Letting P denote
the image of eord P in DM,r , and defining P(`) ∈DM`,r and P(`2)

∈DM`2,r similarly,
it follows that

(B`,1)∗(P(`)⊗ ζr )= P ⊗ ζr ,

(B`,`)∗(P(`)⊗ ζr )= Pσl ⊗ ζr =2
−1(σl) · (P ⊗ ζr )

σl,

(B`2,1)∗(P(`
2)
⊗ ζr )= P ⊗ ζr ,

(B`2,`)∗(P(`
2)
⊗ ζr )= Pσl ⊗ ζr =2

−1(σl) · (P ⊗ ζr )
σl,

(B`2,`2)∗(P(`
2)
⊗ ζr )= Pσ

2
l ⊗ ζr =2

−2(σl) · (P ⊗ ζr )
σl

as elements in D†
M,r . Finally, setting Q := CorHpn+1+r /Kn (P) ∈ H 0(Kn,D

†
M,r ), and

defining Q(`)
∈ H 0(Kn,D

†
M`,r ) and Q(`2)

∈ H 0(Kn,D
†
M`2,r ) similarly, we see that

(B`,1)∗(Q(`))=Q, (B`,`)∗(Q(`))=2−1(σl) ·Qσl,

(B`2,1)∗(Q(`2))=Q,

(B`2,`)∗(Q(`2))=2−1(σl) ·Qσl, (B`2,`2)∗(Q(`2))=2−2(σl) ·Qσ 2
l

in H 0(Kn,D
†
M,r ). Each of these equalities is checked by an explicit calculation.

For example, for the second one:

(B`,`)∗(Q(`))= (B`,`)∗(CorHpn+1+r /Kn (P
(`)
⊗ ζr ))

= (B`,`)∗

(( ∑
σ∈Gal(Hpn+1+r /Kn)

2(σ̃−1) · (P(`))σ̃
)
⊗ ζr

)
=

∑
σ∈Gal(Hpn+1+r /Kn)

2(σ̃−1) · (B`,`)∗((P(`))σ̃ ⊗ ζr )

=

∑
σ∈Gal(Hpn+1+r /Kn)

2(σ̃−1)2−1(σl) · (P σ̃ ⊗ ζr )
σl

=2−1(σl) ·Qσl .
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Now let Qn,r ∈ JN (6)+,r be as in (7) with N = N (6). Using the above formulae,
we easily see that of any finite order character χ of 0 of conductor pn, the effect of
εr on the element

∑
σ∈0/0n

χ(σ)Qσ
n,r is given by multiplication by∏

e`i=1

(1− (χ2)−1(σli )`
−1
i T`i )∏

e`i=2

(1− (χ2)−1(σli )`
−1
i T`i + (χ2)

−2(σli )`
−1
i 〈`i 〉N (a)p).

Similarly, we see εr has the effect of multiplying the element
∑

σ∈0/0n

χ−1(σ )Qσ
n,r by

∏
e`i=1

(1− (χ−12)−1(σli )`
−1
i T`i )

∏
e`i=2

(1− (χ−12)−1(σli )`
−1
i T`i + (χ

−12)−2(σli )`
−1
i 〈`i 〉N (a)p).

Hence, using the relations

χ(σli )= χ
−1(σli ), 2(σli )=2(σli )= θ(`i ), θ2(`i )= 〈`i 〉N (a)p,

it follows that the effect of εr on the product of the above two elements is given by
multiplication by∏

li |`i
e`i=1

(1−χ(σli )θ
−1(`i )`

−1
i T`i )

∏
li |`i

e`i=2

(1−χ(σli )θ
−1(`i )`

−1
i T`i +χ

2(σli )`
−1
i ).

Taking the limit over r , we thus obtain a T(a)◦-linear map

T(a)◦⊗
(TN−

N (6))n
(JN (6)+)n→ T(a)◦⊗

(TN−
N (a))m

(JN (a)+)m (13)

having an effect on the corresponding measures as stated in Theorem 3.10. Hence
to conclude the proof it remains to show that (13) is an isomorphism.

By Theorem 3.5, both the source and the target of this map are free of rank one
over T(a)◦, and as in [Emerton et al. 2006, p. 559] (using [Hida 1988, Theorem 9.4]),
one is reduced to showing the injectivity of the dual map modulo p:

H 0(X̃ N (a)+,1; Fp)
ord
[m] → (TN−

N (a)/m)⊗TN−
N (6)/n

(H 0(X̃ N (a)+,1; Fp)
ord
[m′])

→ (TN−
N (a)/m)⊗TN−

N (6)/n
(H 0(X̃ N (6)+,1; Fp)

ord
[m′])

→ (TN−
N (a)/m)⊗TN−

N (6)/n
(H 0(X̃ N (6)+,1; Fp)

ord
[n]); (14)

or equivalently (by a version of [Emerton et al. 2006, Lemma 3.8.1]), to showing
that the composite of the first two arrows in (14) is injective.
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In turn, the latter injectivity follows from Lemma 3.11 below, where the notations
are as follows:

• M+ is any positive integer with (M+, pN−)= 1;

• ` 6= p is a prime;

• n` = 1 or 2 according to whether or not ` divides M+;

• N+ := `n`M+;

and

ε∗` :H
0(X̃ M+,1;Fp)

ord
[m]→ (TN−

M+N−/m)⊗T′
N+N−

/m′ (H
0(X̃ N+,1;Fp)

ord
[m′]) (15)

is the map defined by

ε∗` :=

{
B∗`,1− B∗`,``

−1T` if n` = 1;
B∗
`2,1− B∗

`2,`
`−1T`+ B∗

`2,`2`
−1
〈`〉N (a)p if n` = 2.

Lemma 3.11. The map (15) is injective.

Proof. As in the proof of the analogous result [Emerton et al. 2006, Lemma 3.8.2]
in the modular curve case, it suffices to show the injectivity of the map

(H 0(X̃ M+,1; F)
ord
[mF])

n`+1 β`
−→ H 0(X̃ N+,1; F)

ord
[m′F]

defined by

β` :=

{
B∗`,1π1+ B∗`,`π2 if n` = 1;
B∗
`2,1π1+ B∗

`2,`
π2+ B∗

`2,`2π3 if n` = 2.

But in our quaternionic setting the proof of this injectivity follows from [Skinner
and Wiles 1999, Lemma 3.26] for n` = 1 and [loc.cit., Lemma 3.28] for n` = 2. �

Applying inductively Lemma 3.11 to the primes in 6, the proof of Theorem 3.10
follows. �

3G. Analytic Iwasawa invariants. Upon the choice of an isomorphism

Zp[[0]] ' Zp[[T ]]

we may regard the p-adic L-functions L6(ρ, a) and L(ρ, a), as well as the Euler
factor E6(ρ, a), as elements in T(a)◦[[T ]]. In this section we apply the main result
of the preceding section to study the variation of the Iwasawa invariants attached to
the anticyclotomic p-adic L-functions of p-ordinary modular forms.

For any power series f (T ) ∈ R[[T ]] with coefficients in a ring R, the content of
f (T ) is defined to be the ideal I ( f (T ))⊆ R generated by the coefficients of f (T ).
If ℘ is a height one prime of T6 belonging to the branch T(a) (in the sense that a
is the unique minimal prime of T6 contained in ℘), we denote by L(ρ, a)(℘) the
element of O℘[[0]] obtained from L(ρ, a) via reduction modulo ℘. In particular,
we note that L(ρ, a)(℘) has unit content if and only if its µ-invariant vanishes.
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Theorem 3.12. The following are equivalent:

(1) µ(L(ρ, a)(℘))= 0 for some newform f℘ in H−(ρ);

(2) µ(L(ρ, a)(℘))= 0 for every newform f℘ in H−(ρ);

(3) L(ρ, a) has unit content for some irreducible component T(a) of H−(ρ);

(4) L(ρ, a) has unit content for every irreducible component T(a) of H−(ρ).

Proof. The argument in [Emerton et al. 2006, Theorem 3.7.5] applies verbatim,
replacing the appeal to [loc.cit., Corollary 3.6.3] by our Theorem 3.10 above. �

When any of the conditions in Theorem 3.12 hold, we shall write

µan(ρ)= 0.

For a power series f (T ) with unit content and coefficients in a local ring R, the
λ-invariant λ( f (T )) is defined to be the smallest degree in which f (T ) has a unit
coefficient.

Theorem 3.13. Assume that µan(ρ)= 0.

(1) Let T(a) be an irreducible component of H−(ρ). As ℘ varies over the arith-
metic primes of T(a), the λ-invariant λ(L(ρ, a)(℘)) takes on a constant value,
denoted λan(ρ, a).

(2) For any two irreducible components T(a1),T(a2) of H−(ρ), we have that

λan(ρ, a1)− λ
an(ρ, a2)=

∑
`6=p

e`(a2)− e`(a1),

where e`(a)= λ(E`(a)).

Proof. The first part follows immediately from the definitions. For the second part,
the argument in [Emerton et al. 2006, Theorem 3.7.7] applies verbatim, replacing
their appeal to [loc.cit., Cor. 3.6.3] by our Theorem 3.10 above. �

By Theorem 3.12 and Theorem 3.13, the Iwasawa invariants of L(ρ, a)(℘) are
well behaved as ℘ varies. However, for the applications of these results to the
Iwasawa main conjecture it is of course necessary to relate L(ρ, a)(℘) to p-adic
L-functions defined by the interpolation of special values of L-functions. This
question was addressed in [Castella and Longo 2016], as we now recall.

Theorem 3.14. If ℘ is the arithmetic prime of T(a) corresponding to a p-ordinary
p-stabilized newform f℘ of weight k > 2 and trivial nebentypus, then

L(ρ, a)(℘)= L p( f℘/K ),

where L p( f℘/K ) is the p-adic L-function of Chida and Hsieh [2016]. In particular,
if χ : 0 → C×p is the p-adic avatar of an anticyclotomic Hecke character of K
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of infinity type (m,−m) with −k/2 < m < k/2, then L(ρ, a)(℘) interpolates the
central critical values

L( f℘/K , χ, k/2)
� f℘ ,N−

as χ varies, where � f℘ ,N− is the complex Gross period (6).

Proof. This is a reformulation of the main result of [Castella and Longo 2016].
(Note that the constant λ℘ ∈ F×℘ in [Castella and Longo 2016, Theorem. 4.6] is not
needed here, since the specialization map of [loc.cit., §3.1] is being replaced by
the map (JN+)m→ (JN+,r,k)mr,k induced by the isomorphism (8), which preserves
integrality.) �

Corollary 3.15. Let f1, f2 ∈H−(ρ) be newforms with trivial nebentypus lying in
the branches T(a1), T(a2), respectively. Then µan(ρ)= 0 and

λ(L p( f1/K ))− λ(L p( f2/K ))=
∑
`6=p

e`(a2)− e`(a1),

where e`(a j )= λ(E`(a j )).

Proof. By [Chida and Hsieh 2016, Theorem. 5.7] (extending Vatsal’s result [2003]
to higher weights), if f ∈H−(ρ) has weight k 6 p+1 and trivial nebentypus, then
µ(L p( f/K ))= 0. By Theorems 3.12 and 3.14, this implies µan(ρ)= 0. The result
thus follows from Theorem 3.13, using Theorem 3.14 again to replace λan(ρ, a j )

by λ(L p( f j/K )). �

4. Anticyclotomic Selmer groups

We keep the notation of the previous sections. In particular, ρ :GQ→GL2(F) is an
odd irreducible Galois representation satisfying Assumption (SU) and isomorphic
to ρ f0 for some newform f0 of weight 2, H−(ρ) is the associated Hida family, and
6 is a finite set of primes split in the imaginary quadratic field K.

For each f ∈H−(ρ), let Vf denote the self-dual Tate twist of the p-adic Galois
representation associated to f , fix an O-stable lattice Tf ⊆ Vf , and set A f :=

Vf /Tf . Since f is p-ordinary, there is a unique one-dimensional GQp -invariant
subspace F+p Vf ⊆ Vf where the inertia group at p acts via εk/2

cycψ , with ψ a finite
order character. Let F+p A f be the image of F+p Vf in A f , and as recalled in the
Introduction define the minimal Selmer group of f by

Sel(K∞, f ) := ker
{

H 1(K∞,A f )→
∏
w-p

H 1(K∞,w,A f )×
∏
w|p

H 1(K∞,w,F−p A f )

}
,

where w runs over the places of K∞ and we set F−p A f := A f /F+p A f .
It is well known that Sel(K∞, f ) is cofinitely generated over 3. When it

is also 3-cotorsion, we define the µ-invariant µ(Sel(K∞, f )) (resp. λ-invariant
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λ(Sel(K∞, f ))) to the largest power of $ dividing (resp. the number of zeros of)
the characteristic power series of the Pontryagin dual of Sel(K∞, f ).

A distinguishing feature of the anticyclotomic setting (in comparison with cy-
clotomic Iwasawa theory) is the presence of primes which split infinitely in the
corresponding Zp-extension. Indeed, being inert in K, all primes `|N− are infinitely
split in K∞/K. As a result, the above Selmer group differs in general from the
Greenberg Selmer group of f , defined as

Sel(K∞, f ) := ker
{

H 1(K∞,A f )→
∏
w-p

H 1(I∞,w,A f )×
∏
w|p

H 1(K∞,w,F−p A f )

}
,

where I∞,w ⊆ G K∞ denotes the inertia group at w.
If S is a finite set of primes in K, we let SelS(K∞, f ) and SelS(K∞, f ) be the

“S-primitive” Selmer groups defined as above by omitting the local conditions at
the primes in S (except those above p, when any such prime is in S). Moreover, if
S consists of the primes dividing a rational integer M, we replace the superscript S
by M in the above notation.

Immediately from the definitions, we see that there is as exact sequence

0→ Sel(K∞, f )→Sel(K∞, f )→
∏
`|N−

Hun
` , (16)

where

Hun
` := ker

{∏
w|`

H 1(K∞,w, A f )→
∏
w|`

H 1(I∞,w, A f )

}
is the set of unramified cocycles. In [Pollack and Weston 2011, §§3, 5], Pollack
and Weston carried out a careful analysis of the difference between Sel(K∞, f )
and Sel(K∞, f ). Even though [loc. cit.] is mostly concerned with cases in which
f is of weight 2, many of their arguments apply more generally. In fact, the next
result follows essentially from their work.

Theorem 4.1. Assume that ρ satisfies Hypotheses (SU). Then the following are
equivalent:

(1) Sel(K∞, f0) is 3-cotorsion with µ-invariant zero for some newform f0 ∈

H−(ρ);

(2) Sel(K∞, f ) is3-cotorsion with µ-invariant zero for all newforms f ∈H−(ρ);

(3) Sel(K∞, f ) is3-cotorsion with µ-invariant zero for all newforms f ∈H−(ρ).

Moreover, in that case Sel(K∞, f )'Sel(K∞, f ).

Proof. Assume f0 is a newform in H−(ρ) for which Sel(K∞, f0) is 3-cotorsion
with µ-invariant zero, and set N+ := N (6)/N−. By [Pollack and Weston 2011,
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Proposition 5.1], we then have the exact sequences

0→ Sel(K∞, f0)→SelN+(K∞, f0)→
∏
`|N+

H`→ 0; (17)

0→Sel(K∞, f0)→SelN
+

(K∞, f0)→
∏
`|N+

H`→ 0, (18)

where H` is the product of H 1(K∞,w, A f0) over the places w | ` in K∞. Since
every prime ` | N+ splits in K (see Remark 3.9), the 3-cotorsionness and the
vanishing of the µ-invariant of H` can be deduced from [Greenberg and Vatsal 2000,
Proposition 2.4]. Since Sel(K∞, f0)[$ ] is finite by assumption, it thus follows
from (17) that SelN+(K∞, f0)[$ ] is finite. Combined with (16) and [Pollack
and Weston 2011, Corollary 5.2], the same argument using (18) shows that then
SelN

+

(K∞, f0)[$ ] is also finite.
On the other hand, following the arguments in the proof [Pollack and Weston

2011, Proposition 3.6] we see that for any f ∈H(ρ) we have the isomorphisms

SelN+(K∞, ρ)' SelN+(K∞, f )[$ ]; SelN
+

(K∞, ρ)'SelN
+

(K∞, f )[$ ].

As a result, the argument in the previous paragraph implies that, for any newform
f ∈H−(ρ), both SelN+(K∞, f )[$ ] and SelN

+

(K∞, f )[$ ] are finite, from where
(using (17) and (18) with f in place of f0) the 3-cotorsionness and the vanishing
of both the µ-invariant of Sel(K∞, f ) and of Sel(K∞, f ) follows. In view of (16)
and [Pollack and Weston 2011, Lemma 3.4], the result follows. �

Letw be a prime of K∞ above ` 6= p and denote by Gw⊆G K∞ its decomposition
group. Let T(a) be the irreducible component of T6 passing through f , and define

δw(a) := dimF AGw

f /$.

(Note that this is well defined by [Emerton et al. 2006, Lemma 4.3.1].) Assume
`= ll splits in K and put

δ`(a) :=
∑
w|`

δw(a), (19)

where the sum is over the (finitely many) primes w of K∞ above `.
In view of Theorem 4.1, we write µalg(ρ)= 0 whenever any of the µ-invariants

appearing in that result vanish. In that case, for any newform f in H−(ρ) we may
consider the λ-invariants λ(Sel(K∞, f ))= λ(Sel(K∞, f )).

Theorem 4.2. Let ρ and 6 be as above, and assume that µalg(ρ)= 0. If f1 and f2

are any two newforms in H−(ρ) lying in the branches T(a1) and T(a2), respectively,
then

λ(Sel(K∞, f1))− λ(Sel(K∞, f2))=
∑̀
6=p
δ`(a1)− δ`(a2).
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Proof. Since we have the divisibilities N−|N (ai )|N (6)with the quotient N (6)/N−

only divisible by primes that are split in K, the arguments of [Emerton et al. 2006,
§4] apply verbatim (cf., [Pollack and Weston 2011, Theorem 7.1]). �

5. Applications to the main conjecture

5A. Variation of anticyclotomic Iwasawa invariants. Recall the definition of the
analytic invariant e`(a)=λ(E`(a)), where E`(a) is the Euler factor from Section 3F,
and of the algebraic invariant δ`(a) introduced in (19).

Lemma 5.1. Let a1, a2 be minimal primes of T6 . For any prime ` 6= p split in K,

δ`(a1)− δ`(a2)= e`(a2)− e`(a1).

Proof. Let a be a minimal prime of T6 , let f be a newform in the branch T(a), and
let ℘ f ⊆ a be the corresponding height one prime. Since `= ll splits in K, we have⊕

w|`

H 1(K∞,w, A f )=
(⊕
w|l

H 1(K∞,w, A f )
)
⊕

(⊕
w|l

H 1(K∞,w, A f )
)

and [Greenberg and Vatsal 2000, Proposition 2.4] immediately implies that

Ch3
(⊕
w|`

H 1(K∞,w, A f )
∨

)
= E`( f, `−1γl) · E`( f, `−1γl),

where E`( f, `−1γl) · E`( f, `−1γl) is the specialization of E`(a) at ℘ f . The result
thus follows from [Emerton et al. 2006, Lemma 5.1.5]. �

Theorem 5.2. Suppose that ρ satisfies Assumption (SU). If for some newform
f0 ∈H−(ρ) we have the equalities

µ(Sel(K∞, f0))= µ(L p( f0/K ))= 0 and λ(Sel(K∞, f0))= λ(L p( f0/K )),

then the equalities

µ(Sel(K∞, f ))= µ(L p( f/K ))= 0 and λ(Sel(K∞, f ))= λ(L p( f/K ))

hold for all newforms f ∈H−(ρ).

Proof. Let f be any newform in H−(ρ). Since the algebraic and analytic µ-
invariants of f0 both vanish, the vanishing of µ(Sel(K∞, f )) and µ(L p( f/K ))
follows from Theorems 4.1 and 3.12, respectively. On the other hand, combining
Theorems 3.13 and 4.2, and Lemma 5.1, we see that

λ(Sel(K∞, f ))− λ(Sel(K∞, f0))= λ(L p( f/K ))− λ(L p( f0/K )),

and hence the equality λ(Sel(K∞, f0))= λ(L p( f0/K )) implies the same equality
for f . �
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5B. Applications to the main conjecture. As an immediate consequence of Weier-
strass preparation theorem, Theorem 5.2 together with one the divisibilities predicted
by the anticyclotomic main conjecture implies the full anticyclotomic main conjec-
ture.

Theorem 5.3 (Skinner–Urban). Let f ∈ Sk(00(N )) be a newform of weight k ≡
2 (mod p− 1) and trivial nebentypus. Suppose that ρ f satisfies Assumption (SU)
and that p splits in K. Then

(L p( f/K ))⊇ Ch3(Sel(K∞, f )∨).

Proof. This follows from specializing the divisibility in [Skinner and Urban 2014,
Theorem 3.26] to the anticyclotomic line. Indeed, let f =

∑
n>1 an( f )qn

∈ I[[q]]
be the 3-adic form with coefficients in I := T(a)◦ associated with the branch of the
Hida family containing f , let 6 be a finite set of primes as in Section 3E, let6′⊇6
be a finite set of primes of K containing 6 and all primes dividing pN (a)DK , and
assume that 6′ contains at least one prime ` 6= p that splits in K. Under these
assumptions, in [Skinner and Urban 2014, Theorem 3.26] it is shown that

(L6
′

p ( f /K ))⊇ Ch3 f (L∞)(Sel6
′

(L∞, A f )
∨), (20)

where L∞ = K∞Kcyc is the Z2
p-extension of K, 3 f (L∞) is the three-variable

Iwasawa algebra I[[Gal(L∞/K )]], and L6
′

p ( f /K ) and Sel6
′

(L∞, A f ) are the “6′-
primitive” p-adic L-function and Selmer group defined in [Skinner and Urban 2014,
§3.4.5] and [Skinner and Urban 2014, §§3.1.3, 3.1.10], respectively.

Recall the character 2 : GQ→ Zp[[1+ pZp]]
× from Section 2C, regarded as a

character on Gal(L∞/K ), and let

Tw2−1 :3 f (L∞)→3 f (L∞)

be the I-linear isomorphism induced by Tw2−1(g)=2−1(g)g for g ∈Gal(L∞/K ).
Choose a topological generator γ ∈ Gal(Kcyc/K ), and expand

Tw2−1(L6
′

p ( f /K ))= L6
′

p,0( f /K )+L6
′

p,1( f /K )(γ − 1)+ · · ·

with L6
′

p,i ( f /K ) ∈ 3 f (K∞) = I[[0]]. In particular, note that L6
′

p,0( f /K ) is the
restriction of the twisted three-variable p-adic L-function Tw2−1(L6

′

p ( f /K )) to
the “self-dual” plane.

Because of our assumptions on f , the 3-adic form f has trivial tame character,
and hence denoting by Frob` an arithmetic Frobenius at any prime ` - N (a)p, the
Galois representation

ρ(a) : GQ→ GL(T f )' GL2(T(a)
◦)
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considered in Section 1D (which is easily seen to agree with the twisted representa-
tion considered in [Skinner and Urban 2014, p. 37]) satisfies

det(X −Frob` |T f )= X2
− a`( f )X +22(`)`.

The twist T †
f := T f ⊗2

−1 is therefore self-dual. Thus combining [Rubin 2000,
Lemma 6.1.2] with a straightforward variant of [Skinner and Urban 2014, Proposi-
tion 3.9] having Gal(K∞/K ) in place of Gal(Kcyc/K ), we see that divisibility (20)
implies that

(L6
′

p,0( f /K ))⊇ Ch3 f (K∞)(Sel6
′

(K∞, A†
f )
∨). (21)

(Here, as above, A f denotes the Pontryagin dual T f ⊗I Homcts(I,Qp/Zp), and A†
f

is the corresponding twist.) We next claim that, setting 6′′ :=6′ \6, we have

(L6
′

p,0( f /K ))=
(

L6(ρ, a) ·
∏

v∈6′′,v-p

Ev(a)
)
, (22)

where L6(ρ, a) is the two-variable p-adic L-function constructed in Section 3D,
and if v lies over the rational prime `, Ev(a) is the Euler factor given by

Ev(a)= det(Id−Frobv X |(V †
f )Iv )X=`−1 Frobv ,

where V f := T f ⊗I Frac(I), and Frobv is an arithmetic Frobenius at v. (Note that
for `= ll split in K, El(a) ·El(a) is simply the Euler factor (11).) Indeed, combined
with Theorems 3.10 and 3.14, equality (22) specialized to any arithmetic prime
℘ ⊆T(a) of weight 2 is shown in [Skinner and Urban 2014, (12.3)], from where the
claim follows easily from the density of these primes. (See also [Pollack and Weston
2011, Theorem 6.8] for the comparison between the different periods involved in
the two constructions, which differ by a p-adic unit under our assumptions.)

Finally, (21) and (22) combined with Theorem 3.10 and [Greenberg and Vatsal
2000, Propositions 2.3,8] imply that

(L(ρ, a))⊇ Ch3 f (K∞)(Sel(K∞, A†
f )
∨),

from where the result follows by specializing at ℘ f using Theorem 3.14 and
Theorem 4.1. �

In the opposite direction, we have the following result:

Theorem 5.4 (Bertolini–Darmon). Let f =
∑
∞

n=1 an( f )qn be a p-ordinary new-
form of weight 2, level N, and trivial nebentypus. Suppose that ρ f satisfies
Assumption (CR) and that

ap( f ) 6≡ ±1 (mod p). (PO)
Then

(L p( f/K ))⊆ Ch3(Sel(K∞, f )∨).
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Proof. This is the main result of [Bertolini and Darmon 2005], as extended by Pollack
and Weston [Pollack and Weston 2011] to newforms of weight 2 not necessarily
defined over Q and under the stated hypotheses (weaker that in [Bertolini and
Darmon 2005]) on ρ f . See also [Kim et al. 2017] for a detailed discussion on the
additional “nonanomalous” hypothesis (PO) on f . �

Before we combine the previous two theorems with our main results in this paper,
we note that condition (PO) in Theorem 5.4 can be phrased in terms of the Galois rep-
resentation ρ f associated to f . Indeed, let f =

∑
∞

n=1 an( f )qn be a p-ordinary new-
form as above, defined over a finite extension F/Qp with ring of integers O. Then

ρ f |Dp '

(
ε ∗

0 δ

)
on a decomposition group Dp ⊆ GQ at p, with δ : Dp → O× an unramified
character sending Frobp to the unit root αp of X2

− ap( f )X + p. Since clearly
α ≡ ap( f ) (mod p), we see that condition (PO) amounts to the requirement that

δ(Frobp) 6≡ ±1 (mod p). (PO)

Now we are finally in a position to prove our main application to the anticyclo-
tomic Iwasawa main conjecture for p-ordinary newforms.

Corollary 5.5. Suppose that ρ satisfies Assumptions (SU) and (PO) and that p
splits in K, and let f be a newform in H−(ρ) of weight k ≡ 2 (mod p − 1) and
trivial nebentypus. Then the anticyclotomic Iwasawa main conjecture holds for f .

Proof. After Theorems 5.2 and 5.3, to check the anticyclotomic main conjecture
for any newform f as in the statement, it suffices to check the three equalities

µ(Sel(K∞, f0))= µ(L p( f0/K ))= 0, λ(Sel(K∞, f0))= λ(L p( f0/K )) (23)

hold for some f0 ∈H−(ρ) of weight k ≡ 2 (mod p− 1) and trivial nebentypus.
Let T(a) be the irreducible component of H−(ρ) containing f , and let f0 ∈

S2(00(N p)) be the p-stabilized newform corresponding to an arithmetic prime
℘ ⊆ T(a) of weight 2 and trivial nebentypus. By Assumption (PO), the form f0 is
necessarily the p-stabilization of a p-ordinary newform f ]0 ∈ S2(00(N )) (see, e.g.,
[Howard 2007, Lemma 2.1.5]). From the combination of Theorems 5.3 and 5.4, the
anticyclotomic Iwasawa main conjecture holds for f ]0 , and since we clearly have

L p( f0/K )= L p( f ]0 /K ) and Sel(K∞, f0)' Sel(K∞, f ]0 )

(note that the latter isomorphism relies on the absolute irreducibility of ρ), the anti-
cyclotomic Iwasawa main conjecture holds for f0 as well. In particular, equalities
(23) hold for this f0, and the result follows. �
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Effective nonvanishing for Fano
weighted complete intersections

Marco Pizzato, Taro Sano and Luca Tasin

We show that the Ambro–Kawamata nonvanishing conjecture holds true for a
quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an
ample Cartier divisor on X , then |H | is not empty. If X is smooth, we further
show that the general element of |H | is smooth. We then verify the Ambro–
Kawamata conjecture for any quasismooth weighted hypersurface. We also verify
Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface.

For the proofs, we introduce the arithmetic notion of regular pairs and highlight
some interesting connections with the Frobenius coin problem.

1. Introduction

Complete intersections in weighted projective spaces (WCIs for short) form a
natural class of varieties which are particularly interesting from the point of view
of higher dimensional algebraic geometry. We refer to [Dolgachev 1982], [Mori
1975] and [Dimca 1986] for a general treatment of these varieties.

Reid [1980; 1987] and Iano-Fletcher [2000] systematically investigated notable
examples of WCIs and started their classification. Several results have since been
obtained concerning boundedness and classification; see for example [Johnson and
Kollár 2001; Chen et al. 2011; Ballico et al. 2013; Chen 2015; Przyjalkowski and
Shramov 2016].

The main motivation of this paper is to study the following conjecture in the realm
of WCIs, in particular for what concerns the case of Fano and Calabi–Yau varieties.

Conjecture 1.1 (Ambro–Kawamata). Let (X,1) be a klt pair and H be an ample
Cartier divisor on X such that H − KX −1 is ample. Then |H | 6=∅.

For an introduction to this conjecture, see [Ambro 1999] and in particular [Kawa-
mata 2000] where the 2-dimensional case is proven. In the smooth setting, Ionescu
[Lanteri et al. 1993, p. 321] and Beltrametti and Sommese [1995] proposed related
conjectures.

MSC2010: primary 14M10; secondary 11D04, 14J45.
Keywords: weighted complete intersections, nonvanishing, Ambro–Kawamata conjecture.
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The Ambro–Kawamata conjecture is known to be true in full generality only in di-
mensions 1 and 2. Several cases have been studied, especially in dimension 3; see for
instance [Xie 2009; Broustet and Höring 2010; Höring 2012; Cao and Jiang 2016].

A fundamental divisor on a Fano variety X is an ample Cartier divisor H which
is primitive and proportional to −KX . In the classification of Fano varieties, it is
important to investigate the properties of the general member of the linear system
given by H ; see for instance [Ambro 1999]. The second purpose of this note is to
study this problem in the case of Fano and Calabi–Yau smooth WCIs.

The main result of this paper is the following.

Theorem 1.2. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed quasismooth
weighted complete intersection which is not a linear cone and H be an ample
Cartier divisor on X. Assume that X is Fano or Calabi–Yau. Then |H | 6=∅.

Moreover, if X is smooth, then the number of ai = 1 is at least c and the general
element of |OX (1)| is smooth.

For a smooth Fano WCI, it was already proved in [Przyjalkowski and Shramov
2016, Lemma 3.3] that at least two weights are 1, which implies the nonvanishing
for a smooth Fano WCI. In addition, it is easy to prove Conjecture 1.1 for any
smooth WCI of codimension 1 and 2, see Remark 4.9.

It is particularly interesting that, in the smooth case, we can prove the smoothness
of the general member of the fundamental linear system (Corollary 5.3(ii)).

Theorem 1.2 is a direct consequence of Corollaries 5.3 and 5.13. In particular,
in Corollary 5.3, we show that if X = Xd1,...,dc ⊂ P(a0, . . . , an) is a smooth well-
formed Fano WCI which is not a linear cone, then the number of i for which
ai = 1 is at least c+ 1. By using this, we can then show that the general element
of |OX (1)| is quasismooth (from which smoothness follows easily). One can not
expect a similar statement for a general member of the fundamental linear system
of a singular quasismooth WCI, as Example 5.8 shows. We also give a description
of the base locus of |OX (1)| in Remark 5.5 and an example whose base locus
Bs |OX (1)| is singular and not quasismooth in Example 5.6.

In [Przyjalkowski and Shramov 2017, Corollary 4.2], the authors show that
for a smooth well-formed Fano WCI X the number of ai equal to 1 is at least
I (X) =

∑
ai −

∑
d j when c ≤ 2 and write that they expect this to hold for any

codimension. As a consequence of Proposition 5.2, we can confirm this expectation;
see Corollary 5.11.

In the case of hypersurfaces, we can prove the following stronger result, which
is the combination of Propositions 6.2 and 6.3:

Theorem 1.3. Let X = Xd ⊂ P = P(a0, . . . , an) be a well-formed quasismooth
hypersurface of degree d which is not a linear cone.
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(1) If H is an ample Cartier divisor on X such that H − KX is ample, then |H | is
not empty.

(2) If X is Gorenstein and H is an ample Cartier divisor, then KX+m H is globally
generated for any m ≥ n.

The second part of the statement is known as Fujita’s freeness conjecture and it
has been proven in the smooth setting up to dimension 5; see [Reider 1988; Ein
and Lazarsfeld 1993; Kawamata 1997; Ye and Zhu 2015].

The methods. The above theorems are obtained by studying the arithmetic prop-
erties of quasismooth WCIs. More precisely, in Section 3, we prove a criterion
(Proposition 3.1) for a WCI to be quasismooth, which generalizes Iano-Fletcher’s cri-
terion in codimension 1 and 2 (see [Iano-Fletcher 2000, Section 8]). We then exploit
some arithmetic consequences of quasismoothness. In particular, Proposition 3.6
motivates the introduction of an h-regular pair (see Definition 4.1) which turns out
to be a key tool in our treatment.

Given a positive integer h, a pair (d;a) = (d1,...,dc;a0,...,an) ∈ Nc
× Nn+1

is said to be h-regular if for any I = {i1,...,ik} ⊂ {0,...,n} such that aI :=

gcd(ai1,...,aik ) > 1, either aI | h or there are distinct integers p1,..., pk such that

aI | dp1, . . . , dpk .

Set δ(d; a) :=
∑c

j=1 d j −
∑n

i=0 ai . By Proposition 3.6, any quasismooth (well-
formed) WCI X = Xd1,...,dc ⊂P(a0, . . . , an) gives rise to an h-regular pair (d; a)=
(d1, . . . , dc; a0, . . . , an), where h is the smallest positive integer for which OX (h) is
Cartier. Remembering that KX =OX (δ), the nonvanishing for a Fano or Calabi–Yau
WCI follows from Proposition 5.12, which says that, if (d; a) is h-regular such
that ai 6= d j and ai - h for any i, j, then δ(d; a) > 0. A more accurate statement
(Corollary 5.3) is needed to prove that, if X is smooth, then the general element of
|OX (1)| is also smooth.

We now spend some words for the case h = 1. In this case, the pair (d; a) is
simply called regular. A smooth WCI X gives rise to a regular pair (d; a). The
nonvanishing is then equivalent to prove that

δ(d; a)≥ G(a0, . . . , an),

where G(a0, . . . , an) is the Frobenius number of a0, . . . , an , i.e., the greatest integer
which is not a nonnegative integral combination of a0, . . . , an . In Conjecture 4.8,
we speculate that δ(d; a) ≥ G(a0, . . . , an) for a regular pair (d; a), under some
natural assumptions. This would imply the Ambro–Kawamata conjecture for any
smooth WCI.
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We believe that this conjecture is interesting also from the arithmetic point of
view, since it would give new bounds for the Frobenius number (see page 2382 for
details).

2. Preliminaries and notation

In this section, we recall some basic facts about weighted complete intersections
and fix our notation. See [Dolgachev 1982] or [Iano-Fletcher 2000] for further
details.

Let N (resp. N+) be the set of nonnegative (resp. positive) integers. Let a0,...,an ∈

N+. We define P := P(a0,...,an) to be the weighted projective space with weights
a0,...,an , i.e., P= ProjC[x0,...,xn], where xi has weight ai . We denote

P(b1, . . . , b1︸ ︷︷ ︸
k1

, . . . , bl, . . . , bl︸ ︷︷ ︸
kl

)

by P(b(k1)
1 , . . . , b(kl )

l ) for short.
Note that if we start with x0, . . . , xn to be affine coordinates on An+1 and C∗

acting on An+1 via

λ · (x0, . . . , xn)= (λ
a0 x0, . . . , λ

an xn)

for any λ ∈ C∗, then P is just the quotient (An+1
\ {0})/C∗.

We always assume that P is well-formed, i.e., the greatest common divisor of any
n weights is 1. For any I = {i1, . . . , ik} ⊂ {0, . . . , n}, the stratum 5I is defined as

5I := {xi = 0 : i /∈ I }.

The singular locus of P is the union of all strata 5I for which aI := gcd(ai )i∈I > 1.
Any point of the interior 50

I of a stratum 5I is locally isomorphic to a quotient
singularity of type

1
aI
(a0, . . . , âi1, . . . , âik , . . . , an)×Ck−1.

Here, for r ∈ N+ and a1, . . . , an ∈ N such that gcd(r, a1, . . . , an) = 1, a quotient
singularity of type 1/r(a1, . . . , an)means a quotient Cn/Zr by the action of a cyclic
group Zr of order r as g · zi = ζ

ai
r zi for i = 1, . . . , n, where g ∈ Zr is a generator

and ζr is an r-th primitive root of unity. We also denote by Cn/Zr (a1, . . . , ar )

this quotient affine variety. Let π : Cn
→U := Cn/Zr (a1, . . . , ar ) be the quotient

morphism. We have an eigendecomposition

π∗OCn =

r−1⊕
i=0

Fi ,
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where Fi := { f ∈ OCn | g · f = ζ i
r f } is the OU -submodule of π∗OCn consisting

of Zr -eigenfunctions of eigenvalue ζ i
r . Note that Fi ' OU (D f ), where a divisor

D f := ( f = 0)/Zr on U is defined by a function f ∈ Fi .

Proposition 2.1. The divisor class group of U := Cn/Zr (a1, . . . , ar ) is

Cl U ' Zr ·F1. (1)

Proof. We have an inclusion ι : Zr · F1 ↪→ Cl U. It is enough to show that this
is surjective. Let D ⊂ U be a prime divisor. Then π−1(D) is a divisor on Cn

defined by some Zr -eigenfunction fD ∈ OCn . Let i(D) ∈ Zr be an element such
that g · fD = ζ

i(D)
r f . Then we can check that OU (D)' Fi(D). Since gi

·F1 ' Fi

for i ∈ Zr , we see that ι is surjective.
We can also check the isomorphism by toric computation. Since Cn/Zr (a1,...,an)

is a toric variety, we can compute its class group by using the information of the
cone and lattice. (cf., [Fulton 1993, p. 63, Proposition]) More precisely, it is the
quotient Zn/M, where M := {(m1,...,mn) ∈ Zn

|
∑n

i=1mi ai ≡ 0 modr}. �

Definition 2.2. Let X be a (closed) subvariety of codimension c in P. Then X is
well-formed if

codimX (X ∩Sing(P))≥ 2.

Let π :An+1
\{0}→P be the natural projection. Then X is quasismooth if π−1(X)

is smooth.
The variety X is said to be a weighted complete intersection (WCI for short)

of multidegree (d1, . . . , dc) if its weighted homogenous ideal in C[x0, . . . , xn]

is generated by a regular sequence of homogenous polynomials { f j } such that
deg f j = d j for j = 1, . . . , c. We denote by Xd1,...,dc a general element of the family
of WCIs of multidegree (d1, . . . , dc).

Finally, Xd1,...,dc ⊂ P is said to be a linear cone if d j = ai for some i and j.

Note that by [Dimca 1986, Proposition 8], if X is a well-formed quasismooth
WCI, then

Sing(X)= X ∩Sing(P).

Proposition 2.3. If X is a quasismooth WCI of dimension ≥ 3, then its divisor class
group is a free Z-module generated by OX (1), where OX (1) :=OP(1)|X . (We freely
mix the divisorial and the sheaf notation.)

Proof. The proof is the same as [Corti et al. 2000, Lemma 3.5]. This follows from
the parafactoriality of an l.c.i. local ring [Call and Lyubeznik 1994]. �

If X ⊂ P is a well-formed quasismooth WCI, then

ωX = KX =OX

( c∑
j=1

d j −

n∑
i=0

ai

)
,
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see [Dolgachev 1982, Theorem 3.3.4]. We usually write δ :=
∑c

j=1 d j −
∑n

i=0 ai .

The following result shows that the dimension of the linear system |OX (n)| can
be computed by the weights of the coordinates.

Lemma 2.4 [Iano-Fletcher 2000, Lemma 7.1]. Let X ⊂ P(a0, . . . , an) be a well-
formed quasismooth WCI. Let A := k[x0, . . . , xn]/( f1, . . . , fc) be the homogeneous
coordinate ring of X and Ak be the k-th graded part for k ∈ Z. Then

H 0(X,OX (k))' Ak .

Proof. See also [Dolgachev 1982, 3.4.3]. This follows since the homogeneous
coordinate ring A is Cohen–Macaulay and H 1

m(A)= 0, where m := (x0, . . . , xn) is
the maximal ideal. �

3. Properties of quasismooth WCIs

In the following proposition, we give a necessary and sufficient condition for
quasismoothness of a WCI.

Proposition 3.1. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) =: P be a quasismooth WCI
which is not a linear cone. Let x0, . . . , xn be the coordinates of P(a0, . . . , an). Fix
I := {i1, . . . , ik} ⊂ {0, . . . , n} and let ρI := min{c, k}. For m = (m1, . . . ,mk), let
xm

I :=
∏k

j=1 xm j
i j

. For a finite set A, let |A| be the number of its elements. Then one
of the following holds.

(Q1) There exist distinct integers p1, . . . , pρI ∈ {1, . . . , c} and M1, . . . ,MρI ∈ Nk

such that the monomial x M j
I has the degree dpj for j = 1, . . . , ρI .

(Q2) There exist a permutation p1, . . . , pc of {1, . . . , c}, an integer l < ρI , and
integers eµ, j ∈ {0, . . . , n} \ I for µ= 1, . . . , k− l and j = l + 1, . . . , c such
that there are monomials x M j

I of degree dpj for j = 1, . . . , l and distinct k− l
monomials {xeµ, j x

Mµ, j
I :µ=1, . . . , k−l} of degree dpj for each j= l+1, . . . , c

which satisfy the following: for any subset J ⊂ {l + 1, . . . , c}, we have
|{eµ, j : j ∈ J, µ= 1, . . . , k− l}| ≥ k− l + |J | − 1.

Conversely, if we have (Q1) or (Q2) for all I, then a general WCI Xd1,...,dc ⊂

P(a0, . . . , an) is quasismooth.

Remark 3.2. This generalizes [Iano-Fletcher 2000, Theorem 8.7] in codimension
2 case. A weaker necessary condition for the quasismoothness is written in [Chen
2015, Proposition 2.3]. Although we shall not use the new part of Proposition 3.1
in the main part of this paper, we believe it is an interesting result on its own.

Proof. The framework of the proof is similar to that of [Iano-Fletcher 2000,
Theorem 8.7].
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Let Fj := |OP(d j )| be the linear system of weighted homogeneous polynomials of
degree d j . For j = 1, . . . , c, let f j be a general homogeneous polynomial of degree
d j such that X = ( f1 = · · · = fc = 0)⊂P(a0, . . . , an). Let C∗X ⊂An+1

\ {0} be the
cone over X defined by the polynomials f1, . . . , fc with the following diagram

C∗X
� � //

��

An+1
\ {0}

��

X �
�

// P

Without loss of generality, we may assume I = {0, . . . , k− 1} in the statement. Let
5 := (xk = · · · = xn = 0)⊂ An+1 be the stratum corresponding to I and 50

⊂5

be the open toric stratum. By expanding fλ for λ= 1, . . . , c in terms of xk, . . . , xn ,
we can write

fλ = hλ(x0, . . . , xk−1)+

n∑
i=k

xi gi
λ(x0, . . . , xk−1)+ Rλ(x0, . . . , xn),

where hλ, gi
λ ∈ C[x0, . . . , xk−1] and Rλ ∈ C[x0, . . . , xn] satisfies degxk ,...,xn

Rλ ≥ 2.
Note that X is quasismooth if and only if C∗X is smooth along all the coordinate

strata. We shall show that C∗X is smooth along 50 when either (Q1) or (Q2) holds
for I. Let ρ := ρI for short.

Suppose that (Q1) holds. Then h p1, . . . , h pρ are nonzero on 50. If some of h pj

involves only one monomial, then we have 50
∩C∗X =∅. So we may assume that

each of h p1, . . . , h pρ involves at least 2 monomials. Thus we see that the linear
systems Fdp1

, . . . , Fdpρ
do not have base locus on 50. By Bertini’s theorem, we see

that ( fp1 = · · · = fpρ = 0)⊂ An+1 is smooth along 50 when k ≥ c. When k < c,
we have ( fp1 = · · · = fpρ = 0)∩50

=∅. Therefore C∗X is nonsingular along 50.
Next suppose that (Q2) holds. By permutation, we may assume that pi = i . Then

h1, . . . , hl are nonzero on 50. Hence the base locus of Fdλ is disjoint with 50 for
λ= 1, . . . , l. By Bertini’s theorem, we see that ( f1 = · · · = fl = 0) is nonsingular
along 50. We may assume that the Jacobian of ( f1 = · · · = fc = 0) ⊂ An+1 at
P ∈50 is of the form 

∂ f1
∂x0
· · ·

∂ f1
∂xk−1

...
... *

∂ fl
∂x0
· · ·

∂ fl
∂xk−1

gk
l+1 · · · g

n
l+1

0 ...
...

gk
c · · · gn

c


(P),

since we have hλ = 0 for λ= l + 1, . . . , c. Note that the block matrix
∂ f1
∂x0
· · ·

∂ f1
∂xk−1

...
...

∂ fl
∂x0
· · ·

∂ fl
∂xk−1

 (P)
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has maximal rank l at P ∈50 since ( f1 = · · · = fl = 0) is nonsingular along
50. Hence it is enough to show that the matrix

MP :=

gk
l+1 · · · g

n
l+1

...
...

gk
c · · · gn

c

 (P) (2)

has maximal rank c− l.
Note that there are at least k − l elements of Kλ := {i ∈ {k, . . . , n} : gi

λ 6= 0}
for each λ= l + 1, . . . , c. By |Kλ| ≥ k− l, we see that each row vector of MP is
nonzero for P ∈50. Indeed, for each λ′ = l + 1, . . . , c, the intersection

l⋂
λ=1

(hλ = 0)∩
n⋂

i=k

(gi
λ′ = 0)∩50

is contained in at least k = l+ (k− l) free linear systems on k-dimensional 50, and
it is empty. Thus we may assume that gk

l+1(P) 6= 0. We shall make elementary
matrix operations on MP to calculate the rank of MP .

For λ= l + 2, . . . , c, let

Zλ(P) := {Q ∈ ( f1 = · · · = fl = 0)∩50
:

gk
l+1(P)g

i
λ(Q)− gk

λ(P)g
i
l+1(Q)= 0 (i = k+ 1, . . . , n)}.

Note that the first row M1
P and the (λ−l)-th row Mλ−l

P of MP are linearly dependent
if and only if P ∈ Zλ(P). By condition (Q2) for J with |J | = 2, there are at least
k − l nonzero elements of Gλ(P) := {gk

l+1(P)g
i
λ− gk

λ(P)g
i
l+1 : i = k + 1, . . . , n}

and they define k − l free linear systems on 50. Hence we obtain Zλ(P) = ∅
and the two rows M1

P and Mλ−l
P are linearly independent. Thus, by elementary

operations on MP , we obtain a matrix of the following form;
gk

l+1 · · · · · · g
n
l+1

0 hk+1
l+2 · · · h

n
l+2

...
...

...
0 hk+1

c · · · hn
c

 (P).
By column exchange operations, we may assume that hk+1

l+2 (P) 6= 0 and repeat the
process to

M ′P :=

hk+1
l+2 · · · hn

l+2
...

...

hk+1
c · · · hn

c

 (P).
Let G ′λ(P) := {h

k+1
l+2 (P)h

i
λ−hk+1

λ (P)hi
l+2 : i = k+2, . . . , n}. By condition (Q2)

for J with |J | = 3, there are at least k − l nonzero elements of G ′λ(P) and they
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define free linear systems on 50. By this, we again see that the first row and another
row of M ′P are linearly independent.

After repeating these elementary operations, we obtain a matrix of the form
αl+1

. . . * *
0 αc


for some αl+1, . . . , αc ∈ C \ {0} and see that the rank of MP is c− l. Thus C∗X is
nonsingular at P ∈50.

Suppose that conditions (Q1) and (Q2) do not hold for some I. We shall show
that X is not quasismooth. We may again assume that I = {0, . . . , k − 1} and
5 = (xk = · · · = xn = 0). Moreover, since (Q1) and (Q2) do not hold, we may
assume that, for some l<ρI , we have5 6⊂ ( fλ=0) for λ=1, . . . , l and5⊂ ( fλ=0)
for λ= l + 1, . . . , c. Then the singular locus of C∗X on 50 can be described as

Z := {P ∈ ( f1 = · · · = fl = 0)∩50
: rk MP < c− l},

where MP is the matrix defined in (2). By the hypothesis, we may also assume that
there exists J ⊂ {l + 1, . . . , c} such that there are at most k− l + |J | − 2 nonzero
elements among {gi

λ : λ ∈ J, i = k, . . . , n}. This implies that there are at most
k− l+|J |−2 nonzero columns of the matrix M J

P :=
(
gi
λ(P)

)k≤i≤n
λ∈J . We can choose

J so that the number |J | is minimal among such subsets of {l+1, . . . , c}. Then, by
elementary operations as in the first part of the proof, we can transfer M J

P to the form
hk

l+1 · · · · · · hk+|J |
l+1 · · · hn

l+1
. . .

...
...

0 hk+|J |−1
l+|J | hk+|J |

l+|J | · · · hn
l+|J |

 (P).
Note that on the bottom row we have at most k− l − 1 nonzero entries. Hence we
obtain

dim( f1 = · · · = fl = 0)∩ (hk+|J |−1
l+|J | = · · · = hn

l+|J | = 0)∩50

≥ k− l − (k− l − 1)= 1.

Since the rank of M J
P is not maximal on the subset (hk+|J |−1

l+|J | = · · · = hn
l+|J |= 0),

we see that C∗X is singular along the above positive dimensional subset. Hence X
is not quasismooth in this case. This concludes the proof of Proposition 3.1. �

In the following example, we use Proposition 3.1 to check quasismoothness of a
given WCI.

Example 3.3. Let X8,8,8 ⊂ P(2(4), 3(5), 5(3)) be a general WCI of codimension 3.
We can check the quasismoothness of X8,8,8 by Proposition 3.1 as follows. Consider
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I = {4, 5, 6, 7, 8}, that is, a4= · · · = a8= 3. Then (Q1) does not hold for this I and
we have k = 5, l = 0 in (Q2). We can choose {eµ, j : j = 1, 2, 3, µ= 1, . . . , 5} ⊂
{0, 1, 2, 3, 9, 10, 11} so that (Q2) is satisfied for this I. We can similarly check
that (Q2) holds for I = {9, 10, 11}. For other I, we have (Q1), thus we see the
quasismoothness of X8,8,8.

On the other hand, we see that X ′8,8,8 ⊂ P(2(3), 3(4), 5(3)) is not quasismooth.
Indeed, for I = {7, 8, 9}, that is, a7 = a8 = a9 = 5, neither (Q1) nor (Q2) hold.

The following proposition treats the special situation where some weight of P

divides none of the degrees of a WCI.

Proposition 3.4. Let X = Xd1,...,dc ⊂P(a0, . . . , an) be a (well-formed) quasismooth
WCI which is not a linear cone. Assume that there exists i0 such that ai0 does not
divide d j for all j. Let H = OX (h) be the fundamental divisor on X, that is, an
ample Cartier divisor on X which generates Pic X. Then

(i) X has a quotient singularity of type 1/ai0(c1,...,cn−c) for some c1,...,cn−c ∈

Z≥0 such that gcd(ai0,c1,...,cn−c)= 1;

(ii) ai0 | h. As a consequence, we have |H | 6=∅.

Proof. Let f1, . . . , fc ∈ C[x0, . . . , xn] be the defining equations of X such that
deg f j = d j for 1 ≤ j ≤ c and X = ( f1 = · · · = fc = 0) ⊂ P(a0, . . . , an), where
deg xi = ai for 0 ≤ i ≤ n. By applying Proposition 3.1 to I = {i0}, we see that
there exist distinct integers e1, . . . , ec ∈ {0, . . . , î0, . . . , n} and positive integers
k1, . . . , kc such that d j = k j ai0 + aej for 1≤ j ≤ c, i.e., we can write

f j = xk j
i0

xej + g j

for 1≤ j ≤ c, where g j is a weighted homogeneous polynomial of degree d j .
By the inverse function theorem, we see that X has a quotient singularity of type

1/ai0(a0, . . . , âi0, . . . , âe1, . . . , âec , . . . , an) at Pi0 := [0 : · · · : 1 : · · · : 0]. We shall
show that g := gcd(a0, . . . , âe1, . . . , âec , . . . , an)= 1. Suppose that g > 1.

Claim 3.5. Up to a permutation on {1, . . . , c}, we may choose 0≤ c′ ≤ c with the
following properties:

(*) For j = 1, . . . , c′, some monomial in g j does not contain any element of
{xej , . . . , xec}.

(**) For j = c′+ 1, . . . , c, every monomial in g j contain some of {xec′+1
, . . . , xec}.

Proof of the claim. If (**) holds for all j = 1, . . . , c and {xe1, . . . , xec}, then we
put c′ := 0. Otherwise there is some j such that 1 ≤ j ≤ c and (*) holds for
{xe1, . . . , xec}. We then exchange ( f1, e1) and ( f j , ej ) and repeat the same process
starting from j = 2 till we obtain the claim, that is, check whether (**) holds for
new { f2, . . . , fc} and {e2, . . . , ec} and so on. �
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Hence, for 1≤ j≤c′, there exists a monomial in g j of the form h j=
∏

i 6=ej ,...,ec
xbi

i .
Then we have aej ≡

∑
i 6=ej ,...,ec

bi ai mod ai0 . Thus we can check one by one that

g | aej for 1≤ j ≤ c′. (3)

Now let 5 := (xec′+1
= · · · = xec = 0)⊂ P. We have 5⊂ Sing P, in particular

5 6= P.
We also have f j |5 ≡ 0 for c′+ 1 ≤ j ≤ c by the property (**) of c′. Thus we

obtain
dim5∩ X ≥ dim5− c′ = dim P− c.

This contradicts the fact that X 6⊂5 since X is not a linear cone. Hence we obtain
g = 1, concluding the proof of Proposition 3.4. �

The following proposition is useful for calculating the fundamental divisor of a
WCI and is the motivation of the definition of h-regular pair (see Definition 4.1).

Proposition 3.6. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) be a quasismooth well-formed
WCI which is not a linear cone. Let H = OX (h) be the fundamental divisor of X.
Assume that there exists I = {i1, . . . , ik} such that aI := gcd(ai1, . . . , aik ) > 1.

Then one of the following holds:

(i) There exist distinct integers p1, . . . , pk such that aI | dp1, . . . , dpk ;

(ii) aI | h.

Proof. We apply Proposition 3.1 to I = {i1, . . . , ik}. Let

PI := (x0 = · · · x̂i1 = · · · = x̂ik = · · · = xn = 0)⊂ P

be the (k− 1)-dimensional stratum corresponding to I and P0
I ⊂ PI be the open

toric stratum.
Suppose that condition (Q1) in Proposition 3.1 holds, that is, there exist distinct

integers p1, . . . , pk and nonnegative integers k j,i for j = 1, . . . , k and i ∈ I such
that dpj =

∑
i∈I k j,i ai . Then we have (i) in this case.

Suppose that (Q2) holds. Then there exist a permutation p1, . . . , pc of {1, . . . , c},
an integer l < ρ :=min{c, k}, nonnegative integers k j,i for j = 1, . . . , c and i ∈ I,
and distinct integers el+1, . . . , ec, which satisfy the following:

• for j = 1, . . . , l, we have
∑

i∈I k j,i ai = dpj ,

• for j = l + 1, . . . , c, we have aej +
∑

i∈I k j,i ai = dpj .

We may assume that ( fpj = 0)∩ P0
I 6= ∅ since X is irreducible and the linear

system |OP(dpj )| does not have a fixed component. Hence, on p ∈ X ∩ P0
I , the

variety X is analytic locally isomorphic to a quotient singularity of type
1
aI
(a0, . . . , âi1, . . . , âik , . . . , âel+1, . . . , âec , . . . , an)×Ck−l .
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Now the proof is reduced to the following claim:

Claim 3.7. We have g := gcd(a0, . . . , âel+1, . . . , âec , . . . , an)= 1.

Proof of Claim. Suppose that g > 1. We shall have a similar contradiction as in the
proof of Proposition 3.4. As in Claim 3.5, up to a permutation of {1, . . . , c}, we
may choose c′ with l + 1≤ c′ ≤ c with the following properties:

(*) For j = l + 1, . . . , c′, some monomial in g j does not contain any element of
{xej , . . . , xec}.

(**) For j = c′+ 1, . . . , c, every monomial in g j contain some of {xec′+1
, . . . , xec}.

Let 5 := (xec′+1
= · · · = xec = 0) ⊂ P. Then, as in Proposition 3.6, we see

that f j |5 ≡ 0 for j = c′ + 1, . . . , c and 5 ⊂ Sing P(a0, . . . , an) since g | ai for
i /∈ {ec′+1, . . . , ec}. Thus we have dim5∩X ≥ dim P−c as before and it contradicts
that X 6⊂5 since X is not a linear cone. Thus we obtain the claim. �

The sheaf OX (1) induces a generator of the class group of a quotient singularity
of the above type. Since the class group is a cyclic group of order aI as in (1), we
see that aI | h. Thus we have finished the proof of Proposition 3.6. �

The following corollary restricts Proposition 3.6 to the smooth case.

Corollary 3.8 [Przyjalkowski and Shramov 2016, Lemma 2.15]. Let X= Xd1,...,dc⊂

P(a0, . . . , an) be a smooth WCI. Assume that there exists I = {i1, . . . , ik} such that
aI := gcd(ai1, . . . , aik ) > 1.

Then there exist distinct integers p1, . . . , pk such that aI | dp1, . . . , dpk .

Proof. Since X is smooth, the fundamental divisor of X is OX (1), that is h = 1 in
the notation of Proposition 3.6. Thus the statement follows from Proposition 3.6. �

4. Regular pairs and Frobenius coin problem

The following definition is motivated by Proposition 3.6 and Corollary 3.8.

Definition 4.1. Let c ∈ N and n ∈ Z≥−1 be integers and (d; a) be a pair, where
d = (d1, . . . , dc) ∈ Nc

+
and a = (a0, . . . , an) ∈ Nn+1

+ . Let c+ := {1, . . . , c} and
n := {0, . . . , n}.

We say that (d; a) is h-regular for a positive integer h if, for any subset I =
{i1, . . . , ik} ⊂ n such that aI := gcd(ai1, . . . , aik ) > 1, one of the following holds:

(i) There exist distinct integers p1, . . . , pk ∈ c+ such that aI | dp1, . . . , dpk ;

(ii) aI | h.

If a pair is h-regular for h = 1, we simply call it regular.

Remark 4.2. For technical reasons, in Definition 4.1 we admit the cases c = 0 or
n =−1, i.e., pairs of the form (d;∅), (∅; a) and (∅,∅).
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We need to fix some notation. If (d; a) is a pair with d = (d1, . . . , dc) ∈Nc
+

and
a = (a0, . . . , an) ∈ Nn+1

+ , then we define

δ(d; a) :=
c∑

j=1

d j −

n∑
i=0

ai .

In the case where the pair (d; a) comes from a well-formed quasismooth WCI
X = Xd1,...,dc ⊂ P(a0, . . . , an), we have ωX ∼=OX (δ(d; a)).

Let q be a prime number. Set Iq := {i ∈ n : q |ai } and Jq := { j ∈ c+ : q |d j }. We
consider two new pairs obtained from (d; a). The pair (dq

; aq) is given by

dq
:= ((d j/q) j∈Jq , (d j ) j∈c+\Jq ), aq

:= ((ai/q)i∈Iq , (ai )i∈n\Iq )

in which we divided by q all the divisible d j and ai and the pair (d(q), a(q)) is
given by

d(q) := (d j ) j∈Jq , a(q) := (ai )i∈Iq

in which only the divisible d j and ai appear. Note that

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q)).

Definition 4.3. For a pair (d; a), we may choose subsets J(d;a) = { j1,..., jl} ⊂ c+

and I(d;a) = {i1,...,il} ⊂ n uniquely for some l ∈N so that d jk = aik for k = 1,...,l
and d j 6= ai for all j ∈ c+ \ J(d;a) and i ∈ n \ I(d;a). We define a pair (d̃; ã) by

(d̃; ã) := ((d j ) j∈c+\J(d;a); (ai )i∈n\I(d;a)), (4)

that is, we cancel the doubles (d j , ai ) with d j = ai .

Lemma 4.4. The pair (d̃; ã) is h-regular if (d; a) is h-regular.

Proof. Let I := {i1, . . . , ik} ⊂ n \ I(d;a) be a subset with aI > 1. Since (d; a) is
h-regular, either (i) holds for some {p1, . . . , pk} ⊂ c+ or (ii) holds. In the latter
case, there is nothing to check. Thus we consider the former case and need to find
p′1, . . . , p′k ∈ c+ \ J(d;a) such that aI | dp′j for j = 1, . . . , k. Let

J ′ := { j ∈ J(d;a) : aI | d j }, I ′ := {i ∈ I(d;a) : aI | ai }.

Then we have |I ′| = |J ′| =: l ′. Let I ′′ := I ∪ I ′. By aI = aI ′′ , there exist distinct
integers p1, . . . , pk+l ′ ∈ c+ such that aI | dpj for j = 1, . . . , k + l ′. Then the set
{p1, . . . , pk+l ′} \ J ′ contains k elements p′1, . . . , p′k ∈ c+ \ J(d;a) such that aI | dp′j
for j = 1, . . . , k. Thus (i) holds for (d̃; ã) and I. Hence we see that (d̃; ã) is
h-regular. �

The following straightforward lemmas show how h-regular pairs are very suitable
for inductive arguments.
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Lemma 4.5. Let (d; a) be an h-regular pair and q be a prime not dividing h. Then
the pairs (dq

; aq) and (d(q); a(q)) are h-regular. Hence (d(q)/q; a(q)/q) is also
h-regular.

Proof. We write the details for the pair (dq
; aq). The proof for (d(q); a(q)) is

easier.
Let I ={i1, . . . , ik}⊂ n such that aI := gcd(ai1, . . . , aik )> 1. By the h-regularity

of (d; a), we have either condition (i) of Definition 4.1, i.e., there exist distinct
integers p1, . . . , pk such that

aI | dp1, . . . , dpk

or (ii), i.e., aI | h.
If q | aI , then we have q | ai` for all i` ∈ I and aI - h. Thus we have (i) and

gcd
(ai1

q
, . . . ,

aik

q

)
=

aI

q

∣∣∣ dp1

q
, . . . ,

dpk

q

as we wanted.
If q - aI , then

gcd((ai/q)i∈I ′q , (ai )i∈(I\I ′q ))= aI

where I ′q := {i ∈ I : q | ai }. If aI | h, then there is nothing to prove, so we can
assume that aI - h and that (i) holds. Since q - aI , we get that aI divides (dq)pj for
j = 1, . . . , k. This concludes the proof. �

Lemma 4.6. Let (d; a) be an h-regular pair and q be a prime dividing h. Then
(dq
; aq) is h/q-regular and (d(q); a(q)) is h-regular, hence (d(q)/q; a(q)/q) is

h/q-regular.

Proof. We give the proof for the pair (dq
; aq). Consider a set I = {i1, . . . , ik} ⊂ n

such that aI := gcd(ai1, . . . , aik ) > 1 and let aq
I := gcd(aq

i )i∈I be the gcd of the ai

in (dq
; aq).

Assume first that gcd(aI , q)= 1, so that aq
I = aI . If aI |h, we obtain that aq

I |h/q
and we are done. If aI - h, then there exist distinct integers p1, . . . , pk such that
aI | dp1, . . . , dpk . We have aq

I - h/q and the dq
pj work.

If aI = qt for some positive integer t , then aq
I = t . If qt | h, we have t | h/q. If

qt -h, then there exist distinct integers p1, . . . , pk such that aI |dp1, . . . , dpk . For the
same integers, we have aq

I |dp1/q, . . . , dpk/q so the first condition of h/q-regularity
is satisfied and we are done. �

The Frobenius coin problem. In this subsection we want to enlighten some inter-
esting connections among the Ambro–Kawamata conjecture, regular pairs and the
Frobenius coin problem.
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Question 4.7 (Frobenius coin problem). Given positive integers a0, . . . , an such
that gcd(a0, . . . , an)= 1, find the largest integer G = G(a0, . . . , an) so that there
do not exist nonnegative integers x0, . . . , xn satisfying

G = a0x0+ . . .+ anxn.

Such G is called the Frobenius number of a0, . . . , an .

For n = 1, it is classically known that

G(a0, a1)= a0a1− a0− a1.

For n≥ 2, the problem is considerably harder: precise methods have been developed
to compute G(a0, a1, a2) and some algorithms and (lower and upper) bounds are
known for the general case (see for instance [Johnson 1960] and [Brauer and
Shockley 1962]).

By Lemma 2.4, the Ambro–Kawamata conjecture for smooth WCI would fol-
low from the following purely arithmetic statement, which we believe to be of
independent interest.

Conjecture 4.8. Let (d; a) = (d1, . . . , dc; a0, . . . , an) ∈ Nc
×Nn+1 be a regular

pair such that ai 6= 1 and d j 6=ai for any i, j. Assume c≤n and gcd(a0, . . . , an)= 1.
Then

δ(d; a)≥ G(a0, . . . , an).

One of the best known lower bounds for G is given in [Brauer 1942]. Let
a0, . . . , an be positive coprime integers, set g j := gcd(a0, . . . , a j ) for j = 0, . . . , n
and consider

Br(a0, . . . , an) :=

n∑
j=1

a j
g j−1

g j
−

n∑
i=0

ai .

Brauer proved that Br(a0, . . . , an) ≥ G(a0, . . . , an). Set d j := a j g j−1/g j for
j = 1, . . . , n. Then it is easy to check that (d; a) := (d1, . . . , dn; a0, . . . , an) is
actually a regular pair.

On the other hand, it is not difficult to see that, considering big prime numbers
p and q , the pair (pq, 6p, 6q; 2p, 3p, 2q, 3q) is regular, δ(d; a)≥ G(a0, . . . , an),
but δ(d; a) < Br(a0, . . . , an).

This shows that regular pairs can give better bounds for the Frobenius number
with respect to the known ones. For this reason, it seems to be a challenge and
interesting problem to study Conjecture 4.8.

Remark 4.9. It is not difficult to check that Conjecture 4.8 is true for c = 1, 2,
which implies that the nonvanishing holds for a smooth WCI of codimension 1 or 2.
For simplicity, we omit the detail in the codimension 2 case.
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For c = 1, a stronger and more general result is given in Lemma 6.1, which is
the key step to prove Theorem 1.3.

5. Proof of Theorem 1.2

Theorem 1.2 is the combination of Corollary 5.3 and Corollary 5.13 below.

Smooth case. The pair (d; a) in the following lemma does not come from a
nonempty WCI. Nevertheless this lemma is important in the proof of Proposition 5.2.

Lemma 5.1. Let (d; a)∈Nc
+
×Nn+1
+ be a regular pair such that ai 6= d j for any i, j.

Let q be a prime number such that q | ai and q | d j for any i, j. Then

δ(d; a)≥ cq.

Moreover, if the equality holds, then c = n+ 1.

Proof. Note that c ≥ n+ 1 which does not occur for a nonempty WCI.
Assume first that q is the only prime dividing the ai , that is for any i = 0, . . . , n,

we have ai = qαi for some αi ≥ 1. We can assume that a0 ≥ a1 ≥ . . . ≥ an . We
can also order the d j in such a way that vq(ds) ≥ vq(dt) for any s ≤ t , where
vq(d j )=max{e ∈ N : qe

| d j }. Then we have ai | di+1 for any i = 0, . . . , n and so

c∑
j=1

d j −

n∑
i=0

ai =

c−n−1∑
k=1

dn+1+k +

n∑
i=0

(di+1− ai )≥ cq

and the equality is possible only if c = n+ 1, d j = 2q and ai = q for any i, j.
Assume now that q 6= 2 and that q and 2 are the only primes dividing the ai ,

that is for any i = 0, . . . , n we have ai = 2αi qβi for some αi ≥ 0 and βi ≥ 1 such
that αi > 0 for at least one i . We proceed by induction on t =max0≤i≤n{βi }, the
greatest power of q dividing at least one ai .

Suppose t = 1. We can assume that v2(ai )≥ v2(a j ) and v2(di )≥ v2(d j ) for any
i ≤ j. Then again ai | di+1 for any i = 0, . . . , n and we conclude as before.

Suppose t ≥ 2. Let Iq t := {i ∈ n : q t
| ai } and Jq t := { j ∈ c+ : q t

| d j }. We
consider the following pairs: (d ′; a′), where d ′ = ((d j/q) j∈Jqt , (d j ) j∈c+\Jqt ) and
a′ = ((ai/q)i∈Iqt , (ai )i∈n\Iqt )) and (d ′′; a′′), where d ′′ = (d j/q) j∈Jqt and a′′ =
(ai/q)i∈Iqt . It is straightforward to check as in Lemma 4.5 that (d ′; a′) and (d ′′; a′′)
are regular. Consider the regular pair (d̃ ′; ã′) constructed in (4) which satisfies
d̃ ′j 6= ã′i for any i ∈ n \ I(d ′;a′), j ∈ c+ \ J(d ′;a′), where I(d ′;a′) ⊂ n and J(d ′;a′) ⊂ c+

are the subsets defined in Definition 4.3.
Let

m := |{ j ∈ Jq t : d j/q = ai | for some i ∈ n \ Iq t }|,

m := |{i ∈ Iq t : d j = ai/q | for some j ∈ c+ \ Jq t }|.
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Note that |I(d ′;a′)| = |J(d ′;a′)| ≤m+m. Let k := |Jq t |. By induction on t , we may as-
sume that we have δ(d ′; a′)= δ(d̃ ′; ã′)≥ (c−m−m)q and δ(d ′′; a′′)≥ kq . We have
that |Iq t | ≤ |Jq t | since (d; a) is regular. Since m ≤ k and m ≤ |Iq t | ≤ k, we obtain

δ(d; a)= δ(d ′; a′)+ (q − 1)δ(d ′′; a′′)≥ (c− 2k)q + (q − 1)kq

= cq − 2kq + kq2
− kq

= cq + kq(q − 3)≥ cq (5)

because q ≥ 3. The equality is possible only if we have it for both (d̃ ′; ã′) and
(d ′′; a′′). This implies by induction on t that c = n+ 1 in this case.

We now pass to the general case. For any prime p, different from q and 2, let
ep := max{e ∈ N : pe

| ai for some i}. The proof is by induction on D =
∑

p ep,
where the index varies over all prime numbers different from q and 2. The case
D = 0 has already been treated in the first part of the proof. So assume D ≥ 1 and
that the inequality holds up to D− 1. Consider (d p

; a p) and let

m p := |{ j ∈ c+ : d j/p = ai for some i ∈ n \ Ip}|,

m p := |{i ∈ n : d j = ai/p for some j ∈ c+ \ Jp}|.

Let us again consider the pair (d̃ p
; ã p) as in Definition 4.3 by removing subsets

J(d p;a p) ⊂ c+ and I(d p;a p) ⊂ n. Then this satisfies the hypothesis (d̃ p) j 6= (ã p)i for
any i and j. We again have that |J(d p;a p)| ≤m p+m p. By induction on D, we obtain
δ(d p
; a p)= δ(d̃ p

; ã p)≥ (c−m p−m p)q . Now consider the pair (d(p)/p; a(p)/p).
Again by induction on D, we obtain δ(d(p)/p; a(p)/p) ≥ sq, where s := |{ j ∈
c+ : p|d j }|. We see that m p ≤ s by the definition of m p. Let s ′ := |{i ∈ n : p | ai }|.
We see that s ′ ≤ s by the regularity of (d; a) and that m p ≤ s ′ by the definition of
m p. Thus we have m p ≤ s. By these inequalities and p ≥ 3, we conclude that

δ(d; a)= δ(d p
; a p)+ (p− 1)δ(d(p)/p; a(p)/p)

≥ (c−m p −m p)q + (p− 1)sq

= cq + psq −m pq −m pq − sq ≥ cq + psq − 3sq ≥ cq

as we wanted. Again, the equality is possible only if c = n+ 1. �

By using Lemma 5.1, we prove the following key proposition.

Proposition 5.2. Let (d; a) ∈ Nc
+
×Nn+1

+ be a regular pair such that ai > 1 and
ai 6= d j for any i, j. Then the following holds.

(i) We have
δ(d; a)≥ c. (6)

(ii) If gcd(a0, . . . , an) = 1, then the equality holds only if (d; a) is of the form
(6(s), 1(c−s)

; 2(s), 3(s)) for some integer s.
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Proof. (i) The proof is by induction on n, the case n = 0 being obvious. We can
assume that no prime divides every ai , otherwise we are in the case of Lemma 5.1.
In particular, we may assume that there is a prime q 6= 2 which divides some ai . Let

m := |{ j ∈ c+ : d j/q = ai for some i ∈ n \ Iq}|,

m := |{i ∈ n : d j = ai/q for some j ∈ c+ \ Jq , d j 6= 1}|,

` := |{i ∈ n : ai = q}|, s := |{ j ∈ c+ : q|d j }| = |Jq |.

We note that m ≤ s by definition and `+m ≤ s by the regularity.

Case 1: Suppose that `+m+m ≥ 1. Then the pair (dq
; aq) has some redundant

ai , in the sense that ai/q = 1, d j/q = ai or d j = ai/q for some i, j. That is, we
consider a regular pair (d̃q , ãq) and, by removing all ãq

i = 1, we obtain a new
regular pair (d̂q

; âq) ∈ Nĉ
+
×Nn̂+1

+ for some ĉ ≤ c and n̂ ≤ n. Note that n̂ < n by
the hypothesis `+m +m ≥ 1. Let `1 := |{ j ∈ c+ : d j = 1}| and `′ := min{`, `1}.
Then we see that ĉ ≥ c−m −m − `′ by the construction of (d̃q

; ãq). Since we
have |{i ∈ n \ I(dq ;aq ) : ã

q
i = 1}| = `− `′, we obtain, by induction on n, that

δ(dq
; aq)= δ(d̂q

; âq)− (`− `′)≥ ĉ− (`− `′)≥ c− `−m−m.

By applying Lemma 5.1 to (d(q), a(q)), we obtain

δ(d(q); a(q))≥ sq.

By these and `+m+m ≤ 2s, we obtain

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q))≥ c− `−m−m+ (q − 1)s

≥ c+ qs− 3s ≥ c (7)

since q ≥ 3.

Case 2: Suppose now that `+m +m = 0. Then the pair (dq
; aq) satisfies the

assumptions of the proposition. We note that

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q)) > δ(dq
; aq)

since we have δ(d(q); a(q)) > 0 by Lemma 5.1. So we can replace the pair
(d; a) with (dq

; aq) without changing the number c of the j and we can repeat the
argument from the beginning of the proof (possibly changing the prime q) till either
we end up in Case 1 or we reach the situation of Lemma 5.1. In both cases, we
are done and obtain (6).

(ii) We now study when the identity holds in the case gcd(a0, . . . , an)= 1.
Note that the case n = 1 is clear, being equivalent to asking a0a1− a0− a1 = 1.
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Assume n ≥ 2 and let q 6= 2 be a prime number such that q | ai for some i . We
shall follow the proof of the inequality. In particular, we look at

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q)).

With the same notation as above, we note that the equality can hold only if we
are in Case 1 and, by Lemma 5.1, the number |{i ∈ n : q | ai }| must be equal to
s = |Jq |. Moreover we obtain q = 3 by (7). This implies that the only possible
prime numbers that divide at least one ai are 2 and 3.

We must also have m = s and `+m = s. By m = s, we see that any d j/3 ∈ N

must be equal to some ai which is not divisible by 3. Hence we can write

(d;a)= (3 · 2β1,...,3 · 2βs ,2βs+1,...,2βc;2β1,...,2βs ,3 · 2αs+1,...,3 · 2αn+1)

for some nonnegative integers αi and βi . Then

δ(d;a)= δ(2βs+1,...,2βc;2αs+1,...,2αn+1)+ 2
3δ(3·2

β1,...,3·2βs ;3·2αs+1,...,3·2αn+1).

Also note that `+m = s implies that n+ 1− s = |{i ∈ n : 3 |ai }| = `+m = s, thus
n+ 1= 2s. By the regularity of (d(3); a(3)) and the assumption d j 6= ai for any
i, j, to have the equality δ(d(3); a(3))= 3s we need β j = 1 for j = 1, . . . , s and
αi = 0 for i = s+ 1, . . . , n+ 1, which implies

δ(d; a)= δ(2βs+1, . . . , 2βc; 1, . . . , 1)+ 2s =
c−s∑
i=1

2βs+i − (n+ 1− s)+ 2s,

i.e., c = δ(d; a)=
∑c−s

i=1 2βs+i + s.
Hence, we must have β j = 0 for j = s+ 1, . . . , c, which finishes the proof. �

As a corollary of Proposition 5.2, we obtain the nonemptiness of |O(1)| and the
smoothness of its general member on a smooth Fano or Calabi–Yau WCI.

Corollary 5.3. Let X := Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed smooth Fano
or Calabi–Yau WCI which is not a linear cone. Let c1 := |{i ∈ n : ai = 1}|. Then the
following hold.

(i) We have c1 ≥ c. Moreover the equality is possible only if X is Calabi–Yau of
type X6,...,6 ⊂ P(1(c), 2(c), 3(c)).

(ii) The linear system |OX (1)| is nonempty and its general member H is smooth.

Proof. (i) We may assume that a0 ≤ · · · ≤ an . Thus we have a0 = · · · = ac1−1 = 1.
Since X is smooth, we see that (d1, . . . , dc; ac1, . . . , an) is regular. By this and
Proposition 5.2(i), we obtain

δ(d1, . . . , dc; ac1, . . . , an)≥ c.

By the assumptions, 0≥ δ(d; a)≥ c− c1, and this implies the former statement.
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Let (d; a) be a regular pair which satisfies c1 = c. Let (d̂; â) be the regular
pair obtained by removing all ai = 1. Then (d̂; â) satisfies the hypothesis of
Proposition 5.2(ii) since (d; a) defines a smooth WCI. Hence, by Proposition 5.2(ii),
we see that (d̂; â)= (6(c); 2(c), 3(c)) and (d; a)= (6(c); 2(c), 3(c), 1(c)).

(ii) By the latter part of Proposition 5.2, we can assume that X is not of the form
X6,...,6 ⊂ P(2(c), 3(c), 1(c)); otherwise the conclusion is immediate. In particular,
we may assume c1 ≥ c+ 1.

By (i), we see that |OX (1)| 6=∅. Since X is smooth and well-formed, we have
Sing P(a0, . . . , an)∩X =∅. Thus H∩Sing P(a0, . . . , an)=∅. Hence it is enough
to check H is quasismooth at P :=5(p), where p∈5−1((x0= . . .= xc1−1=0)∩X)
and 5 : An+1

\ {0} → P(a0, . . . , an) is the quotient map.
Set Hi := X∩(xi =0) for i=0, . . . , c1−1. We shall look at the Jacobi matrices of

X and Hi ⊂P(a0, . . . , ai−1, ai+1, . . . , an). Let f1, . . . , fc be the defining equations
of X such that deg f j = d j . For i = 0, . . . , n, set

vi (p) :=

(
∂ f1/∂xi

...
∂ fc/∂xi

)
(p).

The Jacobi matrix JX (p) and JHi (p) of X and Hi can be written as

JX (p)= (v0(p),...,vn(p)), JHi (p)= (v0(p),...,vi−1(p),vi+1(p),...,vn(p)).

Since X is quasismooth, there exist linearly independent vectors

vi1(p), . . . , vic(p).

Since c1 ≥ c+ 1, we can choose i so that i /∈ {i1, . . . , ic}. Then we see that Hi is
quasismooth at P :=5(p). Thus a general member H is also quasismooth at P. �

Remark 5.4. Let X ⊂ P(a0, . . . , an) be a smooth WCI as in Corollary 5.3. For
I ⊂ n such that aI = 1, it may a priori happen that (Q1) does not hold, but (Q2)
holds. That is why we make an argument as in Corollary 5.3 (ii).

Remark 5.5. Let Xd1,...,dc be a smooth WCI as in Corollary 5.3. Motivated by
a question by Andreas Höring, we consider the description of the base locus
Bs |OX (1)|.

Up to reordering d1, . . . , dc, we can assume that there is an integer c′≤ c with the
following properties: for 1≤ j ≤ c′, there are weighted homogeneous polynomials
f j (xc1, . . . , xn) of degree d j and, for c′ + 1 ≤ j ≤ c, all monomials of degree
d j contain one of the variables x0, . . . , xc1−1 of weights 1. Since the base locus
Bs |OX (1)| is (x0 = · · · = xc1−1 = 0)∩ Xd1,...,dc , it is isomorphic to a general WCI
Yd1,...,dc′

⊂ P(ac1, . . . , an).
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Thus the base locus is again a WCI. However this is not necessarily (quasi)smooth
in general. We shall see this in Example 5.6.

Example 5.6. Let X := X231,231,26 ⊂P :=P(3, 3, 7, 7, 11, 11, 1(447)) be a general
WCI. We can check that this is a smooth Fano WCI as follows: for I = {0, 1}, {2, 3}
or {4, 5}, (that is, two variables of weights 3, 7 or 11), we have (Q1) for d1 = 231,
d2 = 231. Also, for I = {0, 1, 2, 3} or {0, 1, 4, 5}, we have (Q1) for d1 = 231,
d2 = 231, d3 = 26 since 26= 7 ·2+3 ·4= 11+3 ·5. For I = {2, 3, 4, 5}, we have
(Q2) for d1 = 231, d2 = 231, d3 = 26= 7 · 2+ 11+ 1. By Proposition 3.1, we see
that X is quasismooth, and smooth since X ∩Sing P=∅.

The base locus Bs |OX (1)| is a WCI Y := Y231,231,26⊂P′ :=P(3, 3, 7, 7, 11, 11).
This is not quasismooth. Indeed, for I = {2, 3, 4, 5}, neither (Q1) nor (Q2) holds
because of the lack of suitable degree 26 polynomials. In fact, Y is a nonnormal
surface singular along a curve (x0 = x1 = f1 = f2 = 0)⊂ P′, where f1, f2 are part
of defining polynomials of degrees 231 and x0, x1 are the variables of weights 3.

Hence we can not expect smoothness of the base locus of the fundamental linear
system even if it contains a smooth member.

Remark 5.7. Let W =Wd1,...,dc ⊂ P(a0, . . . , an) be a smooth WCI which is not a
linear cone, where ai > 1 for any i = 0, . . . , n. By Corollary 5.3 we know that W
is not Fano. Then we can consider a WCI

X = Xd1,...,dc ⊂ P(a0, . . . , an, 1(`))

where ` = δ(W )+ 1. In this way X is a smooth Fano with −KX = OX (1) and
Bs |OX (1)| is exactly W.

In Corollary 5.3 we showed that for a smooth Fano WCI, the general member of
the fundamental divisor is quasismooth. This is not true in general for a quasismooth
Fano WCI as the following example shows.

Example 5.8. Let X = X35 ⊂ P(5, 7, 2(k), 3(k)) where k ≥ 5. Then X is a quasi-
smooth Fano WCI with fundamental divisor OX (6), but X35,6 ⊂ P(5, 7, 2(k), 3(k))
is not quasismooth. However, we see that a general member of |OX (6)| has only
terminal singularities. Indeed it has an isolated singularity at [∗ : ∗ : 0 : · · · : 0]
which is locally isomorphic to 0 ∈ (x3

1 + · · ·+ x3
k + x2

k+1+ · · ·+ x2
2k = 0)⊂ C2k.

It is also natural to look at the general element of | − KX | in the case of a Fano
variety X. For instance, Shokurov [1979] and Reid [1983] proved that a Fano 3-fold
with only canonical Gorenstein singularities admits an anticanonical member with
only Du Val singularities. Here we give an example of a smooth Fano WCI whose
anticanonical members are singular (and not quasismooth). See also [Höring and
Voisin 2011, 2.12] for an example of a Fano 4-fold with singular fundamental divisor.



2390 Marco Pizzato, Taro Sano and Luca Tasin

Example 5.9. (cf., [Sano 2014, Example 2.9]) For m ∈ Z>0, let X be a weighted
hypersurface X = X(2m+1)(2m+2) ⊂ P(1(1+2m(2m+1)), 2m + 1, 2m + 2) of degree
(2m+ 1)(2m+ 2). Then we see that −KX =OX (2) and the linear system |−i KX |

does not contain a smooth member for i = 1, . . . ,m. Thus we can not expect a
smooth element of the plurianticanonical system on a Fano manifold. However,
in the above example, we can find a member with only terminal singularities.
Moreover, the base locus of |H | consists of a point.

Remark 5.10. It is well known that following the arguments in [Ambro 1999, Sec-
tion 5] or [Kawamata 2000, Section 5] and assuming Conjecture 1.1, it is possible to
show that the general element of |−mKX | has always only klt singularities for m>0
such that −mKX is Cartier (we thank Chen Jiang for pointing this fact out to us).

Finally, we also get the following corollary, which generalizes [Przyjalkowski
and Shramov 2017, Corollary 4.2] to any codimension.

Corollary 5.11. Let X := Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed smooth Fano
or Calabi–Yau WCI which is not a linear cone. Let c1 := |{i ∈ n : ai = 1}|. Then
c1 > I (X) := −δ(d; a)=

∑n
i=0 ai −

∑c
j=1 d j .

Proof. Consider the regular pair (d; a) associated with X. We may assume that
a0 ≤ · · · ≤ an , so that a0 = · · · = ac1−1 = 1. Let (d ′; a′) be the pair (d; ac1, . . . , an),
where we took away every 1 from (d; a). This pair is regular with no ai = 1 and so
by Proposition 5.2 we get

δ(d ′; a′)≥ c > 0,

which implies
δ(d; a)= δ(d ′; a′)− c1 >−c1,

i.e., I (X) < c1, as we wanted. �

General case. The following is a key proposition to deduce the nonvanishing in
the quasismooth Fano case.

Proposition 5.12. Let h ∈ N+ and (d; a) ∈ Nc
+
×Nn+1

+ be an h-regular pair with
c ≥ 1. If ai - h for any i = 0, . . . , n and ai 6= d j for any i, j, then

δ(d; a) > 0.

Proof. Let us write h = pα1
1 · · · p

αk
k , where the pi are distinct prime numbers. The

proof is by induction on α =
∑k

i=1 αi ≥ 0. If α = 0, then the pair (d; a) is regular
and the statement follows from Proposition 5.2, so we assume α ≥ 1.

Let p be a prime number dividing h and consider (d p
; a p). As usual,

δ(d; a)= δ(d p
; a p)+

p− 1
p

δ(d(p); a(p)).
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By Lemma 4.6, (d p
; a p) and (d(p)/p; a(p)/p) are h/p-regular. Note that there

does not exist i such that ai/p = 1 by the hypothesis ai -h. Thus, after cancellation
on (d p

; a p) (see Definition 4.3), we see that (d̃ p; ã p) and (d(p)/p; a(p)/p) are
h/p-regular and satisfy the hypothesis of the proposition.

If p | ai or p | d j for some i or j, then we obtain δ(d(p)/p; a(p)/p) > 0 by the
induction hypothesis and conclude δ(d; a) > 0 by induction since we have either
δ(d p
; a p)= δ(d̃ p; ã p) > 0 or (d̃ p; ã p) is empty.

If p - ai and p - d j for any i, j, then δ(d p
; a p) > 0 by the induction hypothesis

since (d p
; a p) = (d; a) is h/p-regular. Moreover (d(p); a(p)) is empty. Hence

we can again conclude that δ(d; a) > 0. �

Corollary 5.13. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed quasismooth
WCI which is Fano or Calabi–Yau and which is not a linear cone. Then |H | 6=∅
for any ample Cartier divisor H on X.

Proof. Write H = OX (h). If there exists i ∈ n such that ai | h, then we are done.
Otherwise, we are in the situation of Proposition 5.12, and so the variety can not be
Fano or Calabi–Yau since (d; a) is h-regular by Proposition 3.6. �

6. Weighted hypersurfaces

The following lemma gives a proof of a generalized version of Conjecture 4.8 in
the case c = 1.

Lemma 6.1. Let a0, . . . , an be positive integers, n ≥ 1 and set

h := lcmi 6= j (gcd(ai , a j )).

Assume that ai - h for any i and set f := lcm(a0, . . . , an). Then

f −
n∑

i=0

ai ≥ lcm(as, at)− as − at

for any s and t.

Proof. We first note that, for any proper subset I of n := {0, . . . , n}, we have
f 6= lcmi∈I (ai ). In fact, suppose that the equality holds and let k ∈ n \ I. For any
prime power pe such that e ≥ 1 and pe

| ak , we have pe
| f . In particular, we have

pe
| a` for some ` ∈ I. This implies that pe

| gcd(ak, a`) and so ak | h, which is a
contradiction. In particular, f ≥ 2 lcmi∈I (ai ).

The proof of the lemma is by induction on n and the case n = 1 is trivial, so
assume n ≥ 2. Let s, t ∈ n be such that s 6= t . Then

f −
n∑

i=0

ai =
f
2
−as−at+

f
2
−

∑
i 6=s,t

ai ≥ lcm(as, at)−as−at+lcmi 6=s,t(ai )−
∑
i 6=s,t

ai .
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If n = 2, then we have

lcmi 6=s,t(ai )−
∑
i 6=s,t

ai = 0

and we are done.
If n ≥ 3, then we have

lcmi 6=s,t(ai )−
∑
i 6=s,t

ai ≥ lcm(as′, at ′)− as′ − at ′

for s ′, t ′ ∈ n\{s, t} such that s ′ 6= t ′ by induction on n and lcm(as′, at ′)−as′−at ′ ≥ 0
because we are assuming that ai - h for any i . �

Proposition 6.2. Let X = Xd ⊂ P= P(a0, . . . , an) be a well-formed, quasismooth
hypersurface of degree d which is not a linear cone. Let H be an ample Cartier
divisor on X such that H − KX is ample.

Then |H | is not empty.

Proof. Write OX (H)=OX (h) for a positive integer h.
By Proposition 3.4, we can assume that ai | d for any i . Then X is a Cartier

divisor which intersects any stratum P{i, j} in some interior point. The condition of
H to be Cartier is then equivalent to

lcmi 6= j (gcd(ai , a j )) | h.

If there exists ai such that ai | h, then we are done. So assume that ai - h for any
i and let f := lcm(a0, . . . , an). By Lemma 6.1, we get

f −
n∑

i=0

ai ≥ lcm(as, at)− as − at

for any s and t . Since h > f −
∑n

i=0 ai (because H − KX is ample and f | d) and
g := gcd(as, at)|h for any s 6= t , we can use the Frobenius number G(as/g, at/g)=
(1/g)(lcm(as, at)−as−at) as on page 2382 to conclude that there are nonnegative
integers λs, λt such that

λsas + λt at = h,

which implies that |H | is not empty by Lemma 2.4. �

In the following, we prove the basepoint freeness on a Gorenstein weighted
hypersurface.

Proposition 6.3. Let X = Xd ⊂ P= P(a0, . . . , an) be a well-formed, quasismooth
hypersurface of degree d which is not a linear cone such that KX is Cartier. Let H
be the fundamental divisor of X and h be the positive integer such that H =OX (h).

Then L = KX +m H is globally generated for any m ≥ n.
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Proof. Suppose by contradiction that there is a point p = [p0 : · · · : pn] ∈ Bs |L|
and take ` such that L =OX (`).

Note that if ps 6= 0 for some s, then as - h, otherwise xe
s ∈ |L| for some positive

integer e and so p /∈ Bs |L|. Also note that, for all i ∈ n such that ai - h, we have
ai | d by Proposition 3.4.

Assume first that there exists a unique s ∈ n such that ps 6= 0. Since p ∈ X and
as - h, we get that as | d . Let fd be the defining polynomial of Xd . If fd contains a
monomial xd/as

s , then we obtain p 6∈ Xd and this is a contradiction. If fd does not
contain such a monomial, then it should contain a monomial of the form xk

s xi for
some k > 0 and i 6= s by the quasismoothness of Xd . Then we see that as | ai by
as | d , and Xd has a quotient singularity of index as . Thus we obtain as | h and this
is a contradiction.

Hence we can assume that there exist s and t such that s 6= t , ps 6= 0 and pt 6= 0,
thus as, at - h. We have

`= d −
n∑

i=0

ai +mh = d −
∑
ai -h

ai −
∑
ai |h

ai +mh.

Assume that −
∑

ai |h ai +mh ≥ 1. Since ai | d for all i such that ai - h, we can
apply Lemma 6.1 to conclude that

` > lcm(as, at)− as − at ,

which implies that xes
s xet

t ∈ |L| for some nonnegative integers es and et . So we
again have p /∈ Bs |L|.

Assume now that −
∑

ai |h ai +mh ≤ 0. Then we can check that |{i : ai = h}| ≥
n − 1, because m ≥ n. Moreover, since P is well-formed, the greatest common
factor of any n weights is 1. By these, when |{i : ai = h}| = n, we have h = 1 and
P= P(a0, 1, . . . , 1) for some a0 > 1. When |{i : ai = h}| = n− 1, we have h = 2
and P = P(1, 1, 2, . . . , 2). In both cases, we can check that L is basepoint free,
and we have derived a contradiction. �
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Generalized Kuga–Satake theory
and good reduction properties

of Galois representations
Stefan Patrikis

In previous work, we described conditions under which a single geometric repre-
sentation 0F →H(Q`) of the Galois group of a number field F lifts through a
central torus quotient H̃ → H to a geometric representation. In this paper,
we prove a much sharper result for systems of `-adic representations, such as
the `-adic realizations of a motive over F , having common “good reduction”
properties. Namely, such systems admit geometric lifts with good reduction
outside a common finite set of primes. The method yields new proofs of theorems
of Tate (the original result on lifting projective representations over number fields)
and Wintenberger (an analogue of our main result in the case of a central isogeny
H̃ → H ).

1. Introduction

Let F be a number field, and let 0F =Gal(F/F) be its absolute Galois group with
respect to a fixed algebraic closure F . A fundamental theorem of Tate (see [Serre
1977, §6]) asserts that H 2(0F ,Q/Z) vanishes; as a result, all (continuous, `-adic)
projective representations of 0F lift to genuine representations, and more generally,
whenever H̃ → H is a surjection of linear algebraic groups over Q` with kernel
equal to a central torus in H̃ , all representations ρ` : 0F → H(Q`) lift to H̃(Q`).

The `-adic representations of greatest interest in number theory are those with
conjectural connections to the theories of motives and automorphic forms; if the
monodromy group of ρ` is semisimple, then it is expected — by conjectures of
Fontaine–Mazur, Tate, Grothendieck–Serre, and Langlands — that the ρ` arising
from pure motives or automorphic forms are precisely those that are geometric in
the sense of Fontaine–Mazur, i.e., unramified outside a finite set of places of F , and
de Rham at all places dividing `. The paper [Patrikis 2016c] established a variant
of Tate’s lifting theorem for such geometric Galois representations. There are

I am grateful to the anonymous referee for helpful comments that have improved the exposition.
MSC2010: primary 11F80; secondary 11R37.
Keywords: Galois representations, Kuga–Satake construction.
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obstructions when F has real embeddings, but at least for totally imaginary F , any
geometric ρ` : 0F → H(Q`) satisfying a natural “Hodge symmetry” requirement
admits a geometric lift ρ̃` : 0F → H̃(Q`) [Patrikis 2016c, Theorem 3.2.10]. This
geometric lifting theorem leads to a precise expectation for the corresponding lifting
problem for motivic Galois representations. Namely, if GF,E denotes the motivic
Galois group for pure motives over F with coefficients in a number field E —
we will make this setup precise in Section 2, but for now the reader may take
homological motives under the standard conjectures — and if H̃ → H is now a
surjection of groups over E with central torus kernel, then we conjecture [Patrikis
2016c, Conjecture 4.3.1] that any motivic Galois representation ρ : GF,E → H lifts
to H̃ , at least after some finite extension of coefficients:

H̃E

��

GF,E
ρ⊗E E

//

ρ̃
;;

HE

There is essentially one classical example (with several variants) of this conjecture,
a well-known construction of Kuga and Satake [1967], which associates to a
complex, for our purposes projective, K3 surface X a complex abelian variety
KS(X), related by an inclusion of Hodge-structures H 2(X,Q)⊂ H 1(KS(X),Q)⊗2.
In the motivic Galois language, finding KS(X) amounts (when F = C) to finding a
lift ρ̃ of the representation ρX : GC,Q→ H = SO(H 2(X)(1)), through the surjection
H̃ =GSpin(H 2(X)(1))→ H . Progress on the general conjecture, when the motives
in question do not lie in the Tannakian subcategory of motives generated by abelian
varieties, seems to require entirely new ideas.1

The aim of this paper is to establish a Galois-theoretic result which is necessary
for this conjecture to hold, but considerably more delicate than the basic geometric
lifting theorem of [Patrikis 2016c, Theorem 3.2.10]. Namely, any motive M over
F has good reduction outside a finite set of primes: for any choice of variety X in
whose cohomology M appears, X spreads out as a smooth projective scheme over
OF [1/N ] for some integer N . In particular, by the base-change theorems of étale
cohomology [Deligne 1977] and the crystalline p-adic comparison isomorphism
[Faltings 1989], for any motivic Galois representation ρ : GF,E → H , the λ-adic
realizations ρλ : 0F → H(Eλ) have good reduction outside a finite set of primes S,
in the sense (also see Definition 1.1) that each ρλ factors through 0F,S∪Sλ and is
crystalline at all places of Sλ \ (Sλ ∩ S); here Sλ denotes the primes of F with the
same residue characteristic as λ, and 0F,S∪Sλ is the Galois group of the maximal
extension of F inside F that is unramified outside of S ∪ Sλ. Certainly a necessary

1For some, admittedly limited, examples, see [Patrikis 2016a; 2016b].
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condition for the generalized Kuga–Satake conjecture to hold is that the realizations
{ρλ}λ of ρ should lift to geometric representations ρ̃λ : 0F,P∪Sλ → H̃(Eλ) that
likewise have good reduction outside a common finite set of places P . This is what
we will show, as a consequence of a more general result. To state it, we first make
a couple of definitions.

Definition 1.1. A collection {ρλ : 0F → H(Eλ)}λ, as λ varies over finite places
of E , of geometric Galois representations is ramification-compatible if there exist

(1) a finite set S of places of F such that each ρλ is unramified outside of S ∪ Sλ,
i.e., factors through

ρλ : 0F,S∪Sλ→ H(Eλ),

and for v in Sλ but not in S, ρλ|0Fv
is crystalline; and

(2) a central cocharacter ω : Gm,E → H and a collection of conjugacy classes

{[µτ : Gm,E → HE ]}τ :F↪→E

satisfying [µτ ]=ω·[µ−1
cτ ] for any choice of complex conjugation c∈Gal(E/Q),

such that for all E-embeddings ιλ : E ↪→ Eλ, inducing via τ some τιλ : Fv ↪→ Eλ,
the conjugacy class [µτ ⊗E,ιλ Eλ] is equal to the conjugacy class of τιλ-labeled
Hodge–Tate cocharacters associated to ρλ|0Fv

.

If a single representation ρλ satisfies the condition in item (1), we say ρλ has good
reduction outside S. If it satisfies the condition in item (2) (for some collection of
cocharacters ω, {µτ }), then we say it satisfies Hodge symmetry.

Remark 1.2. • Note that the ρλ need not be “compatible” in the usual sense
(frobenii acting compatibly): if the “coefficients” of the ρλ are bounded in a
rather strong sense — there exists a common number field over which their
frobenius characteristic polynomials are defined — one expects that our collec-
tion of ρλ should partition (dividing up the λ’s) into finitely many compatible
systems.2

• The Hodge symmetry requirement of part (2) of Definition 1.1 is not the most
general constraint that pertains to a compatible system of `-adic representations.
It will always hold for the λ-adic realizations of motives, as we will see in
Lemma 2.3, when we take the ambient group to be the motivic Galois group Gρ

of the underlying motivic Galois representation ρ, and not some larger group.
But there may be compatible systems (of motivic origin) where the criterion in
part (2) of Definition 1.1 fails; for example, consider ρ` :0Q→PGL3(Q`) given

2To see the relevance of bounding the coefficients, the reader may contrast the case of elliptic
curves (over Q, say) unramified outside S with that of all weight-two modular forms unramified
outside S: of the former there are finitely many isogeny classes, since the conductor is bounded,
whereas the latter can have level divisible by arbitrarily high powers of the primes in S.
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by the projectivization of κ`⊕ 1⊕ 1, with κ` denoting the `-adic cyclotomic
character. The relation [µτ ] = ω · [µ−1

cτ ] implies in this case [µτ ] = [µ−1
τ ],

which is false. A way around this is given in [Patrikis 2016c, §3.2], where the
Hodge symmetry hypothesis is formulated in a way that conjecturally holds for
any geometric representation ρ` : 0F → H(Q`), regardless of its (reductive)
algebraic monodromy group. The proof of [Patrikis 2016c, Theorem 3.2.10]
thus requires a slightly trickier group-theoretic argument than the one we
require here. We have opted in this paper to keep the simpler condition (2)
above, so as to focus on what is new in the arguments, and because of its
obvious centrality from a motivic point of view (in particular, its sufficiency
for Corollary 1.6).

Here is the main theorem:

Theorem 1.3. Let E be a number field, and let H̃ → H be a surjection of linear
algebraic groups over E with kernel equal to a central torus in H̃ . Let F be a
totally imaginary number field, and let S be a finite set of places of F containing the
archimedean places. Fix a set of cocharacters {µτ }τ :F↪→E satisfying the “Hodge
symmetry” condition of part (2) of Definition 1.1. Then there exists a finite set of
places P ⊃ S such that for any place λ of E , any embedding ιλ : E ↪→ Eλ, and any
geometric representation ρλ : 0F,S∪Sλ→ H(Eλ) such that

• ρλ has good reduction outside S, and

• the conjugacy classes of labeled Hodge–Tate cocharacters of ρλ are induced
via ιλ from {µτ }τ :F↪→E (again, see Definition 1.1 for details),

the representation ρλ admits a geometric lift ρ̃λ : 0F,P∪Sλ→ H̃(Eλ) having good
reduction outside P.

In particular, if {ρλ : 0F,S∪Sλ→ H(Eλ)}λ is a ramification-compatible system,
then there exist a finite set of places P ⊃ S and lifts ρ̃λ : 0F,P∪Sλ→ H̃(Eλ) such
that {ρ̃λ}λ is a ramification-compatible system.

Remark 1.4. All results of this paper, once we take into account the caveat of [Pa-
trikis 2016c, §2.8] (see too [Patrikis 2015, Proposition 5.5]), admit straightforward
variants when F has real places. Thus, for real F , the analogue of Theorem 1.3
either holds exactly as written, or after replacing F by any totally imaginary (e.g.,
composite with a quadratic imaginary) extension. We do not want to discuss this
at any length here, but we simply remind the reader that the prototypical example
in which F is totally real, and Theorem 1.3 fails as stated, is that of the projective
motivic Galois representation associated to a mixed-parity Hilbert modular form.

The proof of this theorem is completed in Theorem 1.3. The typical application
is to the collection of Galois representations {ρλ}λ associated to a motivic Galois
representation; we make this precise in Corollary 1.6.
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Next we describe applications of Theorem 1.3 to the more general problem
of lifting through surjections H ′→ H with central kernel of multiplicative type.
Here in general we cannot expect as strong a result as Theorem 1.3. First, the
Hodge–Tate cocharacters of ρλ may not lift to H ′, in which case there can be
no geometric lifts to H ′. Second, even if the Hodge–Tate cocharacters lift, the
Galois representations may only lift after a finite base change of F . For example,
if ρλ is the projectivization of the Galois representation associated to a weight
3 modular form, det(ρλ) : 0Q → E×λ does not admit a square root. A beautiful
result of Wintenberger [1995, Théorème 2.1.4, Théorème 2.1.7] shows that when
H ′→ H is an isogeny, a result similar to Theorem 1.3 holds, as long as in the
conclusion F is replaced by a suitable finite extension. Here we treat the general
case of multiplicative-type quotients:

Theorem 1.5 (see Corollary 3.18). Let H ′→ H be a surjection of linear algebraic
groups over E whose kernel is central and of multiplicative type. Let F be a number
field, and let S be a finite set of places of F containing the archimedean places.
Fix a set of cocharacters {µτ }τ :F↪→E as in part (2) of Definition 1.1, and moreover,
assume that each µτ lifts to a cocharacter of H ′.

Then there exist a finite set of places P ⊃ S, and a finite extension F ′/F , such
that any geometric representation ρλ : 0F,S∪Sλ → H(Eλ) having good reduction
outside S, and whose Hodge–Tate cocharacters arise from the set {µτ }τ :F↪→E via
some embedding E ↪→ Eλ, admits a geometric lift ρ̃λ : 0F ′,P∪Sλ→ H ′(Eλ) having
good reduction outside P.

In particular, if {ρλ : 0F,S∪Sλ→ H(Eλ)}λ is a ramification-compatible system
with Hodge cocharacters {µτ }τ :F↪→E , then there exist a finite set of places P ⊃ S,
a finite extension F ′/F , and lifts ρ̃λ : 0F ′,P∪Sλ → H ′(Eλ) such that {ρ̃λ}λ is a
ramification-compatible system.

We deduce Wintenberger’s original result in Corollary 3.16. Our proof differs in
an essential way, as it passes through Theorem 1.3, which cannot be deduced from
the methods of [Wintenberger 1995]. Our problem resembles Wintenberger’s in
that both lead to a basic difficulty of annihilating cohomological obstruction classes
in infinitely many Galois cohomology groups, one for each λ, but needing to do so
in an “independent-of-λ” fashion. The arguments themselves, however, are in fact
orthogonal to one another: Wintenberger always kills cohomology by making a
finite base change on F , whereas that is precisely what we are forbidden from doing
if we want the more precise results of Theorem 1.3. Moreover, our methods also
yield a novel proof of Tate’s original vanishing theorem (see Corollary 3.9). In fact,
Corollary 3.9 establishes a more precise form of Tate’s theorem: the latter of course
shows that the image under the canonical map H 2(0F,S,Z/N )→ H 2(0F ,Q/Z)

is zero, and our refinement quantifies how much additional ramification must be
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added, and how much the coefficients must be enlarged, in order to annihilate
H 2(0F,S,Z/N ). Our arguments thus achieve, from scratch, a satisfying common
generalization of the theorems of Wintenberger and Tate.

In Corollaries 3.12 and 3.14, we give a couple of applications to lifting λ-adic
realizations such that the associated “similitude characters” (e.g., determinant or
Clifford norm) of the lifts form strongly compatible systems. Note that even in the
case of the classical Kuga–Satake construction, this compatibility is only achieved as
a consequence of having an arithmetic descent of the (Hodge-theoretically defined)
Kuga–Satake abelian variety; such a descent depends on the deformation theory of
K3 surfaces and monodromy arguments (due to Deligne [1972] and André [1996a]).

Our final result is the promised motivic application:

Corollary 1.6. Let F be a totally imaginary number field, let E be a number field,
and let GF,E denote the motivic Galois group, defined by André’s motivated cycles,
of pure motives over F with coefficients in E (see Section 2). Let H̃ → H be a
surjection of linear algebraic groups over E whose kernel is a central torus in H̃ ,
and let ρ : GF,E → H be any motivic Galois representation, with associated λ-adic
realizations ρλ : 0F,S∪Sλ→ H(Eλ) for some finite set S of places of F. Then there
exist a finite, independent of λ, set P ⊃ S of places of F and, for all λ, lifts

H̃(Eλ)

��

0F,P∪Sλ ρλ
//

ρ̃λ

88

H(Eλ)

such that each ρ̃λ is de Rham at all places in Sλ, and is moreover crystalline at all
places in Sλ \ (Sλ ∩ P).

Now suppose H ′→ H is a surjection of linear algebraic groups whose kernel
is central but of arbitrary multiplicative type, and let ρ : GF,E → H again be a
motivic Galois representation. Assume that the labeled Hodge cocharacters of ρ
(see Definition 2.1) lift to H ′. Then there exist a finite set P ⊃ S of places of F , a
finite extension F ′/F , and, for all λ, lifts

H ′(Eλ)

��

0F ′,P∪Sλ ρλ|0F ′

//

ρ̃λ

88

H(Eλ)

such that ρ̃λ is de Rham at all places above Sλ, and is moreover crystalline at all
places above Sλ \ (Sλ ∩ P).
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Remark 1.7. Even admitting a strong finiteness conjecture, that there are finitely
many isomorphism classes of ρ (as in Corollary 1.6), having coefficients in E ,
prescribed Hodge–Tate cocharacters, and good reduction outside a fixed finite
set S, Theorem 1.3 still says rather more than Corollary 1.6, since even for fixed
λ it applies to infinitely many distinct ρλ simultaneously (because we have not
bounded the coefficients: recall the example of modular forms of weight two whose
nebentypus characters have unbounded conductor, even though supported on the
fixed finite set S of primes).

We close this introduction by emphasizing what we do not prove. The realiza-
tions {ρλ}λ of ρ should, moreover, form a weakly compatible system of Galois
representations in the sense that the conjugacy class of ρλ( f rv) is defined over
E and is suitably independent of λ (for v outside S ∪ Sλ), and in turn one would
hope to construct lifts ρ̃λ with the same frobenius compatibility. This problem
seems to be out of reach: I know of no way to establish such results using only
Galois-theoretic techniques, although indeed they would follow (assuming the
standard conjectures) from the generalized Kuga–Satake conjecture. Alternatively,
it is possible to establish results of this nature in settings where ρλ and ρ̃λ are
constructed as automorphic Galois representations: the most significant example
of this is the recent work of Kret and Shin [2016] associating GSpin-value Galois
representations to certain (discrete series at infinity, Steinberg at some finite place)
cuspidal automorphic representations of GSp2n(AF ), for F totally real. Crucially,
their construction uses the already-known construction of (SO2n+1-valued) Galois
representations for the restrictions of such automorphic representations to Sp2n(AF ),
so it is very much in the spirit of the generalized Kuga–Satake lifting problem.

2. Hodge symmetry

In this section we establish a motivic setting in which our general Galois-theoretic
results apply; this setting will both serve as motivation for subsequent sections
and allow us to deduce Corollary 1.6 from Theorem 1.3 (and Corollary 3.18). The
reader who does not find the motivic language illuminating can safely skip this
section.

Rather than working with (pure) homological motives and assuming the standard
conjectures, we work with a category of motives that is unconditionally semisim-
ple and Tannakian — and in which we can prove unconditional results — but that
would, under the standard conjectures, turn out to be equivalent to the category
of homological motives. Namely, let MF,E denote André’s category of motivated
motives over F with coefficients in E ; see [André 1996b]. We begin by elaborating
on the consequences of Hodge symmetry in MF,E . Throughout this discussion, it
will be convenient to fix embeddings τ0 : F ↪→ E and ι∞ : E ↪→ C. The composite
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ι∞τ0 : F ↪→C yields a Betti fiber functor Hι∞τ0 :MF,E→VectE , making MF,E into
a neutral Tannakian category over E . We denote by G = GB(ι∞τ0) the associated
Tannakian group (tensor automorphisms of the fiber functor), so that Hι∞τ0 induces
an equivalence of tensor categories MF,E

∼
−→ Rep(G).

We will consider other cohomological realizations on MF,E , and their compar-
isons with the Betti fiber functor. Let HdR :MF,E → FilF⊗Q E denote the de Rham
realization, taking values in filtered F ⊗Q E-modules, and for each place λ of E ,
let Hλ denote the λ-adic realization, which takes values in finite Eλ-modules with
a continuous action of 0F . For all embeddings τ : F ↪→ E , we obtain an E-valued
fiber functor

ωdR,τ : M 7→ gr•(eτ HdR(M)),

where eτ is the idempotent induced by τ⊗1 :F⊗Q E→E . Let GdR(τ )=Aut⊗(ωdR,τ)

be the associated Tannakian group over E . Of course this fiber functor factors
through the category GrE of graded E-vector spaces

MF,E

##

// GrE

||

VectE

so we obtain a corresponding homomorphismµτ :Gm,E→GdR(τ ). Without specify-
ing τ , we obtain a fiber functor (see [Deligne and Milne 1982, §3]) ωdR=gr• HdR on
MF,E valued in projective F⊗Q E-modules. By [loc. cit., Theorem 3.2], the functor
Hom⊗(Hι∞τ0, ωdR) is a G-torsor over F⊗Q E . In particular, for all τ : F ↪→ E , we
can choose a point of Hom⊗(Hι∞τ0⊗E E, ωdR,τ ) to induce a cocharacter µτ of GE ,
and the conjugacy class [µτ ] of µτ is independent of this choice.

Definition 2.1. For each τ : F ↪→ E , we call any µτ : Gm,E → GE as above
a τ -labeled Hodge cocharacter; it is a representative of the conjugacy class of
cocharacters [µτ ], the latter being canonically independent of any of the above
choices of isomorphisms of fiber functors.

Lemma 2.2. For all σ ∈Gal(E/E), [µτ ]= [µστ ]. In particular, [µτ ] only depends
on the restriction of τ to the maximal CM (or totally real) subfield Fcm of F.

Proof. We decompose F ⊗Q E =
∏

i Ei into a product of fields, writing pi for
the projection onto Ei . Any E-algebra homomorphism τ : F ⊗Q E→ E factors
through pi(τ ) for a unique i(τ ), and then the Gal(E/E)-orbit of τ is precisely those
E-algebra homomorphisms (i.e., embeddings F ↪→ E) τ ′ : F ⊗Q E→ E such that
i(τ )= i(τ ′). The first claim follows, since both ωdR,τ and ωdR,σ τ can be factored
through pi(τ ) ◦ωdR . The second claim follows from the first, and the fact that all
motives arise by scalar extension from motives with coefficients in CM (or totally
real) fields [Patrikis 2016c, Lemma 4.1.22]. �



Kuga–Satake theory and reduction properties of Galois representations 2405

Next note that the canonical weight-grading on MF,E induces a central weight
homomorphism

ω : Gm,E → G,

and likewise for any other choice of fiber functor and Tannakian group (because ω is
central, it is in fact canonically independent of any choice of isomorphism between
fiber functors). Hodge symmetry then results from the complex conjugation action
on Betti cohomology, interpreted via the Betti–de Rham comparison isomorphism,
which is a distinguished C-point of Hom⊗(ωdR,τ ⊗E,ι∞ C, Hι∞τ ⊗E,ι∞ C). Namely,
complex conjugation on complex-analytic spaces induces (see [Patrikis 2016c,
Lemma 4.1.24]) natural isomorphisms (without restricting to particular graded
pieces for the weight and Hodge filtrations, these are isomorphisms of fiber functors
over C)

grp(eτ Hw
dR(M))⊗E,ι∞ C ∼

−→ grw−p(ecτ Hw
dR(M)⊗E,ι∞ C), (1)

where c ∈Aut(E) is the choice of complex conjugation for which ι∞τ = ι∞cτ . We
deduce the following relation:

Lemma 2.3. For any embedding τ : F ↪→ E , and any choice of complex conjugation
c ∈ Aut(E), the conjugacy classes of cocharacters [µτ ] and [µcτ ] satisfy

[µτ ] = ω · [µ
−1
cτ ],

where ω is the weight cocharacter.

Proof. For the choice of complex conjugation specified by ι∞τ = ι∞cτ , the relation
[µτ ] = ω · [µ

−1
cτ ] follows, after base extension ι∞ : E→C, from (1) above; but this

relation necessarily descends to E , since the conjugacy classes of cocharacters are
defined over any algebraically closed subfield of C. It only remains to observe that
[µcτ ] is independent of the choice of complex conjugation on E . This follows from
the second assertion of Lemma 2.2. �

The comparison isomorphisms of p-adic Hodge theory then imply that the
analogue of Lemma 2.3 also holds for the associated Hodge–Tate cocharacters.
For any place λ of E , fix an algebraic closure Eλ. Embeddings τ : F ↪→ E and
ιλ : E ↪→ Eλ then induce τιλ : Fv ↪→ Eλ for a suitable place v of F of the same residue
characteristic p as λ. Meanwhile, the restriction to 0Fv of the λ-adic realization
induces

MF,E
Hλ|0Fv
−−−−→ RepdR

Eλ(0Fv )
DdR
−−→ FilFv⊗Qp Eλ

eτιλ
−−→ FilEλ

gr
−−→GrEλ −→VectEλ, (2)

where DdR : RepdR
Eλ(0Fv )→ FilFv⊗Qp Eλ denotes Fontaine’s functor restricted to the

category of de Rham representations. (Here we have invoked Faltings’ p-adic de
Rham comparison isomorphism from [Faltings 1989], and the fact — already noted
by André [1996b] — that it extends to a comparison isomorphism on all of MF,E ;
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for details of the latter point, see [Patrikis 2016c, Lemma 4.1.25].) Of course,
RepdR

Eλ(0Fv ) also has its standard forgetful fiber functor (let us say Eλ-valued),
yielding a Tannakian group 0dR

v,λ for de Rham 0Fv -representations over Eλ; by
choosing an isomorphism between the two Eλ-valued fiber functors on RepdR

Eλ(0Fv ),
we obtain a canonical conjugacy class (recalling [Deligne and Milne 1982, Theorem
3.2]) of “τιλ-labeled Hodge–Tate cocharacters” [µτιλ ] of 0dR

v,λ. Specializing, this
construction defines the labeled Hodge–Tate cocharacters of any de Rham Galois
representation ρ : 0Fv → H(Eλ), for any affine algebraic group H over Eλ.

To relate the τιλ-labeled Hodge–Tate cocharacters in the motivic setting to
the Hodge cocharacters previously discussed, note that the de Rham compari-
son isomorphism [Faltings 1989] yields a natural isomorphism of tensor functors
MF,E → GrEλ :

gr(eτ (HdR(M)⊗E E)⊗E,ιλ Eλ)∼= gr(eτιλ(DdR(Hλ(M)|0Fv
)⊗Eλ Eλ)).

We deduce the following corollary.

Corollary 2.4. For any embedding τ : F ↪→ E , and any embedding ιλ : E ↪→ Eλ,
there is an equality of conjugacy classes

[µτ ⊗E,ιλ Eλ] = [µτιλ ].

In particular, for all λ, and for all E-embeddings ιλ : E ↪→ Eλ, the conjugacy
classes [µτιλ ] are independent of (λ, ιλ) when regarded as valued in the common
group GE .

3. Lifting

In this section we prove our main results. First we recall the setting and some
notational conventions that will be in effect for the rest of the paper.

Let F be a totally imaginary field (see Remark 1.4), let S be a finite set of places
of F containing the infinite places, and let E be any number field. Fix an algebraic
closure F , and set 0F = Gal(F/F). We write F(S) for the maximal extension of
F inside F that is unramified outside of S, and we set 0F,S = Gal(F(S)/F). We
denote the ring of S-integers in F by OF [1/S]. We also set FS =

∏
v∈S Fv . If L is

a finite extension of F (inside F), we then abusively continue to write S for the
set of all places of L above those in S, with corresponding notation L(S), 0L ,S ,
etc. For a place λ of E , let Sλ denote the set of places of F with the same residue
characteristic as λ. We freely use the terminology established in Definition 1.1.

Torus quotients. In this subsection we prove Theorem 1.3. We begin in the next
few paragraphs by gathering together all of the “independent of λ and ρλ” data,
and the auxiliary constructions we make on top of this data. Continuing with
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F , S, and E as above, also fix a surjection H̃ → H of linear algebraic groups
over E whose kernel is a central torus, which we denote by C . (We will without
comment also write C for the base change to various algebraically closed fields
containing E .) Next fix an isogeny complement H1 of C in H̃ (for existence of
such H1, see [Conrad 2011, Proposition 5.3, Step 1]); thus, H1 ·C = H̃ , and H1∩C
is finite. For technical reasons, we will later want to include all primes dividing
#(H1∩C)(E) in the set of bad primes S; this will be indicated at the necessary point
(see the discussion following Lemma 3.5), but it does no harm simply to add these
primes to S from now. Consider the quotient map ξ : H̃ → H̃/H1; Z̃∨ = H̃/H1 is
a torus, and there is an isogeny C→ Z̃∨, with kernel C ∩ H1. Fix a split torus Z̃
over F whose dual group (constructed over E) is isomorphic to Z̃∨⊗E E , and fix
such an identification (implicit from now on).

Fix a set of cocharacters {µτ : Gm,E → HE }τ :F↪→E , and a central cocharacter
ω : Gm,E → HE , satisfying the Hodge symmetry requirement of item (2) of
Definition 1.1. Denote by Fcm the maximal CM subfield of F . The condition
in Definition 1.1 implies that the cocharacter µτ depends only on the restriction of τ
to Fcm ; we denote this restriction by τcm : Fcm ↪→ E . We fix a set of representatives
I of Hom(Fcm, E) modulo complex conjugation, and for each σ ∈ I , we fix a lift
µ̃σ to H̃ of µσ , as well as a (central) lift ω̃ of ω. Note that this is possible, because
C is a torus. If τ : F ↪→ E restricts to a σ ∈ I , we then set µ̃τ = µ̃σ ; if not, then
cτ : F ↪→ E restricts to a σ ∈ I , and we then set µ̃τ = ω̃µ̃σ−1.

Lemma 3.1. Fix once and for all an embedding ι∞ : E ↪→ C. There exists an
algebraic automorphic representation ψ of Z̃(AF ) such that for all τ : F ↪→ E ,
inducing τι∞ : Fv ↪→C by composition with ι∞, the local component ψv : F×v →C×

is given by
ψv(z)= τι∞(z)

ξ(µ̃τ )τι∞(z)
ξ(µ̃cτ ).

(Recall that ξ is the quotient H̃ → Z̃∨.)

Proof. We readily reduce to the case Z̃ = Gm , where it follows from the description,
due to Weil [1956], of the possible archimedean components of algebraic Hecke
characters. (This is where Hodge-symmetry is required.) �

From now on we fix such a ψ , and we let T denote the finite set of places of F
such that ψ is unramified outside T . For any embedding ιλ : E ↪→ Eλ, we can then
consider the λ-adic realization3

ψιλ : 0F,T∪Sλ→ Z̃∨(Eλ).

Each ψιλ is a geometric Galois representation, with good reduction outside T , and
for any τ : F ↪→ E , inducing τιλ : Fv ↪→ Eλ, the Hodge–Tate cocharacter of ψιλ
associated to τιλ is ξ(µ̃τ )⊗E,ιλ Eλ.

3To be precise, this depends on ι∞ and ιλ; but ι∞ is fixed throughout the paper.
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Now we consider any geometric representation

ρλ : 0F,S∪Sλ→ H(Eλ)

having good reduction outside S, along with an embedding ιλ : E ↪→ Eλ such that the
Hodge–Tate cocharacters of ρλ arise from the collection {µτ : Gm,E → HE }τ :F↪→E
via ιλ. Because the kernel of H̃ → H is a central torus, a fundamental theorem
of Tate (see [Serre 1977, §6]) ensures in this case that ρλ, as a representation
of 0F , lifts to H̃ . As we will see, our arguments in fact imply Tate’s theorem
(Corollary 3.9), so we do not need to assume it in what follows.

We can define an obstruction class O(ρλ) to lifting ρλ to a continuous represen-
tation 0F,S∪Sλ→ H1(Eλ) in the usual way: choose a topological (but not group-
theoretic) lift ρ ′λ, and then form the 2-cocycle (g, h) 7→ ρ ′λ(gh)ρ ′λ(h)

−1ρ ′λ(g)
−1,

defining
O(ρλ) ∈ H 2(0F,S∪Sλ, H1 ∩C).

Here and in what follows, we simply write H1 ∩C for the Eλ-points of this finite
group scheme.

Remark 3.2. Here lies the essential difficulty to be overcome: while Tate’s theo-
rem allows us to annihilate the cohomology classes O(ρλ)— after allowing some
additional ramification and enlarging the subgroup H1∩C of C — we have to carry
out this annihilation in a way that is independent of λ, and moreover, for fixed λ
independent of ρλ. Simultaneous annihilation of the O(ρλ) using only a uniform,
finite enlargement of the allowable ramification set and of the subgroup of C in fact
does not seem to be possible; we will as a first step have to define modified versions
of these obstruction classes that take into account the Hodge numbers of ψ .

Before proceeding, we reinterpret the obstruction O(ρλ) (we will only use the
local version of what follows; in particular, the arguments of the present section
depend only on the local version of Tate’s theorem, which is an almost immediate
consequence of local duality).

Lemma 3.3. Let v be a finite place of F , and suppose that ρ̃λ : 0Fv → H̃(Eλ)
is any continuous homomorphism lifting ρλ|0Fv

. Then O(ρλ)|0Fv
is equal to the

inverse of O(ξ(ρ̃λ)), the obstruction associated to lifting ξ(ρ̃λ) : 0Fv → Z̃∨(Eλ)
to C. (The same holds if we replace 0Fv by 0F , but we do not require this.)

Proof. Before beginning the proof proper, we make precise our convention for
coboundary maps: the inverse appearing in the conclusion of the lemma is crucial,
and it is easy to get confused if one is not careful with the definitions. Let 0 be a
group and M a (for simplicity) trivial 0-module. For a function α : 0n

→ M , set

δ(α)(g1, . . . , gn+1)= α(g2, . . . , gn)+

n∑
i=1

(−1)iα(g1, . . . , gi gi+1, . . . , gn+1)

+ (−1)n+1α(g1, . . . , gn).
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For n= 1, this says δ(α)(g, h)= α(h)α(gh)−1α(g), and in the situation considered
above (g, h) 7→ ρ ′λ(gh)ρ ′λ(h)

−1ρ ′λ(g)
−1 is in fact a 2-cocycle.

Tate’s theorem implies that, for sufficiently large m, the image of O(ρλ) in
H 2(0Fv ,C[m]) vanishes, i.e., O(ρλ)= δ(φ) for some φ :0Fv→C[m]. The product
ρ ′λ ·φ is then a homomorphism 0Fv→ (H1 ·C[m])(Eλ) lifting ρλ; we set ρ̃λ= ρ ′λ ·φ.
Clearly ξ(ρ̃λ) = ξ(φ), and then O(ξ(ρ̃λ)) is (tautologically) represented by the
cocycle (g,h) 7→φ(gh)φ(h)−1φ(g)−1, i.e., by δ(φ)−1

=O(ρλ)−1
∈Z2(0F ,H1∩C).4

This proves the claim for our particular lift ρ̃λ, but any other lift ρ̃1
λ gives rise to the

same obstruction O(ξ(ρ̃1
λ)). (The global claim holds for the same reasons, if we

admit the global version of Tate’s theorem.) �

To address the difficulty indicated in Remark 3.2, we begin by using the abelian
representations coming from ψ to construct a second obstruction class. Namely,
consider the realization ψιλ , which, for notational simplicity, from now on we
simply denote by ψλ. The automorphic representation ψ is unramified outside the
finite set of places T of F , so ψλ is a geometric representation 0F,T∪Sλ→ Z̃∨(Eλ),
which has good reduction outside T (i.e., is crystalline at primes of Sλ not in T ).
Via the isogeny C → Z̃∨, we can then form a cohomology class measuring the
obstruction to lifting ψλ to C : let ψ ′λ denote a topological lift 0F,T∪Sλ→ C(Eλ),
defining as before a cohomology class

O(ψλ) ∈ H 2(0F,T∪Sλ, H1 ∩C).

We can in turn define (via inflation) a cohomology class

O(ρλ, ψλ)=O(ρλ) ·O(ψλ) ∈ H 2(0F,S∪T∪Sλ, H1 ∩C),

which is represented by the 2-cocycle (recall that C is central in H̃ )

(g, h) 7→ (ρ ′λ ·ψ
′

λ)(gh)(ρ ′λ ·ψ
′

λ)(h)
−1(ρ ′λ ·ψ

′

λ)(g)
−1.

(Note, however, that the function g 7→ (ρ ′λ ·ψ
′

λ)(g) is valued in H̃ , not in H1.)
We need one more lemma before getting to the crucial local result (Lemma 3.5).

Lemma 3.4. For all places v ∈ Sλ, and for any choice of embedding ιλ : E ↪→ Eλ,
there exists a de Rham lift

H̃(Eλ)

��

0Fv ρλ
//

ρ̃λ

::

H(Eλ)

of ρλ|0Fv
such that for all embeddings τλ : Fv ↪→ Eλ, the τλ-labeled Hodge–Tate

4Note that φ is valued in C[m], not H1∩C , so δ(φ) need not be a coboundary in Z2(0Fv , H1∩C).
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cocharacter of ρ̃λ is (conjugate to) µ̃τ ⊗E,ιλ Eλ, where τ : F ↪→ E is defined by the
diagram

Fv
τλ
// Eλ

F

OO

τ
// E

ιλ

OO

Moreover, if ρλ is crystalline, then ρ̃λ may be taken to be crystalline.

Proof. For each τλ : Fv ↪→ Eλ, set for notational simplicity µ̃τλ = µ̃τ ⊗E,ιλ Eλ,
where τ is determined as in the diagram, and where µ̃τ is the lift of µτ we have
fixed above. The proof of [Patrikis 2016c, Corollary 3.2.12] shows that for any
collection of cocharacters lifting the Hodge cocharacters of ρλ, and in particular
for our µ̃τλ , there exists a Hodge–Tate lift ρ̃λ : 0Fv → H̃(Eλ) whose τλ-labeled
Hodge–Tate cocharacter is µ̃τλ . Now consider the isogeny lifting problem

H̃(Eλ)

��

0Fv
(ρλ,ξ(ρ̃λ))

//

55

H(Eλ)× Z̃∨(Eλ)

Since (ρλ, ξ(ρ̃λ)) admits a Hodge–Tate lift (namely, ρ̃λ), and is itself de Rham (ρλ is
de Rham by assumption, and any abelian Hodge–Tate representation is de Rham),
we can apply [Conrad 2011, Corollary 6.7] to deduce the existence of a de Rham
lift ρ̃ ′λ, which clearly has the same Hodge–Tate cocharacters as ρ̃λ, since they differ
by a finite-order twist. If we further assume ρλ is crystalline, then we need only a
minor modification to this argument: some power ξ(ρ̃λ)d is crystalline, so if we
instead consider the problem of lifting the crystalline representation (ρλ, [d]ξ(ρ̃λ))
through the composite isogeny

H̃ → H × Z̃∨
id×[d]
−−−−→ H × Z̃∨,

then again [Conrad 2011, Corollary 6.7] applies to produce a crystalline lift of ρλ
with the desired Hodge–Tate cocharacters. �

Here is the key lemma:

Lemma 3.5. For any place v∈ Sλ not belonging to the finite set S∪T , the restriction
O(ρλ, ψλ)|0Fv

is trivial.

Proof. Under the assumption on v, both ρλ and ψλ are crystalline at v. Lemma 3.4
above shows that ρλ|0Fv

admits a crystalline lift ρ̃λ : 0Fv→ H̃(Eλ) such that ξ(ρ̃λ)
has the same (labeled) Hodge–Tate cocharacters as ψλ|0Fv

. Since they are both
crystalline, it follows (see [Chai et al. 2014, 3.9.7 Corollary]) that ξ(ρ̃λ) ·ψ−1

λ |0Fv
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is unramified; this is an elaboration of the familiar fact that a crystalline character
whose Hodge–Tate weights are zero must be unramified. In particular, replac-
ing the initial lift ρ̃λ|0Fv

by an unramified twist, we may assume ξ(ρ̃λ) = ψλ
as homomorphisms 0Fv → Z̃∨(Eλ). But recall that Lemma 3.3 implies that
O(ρλ)=O(ξ(ρ̃λ))−1, so we deduce that O(ρλ) ·O(ψλ)|0Fv

is trivial. �

Since the set of places S ∪ T is finite, by the local version of Tate’s theorem, the
vanishing of H 2(0Fv ,Q/Z) for all places v of F , we may enlarge H1 ∪C to some
C[m] inside the torus C so as to kill the image of H 2(0Fv,H1∩C)→H 2(0Fv,C[m])
for all v ∈ S∪ T . (We emphasize that m only depends on the set of places S∪ T of
F and the finite group H1 ∩C .) It follows then from Lemma 3.5 that if λ does not
belong to S ∪ T , then O(ρλ, ψλ) in fact belongs to

X2
S∪T∪Sλ(F,C[m])= ker

(
H 2(0F,S∪T∪Sλ,C[m])→

⊕
v∈S∪T∪Sλ

H 2(0Fv ,C[m])
)
.

We can moreover guarantee that this holds regardless of λ by an additional finite
enlargement of m (since the number of exceptional λ is finite). Furthermore, by
including the primes dividing #(H1 ∩C) in S ∪ T (if necessary), we can assume
that m is divisible only by primes in S ∪ T . (Note that inflation to allow additional
primes of ramification still has image in the corresponding Shafarevich–Tate group,
since 0Fv/IFv has cohomological dimension one for all finite places v.) Thus, after
these uniform enlargements of m and S∪T (which we do not reflect in the notation),
we have O(ρλ, ψλ) ∈X2

S∪T∪Sλ(F,C[m]).
We are now in a position to apply global duality to analyze the cohomology

group X2
S∪T∪Sλ(F,C[m]). We will need, however, to allow still more primes of

ramification in order to kill the class O(ρλ, ψλ); the following crucial lemma allows
us to do this in a way that does not depend on λ, but before stating the lemma, we
have to recall the Grunwald–Wang theorem (in a somewhat specialized form).

Theorem 3.6 (Grunwald–Wang; see Theorem X.1 of [Artin and Tate 1968]). Let F
be a number field, and let m be a positive integer. Then an element x ∈ F× belongs
to (F×)m if and only if x is in (F×v )

m for all places v of F , except when all three of
the following conditions, referred to as the special case, hold for the pair (F,m):

• Let sF denote the largest integer r such that ηr = ζ2r + ζ−1
2r is an element of

F (here ζ2r denotes a primitive 2r-th root of unity). Then −1, 2+ ηsF , and
−(2+ ηsF ) are nonsquares in F.

• ord2(m) > sF .

• The set of 2-adic places of F at which −1, 2 + ηsF , and −(2 + ηsF ) are
nonsquares in F is empty.
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In the special case, the element (2+ ηsF )
m/2 is the unique (up to (F×)m-multiple)

counterexample to the local-global principle for m-th powers in F×.

Here is the lemma:

Lemma 3.7. Recall that S ∪ T is a fixed finite set of places of the number field F ,
and that m is a fixed integer. Let V be a finite set of finite places of F such that

• all elements of V are unramified in F(µm),

• the places of F(µm) lying above V generate the class group of F(µm), and

• every element of Gal(F(µm)/F) is equal to a (geometric, say) frobenius
element at v for some v ∈ V .

Then for all places λ of E we can deduce:

(1) If (F,m) is not in the Grunwald–Wang special case, X2
S∪T∪V∪Sλ(F,C[m]) is

trivial.

(2) If (F,m) is in the Grunwald–Wang special case, then the image of the canoni-
cal map

X2
S∪T∪V∪Sλ(F,C[m])→X2

S∪T∪V∪Sλ(F,C[2m])

is trivial.

Proof. First note that such sets V exist, by finiteness of the class number and the
Čebotarev density theorem. Since (all places of F above) the primes dividing m are
contained in S∪T , an application of Poitou–Tate duality immediately reduces us to
showing (as a Galois module, C[m] is dim(C) copies of Z/m) the following cases:

(1) If (F,m) is not in the Grunwald–Wang special case, then

X1
S∪T∪V∪Sλ(F, µm)= 0.

(2) If (F,m) is in the special case, then the map

X1
S∪T∪V∪Sλ(F, µ2m)→X1

S∪T∪V∪Sλ(F, µm)

induced by µ2m
2
−→µm is zero.

We first restrict to 0F(µm),S∪T∪V∪Sλ (note that this is actually restriction to a sub-
group, since F(µm)/F is ramified only at primes in S ∪ T ), obtaining an element
of X1

S∪T∪V∪Sλ(F(µm), µm). After this restriction, as we will see, the Grunwald–
Wang theorem does not intervene.

To lighten the notation in the rest of the proof, we define L = F(µm) and
Qλ = S ∪ T ∪ V ∪ Sλ. We also refer the reader to the notation established at the
beginning of Section 3. Recall that F(Qλ) denotes the maximal extension of F
inside F that is unramified outside Qλ; it contains L . Let OF(Qλ) denote the ring
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of Qλ-integers in F(Qλ) (i.e., the elements of F(Qλ) that are integral outside of
places above Qλ). We then have an exact (Kummer theory) sequence

1→ µm→O×F(Qλ)

m
−→O×F(Qλ)

→ 1,

and the corresponding long exact sequence in 0L ,Qλ
-cohomology yields an isomor-

phism
OL

[ 1
Qλ

]×
/
(
OL

[ 1
Qλ

]×)m
∼
−→ H 1(0L ,Qλ

, µm);

critically, surjectivity here follows from the vanishing of H 1(0L ,Qλ
,O×F(Qλ)

), which
itself is a consequence of the natural isomorphism ClQλ

(L)∼= H 1(0L ,Qλ
,O×F(Qλ)

)

[Neukirch et al. 2000, Proposition 8.3.11(ii)] and our assumption that V (and hence
Qλ) generates the class group of L . Restricting the Kummer theory isomorphism to
classes that are locally trivial at each place of Qλ, we also obtain the isomorphism(

OL

[ 1
Qλ

]×
∩ (L×Qλ

)m
)
/
(
OL

[ 1
Qλ

]×)m
∼
−→X1

Qλ
(L , µm).

We claim these groups are trivial. Indeed, take α ∈OL [1/Qλ]
×
∩ (L×Qλ

)m , and
consider the (abelian) extension L(α1/m)/L . Global class field theory yields the
reciprocity isomorphism

A×L /
(
L×NL(α1/m)/L(A

×

L(α1/m)
)
)
∼
−→ Gal(L(α1/m)/L),

but by assumption the source of this map admits a surjection

A×L /

(
L×L×

∞
L×Qλ

∏
w 6∈Qλ

O×Lw

)
� A×L /

(
L×NL(α1/m)/L(A

×

L(α1/m)
)
)
.

(At unramified places, the image of the norm map contains the local units; and at
places in Qλ, L(α1/m)/L is split.) By assumption (ClQλ

(L)= 0), the source of this
surjection is trivial, so L(α1/m)= L , and we deduce that X1

Qλ
(L , µm)= 0.

It follows that inflation identifies the group X1
Qλ
(F, µm) with the classes in

H 1(Gal(L/F), µm) that are trivial upon restriction to Qλ. Since every element
of Gal(L/F) is a frobenius element at some prime in V ⊂ Qλ, X1

Qλ
(F, µm) is

actually equal to the set of everywhere locally trivial classes

X1
|F |(F, µm) := ker

(
H 1(0F , µm)→

∏
v∈|F |

H 1(0Fv , µm)

)
,

where |F | denotes the set of all places of F . This is precisely the subject of
the Grunwald–Wang theorem, and it is zero if (F,m) is not in the special case.
Thus, we need only consider the possibility that (F,m) is in the special case, where
X1
|F |(F, µm) has order two, and a representative of the nontrivial class is the (image

under the Kummer map of the) element (2+ ηsF )
m/2 of (F×)m/2. This description
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holds regardless of m, so in particular the nontrivial class of X1
|F |(F, µ2m) is

represented by (2+ ηsF )
m . Its image under µ2m

2
−→ µm , which via Kummer theory

is induced by the identity map F×→ F×, is again (2+ηsF )
m , which is now visibly

an m-th power, completing the proof.5 �

We summarize our conclusion, noting that the value of m in the following
corollary may be 2m in the earlier notation:

Corollary 3.8. There is an integer m and a finite set of places Q ⊃ S ∪ T , both
independent of λ and of the choice of ρλ having good reduction outside S and the
prescribed Hodge–Tate cocharacters {µτ }τ :F↪→E , such that the image of O(ρλ, ψλ)
in H 2(0F,Q∪Sλ,C[m]) is zero.

Before proceeding, it is worth noting that the argument just given yields a novel
proof of the global version of Tate’s vanishing theorem (taking as input the much
easier local theorem); it is also a stronger proof, yielding an explicit upper bound
on how much ramification has to be allowed, and how much the coefficients need
to be enlarged, in order to kill a cohomology class in H 2(0F,V ,Z/N ) for some
finite set of places V and integer N .

Corollary 3.9. Let V be a finite set of places of F , and let N be an integer. Then
the image of H 2(0F,V ,Z/N ) in H 2(0F,V∪W ,Z/2NM) is trivial, where

• M is large enough that for all v ∈ V , the image of

H 2(0Fv ,Z/N )→ H 2(0Fv ,Z/NM)

is zero,6 and

• once M is fixed as above, W is large enough that

– V ∪W contains (all places above) 2NM ,
– ClV∪W (F(µNM))= 0, and
– each element of Gal(F(µNM)/F) is equal to a frobenius element at w for

some w ∈W .

(The factors of two are only necessary in the Grunwald–Wang special case.) In
particular, H 2(0F ,Q/Z)= 0.

Remark 3.10. A different proof of Tate’s theorem (without arithmetic duality
theorems, but instead relying on a finer study of Hecke characters of F) is given in
[Serre 1977, §6.5]. There Serre remarks that Tate originally proved the vanishing
theorem using global duality, but further assuming Leopoldt’s conjecture; we have
of course circumvented Leopoldt here.

5In concrete terms, this says that if an element of F× is everywhere locally a (2m)-th power, then
it is globally an m-th power.

6This is easy to make explicit, using local duality, in terms of µ∞(Fv).
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Now we return to the conclusion of Corollary 3.8. Let bλ : 0F,Q∪Sλ→ C[m] be
a cochain trivializing O(ρλ, ψλ). Then

ρ̃λ = ρ
′

λ ·ψ
′

λ · bλ : 0F,Q∪Sλ→ H̃(Eλ)

is a homomorphism lifting ρλ. We claim that ρ̃λ is, moreover, de Rham at all places
in Sλ. To see this, note that under the isogeny H̃ → H × Z̃∨, ρ̃λ pushes forward
to (ρλ, ψλξ(bλ)), the second coordinate being a finite-order twist of ψλ (and in
particular, de Rham). But now we can invoke the local results of Wintenberger
[1995, §1] and Conrad [2011, Theorem 6.2], asserting that a lift of a de Rham repre-
sentation through an isogeny is de Rham if and only if the Hodge–Tate cocharacter
lifts through the isogeny (which is obviously the case here, as ψ was constructed to
ensure this).

Finally, we can refine this to the statement that ρλ admits a geometric lift that
is moreover crystalline at all places of Sλ, provided Sλ does not intersect a certain
finite set of primes that is independent of λ and ρλ (but somewhat larger than the
set Q we have thus far constructed). This will complete the proof of Theorem 1.3.

Proof of Theorem 1.3. We resume the above discussion. So far we have a constructed
geometric lifts ρ̃λ :0F,Q∪Sλ→ H̃(Eλ), where Q contains S∪T and whatever other
additional primes are needed for the conclusion of Corollary 3.8. The only remaining
task is to show that for some (independent of ρλ) set P , we can modify the initial
lift (by a finite-order twist) to guarantee that it has good reduction outside P . Under
the isogeny H̃ → H × Z̃∨/ξ(C[m]), ρ̃λ pushes forward to

τλ := (ρλ, ψλ mod ξ(C[m])),

which is crystalline for all v in Sλ but not in S ∪ T . For all v ∈ Sλ \ (Sλ ∩ (S ∪ T )),
ρ̃λ|0Fv

is of course a de Rham lift of τλ, so [Conrad 2011, Theorem 6.2 and
Corollary 6.7] (building on [Wintenberger 1995]) shows that τλ|0Fv

admits some
crystalline lift τ̃λ,v : 0Fv → H̃(Eλ), and therefore there are finite-order characters
χλ,v : 0Fv → C[m] such that each ρ̃λ|0Fv

·χλ,v is crystalline. We wish to glue the
inertial restrictions χλ,v|IFv

together into a global character, with an independent-
of-λ control on the ramification. The cokernel of the restriction map

Hom(0F,Q∪Sλ,C[m])→
⊕
v∈Sλ

Hom(IFv ,C[m])0Fv /IFv (3)

may be nontrivial;7 but we will show that any element of the cokernel is annihilated
by appropriate enlargements of Q and m.

7Of course, we only need to consider the cokernel of the map to the direct sum over
v ∈ Sλ \ (Sλ ∩ (S ∪ T )); to lighten the notation we will work with all v ∈ Sλ, taking some arbitrary
(e.g., trivial) choice of χλ,v at any places in (S ∪ T )∩ Sλ.



2416 Stefan Patrikis

By the congruence subgroup property for GL1 (a theorem of Chevalley [1951]),
there is an ideal n of OF such that

{x ∈O×F : x ≡ 1 (mod n)} ⊆ (O×F )
m .

Let R be the set of primes supporting n (note that n and R are independent of ρλ!),
and set

UR =

{
(xv)v∈R ∈

∏
v∈R

O×Fv : xv ≡ 1 (mod n) for all v ∈ R
}
.

Then whenever Sλ ∩ R =∅ (so, excluding a finite number of bad λ), consider the
character (here and in what follows, we suppress the class field theory identifications)

(χλ,v)v∈Sλ × 1× 1× 1 :
∏
v∈Sλ

O×Fv ×
∏
v∈R

UR ×
∏

v 6∈R∪Sλ

O×Fv × F×
∞
→ C[m],

which extends by 1 to a character(∏
v∈Sλ

O×Fv ×
∏
v∈R

UR ×
∏

v 6∈R∪Sλ

O×Fv × F×
∞

)
· F×→ C[m]

(an element of the intersection is a global unit congruent to 1 modulo n, hence is
contained in (O×F )

m , where χλ,v is obviously trivial). We can then extend from this
finite-index subgroup of A×F to a character χλ : A×F /F×→ µ∞(C). In fact, we see
that χλ can be chosen to be valued in C[M] for m sufficiently large but independent
of λ: m can be quantified in terms of the generalized class group of level UR , but
the details do not concern us.

Replacing ρ̃λ by its finite-order twist

ρ̃λ ·χλ : 0F,Q∪R∪Sλ→ H̃(Eλ),

we have achieved geometric lifts of ρλ with compatible Hodge–Tate cocharacters,
and which are crystalline at all places in Sλ outside of R ∪ S ∪ T . �

Remark 3.11. Contrast the final step [Wintenberger 1995, §2.3.5] of Winten-
berger’s main theorem, where to ensure crystallinity of the lifts he makes a further
finite base change on F (having already made several such in order to show lifts
exist, as is necessary in his isogeny setup), adding appropriate roots of unity and
then passing to a Hilbert class field to kill a cokernel analogous to that of (3). As
elsewhere, our argument is orthogonal to Wintenberger’s, in allowing additional
ramification and larger coefficients, rather than passing to a finite extension of F .

We now deduce some corollaries on finding lifts of ramification-compatible
systems whose “similitude characters” (determinant, Clifford norm, etc.) form
strongly compatible systems, in the sense that at all finite places their associated
Weil group representations are isomorphic (see, e.g., [Barnet-Lamb et al. 2014,
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§5.1], where these are called strictly compatible). As with Theorem 1.3 and the
preceding results, we show a somewhat stronger finiteness result, which applies to
all representations with good reduction outside a fixed finite set S. These corollaries
will follow from the above results and the Hermite–Minkowski finiteness theorem.

Corollary 3.12. Let F , S, and {µτ } be as in the statement of Theorem 1.3, except
now F may be any number field. Then there exist a finite set of places P ⊃ S and a
finite extension F ′/F such that any geometric ρλ with good reduction outside S, and
with Hodge–Tate cocharacters arising from {µτ } via an embedding ιλ : E ↪→ Eλ,
admits a geometric lift ρ̃λ : 0F,P∪Sλ→ H̃(Eλ) such that the restrictions

ξ(ρ̃λ) : 0F ′,P∪Sλ→ Z̃∨(Eλ)

are equal to the ιλ-adic realizations of the single (independent of λ and ρλ) algebraic
Hecke character ψ of Z̃(AF ).

In particular, let {ρλ : 0F,S∪Sλ→ H(Eλ)}λ be a ramification-compatible system.
Then there exist a ramification-compatible system of lifts {ρ̃λ : 0F,P∪Sλ→ H̃(Eλ)}λ,
and a finite, independent-of-λ extension F ′/F such that the restrictions

ξ(ρ̃λ) : 0F ′,P∪Sλ→ Z̃∨(Eλ)

form a strongly compatible system.

Proof. We may assume that the number field F is totally imaginary. Consider the
lifts ρ̃λ : 0F,P∪Sλ→ H̃(Eλ) produced by Theorem 1.3. We write ξ(ρ̃λ)= ψλ · ηλ,
where ηλ : 0F,P∪Sλ → Z̃∨[M] is a finite-order character; the independent-of-λ
bound on the order was established within the proof of Theorem 1.3. Moreover, for
all v ∈ Sλ\(Sλ∩P), ρ̃λ and ψλ are crystalline at v, so as long as Sλ∩P is empty, ηλ
factors through 0F,P→ Z̃∨[M] (we again use that a finite-order crystalline character
is unramified). By the Hermite–Minkowski theorem, there are a finite number of
such characters ηλ. For the finite number of bad λ (at which Sλ∩ P 6=∅), the same
finiteness assertion holds. Thus, after a finite base change F ′/F , trivializing this
finite collection of possible characters ηλ, we see that ξ(ρ̃λ)|0F ′,P∪Sλ

= ψλ|0F ′,P∪Sλ
for all λ. The second part of the corollary follows since the λ-adic realizations
of an abelian L-algebraic representation form a strongly compatible system, as is
evident from the construction of ψλ, as in, e.g., [Serre 1968]. �

We would like to upgrade this to a compatibility statement not just for the push-
forwards ξ(ρ̃λ), but for the full abelianizations ρ̃ab

:0F,P∪Sλ→ H̃ ab(Eλ). Of course,
such a result requires first (taking H̃ = H ) having the corresponding assertion for
the abelianizations ρab

λ : 0F,S∪Sλ→ H ab(Eλ). Here, however, it is of course false
without imposing further conditions on the system {ρλ}λ (see Remark 3.15). There
are various conditions we might impose on the ρλ to ensure (potential) compatibility



2418 Stefan Patrikis

of the ρab
λ . Perhaps most interesting is to restrict the coefficients of ρab

λ . To that
end, we first prove a finiteness result for Galois characters:

Lemma 3.13. Let F be a number field, and let S be a finite set of places of F.
Fix a finite extension E ′/E (inside E), a set {mτ }τ :F↪→E of integers satisfying the
Hodge-symmetry condition of Definition 1.1, and an embedding ι∞ : E ↪→ C. Then
there exist a finite extension F ′/F , and an algebraic Hecke character α of AF ′ ,
such that any geometric character ωλ : 0F,S∪Sλ→ E×λ
• having good reduction outside S;

• having labeled Hodge–Tate weights corresponding to {mτ } via some embed-
ding ιλ : E ↪→ Eλ; and

• for which ωλ( f rv) belongs to (E ′)× for a density-one set of places v of F ;

will upon restriction ωλ|0F ′
become isomorphic to the ιλ-adic realization of α.

Proof. We may assume F is totally imaginary. Invoking the Hodge symmetry
hypothesis, we apply Lemma 3.1 to produce an algebraic Hecke character α of
F whose archimedean components are given in terms of the mτ , exactly as in
Lemma 3.1 (with ξ(µ̃τ )= mτ ). Let T denote the finite set of ramified places of α,
and let Q(α) denote the field of coefficients of α (by definition the fixed field of
all automorphisms of C that preserve the nonarchimedean component of α; we
will regard Q(α) as a subfield of E via our fixed ι∞). Thus the ιλ-adic realizations
αλ : 0F,T∪Sλ→ E×λ have labeled Hodge–Tate weights matching those of ωλ. Since
Q(α) contains the values αλ( f rv) for all v 6∈ T ∪ Sλ, and ωλα−1

λ : 0F,S∪T∪Sλ→ E×λ
is finite-order (all of its Hodge–Tate weights are zero), we see that (ωλα−1

λ )( f rv)
belongs to the finite (independent of λ) set µ∞(E ′Q(α)) for a density-one set of v.
By Čebotarev, the character ωλα−1

λ takes all of its values inµ∞(E ′Q(α)). As long as
Sλ∩ (S∪T ) is empty, ωλα−1

λ is moreover unramified at Sλ (because it is crystalline
of finite order), so as in Corollary 3.12, there are (again by Hermite–Minkowski) a
finite number of such characters ωλα−1

λ . We deduce the existence of a single number
field F ′ over which ωλ|0F ′

= αλ|0F ′
, for any λ and any ωλ as in the statement of

the lemma. �

We deduce a potential compatibility statement for the full abelianizations ρ̃ab
λ :

Corollary 3.14. For simplicity, assume that H ab is of multiplicative type. Let F ,
S, and {µτ } be as in the statement of Theorem 1.3, except with F now allowed
to be any number field. Also fix a finite extension E ′ of E. Then there exist
a finite set of places P ⊃ S, a finite extension F ′/F , and an algebraic Hecke
character β of the split group D̃ over F ′ whose dual group over E is isomorphic
to (H ab)0 ⊗E E (and we fix such an isomorphism), satisfying the following: if a
geometric ρλ : 0F,S∪Sλ→ H(Eλ)
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• has good reduction outside S;

• has Hodge–Tate cocharacters arising from {µτ } via ιλ : E ↪→ Eλ;

• and admits, for some faithful representation r of H ab, a density-one set of
places v of F such that the characteristic polynomial ch(r ◦ ρ̃ab

λ )( f rv) has
coefficients in E ′;

then there is a geometric lift ρ̃λ :0F,P∪Sλ→H̃(Eλ) having good reduction outside P ,
such that the restriction ρ̃ab

λ :0F ′,P∪Sλ→ H̃ ab(Eλ) is equal to the ιλ-adic realization
βλ of β.

In particular, let {ρλ : 0F,S∪Sλ→ H(Eλ)}λ be a ramification-compatible system,
and assume that for some faithful representation r of H ab, some number field E ′,
and for almost all λ, there is a density-one set of places v of F such that the
characteristic polynomial ch(r ◦ ρ̃ab

λ )( f rv) has coefficients in E ′. Then there is
a ramification-compatible system ρ̃λ : 0F,P∪Sλ → H̃(Eλ) lifting ρλ, and a finite
extension F ′/F such that

ρ̃ab
λ |0F ′

: 0F ′,P∪Sλ→ H̃ ab(Eλ)

forms a strongly compatible system.

Proof. The proof follows familiar lines. Since C is central, the abelianization H̃ ab

is simply H̃/H der
1 , so there is a natural map

f : H̃ ab
→ H̃/H1× H/ im(H der

1 )= Z̃∨× H ab

under which ρ̃ab
λ pushes forward to (ξ(ρ̃λ), ρab

λ ). (We have chosen {ρ̃λ}λ as in
Theorem 1.3 and Corollary 3.12, of course.) First we claim that a conclusion
analogous to that of the corollary holds for the pair (ξ(ρ̃λ), ρab

λ ), and certainly it
suffices to check this independently for the two components. The assertion for
ξ(ρ̃λ) is Corollary 3.12, and for ρab

λ it follows easily from Lemma 3.13 (first reduce,
by a finite base change, to the case where H ab is connected, using the fact that
π0(H ab) is of course finite and independent of λ). Thus, letting D denote a split
torus whose dual group is identified with (H ab)0, there exists a finite extension
F1/F such that f (ρ̃ab

λ )|0F1,P∪Sλ
is the ιλ-adic realization of a Hecke character (which

does not depend on λ or ρλ) of Z̃ × D.
Now suppose that β is a Hecke character of D̃ for which the ιλ-adic realization

βλ : 0F,T∪Sλ→ (H̃ ab)0(Eλ) has labeled Hodge–Tate cocharacters matching those
of ρ̃ab

λ . Since
f (ρ̃ab

λ ·β
−1
λ )|0F1,P∪T∪Sλ

is automorphic (independently of λ, ρλ) of finite order, it is trivial after a finite base
change F2/F1. Now observe that the kernel of f is finite, so (ρ̃ab

λ ·β
−1
λ )|0F2,P∪T∪Sλ

has
finite order, bounded only in terms of # ker( f ), and is crystalline away from P ∪T ;
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as before, we find a further finite extension F3/F2 such that (ρ̃ab
λ ·β

−1
λ )|0F3

= 1.
The conclusion of the corollary then holds with F ′ = F3. �

Remark 3.15. • It does not suffice to ask for a fixed number field E such that
all ρab

λ are valued in H ab(Eλ). For instance, taking F = Q and S = {p},
and for all n choosing a prime `n ≡ 1 (mod ϕ(pn)), we can define ρ`n :

0Q,{p}→Q×`n
as the composition of the mod pn cyclotomic character with an

inclusion (Z/pnZ)× ↪→ µ`n−1 ↪→Q×`n
, and for all ` 6∈ {`n}n we can take ρ` to

be the trivial character. Then {ρ` : 0Q,{p}→Q×` }` is an abelian, ramification-
compatible system that does not become a strongly compatible system after
any finite base change.

• Having only hypothesized ramification-compatibility for the {ρλ}λ, we cannot
hope for the stronger conclusion that the {ρ̃ab

λ }λ form a strongly compatible
system over F itself.

General multiplicative-type quotients. In fact, the argument of Theorem 1.3 di-
rectly implies the main theorem of [Wintenberger 1995], as well as a generalization
to lifting through quotients where the kernel is central of multiplicative type. We
thus obtain an essentially different proof (and generalization) of Wintenberger’s
result. In this section, we briefly describe how this works.

Corollary 3.16 (Wintenberger). Let H1→ H be a central isogeny of linear alge-
braic groups over E , and let S be a finite set of places of F. Then there exist a
finite extension F ′/F and a finite set of places P ⊃ S of F such that any geometric
representation

ρλ : 0F,S∪Sλ→ H(Eλ)

having

• good reduction outside S, and

• labeled Hodge–Tate cocharacters that lift to H1,

lifts to a geometric representation ρ ′λ : 0F ′,P∪Sλ → H1(Eλ), which moreover has
good reduction outside P.

Proof. We begin by replacing F by a finite extension F0 such that image of
ρλ|0F0

is contained in the image of H1(Eλ)→ H(Eλ). That such an extension,
depending only on H1→ H , S, and F , exists follows as in [Wintenberger 1995,
2.3.2], and we do not repeat the argument. We note, though, that making this
construction in an independent-of-λ fashion already uses liftability of the Hodge–
Tate cocharacters. (If we were not concerned with preserving Eλ-rationality of the
lift, then we could skip this step.) It is then possible to build an obstruction class
O(ρλ) ∈ H 2(0F0,S∪Sλ, ker(H1→ H)(Eλ)) via a topological lift ρ ′λ to H1(Eλ).
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Embed ker(H1 → H) ⊗E E into a torus C , and with the kernel embedded
antidiagonally, form the new group H̃ = (H1×C)/ ker(H1→ H). The surjection
H̃ → H now has kernel equal to a central torus C , and as before we let Z̃∨ be the
(torus) quotient H̃/H1. By hypothesis, we can lift the Hodge–Tate cocharacters
of ρλ to H1; when pushed forward to Z̃∨, these lifts are of course trivial. Thus,
in the notation of Lemma 3.1, we may take the trivial Hecke character ψ = 1 of
Z̃(AF0). For topological lifts ψ ′λ to C(Eλ) (as in Lemma 3.3) of the (trivial) λ-adic
realizations ψλ, we may of course also take ψ ′λ = 1. Theorem 1.3 then produces a
finite set of primes P ⊃ S and an integer M , both only depending on H1→ H , S,
and F , and a geometric lift ρ̃λ : 0F0,P∪Sλ→ H1(Eλ) ·C[M] such that ρ̃λ has good
reduction outside P . (The assertion that ρ̃λ is valued in the subset H1(Eλ) ·C[M]
of H̃(Eλ) follows from the explicit description of ρ̃λ, since ρ ′λ lands in H1(Eλ),
and ψ ′λ is trivial.) For all λ for which Sλ ∩ P = ∅, ξ(ρ̃λ) : 0F0,P∪Sλ→ Z̃∨[M] is
also unramified at Sλ, and all such characters are trivialized by a common finite
extension F1/F0. For the finite number of λ such that Sλ ∩ P is nonempty, we
can again trivialize the possible ξ(ρ̃λ) by restricting to a common finite extension
F2/F0. Taking F ′ = F1 F2, all ρ̃λ|0F ′,P∪Sλ

land in H1(Eλ), proving the corollary. �

Remark 3.17. For Wintenberger’s result, take E =Q. He also shows [1995, 2.3.6]
that there is a second finite extension F ′′/F ′ (only depending on H1 → H , F ,
and S) such that any two lifts ρ ′λ as in the corollary become equal after restriction
to 0F ′′ . This refinement similarly follows in our setup, but there is no need to repeat
Wintenberger’s argument.

Here is the more general version with multiplicative-type kernels. Note that, as
with Theorem 1.3, but unlike Corollary 3.16, it makes use of a “Hodge symmetry”
hypothesis.

Corollary 3.18. Let H ′→ H be a surjection of linear algebraic groups over E
whose kernel is central and of multiplicative type. Let F be a number field, and
let S be a finite set of places of F containing the archimedean places. Fix a set of
cocharacters {µτ }τ :F↪→E as in part (2) of Definition 1.1, and moreover, assume that
each µτ lifts to a cocharacter of H ′.

Then there exist a finite set of places P ⊃ S, and a finite extension F ′/F , such
that any geometric representation ρλ : 0F,S∪Sλ → H(Eλ) having good reduction
outside S, and whose Hodge–Tate cocharacters arise from the set {µτ }τ :F↪→E via
some embedding E ↪→ Eλ, admits a geometric lift ρ̃λ : 0F ′,P∪Sλ→ H ′(Eλ) having
good reduction outside P.

In particular, if {ρλ : 0F,S∪Sλ→ H(Eλ)}λ is a ramification-compatible system
with Hodge cocharacter {µτ }τ :F↪→E , then there exist a finite set of places P ⊃ S,
a finite extension F ′/F , and lifts ρ̃λ : 0F ′,P∪Sλ → H ′(Eλ) such that {ρ̃λ}λ is a
ramification-compatible system.
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Proof. As in the proofs of Theorem 1.3 and Corollary 3.16, we construct an isogeny
complement H1⊂ H to ker(H ′→ H), as well as an enlargement H̃ ⊃ H ′ surjecting
onto H with a central torus kernel. We then run the argument of Theorem 1.3,
starting from lifts {µ′τ } to H ′ of the Hodge cocharacters: the Hecke character ψ (in
the notation of that proof) then constructed has λ-adic realizations that push-forward
to finite-order characters ψλ : 0F,T∪Sλ→ H̃/H ′(Eλ), and from here it is easy to
proceed; we omit the details, since the argument will by now be familiar. �
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Remarks on the arithmetic
fundamental lemma

Chao Li and Yihang Zhu

W. Zhang’s arithmetic fundamental lemma (AFL) is a conjectural identity between
the derivative of an orbital integral on a symmetric space with an arithmetic
intersection number on a unitary Rapoport–Zink space. In the minuscule case,
Rapoport, Terstiege and Zhang have verified the AFL conjecture via explicit
evaluation of both sides of the identity. We present a simpler way for evaluating
the arithmetic intersection number, thereby providing a new proof of the AFL
conjecture in the minuscule case.

1. Introduction

1.1. Zhang’s arithmetic fundamental lemma. The arithmetic Gan–Gross–Prasad
conjectures (arithmetic GGP) generalize the celebrated Gross–Zagier formula to
higher-dimensional Shimura varieties [Gan et al. 2012, §27; Zhang 2012, §3.2]. The
arithmetic fundamental lemma (AFL) conjecture arises from Zhang’s relative trace
formula approach for establishing the arithmetic GGP for the group U (1, n− 2)×
U (1, n− 1). It relates a derivative of orbital integrals on symmetric spaces to an
arithmetic intersection number of cycles on unitary Rapoport–Zink spaces,

O ′(γ, 1Sn(Zp))=−ω(γ )〈1(Nn−1), (id×g)1(Nn−1)〉. (1.1.0.1)

For the precise definitions of quantities appearing in the identity, see [Rapoport
et al. 2013, Conjecture 1.2]. The left-hand side of (1.1.0.1) is known as the analytic
side and the right-hand side is known as the arithmetic-geometric side. The AFL
conjecture has been verified for n = 2, 3 [Zhang 2012], and for general n in the
minuscule case (in the sense that g satisfies a certain minuscule condition) by
Rapoport, Terstiege and Zhang [2013]. In all these cases, the identity (1.1.0.1) is
proved via explicit evaluation of both sides. When g satisfies a certain inductive
condition, Mihatsch [2016] has recently developed a recursive algorithm which

MSC2010: primary 11G18; secondary 14G17, 22E55.
Keywords: arithmetic Gan–Gross–Prasad conjectures, arithmetic fundamental lemmas,

Rapoport–Zink spaces, special cycles.
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reduces the identity (1.1.0.1) to smaller n, thus establishing some new cases of the
AFL conjecture.

In the minuscule case, the evaluation of the analytic side is relatively straightfor-
ward. The bulk of [Rapoport et al. 2013] is devoted to a highly nontrivial evaluation
of the arithmetic-geometric side, which is truly a tour de force. Our main goal
in this short note is to present a new (and arguably simpler) way to evaluate the
arithmetic-geometric side in [Rapoport et al. 2013], henceforth abbreviated [RTZ].

1.2. The main results. Let p be an odd prime. Let F =Qp, k = Fp, W = W (k)
and K =W [1/p]. Let σ be the p-Frobenius acting on Fp, W and K . Let E =Qp2

be the unramified quadratic extension of F . The unitary Rapoport–Zink space Nn

is the formal scheme over Spf W parametrizing deformations up to quasi-isogeny
of height 0 of unitary p-divisible groups of signature (1, n−1) (definitions recalled
in Section 2.1). Fix n ≥ 2 and write N =Nn and M=Nn−1 for short. There is a
natural closed immersion δ :M→N . Denote by1⊆M×W N the image of (id, δ) :
M→M×W N , known as the (local) diagonal cycle or GGP cycle on M×W N .

Let Cn−1 be a nonsplit σ -Hermitian E-space of dimension n − 1. Let Cn =

Cn−1⊕ Eu (where the direct sum is orthogonal and u has norm 1) be a nonsplit
σ -Hermitian E-space of dimension n. The unitary group J = U(Cn) acts on N in
a natural way (see Section 2.2). Let g ∈ J (Qp). The arithmetic-geometric side of
the AFL conjecture (1.1.0.1) concerns the arithmetic intersection number of the
diagonal cycle 1 and its translate by id×g, defined as

〈1, (id×g)1〉 := log p ·χ(M×W N ,O1⊗L O(id×g)1).

When 1 and (id×g)1 intersect properly, namely when the formal scheme

1∩ (id×g)1∼= δ(M)∩N g (1.2.0.1)

is an Artinian scheme (where N g denotes the fixed points of g), the intersection
number is simply log p times the W-length of the Artinian scheme (1.2.0.1).

Recall that g ∈ J (Qp) is called regular semisimple if

L(g) :=OE · u+OE · gu+ · · ·+OE · gn−1u

is an OE -lattice in Cn . In this case, the invariant of g is the unique sequence of
integers

inv(g) := (r1 ≥ r2 ≥ · · · ≥ rn)

characterized by the condition that there exists a basis {ei } of the lattice L(g) such
that {p−ri ei } is a basis of the dual lattice L(g)∨. It turns out that the “bigger” inv(g)
is, the more difficult it is to compute the intersection. With this in mind, recall that a
regular semisimple element g is called minuscule if r1 = 1 and rn ≥ 0 (equivalently,
pL(g)∨ ⊆ L(g)⊆ L(g)∨). In this minuscule case, the intersection turns out to be
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proper, and one of the main results of [RTZ] is an explicit formula for the W-length
of (1.2.0.1) at each of its k-point.

To state the formula, assume g is regular semisimple and minuscule, and suppose
N g is nonempty. Then g stabilizes both L(g)∨ and L(g) and thus acts on the
Fp2-vector space L(g)∨/L(g). Let P(T ) ∈ Fp2[T ] be the characteristic polynomial
of g acting on L(g)∨/L(g). For any irreducible polynomial R(T ) ∈ Fp2[T ], we
denote its multiplicity in P(T ) by m(R(T )) and define its reciprocal by

R∗(T ) := T deg R(T )
· σ
(
R
( 1

T

))
.

We say R(T ) is self-reciprocal if R(T )= R∗(T ). By [RTZ, 8.1], if (δ(M)∩N g)(k)
is nonempty, then P(T ) has a unique self-reciprocal monic irreducible factor
Q(T ) | P(T ) such that m(Q(T )) is odd. We denote

c :=
1
2
(m(Q(T ))+ 1).

Then 1≤ c ≤ 1
2(n+ 1). Now we are ready to state the intersection length formula.

Theorem A [RTZ, Theorem 9.5]. Assume g is regular semisimple and minuscule.
Assume p > c. Then for any x ∈ (δ(M) ∩ N g)(k), the complete local ring of
δ(M)∩N g at x is isomorphic to k[X ]/X c, and hence has W-length equal to c.

We will present a simpler proof of Theorem A in Theorem 4.3.5. Along the way,
we will also give a simpler proof of the following Theorem B in Corollary 3.2.3,
which concerns minuscule special cycles (recalled in Section 2.10) on unitary
Rapoport–Zink spaces and may be of independent interest.

Theorem B [RTZ, Theorems 9.4 and 10.1]. Let v = (v1, . . . , vn) be an n-tuple
of vectors in Cn . Assume it is minuscule in the sense that L(v) := spanOE

v is
an OE -lattice in Cn satisfying pL(v)∨ ⊆ L(v) ⊆ L(v)∨. Let Z(v) ⊆ N be the
associated special cycle. Then Z(v) is a reduced k-scheme.

1.3. Novelty of the proof. The original proofs of Theorems A and B form the
technical heart of [RTZ] and occupy its two sections §10–§11. As explained below,
our new proofs presented here have the merit of being much shorter and more
conceptual.

1.3.1. Theorem A. The original proof of Theorem A uses Zink’s theory of windows
to compute the local equations of (1.2.0.1). It requires explicitly writing down
the window of the universal deformation of p-divisible groups and solving quite
involved linear algebra problems. Theorem B ensures that the intersection is entirely
concentrated in the special fiber so that each local ring has the form k[X ]/X`. The
assumption p > c ensures ` < p so that the ideal of local equations is admissible
(see the last paragraph of [RTZ, p. 1661]), which is crucial in order to construct the
frames for the relevant windows needed in Zink’s theory.
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Our new proof of Theorem A does not use Zink’s theory and involves little
explicit computation. Our key observation is that Theorem B indeed allows us
to identify the intersection (1.2.0.1) as the fixed point scheme V(3)g of a finite
order automorphism g on a generalized Deligne–Lusztig variety V(3) (Section 4.1),
which becomes purely an algebraic geometry problem over the residue field k.
When p > c, it further simplifies to a more elementary problem of determining the
fixed point scheme of a finite order automorphism g ∈ GLd+1(k) on a projective
space Pd over k (Section 4.2). This elementary problem has an answer in terms
of the sizes of the Jordan blocks of g (Lemma 4.3.4), which explains conceptually
why the intersection multiplicity should be equal to c. Notice that our method
completely avoids computation within Zink’s theory, and it would be interesting to
explore the possibility of removing the assumption p > c using this method.

1.3.2. Theorem B. The original proof of Theorem B relies on showing two things
(by [RTZ, Lemma 10.2]): (1) the minuscule special cycle Z(v) has no W/p2-
points and (2) its special fiber Z(v)k is regular. Step (1) is relatively easy using
Grothendieck–Messing theory. Step (2) is more difficult: for super-general points
x on Z(v)k , the regularity is shown by explicitly computing the local equation of
Z(v)k at x using Zink’s theory; for points which are not super-general, the regularity
is shown using induction and reduces to the regularity of certain special divisors,
whose local equations can again be explicitly computed using Zink’s theory.

Our new proof of Theorem B does not use Zink’s theory either and involves
little explicit computation. Our key observation is that to show both (1) and (2)
it suffices to consider the thickenings O of k which are objects of the crystalline
site of k. These O-points of Z(v) then can be understood using only Grothendieck–
Messing theory (Theorem 3.1.3). We prove a slight generalization of (1) which
applies to possibly nonminuscule special cycles (Corollary 3.2.1). We then prove
the tangent space of the minuscule special cycle Z(v)k has the expected dimension
(Corollary 3.2.2). The desired regularity (2) follows immediately.

1.3.3. Our new proofs are largely inspired by our previous work on arithmetic
intersections on GSpin Rapoport–Zink spaces [Li and Zhu 2017]. The GSpin
Rapoport–Zink spaces considered there are not of PEL type, which makes them
technically more complicated. So the unitary case treated here can serve as a
guide to [Li and Zhu 2017]. We have tried to indicate similarities between certain
statements and proofs, for both clarity and the convenience of the readers.

1.4. Structure of the paper. In Section 2, we recall necessary backgrounds on
unitary Rapoport–Zink spaces and the formulation of the arithmetic intersection
problem. In Section 3, we study the local structure of the minuscule special cycles
and prove Theorem B. In Section 4, we provide an alternative moduli interpretation
of the generalized Deligne–Lusztig variety V(3) and prove Theorem A.
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2. Unitary Rapoport–Zink spaces

In this section we review the structure of unitary Rapoport–Zink spaces. We refer
to [Vollaard 2010; Vollaard and Wedhorn 2011; Kudla and Rapoport 2011] for the
proofs of these facts.

2.1. Unitary Rapoport–Zink spaces. Let p be an odd prime. Let F =Qp, k = Fp,
W =W (k) and K =W [1/p]. Let σ be the p-Frobenius acting on Fp, and we also
denote by σ the canonical lift of the p-Frobenius to W and K . For any Fp-algebra
R, we also denote by σ the Frobenius x 7→ x p on R.

Let E = Qp2 be the unramified quadratic extension of F . Fix a Qp-algebra
embedding φ0 :OE ↪→W and denote by φ1 the embedding σ ◦φ0 :OE ↪→W . The
embedding φ0 induces an embedding between the residue fields Fp2 ↪→ k, which
we shall think of as the natural embedding. For any OE -module 3 we shall write
3W for 3⊗OE ,φ0 W .

Let r and s be positive integers and let n = r + s. We denote by Nr,s the unitary
Rapoport–Zink spaces of signature (r, s), a formally smooth formal W-scheme,
parametrizing deformations up to quasi-isogeny of height 0 of unitary p-divisible
groups of signature (r, s). More precisely, for a W-scheme S, a unitary p-divisible
groups of signature (r, s) over S is a triple (X, ι, λ), where

(1) X is a p-divisible group of dimension n and height 2n over S,

(2) ι :OE → End(X) is an action satisfying the signature (r, s) condition, i.e., for
α ∈OE ,

char
(
ι(α) : Lie X

)
(T )= (T −φ0(α))

r (T −φ1(σ ))
s
∈OS[T ],

(3) λ : X→ X∨ is a principal polarization such that the associated Rosati involution
induces α 7→ σ(α) on OE via ι.

Over k, there is a unique such triple (X, ι, λ) such that X is supersingular, up to
OE -linear isogeny preserving the polarization up to scalars. Fix such a framing
triple and denote it by (X, ιX, λX).

Let NilpW be the category of W-schemes on which p is locally nilpotent. Then
the unitary Rapoport–Zink space Nr,s represents the functor NilpW → Sets which
sends S ∈NilpW to the set of isomorphism classes of quadruples (X, ι, λ, ρ), where
(X, ι, λ) is a unitary p-divisible group over S of signature (r, s) and ρ : X×S Sk→

X×k Sk is an OE -linear quasi-isogeny of height zero which respects λ and λX up
to a scalar c(ρ) ∈O×F = Z×p (i.e., ρ∨ ◦ λX ◦ ρ = c(ρ) · λ).

In the following we denote N :=N1,n−1, M :=N1,n−2 and N 0 :=N0,1∼= Spf W .
They have relative dimension n− 1, n and 0 over Spf W respectively. We denote
by Y = (Y, ιY, λY) the framing object for N 0 and denote by Y = (Y , ιY , λY ) the
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universal p-divisible group over N 0. We may and shall choose framing objects
X = (X, ιX, λX) and X[

= (X[, ιX[, λX[) for N and M respectively such that

X = X[
×Y

as unitary p-divisible groups.

2.2. The group J. The covariant Dieudonné module M = D(X) of the framing
unitary p-divisible group is a free W-module of rank 2n together with an OE -action
(induced by ι) and a perfect symplectic W-bilinear form 〈 · , · 〉 : M × M → W
(induced by λ), see [Vollaard and Wedhorn 2011, §2.3]. Let N = M ⊗W K be the
associated isocrystal and extend 〈 · , · 〉 to N bilinearly. Let F and V be the usual
operators on N . We have

〈Fx, Fy〉 = pσ(〈x, y〉), ∀x, y ∈ N . (2.2.0.1)

The E-action decomposes N into a direct sum of two K -vector spaces of dimen-
sion n,

N = N0⊕ N1, (2.2.0.2)

where the action of E on Ni is induced by the embedding φi . Both N0 and N1 are
totally isotropic under the symplectic form. The operator F is of degree one and
induces a σ -linear bijection N0 −→

∼ N1. Since the isocrystal N is supersingular, the
degree 0 and σ 2-linear operator

8= V−1 F = p−1 F2

has all slopes zero [Kudla and Rapoport 2011, §2.1]. We have a K -vector space N0

together with a σ 2-linear automorphism 8.1 The space of fixed points

C = N8
0

is an E-vector space of dimension n and N0 = C ⊗E,φ0 K . Fix δ ∈ O×E such that
σ(δ)=−δ. Define a nondegenerate σ -sesquilinear form on N0 by

{x, y} := (pδ)−1
〈x, Fy〉. (2.2.0.3)

Using (2.2.0.1) it is easy to see that

σ({x, y})= {8y, x}, ∀x, y ∈ N0. (2.2.0.4)

In particular, when restricted to C , the form { · , · } is σ -Hermitian, namely

σ({x, y})= {y, x}, ∀x, y ∈ C. (2.2.0.5)

1Such a pair (N0,8) is sometimes called a relative isocrystal.
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In fact, (C, { · , · }) is the unique (up to isomorphism) nondegenerate nonsplit σ -
Hermitian E-space of dimension n. Let J =U(C) be the unitary group of (C, { · , · }).
It is an algebraic group over F =Qp. By Dieudonné theory, the group J (Qp) can
be identified with the automorphism group of the framing unitary p-divisible group
(X, ιX, λX) and hence acts on the Rapoport–Zink space N .

2.3. Special homomorphisms. By definition, the space of special homomorphisms
is the OE -module HomOE (Y,X). There is a natural OE -valued σ -Hermitian form
on HomOE (Y,X) given by

(x, y) 7→ λ−1
Y
◦ ŷ ◦ λX ◦ x ∈ EndOE (Y)−→

∼ OE .

By [Kudla and Rapoport 2011, Lemma 3.9], there is an isomorphism of σ -Hermitian
E-spaces

HomOE (Y,X)⊗OE E −→∼ C. (2.3.0.1)

Therefore we may view elements of C as special quasi-homomorphisms.

2.4. Vertex lattices. For any OE -lattice 3⊂ C , we define the dual lattice 3∨ :=
{x ∈ C : {x,3} ⊆OE }. It follows from the σ -Hermitian property (2.2.0.5) that we
have (3∨)∨ =3.

A vertex lattice is an OE -lattice 3⊆ C such that p3⊆3∨ ⊆3. Such lattices
correspond to the vertices of the Bruhat–Tits building of the unitary group U(C).
Fix a vertex lattice 3. The type of 3 is defined to be t3 := dimFp2 3/3

∨, which is
always an odd integer such that 1≤ t3 ≤ n (see [Vollaard 2010, Remark 2.3]).

We define �0(3) :=3/3
∨ and equip it with the perfect σ -Hermitian form

( · , · ) :�0(3)×�0(3)→ Fp2, (x, y) := p{x̃, ỹ} mod p,

where { · , · } is the Hermitian form on C defined in (2.2.0.3), and x̃, ỹ ∈3 are lifts
of x and y.

We define

�(3) :=�0(3)⊗Fp2 k.

Remark 2.4.1. Our �0(3) is the space V in [Vollaard 2010, (2.11)], and our
pairing ( · , · ) differs from the pairing ( · , · ) defined in [loc. cit.] by a factor of the
reduction δ ∈ F×p2 of δ.

2.5. The variety V(3). Let 3 be a vertex lattice and let �0=�0(3). Recall from
Section 2.4 that �0 is an Fp2-vector space whose dimension is equal to the type
t = t3 of 3, an odd number. Let d := (t − 1)/2. We define V(�0) to be the closed
Fp2-subscheme of the Grassmannian Grd+1(�0) (viewed as a scheme over Fp2) such
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that for any Fp2-algebra R,

V(�0)(R)= {R-module local direct summands U ⊆�0⊗Fp2 R :

rank U = d + 1 and U⊥ ⊆U }. (2.5.0.1)

Here U⊥ is by definition {v ∈ �0 ⊗ R : (v, u)R = 0,∀u ∈ U }, where ( · , · )R is
the R-sesquilinear form on �0⊗ R obtained from ( · , · ) by extension of scalars
(linearly in the first variable and σ -linearly in the second variable). Then V(�0) is a
smooth projective Fp2-scheme of dimension d by [Vollaard 2010, Proposition 2.13]
and Remark 2.4.1. In fact, V(�0) can be identified as a (generalized) Deligne–
Lusztig variety, by [Vollaard and Wedhorn 2011, §4.5] (though we will not use this
identification in the following).

We write V(3) for the base change of V(�0) from Fp2 to k.

2.6. Structure of the reduced scheme N red. For each vertex lattice 3 ⊆ C , we
define N3 ⊆ N to be the locus where ρ−1

X ◦3
∨
⊆ Hom(Y , X), i.e., where the

quasi-homomorphisms ρ−1
◦v lift to actual homomorphisms for any v ∈3∨. Then

N3 is a closed formal subscheme by [Rapoport and Zink 1996, Proposition 2.9].
By [Vollaard and Wedhorn 2011, §4] we have an isomorphism of k-varieties

N red
3 −→

∼ V(3). (2.6.0.1)

2.7. Some invariants associated to a k-point of N . We follow [Kudla and Rapo-
port 2011, §2.1].

Let x be a point in N (k). Then x represents a tuple (X, ι, λ, ρ) over k as recalled
in Section 2.1. Via ρ, we view the Dieudonné module of X as a W-lattice Mx in N ,
which is stable under the operators F and V . The endomorphism structure ι induces
an action of OE ⊗Zp W ∼=W ⊕W on Mx , which is equivalent to the structure of a
Z/2Z-grading on Mx (into W-modules). We denote this grading by

Mx = gr0 Mx ⊕ gr1 Mx .

This grading is compatible with (2.2.0.2) in the sense that

gri Mx = Mx ∩ Ni , i = 0, 1.

Moreover both gr0 Mx and gr1 Mx are free W-modules of rank n.
Consider the k-vector space Mx,k := Mx ⊗W k. It has an induced Z/2Z-grading,

as well as a canonical filtration Fil1(Mx,k) ⊂ Mx,k . Explicitly, Fil1(Mx,k) is the
image of V (Mx)⊆ Mx under the reduction map Mx → Mx,k . Define

Fil1(gri Mx,k) := Fil1(Mx,k)∩ gri Mx,k .

Then
Fil1(Mx,k)= Fil1(gr0 Mx,k)⊕Fil1(gr1 Mx,k),
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and by the signature (1, n−1) condition we know that Fil1(gr0 Mx,k) is a hyperplane
and Fil1(gr1 Mx,k) is a line in gr0 Mx,k and gr1 Mx,k , respectively.

The symplectic form 〈 · , · 〉 on N takes values in W on Mx , and hence induces a
symplectic form on Mx,k by reduction. The latter restricts to a k-bilinear nondegen-
erate pairing

gr0 Mx,k × gr1 Mx,k→ k.

Under the above pairing, the spaces Fil1(gr0 Mx,k) and Fil1(gr1 Mx,k) are annihila-
tors of each other. Equivalently, Fil1(Mx,k) is a totally isotropic subspace of Mx,k .

2.8. Description of k-points by special lattices. For a W-lattice A in N0, we define
its dual lattice to be A∨ := {x ∈ N0 : {x, A} ⊆W }. If 3 is an OE -lattice in C , then
we have (3W )

∨
= (3∨)W . In the following we denote both of them by 3∨W .

Definition 2.8.1. A special lattice is a W-lattice A in N0 such that

A∨ ⊆ A ⊆ p−1 A∨

and such that A/A∨ is a one-dimensional k-vector space.

Remark 2.8.2. The apparent difference between the above definition and the con-
dition in [Vollaard 2010, Proposition 1.10] (for i = 0) is caused by the fact that we
have normalized the pairing { · , · } on N0 differently from [loc. cit.], using an extra
factor (pδ)−1 (see (2.2.0.3)). Our normalization is the same as that in [RTZ].

Recall the following result.

Proposition 2.8.3 [Vollaard 2010, Proposition 1.10]. There is a bijection from N (k)
to the set of special lattices, sending a point x to gr0 Mx considered in Section 2.7.

�

Remark 2.8.4. Let x ∈ N (k) and let A be the special lattice associated to it by
Proposition 2.8.3. Let 3 be a vertex lattice. Then x ∈N3(k) if and only if A⊆3W ,
if and only if 3∨W ⊆ A∨. (See also Remark 3.1.5 below.)

2.9. Filtrations. We introduce the following notation:

Definition 2.9.1. Let A be a special lattice. Write Ak := A⊗W k. Let x ∈ N (k)
correspond to A under Proposition 2.8.3. Thus Ak = gr0 Mx,k . Define Fil1(Ak) :=

Fil1(gr0 Mx,k) (see Section 2.7). It is a hyperplane in Ak .

Lemma 2.9.2. Let A be a special lattice. Then 8−1(A∨) is contained inside A,
and its image in Ak is equal to Fil1(Ak).

Proof. Let A correspond to x ∈N (k) under Proposition 2.8.3. Then F and V both
preserve the W-lattice Mx in N (see Section 2.7). By definition, Fil1(Mx,k) is the
image of V (Mx)⊆ Mx under the reduction map Mx→ Mx,k . Since the operator V
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is of degree 1 with respect to the Z/2Z-grading, we see that Fil1(Ak) is the image
of V (gr1 Mx)⊆ A under A→ Ak . It suffices to prove that

8−1(A∨)= V (gr1 Mx). (2.9.2.1)

By the proof of [Vollaard 2010, Proposition 1.10], we have gr1 Mx = F−1 A∨.
(Note that because of the difference of normalizations as discussed in Remark 2.8.2,
what is denoted by A∨ here is denoted by p A∨ in [loc. cit.]. Also note that the
integer i appearing [loc. cit.] is 0 in our case.) Therefore V (gr1 Mx)= V (F−1 A∨).
But V F−1

= (V−1 F)−1
=8−1 because V F = FV = p. Thus (2.9.2.1) holds as

desired. �

2.10. Special cycles. Let v be an arbitrary subset of C . We define the special
cycle Z(v) ⊆ N to be the locus where ρ−1

◦ v ∈ Hom(Y , X) for all v ∈ v, i.e.,
all the quasi-homomorphisms ρ−1

◦ v lift to actual homomorphisms. Note that
Z(v) only depends on the OE -submodule L(v) spanned by v in C , and we have
Z(v)= Z(L(v)).

We say v is minuscule if L(v) is an OE -lattice in C satisfying pL(v)∨ ⊆ L(v)⊆
L(v)∨, or equivalently, if L(v) is the dual of a vertex lattice. When this is the case
we have Z(v)=NL(v)∨ by definition.

2.11. The intersection problem. Let C[ be the analogue for M of the Hermitian
space C . Then C ∼= C[

⊕ Eu for some vector denoted by u which is of norm 1 and
orthogonal to C[. We have a closed immersion

δ :M→N ,

sending (X, ι, λ, ρ) to (X×Y , ι× ιY , λ×λY , ρ× id). We have δ(M)=Z(u). The
closed immersion δ induces a closed immersion of formal schemes

(id, δ) :M→M×W N .

Denote by 1 the image of (id, δ), which we call the (local) GGP cycle. For any
g ∈ J (Qp), we obtain a formal subscheme

(id×g)1⊆M×W N ,

via the action of g on N . Let g ∈ J (Qp) and let N g
⊆N be the fixed locus of g.

Then by definition we have

1∩ (id×g)1∼= δ(M)∩N g.

Our goal is to compute the arithmetic intersection number

〈1, (id×g)1〉,
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when g is regular semisimple and minuscule (as defined in the introduction). Notice
that g ∈ J (Qp) is regular semisimple if and only if v(g) := (u, gu, . . . , gn−1u) is
an E-basis of C . Also notice that a regular semisimple element g is minuscule if
and only if v(g) is minuscule in the sense of Section 2.10.

3. Reducedness of minuscule special cycles

3.1. Local structure of special cycles.

Definition 3.1.1. Let C be the following category:

• Objects in C are triples (O,O→ k, δ), where O is a local Artinian W-algebra,
O→ k is a W-algebra map, and δ is a nilpotent divided power structure on
ker(O→ k) (see [Berthelot and Ogus 1978, Definitions 3.1, 3.27]).

• Morphisms in C are W-algebra maps that are compatible with the structure
maps to k and the divided power structures.

3.1.2. Let x ∈N (k) correspond to a special lattice A under Proposition 2.8.3. Let
O ∈ C. By a hyperplane in AO := A⊗W O we mean a free direct summand of
AO of rank n− 1. We define the Z/2Z-grading on Mx,O := Mx ⊗W O by linearly
extending that on Mx (see Section 2.7). Denote by N̂x the completion of N at x .
For any x̃ ∈ N̂x(O), we have a unitary p-divisible group of signature (1, n−1) over
O deforming that over k defined by x . By Grothendieck–Messing theory, we obtain
the Hodge filtration Fil1x̃ Mx,O ⊆ Mx,O. Define fO(x̃) to be the intersection

Fil1x̃ Mx,O ∩ gr0 Mx,O

inside Mx,O. By the signature (1, n−1) condition, fO(x̃) is a hyperplane in AO. It
also lifts Fil1 Ak (see Definition 2.9.1) by construction. Thus we have defined a
map

fO : N̂x(O)−→∼ {hyperplanes in AO lifting Fil1 Ak}. (3.1.2.1)

By construction, fO is functorial in O in the sense that the collection ( fO)O∈C is a
natural transformation between two set-valued functors on C. Here we are viewing
the right hand side of (3.1.2.1) as a functor in O using the base change maps.

The following result is the analogue of [Li and Zhu 2017, Theorem 4.1.7]. As
a direct consequence of the PEL moduli problem, it should be well known to the
experts and is essentially proved in [Kudla and Rapoport 2011, Proposition 3.5].

Theorem 3.1.3. Keep the notations in Section 3.1.2:

(1) The natural transformation ( fO)O∈C is an isomorphism.
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(2) Let v be a subset of C. If x ∈Z(v)(k), then v⊆ A. Suppose x ∈Z(v)(k). Then
for any O ∈ C the map fO induces a bijection

Ẑ(v)x(O)−→∼

{hyperplanes in AO lifting Fil1 Ak and containing the image of v in AO}.

Proof. (1) We need to check that for all O ∈ C the map fO is a bijection. Let
x̃ ∈ N̂x(O). This represents a deformation over O of the p-divisible group at x .
Similarly to the situation in Section 2.7, the compatibility with the endomorphism
structure implies that

Fil1x̃ Mx,O =

1⊕
i=0

Fil1x̃ Mx,O ∩ gri Mx,O.

By the compatibility with the polarization, we know that Fil1x̃ Mx,O is totally
isotropic under the symplectic form on Mx,O. It follows that the two modules
Fil1x̃ Mx,O ∩ gr1 Mx,O and Fil1x̃ Mx,O ∩ gr0 Mx,O are annihilators of each other if
we identify gr1 Mx,O as the O-linear dual of gr0 Mx,O using the symplectic form
on Mx,O. Therefore, Fil1x̃ Mx,O can be recovered from fO(x̃). This together with
Grothendieck–Messing theory proves the injectivity of fO. The surjectivity of fO
also follows from Grothendieck–Messing theory and the above way of reconstructing
Fil1x̃ Mx,O from its intersection with gr0 Mx,O. Note that the unitary p-divisible
groups reconstructed in this way do satisfy the signature condition because we have
started with hyperplanes in AO.

(2) The statements follow from the proof of [Kudla and Rapoport 2011, Proposi-
tion 3.5] and the definition of (2.3.0.1) in [Kudla and Rapoport 2011, Lemma 3.9].
We briefly recall the arguments here. If φ ∈ HomOE (Y,X)⊗OE E is a special
quasi-homomorphism, the element v ∈ C corresponding to φ under (2.3.0.1) is by
definition the projection to N0 of φ∗(10) ∈ N , where φ∗ is the map D(Y)⊗W K →
D(X)⊗W K = N induced by φ, and 10 is a certain fixed element in D(Y). In fact,
10 is chosen such that

• W 10 = gr0 D(Y), where the grading is with respect to the OE -action on Y,

• W 10 = Fil1
Y

D(Y), the Hodge filtration for the deformation Y of Y over W .

In particular v and φ are related by the formula v = φ∗(10), as the projection to N0

is not needed.
From now on we assume without loss of generality that v = {v}, with v corre-

sponding to φ as in the above paragraph. If x ∈ Z(v)(k), then φ∗ has to map D(Y)

into Mx , so v ∈ Mx . Since φ∗ is compatible with the Z/2Z-gradings, we further
have v ∈ A. We have shown that if x ∈ Z(v)(k), then v ∈ A.
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Now suppose x ∈ Z(v)(k). Let O ∈ C. Write vO := v⊗ 1 ∈ AO ⊂ Mx,O. For
all x̃ ∈ N̂x(O), by Grothendieck–Messing theory we know that x̃ ∈ Ẑ(v)x(O) if
and only if the base change of φ∗ to O (still denoted by φ∗) preserves the Hodge
filtrations, i.e.,

φ∗(Fil1Y D(Y))⊆ Fil1x̃ Mx,O.

Since W 10 = Fil1
Y

D(Y), this last condition is equivalent to vO ∈ Fil1x̃ Mx,O. Again,
because φ∗ is compatible with the Z/2Z-gradings, the last condition is equivalent
to vO ∈ fO(x̃). In conclusion, we have shown that x̃ ∈ N̂x(O) is in Ẑ(v)x(O) if
and only if vO ∈ fO(x̃), as desired. �

Corollary 3.1.4. Let x ∈N (k) correspond to the special lattice A. Let v be a subset
of C. Then x ∈ Z(v)(k) if and only if v ⊆ A∨.

Proof. By part (2) of Theorem 3.1.3 applied to O = k, we see that x ∈ Z(v)(k) if
and only if v ⊆ A and the image of v in Ak is contained in Fil1(Ak). The corollary
follows from Lemma 2.9.2 and the 8-invariance of v. �

Remark 3.1.5. Note that Remark 2.8.4 is a special case of Corollary 3.1.4.

3.2. Proof of the reducedness.

Corollary 3.2.1. Let3 be an OE -lattice in C with pi3⊆3∨⊆3 for some i ∈Z≥1.
Then the special cycle Z(3∨) defined by3∨ has no (W/pi+1)-points. In particular,
taking i = 1 we see that N3(W/p2)=∅ for any vertex lattice 3.

Proof. Let O = W/pi+1, equipped with the reduction map W/pi+1
→ k and the

natural divided power structure on the kernel pO. Then O ∈ C. Assume Z(3∨)
has an O-point x̃ reducing to a k-point x . Let A be the special lattice corresponding
to x (see Section 2.8). By Theorem 3.1.3, there exists a hyperplane P in AO lifting
Fil1(Ak), such that P ⊇3∨⊗OE O. Since P is a hyperplane in AO, there exists an
element l ∈ HomO(AO,O) such that

l(P)= 0 and l(AO)=O. (3.2.1.1)

We may find an element l̃ ∈ A∨ ⊆ N0 to represent l, in the sense that for all
a⊗ 1 ∈ AO with a ∈ A, we have

l(a⊗ 1)= the image of {a, l̃} under W →O.

Since l(3∨⊗O)⊆ l(P)= 0, we know that {v, l̃} ∈ pi+1W for all v ∈3∨. Since
3∨ ⊆ C = N8

0 , applying (2.2.0.4) we see that {l̃, v} ∈ pi+1W for all v ∈ 3∨.
Therefore

p−i−1l̃ ∈ (3∨W )
∨
=3W ,
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and thus l̃ ∈ pi+13W , which is contained in p3∨W by hypothesis. Since 3 is
8-invariant, we also have 8(l̃) ∈ p3∨W . But 3∨W ⊆ A∨ by Corollary 3.1.4, so
8(l̃) ∈ p A∨. It follows that for all a ∈ A, we have {8(l̃), a} ∈ pW , and therefore

{a, l̃}
(2.2.0.4)
= σ−1({8(l̃), a}) ∈ pW,

contradicting the second condition in (3.2.1.1). �

Corollary 3.2.2. Let 3 be a vertex lattice of type t and let x ∈ N3(k). Then the
tangent space TxN3,k to N3,k at x , where N3,k is the special fiber (i.e., base change
to k) of N3, is of k-dimension (t−1)/2.

Proof. This can be deduced from Theorem 3.1.3 elementarily, in the same way as in
[Li and Zhu 2017, §4.2]. Here we provide a shorter proof. Firstly we make an easy
observation. Denote by Ck the full subcategory of C consisting of characteristic p ob-
jects. Let W1 and W2 be two formal schemes over k. For i = 1, 2 fix yi ∈Wi (k) and
define the set-valued functor Fi on Ck sending O to the set of O-points of Wi which
induce yi under the structure map O→ k. Assume F1∼=F2. Then the tangent spaces
TxiWi are isomorphic. In fact, this observation is a direct consequence of the defini-
tion of the vector space structure on the tangent spaces from the point of view of func-
tor of points, as recalled in the proof of [Li and Zhu 2017, Lemma 4.2.6] for instance.

Denote by B the k-subspace of Ak spanned by the image of 3∨ in Ak . Consider
the Grassmannian Grn−1(Ak) parametrizing hyperplanes in the n-dimensional k-
vector space Ak . Let W1 be the subvariety of Grn−1(Ak) defined by the condition that
the hyperplane should contain B, and let y1∈W1(k) corresponding to Fil1(Ak)⊆ Ak .
Let W2 :=N3,k and y2 := x . By Theorem 3.1.3, the assumption on (Wi , yi ), i =1, 2
in the previous paragraph is satisfied. Hence it suffices to compute the dimension of
Ty1W1. Note that W1 is itself a Grassmannian, parametrizing hyperplanes in Ak/B.
The proof is finished once we know that Ak/B has k-dimension (t + 1)/2. But this
is true by the (σ -linear) duality between the k-vector spaces Ak/B = A/3∨W and
3W/A∨ under the σ -sesquilinear form on �(3) obtained by extension of scalars
from the σ -Hermitian form ( · , · ) on �0(3) (see Section 2.4) and the fact that
A/A∨ is a 1-dimensional k-vector space (see Definition 2.8.1). �

In the following corollary we reprove [RTZ, Theorems 9.4 and 10.1].

Corollary 3.2.3. Let 3 be a vertex lattice. Then N3 = N3,k = N red
3 and it is

regular.

Proof. Let t be the type of 3. Recall from Section 2.6 that N red
3 is a smooth

k-scheme of dimension (t − 1)/2. By Corollary 3.2.2, all the tangent spaces of
N3,k have k-dimension (t − 1)/2, and so N3,k is regular. In particular N3,k is
reduced, namely N3,k =N red

3 . Knowing that N3,k is regular, and that N3 has no
(W/p2)-points (Corollary 3.2.1), it follows that N3 =N3,k by the general criterion
[RTZ, Lemma 10.3]. �
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4. The intersection length formula

4.1. The arithmetic intersection as a fixed point scheme. Fix a regular semisimple
and minuscule element g ∈ J (Qp). Let L := L(v(g)) and 3 := L∨. They are both
OE -lattices in C . Recall from the end of Section 2.10 that 3 is a vertex lattice and
Z(L)= N3. From now on we assume N g(k) 6= ∅. As shown in [RTZ, §5], this
assumption implies that both L and 3 are g-cyclic and stable under g. In particular,
the natural action of g on N stabilizes N3.

Let �0 =�0(3) and �=�(3). Let t = t3 and d = (t−1)/2 as in Section 2.5.
Let g ∈ GL(�0)(Fp2) be the induced action of g on �0. Then g preserves the
Hermitian form ( · , · ) on �0 and hence acts on V(3). It is clear from the definition
of the isomorphism (2.6.0.1) given in [Vollaard and Wedhorn 2011, §4] that it is
equivariant for the actions of g and g on the two sides.

Remark 4.1.1. Since 3 and 3∨ are g-cyclic, the linear operator g ∈ GL(�0)(Fp2)

has equal minimal polynomial and characteristic polynomial. Equivalently, in the
Jordan normal form of g (over k) there is a unique Jordan block associated to any
eigenvalue.

Proposition 4.1.2. δ(M)∩N g is a scheme of characteristic p (i.e., a k-scheme)
isomorphic to V(3)g.

Proof. Recall from Section 2.11 that δ(M) = Z(u). Since the OE -module L
is generated by u, gu, · · · , gn−1u and stable under g, we have δ(M) ∩ N g

=

Z(L)g = N g
3. By Corollary 3.2.3, we know that N g

3 = (N
red
3 )g. But the latter is

isomorphic to the characteristic p scheme V(3)g under (2.6.0.1). �

4.2. Study of V(3)g . We start with an alternative moduli interpretation of V(�0).
The idea is to rewrite (in Lemma 4.2.2) the procedure of taking the complement
U 7→U⊥ with respect to the Hermitian form, in terms of taking the complement
with respect to some quadratic form and taking a Frobenius. The alternative moduli
interpretation is given in Corollary 4.2.3 below.

Let 20 be a t-dimensional nondegenerate quadratic space over Fp. Let [ · , · ] :
20×20→ Fp be the associated bilinear form. Since there is a unique isomorphism
class of nondegenerate σ -Hermitian spaces over Fp2 , we may assume that �0 =

20 ⊗Fp Fp2 and that the σ -Hermitian form ( · , · ) (see Section 2.5) is obtained
by extension of scalars (linearly in the first variable and σ -linearly in the second
variable) from [ · , · ].

Definition 4.2.1. Let R be an Fp-algebra. We define [ · , · ]R to be the R-bilinear
form on20⊗Fp R obtained from [ · , · ] by extension of scalars. For any R-submodule
L⊂20⊗Fp R, define

Llin⊥
:= {v ∈20⊗Fp R : [v, l]R = 0,∀l ∈ L}.
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Define σ∗(L) to be the R-module generated by the image of L under the map

σ :20⊗Fp R→20⊗Fp R, v⊗ r 7→ v⊗ r p.

Let R be an Fp2-algebra. Let U be an R-submodule of �0 ⊗Fp2 R. Since
�0⊗Fp2 R =20⊗Fp R, we may view U as an R-submodule of the latter and define
σ∗(U ) as in Definition 4.2.1.

Lemma 4.2.2. We have U⊥ = (σ∗(U ))lin⊥.

Proof. Consider two arbitrary elements

x =
∑

j

u j ⊗ r j and y =
∑

k

vk ⊗ sk

of 20⊗Fp R. We have

(y, x)R =
∑
j,k

skr p
j · [vk, u j ]R =

∑
j,k

skr p
j · [u j , vk]R = [σ(x), y]R.

Hence for y ∈20⊗Fp R, we have y ∈U⊥ if and only if (y, x)R = 0 for all x ∈U ,
if and only if [σ(x), y]R = 0 for all x ∈U , if and only if y ∈ (σ∗(U ))lin⊥. �

Corollary 4.2.3. For any Fp2-algebra R, the set V(�0)(R) is equal to the set of
R-submodules U of

�0⊗Fp2 R =20⊗Fp R,

such that U is an R-module local direct summand of rank d+1, satisfying

(σ∗(U ))lin⊥ ⊆U.

Proof. This is a direct consequence of (2.5.0.1) and Lemma 4.2.2. �

In the following we denote V(3) by V for simplicity, where 3 is always fixed
as in the beginning of Section 4.1. Denote 2 :=20⊗Fp k. Fix a point x0 ∈ Vg(k).
Let U0 correspond to x0 under (2.5.0.1) or Corollary 4.2.3. Define

Ld+1 :=U0 and Ld := (σ∗(U0))
lin⊥ Lemma 4.2.2

= U⊥0 .

They are subspaces of 2 stable under g, of k-dimensions d + 1 and d respectively.

Definition 4.2.4. Define I := P(2/Ld), a projective space of dimension d over k.

Then Ld+1 defines an element in I(k), which we still denote by x0 by abuse of
notation. We have a natural action of g on I that fixes x0. Let Rp and Sp be the
quotient of the local ring of Ig and of Vg at x0 divided by the p-th power of its
maximal ideal, respectively.

Lemma 4.2.5. There is a k-algebra isomorphism Rp ∼= Sp.
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Proof. The proof is based on exactly the same idea as [Li and Zhu 2017, Lemma
5.2.9]. Let R̃p and S̃p be the quotient of the local ring of I and of V at x0 divided
by the p-th power of its maximal ideal, respectively. Let R be an arbitrary local
k-algebra with residue field k such that the p-th power of its maximal ideal is zero.
Then by Lemma 4.2.2, the R-points of V lifting x0 classify R-module local direct
summands U of 2⊗k R of rank d+1 that lift Ld+1, and such that

U ⊇ (σ∗(U ))lin⊥.

But by the assumption that the p-th power of the maximal ideal of R is zero, we have

σR,∗(U )= (σk,∗(Ld+1))⊗k R,

where we have written σR and σk to distinguish between the Frobenius on R and
on k. Therefore

(σR,∗(U ))lin⊥ = ((σk,∗(Ld+1))⊗k R)lin⊥ = (σk,∗(Ld+1))
lin⊥
⊗k R = Ld ⊗k R.

Thus we see that the set of R-points of V lifting x0 is in canonical bijection with
the set of R-points of I lifting x0. We thus obtain a canonical R̃p-point of V lifting
x0 ∈ V(k), and a canonical S̃p-point of I lifting x0 ∈ I(k). These two points induce
maps S̃p→ R̃p and R̃p→ S̃p respectively. From the moduli interpretation of these
two maps we see that they are k-algebra homomorphisms inverse to each other and
equivariant with respect to the actions of g on both sides. Note that Sp and Rp are
the quotients of S̃p and R̃p by the augmentation ideal for the g-action, respectively.
It follows that Rp ∼= Sp. �

4.3. Study of I g .

Definition 4.3.1. Let λ be the eigenvalue of g on the 1-dimensional k-vector space
Ld+1/Ld =U0/U⊥0 , and let c be the size of the unique (see Remark 4.1.1) Jordan
block of g|Ld+1 associated to λ. Notice our c is denoted by c+ 1 in [RTZ, §9].

Remark 4.3.2. By the discussion before [Rapoport et al. 2013, Proposition 9.1], c
is the size of the unique Jordan block associated to λ of g on 2/Ld =�/U⊥0 , and
is also equal to the quantity 1

2(m(Q(T ))+ 1) introduced in the introduction.

Proposition 4.3.3. The local ring OIg,x0 of Ig at x0 is isomorphic to k[X ]/X c as
a k-algebra.

Proof. By Remark 4.3.2 and Definition 4.2.4, the proposition is a consequence of
the following general lemma applied to L=2/Ld and h = g. �

Lemma 4.3.4. Let L be a k-vector space of dimension d+1. Let P(L)= Pd be the
associated projective space. Let x0 ∈ P(L)(k), represented by a vector ` ∈ L. Let
h ∈ GL(L)(k)= GLd+1(k). Assume that:
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(1) The natural action of h on P(L) fixes x0. Denote the eigenvalue of h on ` by λ.

(2) There is a unique Jordan block of h associated to the eigenvalue λ. Denote its
size by c.

Let R :=OP(L)h ,x0 be the local ring of the fixed point scheme P(L)h at x0. Then

R ∼= k[X ]/X c.

Proof. Extend ` to a basis {`0= `, `1, . . . , `d} of L such that the matrix (hi j )0≤i, j≤d

of h under this basis is in the Jordan normal form. Under this basis, the point x0

has projective coordinates [X0 : · · · : Xd ] = [1 : 0 : · · · : 0] ∈ Pd . Let Zi = X i/X0

(1 ≤ i ≤ d) and let Ad be the affine space with coordinates (Z1, . . . , Zd). Then
we can identify the local ring of Pd at x0 with the local ring of Ad at the origin.
Since h fixes x0, we know that h acts on the local ring of Ad at the origin (although
h does not stabilize Ad in general). Since (hi j ) is in the Jordan normal form, we
know that the action of h on the latter is given explicitly by

h Zi =
hi,i X i + hi,i+1 X i+1

h0,0 X0+ h0,1 X1
=

hi,i Zi + hi,i+1 Zi+1

h0,0+ h0,1 Z1
, 1≤ i ≤ d,

where hi,i+1 Zi+1 is understood as 0 when i = d. Hence the local equations at the
origin of Ad which cut out the h-fixed point scheme are given by

(h0,0− hi,i )Zi + h0,1 Z1 Zi = hi,i+1 Zi+1, 1≤ i ≤ d.

By hypothesis (2), we have h0,0− hi,i 6= 0 if and only if i ≥ c. Thus when i ≥ c,
we know that (h0,0− hi,i )+ h0,1 Z1 is a unit in the local ring of Ad at the origin,
and so Zi can be solved as a multiple of hi,i+1 Zi+1 when i ≥ c. It follows that

Zi = 0, i ≥ c.

If c = 1, then Z1 = · · · = Zd = 0 and the local ring R in question is isomorphic to
k as desired. If c > 1, then h0,1 = 1 and we find the equations for i = 1, · · · , c− 1
simplify to

Z1 Z1 = Z2, Z1 Z2 = Z3, · · · , Z1 Zc−2 = Zc−1, Z1 Zc−1 = 0.

Hence the local ring R in question is isomorphic to (the localization at the ideal
(Z1, Z2, · · · , Zc−1) or (Z1) of)

k[Z1, Z2, . . . , Zc−1]/(Z2
1 − Z2, Z3

1 − Z3, · · · , Z c−1
1 − Zc−1, Z c

1)
∼= k[Z1]/Z c

1,

as desired. �

Theorem 4.3.5. Let g ∈ J (Qp) be regular semisimple and minuscule. Let x0 be
a point in (δ(M) ∩N g)(k). Also denote by x0 the image of x0 in V(3)(k) as in
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Proposition 4.1.2 and define λ and c as in Definition 4.3.1. Assume p > c. Then the
complete local ring of δ(M)∩N g at x0 is isomorphic to k[X ]/X c.

Proof. Let Ŝ be the complete local ring of δ(M)∩N g at x0. By Proposition 4.1.2
and by the fact that V(3) is smooth of dimension d (Section 2.5), we know that
Ŝ is a quotient of the power series ring k[[X1, · · · , Xd ]]. By Proposition 4.1.2,
Lemma 4.2.5 and Proposition 4.3.3, we know that Ŝ/mp

Ŝ
is isomorphic to k[X ]/X c

as a k-algebra. In such a situation, it follows from the next abstract lemma that
Ŝ ∼= k[X ]/X c. �

Lemma 4.3.6. Let I be a proper ideal of k[[X1, · · · , Xd ]] and let

Ŝ = k[[X1, · · · , Xd ]]/I.

Let m be the maximal ideal of k[[X1, · · · , Xd ]] and let mŜ be the maximal ideal of Ŝ.
Assume there is a k-algebra isomorphism β : Ŝ/mp

Ŝ
−→∼ k[X ]/X c for some integer

1≤ c < p. Then Ŝ is isomorphic to k[X ]/X c as a k-algebra.

Proof. We first notice that if R1 is any quotient ring of k[[X1, · · · , Xd ]] with its
maximal ideal m1 satisfying m1 = m2

1 (i.e., R1 has zero cotangent space), then
R1= k. In fact, R1 is noetherian and we have ml

1=m1 for all l ∈Z≥1, so by Krull’s
intersection theorem we conclude that m1 = 0 and R1 = k.

Suppose c = 1. Then Ŝ/mp
Ŝ
∼= k, so Ŝ has zero cotangent space and thus Ŝ = k

as desired. Next we treat the case c ≥ 2. Let α be the composite

α : k[[X1, · · · , Xd ]] → Ŝ/mp
Ŝ

β
−→ k[X ]/X c.

Let J = kerα. Since α is surjective, we reduce to prove that I = J . Note that
because β is an isomorphism we have

I +mp
= J. (4.3.6.1)

In the following we prove mp
⊂ I , which will imply I = J and hence the lemma.

The argument is a variant of [RTZ, Lemma 11.1].
Let Y ∈ k[[X1, · · · , Xd ]] be such that α(Y )= X . Since X generates the maximal

ideal in k[X ]/X c, we have
m= J + (Y ). (4.3.6.2)

Then by (4.3.6.1) and (4.3.6.2) we have m= I + (Y )+mp, and so the local ring
k[[X1, · · · , Xd ]]/(I + (Y )) has zero cotangent space. We have observed that the
cotangent space being zero implies that the ring has to be k, or equivalently

m= I + (Y ). (4.3.6.3)

Now we start to show mp
⊂ I . By (4.3.6.3) we have mp

⊂ I + (Y p), so we only
need to prove Y p

∈ I . We will show the stronger statement that Y c
∈ I . By Krull’s
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intersection theorem, it suffices to show that Y c
∈ I +mpl for all l ≥ 1. In the

following we show this by induction on l.
Assume l = 1. Note that α(Y c)= 0, so by (4.3.6.1) we have

Y c
∈ J = I +mp.

Suppose Y c
∈ I +mpl for an integer l ≥ 1. Write

Y c
= i +m, i ∈ I, m ∈mpl . (4.3.6.4)

By (4.3.6.2) we know

mpl
⊂ (J + (Y ))pl

⊂

pl∑
s=0

J s(Y )pl−s .

Thus we can decompose m ∈mpl into a sum

m =
pl∑

s=0

jsY pl−s, js ∈ J s . (4.3.6.5)

By (4.3.6.4) and (4.3.6.5), we have

Y c
= i +

pl∑
s=0

jsY pl−s,

and so

Y c
−

pl−c∑
s=0

jsY pl−s
= i +

pl∑
s=pl−c+1

jsY pl−s . (4.3.6.6)

Denote

A :=
pl−c∑
s=0

jsY pl−s−c.

Then the left hand side of (4.3.6.6) is equal to (1− A)Y c. Hence we have

(1− A)Y c
= i +

pl∑
s=pl−c+1

jsY pl−s
⊂ I + J pl−c+1

(4.3.6.1)
−−−−→ I + (I +mp)pl−c+1

= I +mp(pl−c+1)
⊂ I +mp(l+1),

where for the last inclusion we have used c < p. Since 1 − A is a unit in
k[[X1, · · · , Xd ]] (because c < p), we have Y c

∈ I + mp(l+1). By induction,
Y c
∈ I +mpl for all l ∈ Z≥1, as desired. �
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