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Tate cycles on
some unitary Shimura varieties mod

David Helm, Yichao Tian and Liang Xiao

Let F be a real quadratic field in which a fixed prime p is inert, and E, be
an imaginary quadratic field in which p splits; put E = EgF. Let X be the
fiber over [sz of the Shimura variety for G(U(1,n — 1) x U(n — 1, 1)) with
hyperspecial level structure at p for some integer n > 2. We show that under some
genericity conditions the middle-dimensional Tate classes of X are generated by
the irreducible components of its supersingular locus. We also discuss a general
conjecture regarding special cycles on the special fibers of unitary Shimura
varieties, and on their relation to Newton stratification.

1. Introduction 2213
2. The conjecture on special cycles 2217
3. Preliminaries on Dieudonné modules and deformation theory 2231
4., Thecaseof GAWU(l,n—1)xU(m—1,1)) 2235
5. Fundamental intersection numbers 2251
6. Intersection matrix of supersingular cycles on Sh; ,_; 2258
7. Construction of cycles in the case of G(U (r, s) x U(s, r)) 2269
Appendix A. The local spherical Hecke algebra for GL, 2282
Appendix B. A determinant formula 2285
References 2287

1. Introduction

The study of the geometry of Shimura varieties lies at the heart of the Langlands
program. Arithmetic information of Shimura varieties builds a bridge relating the
world of automorphic representations and the world of Galois representations.
One of the interesting topics in this area is to understand the supersingular
locus of the special fibers of Shimura varieties, or more generally, any interesting
stratifications (e.g., Newton or Ekedahl-Oort stratification) of the special fibers
of Shimura varieties. The case of unitary Shimura varieties has been extensively

MSC2010: primary 11G18; secondary 11R39, 14C17, 14C25, 14G35.
Keywords: Supersingular locus, Special fiber of Shimura varieties, Deligne-Lusztig varieties, Tate
conjecture.
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studied. Vollaard and Wedhorn [2011] showed that the supersingular locus of the
special fiber of the GU (1, n — 1)-Shimura variety at an inert prime is a union of
Deligne—Lusztig varieties. Further, Howard and Pappas [2014] studied the case
of GU (2, 2) at an inert prime, and Rapoport, Terstiege and Wilson proved similar
results for GU (n — 1, 1) at a ramified prime. Finally, we remark that Gortz and He
[2015] studied the basic loci in a slightly more general class of Shimura varieties.

In all the work mentioned above, the authors use the uniformization theorem of
Rapoport—Zink to reduce the problem to the study of certain Rapoport—Zink spaces.
In this paper, we take a different approach. Instead of using the uniformization
theorem, we study the basic locus (or more generally other Newton strata) of certain
unitary Shimura varieties by considering correspondences between unitary Shimura
varieties of different signatures. This method was introduced by the first author in
[Helm 2010; 2012], and applied successfully to quaternionic Shimura varieties by
the second and the third authors [Tian and Xiao 2016].

Another new aspect of this work is that we study not only the global geometry
of the supersingular locus, but also their relationship with the Tate conjecture for
Shimura varieties over finite fields. We show that the basic locus contributes to
all “generic” middle-dimensional Tate cycles of the special fiber of the Shimura
variety. Similar results have been obtained by the second and the third authors
for even-dimensional Hilbert modular varieties at an inert prime [Tian and Xiao
2014]. We believe that, this phenomenon is a general philosophy which holds for
more general Shimura varieties. Our slogan is: irreducible components of the basic
locus of a Shimura variety should generate all Tate classes under some genericity
condition on the automorphic representations.

We explain in more detail the main results of this paper. Let F be a real quadratic
field, Eg be an imaginary quadratic field, and E = EyF. Let p be a prime number
inertin F, and splitin Ey. Let p, p denote the two places of E above p so that E,, and
Ej; are both isomorphic to Q 2, the unique unramified quadratic extension of 2, For
an integer n > 1, let G be the similitude unitary group associated to a division algebra
over E equipped with an involution of second kind. In the notation of Section 3.6,
our G is denoted G ,—1. This is an algebraic group over Q such that G(Q,) ~
Q) xGL, (Ep) and G(R) is the unitary similitude group with signature (1, n—1) and
(n—1, 1) at the two archimedean places. (For a precise definition, see Section 2.2.)

Let A denote the ring of finite adeles of Q, and A be its finite part. Fix a
sufficiently small open compact subgroup K € G (A™) with K), =77 xGL,(Z 2) <
G(Qp), where Z,. is the ring of integers of Q. Let Sh(G)k be the Shimura
variety associated to G of level K.!

lStrictly speaking, the moduli space Sh(G)g is #kerl (Q, G)-copies of the classical Shimura
variety whose C-points are given by the double coset space G(Q) \ G(A)/Kso K, where Koo € G(R)
is the maximal compact subgroup modulo center. See [Kottwitz 1992b, page 400] for details.
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According to Kottwitz [1992b], when K7 is neat, Sh(G)x admits a proper
and smooth integral model over Z > which parametrizes certain polarized abelian
schemes with K-level structure (See Section 2.3). Let Sh; ,_; denote the special
fiber of Sh(G)k over F2. This is a proper smooth variety over [ of dimension
2(n—1). Let Shsls’nf1 denote the supersingular locus of Sh; ,_1, i.e., the reduced
closed subvariety of Sh; ,_; that parametrizes supersingular abelian varieties. We
will see in Proposition 4.14 that Sh®, _, is equidimensional of dimension n — 1.

Fix a prime £ # p. There is a natural action by Gal(l]: /F,2) % Q[K\GA®)/K]
on the £-adic étale cohomology group H2(" 1)(Sh],n—l,[F,’ Q¢ (n—1)). We will take
advantage of the Hecke action to consider a variant of the [Tate conjecture for Shy ,,_1.

Fix an irreducible admissible representation 71 of G(A™®) (with coefficients in Q).
The K -invariant subspace of 7, denoted by 7 X, is a finite-dimensional irreducible
representation of the Hecke algebra @, [K \ G(A‘X’) /K. We denote the 7 K -isotypic
component of Hy" " (Shy ,_; ¢, Q¢(n— 1)) by Hy" " (Shy ,_; ¢, Qe(n — 1))z
and put ’ !

H2V(shy, g Bei— D)= | BTV (Shy,p . et — 1),

Fy/F

where [, runs through all finite extensions of [F,.. By projecting to the 7K -isotypic
component, we have an £-adic cycle class map:

el AN Shy L, 5 ) @2 @ — He "V (Shy, g Qe — 1), (10.1)

where A”~! (Sh1,n—1,Fp) is the abelian group of codimension n — 1 algebraic cycles
on Shy ,_, g, Then the Tate conjecture for Shy , predicts that the above map is
surjective. Our main result confirms exactly this statement under some “genericity”
assumptions on 7.

From now on, we assume that 7 satisfies Hypothesis 2.5 to ensure the non-
triviality of the m-isotypic component of the cohomology groups. In particu-
lar, 7 is the finite part of an automorphic cuspidal representation of G(A), and
HA"™ 1)(Shl n—1.E,» , Q¢(n—1)); #0. Let 7, denote the p-component of 7, which is
an unramified pnnmpal series as K, is hyperspecial. Since G(Q,) ~Q; xGL, (Ey),
we write 77, = 7, o ® 7, Where 7 ¢ is a character of Q and 7, is an irreducible
admissible representation of GL,, (Ej).

Our main theorem is the following.

Theorem 1.1. Suppose m is the finite part of an automorphic representation of
G (A) that admits a cuspidal base change to GL,(Ag) x A% » and the Satake param-
eters of my are distinct modulo roots of unity. Then Hz(" b (Shl,n—l,ﬁp’ Q;(n— 1))2n
is generated by the cohomological classes of the irreducible components of the
supersingular locus Sh?fn_l. In particular, the cycle class map (1.0.1) is surjective.
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This theorem will be restated in a more precise form in Theorem 4.18. Here,
the assumption that the Satake parameters of 7, are distinct modulo roots of unity
is crucial for our method. It is closely tied to our geometric description of the
irreducible components. This condition will be reformulated in Theorem 4.18 in
terms of the Frobenius eigenvalues of certain Galois representation attached to
7y via the unramified local Langlands correspondence. The other automorphic
assumption on 7 is of technical nature. It is imposed here to ensure certain equalities
on the automorphic multiplicity on 7 (See Remark 4.19). The method of our paper
may be extended to more general representations  if we have more knowledge of
the multiplicity of automorphic forms on unitary groups.

What we will prove is more precise than stated in Theorem 1.1. We need another
unitary group G’ = Gy, over Q for E/F as in Lemma 2.9, which is the unique
inner form of G such that G'(A*) >~ G (A*) and the signatures of G’ at the two
archimedean places are (0, n) and (n, 0). Let Shy , denote the (zero-dimensional)
Shimura variety over [F,» associated to G". We will show in Proposition 4.14
that the supersingular locus Shbﬁn_ | is a union of n closed subvarieties Y; with
I < j < n such that each of ¥; admits a fibration over Shg , of the same level
K C G(A™®) >~ G'(A*) with fibers isomorphic to a certain proper and smooth
closed subvariety in a product of Grassmannians. In other words, each Y; is an
algebraic correspondence between Sh; ,_; and Shy ,:

N Y; — Ship—1.

This can be viewed as a geometric realization of the Jacquet-Langlands corre-
spondence between G and G’ in the sense of [Helm 2010]. Alternatively, we
may view these Y; as Hecke correspondences between special fibers of unitary
Shimura varieties of different signatures. To prove Theorem 1.1, it suffices to
show that, when the Satake parameters of my, are distinct modulo roots of unity,
H;("_l)(Sth_U;p, Qe(n — l))f;n is generated by the cohomology classes of the
irreducible components of Y;. The key point is to show that the -projection of the
intersection matrix of ¥; is nondegenerate under the assumption above on 7.

We briefly describe the structure of this paper. In Section 2, we consider a more
general setup of unitary Shimura varieties, and propose a general conjecture, which
roughly predicts the existence of certain algebraic correspondences between the
special fibers of Shimura varieties with hyperspecial level at p associated to unitary
groups with different signatures at infinity (Conjecture 2.12). Theorem 1.1 is a
special case of Conjecture 2.12. We believe that our conjecture will provide a new
perspective to understand the special fibers of Shimura varieties. In Section 3, we
review some Dieudonné theory and Grothendieck—Messing deformation theory
that will be frequently used in later sections. Section 4 is devoted to the study of
the supersingular locus Sh}®, |, and constructing the subvarieties ¥; mentioned
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above. In Section 5, we compute certain intersection numbers on products of
Grassmannian varieties. These numbers will play a fundamental role in our later
computation of the intersection matrix of the Y;. In Section 6, we will compute
explicitly the intersection matrix of the Y; (Theorem 6.7), and show that its 7-
isotypic projection of the intersection matrix is nondegenerate as long as the Satake
parameters of m, are distinct (as opposed to being distinct modulo roots of unity).
Then an easy cohomological computation allows us to conclude the proof of our
main theorem. In Section 7, we will generalize the construction of the cycles Y; to
the Shimura variety associated to unitary group for E/F of signature (r, s) x (s, r)
at infinity. In this case, we only obtain some partial results on these cycles predicted
by Conjecture 2.12: the union of these cycles is exactly the supersingular locus of
the unitary Shimura variety in question (Theorem 7.8).

2. The conjecture on special cycles

We will only discuss certain unitary Shimura varieties so that the description
becomes explicit. We will discuss after Conjecture 2.12 on how to possibly extend
this conjecture to more general Shimura varieties.

2.1. Notation. We fix a prime number p throughout this paper. We fix an isomor-
phism¢, :C = Q p- Let @} be the maximal unramified extension of ), inside Q -

Let F be a totally real field of degree f in which p is inert. We label all real
embeddings of F, or equivalently (via (), all p-adic embeddings of F' (into Q) by
71, ..., Ty so that post-composition by the Frobenius map takes 7; to 7;4. Here the
subindices are taken modulo f. Let E( be an imaginary quadratic extension of Q in
which p splits. Put E = EyF. Denote by v and v the two p-adic places of Ey. Then
p splits into two primes p and p in E, where p (resp. p) is the p-adic place above v
(resp. D). Let g; denote the embedding E — E, = F), > Q » and g; the analogous
embedding which factors through Ej instead. Composing with L;l, we regard ¢;
and g; as complex embeddings of E, and we put oo £ =1{q1, ..., 47 q1,---, 4 f}.

2.2. Shimura data. Let D be a division algebra of dimension n? over its center E,

equipped with a positive involution * which restricts to the complex conjugation ¢
on E. In particular, D°?P = D ® g . E. We assume that D splits at p and p, and we
fix an isomorphism

D ®q Qp = Mn(Ep) X Mn(Eﬁ) = Mn(@pf) X Ml’l(pr)s

where * switches the two direct factors. We use ¢ to denote the element of D ®¢g Q),
corresponding to the (1, 1)-elementary matrix? in the first factor. Let a, = (a;)1<i< f

2By a (1, 1)-elementary matrix, we mean an n x n-matrix whose (1, 1)-entry is 1 and whose other
entries are zero.
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be a tuple of f numbers with a; € {0, ..., n}. Assume that there exists an element
Ba. € (D*)*="1 such that the following condition is satisfied:?

Let G,, be the algebraic group over Q such that G, (R) for a (Q-algebra R
consists of elements g € (D’ ®g R)* with gB,,g* = c(g)B,, for some c(g) € R™.
IftG (11 denotes the kernel of the similitude character ¢ : G,, — G, @, then there
exists an isomorphism

f
G, ®~[JU@i.n—a.
i=1
where the i-th factor corresponds to the real embedding t; : F — R.
Note that the assumption on D at p implies that

Ga. (@p) = Q) x GL,(Ep) = Q) x GL,(Q,/).

We put V,, = D and view it as a left D-module. Let (—, —),, : V,, x V,, = Q be
the perfect alternating pairing given by

(x, ¥)a, =Trp/a(xBa,y™) for x,y € V,,.

Then G,, is identified with the similitude group associated to (V,,, (—, —)4,), i.€.,
for all (D-algebra R, we have

Gu(R) ={g € Endpgor(Vo.®a R) | (8X,8Y)a, = c(g)(x,y)s, for some c(g) € R™}.

Consider the homomorphism of R-algebraic groups & : Resc/r(Gp) — G, r
given by

f
h(z) = HDiag(& 20Ty 7)., forz=x++/—ly. (2.2.1)
i=1 a; n—a;

Let uy : G;y.c = Gg, ¢ be the composite of h¢ with the map
Gm.c = Resg/r(Gn)c =C* xC*,  z+> (2, 1).

Here, the first copy of C* in Resc/r(Gy,)c is the one indexed by the identity element
in Autr(C), and the other copy of C* is indexed by the complex conjugation.

Let Ej, be the reflex field of uy, i.e., the minimal subfield of C where the
conjugacy class of uy, is defined. It has the following explicit description. The
group Autg(C) acts naturally on ¥ g, and hence on the functions on X g.
Then E}, is the subfield of C fixed by the stabilizer of the Z-valued function a on
Yoo, defined by a(g;) = a; and a(g;) = n — a;. The isomorphism ¢, : C = @p

3As explained in the proof of [Harris and Taylor 2001, Lemma 1.7.1], when n is odd, such B,
always exists, and when # is even, existence of B4, depends on the parity of aj +- - - +a . See also
the proof of Lemma 2.9.
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defines a p-adic place p of Ej,. By our hypothesis on E, the local field Ej, , is
an unramified extension of Q;, contained in s, the unique unramified extension
over Q,, of degree f.

2.3. Unitary Shimura varieties of PEL-type. Let Op be a x-stable order of D and
Aq, an Op-lattice of V,, such that (A,,, Ay, )e, © Z and A,, ®7 Z,, is self-dual
under the alternating pairing induced by (—, —),,. We put K, = Z; x GL, (Of,) ©
G4, (Q)), and fix an open compact subgroup K” C G, (A°?) such that K = K7 K,
is neat, i.e., G,,(Q) N gKg~' is torsion free for any g € G, (A™).

Following [Kottwitz 1992b], we have a unitary Shimura variety Sh,, defined
over Z, s;* it represents the functor that takes a locally noetherian Z p/-scheme § to
the set of isomorphism classes of tuples (A, A, n), where

(1) A is an fn2-dimensional abelian variety over S equipped with an action of
Op such that the induced action on Lie(A/S) satisfies the Kottwitz determi-
nant condition, that is, if we view the reduced relative de Rham homology
HGIR(A/S)o : eHdR(A/S) and its quotient LleA/S =c¢-Lies s as a module
over F), ®z, Os = EBl | Os, they, respectively, decompose into the direct
sums of locally free Os-modules H dR(A /8); of rank n and, their quotients,
locally free Os-modules Lie}, g ; of rank n —a;

(2) A: A — AY is a prime-to-p Op-equivariant polarization such that the Rosati
involution induces the involution % on Op;

(3) n1is a collection of, for each connected component S; of § with a geometric
point 5;, a (S}, §;)-invariant K ”-orbit of isomorphisms 7; : A,, ®z 7P ~
TP (A; ;) such that the following diagram commutes for an 1somorph1sm
v(n;) € Hom(z<P> 7P (1)):

~ ~ (== =
Aq, ®7 71 Ag, @7 70— 7P

ln_ixn_/ lvmj)

Weil pairing ~
T(p)Agj X T(p)AEj ZP) (1),

where Z(P) =] vp ZLe and T(P)(Aj,) denotes the product of the ¢-adic Tate
modules of Ag; for all £ # p.

The Shimura variety Sh,, is smooth and projective over Z s of relative dimension
d(a,) := Zile a;(n — a;). Note that if a; € {0, n} for all i, then Sh,, is of relative
dimension zero; we call it a discrete Shimura variety.

4Although one can descend Shy, to the subring O, o of Z pfoWe ignore this minor improvement.
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We denote by Sh,, (C) the complex points of Sh,, via the embedding
~1
VA pf —> @ p i) C.
Let Ko € G, (R) be the stabilizer of /4 (2.2.1) under the conjugation action, and
let X, denote the G,, (R)-conjugacy class of 4. Then K, is a maximal compact-
modulo-center subgroup of G,, (R). According to [Kottwitz 1992b, page 400], the
complex manifold Sh,, (C) is the disjoint union of #ker' (Q, G,,) copies of

Ga.(@)\ (G, (A%®) X Xo0) /K = G, (Q)\ Gy, (A) /K X Koo (2.3.1)
Here, if n is even, then ker! (Q, G,,) = (0), while if n is odd then
ker'(Q, G,,) = Ker(F* /Q*Ng/r(EX) — AF /A" Ng/r(AY)).

In either case, ker! (Q, G,,) depends only on the CM extension E/F and the parity
of n but not on the tuple q,.

Let Sh,, := Shy, ®Z,,f [pr denote the special fiber of Sh,,, and let §1a. =
Shy, ®[F,, ;Fp denote the geometric special fiber.

2.4. {-adic cohomology. We fix a prime number £ # p, and an isomorphism
t¢ : C ~ Q. Let & be an algebraic representation of G, over Qy, and &c be the
base change via LZI. The theory of automorphic sheaves [Milne 1990, Section III]
or just reading off from the rational £-adic Tate modules of the universal abelian
variety allows us to attach to & a lisse @;-sheaf Lg over Shy,. For example, if £ is
the representation of G,, on the vector space V,, (Section 2.2), the corresponding
£-adic local system is given by the rational ¢-adic Tate module (tensored with @g)
of the universal abelian scheme over Sh, .

We assume that & is irreducible. Let # g = #(K, @4) be the Hecke algebra
of compactly supported K -bi-invariant @,-valued functions on G, (A*®). The
étale cohomology group Hg(“‘)(STla., Le) is equipped with a natural action of
Hg x Gal(ﬁp /F,r). Since Sh,, is proper and smooth, there is no continuous
spectrum and we have a canonical decomposition of #x x Gal(F,/F,)-modules
(see, e.g., [Harris and Taylor 2001, Proposition II1.2.1])

Hy'™ Sha, L= € w@™) @ Ry o), 2.4.1)
welr(Gy, (A®))

where Irr(G,, (A®)) is the set of irreducible admissible representations of G, (A*)
with coefficients in C, 7 X is the K-invariant subspace of 7 € Irr(G,, (A*)) and
Ry, ¢() is a certain £-adic representation of Gal([_Fp /F,s) which we specify below.

We write Heci(a‘)(ﬁa., Lg)y for the m-isotypic component of the cohomology
group, that is, the direct summand of (2.4.1) labeled by w. We make the following
assumptions on 7.
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Hypothesis 2.5. (1) We have 7% #£0.
(2) There exists an admissible irreducible representation o, of G, (R) such that
T ® oo 1S a cuspidal automorphic representation of G, (A),

(2a) ms 1s cohomological in degree d(a,) for & in the sense that
Hd(a.)(Lie(Ga.(R))9 KOOv T[OO ®EC) #07 5 (251)

where K is a maximal compact subgroup of G, (R),
(2b) and m ® o admits a base change to a cuspidal automorphic representation
of GL,(Ag) x AEO.

Note that Hypothesis 2.5(1) implies that the p-component 7, is unramified.
Hypothesis 2.5 (2a) ensures that R,, ((7) is nontrivial. Moreover, by [Caraiani
2012, Theorem 1.2], this hypothesis implies that the base change of 7 ® 7 to
GL,, g is tempered at all finite places, and hence 7, is tempered.

We recall now an explicit description, due to Kottwitz [1992a], of the Galois
module R,, ((7). As G, (Q)) = @X x GL, (Ey), we may write 7, = 1,0 ® 7,
where 7, ¢ is a character of @; tr1V1al on Z3, and 7y is an irreducible admissible
representation of GL, (Ep) such that nGL”((pr) # 0. Choose a square root ,/p of
p in Q. Depending on this choice of f , one has an (unramified) local Langlands
parameter attached to 7 ,:

On, = @00 0x,) : Wa, = “(Ga,.0,) = C* x (GL,(C)*/% x Gal(@,/Q,)).

Here, Wg, is the Weil group of Q,,, and Gal(Q »/Qp) permutes cyclically the f
copies of GL,(C) though the quotient Gal(Q,//Q,) = Z/fZ. The image of
@, we ; liesin (¢ G, )°~C*xGL, (C)%/7Z, The cocharacter ji, : Gm.g, — Ga,.E,
induces]7 a character i), of (LGa.)" over Ej. Let ry, denote the algebraic representa-
tion of (©G,,)° with extreme weight /i;,. Denote by Frob p/ @ geometric Frobenius
element in Wg e Let @g(l / 2) denote the unramified representation of Wg o which
sends Frob s to WP~ /. Then Rg, ¢ (1) can be described in terms of ¢, as follows.

Theorem 2.6 [Kottwitz 1992a, Theorem 1]. Under the hypothesis and notation
above, we have an equality in the Grothendieck group of W@p ;-modules:

[Ra,.c(m)] =#ker' (Q, Go,)ma, (1) [te(ry, 0 ¢x,) ® Qu(—3d(a.))],

where mg, () is a certain integer related to the automorphic multiplicities of
automorphic representations of G, with finite part 7. ®

3This automatically implies that o has the same central and infinitesimal characters as the
contragradient of &c.

6Rigorously speaking, Kottwitz’s theorem describes the direct sum of the 7-component of all
cohomological degrees. Since our 7, is tempered, so 7 appears only in the middle degree for purity
reasons because Shy, is compact.
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In our case, one can make Kottwitz’s theorem more transparent. Define an £-adic
representation

pry = (@) ® Qe (3(1 =) : Wa , — GL,(Qy), (2.6.1)

where (p,%)’v : W@p ; = GL,(C) denotes the contragredient of the projection to
the first (or any) copy of GL,(C). Both P, and @g(%) depend on the choice of
/P, but P, does not. Explicitly, o, (Frob,,s) is semisimple with the characteristic
polynomial given by [Gross 1998, (6.7)]:

n
X"+ (=1 (Np) =D xm (2.6.2)
i=1

GLn (OEp

is the eigenvalue on 7, ) of the Hecke operator

where aéi)

T,” = GL,(Og,) - Diag(p, ..., p, 1, ..., 1) -GL,(OF,).
—_—— ——
i n—i
An easy computation shows that r,, = Stdqii ® ®if:1 (A% StdY). Since the projec-

tion of ¢z, wg , to each copy of GL, (C) is 'Z:onjugate to all others, Theorem 2.6 is
equivalent to

(R (0)]
= #ker' (@, Go,) 1, (1) o (1) ® 27, @ Qe (Y astai = 1) |, 2:63)

where pg, (77p) = 74, © pr, With 74, = ®f:1 A% Std, and xz,, denotes the character
of Gal([_Fp/[pr) sending Frob ,; to Le(ﬂp,o(pf)).

Remark 2.7. The reason why we normalize the Galois representation as above is the
following: By Hypothesis 2.5, 7 is the finite part of an automorphic representation
of G,, (A) which admits a base change to a cuspidal automorphic representation
I[MT® x of GL,(Ag) x AEO. If pr1 denotes the Galois representation of Gal(Q/E)
attached to I, then P, is the semisimplification of the restriction of pr to WE,
(See [Caraiani 2012, Theorem 1.1]).

2.8. Tate conjecture. We recall first the Tate conjecture [1966] over finite fields.
Let X be a projective smooth variety over a finite field [, of characteristic p. Put
X=X - For each prime ¢ # p and integer r < dim(X), we have a cycle class map

Cl;( : Ar(X) Xz @[ — He2tr ()_(, @Z(r))Gal("Ep/[Fq)’

where A" (X) denotes the abelian group of codimension r algebraic cycles in X
defined over F,. Then the Tate conjecture predicts that this map is surjective. One
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has a geometric variant of the Tate conjecture, which claims that the geometric
cycle class map:

ol 0 A7(X) ®2 Qp — HE (X, Qu(r)™ := ] HY (X, Qu () Er/Fam)
m>1
is surjective. Here, the superscript “fin” means the subspace on which Gal(l]_:p /Fy)
acts through a finite quotient. Note that the surjectivity of cl% implies that of cl’y
by taking the Gal([F,/F,)-invariant subspace.

Consider the case X = Sh,, with d(a,) even. Let m be an irreducible admissible
representation of G, (A*) as in Theorem 2.6. By Theorem 2.6, the w-isotypic
component of Hft(a') (ﬁa., @( (%d(a,)))lcln is, up to Frobenius semisimpliﬁcati0n7,
isomorphic to dim(sr X) -#ker' (Q, G,,) - mg, () copies of

. _ (l’l—l) f | fin
Pa. () ® Xz, @ Qe ——— ) ai )| (2.8.1)

i=1

Note that X7p0 (Frob,,s) = 7p 0( pf) is a root of unity. Hence, the dimension of
(2.8.1) is equal to the sum of the dimensions of the Frob ,s-eigenspaces of p,, (1)
with eigenvalues (p/)®*—1/? 24 ¢ for some root of unity ¢. In many examples,
this space is known to be nonzero.

For instance, when f =2, aj =r anday =n—r forsome 1 <r <n—1, we
have d(a,) =2r(n —r) and

Pa, (np) = /\rpnp &® /\n_rpnp-

Let Vz, a, denote the space of representation p,, (7p). If P, (Frob,,s) has distinct
eigenvalues «j, ..., &y, then the eigenvalues of Frob,s on Vz ,, are given by
, o ---aj_, for distinct subscripts iy, ..., i, and distinct subscripts
jis -+ ju—r. This product is exactly (p/)*=D/ za;") (note that af,") is a root of
unity) if the set {iy, ..., i,} and the set {ji, ..., j,—r} are the complement of each
other as subsets of {1, ..., n}. On the other hand, if the subsets {i, ..., i} and
{j1, ..., Ju—r} are not the complement of each other and if the «; are “sufficiently
generic”8, the eigenvalue o, - -+ @, -, -+ -, , is not a root of unity. In other
words, the dimension of (2.8.1) is “generically” equal to (’:) As predicted by the
Tate conjecture, these cohomology classes should come from algebraic cycles. Our
main conjecture addresses exactly this, and it predicts that those desired “generic”

o - O

7Conjecturally, the Frobenius action on the étale £-adic cohomology groups of a projective smooth
variety over a finite field is always semisimple.

8For example, if r = 1 and o] = rp, the eigenvalues o1 - @3y - - - o is equal to o - - - oty and
hence is p" =1 times a root of unity. So to be in the generic case, we will need to require that o; /e
fori # j is not a root of unity if » = 1. For another example, if r = 2, “generic” will mean that o; /e ;
fori # j and aja;r Jajajs for (i, i} # {j, j'} are not roots of unity.
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algebraic cycles can be given by the irreducible components of the basic locus, and
are birationally equivalent to certain fiber bundles over the special fiber of some
other Shimura varieties associated to inner forms of G,,. To make this precise, we
need the following lemma.

Lemma 2.9. Let b, = (b;)1<i< be a tuple with b; € {0, ..., n} such that Zif:1 bi =
Zile a; (mod 2) if n is even. Then there exists Bp, € (D*)*="! such that

e the alternating D-Hermitian space (Vy,, (—, —)»,) defined using By, in place
of Ba. is isomorphic to (V,,, (—, —)a.) when tensored with A*, and

« if Gy, denotes the corresponding algebraic group over Q) defined in the similar
way with B,, replaced by By, , then

f
Gy, ® ~[JUwi.n—by).

i=1
Proof. We reduce the problem to the existence of a certain cohomology class.
Note that GL][. = Aut(V,,, (—, —)a,) is the Weil restriction to (2 of a unitary group
U, over F. The cohomology set H'(Q, thl_) = H'(F, U,,) is in bijection with
the isomorphism classes of one-dimensional skew-Hermitian D-modules V. As
U,, xr E ~GL, g, Hilbert’s Theorem 90 for GL,, implies that the inflation map
induces an isomorphism

HYE/F,U,) = H'(F,U,,).

Denote by g > g% = B, g* B.. ! the involution on D induced by the alternating
pairing (—, —),,. Then a 1-cocycle of Gal(E/F) with values in U,, is given by an
element & € D* such that & = a* | and &, an € D* define the same cohomology
class in H'(F, U,,) if and only if there exists g € D* such that go g% = as.
Explicitly, given such an «, the corresponding skew-Hermitian D-module is given
by V = D equipped with the alternating pairing
<_a_>0l : V X V_) @’ (-x7 )’)'_)TrD/@(xa/Sa.)’*)-
For a place v of F, we denote by
loc, : H\(F, U,)) - H'(F,, U,,)

the canonical localization map. By [Helm 2012, Proposition 8.1], if Z,f: 1 bi =
Zif:] a; mod 2, there exists a cohomology class [«¢] € H I(F, U,,) such that

e loc,([e]) is trivial for every finite place v of F, and

o if v =1; with 1 <i <n is an archimedean place, one has an isomorphism of

unitary groups over R: Aut(V ®r r, R, (—, =)o) =2 U(b;, n — b;).

Then the element S, = af,, meets the requirements of Lemma 2.9. O
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In the sequel, we always fix a choice of fp,, and as well as an isomorphism
Yaub. © Va, @0 A® = V), ®@g A, which induces an isomorphism G,, (A*®) =~
Gp, (A*). Recall that we have chosen a lattice A,, € V,, to define the moduli
problem for Sh,,. We put Ap, := Vi, N Vo, b, (Ao, @z i). Then applying the
construction of Section 2.3 to the lattice Ap, < V}, and the open compact subgroup
K? C G, (A%P) > Gp, (A%F), we get a Shimura variety Shy, over Z 5 of level
K7 as well as its special fiber Shy,,. Moreover, an algebraic representation & of
G,, over Q, corresponds, via the fixed isomorphism G,, (A*®) >~ G, (A*>), to an
algebraic representation of G, over @;. We use the same notation L to denote
the étale sheaf on Sh,, and Shy, defined by .

2.10. Gysin/trace maps. Before stating the main conjecture of this paper, we recall
the general definition of Gysin maps. Let f: Y — X be a proper morphism of smooth
varieties over an algebraically closed field k. Let dx and dy be the dimensions
of X and Y respectively. Recall that the derived direct image R f, on the derived
category of constructible £-adic étale sheaves has a left adjoint f'. Since both X
and Y are smooth, the £-adic dualizing complex of X (resp. Y) is Q¢ (dx)[2dx]
(resp. Q, (dy)[2dy]). Therefore, one has

F1@e(dx)[2dx]) = Qe(dy)[2dy].
The adjunction map Rf, f'Q; — Q; induces a canonical morphism
Try @ RfQe — Qu(dx —dy)[2(dx —dy)].
More generally, if £ is a lisse Q¢-sheaf on X, it induces a Gysin/trace map
— 1®Tr
Rf(f*L) = L& Rf(Q) —> L(dx — dy)[2(dx — dy)],

where the first isomorphism is the projection formula [SGA 4, 1972, XVII 5.2.9].
When f is flat with equidimensional fibers of dimension dy — dx, this is the trace
map as defined in [SGA 4, 1972, XVIII 2.9]. When f is a closed immersion
of codimension r = dx — dy, it is the usual Gysin map. For any integer g, the
Gysin/trace map induces a morphism on cohomology groups:

fii HLY, £50) — HIPY (x| £dy — dy)). (2.10.1)

2.11. Representation theory of GL,. As suggested by the description of Galois
representations appearing in the middle cohomology group of Shimura varieties
in Theorem 2.6, as well as by the Tate conjecture, we need to understand the
representation theory of GL,, embedded diagonally into the Langlands dual group

(tG,)° ~C* x GL,(C)H/ 2.
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The Hodge cocharacter i of G, gives rise to the representation r,, = ®if:1 (A% Std)
of the diagonal GL,. If X is a dominant weight of GL,, (with respect to the usual
diagonal torus and upper triangular Borel subgroup) appearing in r,,, we can write
this weight A as the sum of f dominant minuscule weights wp, + - - - + wj ., where
w; for 0 <i <n is the weight of GL,, that takes Diag(#,...,1,) to#;---t;. The
set {b1, ..., by} (counted with multiplicity) is unique, which we denote by B;.
Explicitly, if A takes Diag(¢q, ..., ;) to t{g L... tf” (necessarily 8; < f), then

B,={n,....n,n—1,...,n—1,...,1,...,1,0,...,0}
Bn Bn—1—Pn Bi1—Bo f_,Bl

Moreover, we always have > a; =Y b;. In particular, this implies by Lemma 2.9
that the Shimura variety Sh;,, makes sense, and the €étale sheaf L¢ is well defined
on Shy,.

We write m; (a,) for the multiplicity of the weight X in r,,.

Conjecture 2.12. Let Sh,, and L¢ be as in Section 2.4. Let A be a dominant weight
that appears in the representation r,, as in Section 2.11. Define B and m; (a,) as
in Section 2.11.

Then there exist varieties Y1, ..., Y, a,) of dimension %(d(a,) +d(b.)) over
F

P
each Y; fits into a diagram

7, equipped with natural action of prime-to-p Hecke correspondences, such that

(h Y PG

P

Sh,, Sh,

satisfying the following properties.

(1) For each j, b = (bij), R b;j)) is a reordering of the elements of the
set B), and both pré{ ) and pr,o are equivariant for the prime-to-p Hecke
correspondences.

(2) The morphism prf,{ Vis a proper morphism and is birational onto the image.
The morphism pr, ) is proper and generically smooth of relative dimension
%(d(a,) —d(b,)) (note that d(b,) = d(a,) (mod 2) since Y, a; =), b;).

(3) There exists a p-isogeny of abelian schemes over Y
B g P (Ay) =PIl (Ag).
where Aq, and A, denote respectively the universal abelian scheme on Sh,,

and Shbm. Let

P g :przﬁj) Le = prflf_)’* Le.
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be the isomorphism of the {-adic sheaves induced by ¢b< Dy via the construc-
tion in Section 2.4.°

(4) Let it be an irreducible admissible representation of G,,(A®) ~ G By (A) sat-
isfying Hypothesis 2.5 for both a, and b,, and assume that m,,(7w) =m By ()
for all j '°. Suppose that the n eigenvalues a, ..., o, of P, (Frob,, ) are
“sufficiently generic” in the sense that the generalized eigenspace decomposition
of pa, (Frob,n) for any large N is the same as the weight space decomposition
of the algebraic representation r,,. Then the natural homomorphism of -
isotypic components'! of the cohomology groups

m)(de)

@ Heai(h)(ﬁlbgj),ﬁg( d(b. )))Frobpf_k

Spr; b M (de)

EB Hd(b)( ]’pr 0 ﬁé( d(b, )))

@%S/)’H.’* m;, (de) Ay
—5 @ He (Y pr, Le(3d (1)),
~

Frob

Frob

)
b Pl

d(a.) (Sha ’ £§( d( )))Frobpf =\

is an isomorphism, where pr . , is the Gysin map (2.10.1) and the superscript
Frob,; = A means taking the (direct sum of ) generalized Frob ,r-eigenspace
with eigenvalues in the Weyl group orbit

A 0 pr, (Frob,) - Xﬂ_;o(pf)(ﬁ)—f(n—l) Yibi

Here, since the semisimple conjugacy classes of GL,,(Qy) is in natural bijection
with the orbits of T(Qy) under the Weyl group of GL,, it makes sense to
evaluate a dominant weight of T on px,(Frob,) to get an orbit under the
action of the Weyl group of GL,; hence the notation A o px,(Frob,,r).

In particular, when & is the trivial representation and the weight A is a power
of the determinant (so automatically, Zi a; is divisible by n, and d(a,) is even),
the cycles given by the images of Y1, ..., Yy, 4,) parameterized by the discrete
Shimura varieties Shby'), generate the Tate classes of He‘i(a‘) (S_ha., @g(%d(a,)))ﬂ
when pr, (Frob,r) is “sufficiently generic”.

9This isomorphism depends on the choice of the isomorphism y,, 5, made earlier.

10Tpjs assumption is satisfied when 7 is the finite part of an automorphic cuspidal representation
of G4, (A) which admits a base change to a cuspidal automorphic representation of GL,, (Ag) x Ag.
Indeed, in this case, White [2012, Theorem E] proved that m,, (1) =m b (r)y=1.

HThe 7 -isotypic component is the same as the 7 P -isotypic component according to Lemma 4.17.
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Remark 2.13. (1) A key feature of this conjecture is that the codimension of the cy-
cle map pr,, : ¥; — Shy, is the same as the fiber dimension of pr, ) : ¥; — Sh, .

(2) It seems that the fiber of pro Y, — Shb@ over a generic point 1 € Shb@ is
likely to be isomorphic to a certain “iterated Deligne-Lusztig variety,” that is,
atower of maps Y; , =Z, — --- — Zo =n such thateach Z; — Z;,_; is a
fiber bundle with certain Deligne—Lusztig varieties as fibers.

(3) Xinwen Zhu pointed out to us that since the universal abelian varieties A,,
and Ay, are isogenous over each Y;, the union of the images of Y1, ..., Yy, a,)
on Sh,, is contained in the closure of the Newton strata, where the slope is the
same as the p-ordinary slope of the universal abelian varieties on Shbi » (for
different j, they have the same p-ordinary slopes). In fact, one should expect
the union of images to be the same as the closure of this Newton stratum.

When X is central (i.e., a power of the determinant), Conjecture 2.12 says:
irreducible components of the basic locus of the special fiber of a Shimura
variety, generically, contribute to all Tate cycles in the cohomology. Implicitly,
this means that the dimension of the basic locus is half of the dimension of the
Shimura variety if and only if the Galois representations of the Shimura variety
has generically nontrivial Tate classes. Here two appearances of “generic”

both mean that we only consider those m-isotypic components where the
Satake parameter for 7, is sufficiently generic as in Conjecture 2.12(4). For
example, the supersingular locus of Hilbert modular surface at a split prime
or the supersingular locus of a Siegel modular variety (over Q) is not half the
dimension. This is related to the fact that the w-isotypic component of the
cohomology of the Shimura varieties are not expected to have Tate classes, at
least when the Satake parameter of 7, is sufficiently general.'?

(4) These varieties Y; may be viewed as Hecke correspondences at p between
the special fibers of two different Shimura varieties Sh,, and Sthj). These
correspondences certainly cannot be lifted to characteristic zero. We hope that
the conjecture will bring interests into the study of such Hecke correspondences.

Remark 2.14. (1) The assumption on the decomposition of the place p in E/Q
and working with unitary Shimura varieties is to simplify our presentation and
to get to a situation where most terms can be defined. We certainly expect the
validity of analogous conjectures for the special fibers of Shimura varieties
of PEL-type or more generally of abelian type (using the integral model of
M. Kisin [2010]). This would be a more precise version of the Tate conjecture
in the context of special fibers of Shimura varieties: if Shg and Shg are the

12The Siegel varieties are Shimura varieties associated to GSpy, (Q). The Langlands dual group
is isogenous to Spin(2g + 1) and the associated representation r,, is the spin representation, which is
minuscule and hence does not contain trivial weight subspace.
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special fibers of two unitary Shimura varieties associated to the groups G and
G’ such that G(Ay) ~ G'(Ay), then, generically, the cycles on the product
Shg x Shgr predicted by the Tate conjectures are likely to be constructed by
understanding the “isogenies” between the corresponding universal abelian
varieties, and are closely related to the Newton stratifications of Shg and Shg:.
In the case of Shimura varieties of abelian type, we expect some technical
difficulties in reinterpreting the meaning of isogenies of abelian varieties in
terms of certain “G-crystals”.

For example, consider a real quadratic field F'/Q in which a prime p is inert.
Let Sh¢ denote the special fiber of the Hilbert—Siegel modular variety for G :=
Resr/q GSp,,, with hyperspecial level structure at p. Then by Langlands’s
prediction of the cohomology of Sh¢, we should look at the representation r;?;izn
of the “essential part” Spin,,, of the Langlands dual group, where ryn is
the 2¢-dimensional spin representation.'? The central weight space of rfgizn has
dimension 28. So we expect that the supersingular locus of Shg is the union of
2¢ collection of varieties parameterized by the discrete Shimura variety Shg:
where G’ is the inner form of G which is split at all finite places and is compact
modulo center at both archimedean places. Unfortunately, the moduli problem
that describes G’ uses a different division algebra from that describing G. We do
not know how to interpret the meaning of isogenies of universal abelian varieties
in this case, and the method of our paper does not apply directly to this case.

(2) Xinwen Zhu pointed out to us that even if p is ramified, we should expect
Conjecture 2.12 continue to hold for (the special fiber of) the “splitting models”
of Pappas and Rapoport [2005]. Some evidences of this have already appeared
in the case of Hilbert modular varieties; see [Rapoport et al. 2014; Reduzzi
and Xiao 2017].

(3) In our setup, we took advantage of many coincidences that ensures that for
example the Shimura variety is compact and there is no endoscopy. It would be
certainly an interesting future question to study the case involving Eisenstein
series, as well as the case when the representations come from endoscopy
transfers.

(4) As explained in Remark 2.13(3), the images of Y; are expected to form
the closure of a certain Newton polygon where the slopes are related to A.
Conjecture 2.12(1)—(3) may have a degenerate situation: when ) . a; is not
divisible by 7, the representation V,, does not contain a weight corresponding
to a power of the determinant (which corresponds to the basic locus). So our

13As pointed out above, we have to work with the Hilbert—Siegel setup as opposed to the usual
Siegel setup because rpiy is a minuscule representation.



2230 David Helm, Yichao Tian and Liang Xiao

conjecture does not describe the basic locus of Sh,,, and it is indeed not of
half dimension of Sh,,.

Yet, this basic locus may still have a good description as the union of
some fiber bundles over the special fibers of some other Shimura varieties for
reductive groups which are not quasisplit at p. For example, the supersingular
locus of modular curve is related to the Shimura variety associated to the
definite quaternion algebra which is ramified at p, by a theorem of Serre and
Deuring [Serre 1996]. More such examples are given in [Tian and Xiao 2016]
and [Vollaard and Wedhorn 2011].

2.15. Known cases of Conjecture 2.12. Conjecture 2.12 is largely inspired by the
work of Tian and Xiao [2014; 2016], where we proved the analogous conjecture
for the special fibers of the Hilbert modular varieties assuming that p is inert in the
totally real field.

Another strong evidence of Conjecture 2.12 is the work of Vollaard and Wedhorn
[2011], where they considered certain stratification of the supersingular locus of the
Shimura variety for GU (1, n — 1) with s € N at an inert prime p. What concerns
us is the case when n — 1 is even. In this case, it is hidden in the writing of their
Section 6 that one gets a correspondence (in the notation of loc. cit.)

1(Q)\ N, 5T (@) x GAY)/CP (2.15.1)
1@\ IAp/crcy” M, C Mc».

Note that I(Ar) >~ G(Af). Here N, is a certain Deligne-Lusztig variety. In
[Vollaard and Wedhorn 2011], the parameterizing space, namely the first term
in (2.15.1), is interpreted very differently, in terms of Bruhat-Tits building. The
method of this paper should be applicable to their situation to verify the analogous
Conjecture 2.12. In fact, in their case, there will be only one collection of cycles as
given by (2.15.1), but the computation of the intersection matrix (only essentially
one entry in this case) of them requires some nontrivial Schubert calculus similar
to Section 5.

When n — 1 is odd, the result of [Vollaard and Wedhorn 2011] is related to the
degenerate version of the Conjecture 2.12 in the sense of Remark 2.14(4).

The aim of the rest of the paper is to provide evidence for Conjecture 2.12
for some large rank groups. In particular, we will construct cycles in the case
of the unitary group G(U (r,s) x U(s, r)) with s, r € N (Section 7). While we
expect these cycles to verify Conjecture 2.12, we do not know how to compute
the “intersection matrix” in general. Nonetheless, when r = 1, we are able to
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make the computation and prove Conjecture 2.12 (with trivial coefficients for the
sake of a simple presentation) in this case; see Section 4—6. We point out that our
method should be applicable to many other examples, and even in general reduce
Conjecture 2.12 to a question of a combinatorial nature. This combinatorics problem
is the heart of the question. In the Hilbert case [Tian and Xiao 2014], we model
the combinatorics question by the so-called periodic semimeander (for GL;). The
generalization of the usual (as opposed to periodic) semimeander to other groups
has been introduced; see [Fontaine et al. 2013] for the corresponding references.
The straightforward generalization to the periodic case does seem to agree with
some of our computations with small groups. Nonetheless, the corresponding Gram
determinant formula seems to be extremely difficult. Even in the nonperiodic case,
we only know it for a special case; see [Di Francesco 1997].

We also mention that in a very recent work [Xiao and Zhu 2017] of Zhu and
the last author, we relate Conjecture 2.12 with the geometric Satake theory of Zhu
[2017] in mixed characteristic, and we proved many new cases of Conjecture 2.12.

3. Preliminaries on Dieudonné modules and deformation theory

We first introduce the basic tools that we will use in this paper.

3.1. Notation. Recall that we have an isomorphism

! f
Op @22, Z@D(Op®0;.4,Zyr ®Op @03 L) ~ DM (Z,y1) DM (Z 1)).
i=1 i=1
Let S be a locally noetherian Z,s-scheme. An Op ®z Os-module M admits a
canonical decomposition

f
M= @(Mqi ® M),
i=1

where M, (resp. Mj,) is the direct summand of M on which O acts via g; (resp.
via g;). Then each M, has a natural action by M,,(Os). Let ¢ denote the element of
M, (Os) whose (1, 1)-entry is 1 and whose other entries are 0. We put M? :=eM,,,
and call it the reduced part of M, .

Let A be an fn*-dimensional abelian variety over an F,s-scheme S, equipped
with an Op-action. The de Rham homology HldR(A /S) has a Hodge filtration

0— wavys — H®(A/S) — Lieass — 0,

compatible with the natural action of Op ®7 Os on H {jR(A /S). Wecall H {jR(A /8)7
(resp. @y /8.0 Lie, /s.i) the reduced de Rham homology of A/S (resp. the reduced
invariant 1-forms of A /S, the reduced Lie algebra of A/S) at g;. In particular, the
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former is a locally free Og-module of rank n and the latter is a subbundle'* of the
former; when A — § satisfies the moduli problem in Section 2.3, w$. /8.0 is locally
free of rank a;.

The Frobenius morphism A — A?) induces a natural homomorphism

V:HRA/S): — HRA )T,

where the index i is considered as an element of Z/fZ, and the superscript “(p)”
means the pullback via the absolute Frobenius of S. The image of V is exactly
wa% ., Similarly, the Verschiebung morphism A”) — A induces a natural

homomorphism !
F:H®R@A/9)P - HRA/S)S.

We have Ker(F) = Im(V) and Ker(V) = Im(F).

When § = Spec(k) with k a perfect field containing [, let W (k) denote the
ring of Witt vectors in k. Let D(A) denote the (covariant) Dieudonné module
associated to the p-divisible group of A. This is a free W (k)-module of rank
2 fn? equipped with a Frob-linear action of F and a Frob~!-linear action of V
such that FV = VF = p. The Op-action on A induces a natural action of Op on
D(A) that commutes with F and V. Moreover, there is a canonical isomorphism
@(A) / pf)(A) = HldR(A / k) compatible with all structures on both sides. For each
i € Z/fZ, we have the reduced part f)(A)f = ef)(A)qi. The Verschiebung and the
Frobenius induce natural maps

V:D(A) - D(A); . F:D(A); — D(A),,.

Note that @(A)qi = (ﬁ(A)f)®", and @iel/fz f)(A)qi is the covariant Dieudonné
module of the p-divisible group A[p°°].

For any fn?-dimensional abelian variety A’ over k equipped with an O p-action,
an O p-equivariant isogeny A’ — A induces a morphism f)(A’);? — fD(A)l‘? compat-
ible with the actions of F and V. Conversely, we have the following.

Proposition 3.2. Let A be an abelian variety of dimension fn? over prefect field k

which contains F s, equipped with an O p-action and an O p-compatible prime-to-p

polarization ). Suppose given an integer m > 1 and a W (k)-submodule & C f)(A);J
foreachi € Z/fZ such that

P'DA) €&, F(E)CE&ip, and V(E)CE . (3.2.1)

4Here and after, by a subbundle of a locally free coherent sheaf, we mean a locally free coherent
sheaf that is Zariski locally a direct factor.

15The notation F for Frobenius was also used to denote the real quadratic field. But we think the
chance for confusion is minimal.
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Then there exists a unique abelian variety A" over k (depending on m) equipped
with an Op-action, a prime-to-p polarization ), and an O p-equivariant p-isogeny
¢ : A’ — A such that the natural inclusion & C f)(A)l? is naturally identified with
the map ¢ ; : f)(A’);’ — f)(A)l? induced by ¢ and such that ¢ oL o¢p = p™\.
Moreover, we have

(1) If dim @}, , ; = a; and lengthy, (D(A)? /&) =L, fori € Z/fZ, then
dima)iw/k’i =daj; +€l _El’+1. (322)

(2) If A is equipped with a prime-to-p level structure n in the sense of Section 2.3(1),
then there exists a unique prime-to-p level structure n’ on A’ such that n = ¢on'.

Proof. By Dieudonné theory, the Dieudonné submodule

P E/p"D)®c P DA/ P DA
iez/fz iel/f?
corresponds to a closed subgroup scheme H, C A[p™]. The prime-to-p polarization
A induces a perfect pairing

(—, —)u: Alp™] X A[P™] — pwpm.

Let Hy = HpL C A[p™] denote the orthogonal complement of Hy,. Put H, = H,® Hj.
Let ¥ : A — A’ be the canonical quotient with kernel H,, and ¢ : A’ — A be the
quotient with kernel ¥ (A[p™]) so that ¥y o¢p = p™idys and ¢ oy = p™ids. By
construction, H,, € A[p™] is a maximal totally isotropic subgroup. By [Mumford
2008, §23, Theorem 2], there is a prime-to- p polarization A" on A’ such that p”'A =
VY o) oy, It follows also that p™ A2’ =¢ " oArog. The fact that ¢, ; :f)(A/);? — f)(A);?
is identified with the natural inclusion & C @(A);? follows from the construction.
The existence and uniqueness of the tame level structure is clear. The dimension of
the differential forms can be computed as follows:

V(ﬁ(“‘/)?ﬂ _di V(Eis1)

dimgwyy )y ; = dimg ————— = dimy
. pD(A); Pé,
V(D(A)? V(D(A)? D(A)?
= 1mk¥)ltl)— eng W(k)w—i-lengthw(k)p (~ )i
pD(A); V(&i+1) péi
=a;—Lip1+4;. O

3.3. Deformation theory. We shall frequently use Grothendieck—Messing defor-
mation theory to compare the tangent spaces of moduli spaces. We make this
explicit in our setup.

Let R be a noetherian I]:p r-algebra and I C R an ideal such that 72 = 0. Put
R = IQ/IA Let 6 denote the category of tuples (A, A, 1), where A is an fn?-
dimensional abelian variety over R equipped with an Op-action, Aisa polarization
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on A such that the Rosati involution induces the *-involution on Op, and 7 is alevel
structure as in Section 2.3(3). We define € in the same way. For an object (A, A, 1)
in the category €, let HfriS(A /R) be the evaluation of the first relative crystalline
homology (i.e., dual crystal of the first crystalline cohomology) of A/R at the
divided power thickening R — R, and H™(A/R)? := ¢ H™™(A/R),, be the i-th
reduced part. We denote by Def(R, R) the category of tuples (A, A, n, (&)f),-zl ...... £
where (A, A, n) is an object in €g, and &) C chris(A/Ié);? foreachi € Z/fZ is
a subbundle that lifts w§. R S H ldR(A /R)?. The following is a combination of
Serre—Tate and Grothendieck—Messing deformation theory.

Theorem 3.4 (Serre—Tate, Grothendieck—Messing). The functor

(A, L, D)= (A®z R, A, 1, w}V/R,,')’

where L and n are the natural induced polarization and level structure on AQ® 2 R,
is an equivalence of categories between 6 5 and Def(R, R).

Proof. The main theorem of the crystalline deformation theory (cf., [Grothendieck
1974, pp. 116-118], [Mazur and Messing 1974, Chapter II §1]) says that the category
% is equivalent to the category of objects (A, A, 1) in 6g together with a lift of
wav/R S HfriS(A /R) to a subbundle @ of HfriS(A / R), such that & is stable under
the induced Op-action and is isotropic for the pairing on H friS(A / R) induced by
the polarization A. But the additional information & is clearly equivalent to the
subbundles & € HfriS(A/Ié)l? lifting W3V /R i O
Corollary 3.5. If A,, denotes the universal abelian variety over Sh,_, then the
tangent space Tsy,, of Shy, is

s
.- o PN

ED Lieyy /sn,,.i ®Li€h, /sh,, i -

i=1

Proof. Even though this is a well-known statement often referred to as the Kodaira—
Spencer isomorphism (e.g., [Lan 2013, Proposition 2.3.4.2]), we include a short
proof, as the proof serves as a toy model of many arguments later. Let R be
a noetherian [,s-algebra and [ C R an ideal such that /2 = 0; put R = Ié/ I.
By Theorem 3.4, to lift an R-point (A, A, n) of Sh,, to an R-point, it suffices
to lift, for i = 1, ..., f, the differentials a)fj‘v’i C Hf“s(A /R)? to a subbundle
w; C HfriS(A / ﬁ)f. Such lifts form a torsor for the group

Hompg (a)jw/R’l-, Lie°A/R’i) Qr .
It follows from this
f
Tsn,, = @ Hom (w3 ssh,, .i» Li€4, /sh,, .i)
i=1
Note that this proof also shows that Sh,,, is smooth. O

12

f
- -
@ Liejy ssn,, . ® L€y, /sn,, i -
i=1
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3.6. Notation in the real quadratic case. For the rest of the paper, we assume
f =2 so that F is a real quadratic field in which p is inert. For nonnegative integers
r <s such that n =r +s, we denote by G, ; the algebraic group previously denoted
by G,, with a;j = r and ap = s; in particular, G, ;(R) = G(U(r,s) x U(s, r)).
If ', s’ is another pair of nonnegative integers such that n = r" +s" and r’ < s/,
Lemma 2.9 gives an isomorphism G, ;(A®) >~ G, ¢ (A).

Let Sh, s be the Shimura variety over Z 2 attached to G, ; defined in Section 2.3
of some fixed sufficiently small prime-to-p level K” C G, (A°P?). Let Sh,
denote its special fiber over [sz. Let A = A, s denote the universal abelian variety
over Sh, ;. It is a 2n2-dimensional abelian variety, equipped with an action of Op
and a prime-to-p polarization A 4. Moreover, w%. /Shys1 (resp. oy /Sh“.,Z) is a
locally free module over Sh,. ; of rank r (resp. rank s).

Remark 3.7. When r =0 and s = n, the universal abelian variety A = A, over
Shy ,, is supersingular. Indeed, for each [F,-point z of Shg ,, the Kottwitz condition
implies that the Frobenius induces isomorphisms

D(A,)? 5 D(A)S L5 pD(AL)S.

In particular, (1/p)F 2 induces a o 2-linear automorphism of f)(Az)‘f. By Hilbert’s
Theorem 90, there exists a Z ,»-lattice L of f)(Az)‘l’ that is invariant under the action
of (1/p)FZ in other words, F? acts by multiplication by p for a basis chosen from
this lattice. It follows that all slopes of the Frobenius on D(A,) are % and hence
A_ is supersingular.

4. Thecaseof G(U(1,n—1)xU(n—-1,1))

We will verify Conjecture 2.12 for Sh; ,_, namely the existence of some cycles Y;
having morphisms to both Shg , and Sh; ,_; and generating Tate classes of Shy ,_
under a certain genericity hypothesis on the Satake parameters. We always fix an
isomorphism G ,—1(A®) >~ Gy ,(A*), and write G(A*) for either group.

Notation 4.1. For a smooth variety X over [ 2, we denote by Tx the tangent bundle

of X, and for a locally free Ox-module M, we put M* = Homp, (M, Ox).

4.2. Cycles on Shy ,_;. For each integer j with 1 < j < n, we first define the
variety Y; we briefly mentioned in the introduction. Let Y; be the moduli space over
[,> that associates to each locally noetherian [ ,>-scheme S, the set of isomorphism
classes of tuples (A, A, n, B, X, n’, ¢), where

e (A, A, n) is an S-point of Shy ,_1,
e (B, 1, n') is an S-point of Shy , and

e ¢ : B — A is an Op-equivariant isogeny whose kernel is contained in B|[p],
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such that
s pM=¢"0okrod,
e pon’ =nand

« the cokernels of the maps
¢u1: HR(B/S); — H®(A/S); and ¢.o: HR(B/S); — HR(A/S)S
are locally free Og-modules of rank j — 1 and j, respectively.
There is a unique isogeny 1 : A — B such that v o¢p = p-idp and poy = p-id4.
We have
Ker(¢s,;) =Im(y,;) and  Ker(¢y ;) = Im(y;),
where ¥, ; for i = 1, 2 is the induced homomorphism on the reduced de Rham

homology in the evident sense. This moduli space Y; is represented by a scheme of
finite type over [ 2. We have a natural diagram of morphisms:

pr; Y] pr’,
T T (4.2.1)
Shl,nfl ShO,m
where pr; and pr/j send a tuple (A, A, n, B, A", n’, ¢) to (A, A, n) and to (B, A, n'),
respectively. Letting K7 vary, we see easily that both pr; and pr’j are equivariant
under prime-to-p Hecke actions given by the double cosets K” \ G(A*?)/K?P.

4.3. Some auxiliary moduli spaces. The moduli problem for Y; is slightly com-
plicated. We will introduce a more explicit moduli space Yj’ below and then show
they are isomorphic.
Consider the functor Y ; which associates to each locally noetherian [ ,>-scheme §
the set of isomorphism classes of tuples (B, A', ', Hy, H,), where
e (B, 2, ') is an S-valued point of Shy ,;
e« H C HldR(B/S)‘l’ and H, C HldR(B/S)g are Og-subbundles of rank j and
J — 1 respectively such that
V{HYC H), Hy,C FHP). (4.3.1)
Here,

F:H®B/$)T" = HR(B/S); and V:HR(B/S); = HF(B/S);"

are respectively the Frobenius and Verschiebung homomorphisms, which are
actually isomorphisms because of the signature condition on Shg .
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It follows from the moduli problem that the quotients H;/ vyl (Hz(p )), F(H l(p )) /H»
are both locally free Og-modules of rank one.

There is a natural projection yr Y’ — Shy , given by (B, A, n/, Hy, Hy) —
(B, X, n").

Proposition 4.4. The functor Y ; is representable by a scheme Yj’ smooth and
projective over Shy ,, of dimension n — 1. Moreover, if (B, X', n’, H1, Hz) denotes
the universal object over Yf , then the tangent bundle of Y j/ is

Ty = ((H1/ V™ L) @ (HER(B/ Sho )5 /M) @ (s ® F(HP) /7).

Proof. For each integer m with0 <m <mandi=1, 2, let Gr(HldR(B/ Shy ,);, m) be
the Grassmannian scheme over Shy , that parametrizes subbundles of the universal
de Rham homology H ldR (B/ Shg ,); of rank m. Then Y } is a closed subfunctor of
the product of the Grassmannian schemes

Gr(H®(B/ Shy,,)3, j) x Gr(H{®(B/ Shy )3, j — 1).

The representability of X} follows. Moreover, Yj’ is projective.

We show now that the structural map yr;. 1Y ]’ — Shy , is smooth of relative
dimension n — 1. Let So < § be an immersion of locally noetherian [F,2-schemes
with ideal sheaf I satisfying /> = 0. Suppose we are given a commutative diagram

80
Sy —— YJ./

b
8 ,
s T
7
7 h

S — Shq.,

with solid arrows. We have to show that, locally for the Zariski topology on Sy,
there is a morphism g : § — Yj’ making the diagram commute. Let B be the abelian
scheme over S given by /4, and By be the base change to Syo. The morphism gg
gives rises to subbundles H; C HR(By/S0)$ and H, C HR(By/S0)3 with

F(I?](lp))DFIQ, Vﬁl(ﬁgp))CFll.

Finding g is equivalent to finding a subbundle H; C HldR(B /S)7 which lifts each
H; for i =1, 2 and satisfies (4.3.1); this is certainly possible when passing to small
enough affine open subsets of Sy. Thus 71' LY " — Shy , is formally smooth, and
hence smooth. We note that Fg§ : Os — Og factors through Og,. Hence V™ 1(H (v ))
and F(H, (» )) actually depend only on H, H,, but not on the lifts H; and H,.
Therefore, the possible lifts H, form a torsor under the group

Homoy, (Ha, F(H")/H2) ®0, I,
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and similarly the possible lifts H; form a torsor under the group
Homog, (Hi/ V™" (HP), HX(Bo/S0);/H1) ®oy, |

To compute the tangent bundle Ty]_/, we take S = Spec(Og,[€]/ €) and I =€Og. The
morphism gg : So — Yj’ corresponds to an Sp-valued point of Y j’ , say yo. Then the
possible liftings g form the tangent space TYI_/ at yp, denote by TYj/’ yo- The discussion
above shows that

V130 = Homog (Hy, F(H (") Hy)@Homoy (H,/ V™ (H”), H{® (Bo/S0);/H).

which is certainly a vector bundle over Sy of rank j — 1+ (n— j) =n—1. Applying
this to the universal case when g : So — Yj/ is the identity morphism, the formula
of the tangent bundle follows. O

Remark 4.5. Let (B, ), ', H;, H>) be an S-point of Yj/.

(a) If j =n, H| has to be HldR(B/S)", and H; is a hyperplane of HldR(B/S)S.
Condition (4.3.1) is trivial. In this case, Y, is the projective space over Shy ,
associated to H dR(B / Sho,)3, where B is the universal abelian scheme over Sh ;.
So it is geometrically a union of copies of P" L

(b) If j =1, then Hj is a line in H‘:‘R(B/S)O and H, =0. So Yl/ is the projective
space over Shy , associated to (H, dR(B / Sho »){)*".

(¢) If j =2, Hy € H®(B/S)5 is a line, and H; € HR(B/S)$ is a subbundle
of rank 2 such that F(H, (P )) contains both H, and F (V™ 1(H ( ))(p)) Therefore,
if Hy £ F(V~ 1(H % )))(”) H, is determined up to Frobenius pullback. If Hy =
F(V-Y(H, (P))(P)), then H; could be any rank 2 subbundle containing V~ '(H, Py,

We fix a geometric point z = (B, )/, n’) € Shoﬁn([Fp). It is possible to find good
bases for H'R(B/F,)$, H®(B/F,)S such that F,V : HR(B/F,); — HR(B/F,)S
are both given by the identity matrix. With these choices, we may identify the fiber
Yzl, .= né_l (z) with a closed subvariety of

Gr(F),2) x Gr(F), 1).
Moreover, one may equip Gr(F; F?, 1) = [P’” ~! with an [ 2-rational structure such that
=FWV~ l(H(‘"))(f’)) if and only if [Hzp] € [P’" Uis an [ ,»-rational point. So Y2
is 1sornorphlc to a “Frobenius twisted” blow- up of IP" 1 at all of its [ .-rational
points. Here, “Frobenius twisted” means that each 1rredu01ble component of the

exceptional divisor has multiplicity p. For instance, when n = 3, each Y, ; is
isomorphic to the closed subscheme of [P’% X [P’% defined by
p

p

a, bf+a2b§+a3b§:O, a{pb1 +a§b2 —i—aéjb3 =0,

where (a; : ap : a3) and (b : by : b3) are the homogeneous coordinates on the two
copies of P2,
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Lemma 4.6. Let (A, X, n, B, ), 0, ¢) be an S-point of Y;. Then the image of ¢ 1
contains both a)zv/&1 and F(HldR(A/S)Z’(p)), and the image of ¢. > is contained
in both ., g , and F(HIRX(A/8)7").

Proof. By the functoriality, ¢, . sends w3, /s O Oy /8.2 Since wj., /s2 =
HldR(B /S)5 by the Kottwitz determinant condition, it follows that Im(¢y ) in
contained in % /8.2 Similar arguments by considering v/, 1 shows that . s S
Ker(y,.1) = Im(¢,.1). The fact that Im(¢. 2) is contained in F(H®R(A/$)7")
follows from the commutative diagram

(p)
HIR(B/S)” =L, g (a75)7P) (4.6.1)

F l = J/ F
¢*,2
H®(B/S)S —— HR(A/S)3

and the fact that the left vertical arrow is an isomorphism. Similarly, the inclusion
F (HldR(A / S);’(p )) C Im(¢ 1) = Ker(y,,1) can be proved using the functoriality
of Verschiebung homomorphisms. (I

4.7. A morphism from Y; to YJf. There is a natural morphism o : ¥; — Yj/ for
1 < j <n defined as follows. For a locally noetherian [ ,>-scheme § and an S-point
(A,x,n, B, ), n',¢) of Y;, we define

Hy:=¢_(@}v/s) SHR(B/S)]. Hy=vn (0} /s,) SHN(B/S)S. (47.1)

In particular, H; and H, are Og-subbundles of rank j and j — 1, respectively. Also,
there is a canonical isomorphism w§., /5.2 /Im(¢y 2) = H,. From the commutative
diagram (4.6.1), it is easy to see that F(Hl(p)) C Ker(¢x.2) =Im(y 2), but compar-
ing the rank forces this to be an equality. It follows that H, € F(H (P )). Similarly,
V=1(HP) is identified with Im (1) = Ker(¢. 1), hence V~'(H") C H;. From
these, we deduce two canonical isomorphisms:
HI/V_l(Hz(p)) == wXV/SJ,

) . _ (4.7.2)
F(H"”")/H, => Hj (A/8)3/wyv 52 = Lie] /55 -

Therefore, we have a well-defined map o : ¥; — Yj’ given by
a:(A, A, n, B, )N, n,¢)— (B, \,n', H, Hy).
Moreover, it is clear from the definition that 7 oo = pr’;.

Proposition 4.8. The morphism « is an isomorphism.

Proof. Let k be a perfect field containing [,>. We first prove that « induces a
bijection of points « : Yj(k) = Yj/ (k). It suffices to show that there exists a
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morphism of sets f : Y (k) — Y (k) inverse to a. Let y = (B, A, n/, Hy, Hy) €
Y (k). We define ,B(y) (A, A, n, B, ),n', ¢) as follows. Let & c D(B)° and
52 C D(B)2 be respectively the inverse images of V~ 1(H (p )) CH dR(B /k)] and
F(H, (P )) CH dR(B / k)5 under the natural reduction maps

D(B)? — D(B)?/pD(B)? = HR(B/k)? for i =1, 2.

The condition (4.3.1) ensures that F (&) C &_; and V(&) C &_; fori = 1,2.
Applying Proposition 3.2 with m =1, we get a triple (A, A, ) and an O p-equivariant
isogeny ¥ : A — B, where A is an abelian variety over k£ with an action of Op, A
is a prime-to- p polarization on A, and 7 is a prime-to-p level structure on A, such
that ¥V oA oy = pA, pn’ =y on and such that v, ; : f)(A)l‘.’ — @(B);’ is naturally
identified with the inclusion g',- — f)(B);’ for i = 1, 2. Moreover, the dimension
formula (3.2.2) implies that o, Jk1 has dimension 1, and w§. k.2 has dimension
n — 1. Therefore, (A, A, n) is a point of Sh; ,,_. Finally, we take ¢ : B — A to be
the unique isogeny such that ¢ oy = p -id4 and iy o ¢ = p -idg. Thus we have
¢ on’ = n. This finishes the construction of B(y). It is direct to check that B is the
set theoretic inverse to o : Yj k) — Yj/ (k).

We show now that « induces an isomorphism on the tangent spaces at each
closed point; as we have already shown that Yj’ is smooth, it will then follow that
o is an isomorphism. Let x = (A, A, n, B, A, n’, ¢) € Y;(k) be a closed point.
Consider the infinitesimal deformation over k[e] = k[t]/ 12 Note that (B, \/, n)
has a unique deformation (B, A’, #) to k[e], namely the trivial deformation. By
the Serre—Tate and Grothendieck—Messing deformation theory (cf., Theorem 3.4),
giving a deformation (A A, n) of (A, A, n) to k[e] is equivalent to giving free k[e]-
submodules a)Av - Hcm(A/k[e])O for i =1, 2 which lift a)Av/k . The i isogeny ¢
and the polarrzatlon A deform to an isogeny ¢ B— Aanda polarization AAY > A
(satisfying p)J = ¢V oho (/b), necessarily unique if they exist, if and only if

&% 2 2 ¢T5 (H™(B/k[e]3) and (¢S (H™(B/k[ED?))” S (@5 )Y,

where the second inclusion comes from the consideration at the embedding ¢, by tak-
ing duality using the polarization A and is equivalent to @3 | C C”S (H cris (B / kle )
As discussed before Proposition 4.8, we have Ker(¢,. 1) =V~ 1(H r) ) and
F(H, (p )) = Ker(¢s,2) = Im(, 2). Then according to the relation between w$. ki
and H, in (4.7.1), giving such ®¢ av; fori =1,2 is equivalent to lifting each H;
to a free k[e] submodule H; C HdR(B/k)O Rk k[e] Hcr‘S(B/k[e])0 fori=1,2
such that H1 oV~ (H(p)) ®x kle] and Hz - F(H ) ®r kle]. This is exactly the
description of the tangent space of Y; "at a(x). This concludes the proof. U

In the sequel, we will always identify Y with Y; ! and pr with 7r Before
proceeding, we prove some results on the structure of Shy, n([Fp)
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We turn to the study of the Shimura variety Shy ,. The following proposition
was suggested by an anonymous referee of this article.

Proposition 4.9. (1) The Shimura variety Sho, is finite and étale over Z . In
particular, the reduction map induces a bijection of geometric points

Sho.n(Q,) => Shy,(F,).

(2) Let % = (B;, Ai, i) € Sho’n(@p) fori = 1,2 be two geometric points in
characteristic 0, and x; = (B;, A;, n;) € Shq ,(F,) be their reductions. Then
the reduction map on

Homo,, (B1, B2) => Home,, (B), By)

is an isomorphism.

Proof. (1) LetZ € (B, A, ij) € Sho.,(C). Put H = H;(B(C), Q). Itis aleft D-module
of rank 1 equipped with an alternating D-Hermitian pairing (—, —); induced by
the polarization X. Let (Vo.n = D, (—, —)o.n) be the left D-module together with
its alternating D-Hermitian pairing as in the definition of Shg,. By results of
Kottwitz [1992b, §8], for every place v of Q, the skew-Hermitian Dg, -modules
Hg, and Vj , q, are isomorphic.16 Then Endp,, (B@)@ consists of the elements of
D°P? = Endp(H) that preserves the complex structure on Hy r >~ Vj , r induced
the Deligne homomorphism by # : C* — Gy ,(R). Since i (i) is necessarily central
(because G(l),n is compact), it follows that Endp,, (Be)g = D°PP, and

D Qg D ~M,2(E) C End(B)g.

For dimension reasons, the inclusion above is an equality, and B is isogenous to
the product of n’-copies of abelian varieties with complex multiplication by E.
Therefore, B is defined over a number field and has potentially good reduction
everywhere. This implies that Sho , is proper over Z ..

To see that Shy , is finite and €tale over Z ., it remains to show its étaleness
over Z . But this is clear from the description of its relative differential sheaf
in Corollary 3.5, which is trivial as Lie ov/sn,,,1 = Li€ 4/sh,,,2 = 0 by Kottwitz’s
determinant condition.

(2) In general, the reduction map

Homo,, (B1, B2) <= Homp, (Bi, By)

is injective. It remains to see that every element f € Home, (B, By) lifts to a
homomorphism f € Homp, (B;, B2). Note that points X, X» can be viewed over

16Note that the two skew-Hermitian forms (H, (—, —)j and (Vo n, (—, —)o,,) are not necessarily
isomorphic over Q. However, they differ at most only by a scalar in F, hence define the same
similitude unitary group. See [Kottwitz 1992b, p. 400] for details.
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W(I]_:p). As recalled in Section 3, to show that f lifts to a map f : 1§1 — Ez, it
suffices to see that the induced map on crystalline homology

[ H™ (Ba/ W(Ep) — Hi™(Bi/ W (Fy))
preserves the Hodge filtrations
wgo C H{N(Bi/ W(Fy) = H{™ (Bi/ W (Ey)).
It is clear that f* preserves the decomposition
H{®(Bi/ W (Fy)) = H{® (Bi/ W (Fp)1 @ H{™ (Bi/ W (Fy))2

according to the two embeddings of Of into W([_Fp). By the Kottwitz’s determinant
condition for Shy ,, the Hodge filtrations on H®(B;/ W (F,)) are trivial, namely,

0, and o°

B w2 = H®(B;/W(F,)5 fori=1,2.

o J—
wBiV/W(F],),l -

It is clear now f* preserves this trivial Hodge filtration, since it does so when
tensoring with [F,. U

Fix a geometric point z = (B, A, 1) € Sho,,,([_Fp). Put C = Endp,,(B)q, and
denote by T the Rosati involution on C induced by A. Let I be the algebraic group
over Q such that

I(R)={xeC®qgR |xx"eR*},  forall Q-algebras R. (4.9.1)

Corollary 4.10. We have an isomorphism of algebraic groups over Q: I >~ Gy .

Proof. Let 7 = (B, A, 1) € Sho,n(@p) denote the unique lift of z according to
Proposition 4.9 (1). By 4.9 (2), we have a canonical isomorphism

Endp, (B)g = Endp, (B)g = C.

In the proof of 4.9, we have seen that C = D°PP. Moreover, the Rosati involution
on C corresponds to the involution b — bFon = Bo.nb* By ,i on D°PP | where B, is
the element in the definition of (—, —)¢ ,. It follows immediately that I >~ G ,. [

Let Isog(z) € Sho,n([_Fp) denote the subset of points 7/ = (B’, A, ') such that
there exists an O p-equivariant quasi-isogeny ¢ : B — B such that ¢~ oAo¢ = oA/
for some ¢y € Q.. We denote such a quasi-isogeny by ¢ : 7/ — z for simplicity.

Corollary 4.11. There exists a natural bijection of sets
0, : Isog(z) = Gon(@)\ Go.n(A®)/K

Proof. First, we give the construction of ®,. Put V(?)(B) = TP)(B) ®5p AP,
Then 7 determines an isomorphism

72 Vg @a A% = V) (B),
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modulo right translation by K?. For any 7' = (B’, 1/, n) € Isog(z) and a choice of
¢ : B’ — B as above. The quasi-isogeny ¢ induces an isomorphism ¢, : V") (B’) =
VP)(B). Then there exists a g” € Gy, (A>?), unique up to right multiplication
by elements of K7, such that the K ”-orbit of ¢! o 7j o g gives 1’

We put

L, = 75(3)‘;*1’2:” ={veD(B)S: F*(v) = pv}. 4.11.1)

Since B is supersingular (See Remark 3.7), this is a free Z,.-module of rank
n, and we have D(B)} = L; ®z, W(Fp). Put L:[1/p] = L. ®z, Q. Then
¢ induces an isomorphism ¢, : Ly[1/p] = L;[1/p]. Fix a Z,-basis for L,.
Then there exists a g1 € GL, (Q)2) such that ¢, (L) = gi(L;), and the right coset
81 GL, (Z ) is independent of the choice of such a basis. We put g, = (co, 1) €
Q) x GL,(Q)2) = Go,,(Q), which is well defined up to right multiplication by
elements of K, = Z;z x GLy(Z ).

Finally, note that the quasi-isogeny ¢': B’ — B is well determined by z’ up to left
composition with an element y € I(Q) = G ,(Q). If we replace ¢ by y o ¢, then
g :=(g”, gp) € Go,n(A™) is replaced by yg = (yg”, vgp). Therefore, the map

0, :Is0g(2) = Gon(@\ Gon(A®)/K, '+ Goa(@gK

is well defined. The fact that ©, is a bijection follows from the similar classical
statement in characteristic 0. ]

Remark 4.12. It follows from Proposition 4.9 and the description of Sk ,(C) in
Section 2.3 that Sho,n([_Fp) consists of #ker! (Q, Gy.,) 1sogeny classes of abelian
varieties equipped with additional structures.

Lemma 4.13. Let N be a fixed nonnegative integer. Up to replacing K? by an
open compact subgroup of itself, the following properties are satisfied: if (B, A, n)
is an [l_:p-point of Shy,, and f : B — B is an Op-quasi-isogeny such that p" f €
Endp, (B), fYoAo f=Xxand f on=n, then f =id.

Proof. 1t suffices to prove the lemma for (B, A, ) in a fixed isogeny class Isog(z)
of Sho,n(ﬂ_:p). We write Go,(A®) = [[;c; Go.»(Q)gi K with K = K”K,,, where
gi =8/ gip, with g” € Gy ,(A®P) and g; , € G »(Q,), runs through a finite set
of representatives of the double coset

Gon(@)\ Gon(A®)/K.

Let (B, A, n) be a point of Shy , corresponding to Gy ,(Q)g; K for some i € I, and
f be an Op-quasi-isogeny of B as in the statement. Then f is given by an element
of G(l)’n(@). The condition that f on = 7 is equivalent to saying that the image
of fin Go,(A>P) lies in g’ K7 g;”~'. Moreover, p" f € Endp,, (B) implies that
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the image of f in Gy ,(Q,) belongs to | [, g,-,p(KpéKp)g;;, where & runs through
the set

{(la Diag(Pa', Paz, ceey Pa")) € GO,n(@p) = @; X GLn(@pz) |

0>a;>a,>--->a,>—N}.

Write [ [ K,8K), =], 1K) for some finite set J. Hence, it suffices to show
that there exists an open compact subgroup K'? C K? such that for all g;,

Gon(@ Ngi(K'™ - hjKp)gi " = (1)
if h; K, = K,, and empty otherwise. Since K is neat, we have
G(l)’n(@) Ng(K'7Ky)g ' ={1} forany g andany K'” C K”.

Note that this implies that, for each i € I, G(l)’n(@) Ngi(KP-h;jK,g; ! contains at
most one element (because if it contains both x and y, then x 'y is contained in
G(l)’n(@) ﬂgiKgl.’l = {1}). Let S C I x J be the subset consisting of (i, j) such
that h; K, # K, and G(l)’n(@) Ngi(KP - h; Kp)gi_1 indeed contains one element,
say x; j. Then x; ; # 1 for all (i, j) € S. Hence, one can choose a normal open
compact subgroup K'? C K7 so that x; ; ¢ g;”K“”gip’_1 for all i. We claim that
this choice of K'7 will satisfy the desired property. Indeed, if K” =] [, b;K'?, then
the double coset Gy, (Q) \ Go..(A*)/K'P K, has a set of representatives of the
form g;b;. Here, by abuse of notation, we consider b; as an element of K with
p-component equal to 1. Then one has, for h; K, # K,

G, (@ Ngibi(K'Phi Kb ' g7 = Gy (@ Ngi(K'hiK,)g ' = 2.
The first equality uses the fact that K'? is normal in K 7. This finishes the proof. [J
We come back to the discussion on the cycles Y; € Shy ,_; for 1 < j <n.

Proposition 4.14. Let (A, A, n, B, ', 1/, $"™V) denote the universal object on Y;
forl1 <j<n,and H; C HldR(B/ Shy.,) for i =1, 2 be the universal subbundles on
Y/=VY.

J J

(1) The induced map Ty, — prjf Tsh,,_, is universally injective, and we have
canonical isomorphisms
Ny;(Shi n—1) :=pr} Tsn,, /Ty,
= (/v ) @ V)
®(F(H,")/Ha) @ (H{® (B/ Sho.n)3/ F (™))"
= Lie% ; ® Coker(¢™"") @ Lie , ® Im(¢."")*.

*,1
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(2) Assume that K? is sufficiently small so that the consequences of Lemma 4.13
hold for N = 1. For each fixed closed point z € Shg ,, the map pr; , :=
pr;ly;. : Yj. = Shi n—1 is a closed immersion, or equivalently, the morphism
(pr i pr’j) :Y; — Shy 1 x Spec(F 2) Sho  is a closed immersion.

(3) The union of the images of pr; for all 1 < j < n is the supersingular locus of
Shy n—1, i.e., the reduced closed subscheme of Sh; ,_1 where all the slopes of
the Newton polygon of the p-divisible group A[p™] are 1/2.

Proof. (1) Let S be an affine noetherian F,2-scheme and let y = (A, A, 7, B, A, o)
be an S-point of ¥;. Put S=s5 X spec(F ) Spec([F 2[t]/ 1/t%). Then we have a natural
bijection

Bef(y, §) =T'(S, y*Ty,),

where Qbef(y S) is the set of deformations of y to S. Similarly, @ef(pr; oy, N
I'(S, y*prj Tsn, ). To prove the universal 1nject1v1ty of Ty, — pr Tsh,y,_,» it
suffices to show that the natural map Zef(y, S) > Def(pr; oy, S) is mJectlve
By crystalline deformation theory (Theorem 3.4), glVlIlg a pomt of Def(y, S ) is
equivalent to giving O-subbundles »5. ; € Hf“S(A /S ); over S fori =1, 2 such that

~ O b o .
* Wy lifts WGy /s,

o &% S Im(ey,1) ® Fiolr]/1? and Im(gy2) ® Folr]/1> S &Y. , are locally
direct factors.

Hence, one sees easily that
Pef(y, §) = Homoy (@} /.1 Im(¢s.1) /03 5. 1)
® Homo, (@ /5 2/ Im($s 2), HIR(A/5)3 /@55 )
= Lie?4\//5 1 ®(Im(¢*’1)/wZV/S 1) D (a)Z\//S 2/ Im(d)*,z))* ®Lie(;‘/5 2 -

Similarly, @ef(pr; oy, S) is given by the lifts of w3, /¢ /s, to S fori =1, 2. These lifts
are classified by Homos(a)Av/S i HdR(A/S) /a)Av/S D= LICAV/Sl Rk LleA/Sl
Hence, Def(pr; oy, S) is canonically isomorphic to

Liez\//syl ®OS LieZ/SJ @ LieZ\//S’Z ®OS LieZ/S’z .
The natural map Def(y, S) — Def(pr; oy, S) is induced by the natural maps

Im(¢y. 1)/ /5. <> HIR(A/S)] [@h 5. Z Lieh g

(@3 5.2/ (4 2))" = @575 = Liejv/s2 -

It follows that %ef(y, 3’) — Def(pr oy, S ) is injective. To prove the formula for
Ny, (Shy ,—1), we apply the arguments above to affine open subsets of ¥;. We see
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easily that
Ny, (Shy 1) = LieSy 4 ®Oy Coker(qb“"“’) ©® Lie% , ®@Y Im(¢umV
~ (Hl/V 1(7_[(17))) QV~ I(Hép))
® (FHP) /H2) @ (HR B/ Y))5/ F(HP))
Here, the last step uses (4.7.2) and the isomorphism
Im(¢}"3") = H{®(B/Y))3/ Ker(@!5") = H{N(B/Y))3/F(H}").

(2) By statement (1), pr; . induces an injection of tangent spaces at each closed
points of Y; ;. To complete the proof, it suffices to prove that 77; ; induces injections
on the closed points. Write z = (B, A, ) € Shoyn([_Fp). Assume y; and y; are two
closed points of Y; , with 7;(y1) =m;(y2) = (A, A, n). Let ¢1, ¢ : B — A be the
isogenies given by y; and y,. Then the quasi-isogeny ¢ 2 = ¢, o) e Endp, (B)o
satisfies the conditions of Lemma 4.13 for N = 1. Hence, we get ¢ » = idp, which
is equivalent to y; = y,. This proves that 7r; , is injective on closed points.

(3) The proof resembles the work of Vollaard and Wedhorn [2011]. Since all the
points of Sho,n([l_:p) are supersingular by Remark 3.7, it is clear that the image of
each pr; lies in the supersingular locus of S_hl,n_l. Suppose now we are given a
supersingular point x = (A, A, n) € Shy ,_1(F,). We have to show that there exists
(B, 2, n') € Shy,, and an isogeny ¢ : B — A such that (A, A, n, A, n’; ¢) lies in
Y; forsome 1 < j <n.

Consider

Lo = (D(A)[1/p])F =P = {a € D(A)[1/p] | F*(a) = pa).

Since x is supersingular, Lg is a Q ,2-vector space of dimension n by the Dieudonné—
Manin classification, and D(A)$[1/p] = Lg ®q 2 W([Fp)[l/p] We put £ =
(Lo DD(A) ) ®z 2 W([Fp) and &5 = F(5 ) C D(A)2 Thus &° = 5" EBE" is a
Dieudonné submodule of D(A)°. We claim that £° contains pD(A)° as a submodule.
Then applying Proposition 3.2 with m = 1, we get an O p-abelian variety (B, A, )
together with an Op- isogeny ¢:B— Awith¢”olog = pA. Itis easy to see in this
case that (A, A, n, B, 1, n’, ¢) defines a point in ¥; with j = dlm[F (D(A)2/52

It then suffices to prove the claim that pD(A)° C &°. Suppose not, then
D(A)° SZ (1/p)8°. Consider M; := D(A)i/c‘fio for i = 1, 2. For any integer o > 0,
its p“-torsion submodule is

Milp"1= (D n ;—aé’;’)/ég’.

It follows easily that

M,-[p““]/M,-[p‘”]z(pa+1 o0 (D +—5 ) p—{xé;.
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On the other hand, the Kottwitz’s signature condition implies that both F and
V: f)(A)‘l’ — f)(A); have cokernel isomorphic to [_Fp, and both F and V : éf — E’;
are isomorphism. Therefore, the two induced morphisms

FandV :M; — M,

are injective and both have cokernel isomorphic to F,,. It follows that the induced
maps on the graded pieces

1

Fand V: <W<§’f N (f?(A)cf + %gf»/%éf

1 oo ~ o 1 oo 1 oo
= <W52 n (B + ng))/ﬁsz (4.14.1)
are injective maps, and are isomorphisms for all & > 0 except for exactly one a.!”
The assumption f)(A)O QZ (1/ p)g'O implies that there are at least two o > 0O for
which the right hand side of (4.14.1) is nonzero. So there exists & > 0 such that

(4.14.1) are isomorphisms of nonzero [F,-vector spaces. Multiplication by p* gives
isomorphisms:

Fand V: (%E‘f N (P DAy +87)) - (%é; N (P DA3+5)). @142
Now, Hilbert 90 theorem implies that L' = ((1/p)E; N (p*D(A)S +éf))F "=P in fact
generates the source of (4.14.2). On the other hand, it is obvious that ' C g and
L' C p“@(A)‘l’ + g‘f C f)(A)‘l’. This means that I/, and hence Lg N D(A)S, generates
the entire (1/p)EXN(p*D(A)S+EY), i.e., one has (1/p)ELN(p*D(A)+E7) = 7.
But this contradicts with the nontriviality of the vector spaces in (4.14.1) by our
choice of «. Now the proposition is proved. (I

Corollary 4.15. The morphism pr (resp. pr,) is a closed immersion, and it identi-
fies Y1 (resp. Y,) with the closed subscheme of Shy ,_1 defined by the vanishing of
Vit , — a)lspl) (resp. V15 | — w;{s‘f’;).

Proof. We just prove the statement for pr;, and the case of pr,, is similar. Let Z; be
the closed subscheme of Sh; ,_; defined by the condition that V : “’34%2 — w;y’ 1)
vanishes. We show first that pr; : ¥y — Shy ,_; factors through the natural
inclusion Z; < Shy ,—;. Let y = (A, A, n, B,),n’, ¢) be an S-valued point
of Y;. By Lemma 4.6, Im(¢ ) has rank n — 1 and contains both wZV/S’Z and
F (HldR(A / S)‘f’(p )), which are both Og-subbundles of rank n — 1. This forces
W /50 = F(HldR(A/S)T’(p)), and therefore V : %, s, — a)Z’V(‘Z/’;1 vanishes. This
shows that pry(y) € Z;.

1Twe point out that, for (4.14.1), F is an isomorphism if and only if V' is an isomorphism, because
this is equivalent to requiring the source and the target to have the same dimension.
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To prove that pr; : Y1 — Z; is an isomorphism, as Y is smooth, it suffices to show
that it induces a bijection between closed points and tangent spaces of Y} and Z;.
For any perfect field k containing [, one constructs a map 6 : Z;(k) — Y;(k)
inverse to pr; : Y1(k) — Z;(k) as follows. Given x = (A, A, n) € Z (k). Let
E7 =D(A); and & < D(A)3 be the inverse image of w3y, , € D(A)3/pD(A)s3.
Then the condition that y € Z; implies that £7 @ &7 is stable under F' and V.
Applying Proposition 3.2 with m = 1, we get a tuple (B, 2/, n’, ¢) such that y =
(A, A, n, B, ), n, ¢) € Y1(k). It is immediate to check that x — y and pr, are the
set theoretic inverse of each other. It remains to show that pr; induces a bijection
between Ty, y and T7, . Proposition 4.14 already implies that we have an inclusion
Ty,,y = Tz, x = Tsn,,_, x- It suffices to check that dim 7z, , =n — 1. The tangent
space Tz, . is the space of deformations (A, )A\, n) over k= k[€1/(€?) of (A, X, 1)
such that V : w}v/];’z — w}'v(p 12),1 = wjfv(f 2’1 ®x k vanishes. This uniquely determines
the lift &%v , = @%v Jk,2- S0 by deformation theory (Theorem 3.4), the tangent space
Tz, x is determined by the liftings ofyv | = v i | of Wfv . ;. Soitis of dimension
n — 1. This concludes the proof of the corollary. U

4.16. Geometric Jacquet-Langlands morphism. Let £ # p be a prime number.
For 1 < j <n, the diagram (4.2.1) gives rise to a natural morphism

— _  pr¥ —  — prj, 1) = _
JL;: HY(Sho ., Qo) —> HY(Y ;. @p) = Hy" " (Shy o1, Qe(n—1)), (4.16.1)

where pr; , is (2.10.1), whose restriction to each Hg(Yiﬁ Q) forze N ([_Fp) is the
Gysin map associated to the closed immersion Y ; < Shy ,,_;. Itis clear that the im-
age of JL; is the subspace generated by the cycle classes of [Y; ;] € A" (Shy ,_1)
with z € Sho,n([_Fp). According to [Helm 2010], J£; should be considered as a
certain geometric realization of the Jacquet-Langlands transfer from Gg , to Gy ,—1.
Putting all the JL; together, we get a morphism

n
JL=Y"JL; P HYShon. Qo) > Hy" "Shy oy, Qu(n—1)).  (4.16.2)
J Jj=1

Recall that we have fixed an isomorphism G ,—1(A*®) >~ Gg ,(A*), which we
write uniformly as G (A®). Denote by #(K?, Q) = Q¢[K? \ G(A®P)/KP] the
prime-to-p Hecke algebra. Then the homomorphism (4.16.2) is a homomorphism
of %(K?, Q;)-modules.

For an irreducible admissible representation 7 of G(Ay), we write 7 =17 @),
where 7?7 (resp. 7)) is the prime-to-p part (resp. the p-component) of 7.

Lemma 4.17. Let w1 and m) be two admissible irreducible representations of
G(A®), and (r;, s;) fori = 1,2 be two pairs of integers with 0 < r;, s; < n and
ri+s1 =ry+so, mod 2. Assume that | satisfies Hypothesis 2.5 with a, = (ry, 1),



Tate cycles on some unitary Shimura varieties mod p 2249

and there exists an admissible irreducible representation 73 oo 0f G (1,.5,) (R) such
that my @ T o Is a cuspidal automorphic representation of Gy, 5,)(A). If J'rlp and
nf are isomorphic as representations of G(AP**°), then 71 , >~ 13 ,, and w5 @ M2 oo
admits a base change to a cuspidal automorphic representation of GL, (Ag) X AXO;

in particular, 7, satisfies Hypothesis 2.5 for a, = (r3, $3).

Proof. By assumption on 7}, there exists an irreducible admissible representation
71,00 Of G, 5)(R) such that 71 ® 71« is a cuspidal automorphic representation of
G, s, (A), which base changes to a cuspidal automorphic representation (I, x1)
of GL,(Ag) x AEO. On the other hand, by [Shin 2014, Theorem 1.1], there exists
always a base change of 7y ® >  to an automorphic representation (I, x2) of
GL,(Ag) x AEO. The base changes (I1;, x;) with i = 1, 2 satisfy the following
properties:

o I1; is conjugate self-dual,

o for every unramified rational prime x, the x-component of (I1;, ¥;) depends
only on the x-component of ; and

o if 7 p = 7i,0 ® 7; p as representation of G(Q,) ~ QF x GL,(Ey), then I1; ,, =
(Tip ® Jvrlfp) as a representation of GL, (E ® Q,) = GL, (Ey) x GL,(Ej}), and
Vip="Ti0® 7Ti’_01 as a representation of (Eo ® Qp)* = Q x Q. Here, 7?5
denotes the complex conjugate of the contragredient of 7; ;.

p

As nf’ ~ nf, (ITy, ¥1) and (I, ¥o) are isomorphic at almost all finite places.
By the strong multiplicity one theorem for GL, [Jacquet and Shalika 1981], we
have (I1y, Y1) =~ (Io, ¥»); in particular, (ITy, ¥) is cuspidal. By the description
of (I; ,, ¥ p), it follows immediately that 77 , ~ > . O

Let sk be the set of isomorphism classes of irreducible admissible representa-
tions 7w of G(A*) satisfying Hypothesis 2.5 with a, = (0, n). In particular, each
7 € A 1is the finite part of an automorphic cuspidal representation of G ,(A).

We fix sucham € dg. Let

n
JLx @ HY(Sho,n. @¢)zr — Hg" ™" (Shy 1, Qe(n — 1)z
i=1
denote the homomorphism on the (77)X”-isotypic components induced by JL,
where for an %(K?, Q;)-module M we put
Myp :=Homy g, 5, ((x")X" M) @ (x")K".

Then Lemma 4.17 implies that 7 is completely determined by its prime-to-p part.
Hence, taking the m”-isotypic components is the same as taking the m-isotypic
components. We can thus write M, instead of M, for a #(K, Qg)-module M.
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Recall that the image of JL, is included in Hz(" ])(Shl a1, Qe(n — 1)
which is the maximal subspace of H, (" 1)(Shl u—1, Q¢(n — 1)) where the actlon
of Gal([Fp /F,2) factors through a ﬁnlte quotient. Note that, at this moment, it is not
clear if the target of 7L, is nonzero. But this will follow from the proof of our
main Theorem 4.18 below.

Our main result claims that this inclusion is actually an equality under certain
genericity conditions on 7,. To make this precise, write 7, = 7,0 @ 7y as a
representation of G(Q),) ~ @; x GL,(Ey). Let

m : Wa, = GLa(Q)

be the unramified representation of the Weil group of Q> defined in (2.6.1). It
induces a continuous £-adic representation of Gal(F,/F,2), which we denote by
the same notation. Then pr, (Frob ) is semisimple with characterlstlc > polynomial
(2.6.2). Usmg this, we get an explicit description of H, (” ])(Shl n—1, @g (n—1)),
and H (Sho n, @¢)x in terms of pr, by (2.4.1) and (2. 6 3).

We can now state our main theorem.

Theorem 4.18. Fixam in Ag. Let Oy 1sems Oy, be the eigenvalues of P, (Frob p2)-
M If Oy 15> Oy, ATE distinct, then the map JL; is injective;

(2) Let my ,—1() (resp. mg (7)) denote the multiplicity for m appearing in
Theorem 2.6 for a, = (1, n—1) (resp. for a,= (0, n)). Assume that my ,_(7w) =
mo., (1) and that aﬂp,i/anp,j is not a root of unity for all 1 <i, j <n. Then
the map

TLx @ §(Shon. Qe)r = Hy" " (Shy oy, Qu(n — 1)

is an isomorphism. In other words, H (" b (Sh1 ne1, @g (n— 1))ﬁn is generated
by the cycle classes of the lrreduable components of Yj for1 < j <n.

The proof of this theorem will be given at the end of Section 6.

Remark 4.19. The equality m ,_1(w) = mg ,(r) is conjectured to be true ac-
cording to Arthur’s formula on the automorphic multiplicities of unitary groups,
and is known to hold when 7 is the finite part of an automorphic representation
of G ,—1(A) whose base change to GL, (Ag) x AEO is cuspidal, and G ,—1 is
quasisplit at all finite places. See for instance [White 2012, Theorem E].

On the other hand, Theorem 4.18(1) gives partial results towards the equality
mi n—1(w) =mo (7). Indeed, when combining with Kottwitz’s description 2.6 of
the m-isotypic components of the cohomology groups, Theorem 4.18(1) implies
(under the assumption that the Satake parameters of 7, are distinct) thatmy ,, () >
mo., (7r) without using Arthur’s trace formula. If we use only the fact that JC,
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is nonzero (which is an easy consequence of our computation of the intersection
matrix in Theorem 6.7), we get the implication mq ,(w) # 0 = m ,—1(7) # 0.

5. Fundamental intersection numbers

In this section, we will compute some intersection numbers on certain Deligne—
Lusztig varieties. These numbers will play a key role in the computation in the next
section of the intersection matrix of the cycles Y; on Shy ,_.

Notation 5.1. Let X be an algebraic variety of pure dimension N over [_Fp. For an
integer r > 0, let A" (X) (resp. A, (X)) denote the group of algebraic cycles on X of
codimension r (resp. of dimension r) modulo rational equivalences. If ¥ € X is a
subscheme equidimensional of codimension », we denote by [Y] € A" (X) the class
of Y. We put A*(X) = @i\;o A" (X). For a zero-dimensional cycle n € AV (X), we
denote by

deg(n) = / n
X

the degree of n. Let V be a vector bundle over X. We denote by ¢, (V) € A" (X)
the r-th Chern class of V for 0 <r < N, and put c¢(V) = Z?’:O c(W)t" in the free

variable ¢.

5.2. A special Deligne—Lusztig variety. We fix an integer n > 1. For an integer
0 <k < n, we denote by Gr(n, k) the Grassmannian variety over [, classifying
k-dimensional subspaces of [F;‘f". Given an integer k with 1 <k <n, let Z ,i"> be the
subscheme of Gr(n, k) x Gr(n, k — 1) whose S-valued points are isomorphism
classes of pairs (L1, L), where L and L, are respectively subbundles of O?" of
rank k and k — 1 satisfying L, C LY’ ) and Lgp ) C L (with locally free quotients).
The same arguments as in Proposition 4.4 show that Z ,§"> is a smooth variety over
[, of dimension n — 1. We denote the natural closed immersion by

iv: Z" < Gr(n, k) x Gr(n, k—1).

Let £; and £, denote the universal subbundles on Gr(n, k) x Gr(n,k — 1)
coming from the two factors, and Q; and Q, the universal quotients, respectively.
When there is no confusion, we still use £; and Q; for i = 1, 2 to denote their
restrictions to Z\". We

P - put

& =Li/LPYV LY &L\ /L) ®or P, (5.2.1)

which is a vector bundle of rank n — 1 on Z ,i"). (This vector bundle is modeled on
the description of the normal bundle Ny, (Sh; ,—1) in Proposition 4.14(1), which is
how our computation will be used in the next section; see Proposition 6.4.) We have
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the top Chern class ¢,— (&) € A"~ 1(Z ) We define the fundamental intersection

number on Z< " a

N, k) = / ene1(E0). (5.2.2)
20

k

The main theorem we prove in this section is the following:
Theorem 5.3. For integers n,r withQ <r <n, let
ny _(@"=D@" ' =D---(¢" " =1
(+),= @=D@ =@ =D

be the Gaussian binomial coefficients, and let d(n, k) = 2k — 1)n —2k(k — 1) — 1
denote the dimension of Gr(n, k) x Gr(n, k — 1). Then, for 1 <k <n, we have

minfk—1,n—k}
No b= Y - 28)pd<n_28’k_5)<’;) . (5.3.1)
]72
5=0
Remark 5.4. We point out that this theorem seems to be more than a technical
result. It is at the heart of the understanding of these cycles we constructed.

Proof. We first claim that N(n, k) = N(n,n+1—k) for 1 <k <n. Let (L, L)
be an S-valued point of Gr(n, k) x Gr(n,k—1), and Q; = O?”/L,' fori=1,2be
the corresponding quotient bundles. Then (L1, L>) — (Q5, O7F) defines a duality
isomorphism

0:Gr(n, k) x Gr(n,k—1) = Gr(n,n+1—k) x Gr(n,n —k).

Since L(p) CLj(resp. Lo < L(p)) is equivalent to Q7 C Q2 () (resp. to Q1 (P c 0%,
9 1nduces an isomorphism between Z;" ™ and Z" jzl «- It is also direct to check that

= 0*(Ey+1-k). This verifies the clalm. Now since the right hand side of (5.3.1)
is also invariant under replacing k by n + 1 — k, it suffices to prove the theorem
when k < %(n +1).

We reduce the proof of the theorem to an analogous situation where the twists
are given on one of the L;. Let Z ") be the subscheme of Gr(n k) x Gr(n,k—1)
whose S-valued points are the 1som0rphlsm classes of pairs (L1, L»), where L1 and
L, are respectlvely subbundles of O?” of rank k and k — 1 satisfying LyCLand
L(p ) C L. The relative Frobenius morphisms on the two Grassmannian factors
1nduce two morphisms
@ ¢

(n) S (n) (n)
Zk Zk (Zk )(p)

(L1, Ly) —— (LE”), L)

(Ly, L)) —— (il,iép)),
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such that the composition is the relative Frobenius on V4 ,ﬁm. Using a simple defor-
mation computation, we see that ¢ has degree p" % and ¢ has degree p*~!. Let Ly
and £, denote the universal subbundles on Gr(n, k) x Gr(n, k — 1) when restricted
to Z ,£">; let Q) and Q, denote the universal quotients, respectively. We put

T 0 NP0 I .
Ex=(L1/Ly )" ®Ly "D (L1/L2) ® Q] (5.4.1)

which is a vector bundle of rank n — 1 on Z én)
Note that

~ 2 2

Comparing with &, we see that ¢,_; (go*(g’k)) = pkilcn_l (&), where the factor

pk —1 comes from the Frobenius twist on the first factor. Thus, we have

/chn_l(&) = (degw)lfzwcn_l((p*(ék))

=pt / P e €0 = p* T IN G ). (5.4.2)

z"
Sinced(n —28,k—8)+2k—n—1=2(k—86—1)(n —k — 6+ 1), the theorem is
in fact equivalent to the following (for each fixed k). U

Proposition 5.5. For1 <k < (n+1)/2, we have

k—1
a2y _1yn—1 _ 2k—8—1)(n—k—5+1) (1
/Z L enm1E) = (=1 5§0j(n 28)p (5)p2. (5.5.1)

k

Remark 5.6. Before giving the proof of this proposition, we point out a variant of
the construction of Z; " Let Z“" be the subscheme of Gr(n, k) x Gr(n,k — 1)
whose S-valued points are the 1som0rphlsm classes of pairs (Ll, Lz) where L/ and
L’ are respectlvely subbundles of O?" of rank k and k — 1 satisfying L’ - L’ and
L/ - L'(p ) (Note that the twist is on L, as opposed to be on L/). This is again a
certain partlal Frobenius twist of Z\" k ; it is smooth of dimension n — 1. Define the
universal subbundles and quotient bundles £/, E/z, |» and Q2 similarly. We put

= (L) /Ly L e (L)) & (2P,

Using the same argument as above, we see that, for every fixed ,

[, ei@= "N b,

Z
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Note that the exponent is different from (5.4.2). So Proposition 5.5 for each fixed &
is equivalent to

k—1

SN _ o 1yn—1 _ 2(k—8)(n—k—3) (T
fzwcn_l(ép—( DY = 2)p2E Ok ()

k §=0 p
as2(k—-8)(n—k—-8)=dn—28,k—68)+n—2k+1.
Proof of Proposition 5.5. We first prove it in the case of k = 1, 2 and then we
explain an inductive process to deal with the general case.
When k =1, Z, AR clas51ﬁes a line subbundle L1 of (9 with no additional

condition (as Lo is zero) o) Z ~pr-land 2, = Opn-1(—1). The vector bundle
& isequalto £; ® Q*. Itis stralghtforward to check that

c(&) = (1+c1(Op-1(—1)))"  and hence /chn_](g’]):(—l)”_ln;
Zn

1

the proposition is proved in this case.
When k = 2, we consider a forgetful morphism
l// . Zé”) — Z(n) (Zl, iz) = Zz.

This morphlsm is an isomorphism over the closed points x € Z >([F ) for which
L2x # L(p) because in this case L1 , 1s forced to be sz + L(p ). On the

other hand for a closed point x € Z ">([Fp) where sz = L(p ), ie., for x €

(IF 2) E P 1([I: 2), ¥~ (x) is the space classifying a line L1 in F®”/L2 x3 SO
1// 1(x) ~ P"~2. A simple tangent space computation shows that v is the blowup
morphism of Z §"> =pr—latall of its F p2-points. We use E to denote the exceptional
divisors, which is a disjoint union of ( ) , copies of P2,

Note that the vanishing of the morphism £, — £;/ C(p ) defines the divisor E
(as we can see using deformation); so

Oy (B) = Ly /2" © 5.
Put = ¢1(£2) = Y*c1(Opn-1(—1)) and & = ¢ (E). Then
(&) = (L1 /LYY @YD) - o((Z1 /L) ® OF)
==&+ =D -A+E+p" )" /AL+E+ (P> = D)., (56.1)

where the computation of the second term comes from the following two exact
sequences

0— (ZI/ZZ) ® QT — (Z]/Zz)@n — (21/22) ®Z* — 0;
0= 0z — (L1/L2) ® LT — (L1/L2) ® L — 0.
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Note that [5m &'/ =0 unless (i, j) = (n —1,0) or (0, n — 1), in which case
2

n—1_ . 1\n—1 n—1_  1\n n
/zgw” = (D" and /Zg”s ='() .

Here, to prove the last formula, we used the fact that the restriction of O (E) to

each irreducible component P"~2 of E is isomorphic to Ops-2(—1). So it suffices
to compute

o the £"~!-coefficient of (5.6.1), which is the same as the £"~!-coefficient of
(1—&)(1+&)"!and is equal to 2 — n; and

n—1 n—1

o the "~ "-coefficient of (5.6.1), which is the same as the "~ -coefficient of
(1+(p>=Dn)(A+p>n)" /(1+(p*>— n) = (1+ p*n)" and is equal to np>*~D,

To sum up, we see that
e @) = (=1 np D (=12 -n)(Y)
Zén) 1 p2

which is exactly (5.5.1) for k = 2.

In general, we make an induction on k. Assume that the proposition is proved
for k — 1 > 1 and we now prove the proposition for k£ (assuming that k < -2 Lin+1)).
By Remark 5.6, we get the similar intersection formula for S,Q L on Z

2 1y —8—1)(n—k— n
/;Wl) Cn_l(gli_]):(_l)” 1;(”—28)1)20{ d—D(n—k 5+1)<8)

k—1

- (5.6.2)
P

We consider the moduli space W over F,» whose S-points are tuples (L1, L, =
L’2, 3) where L1, L, and L’ are respectlvely subbundles of O?" of rank k, k — 1
and k —2 satisfying L’3 cLrcLyand L’ L(p ) L. Ttis easy to use deformation
theory to check that W is a smooth variety of dimension n — 1. There are two

natural morphisms

1012/ \Wz%

(Ly, Ly =L, L)

Let E denote the subspace of W whose closed points x € W([Fp) are those such

F" of dimension k — 1.

that L2 y = L(p ) , l.e., L2 x 18 an [ »-rational subspace of
It is clear that E is a disjoint union of ( " )p2 copies (corresponding to the choices
of I:z) of Pk x Pk=2 (corresponding to the choice of f,l and l~/3 respectively). It
gives rise to a smooth divisor on W.

For a p01nt X € (W \E )([Fp) we have Lz x F L(p ) and hence it uniquely deter-

mines both L1 » and L3 ; S0 Y2 and o3 are 1somorph1sms restricted to W\ E. On
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the other hand, when restricted to E, 1/, contracts each copy of Pr—k « Pk=2 of E
into the first factor P"~%; whereas /23 contracts each copy of P"~* x PX=2 of E into
the second factor P*=2. Tt is clear from this (w1th a little bit of help from a deforma-
tion argument) that v, is the blowup of Z along Y12(E) and yrp3 is the blowup
of Z 1 along Y3 (E); the divisor E is the exceptional divisor for both blowups.

A simple deformation theory argument shows that the normal bundle of E
in W when restricted to each component P"~* x P¥=2 is Opu-i (—1) ® Opi-2(—1).
Moreover, we can characterize E as the zero locus of either one of the following
natural homomorphisms

Z§p2>/,7;/3 — L1/Ly, L)L — Zl/ngz),
So as a line bundle over W, we have
Ow(E) = (YB3 & (E1/L2) = (La/EY) ™" @ (L1/EYY).
We want to compare
/Zén)Cn—l(gk) Z/ch_l(yffz(ék)) and

- ) (5.6.3)
/”«m c"_l(glil)zf cn—1(Y35(E_ 1)
Z W

k—1

We will show that they differ by (2k —n — 2)(—1)”(,€f1)p2 and this will conclude
the proof of the proposition by inductive hypothesis (5.6.2). Indeed, we have

c(Wh@E0) = (L1 /ZY) @ L) - ¢((£1/L2) ® D). (5.6.4)
(W E_) = c((La/Ly)* ® L) - (B /Ly © 05 7)), (5.6.5)

where Q; and Q, are the universal quotient vector bundles. Consider the following
two exact sequences where the two last terms are identified:

~ 2
OW(E)®(£1/£(” 1LYy

E

~ ~ ~ ~ ~ ~ 2 ~ ~ ~ 2 ~
0 —+ (La/ L)' ®Ly — (Lo L)' QLY — (Lo/ Ly ' (LY /L) — 0

0 — (Z1/L)®DF — (L1/L)®QL ") — (B1/L2)® (25" 10t —> 0.

E

Ow(E)RLY) )L @05 )
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Here the right vertical isomorphism is given by

(L1 /L) ® (D57 10%) = (£ /L) ® (L1 /E) !
= (20712 ® Ow(E)) ® ((L2/ L)) ® Ow (E)) ™
> (Lo B @ (2 1LY,

From these two exact sequences we see that

B2/ B @ 1) - c(OwEY® (2 /25 @ )
:C((£1/£2)®QT) (Ow(E)®(£1/£(p ))*l ®Z§p2)).

Comparing this with (5.6.5) and (5.6.4), we get

Cn—1 (Wi EN) —cnm1 (W33 p)

= (a1 (B/EY ) LY )~ Ow (EYS (B /LY ) O LY)) ot (£1/ L) ® 25

—eial(La/ By B L) (rmirt (B YL@ DS ) —ri OW(E)O (LS ) L) 005 7).

Recall that FE is the exceptional d1V1sor for the blow-up 1, centered at a disjoint
union of P"~¥; so ¢; (E) kills 1//12(A’ (Z )) fori >n—k+1. Similarly, c; (E) kills

1//23(14’ (Z/<" )) fori > k — 1. As aresult, we can rewrite the above complicated
formula as

cn1 (U (E)) — en1 (W35(EL_ )
= —c1(EY 2|5 - cnk (L1/L2) @ OF) + cka(La/ L)' @ LL) - 1 (E)"H| &

= (=D*enk (L1/£2) @ QD lynpy + (=" cxma(L2/ L) ™" @ L lyns -
For the first term, over each P" % of y1»(E), it is to take the top Chern class of the
canonical subbundle of rank n — k twisted by Ops—«(—1); so the degree of the first
term is (—1)*"*(n —k + 1) on each P"*, Similarly, for the second term, over each
P*=2 it is the top Chern class of the canonical subbundle of rank k — 2 twisted by

Opi—2(—1); so the degree of the second term is (=D*2(k — 1) on each P*~2 To
sum up, we have

/W a1 (W (&) — /ch_l(w;3<é,i_1»
_ (_1)k—1(_1)n—k(n_k+1)(kil)pj-(_l)n—k(_l)k—z(k_1)<kﬁ1)p2

= (— 1" (= 2k+2) (kf 1)p2' (5.6.6)
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So by the inductive hypothesis,

\/ZW Cn—l((z/‘k) (5:63) /W Cn—l(wl*Q(ék))

k

.

(5.6.6) . a1 n
= fwcn_1<w23(5k))+(—1> n-2%+2(, ")

p

“é”f et G+ (=D =2k +2) "
Z/(n) k_l

k=1 p?

k—2
_ 1yl _ 2k—8—1)(n—k—8+1) (T
= -y (5),.

+ (D" _2k+2)<kﬁ1)p2

k—1
_ o 1yn—1 . 2(k—8—1)(n—k—5+1) (1
= (=) 52(:)(” 28)p (5)p2.

This shows the statement of the proposition for £ and hence concludes the proof. [

6. Intersection matrix of supersingular cycles on Shy ,_{

Throughout this section, we fix an integer n > 2 and keep the notation as in Section 4.
We will study the intersection theory of cycles Y; for 1 < j <n on Shy ,,_; considered
in Section 4. For this, we may assume the following:

Hypothesis 6.1. We assume that the tame level structure K? is taken sufficiently
small so that Lemma 4.13 holds with N = 2.

6.2. Hecke correspondences on Shy ,. Recall that we have an isomorphism
G(Q,) ~ @; x GL,(Ey) = @2; x GL,(Q,2).

Put K, = GLn((’)Ep) and K, = Z; x K. The Hecke algebra Z[ Ky, \ GL,, (Ep)/Ky]
can be viewed as a subalgebra of Z[K, \ G(Q,)/K,] (with trivial factor at the
Q -component).

For y € GL,(E}), the double coset T,(y) := K,y K, defines a Hecke correspon-
dence on Shg ,. It induces a set theoretic Hecke correspondence

Ty(y) : Sho u(Fp) = S(Sho . (Fy)),

where S(Sho,n([l—:p)) denotes the set of subsets of Sho,n([_Fp). By Remark 4.12,
Shy, ,,([_Fp) is a union of #ker! (Q, Go.n)-isogeny classes of abelian varieties. Fix a
base point zg € Sho,n(l]_:p). Let

®;, : Is0g(20) => Go.u (@) \ (G(A™P) x G(Q)))/K? x K.
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be the bijection constructed as in Corollary 4.11. Write K,y K, = [[,; viKp.
If z € Isog(zp) corresponds to the class of (g7, g,) € G(A™P) x G(Q,) with
gp = (&p.,0, &), then T, (y)(z) consists of points in Isog(zg) corresponding to the
class of (g7, (gp,0, gpyi)) foralli € I.

Alternatively, 7;,(y) has the followgng description. Write z=(A, A, ), and let L,
denote the Z ,»-free module f)(A)T’F =P Then a point 7/ = (B, X', ) € Shoy,,([_Fp)
belongs to 7,,(y)(z) if and only if there exists an Op-equivariant p-quasi-isogeny
¢ : B'— B (ie., p"¢ is an isogeny of p-power order for some integer m) such that

(1) ¢"orop =41,

(2) gon' =n,

3) ¢« (1) is alattice of L,[1/p] =1, ®Zp2 @pz with the property: there exists a
Z -basis (ey, - . ., ey) for L; such that (ey, ..., e,)y is a Z 2-basis for ¢, (Ly).

When y = Diag(p“, ..., p*) with a; € {—1, 0, 1}, For given z and 7/, such a ¢ is
necessarily unique if it exists, by Lemma 4.13 (with N = 2). Therefore, T,(y)(z)
is in natural bijection with the set of Z -lattices L’ C [L.[1/p] satisfying property
(3) above.

For each integer i with 0 <i <n, we put

T\ = T,(Diag(p, ..., p, 1,..., ).
—_—
i n—i
By the discussion above, one has a natural bijection

T, (2) = (Lo CL[1/p] | ple C Ly C L. dime ,(Lo/Ly) = i}

for z € Sho,n([l_:p). Note that Tp(o) =1id, and we put S, := Tp(") . Then the Satake
isomorphism implies Z[K,, \ GL,(Ep)/Kp]1 = Z(T,", ..., T,""", 8,, $;'1. More
generally, for 0 <a < b <n, we put

.., ).
a b—a n—>b

Note that Réo’i) = Tp(i), and Ré”’b) Sy I'is the Hecke operator

b :
Réa ) = Tp(Dlag(pz, e pz, D ..

apalv

Tp(Dlag(pa,p’ 1,..., 17 p_la--~’p_l))'
—— —— ———

a b—a n—b
For the explicit relations between Réa’b) and Tp(i), see Proposition A.1.

6.3. Refined Gysin homomorphism. For an algebraic variety X over [_Fp of pure
dimension N and any integer r > 0, we write A,(X) = AY~"(X) to denote the
group of dimension r (codimension N —r) cycles in X modulo rational equivalence.
Recall that the restriction of pr;: Y; — Shy,_jtoeach Y forz e Sho’n([_Fp) and
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1 < j <n is aregular closed immersion (into Sﬁll,n_ 1). There is a well-defined
Gysin homomorphism

pri: Au1Shia-n) = Ad¥) = @ Ao¥).), (6.3.1)
z€Shg , (Fp)

whose composition with the natural projection Ao(Y ;) — Ao(Y; ;) is the refined
Gysin_ map (pr j |yj4z)! defined in [Fulton 1998, 6.2] for regular immersions. Let
X C Shy ,—1 be a closed subvariety of dimension n — 1. Consider the Cartesian
diagram

Yj _— hl,n—l-

Assume that the restriction of gx to each Y 2 XShy X with z € Shy, n(@ )is a
regular closed immersion as well. Then pr ([X) € AO(Y ) can be described as
follows. Put Ny, . (Sh1 nel) = =pr; (TShl )/Tyj , and we define Ny, Xsh, X(X)
in a similar way. ‘We define the excess vector bundle as

E(Yjz X) =g Ny,. (§11,n—1)/1\’y_,~1><§11,n*1 x(X).

This is a vector bundle on Y ; XSk, . X. Let r be its rank function, which is equal
to the dimension of Y Xgp,,_, X on each of its connected component. Then the
excess intersection formula [Fulton 1998, 6.3] shows that

pri(Xh= ) cr(E(Yjz, X)), (63.2)

= Y. X X
z€Sho (Fp) = /7 S

where ¢, (£(Y; ;, X)) is the top Chern class of £(Y; ,, X) over Y , XSk, X. The
integration should be understood as the sum over all connected components of
Y. XShy X of the degrees of ¢, (£(Y; ., X)).

Propositlon 6.4. Leti, j beintegerswithl <i < j<nandz,7 € Sho,,,([_Fp).

(1) The subvarieties Y; , and Y; ; of §11,n_1 have nonempty intersection if and
only if there exists an integer § with 0 < § < min{n — j, i — 1} such that
7€ Réj_iﬁ’"_a)Sp_l(z), or equivalently z € Rés’"ﬂ_j_a)Sp_l(z/), where Rf,””’)
and Sy are the Hecke operators defined in Section 6.2.

(2) Ifthe condition in (1) is satisfied for some §, then Y; ; X ST Y} 2 is isomorphic

to the variety Z;_ <n+’ J=28) deﬁned in Section 5.2. Mareover the excess vector

bundles E(Y; ;, YJ ) and E(Y; 1, Y; ;) are both isomorphic to the vector bundle

(521)0 Zn-H Jj—28)
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Proof. Let (B;, A;, n;) and (B,, A/, 11,7) be the universal polarized abelian varieties
on S_ho,n at z and 7/, respectively. Then Y; , XShy 1 Y; . is the moduli space of
tuples (A, A, n, ¢, ¢") where ¢ : B, — A and ¢’ : B, — A are isogenies such
that (A, A, n, B, A;,n;, ¢) and (A, A, n, B, ny, ¢') are points of ¥; . and Y;
respectively.

Assume first that ¥; ; xg =~ Yo 1s nonempty, and let (A, A, n, ¢, ¢') be an
[F -valued point of it. Denote by @4 %S D(A)° ¢ for k =1, 2 the inverse image of
S, = C HR(A/F,)S D(A)k/pD(A)k We identify D(B,)¢ and D(B,)§ with
their images in D(A)° % via ¢, 4 x and ¢y 4 x. Then we have a diagram of inclusions
of W([Fp) -modules:

D(B,)S
y \ (6.4.1)
pD(A); a)gvl(”"“sb(sz)" D(B,)3 D(B.)S + D(B)2 =3 D(A)S.
\ Jj—i+s
D(Bz)‘f

Here the numbers on the arrows indicate the [_Fp—dimensions of the cokernel of the
corresponding inclusions, which we shall compute below. By the definition of Y;
and Y;, we have

dim[;p (f)(A)‘f/f)(BJf) = dim[;p Coker(¢y.1) =i —1,
and similarly, dimﬁp (@(BZ/)T / ‘7)?4%1) =n — j. Therefore, if we put
§ =dimg (D(B.)] +D(B,)])/D(B,)] = dimg D(B.)5/(D(B); ND(B,)S),

we have 0 < § < min{i — 1, n — j}. Moreover, the quasi-isogeny ¢, = ¢~ 0 ¢’ :
B, — B, makes B, an element of Isog(z). We identify L, defined in (4.11.1) with
a Z -lattice of L;[1/p] via ¢ ; «1. Then

dimg , (L, NLy)/pL, = dimg (DB N DB/ pDB); =n+i—j 8.

Take a sz—basis (e1, ..., e,) of L; such that the image of (e;_;1s41,...,€,) in
L./pl, form a basis of (L, NL.)/pl, and such that p~le, 541, ..., p~'e, form a
basis of (L, +L,)/L;. Then

-1 -1
(Pely ..., Pejits, €j—iqdtls - -1 €n—5, P €n—ssls---> D €n) (6.4.2)

is a basis of L, that is z’ € R,g'i_iJrs’n_S)Sp_l(Z) according to the convention of
Section 6.2.
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Conversely, assume that there exists § with 1 < § < min{i — 1, n — j} such
that the point 7’ € R;,J 71+8’"78)Sp* (z). We have to prove statement (2), then the
nonemptiness of Y; , XShy o Yiz will follow automatically. Let ¢/ , : B, — B, be
the unique quasi-isogeny Wthh identifies L with a Z »-lattice of L;[1/p]. By the
definition of R(J —iHEn— ‘S)S_1 there exists a basis ey, ..., e, of L, such that (6.4.2)
is a basis of ;. One checks easily that p(L, +L,) C [LZ NL,;. We put

My = (D(B); N D(B:);) [ (DB} +D(B)g)
for k =1, 2. Then one has
dimg (M) = dimg, (L VL) /p(L: + L) =n+i—j—26.

The Frobenius and Verschiebung on D(B,) induce two bijective Frobenius semilinear
maps F: M| — M, and vV~ M, — M,. We denote their linearizations by the same
notation if no confusions arise. Let Zs(M,) be the moduli space which attaches
to each locally noetherian [I_:p—scheme S the set of isomorphism classes of pairs
(L1, Ly), where L1 C M, ®[pr Ogand L, C M, ®|ﬁp Oy are subbundles of rank i —§
and i — 1 — § respectively such that

L,cFILY), v'a"ycL,.

Note that there exists a basis (g1, ...,k nt+i—j—26) of My for k =1, 2 under which
the matrices of F and V ~! are both identity. Indeed, by solving a system of equations
of Artin—Schreier type, one can take a basis (¢1,¢)1<¢<n4i—j—2s for My such that

VI (F(e10) =61y forall 1<€<n+i—j—26.

We put &3¢ = F(g1,¢). Using these bases to identify both M, and M, with Fpt' 7/~ %

it is clear that Zs(M,) is isomorphic to the variety Z "+' 7=2) considered in
Section 5.2.

We have to establish an isomorphism between Zs(M.,) and Y; . XShy s Y; . Let
(L1, Ly) be an S-point of Zs(M,). Note that there is a natural surjection

(DB NDBR)/ PDB) ®5, Os — My ®, Os.

We define H, ; for k =1, 2 to be the inverse image of L, under this surjection. Then
H i can be naturally viewed as a subbundle of D(B,); ®[F Og ofrank i +1—k, and
we have H, » C F(H(P)) and V~ 1(H(p)) C H since the pair (L1, Ly) verifies
similar properties. Therefore (L1, Ly) = (B;s, Azs, 02,5, Hz.1, H; 2) gives rise to
a well-defined map ¢; . : Zs(M,) — Y] _, where (B; s, A; s, 11 5) is the base change
of (B;, A, n;) to S. Similarly, we have a morphism go;.,z, 1 Zs(M,) — Yj/.’z, defined
by (L1, Ly) — (By.s, Az.s,nz.5, Hy 1, Hy 2), where Hy . is the inverse image of
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Ly under the natural surjection:
(DB NDBNR)/ PD(B}) g, Os — My 3, Os.
By Proposition 4.8, we get two morphisms
$iz: Zs(M,) = Yi, @iz Zs(M,) > Y
We claim that pr; og; . = pr; og; -, so that (¢; ., ¢, /) defines a map
¢:Zs(M.) = Yio xg, Y.

Since Y; ; Xshy oy iz is separated, the locus where pr; og; , coincides with
prj o@;.; is a closed subscheme of Zs(M,). As Zs(M,) is reduced, it is enough to
show pri_((p,-,z(x)) = pr; (¢j,;(x)) for each closed geometric point x = (Ly, L) €
Zs(M,)(Fp). Let (A, A, n, B;, Az, nz, ¢) and (A", A, 0, By, Ay, né,, ¢') be respec-
tively the image of (L1, L) under ¢; ; and ¢; ... To prove the claim, we have to
show that there is an isomorphism (A, A, ) = (A’, ', ') as objects of Shy ,_.
We identify D(B,), D(A), D(A") with W (F,)-lattices of D(1,)[1/p] via the quasi-
isogenies ¢,/ . : By — B, ¢~ ' : A — B, and ¢;12 o¢’: A’ — B,. Then by the
construction of A (cf., the proof of Proposition 4.8), D(A){ and cbj‘v,l fit into the
diagram (6.4.1) such that there is a canonical isomorphism

L1 =a5,/p(DB);+D(B,)S)
< (DB NDB.)3) / p(DBS +D(BL)]) = M. (6.4.3)
Similarly, we have

Ly = pédy. 5/ p(D(B.)5 + D(B.)3)
C (D(B)3ND(B)3) [ p(D(B)S +D(B,)3) = Mo. (6.4.4)

It is easy to see that such relations determine D(A) uniquely from (L, L;). But
the same argument shows that the same relations are satisfied with A replaced
by A’. Hence, we see that the quasi-isogeny f induces an isomorphism between
the Dieudonné modules of A and A’. As f is a p-quasi-isogeny, this implies
immediately that f is an isomorphism of abelian varieties, proving the claim.

It remains to prove that ¢ : Zs(M,) = Y; ; XShy o Y; . is an isomorphism. It
suffices to show that ¢ induces bijections on closed points and tangents spaces.
The argument is similar to the proof of Proposition 4.8. Indeed, given a closed
point x = (A, A, n, ¢, ¢") of ¥; , XSh, ., Yj.z/» One can construct a unique point
y=(L1, Ly) of Zs(M,) with ¢(y) = x by the relations (6.4.3) and (6.4.4). It follows
immediately that ¢ induces a bijection on closed points. Let x and y be as above. By
the same argument as in Proposition 4.4, the tangent space of Zs(M,) at y is given by

Ty = (L1/ VL) @ (M /L) @ L5 @ F(LY)/Ls.
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On the other hand, using Grothendieck—Messing deformation theory, one sees easily
that the tangent space of ¥; ; xg, ~ Yj . at x is given by

Ty, xg, ¥, = Homg (0% 1+ (D(BYTND(B)]) [ 1)
® Hom; (&% ,/(D(B.)3 +D(B)3), DA /@ »)-
From (6.4.3) and (6.4.4), we see easily that
WG ZLYVTIAY), DB/ = Mi/Ly,
%) (DBIS+DBS) Z Ly, DA, =FULY)/Ls.

It follows that ¢ induces a bijection between Tz;(u,),y and Ty, x oy Vit This
finishes the proof of Proposition 6.4. (]

6.5. Applications to cohomology. Recall that we have a morphism JL; (4.16.1)
for each j =1, ..., n. We consider another map in the opposite direction:
vy B Ghy iy, i — 1) 25 BT, @) = HOSho,, @),
where the second isomorphism is induced by the trace map
Ty R?(=D pr’ . Qi(n—1) = Q.
For 1 <i, j <n, we define

m;.j =v;00 L HO(Shon. @) L5 H2"V(Shy0_1, Qe (n—1)) ~> HO(Sho,,, Q).

Putting all the morphisms J£; and v; together, we get a sequence of morphisms:
g p j Log g q p
" 2(n—1) —
@ HY(Sho ., Qp) CL Hy" "7 (Shy -1, Qe(n — 1))
i=1
( w) M
ek @ 9(Shy,., Q). (6.5.1)

We see that the composed morphism above is given by the matrix M = (m; ;)1<;, j<n.
and we call it the intersection matrix of cycles Y; on Shy ,_;. All these morphisms
are equivariant under the natural action of the Hecke algebra #(K?, Q). We de-
scribe the intersection matrix in terms of the Hecke action of @g [Ky\GL,(Ey)/Kp]
on H t(Sho s Q).

The group et(Sho,n, @g) is the space of functions on Sho,n([_Fp) with values
in Q. For z € Sho’,,([_Fp), let e, denote the characteristic function of z. Then the
image of z under K,y K, for y € GL,(E}) is

[Kpy Kple(e) = Y e,

ey (y)(2)
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where T, (y)(z) means the set theoretic Hecke correspondence defined in Section 6.2.
In the sequel, we will use the same notation 7}, (y) to denote the action of [Kyy K]

on H t(Sho 1+, @¢). In particular, we have Hecke operators o, Sy, R (a b)
Proposition 6.6. For 1 <i < j <n, we have
min{i—1,n—j} .
mij= Z Nn+i—j—26,i _8)R5J*l+5,n75)sp—l’
5=0
min{i—1,n—j} o
mig= Y. N@a+i—j—28i-8RS" Vs
5=0

where N(n+i — j — 28,1 — §) are the fundamental intersection numbers defined

by (5.2.2).

Proof. We have a commutative diagram:

_ Pr; _ pr; _
Ap1(Y)) ——— Ay—1(Shy 1) - Ao(Y;) (6.6.1)

} ! !

n— pr n— v M
et(Y,,@w H" " V(Shy -, @An—l))—me%( Dy, Qo).

Here, the vertical arrows are cycle class maps, and pr is the refined Gysin map
defined in (6.3.1). For z € Shy, ,,([F ), the image of e, under m; j is given by

mi, j(ez) = Ty pr; Gys,, cl([Y;.]) = Ty, (cl(pr'j pr; . [Yi:])

=Trpr;-( > (e EWpe Vi) - elVe X, Yﬂ))

z/€Sho . (F)

= Z </ Cr(z,7) (g(Yj,Z/7 i,z)))ez/,
o/ Xshy 1 Yiz

z'€Shy, n(lF )

where r(z, 2') is the rank of £(Y; ./, ¥; ;), and we used (6.3.2) in the second step.
Indeed, Proposition 6.4(1) says that the schematic intersection Y; ; XShy s Y; s
smooth, so the closed immersion ¥; ; g5~ ¥; . <> Y; » is a regular immersion
and the assumptions for (6.3.2) are thus satisfied here.

By Proposition 6.4(1), e,» has a nonzero contribution to the summation above
if and (_)n_ly if there exists an integer § with 0 < § < min{i — 1, n — j} such that
7€ R,g] _l+5’"_8)Sp_ !(z). In that case, Proposition 6.4(2) implies that the coefficient
of e, is nothing but the fundamental intersection number N(n +i — j — 28,1 —§)
defined in (5.2.2). The formula for m; ; now follows immediately. The formula for
m  ; is proved in the same manner. |
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If we express m; ; in terms of the elementary Hecke operators Tp(k), we get the
following.

Theorem 6.7. Putd(n, k) = (2k—1)n —2k(k—1) —1 for integers 1 <k <n. Then,
for1 <i<j<n,wehave

min{i—1,n—j}

mi j = Z (_ 1)n+1+i—j (n+l _ .] _28)pd(n+i—j—25,i—8) Tp(]'*i+5) Tp(nfS) Sp_l,
5=0
min{i —1,n—j} o
mj; = Z (— )" (g i _j_23)pd(n+t*]*25,1*5)Tp(fs)Tp("'i‘l—]—S)S;l‘
8=0

Proof. We prove only the statement for m; ;, and that for m;; is similar. By
Proposition A.1 in Appendix A, the right hand side of the first formula above is

min{i —1,n—j}

Z (_l)n—‘rl—i—j(n +l _] _Za)pd(n+i—j—28,i—3)

§=0
) . .
n4i—j—25+2k (mit+8—k,n—8+k) o—1
) Z k Ry Sp
P2
k=0

min{i —1,n—j}

_ (j—i4r,n—r) a—1
= > R s,
r=0

Here, we have put r = § — k, and the expression * in the parentheses is

min{i —1—r,n—j—r}
* = Y (=T (i — j—2r = 2k)
k=0

P

d(n+i—j—2r—2k.i—r—k) (’H‘i —j—2r >
k P2

=Nmn+i—j—2ri—r).

Here, the last equality is Theorem 5.3. The statement for m; ; now follows from
Proposition 6.6. (]

Example 6.8. We write down explicitly the intersection matrices when # is small.

(1) Consider first the case n = 2. This case is essentially the same as the Hilbert
quadratic case studied in [Tian and Xiao 2014], and the intersection matrix can be

written:
(D
M:( (_1)21’1 Ty )
I,”'S, —2p
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(2) When n = 3, Theorem 6.7 gives

(1) (2)

3p(2) 1 _21()1? (@) Tp (1
M= pr" Sy 3p* + 7, 2T S_ —2pT,
T( )S 1 _2pT( )S 1 3p2

(3) The intersection matrix for n = 4 can be written:

_4p3 3p2T(1) 2’pr(2) T(3)

P
2T(3)Sp—l 4p 2pT(1)T(3)S 1 3p4T(1)+T(2)T(3)Sp_ Tp(z)
2pT(2)S 3p4T(3)S +T(1)T(2)S 1 4p 2pT(1)T(3)S 1 3 2T(1)
T(I)Spl —2pT(2)S 1 3 2T(3)S— _4p3

6.9. Proof of Theorem 4.18(1). Let € Ak as in the statement of Theorem 4.18(1).
Consider the (7?)K p-isotypic direct factor of the #(K?, (y)-equivariant sequence
(6.5.1):

J»Crr n— oL —
ea HY(Sho, Qo)rr =25 HEZ" "V (Shi 1, Qe(n — 1))

@ HS(Shou, Qp)rr. (6.9.1)
j=1

In particular, when i = j = 1, vy 0 JL; is given by multiplication by —np"~!. So
the w”-isotypic component of (6.9.1) is nonzero. This implies that 7 ” appears in
H 2n— 1)(Shl a—1, Q¢(n — 1)), i.e., there exist admissible irreducible representations
np of G1,,-1(Q)) and 7 of Gy ,—1(R), which is cohomological in degree n — 1,
such that 77 ® 7, ® 7}, is a cuspidal automorphic representation 7’ ® 75, of
G1.,-1(Ag). By Lemma4.17, 7’ >~ & satisfies Hypothesis 2.5(2) for a, = (1, n —1).
Thus, taking the 7 ”-isotypic component of (6.9.1) is the same as taking its 7-
isotypic component. From now on, we use subscript 7 in places of subscript 7 ?.

If aél) denotes the eigenvalues of T( ? on npK " for each 1 <i <n, then T(l) acts
as the scalar a ) on all the terms in (6 9.1). Therefore, v; o JL, is given by the
matrix M, Wthh is obtained by replacing T(l) by a(l) in each entry of M. By
definition, the oz, ; are the roots of the Hecke polynomlal (2.6.2):

n
X" + Z(_l)ipi(ifl)aéi)xnfi.
i=1
Then Theorem 4.18(1) follows easily from the following.
Lemma 6.10. We have
n02=1) [1; - @y i = Uy j)?
n—1

(l_[?zl a”p’i)
Here, + means that the formula holds up to sign. In particular, v; o JL; is an
isomorphism if the oy, ; are distinct.

det(M;) = :I:p
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Proof. Put Bi =, ;/p" ' for 1 <i <n. Fori=1,...,n, lets; be the i-th
elementary symmetric polynomial in By, ..., B,. Then we have a. = p'®*~Ds;. Tt
follows from Theorem 6.7 that the (i, j)-entry of M, with 1 <i < j <n is given by

min{i—1,n—j}
mijr)=s," > (=" mti—j—26)
=0

 pli=j =280 =8)+(j=i+8) (n-+i= j=0)+5(1-9)

Sj—i+8Sn—6-
A direct computation shows that the exponent index on p in each term above is
independent of 8, and is equal to e(Z, j) :=(n+1)(i+j—1)— (i%>+ j?). The same
holds when i > j. In summary, we get m; ;(7w) = sn_lpe("’j)mg’j(n) with

" ‘(n):{ A e e e L L
" T )y =i = 2854 jimss i >

For any n-permutation o, we have

n

2
-1
S et oy =" =0
, 3
i=1
Thus we get det(M) = p”("z_l)/3sn_" det(m;’j (7r)). The rest of the computation is
purely combinatorial, which is the case ¢ = —1 of Theorem B.1 in Appendix B. [J

Remark 6.11. We point out that the determinant of the intersection matrix com-
puted by Theorem B.1 holds with an auxiliary variable g. A similar phenomenon
also appeared in the case of Hilbert modular varieties [Tian and Xiao 2014], where
the computation was related to the combinatorial model of periodic semimeanders.
These motivate us to ask, out of curiosity, whether there might be some quantum
version of the construction of cycles, or even Conjecture 2.12, possibly for the
geometric Langlands setup.

6.12. Proof of Theorem 4.18(2). Given Theorem 4.18(1), it suffices to prove that
ndim HY(Shg ., Q¢)x > dim H3" "V (Shy,_1, Q(n — 1), (6.12.1)

Actually, by (2.4.1) and (2.6.3), we have

H2(Sho 1, Qp)r =X @ R(0.0).0(77), Hezt(n_l)(ﬁll,nfl’@E)n =78 @R n—1).0(7).

Write 77, = 7, 0 ® 7y as a representation of G(Q,) >~ Q} x GL,(Ey). Let x5, :
Gal(F,/F,2) — Q, denote the character sending Frob > to 7 o( p?), and let P,
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be as in (2.6.1). According to (2.6.3), up to semisimplification, we have

[R0.n).¢(0)] = #ker (@, Go »)mo.n () (6.12.2)
[A" Py ® x|, ® Qe (30 = D))],
[Riin—1).e(m)] = #Kker! (@Q, Grn—1)mon(m) (6.12.3)

[0, @ A" o, ® 2|y © Qe (30— D (0 —2)) .
Note that

(n—l)z(n—2) ))ﬁ“

. _ — nn—1)
= Z dlm(pnp A" 1,0np )Frobpz P §’
¢

dim(,o,,p ® /\"_1107,p ® X,,_]jo ® @e<

where the superscript “fin” means taking the subspace on which Gal([_F,7 /F,2) acts
through a finite quotient, and ¢ runs through all roots of unity. If a, ; /o, ; is not
a root of unity for any pair i # j, the right hand side above is equal to the sum of the
multiplicities of ]_[l'-’:l U, i = p""=D¢ as eigenvalues of (o, ® A"_lpnp)(Frobpz),
which is n. Therefore, under these conditions on the O, iy WE have by (6.12.3)

dim R1 ,—1).0 (7)™ < n-#ker' (Q, Gy 1) -my u_1 (),

and the equality holds if Frob 2 is semisimple on R —1),¢(7). On the other hand,
we have from (6.12.2)

dim R ny.¢(7) = #ker' (@, Go,,) - mo, (7).

By a result of White [2012, Theorem E], the multiplicity m,,_ (;r) above is equal to 1
fora,=(1,n—1) and a, = (0, n). Now the inequality (6.12.1) follows immediately
from this and the fact that #ker! (Q, Gino1) = #ker' (Q, Go,n). This finishes the
proof of Theorem 4.18(2). O

7. Construction of cycles in the case of G(U (r, s) x U(s, r))

We keep the notation of Section 3.6. In this section, we will give the construction
of certain cycles on Shimura varieties for G (U (r, s) x U (s, r)). We always assume
that s > r.

7.1. Description of the cycles in terms of Dieudonné modules. Let § be a nonneg-
ative integer with § < r. We consider the case of Conjecture 2.12 when n =r + s,
ay=r, ap=s, by =r—34, and b, =s+46. The representation r,, of GL, involved is

ra, =N Std® A° Std.
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The weight A of Conjecture 2.12 is

A=2,...,2,1,...,1,0,...,0).
N, e’ m— o,

-

r—34 s—r+28 r—=4

By elementary calculation of representations of GL,,, the multiplicity of A in r,,
is my (a,) = (S_r;“z‘s). Then Conjecture 2.12 thus predicts the existence of (s_r ;25)

cycles Y; on Sh, s, each of dimension
3(dim Sy s + dim Sh,_s 545) = 3 (2rs +2(r — 8)(s + 8)) = 2rs — (s —r)§ — 67,

and each admits a rational map to Sh,_s ;1s. The principal goal of this section is to
construct these cycles, at least conjecturally. We start with the description in terms
of the Dieudonné modules at closed points.

Consider the interval [r — §, s + 48]; it contains s — r 4+ 2§ unit segments with
integer endpoints. We will parametrize the cycles on the Shimura variety by the
subsets of these s —r 42§ unit segments of cardinality §. There are exactly (“'_r ;25)
such subsets. Let j be one of them. Then we can write the union of all the segments
in j as

L1, j1.21U 20, j2.21U - Ulje 1, Je2l (7.1.1)

such that all j, ; are integers,
r=0=<ji1<h2<j21<j22<-<je1<Jj2 =<5+,

and we have ZZZI (Jo.2 — Ja.1) = 6. For notational convenience, we put jo; =
Jo2=0. )

We define Z; to be the subset of [,-points z of Sh,; such that the reduced
Dieudonné modules f?(AZ)‘l’ and f?(AZ)E contain submodules &; and & satisfying
(3.2.1) form =€, i.c.,

PDA); &, FE)CEy, and V(E)C&y, fori=1,2,
and the following condition for i =1, 2:

f)(AZ)l?/g’i ~ (W(u_:p)/pé)@jl.i ® (W(u':p)/pe—l)@(jz,i—jl.i) D---
P (W([_Fp)/p)@(je,i_je—l,i)_ (7.1.2)

We refer to the toy model discussed in Example 7.3 for the motivation of this
condition. For technical reasons, we will not prove the set Z; is the set of [_Fp—points
of a closed subscheme of Sh, y; instead we prove that a closely related subset of Z;
is. See Remark 7.5.

Applying Proposition 3.2 with m = §, the submodules &; and &, give rise to a

polarized abelian variety (Ag, )JZ) over z with an Op-action and an Op-equivariant
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isogeny A. — A.. Moreover, by (3.2.2), we have

e—1
dimafy, o =dimog, o+ (€ =) art 1 = o) = (€ =) (ar12~ ja2))
s a=0
and similarly dim wjl;v JE, 2= s+38. So A’ satisfies the moduli problem for Sh, _s s 5;
this suggests a geometric relationship between Z; and Sh,_s ;15 that we make
precise in Definition 7.4.

We make an immediate remark that when § = r, the abelian variety .4, coming
from a point z of Z; is isogenous to an abelian variety A’ that is a moduli object for
the Shimura variety Shy ,. Thus both A’ and A; are supersingular. So every Z; is
contained in the supersingular locus of Sh; ;. In fact, we shall show in Theorem 7.8
that the supersingular locus of Sh, ; is exactly the union of these Z;.

7.2. Towards a moduli interpretation. We need to reinterpret in a more geometric

manner the Dieudonné-theoretic condition defining Z;. Fora =0, ..., €, we define
submodules

~ ~ . 1 = ~ ~ . 1 =

a1 :=D(A)IN pe—_aé’l and &y :=D(A)N——&

of f)(.AZ)‘l’ and @(Az)g. They are easily seen to satisfy condition (3.2.1) with m = «.
Thus, Proposition 3.2 generates a polarized abelian variety (A, A,) With Op-action
and an Op-equivariant isogeny A, — A;, where

o

Fo i= dima)zv/[ﬁ =T > (Jaw2— Jjor1) and
al " p» /

o'=l1 (7.2.1)

J— — 1 o
AYE 2 = n—dimao

Sq ;= dimw AV 1

by the formula (3.2.2). In particular ro =r, so =5, re =r — 6 and sc = s + 6.
In fact, applying Proposition 3.2 (with m = 1) to the sequence of inclusions

E=EiC&1iC--C&,;i=D(A)S,
we obtain a sequence of isogenies (each with p-torsion kernels):
A=A A =L B A0 = A, (7.2.2)

We have ker ¢, C Ay[p], so that there exists a unique isogeny ¥ : Ay—1 —> Aqy
such that Yoy = p -ida, and ¢u ¥y = p-idy,_,.
For each «, the cokernel of the induced map on cohomology

Gaeit HIN (A [F))? — HR(Ago1/F)?
(resp. Yuxi - HIR(Ag—1/F,)? — HR (A, /F))?)
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is canonically isomorphic to g’a_L ; /g’a,l- (resp. Ea, i/ péa_l,i), which has dimension
Ja.i (T€sp. n — jq i) over [_Fp by a straightforward computation using (7.1.2).

The upshot is that all these numeric information of the chain of isogenies (7.2.2)
can be used to reconstruct & inside @(Az)l‘.’. This idea will be made precise after
this important example.

Example 7.3. We give a good toy model for the isogenies of Dieudonné modules.
This is the inspiration of the construction of this section. We start with the Dieudonné
module D(A.); = Bi_, W(Fy)e; and D(A); = @j_; W(F,) f;. The maps V; :
D(Ae)] — D(Ae)j and V, : D(A); — D(Ae)], with respect to the given bases,
are given by the diagonal matrices

Diag(1,...,1,p,...,p) and Diag(l,...,1,p,..., p),
N e e — N e e —’
s+4 r—3§ r—3é s+6

respectively. Using the isogenies ¢, we may naturally identify f?(Aa);? as lattices
in ﬁ(Ae);?[l / p] with induced Frobenius and Verschiebung morphisms. For our toy
model, we choose

~ o 1 1
D(Aa)l = SpanW(ﬂEp){pe—(xel""’ pe—a ejot+l,l’ pe_a—] ejot+1.l+1""’ pg—a—] ejot+2,l’
;e' 1,...,18' ,@; 1yeee9€pnfs
pg—a—z Ja+2,11 P Je12Cje1+
~ 1 1 1 1
o — —
D(Ae); = SpanW([Fp){pe—afl""’ pe—afjaﬂ,z’ pe—a—lfja+1.2+1"“’ pe—a—lfja+2.2’

1 1
pE—Ol—Z‘f‘jolJrZ,Z‘f’l’ e ;‘f‘J‘e.Z"f‘je,Z‘i’l’ R j;l }

In particular, the Verschiebung V; : f)(AO,)‘l’ — fD(Aa)S with respect to the bases
above is given by

Diag(1,...,1,%%*---x%%x, p,..., p),
——— ~—
Jat1.1 r—3
where the * % * part is p if the place is in [jy.1 + 1, jor.2] for some &’ > &, and is 1

otherwise. Similarly, the Verschiebung V, : @(AO)S — fD(AO)‘f with respect to the
bases above is given by

Diag(1,...,1, p, ..., p,ksxk---k%k, p,..., p),
S—— e —— ———
r—=38 Jat1,1—1+38 n_jasyz

where the s  part is 1 if the place is in [j,.1 + 1, ju.2] for some o’ > «, and is p
otherwise.
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So the sheaf of differentials is given by

° — Span- 1 1 | |
a)AZ/ﬂ?p,l - pan[Fp pG—Otel"“’ pe—(xerf‘s’ pe—aeJa.l+1""’ pe—ot e]oz,z’
1
pefafleja+l,l+1""’;eje—l,z’e./é,l"l‘l’""ejé.z};
1 1 1
o — — — .
a)AZ/E,Z_Span[F { =S pe afja+11’ pe—a— lfja+1 2+1"“’p€70{71fja+2.1’

1 1
pea—? Jiwranroos ;fje.]’f/5.2+1~--’fs+6—1}-

Definition 7.4. Let j be as above. Define the numbers j,; as in (7.1.1) and the
numbers r,, s, as in (7.2.1). Let Y; be the functor taking a locally noetherian

[ ,2-scheme S to the set of isomorphism classes of tuples

(A07"'9A€’)\'0,'-~’)\'€7n07"'9n€’¢17"'9¢€’w15“"w€) (741)
such that:

(1) for each &, (Ay, Ay, 1) is an S-point of Sh,,  ;

(2) for each «, ¢, is an Op-isogeny A, — Ay—1, With kernel contained in A,[p],
which is compatible with the polarizations in the sense that pAy =@, 0Ay—10@q
and with the tame level structures in the sense that ¢, 0 1y = ng—1;

(3) ¥4 is the isogeny Ay,—1 — Aq such that ¢, = p-ida, and Yy ¢y = p-ida

a—1 ;
(4) the cokernel of the induced map ¢S%, ; : HR (A /S); — HR(Ay—1/9)7 is a

locally free Og-module of rank j, ; for eachaoandi=1,2;

(5) the cokernel of the induced map 1//3’11’[. : HldR(AO,_l/S)l? — HldR(Aa/S);? is a
locally free Og-module of rank n — j, ; foreach o andi =1, 2;18

(6) for each a, Ker(q&dR ) 1s contained in w3 /¢ 5

(7) for each «, the (ry—1 —ry + re + 1)-st Fitting ideal of the cokernel of ¢ :

o,x,1 °

oy Ay /s o) Ay / S | 1s zero, or equivalently, Zariski locally on S, if we rep-
resent the map q}a w1 a)Av/S e a) by an ry_1 X re-matrix (after

choosing local bases) then all (r, — re 1) x (rq — re + 1)-minors vanish.

(8) the (ry, —re 4+ 1)-st Fitting ideal of the cokernel of wd ol a)Av Sl — a)Av/S |
is zero for each «.

Note that conditions (6)—(8) are all closed conditions. So the moduli problem
Y; is represented by a proper scheme Y; of finite type over [F,.. The moduli
space Y; admits natural maps to Sh, ; and Sh, 5 s by sending the tuple (7.4.1) to

I8This is in fact a corollary of (2) and (4).
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(Ao, Ao, no) and (A, Ae, ne), respectively.

lprj/ YJ pr/j
Shr,s Shr—S,s—M
We also point out that conditions (2) and (3) together imply that, for each o and
i =1, 2, we have Im(i/de ) = Ker(qb ) and Im(¢dR )= Ker(lﬁdR ). We shall

ok, 1 ok, 1 ok, 1

freely use this property later.

o, %,1

Remark 7.5. Conditions (6)—(8) in Definition 7.4 are satisfied by the toy model in
Example 7.3. They did not appear in moduli problem in Section 4.2 because they
trivially hold in that case. The purpose of keeping these conditions in the moduli
problem and carefully formulating them is so that the moduli space may hope to have
the correct irreducible components. We think the picture is the following: Z; is prob-
ably or at least heuristically the set of F p-points of a closed subscheme of Sh, ;. But
this scheme has many irreducible components, which may have overlaps with other
Zjr. Conditions (6)—(8) will help select one irreducible component that is “special”
for j. When taking the union of all images of the Y;, we should still get the union of
the Z;. This is verified in the case of supersingular locus (i.e., r = §) in Theorem 7.8.

Notation 7.6. Let Y; as above. It will be convenient to introduce some dummy
notation:

e ¢ is the identity map on Ao;
o ¢ is the identity map on Ae.

We use Yjo to denote the open subscheme of Y; representing the functor that takes a
locally noetherian [ ,2-scheme S to the subset of isomorphism classes of tuples

(AO7"'1A€7)"0’"'7)"677709~"’n€7¢19"'7¢€7w17""1//€)
of ¥;(S) such that

(i) for each ¢ = 1, ..., €, the sum ¢y 2(a)AV/S ) + Ker(¢ ’2) is an Og-
subbundle of HdR(Aa 1/S5)3 of rank

rank wpy/s,2 — rank Ker(qﬁa +.2) T rank Ker(qﬁglily*’z) =S¢ — Ja.2 F Ju—1.2:
(i) foreacha =1, ..., ¢, Ker(qbdR* D +Ker(1ﬁa+1 . 1) is an Og-subbundle of rank

rank Ker(¢g%, ;) +rank Ker(gh . 1) = jo1 + (1 = jus1.1),

(iii) for each «, the cokernel of (j)a . 1 Oy Ay /s 2y S is a locally free
Og-module of rank ro,_1 — (re — re),
(iv) for each «, the cokernel of wa el a)jx;il 51 a)j‘g /51 is a locally free

Og-module of rank r, — re.
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We note that the ranks in conditions (i) and (ii) are maximal possible and the ranks in
conditions (iii) and (iv) are minimal possible, under the conditions in Definition 7.4.
So Y7 is an open subscheme of Y;.

We point out an additional benefit of having conditions (ii)—(iv). By (iii),
a)Av/S | ﬂKer(gb 1) is an Og-subbundle of a)Av/S yofrank r., fora =1, ..., €;
by (iv), a)AV/S | n Ker(wwrl . 1) is an Og-subbundle of a)AV/S , of rank ro — e, for
a=0,...,e—1. Comblnlng these two rank estimates and condition (ii) which
implies that Ker(¢a +1) and Ker(y R ar1.41) are disjoint subbundles, we arrive at a
direct sum decomp051t10n

a)Z&//S,] == (C()Z\//S 1 ﬂ Ker(¢2R* 1)) @ ((I)OAV/S 1 ﬂ Ker(lﬁgil’*’l)), (761)

fora=1,. — 1; and we know that a)Av/S N Ker(lp1 .. ) hasrank ro —re =46
and a)Av/S | € Ker(qbfli -

We shall show below in Theorem 7.7 that Yj° is smooth. Unfortunately, we do not
know how to prove the nonemptiness of Yj°, nor do we know if some Y; is completely
contained in some other Y;; but the fact that the Dieudonné modules in Example 7.3
satisfy conditions (i)—(iv) above is good evidence for this nonemptiness. Of course,
if one can compute the intersection matrix in the sense of Theorem 6.7 and calculate
the determinant, one can then probably show that these Y; are essentially different.
But the difficulties of this computation lie in understanding the singularities at
Yi\ Yj°, which seems to be very combinatorially involved.

Theorem 7.7. Each Y.° is smooth of dimension rs + (r — 8)(s 4+ 8) (if not empty).

Proof Let R be a noetherian F,2-algebra and I C R an ideal such that /2 = 0. Put
R=R / I. Say we want to lift an R-point

(AOa"'aAEa)"Ov---a)"eanOa---’névqb]a---’d)eawl’"'9‘#6)

of YJ." an ﬁ—point and we try to compute the corresponding tangent space. By Serre—
Tate and Grothendieck—Messing deformation theory we recalled in Theorem 3.4,
it is enough to lift, for i = 1,2 and each @ =0, .. ., €, the differentials S ay /R S
H®(Ay/R)? to a subbundle &q; € HI™ (A, /R)° such that

(@) ¢ (Bg.i) C Dg_1 i and s (@Dy—1,i) € @g,; (so that both ¢, and Y, are

ok, 1 o, k,1

lifted, which would automatically imply Ker(¢y) € Ax[p]),
(b) &q,2 2 Ker(g] cris o), and

(c) the R-modules Da—1,1/PS cris l(a)a 1) and @&y 1/
rank ro 1 — (Fq — re) and ro, re, respectively.

cris

oS [(@g—1,1) are flat and of

We shall see that condition (i) of Notation 7.6 is automatic. Also, condition
(ii) already holds: since chris(Aa /R)}/ (Ker(¢cis ) + Ker( ;ﬂifl’ «1)) is locally

o, %, 1
generated by jo4+1.1 — je.1 €lements after modulo I it is so prior to modulo /
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by Nakayama’s lemma. Note that rank of Ker( ;“;1) and Ker( grfl,*,l) and the
number of the generators of the quotient above add up to exactly n; it follows
that Ker(q&gfi:’l) + Ker( gff],*,]) is a direct sum and the sum is a subbundle of
H{™(Aq/R)S.

We separate the discussion of lifts at g; and ¢, and show that the tangent space
Tyjo is isomorphic to 71 @ T» for the contributions 77 and 75 from the two places. .We
first look at g5, as it is easier. Note that condition (b) @y 2 2 Ker(d)‘f{fl:l) = Im(g[/;ff’z)

automatically implies that w;ri:z(d)a_l,z) C @y.2; SO we can proceed as follows:

Step 0: First lift o5, JratOa subbundle &, » of H fris(A6 / Ié)g so that it contains
Ker( cris

€,%,27°

Step 1: then lift w5, Jrp t0@ subbundle @¢_;, of HfriS(Ae_l/Ié)g so that it
e—1 ’

contains ¢£7, (@e,2) + Ker(¢¢™ | ),

Step(s) a: then lift . Jrotoa subbundle @¢_q 2 of HfriS(Ae_a / ﬁ); so that it

contains ¢gr,lsa+1,*,2(é)e—a+l,2) + Ker((p:r,lsa’*’z),

Step e: finally lift ©%, /R 02 subbundle @y, of Hfris(Ao / Ié)g so that it contains
cris ¢/ o
1’*,2(0)1,2)-

At Step 0, the choices form a torsor for the group
Homg (w4 o/ Ker(@X 5), Lieh z») ®x I;

the Hom space is a locally free R-module of rank (s¢ — je 2)7e.

AtStepa =1, ..., €, we observe that condition (i) of the moduli problem XJ‘? im-
plies fe—ot142(@}y ) +Ker(¢d®,, , ,) is an R-subbundle of H{R(Ac_o/R)3
of rank

se—a-i—l_je—a+l,2+je—a,2=Se—a+(je—a+l,l_je—a,Z) if a=1,...,e—1, (7.7.1)

and of rank s1 — _jl,z if =e. So ¢§r_isa+1’*’2(c2)€_a+1,2) + Ker( gr_‘sa*z) is an R-
subbundle of H{™(Ac_y/R)5 of the same rank. The choices of the lifts &¢_q >
form a torsor for the group

A

Homp (a)j;z/_a/R,z/(¢e—a+l,*,2(w227a+l/R’z) + KCI'(¢SE%*’2)), Lieerfa/R,Z) ®r 1.

By (7.7.1), this Hom space is a locally free R-module of rank (je_g+1,1— Je—a.2)Te—a
ifao=1,...,e —1 and of rank (so — (s1 — ji1,2))ro if « = €. This implies that
the contribution 7, to the tangent space Tyjo at ¢o admits a filtration such that the
subquotients are

dR :
Hom(w;\:_a,2/(¢efa+1,*,2(0)f4€via+l,2) + Ker((be_a,*,z))’ Llei\e_mz)
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where the A._, are the universal abelian varieties and ¢¢1 «, 2(0) 2) is inter-
preted as zero. In particular, 7> is a locally free sheaf on Y > of rank

e—1
(e — je)Te + (50— (51 = 1200+ D _(emart1,l — Jema2)Te—a
a=1
e—1
= (se = je)Te+ j1170+ ) Uat1,1 = Ju)ra- (17.2)
a=1
We now look at the place g;. By condition (ii), le when restricted to
Ker( ;isl .. |) is a saturated injection of R-bundles; and C“S +1 When restricted
to Ker(qbcm ,.1) 1s also a saturated injection of R-bundles. We ﬁrst recall from the
discussion 1 1n Notation 7.6 especially (7.6.1) that, whena =1, ..., — 1, a)jlv/R |

is the direct sum of

o JKer¢ | oKeryy . o dR
WAv/R1 = PAv/R. NKer(¢gs ;) and yvyr1 = Qayra VKer(Weyy 41

which are locally free R-modules of rank r. and r,, — r¢, respectively. Similarly, put

o Ker¢g o,Kery | o,Ker ¢ dR .
Wpv/R1 = wAV/R 15 @qvyR1 = =0, and wAV/R 1= wAV/R | NKer(Yr 1);
they have ranks r¢, 0, and ro — re, respectively. We shall avoid talking about @ A&(/e}rﬁ

(as it does not make sense) but only psychologically understand it as the process
that enlarges Kerd (o0 °

Av /R.1 AY /R,
Fora=1,...,¢€,the hft @1 takes the form of a)Km5 Do AKerw , where the two
dlrect summands are R-subbundles of Ker(¢; cris e1) and of Ker( ;rjrsl «1)» lifting

oy Av R ¢ and w A§/ R’//l, respectively. Whereas, the lift @o,1 contains the lift @y

2‘3(;’;‘”1 as an R-subbundle of Ker(glfcml) Now the compatibility conditions
0

1(@a,1) € Dg—1,1 and
equwalent to

Ker ¢

of w

cris cris

l(wa 1.1) € @q,1 together with the condition (c) are

cris AKCI‘I// AKerw cris AKer(j) AKer¢>
¢a,*1( )C —1,1 and wa,*l( o— 11)C o,

(The condition (c) on ranks of the quotients are also automatic.) In particular,
the tangent space 77 has three contributions, coming from the lifts wKer(b (for
a=1,...,¢€), from the lifts wKer'/' (for a=0,. e) and from lifting w9 AY/R.1
to an R subbundle @o,1 of H Crls(Ao / R)° contalnlng “’0 | 'V We shall use TKer‘/’
7Y, and T°"* to denote these three parts of the tangent space; and they will

sit in an exact sequence

0— T 5> 1> 1 o 1 - 0. (7.7.3)
We first determine the lifts c?)Kerd’ fora=1,...,e. For cf)i(elr‘p it lifts w A&féﬁ as

an R-subbundle of H CrlS(Al/ R)° of rank r, (w1th no further constraint). Then due
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to the rank constraint (and the injectivity of 1//““ , When restricted to Ker(¢<s, 1)),

a+1,%,1
the lift @ a) 1 ¢ for each o = 2, ..., € is then forced to be equal to the image
YIS oo U @),

So it suffices to consider the choices of the lift c?)ﬁrd’ which form a torsor for the

group

0.K 0,K r
HomR(wAlv/e;iﬁl, Ker(d)l *, 1)/‘0A,V/elr€?>1) ®r 1.

This Hom space is a locally free R-module of rank
re(J1,1 —7e). (7.7.4)
It follows that the tangent space T1K6r¢ is simply just

Hom(a)o Ker¢ Ker(qﬁﬁﬂi 1)/ o Kerq)

We now determine the lifts c?)Ke”’” fora =0, ..., € following the steps below:

Step 0: We start with putting a)Ke”/’ =

o,Ker ¢
Y o/R1

0 because wzf/elgj”] is,

Step(s) a: hfta)
AKerw

¢grla+l( e—a+l1, 1)’

Step €: finally lift @
crm A Ker ¥
w1(@17 7).

to a subbundle c?)fff“ of Ker(x/fgiifx +1.5.1) S0 thatit contains

o,Kery

AV /R A to a subbundle @ @q | Kery of Ker(y ) so that it contains
0

1,%,1

At Step a=1,..., €, the choices of the lifts (I)?iwl form a torsor for the group

o,Ker ¢

s ,Ker
HomR(a)A;La/R 1/¢€ a+1,%, l(a)o

o,Kery 7
/R, DsKer(WE ) /e A[a/R,l) ®r 1.

This Hom space is a locally free R-module of rank
((refa —re) = (Fe—a+1 — 1’5))((7’1 — Je—a+1,1) — (Fe—a — re))-

This implies that the tangent space TlKerw admits a filtration such that the subquo-
tients are

Hom (055" [deri-ama @5 ) Ker@Wl . /@5 Y).

In particular, TlKerw is a locally free sheaf on Yj° of rank

Z((re—oc —re) — (Fe—o+1 — re))((n — Je—at+1,1) — (Fe—a — re))
a=1
e—1

:Zo(ro{ _ra—i-l)(sa _jOH-l,l —J’_re)- (775)
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° . ~ Ker ¢
AY/RA and contains @, ~ we

obtained earlier. The lift is subject to one condition: &g ; € (wlcrifl)_l (é)ﬁrdb). So

Finally, we discuss the R-module @o,1 that lifts @

the choices of the lift form a torsor for the group
o o,Ker ¢ dR \—1 o,Ker ¢ o 2
HomR(wAg/R,l/wAg/R,p (W11 (wAlV/R,l)/“’Ag/R,l) ®r 1.

This implies that
Ker¢,0 o o,Ker ¢ dR \—1 o,Ker ¢ o
T, :Hom(wAgJ/wf%1 )T (@ )/wAg,l)’
which is locally free of rank

(ro—(ro—re)) ((re +n — ji,1) —ro) =re(so+re — j1,1). (7.1.6)

To sum up, the tangent space Tyjo, as the direct sum 7 & T with T sitting in the
exact sequence (7.7.3), is a locally free sheaf of rank given by (7.7.6) + (7.7.4) +
(7.7.5) 4+ (7.7.2), that is,

e—1

re(so+re — ji) FreGia —r) + Y (e = Fag1) (S — jat1.1 +7e)
a=0
e—1

+ (se = je)re + j11r0+ Y (art 1.1 — ja2)ra

a=1
e—1 €
=reso+ ) Fa(Se = jar11 +7e) = D Fa(Sa—1 = ju1 +re)
a=0 a=1
e—1
+ (Se — je)Te + jraro+ Y (a1, = Jju2)ra
a=l

=reso+ro(so — j1,1 +7e) +re(Se—1 — je,1 +7e) + (Se — je2)Te + 1,170
e—1
+ D ra((a = Jat1.1+7) = Samt = o1 +7) + (a1 — ju2)-
a=1
One easily checks that the first line adds up to r.se + rgsg, and the second line
cancels to zero. This concludes the proof. (I

In the special case of § = r, each abelian variety A, appearing in the moduli
problem of Y; is isogenous to A, which is a certain abelian variety parameterized
by the discrete Shimura variety Shy , and is hence supersingular (by Remark 3.7).
So in particular, the image pr;(Y;) in this case is contained in the supersingular
locus of Sh, . In fact, the converse is also true.

Theorem 7.8. Assume 6 = r. The supersingular locus of Sh, s is the union of all
pr;j(¥j).
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Proof. We say a finite torsion W([_Fp)—module has divisible sequence (a1, ay, . . ., ac)
with nonnegative integers a; < - - - < g if it is isomorphic to

(W(E,)/p)® @ (W(EF,)/p @ e... @ (W(E,)/p)® .

The following is an elementary linear algebra fact, whose proof we omit.

Claim: If M; € M, are two torsion W([_Fp)—modules with divisible sequences
(aii,...,ae;) fori =1, 2 respectively, then aq 1 <ay» foralla =1,... €.

The proof of the theorem is similar to the proof of Proposition 4.14(3), which is
a special case of this theorem. It suffices to look at the closed points of Sh; ;. Let
z=(A;, A, n) € Shr,s([_Fp) be a supersingular point. Consider

Lo = (D(ASI1/p) T =P = {a e D(A)S[1/p] | F*(a) = pa).

Since x is supersingular, Lg is a Q ,2-vector space of dimension n, and f)(AZ)‘l’[l /p]
may be identified with the extension of scalars of Lg from Q. to W(I]_:p)[l /p]. Put

£l = LaNDA) ®z, W(F,) and & = F(E) = V() S D(A)S.
Then we have
f)(AZ)?/g‘l ~ (W(ﬂ_:p)/pf)@jl.i ® (W(u_:p)/pe—l)@(jz,i—jl.i) D -
) (W(['—:p)/p)@(je.i_je—l,i)’ (7.8.1)
for nondecreasing sequences 0 < jj; < jo; <--- < je; <n withi =1, 2; in other
words, @(Az)f /& has divisible sequence (ji,i, - - ., je.i). Without loss of generality,

we assume that jj | and j;» are not both zero. The essential part of the proof
consists of checking the sequence of inequalities

O<jiit<ji2<jpp1<j2<-<jel < Je2 =n. (7.8.2)

We first prove (7.8.2) with all strict inequalities replaced by nonstrict ones.
Indeed, the obvious inclusion F (f)(AZ)f) - @(Az)g_i implies that

F(D(A)$/&1) = F(D(A)9) /& S D(A)5/E, and
F(D(A,)5/&) = F(D(A,)3)/p&1 € D(A,)}/ péi.

By (7.8.1), the first inclusion embeds a torsion W(F,,)-module with divisible
sequence (ji.1,..., je,1) into a torsion W([_Fp)-module with divisible sequence
(J1.25 - -+ Je2). The Claim above implies that j, 1 < jy2 foralla =1,..., €.
Similarly, by (7.8.1), the second inclusion embeds a torsion W([l_:p)—module with
divisible sequence (jj 2, ..., je,2) into a torsion W([_Fp)—module with divisible se-
quence (ji1,.-., je1,n). The Claim above implies that j,» < j,+1,1 for all
a=1,...,e—1,and je» <n.
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We now use the construction of Lg to show the strict inequalities in (7.8.2).
Suppose first that j, | = ju2 for some o =1, ..., €. Then it follows that the maps

—a - o 1"’0 oo €— o 1~o oo
F, Vi (pf D(Az)lﬂ??l)—i-é’l — (p D(AZ)2ﬂ;€2>+€2 (7.8.3)

are both isomorphisms (due to an easy length computation as 55 =F (Ef) = V(g'f)).
By the definition of Lg and g’f , we must have

(repeaninir)+&) " clondu e,

But this is absurd because the isomorphisms (7.8.3) implies by Hilbert’s Theorem
90 that the left hand side above generates the source of (7.8.3), which is clearly not
contained in &7.

Similarly, suppose that jy2 = jo+1,1 for some o« = 1,...,e — 1. Then the
following morphisms are isomorphisms

F, v (peD(AsN %é;) FE s (pUDA)SNED) 4+ pES. (7.8.4)

since péf =F (5'5 )= V(g'é3 ) and for length reasons. By the definition of Lg and E’f ,

)F_1:V_

~ ~ ~ ! T Iy
((pé_a'D(.Az)? N Ef) + pgi’ Clgn pD(Az)(f - ]75;3-

(Note that € — o > 1 now.) But this is absurd because the isomorphisms (7.8.4)
imply by Hilbert’s Theorem 90 that the left hand side above generates the target
of (7.8.4), which is clearly not contained in pg’f.

Summing up, we have proved the strict inequalities (7.8.2). So the j,; define
a j as in the beginning of Section 7.1. We now construct a point of ¥; which maps
to the point z € Sh,. ;. Put

1

- - . 1 = ~ - . ~
Soz,l = D(AZ)I N Fgl and ga,Z = D('AZ)Z N pé_—agz' (785)

Using the exact construction in Section 7.2, we get the sequence of isogenies of
abelian varieties
®e De—1 1

Ac Ay A0=~Az»
1116 1//e—l lbl

such that A, together with the induced polarization A, and the tame level structure

Ne gives an [_Fp—point of Sh,, s, and @(Aa);? = g’a,,- forall and i =1, 2.
Conditions (2)—(5) of Definition 7.4 easily follow from the description of the

quotients f)(Az)? /& in (7.8.1). Condition (6) of Definition 7.4 is equivalent to

PD(Aa_1)5 S V(D(AL))).
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By the construction of these Dieudonné modules in (7.8.5), this is equivalent to
p(Deadsn 52) c V(DN 51>

But this follows from pi)(A )3 € VD(A,)S and & = vél. Condition (7) of
Definition 7.4 is equivalent to wjv ¢, 1 N Ker(¢a +.1) having dimension r¢, which
is zero in our case. Translating it into the language of Dieudonné modules, this is
equivalent to

VD(Aw)5 N pD(Ag—1); = pD(Ay)S.

By the construction of these Dieudonné module in (7.8.5), this is equivalent to

(VP3N VE) 1 (pDADT N — 1) = PP N

which follows from observing that VD(A, )52 pD(A, )] and V&, = p&,;. Condition
(8) of Definition 7.4 is equivalent to w$ Ay B, S Ker(w‘ﬂfk ) (note that re =0 in
our case). Translating it into the language of Dieudonné modules and using (7.8.5),
this is equivalent to

Vf?(Aa_l)g C f)(AO,)‘f, or equivalently,

VDA —L ———— V& S DA Lz,
2 P

which follows from observing that V@(Az)g C f)(AZ)‘f and V& = p&;. This
concludes the proof. (]

Conjecture 7.9. The varieties Y} together with the natural morphisms to Sh,_s s
and Sh, s satisfy condition (3) of Conjecture 2.12. Moreover, the union of the images
of Yj in Sh,  is the closure of the locus where the Newton polygon of the universal
abelian variety has slopes 0 and 1 each with multiplicity 2(r — §)n, and slope %
with multiplicity 2(n — 2r + 28)n.

This conjecture in the case of r = § = 1 was proved in Theorem 4.18.

Appendix A: An explicit formula in the local spherical Hecke algebra
for GL,

In this appendix, let F be a local field with ring of integers O, w € O be a
uniformizer, F = O/w O and ¢ = #F. Fix an integer n > 1. We consider the
spherical Hecke algebra #x = Z[K \ GL,(F)/K] with K = GL, (O). Here, the
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product of two double cosets u = KxK and v = KyK in #g is defined as
u-v:Zm(u,v; w)w, 12 (A.0.1)
w
where the sum runs through all the double cosets w = KzK contained in KxKyK,

and the coefficient m (u, v; w) € Z is determined as follows: If KxK =] [;.; x;K
and KyK = ]_[jej y; K, then

m(u, v; w) =#{(i, j) € I x J | x;y;K =zK for a fixed element z in w}. (A.0.2)
By the theory of elementary divisors, all double cosets Kx K are of the form
T(ai,...,a,) := KDiag(w®,...,w)K for aq; e Zwitha; >a,>---> a,.

They form a Z-basis of #g. We put

TV =71,...,1,0,...,0) for 0<r <n,
e — N——
r n—r
R") =T2,...,2,1,...,1,0,...,0) for0<r<s<n.
N—— e — — —  —
r S—r n—s

In particular, RO = T® and T© = [K].
Because of the lack of references, we include a proof of the following:

Proposition A.1. For 1 <r <n, let

(") = (@"=D(@"' =D (" = 1)
r/q (=D =D (g =D

be the Gaussian binomial coefficients, and put (g)q =1. ThenforO<r <s <n,

(A.1.1)

min{r,n—s} .
TOTE) — Z <s—r+2z> RU—is+D)
= i q .
1=

Proof. We fix a set of representatives F € O of F = O/w © which contains 0.
Then we have T) = [ [, g, XK, where S(n,r) is the set of n x n matrices
X = (X j)1<i, j<n such that

« r of the diagonal entries are zr and the remaining n — r ones are 1;

o ifi # j,thenx; ; =Ounlessi > j, x;; =1 and x; ; = @, in which case x; ;
can take any values in F.

19 we may also view elements of ¥ as Z-valued locally constant and compactly supported
functions on GL, (F) which are bi-invariant under K, and define the product of f, g € Hg as
(f*xg)x) = fGL,,(F) f(y)g(y_lx) dy, where dy means the unique bi-invariant Haar measure on

GL,, (F) with f x dy = L. For the equivalence between these two definitions, see [Gross 1998, p. 4].
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For instance, the set S(3, 2) consists of matrices:

1 00 @ 0 0 @ 00
x1 @ 0], o 1 0], 0 @ 0],
x31 0 @ 0 x30 @ 0 01

with x2,1, x3,1, x32 € F. We have a similar decomposition TG = ]_[yes(n’s) yK. We
write T T®) as a linear combination of T'(ay, . .., a,) witha; e Zand a; > - - - > ay,.
By looking at the diagonal entries of xy, we see easily that only R" =) with
0 <i < min{r, n — s} have nonzero coefficients, namely, we have
min{r,n—s}
TOTO = 3~ ", )R for some C(n, i) € Z.
i=0

By (A.0.1), C"*)(n, i) is the number of pairs (x, y) € S(n, r) x S(n, s) such that

xyK:Diag(wz,...,wz,w,...,w,};..,l)K.

r—i s—r+2i n—s—i

In this case, x and y must be of the form

wl,_[ 0 0 wl,_,- 0 0
x = 0 A 0 , y= 0 B O ,
0 0 Infsfi 0 0 Infsfi

where I denotes the k x k identity matrix, and A € S(s —r + 2i,i) and B €
S(s—r+2i,s —r+i) satisfy AB - GL;_,12;(O) = w I;_,42; GL;_,12; (O). By
(A.0.1), we see that C"%) (n, i) = C s+ (s —r 42i, i ). Therefore, one is reduced
to proving the following lemma, which is a special case of our proposition. U

Lemma A.2. Under the notation and hypothesis of Proposition A.1, assume more-
over that n = r + s. Then the coefficient of RO in the product T T is ('rl)q.

Proof. We induct on n > 1. The case n =1 is trivial. We assume thus n > 1, and
that the statement is true when n is replaced by n — 1. The case of r = 0 being
trivial, we may assume that » > 1. We say a pair (x,y) e S(n,r) x S(n,n —r) is
admissible if xyK = @ I, K. We have to show that the number of admissible pairs
is equal to (f)q Let (x, y) be an admissible pair. Denote by I (resp. by J) the
set integers 1 <i < n such that x; ; = @ (resp. y;; = @ ). Note that (x, y) being
admissible implies that J = {1, ..., n}\ L.

Assume first that x; ; = 1. Then x and y must be of the form x = (}k 2) and
y=(% g) where (A, B) e S(n—1,r) x S(n — 1, n — 1 —r) admissible. Note that
xyK =wI,K always hold. We have x; | =0 fori ¢ I, and x; ; can take any values
in [ for i € I. Therefore, the number of admissible pairs (x, y) with x;; =1 is
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equal to g*/ = ¢" times that of the admissible (A, B). The latter is equal to (":l)q
by the induction hypothesis.

Consider now the case x;,; = @. One can write x = (7 2), and y = (i g)
with (A, B) e S(n—1,r — 1) x S(n — 1, n —r) admissible. Put z = xy. Then an
easy computation shows that z; 1 = y;if j € J,and z;; =0 if j ¢ J. Hence,
xyK =w I, K forces that y; 1 =0 for all j > 1. Therefore, the number of admissible
(x, y) in this case is equal to that of the admissible (A, B), which is (;’: i)q by the
induction hypothesis. The lemma now follows immediately from the equality

ny _ ,(n—1 n—1
<r>q_q< r )q+(r_1>q. D
Appendix B: A determinant formula

In this appendix, we prove the following:

Theorem B.1. Let oy, ..., a, be n indeterminates. Fori =1, ..., n, let s; denote
the i-th elementary symmetric polynomial in the o, and s) = 1 by convention. Let
q be another indeterminate. We put g, =q" ' +q" 3+ ...+ ¢'~". Consider the
matrix My, (q) = (m; ;) given as follows:

min{i —1,n—j} ipe ..

) 25— ntvi—j—28Sj—i+sSn—s Y1 =],
m; j = min{j—1,n—i} cpe .
5=0 Gn+j—i—2858Sn+j—i+s Ui > J.

Then we have |
det(My(g) =1 -+ [ [ (40 — 2a).
- q
i#]
Proof. Let N,,(gq) be the resultant matrix of the polynomials f(x)= ]_[:7:1 (x+q ')
and g(x) = ]_[?Zl(x + ga;), that is, N,(q) is the 2n x 2n matrix given by

so g lst g2 o g s g7 0 -0
0 5o q*1s1 qZ*"sn_z qlf”sn_l q"s, - 0

Ny (q) = 0O O o - S0 q_lsl q_zsz e g7 sy
" so gs1 g*so o q"lsimi q"sa 0 -~ 0
0 so  gs1 -+ ¢" %2 ¢"Usust g"sw -0 0

0 0 0 - s qsi g2 - q"sy

It is well known that det(N, (g)) = Hi’j(—q_lai +qa;). Thus it suffices to show
that det(N, (¢)) = (g —¢~")" det(M,(q)).

We first make the following row operations on N,(g): subtract row i from row
n+iforalli =1,...,n. We obtain a matrix whose first column is all 0 except
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the first entry being 1; moreover, one can take out a factor (g — ¢~') from row
n+1,...,2n. Let N, (g) be the right lower (2n — 1) x (2n — 1) submatrix of the
remaining matrix. Then we have

so g 's1 g% 0 ¢ sumr g7"sw 0 -0
0 S0 q*1s1 qu”sn_z qlf"sn_l q s, - 0

N'(g) = 0 0 0 - 50 g 's1 g2 0 q7"sy
" q151 @252 @383 -+ Gn—1Sn—1  qnSn o --- 0
0 qis1 @252 -+ Gn-2S1—2 Gn—15n—1 GuSn --- O

0 0 o .- 0 qis1 q252 -+ QnSn

with det(N,(¢)) = (¢ —g~")" det(N, (g)). Thus we are reduced to proving that
det(N/(q)) = det(M,(q)). Consider the (2n — 1) x (2n — 1) matrix R = (’"C—1 g)
with the lower n x (2n — 1) submatrix given by

—q151 —q252 *+ —Gn—15n—1 1 ¢7's51 7252 qF " sum2 ¢ s
0 —qis1 - —Gn-25p—20 1 q7'sy - ¢ s 3 ¢* "su2
(Cco)y= : i :
0 0O - —gs1 0 O o - 1 q_lsl
0 o - 0 0 O o - 0 1

By a careful computation, one verifies without difficulty that RN, (¢) = (g M*(q) ),
where U is an (n — 1) x (n — 1)-upper triangular matrix with all diagonal entries
equal to 1. Note that det(R) = det(D) = det(U) = 1, and it follows immediately

that det(N' (q)) = det(M,(q)). O
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Complex conjugation and Shimura varieties

Don Blasius and Lucio Guerberoff

In this paper we study the action of complex conjugation on Shimura varieties and
the problem of descending Shimura varieties to the maximal totally real field of the
reflex field. We prove the existence of such a descent for many Shimura varieties
whose associated adjoint group has certain factors of type A or D. This includes
a large family of Shimura varieties of abelian type. Our considerations and
constructions are carried out purely at the level of Shimura data and group theory.

1. Introduction

The goal of this paper is to analyze some aspects of complex conjugation acting on
Shimura varieties. This topic has been studied for a long time by several authors,
notably Shimura, Deligne, Langlands, Milne, Shih, and more recently Taylor. In
general, given a Shimura variety Sh(G, X) defined by a Shimura datum (G, X), and
any automorphism « of C, Langlands [1979] conjectured that the conjugate variety
a Sh(G, X) = Sh(G, X) x¢ 4 C can be realized as a Shimura variety Sh(*G, *X)
for a very explicit pair (*G, “X). This has been proved by Milne [1983] (see also
[Borovoi 1983; 1987; Milne 1999]). The case of « = ¢ (complex conjugation) has,
among other properties, the particularity that the pair (G, “X) is very concrete.
Namely, it can be identified with (G, X), where X is obtained by composing the
elements of x with complex conjugation on the Deligne torus S. This simple
description is hard to find in the literature, and hence, we include a proof of how it
is deduced from the general constructions.

Assuming a few standard extra conditions on the Shimura datum (G, X), the
reflex field E can be seen to be either totally real or a CM field. The Shimura
variety has a canonical model Sh(G, X)g over E, and the Hecke operators are
defined over E as well. In this paper we investigate descent of these varieties to the
maximal totally real subfield E™ of E. The existence of such descent can be seen
as a nice generalization of the useful fact that the field obtained by adjoining to
the j-invariant of an order in an imaginary quadratic field has a real embedding.
From now on, assume that E is CM. We show in many cases that Sh(G, X) has
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a model over ET. Although the Hecke operators are not defined over E™, they can
nevertheless be characterized. The general framework for constructing such models
comes from the construction of descent data arising from automorphisms of G of
order 2 taking X to X. Using the classification of (adjoint) Shimura data in terms of
special nodes on Dynkin diagrams, our aim is to construct an involution of G that
induces the opposition involution on the based root datum (or the Dynkin diagram).
The construction we make follows from the classification of semisimple groups.
The groups G with which we work are, roughly speaking, those for which the simple
factors of G are of classical type A or D, and satisfy an extra condition on the
hermitian or skew-hermitian space defining them (see Definitions 4.1.4 and 4.2.1).
For example, a factor of type A is attached to a hermitian space over a central
division algebra D over a CM field K endowed with an involution of the second
kind J. We show that, if there exists an opposition involution on these groups,
then D must be either K or a quaternion division algebra, and the involution J is
easily described. We carry out the construction of involutions if we assume the
aforementioned extra condition, which in this case amounts to the existence of a basis
of the underlying vector space such that the matrix of the hermitian form is diagonal
with entries in K. In the quaternion algebra case, we can write D = Dy ®F K,
where F is the maximal totally real subfield of K, and Dy is a quaternion division
algebra over F. We assume furthermore in this case that, if Dy, is not split for an
embedding v : F — R, then the corresponding factor of Gﬁ‘q{d is compact. If D =K,
the conditions in Definition 4.1.4 are automatically satisfied. For factors of type D,
there is a similar scenario, although we only restrict to groups of type D" as in the
Appendix of [Milne and Shih 1981]. This encompasses a large family of Shimura
varieties of abelian type. Under these assumptions, the existence of the involution
on the group G follows from a concrete construction of involutions on each of the
simple factors of G2, which are explicitly given in terms of simple algebras.

To give a flavor of the type of involutions constructed in the paper, suppose that
SU(V, h) is a simple factor of type A, corresponding to a hermitian space (V, h)
of dimension n over a CM field K. Let F be the maximal totally real subfield
of K, and let ¢ be the nontrivial automorphism of K/F. We take an orthogonal
basis {vy,...,v,} of V,and we let I : V — V be the (-semilinear map obtained
by applying ¢ to the coordinates of elements of V with respect to the given basis.
Then the map 6 : SU(V, h) — SU(V, h) given by

0(g) =1Igl

is an opposition involution.

We stress here that our methods are group-theoretic and we work purely at the
level of Shimura data, in the sense that we do not directly make use of a moduli
interpretation. However, the methods rely on Langlands conjugation of Shimura
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varieties, which in turn is proved using the moduli interpretation in terms of abelian
varieties [Milne 1990, §I1.9]. An interesting question would be to consider factors
of type Es, which is the only other type apart from A or D" that contributes to the
reflex field being CM instead of totally real. We plan to investigate this question in
the future.

Let us describe the organization of the paper and outline the main argument. In
Section 2, we start by recalling the general formalism of conjugation of Shimura
varieties by an arbitrary automorphism of C, we study the special case of complex
conjugation explicitly, and we prove in this case that the conjugate Shimura datum
is (G, X), where X is the complex conjugate conjugacy class of X. We show
(Theorem 2.3.1) that, if (G, X) is a Shimura datum and 0 : G — G is an involution
such that #(X) = X, then 6 induces an isomorphism of algebraic varieties from the
complex conjugate ¢ Sh(G, X) to Sh(G, X), defined over the reflex field E, that
constitutes a descent datum from E to E.

In Section 3, we recall some basic facts about root data and opposition involutions,
and in Proposition 3.4.8, we lay the ground for the prototype of involutions 8 : G — G
that we will construct. Roughly speaking, suppose that T C G is a maximal torus
of G, and x € X factors through Tg. If 6 : G — G is an involution that preserves T
and induces complex conjugation on the group of characters X*(7T'), then 6(x) = x
and thus 6 (X) = X. This is basically the type of involution that we will construct,
with some slight changes. Since we will make use of the explicit classification of
semisimple groups, we need to work with either G4 or G%. We let G; be the
almost simple factors of G, and G, be their simply connected covers, so that
G; = Res .o H;, for certain groups H; which are absolutely almost simple, simply
connected, over a totally real field F;. We recall the classification of these groups
in Section 4, where we also construct opposition involutions on them preserving
specific maximal tori S; and inducing complex conjugation on their characters (for
noncompact places v of F;). We only do this for groups of type A or D", These,
together with type Eg, are the only ones that give a CM reflex field, as opposed to
totally real. Furthermore, as noted above, we impose some extra conditions in order
to construct the involutions. From the tori S;, we get maximal tori T’ C G%" and
T C G, and an opposition involution 6’ : G4 — G preserving 7’. As shown
in Proposition 3.4.8, 6" extends uniquely to an involution on G. To show that
0(X) = X, we need to relate in some way the choice of our tori S;, which is a
priori unrelated to the Shimura datum, to the conjugacy class X. In Section 5, we
show that there always exists x € X such that x* factors through the image of Ti
in G&d. This is all we need for Proposition 3.4.8. In Theorem 5.2.2, we state the
existence of descent datum for Shimura varieties defined by groups (G, X) such
that the simple factors of G are of the type described in Section 4. We call these
strongly of type (AD™). Finally, we also note that involutions inducing the desired
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descent datum on Sh(G, X) can be constructed whenever G is adjoint and there
exists an opposition involution 6 : G — G. This is always the case if G is quasisplit,
for example.

The existence of the involutions constructed in this paper should have interesting
applications, which will be explored in the future, for example, in the setting of
integral models and the zeta function problem, and periods of automorphic forms.

Notation and conventions. We fix an algebraic closure C of the real numbers R
and a choice of i = +/—1, and we let @ denote the algebraic closure of Q in C. We
let ¢ € Gal(C/R) denote complex conjugation on C, and we use the same letter to
denote its restriction to Q. Sometimes we also write ¢(z) = Z for z € C.

Let k be a field. By a variety over kK we will mean a geometrically reduced
scheme of finite type over k. We let G, x denote the usual multiplicative group
over k. For any algebraic group G over k, we let Lie(G) denote its Lie algebra.
For us, a reductive group will always be connected. If G is reductive, we let G*
(resp. G%") denote its adjoint group G/Z(G) (resp. its derived subgroup), where
Z(G) is the center of G. We let G®® = G/G%" (a torus). If T C G is a torus, we
denote by 72 the image of 7' under the projection G — G, For any commutative
group scheme G, we denote by invg : G — G the map g+ g~ .

We denote by A (resp. A ) the ring of adeles of Q (resp. finite adeles). A CM
field K is a totally imaginary quadratic extension of a totally real field F.

We let S = Re/rGm,c. We denote by ¢ = cs the algebraic automorphism
of S induced by complex conjugation. For any R-algebra A, this is ¢ Qg idy :
(CO®rA)* — (C®gr A)™ on the points of S(A). This is often denoted by z — Z,
and on complex points it should not be confused with the other complex conjugation
idc ® c on S(C) = (C ®r C)* on the second coordinate.

An involution of a group is an automorphism of order 2, whereas an involution
of a ring is an antiautomorphism of order 2. This should not cause any confusion.

We will denote by H the nonsplit quaternion algebra over R, identified with the
set of matrices of the form

(53)

2. Shimura varieties, conjugation, and descent

<
=<

in M,(C).

We will first review some basic facts about Shimura varieties and conjugation by
an automorphism of C, specializing to the case of complex conjugation. Then
we set up our descent problem, describe some general considerations about reflex
fields and Dynkin diagrams, and explain how to construct descent data based on
involutions of a Shimura datum.
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2.1. Shimura varieties. A Shimura datum (G, X) will be understood in the sense of
Deligne’s axioms [1979, (2.1.1.1-3)]. We will assume moreover that the connected
component Z° of the center Z of G splits over a CM field. For a compact open
subgroup K C G(Ay), we put Shg (G, X)(C) = G(Q)\X x G(Ay)/K. For K
sufficiently small (which we assume from now on), this complex analytic space
is smooth and is equal to the complex points of a complex quasiprojective variety
Shg (G, X)¢c. Let E = E(G, X) C C be the reflex field of (G, X); under our
hypotheses, this is contained in a CM field, and thus, it is either a CM field or a totally
real field. In any case, we let E* be the maximal totally real subfield of E. The
variety Shg (G, X)¢ admits a canonical model over E, denoted by Shx (G, X)g. We
use the same notation for the pro-objects Sh(G, X)(C), Sh(G, X)¢, and Sh(G, X)g.
We denote by wy : Gy, g — Ggr the composition of x € X with the weight morphism
w: Gy r— S, for some (or any) x € X, and call it the weight morphism of (G, X).
For x € X, we let u, : Gy c — Gc be the map given by u,(z) = xc(z, 1), under
the identification of S¢ = G, ¢ X Gy ¢ given by (z ® a) +— (za, za).

We will fix the following notation once and for all. Let p : G — G be the
projection onto G, The natural isogeny Z° x G%" — G and the projection
G — G®™ define an isogeny Z° — G®. Let G,..., G, be the almost simple
factors of G over Q, and let éi — G; be their simply connected covers. We
can write (~?,~ = Resy, /o H;, where the fields F; are totally real and the groups H,
are simply connected, absolutely almost simple over F;. For each embedding
v e l; =Hom(F;, C), we have groups H; , = H;®F, ,R, and forafixedi =1, ..., r,
all these groups have the same Dynkin type D;, which will be called the Dynkin type
of 51- (orof G; or H;). Weletl; ., ={vel;: Hi‘ﬂ(lR) is compact} and we let [; ,. be
its complement in /;, which must be nonempty if H; is nontrivial. We also have that
G™ is the direct product of the Gf.‘d =Resf /0 Hiad, and G&d is the direct product
of the Hfﬂ fori =1,...,r and v € I;. Let X* be the G*(R)-conjugacy class
containing pr(X), and write X ad — ]_[i’v X, with X; ,, an Hfﬂ([R?)-conjugacy class
of morphisms S — Hf"g. For each i and each v € [; ., there is a special node s; , in
the Dynkin diagram D; , of H; , attached to X; ,, which uniquely determines X; ,
as a conjugacy class with target Hfg (in the sense that if Y is an Hfg([R)—conjugacy
class satisfying Deligne’s axioms, for which its associated special node is s; ,, then
Y = X;,, [Deligne 1979, §1.2.6]).

2.2. Conjugation. For the general properties of conjugation of Shimura varieties,
we mainly follow [Milne 1990; Milne and Shih 1982b; Deligne 1982; Milne and
Shih 1982a]; see also [Langlands 1979]. Let (G, X) be a Shimura datum. A special
pair (7', x) consists of a maximal torus 7 C G and a point x € X factoring through 7.
Fix x € X a special point, and let ¢ € Aut(C). We denote by (°*G, ©*X) the
conjugate Shimura datum. We recall its construction below. By Theorem 11.4.2 of
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[Milne 1990], there exists a unique isomorphism
@o.x -0 Sh(G, X)¢c = Sh(G, X)c xc,o C=Sh(**G, 7" X)¢

satisfying certain conditions. Choosing a different special point gives canonically
isomorphic results [Milne 1990, Proposition 11.4.3]. The reflex field of (°*G, ©*G)
is o (E), and ¢, . identifies 0 Sh(G, X)g = Sh(G, X)g X g - 0 (E) with the canoni-
cal model of Sh(®* G, ©*G)¢ over o (E) [Milne 1990, Theorem IL.5.5]. In particular,
if 0 (E) = E, then ¢, , defines an isomorphism

Yox 10 Sh(G, X)p ~ Sh("*G, " X)g

over E. All of this also works at finite level: if K C G(Ay) is compact open,
¢¥o.x sends o Shg (G, X)¢ to Shexg (FG, 2 X)¢ (same thing replacing C by E
and o (E)), where K C G (Ay) is explicit (see below).

We are interested mainly in the case o = ¢, but nevertheless it will be useful
to recall the general construction of (“*G, ©* X). Let G be the (connected) Serre
group. This can be defined as the group of automorphisms of the forgetful fiber
functor from the Tannakian category of CM Q-Hodge structures to the category
of finite-dimensional Q-vector spaces. (Here a ()-Hodge structure is a QQ-vector
space V such that V ® C is endowed with a Hodge structure; the structure is CM if
the algebra of elements of End(V) which induce morphisms of Hodge structure
contains a commutative semisimple subalgebra of dimension dimg(V).) Let ¥
denote the Taniyama group, defined here as the group of automorphisms of the Betti
fiber functor in Deligne’s Tannakian category of CM motives for absolute Hodge
cycles over Q; this is the Tannakian category generated by Artin motives and by
the cohomology of abelian varieties over Q2 which are potentially CM. These are
proalgebraic groups, and there is a natural exact sequence

1> 6 - %5 Gal(@/Q) — 1,

where the second arrow corresponds to the functor taking a CM motive M to its
CM Hodge structure Hg(M), and m corresponds to the natural inclusion of the
category of Artin motives into the category of CM motives. The group Gal(Q/Q)
is to be considered as the proalgebraic group given by the inverse limit of the finite
constant groups Gal(L/Q), for L C C a finite Galois extension of Q. There is a
continuous section of 7 over Ay denoted by

sp : Gal(@/Q) — T(Af).

For a motive M, sp(o') corresponds to the automorphism of Hg(M)®qA ; obtained
from the Galois action of o on étale cohomology using the comparison isomorphism.
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Suppose that o = ¢ is complex conjugation. Then sp(c) € (A r) can be described
as follows, as explained in [Deligne 1982, Lemme 5]. Suppose that M is a CM mo-
tive over @, realized as the cohomology of an algebraic variety X over Q. The action
of complex conjugation on X (C) induces an involution F on the Betti realization
Hg(M)= H'(X(C), Q). The automorphism sp(c) : Hg(M) ®Ar — Hpg(M)RAy
is then equal to F ®q ida,. This implies, in particular, that sp(c) € T(Q).

For any o € Gal(Q/Q), we let °S = 7~ ! (o). There is a cocharacter fiean
Gm.c = Gc¢, which in Tannakian terms gives rise to the Hodge cocharacter of the
Hodge structures on Hg(M) ®q C.

Let G be any algebraic group over @ and p : & — G* be a homomorphism,
inducing an action of & on G by group automorphisms (conjugation). Let ©* G =
6 x@,p G be the group obtained by twisting G by the torsor °&. Thus, PG is
the fpqc sheaf associated with the presheaf sending a Q-algebra R to the group
7G(R) xa(R),p G(R), which is the quotient of “S(R) x G(R) by the right action
(s, g)s1 = (581, sl_lg) of G(R). The class of an element (s, g) in this quotient will
be denoted by s - g.

Lemma 2.2.1. Keep the notation and assumptions as above, with 0 = c. There
exists a natural isomorphism “°G — G.

Proof. As explained above, sp(c) € ‘G(Q), so °S is trivialized over Q. In particular,
the map sp(c)g - g — g (for g € G(R)) defines a group isomorphism between the
presheaves defining G and G. A fortiori, this defines an isomorphism “*G — G.

O

Remark 2.2.2. If H C G is a subgroup on which & acts trivially, then “? H is
canonically isomorphic to H (this is true for any o). This identification is compatible
with that of Lemma 2.2.1.

Remark 2.2.3. In [Milne 1990, §11.4], an isomorphism G(Ay) — “?G(Ay) is
constructed, which is denoted by g — “g. When identifying G with G using
Lemma 2.2.1, this becomes the identity map. A similar remark applies to the
isomorphism g — “g between G¢ and ©*G¢ defined in [Milne 1990, §1II.1] (note
that the element z.,(c) defined in [op. cit.] is equal to sp(c)c).

Suppose that (G, X) is a Shimura datum as before, and (7, x) is a special pair.
The map w, factors through T¢, and there exists a unique homomorphism

,0;‘d G — G

such that (pfjd)q; 0 flean = ;L;d. For o € Aut(C), the group >*G is defined to be
A" G in the previous notation (where we take the restriction of o to Q). Since the
cocharacter o (i) of T = 2*T commutes with its complex conjugate, it is the
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Hodge cocharacter associated with a map S — °*Ggr which we denote by
7%:S = " Gp.

Finally, ©* X is defined to be the “* G (R)-conjugacy class of “x.
Assume now that ¢ = c. By Lemma 2.2.1, we can identify “*G with G, and
hence, we can see ‘x : S — “*Gg as a map

‘x:S— G

with target Gg. Let ¢ = ¢s : S — S be complex conjugation on S. For any
h:S— Gg,leth=hoc.

Lemma 2.2.4. In the notation above, we have that

‘x=1Xx.

Proof. 1t is enough to show that x(C) = (“x)(C) : S(C) — G(C). Recall that we
are identifying S(C) = (C ®@g C)* with C* x C* via the map (z ® a) — (za, za).
Then ¢ = c¢s : S(C) — S(C), which is given by ¢(z ® a) = Z ® a, becomes the map
(a, b) — (b, a). This is an algebraic automorphism of S. There is another complex
conjugation, which will be denoted by ¢ here, on the complex points of S. Namely,

¢ :S(C) — S(O),

which is induced by complex conjugation on C. It is given by ¢'(z ® a) =z ®a.
Then, as a map on C* x C*, it is given by (a, b) — (b, a).

Recall that py(a) = x(C)(a, 1) for a € C*. For readability purposes, we use the
notation x¢(a, b) instead of x(C)(a, b) in what follows. Then, for a, b € C*, we
have that

xc(a, b) = xc(b, a) = xc(b, )xc(1, a). (2.2.5)
Similarly,
(‘x)c(a, b) = pex(@) ez (b). (2.2.6)

Now, by definition, pe, = c(uy), where ¢ now denotes the action on cocharacters.
If we let g — g denote the map on G(C) induced by ¢ : C — C, then

pex(a) = px (@) = xc(a, 1) (2.2.7)

for a € C*. Since x is defined over R, it commutes with the maps on complex
points induced by ¢ : C — C. That is, the diagram

S(C) —~5 G(C)

I Lo

S(C) 3 G(C)
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is commutative. From this and (2.2.7), it follows that

Uey(a) =xc(1, a). (2.2.8)
Similarly,
piz (b) = xe(b, 1) = (“x)c(1, b) = pre(exy (b).

But pre(exy = c(pex) = iy, so this equals x¢ (b, 1). The proof finishes by combining
(2.2.5), (2.2.6), and (2.2.8). O

By the last lemma, we can identify ©* X with the G(R)-conjugacy class of x.
The map h +— h defines an antiholomorphic isomorphism between X and “*X.
This does not depend on x, and from now on we let

X={h:heX)

Thus, the pair (“*G, “*X) becomes naturally identified with the pair (G, X).
The isomorphism ¢, , becomes, under this identification, an isomorphism g :
Shg (G, X)g X g E— Shg (G, X)g. On complex points, it defines an antiholomor-
phic isomorphism between Shg (G, X)(C) and Shg (G, X)(C), which we denote
by ¢. For [h, g] € Shx (G, X)(C), we have that ¢ ([&, g]) = (A, gl € Shg (G, X)(C).

For example, suppose that £ C R. Then there is an antiholomorphic involution
on Shg (G, X)(C) defined by complex conjugation acting on C. It follows from the
theory of canonical models that this involution takes the form [4, g] — [n(h), g1,
where 1 : X — X is an antiholomorphic involution of the form n(g-x) = (gn) - x
for some n € N(R) (here N is the normalizer in G of T'). See [Milne 1990, §I1.7]
for details. In fact, the theory implies that there exists n € N (R) such that ‘x =n - x,
and thus, X = X. Then the map n becomes what we called ¢; that is, n(h) = h for
any h € X.

2.3. Involutions of Shimura data and descent. Fix a Shimura datum (G, X), with
reflex field E. For an involution 6 : G — G, let 8(X) be the G(R)-conjugacy class
{6(h) : h € X}, where 6(h) = 6r o h. Since we want to consider involutions 6 that
send X to X # X, from now on, we will focus on the case where E is a CM field (if
E is totally real, the identity map on G takes X to X). Let E¥ C E be the maximal
totally real subfield, and let « € Gal(E/E™) be the nontrivial automorphism, i.e.,
the restriction of complex conjugation ¢ to E.

Suppose that 6 is an involution of G such that #(X) = X. For a compact
open subgroup K C G(Ay), denote by 'K =0(K) C G(Ay). Then 6 induces
an isomorphism of algebraic varieties Sh(9) : Shx (G, X)g — She g (G, X)g. On
complex points, this takes [/, g] to [6r o i, 8(g)]. Suppose that K = K. Then
Sh(8)~! 0 ¢ defines an isomorphism ¥ : t(Shg (G, X)g) =Shg (G, X)g Xg, E —
Shg (G, X)E.
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Let V be an arbitrary scheme over E. Recall that an E/E*-descent datum is a
pair of isomorphisms g :id(V) =V xgiaE— Vand y, «\V=V xg, E—>V
of schemes over E satisfying the cocycle condition

Yo o0 (V) =Yor

for all o, T € Gal(E/E™), using the natural identification o (t(V)) = (67)V. Then
necessarily g is the first projection id(V) — V, and thus, to give a descent datum
amounts to give an isomorphism ¢ =¥, : ¢(V) — V such that Yot () : ¢ (1(V)) = V
is equal to the identity map, when identifying ¢(¢(V)) = V. By definition, such a
descent datum is effective if there exists a scheme Vi over E™ and an isomorphism
m:V — Vo g = Vo xg+ E such that m oy = (m), after identifying «(Vo g) = Vo k.
If V is a quasiprojective algebraic variety, then any descent datum for V is effective.
This was first proved by Weil [1956]. For a modern reference, see [Bosch et al.
1990, §6.2].

Theorem 2.3.1. The map ¥ : 1(Shg (G, X)g) = Shg (G, X)g obtained as above
from an involution 0 : G — G such that 6(X) = X and °K = K is an effective
E/E*-descent datum on the Shimura variety Shg (G, X) . Hence, there exists a
quasiprojective, smooth, algebraic variety Shx (G, X) g+ over E*, and an isomor-
phism m : Shx (G, X)g — Shg (G, X)g+ X g+ E such that m oy = 1(m).

Proof. Let V = Shg (G, X)g and V = Shg (G, X)g, and let n: V. — «(t(V)) be
the natural isomorphism. We need to check that v o t(/) on = idy, and for this
it is enough to see that both morphisms are equal on the set of complex points
V(C). Let cy : V(C) — (tV)(C) be the bijection that sends x : Spec(C) — V
to p[_‘l, o x o Spec(c), where p, v : 1V — V is the first projection, and define
v (V)(C)— (1(tV))(C) similarly. Then we have that n(C) = ¢,y ocy, t({)(C) =
cy oy (C)o ct_vl, and v satisfies that ¥ (C) o ¢y = Sh(9)~!(C) o ¢. Recall that
¢:V(C) — V(C) sends [h, glto [h, g]. Putting all this together, we get that

(¥ o t(¥) on)(C) = Sh(®) ' (C) 0 o Sh(®) ' (C) 0 ¢,
and thus,

(W ot(¥)on)(©)([h, gD =[67' (6" (), 67%(2)]-
But forany y € X, 671 (y) = G[R;l oy, and so
071 (0= () =0"" (05" o) =0"" (05 ochoc)=0"" (B oh) =0 ch =072(h),

and thus, (Y ot(y)on)(C)([h, g]) =L, g], using the fact that 02 =id. Finally, since
Shg (G, X)E is quasiprojective, the descent datum just constructed is effective. []

Remark 2.3.2. The model of Theorem 2.3.1 depends on the descent datum, which
in turns depends on the particular involution 6.
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We note that, by the nature of the descent datum, Hecke operators do not
descend to the model Shg (G, X)g+. Given g € G(Ay), the Hecke operator T, is a
morphism of algebraic varieties T, : Shg (G, X)g — Sh,-1x4(G, X)E, which on
complex points is given by T, ([h, g]) = [h, gq]. Then Ty, o Sh(0) = Sh(8) o T} :
Shg (G, X)g — Sh@(q)—lﬂkg(q)(G, )_()E. The Hecke operator T, descends to a map
Shg (G, X) g+ = Shy-1x,(G, X) g+ if and only if Tyy) = T;.

In the following sections we will construct several examples of involutions 6 as
above, and explain a general framework for such constructions.

3. Opposition involutions

In this section we recall some basic facts about opposition involutions and prove
a few results that will be needed in the forthcoming sections. For the basic facts
regarding root data, see [Springer 1979].

3.1. Rootdata. Let ¥ = (X, ®, XV, ®) be a root datum with ® # &. Let Q be
the subgroup of X generated by @, and V = Q0 ® 7 Q. Let W = W (D) be the Weyl
group of the root system ® in V. This can be naturally identified with the Weyl
group of @ and with the subgroup of Autz(X) generated by the reflections s,
for « € ®. Choose a basis A, and consider the associated based root datum
Yyo=(X, P, A, XY, DY, AY).

There is an obvious notion of isomorphism of root data (resp. based root data)
¥ — W’ (resp. Yo — (). It amounts to giving a Z-linear isomorphism f: X — X’
such that f(®) =@ and’ f(f(«x)¥) =« for all @ € ® (resp. and f(A) = A).
Here ’ f denotes the transpose with respect to the root data pairings. We denote by
Aut(W) (resp. Aut(Wp)) the group of automorphisms of W (resp. Wy). Each s, can
be seen as an automorphism of W, and thus, there is a natural inclusion W C Aut(W).
We also denote by —1 € Aut(V) the automorphism that sends x € X to —x € X.

Assume from now on that ® is reduced. If A is a basis, let wg be the longest
element of W with respect to it. Then wo(A) = —A, and thus, —wg = —1owg €
Aut(¥y). We call x = —wy the opposition involution of Wy (since w% =1itis
indeed an involution). We denote the action of » on elements x (which can be
characters of T, nodes of the Dynkin diagram, etc.) by x > x*. When ® = &, in
which case W is called toral, we directly define x = —1 € Autz(X).

Remark 3.1.1. An isogeny (in particular, an isomorphism) of based root data will
commute with the corresponding opposition involutions. In particular, * is a central
element of Aut Wy.

Remark 3.1.2. Let X( C X denote the subgroup of X orthogonal to ®". The root
datum W is called semisimple when Xy = 0. If this is not the case, then there
exists a nonzero x € Xy, which hence must be invariant under W. In particular,
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*

x* = —x # x, so x cannot be the identity map if the root datum is not semisimple.
In the same vein, if the root datum is toral, then » # 1 unless W is trivial (that is,
also semisimple).

Suppose now that k is an algebraically closed field of characteristic 0, and let
G be a reductive group over k. Let T C G be a maximal torus, and ¥ = WV (G, T)
be the associated root datum, so that X = X*(T'). Let B D T be a Borel subgroup,
and let Wy = Vo (G, T, B) be the corresponding based root datum. Let Aut(G) be
the group of automorphisms of G, and Inn(G) C Aut(G) be the subgroup of inner
automorphisms (that is, defined by elements in G (k)). Thus, Inn(G) ~ G (k) ~
G (k)/Z(k), where Z is the center of G. Then there is a split exact sequence

1 - Inn(G) - Aut(G) — Aut ¥y — 1 3.1.3)

where, for f € Aut(G), the third arrow sends f to the automorphism of ¥ induced
by f' € Aut(G, T, B), where f’ = int(g) o f for any element g € G (k) such that
int(g) f(B,T) = (B, T). We define an opposition involution of G (with respect
to (B, T)) to be any element 6 € Aut(G) of order 1 or 2 that induces the opposition
involution x in Aut Wy. Note that this definition does not require 6 to preserve T or B.
If 0’ is another such involution, then 8’ = int(g) o 0 for some g € G (k). If 0 is an
opposition involution for (B, T') and (B’, T") is another Borel pair, then it is also an
opposition involution for (B’, T’). The exact sequence (3.1.3) is split by the choice
of a pinning. More precisely, let A C ® be the set of simple roots corresponding
to B. For each « € A, let U, € G be the root group of « [Springer 1979, §2.3], and
let uy € Uy be a nontrivial element. The pinning is the datum {1, }yeca With respect
to (B, T), and a splitting Aut Wy — Aut(G) of (3.1.3) associated with this pinning
is given by an isomorphism Aut Wy >~ Aut(G, T, B, {#y}aeca); two such splittings
differ by an automorphism int(¢) for some ¢ € 7T (k). In particular, after choosing a
pinning, we can take 6 € Aut(G) to be the image of * under the splitting and this
will be an opposition involution, which proves their existence. Note that we are
actually showing that there are opposition involutions in Aut(G) which preserve T
and B (and a fixed pinning).

Let k be any field of characteristic 0, and k be an algebraic closure of k. Let
I' = Aut(k/k). Let G be a reductive group over k, T C G a maximal torus, and
B D T; a Borel subgroup of G;. Let ¥ = W(Gg, Tp) and Vo = Yo(Gy, T, B).
There is a natural action of I" on X, denoted by x +— ¥ x, where

Yx@) =y )

for y € I' and ¢t € T (k). We call it the usual action of I' on X. It defines an
action of I' on W. Let y € I'. Then we define a second action wg(y) on X, the
s-action, given by ug(y)(x)() = Yx(n~'tn) for t € T(k), where n € G(k) is
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an element such that int(n) sends the Borel pair (y(B), y(T})) to (B, T). For
example, if B is a Borel defined over k, then we can take n = 1 and the *-action
is just the usual action x +— Y x. Going back to the general case, this gives a
morphism pg : I' — Aut Wy, and it induces an action of I' on Aut ¥, by taking
o ug(y)opo ,l,LG(]/)_l for p € Aut\¥,. There is also an action of I" on
Aut(Gp) given by y - f = (idg Xspecr) Spec(y 1)) o f o (idG X spec(k) Spec(y)),
which on G(/E)—points is simply g — v (f y~ ). It preserves the subgroup
Inn(Gp) = G(k)/Z (k), where it acts as usual. The exact sequence (3.1.3) becomes

1 — Inn(Gp) — Aut(Gp) — Aut ¥y — 1 (3.1.4)

and is ["-equivariant. We define an opposition involution of G to be an automorphism
6 € Aut(G) of order 1 or 2 such that ; is an opposition involution on Gjy.

There may not be a I'-equivariant splitting of (3.1.4), so it may not always be
possible to construct in this way an opposition involution of G. However, if G is
quasisplit and B is a Borel subgroup defined over £, it can be shown [Demazure
1965/66, §3.10] that there exists a I'-equivariant splitting. Since x € Aut ¥y is
central, it commutes with g (y) for any y € I', and thus, it is a ["-invariant element
in the last group of (3.1.4). Thus, for quasisplit reductive groups over k, there
always exist opposition involutions on G over k, but the condition of G being
quasisplit is far from necessary. There are many nonquasisplit cases where the
opposition involution is trivial (see below), and so obviously defined over k. There
are many nontrivial examples as well, as we will see later.

Remark 3.1.5. If G =T is a torus, then there exists one and only one opposition
involution 6 € Aut(G), namely 8 = invg.

Lemma 3.1.6. If 0 is an opposition involution of G, then 07 : Z — Z is equal
to invy.

Proof. 1t is enough to see that both maps induce the same map on X*(Z), that is,
that 07 : X*(Z) — X*(Z) is multiplication by —1, and thus, we can assume that
k=k. Let (B, T) be a Borel pair. Then Z C T. Let x € X*(Z). Then there exists
w € X*(T) such that |z = x. We claim that 67 (x) = (1*)|z. Indeed, for z € Z (k),
07(x)(2) = x(0(2)), whereas (u*)|z(z) = Wo(0)(1)(z) = p((int(g) 0 0)(2)) =
w(0(z)) (where g € G(k) sends 6(B, T) to (B, T)), which shows that 65 = (u*)|z.

On the other hand, if ng € Ng(T) (k) represents wg € W = Ng(T)(k)/ T (k), then
for z € Z(k), *(z) = u(ny 'z 'no) = w(z™") = u~'(z) because z € Z (k). Thus,
67 (x) = —x., as desired, where we have switched back to the additive notation for
the group X*(Z). O

Remark 3.1.7. The last lemma shows in particular that if the identity map is an
opposition involution, then Z is killed by 2. Then Z° must be trivial; that is, G
must be semisimple (see also Remark 3.1.2).
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3.2. Dynkin diagrams and special nodes. Let Y be a based root datum with
® # @ and reduced, and let D be its Dynkin diagram. Then the opposition
involution x acts on D. We include for reference the list of connected Dynkin
diagrams and their opposition involutions; see [Bourbaki 2002] for notation of
nodes and more details. We also list the special nodes of each diagram (see
[Deligne 1979, §1.2.5], for the definition of special node). Also, note that if W is
semisimple, then * is trivial on ¥y if and only if it is trivial on D. For a Shimura
datum (G, X), the only factors of G™ that contribute to a CM reflex field are the
ones of type A; (I >2), D; (I > 5 odd), or E¢. This follows from the list below and
Proposition 2.3.6 of [Deligne 1979]:

e D=A;(I>1).
af =oyy1—; (S0 «is trivial if / = 1).
All nodes «; are special.
D=B, (I>2)or C; (I =3).
* is trivial.
There is only one special node: «; in the B; case, and ¢ in the C; case.
D=D;(=4).
If [ is even, * is trivial.
If/is odd, of = ; fori <l —1,and o) | = .
The special nodes are o1, ;—1, and «;.
o D=Fq.
a} =g, @ =, a3 = as, and @} = ay.
The special nodes are «; and os.
e D= E7, Eg, Fy, or Gz.
* is trivial.
Only E7 has a special node, which is «7.

3.3. Multiplicative groups of CM type. Fromnow onletk=Q and I' = Gal(Q/Q).
Let T and T, be algebraic groups over Q of multiplicative type, not necessarily con-
nected. Then there is a natural bijection Hom(77, T) ~Homr (X5, X1), where Autp
means I"-equivariant morphisms for the natural Galois structures on X; = X*(T;).
In particular, for T over Q) of multiplicative type, there is a natural isomorphism
Aut(T) ~ Autr (X), with X = X*(T'). We let ¢} : X — X be the map c}.(x) =“x.
We say T splits over an extension K C @ of @ if Aut(Q/K) acts trivially on X*(T).

Lemma 3.3.1. If T is a group of multiplicative type that splits over a CM field, then
¢y € Autr (X).

Proof. Suppose that T splits over K C @, a CM field. Let x € X. Then " y =
for any y € Aut(Q/K), and thus, V' x =" if y1, y» € I" have the same restriction
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to K. For any y € I', yc and cy have the same restriction to K, and so c7.(¥ x) =
Cx)=Tx="%x="(cr(X)- U

Under the assumptions of the last lemma, we let ¢y : T — T denote the unique
involution inducing ¢ on X. If T; and T, are groups of multiplicative type which
are split over a CM field, and f : 71 — 7> is a morphism, then focy =cp,0 f,
because both maps induce the same morphism X, — Xj.

Suppose now that T is a group of multiplicative type over R. Using the same
procedure, there exists a unique involution cr : T — T inducing complex conjugation
on characters. If T is defined over Q and split over a CM field, these definitions
are compatible with base change from @Q to R.

Example 3.3.2. For T = S over R, the map cs is given by cs(z ® a) =z ® a for
an R-algebra A and z®a € (C®r A)*.

Remark 3.3.3. If T is an anisotropic R-torus (that is, if 7 (R) is compact), then it
is easy to see that “x = —x for any x € X and thus ¢y = invy is the opposition
involution on 7.

3.4. Involutions taking X to X. Let (G, X) be a Shimura datum. Recall that we
are assuming that Z° splits over a CM field, and hence, we have the conjugation
involution ¢, : Z0 — Z9.

Remark 3.4.1. Let x € X. From the fact that int(x(i)) : G&d — G?Rd is a Cartan
involution, it follows that Gﬁ‘Qd is an inner form of an anisotropic group H over R
(that is, H(R) is compact). A similar statement holds for G?Rer (the element x (i)
may not belong to G (R); however, over C, int(x(i)) can be replaced by int(x (i)")
for some x (i)’ € (T N G%")(C)). The next lemma is well known.

Lemma 3.4.2. Let G be a reductive group over R, and assume that it is an inner
form of a group H over R which is anisotropic. Assume furthermore that T C G
is a maximal torus, and the inner automorphism of G¢ defining a cocycle for H is
given by int(ty) for some ty € T (C). Then the following hold.
(l) cT = inVT.
(ii) For a Borel subgroup B D Tg, the opposition involution acting on Vo (G, T, B)
is given by the x-action of c.

(iii) The subgroup c(B) C G is the opposite Borel subgroup of B; that is,
c(B)NB =T¢.

Proof. By hypothesis, we can choose an isomorphism ¢ : Gc — Hc such that
f : Ge — G defined by f(g) = ¢~ (¢ (%)) is an inner automorphism of the
form int(ty), with fy € T(C). Then there exists a maximal torus Ty C H such
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that Ty.c = ¢(T1c), and we let By = ¢(B). Since Ty (R) is compact, this im-
plies that T'(R) is compact, so (i) follows from Remark 3.3.3. Let r = Wy(¢) :
Vo(H, Ty, Bg) — Yo(G, T, B) be the induced isomorphism. It is Gal(C/R)-
equivariant for the *-actions, as follows from the fact that the forms are inner, and
it commutes with x, so it is enough to prove part (ii) when G itself is anisotropic,
which is well known. For (iii), the fact that f preserves T and B again allows us to
reduce to the case of G anisotropic, in which case the statement is well known. [J

Remark 3.4.3. In the last lemma, if the group is quasisplit and B is a Borel
subgroup defined over R, the inner automorphism will not usually belong to 7(C);
otherwise, we would have B = T. There are quasisplit semisimple groups with
B # T which are inner forms of anisotropic groups, for example SU(n, n). In
this case, the Cartan involution coming from a certain Shimura datum and special
pair will preserve the maximal torus and a Borel subgroup containing it, but not a
rational Borel subgroup.

Remark 3.4.4. Suppose that (G, X) is a Shimura datum, and let (7', x) be a special
pair. Then Gﬁl{” satisfies all the hypotheses of the previous lemma. Here the inner
automorphism defining the cocycle is int(x(i)") as before. Alternatively, we can
work with the adjoint group Gﬁ‘f and x(i).

Remark 3.4.5. Suppose that 6 : G — G is an involution such that there exists a
special pair (7, x) with the property that 6 preserves 7" and induces cr, on Tp.
Then Og(x) = ¢, 0 X = X o cs = X, and thus, 6(X) = X.

Lemma 3.4.6. Let G be a reductive group over R, and T C G a maximal torus. If
0 :G — G is an involution such that O(T) CT and 0|t =ct, then 8 (B) =c(B) C G¢
for any Borel subgroup B D Tg.

Proof. Let R C X = X*(T) denote the set of roots of (G¢, Tc). Let R™ denote the
set of positive roots with respect to B. Then 6(B) is the Borel subgroup whose Lie
algebra is Lie(Tc) ® @, g+ Lie(G)aop- Since a2 06 = “a, it follows that this is
the Lie algebra of ¢(B), and since both 6(B) and c(B) are connected, this proves
the lemma. O

The construction of involutions taking X to X that we will perform will be
based on involutions & which will roughly be as in Remark 3.4.5. By the following
proposition, we need to look for opposition involutions on semisimple groups.

Proposition 3.4.7. Let (G, X) be a Shimura datum, and let 0 : G — G be an
involution of G, such that there exists a special pair (T, x) with the property that
6 preserves T and induces ct, on Tg. Then 6% : G% — G is an opposition
involution, and 6y = 0| 40 : Z° — Z° is equal to ¢ 0.

Proof. Suppose that 6 is an involution with (7', x) as in the statement. To see that
6o = cyo, it is enough to see that Og o = €z9- Since Z& C Tr and Or|7, = c15



Complex conjugation and Shimura varieties 2305

it follows that 6y g = 0 Let 7' =T NG, let B C G¢ be a Borel subgroup
containing T¢, and B = BN Gder D TL. Let W) = W, 0(GY" T’ B’), and let
r=Wy(09%r): W) — W be the mduced 1som0rph1sm. Itis given by r (x) = x oint(g)o
9d6r|Té for x € X’ = X*(T’), where ¢ € G%7(C) is such that int(q)0%" (T, B') =
(T{, B’). On the other hand, by Lemma 3.4.2(ii), » : ¥, — ¥ is given by x* =
°x oint(a~"), where a € G¥7(C) is such that int(a)c(T}, B') = (T., B'). By
Lemma 3.4.6, we can take a = ¢. Finally, the hypothesis that 69|z, = 7+ implies
that x* = x o6 oint(¢g~"). Thus, to see that r(x) = x*, it is enough to see that
6% oint(g ") and 69 o int(¢(g)) induce the same automorphism of 7}, and this
follows from the fact that both elements 6 ~'(¢) and ¢! conjugate the Borel pair
(T, B’) to the same Borel pair. O

The following proposition is a partial converse and the main result of this section.
Since our construction will be explicit using the classification of semisimple groups,
we need to work with either the derived group or the adjoint group. The idea is to
construct an involution on G taking X to X by extending an opposition involution
on G%T. Ideally we would want the involution to be as in Remark 3.4.5, but it is
enough to consider a weaker hypothesis, as stated in the proposition. Recall the
notation from Section 2.1. Suppose that for each i, S; C H; is a maximal torus, and
let T Resr /0 Si C 6,, T; C G; its image in G;, T' C G the image of their
product, and 7 = Z°T’. Note that Talcl Ty ‘ad ]_[l v Sla‘;‘), where S;, C H, , and
Sﬁ‘i is its image in Hl’j‘g.

Proposition 3.4.8. Suppose that 6; : H; — H is an opposition involution for each i.
Suppose moreover that 0;(S;) = S; and 0 |Sad = Cgu for every i and v € I p,.
Finally, assume that there exists x € X such that x factors through TaCl Then
there exists an involution 6 : G — G such that 0(X) =

Proof. For each i, the involution Resf, ;g 0; defines an opposition involution of 5,-.
Moreover, the kernel K; of the projection 6,- — G, is contained in the center
of G;. By Lemma 3.1.6, Resp, /g 6; induces x — x~! on the center. In particular, it
preserves K; and induces an opposition involution on G;. Similarly, the product
of these involutions defines an opposition involution 8’ : G — G, Let ¢ :
7% x G%' — G be the natural isogeny. We can look at the product involution
0’ x cz0: GI x 20 — G x 7% We claim that this preserves ker(g), and thus, it
induces an involution on G. To show this, we can work with C-points. The kernel
consists of pairs (g, z) such that zg = 1, so we need to check that if (g, z) is such
a pair, then 6'(g)c0(z) = 1. The element g = z~! belongs to Z° N G¥" C Z ;.
The maps c,0 : Z° — Z° and CZgaer © LGter = Zgaer are equal on 7N G%r, and by
part (i) of Lemma 3.4.2, ¢z _,, =10vz_g,, S0 cz0(2) = z~1. On the other hand, by
Lemma 3.1.6, ¢ induces invz_,, on Zgawr, and so 0'(g) = g~ ! = z. This proves
that there exists a (unique) 1nv01ut10n 6 : G — G such that 69" =0’ and 6y = c 0.
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We also have that @ preserves T and 03¢ = [T, «913‘3) Now, we know that there
exists x € X such that x*! factors through Taﬂl Let y = Or(x). Then y* = Gad(xad)
For v € Ii,m., we have 95}% (Xip) = Xiyp because 03‘11) induces ¢ and x;, factors
through S' For v € I;, xj, = 1. Thus, ydd = xad, Alsomsmce Or 1nduces
Czy ON ZR, and g : Z° — G is an isogeny, it follows that A induces Cgw on G
From this it follows that y and X have the same projections to G and to Gﬁ‘q{b, and
thus, y = x (see for instance the proof of Proposition 5.7 of [Milne 2005]). Since

y = Or(x), this shows that 8(X) = X. O

4. Involutions on classical semisimple groups

In this section, we make use of several results regarding the classification of semi-
simple algebraic groups over totally real fields. For notation and terminology
regarding algebras with involutions and their associated groups, we freely follow our
main reference [Knus et al. 1998]. We are only interested in the explicit classification
of groups of type A and D in order to construct our desired involutions on certain
Shimura varieties. Furthermore, not all the groups in the general classification
appear in the theory of Shimura varieties, so we are only interested in classifying the
groups H; (in the notation of Section 2.1) of type A; (I >2) or D; (I >4 odd) that can
occur. Furthermore, in accordance with the previous section, we are also interested
in constructing, whenever possible, opposition involutions on these groups.

The following construction regarding quaternion algebras will be used often in the
following. Suppose that D is a quaternion division algebra over a number field K.
Let A € D* be a pure quaternion (that is, such that o (A) = —X, where 0 : D — D
is the canonical involution), and choose another pure quaternion u € D* such that
A =—uh. Then {1, A, u, A} is a standard basis of D. If we let L = K (), then L
is a maximal subfield of D (a quadratic extension of K). We have an isomorphism
of L-algebras ¢ : D ®x L — M»(L) defined by

¢Q®D=(3_D

0 u?
¢w®n—<10)
Then the isomorphism ¢ sends L ®k L to the subalgebra of diagonal matrices
in My(L).
Throughout this section, let F be a totally real field and H be an absolutely
almost simple, simply connected algebraic group over F. We let D be the Dynkin

diagram of Hyp (where F is some algebraic closure of F). We let I = Hom(F, R),
I.={vel: H,j‘d([R{) is compact}, and let [, be its complement in /.

and
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4.1. Groups of type A; (I = 2). Suppose that D = A; with [ > 2. Then there exists
a quadratic étale extension K/F (so K/F is a quadratic extension of fields, or
K = F x F), and a central simple algebra B over K, of degree [ + 1, endowed with
an involution 7 : B — B of the second kind (that is, inducing ¢ on K, where ¢ is
the nontrivial automorphism of K which fixes F') such that H = SU(B, t) [Knus
et al. 1998, Theorem 26.9]. If H is one of the H; as above, then K must be a field.
Indeed, if otherwise, then H ~ SL;(A) for some central simple algebra A over F
of degree [ + 1. For each v € Hom(F, R), we have

Ay=AQr yR=M1(R) or Ay,>~Mqy),2(H).

In both cases, it follows that H, is an inner form of SL;; g, so the x-action of ¢
is trivial (a condition that does not depend on the Borel pair), and thus, it cannot
be the opposition involution because / > 2. From this and Lemma 3.4.2 it follows
that H cannot occur as one of the factors H;. Thus, we have proved that K must
be a field. Moreover, a similar argument implies that K must be totally imaginary,
that is, K /F is a CM extension. The adjoint group H* is PGU(B, 7).

We can then write B = Endp (V) for some central division algebra D over K,
endowed with an involution J : D — D of the second kind, whose action we
denote by d > d’, and a finite-dimensional right D-vector space V. There is a
nondegenerate hermitian form 4 : V x V — D inducing the involution t : B — B.
The pair (V, h) is called a hermitian space over D.

Suppose that 6 : H — H is an opposition involution. There is a natural iso-
morphism between Aut(H) and the group of F-algebra automorphisms of B that
commute with T [Knus et al. 1998, Theorem 26.9], and thus, there exists such an
automorphism y : B — B of order 2, inducing 6. If y |k is the identity map on K,
then y = int(by) for some by € B* by the Skolem—Noether theorem, and by is
moreover a similitude for . The induced map 6 : H — H would thus be an inner
automorphism, inducing the identity map on the Dynkin diagram, but the opposition
involution on A; is nontrivial for [ > 2. Hence, y|x must be ¢. Let B and D denote
the K -algebras B and D with -conjugate structure. Thus, y : B — B is a K -algebra
isomorphism. We let Br(K) be the Brauer group of K and [B] = [D] € Br(K) be
the class of B in it. Then [D] = [B] = [B] = [D], which implies that there must
exist a ring automorphism « : D — D inducing ¢ on K.

Proposition 4.1.1. Let D be a central division algebra over a CM extension K | F
of number fields, endowed with an involution J : D — D of the second kind. Then
the following are equivalent:

(@) D =K or D is a quaternion division algebra over K.
(b) The order of [D] € Br(K) is 1 or 2.

(c) There exists a ring automorphism o ©: D — D inducing t on K.
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Moreover, in this case, o is unique up to composition with an inner automorphism
of D. Furthermore, it can be chosen to have order 2 and such that o J = J« is either
idp if D = K or the canonical involution if D is a quaternion division algebra.

Proof. The fact that (a) implies (b) in the quaternion algebra case follows from the
existence of the canonical involution on D, which gives an isomorphism D — D°P,
so [D] =[D]~ L. To see that (b) implies (a), use [Scharlau 1985, 10.2.3].

Now suppose that (a) is true. If D = K, then take o = ¢. If D is a quaternion
division algebra, let o : D — D be its canonical involution, and take « = Jo = o J
(they commute because Jo J is a symplectic involution of the first kind on D, and
hence equal to o).

Finally, suppose that @ : D — D is as in (c). The involution J : D — D induces
an isomorphism D — D°P, where D is the conjugate algebra A -d = ((1)d for
A € K. Similarly, o induces an isomorphism D — D, and thus, in the end we have
an isomorphism D — D°P, which implies that the order of [D] is 1 or 2.

The uniqueness of « up to inner automorphism follows because if 8 is another
such automorphism, then «8~! : D — D is a K-linear automorphism and hence
inner by the Skolem—Noether theorem. (]

Remark 4.1.2. Suppose that D is a quaternion division algebra. Under the condi-
tions of the previous proposition, there exists a unique quaternion algebra Dy C D
over I such that D = Dy ®r K and J = o9 ®Fp (, where oy is the canonical
involution of Dy [Knus et al. 1998, §I1.22]. Then the map « constructed in the proof
is @ = idp, @ t. We define the canonical conjugation o : D — D (attached to J
or Dy) tobe o =idp, ®r t. If D = K, we also call o = the canonical conjugation.

Thus, we have shown that if there exists 8 : H — H an opposition involution, then
either D = K (and J =) or D is a quaternion division algebra (and J = o9 ®F ().
Conversely, suppose that D = K or D is a quaternion division algebra. We will
construct suitable opposition involutions under an additional assumption.

Remark 4.1.3. Suppose that D = K (and Dy = F) or D is a quaternion division
algebra. Let I, C Hom(F, R) be the subset of places v € I = Hom(F, R) such that
Dy = Do ®F,, Ris split, and let I,,; C I be its complement. We let /. C I be the
subset of places v such that Hj‘d([Ri) is compact, and I, its complement. The group
Hpg can be written as a product of special unitary groups [[,.; SU(py, ¢»), and the
compact places are exactly the places where p,q, = 0.

vel

Definition 4.1.4. We say that a hermitian space (V, i) over D (where D = K or a
quaternion division algebra) is strongly hermitian if there exists an h-orthogonal
D-basis § ={vy, ..., v,} of V such that h(v;, v;) € K* for all i. In the quaternion
algebra case, we ask furthermore that /,,; C 1.

Remark 4.1.5. A hermitian space over D = K is always strongly hermitian.



Complex conjugation and Shimura varieties 2309

Remark 4.1.6. The existence of the basis S in Definition 4.1.4 is what allows us to
explicitly construct an opposition involution 6 : H — H. In the quaternion algebra
case, this involution will define an involution 0, : H, — H,, and we want this to
induce complex conjugation on S,‘;‘d when v € [,,.. The involution that we construct
does not satisfy this at places v € I,,; (see Remark 4.1.9). Since we only care about
noncompact places, we make the assumption /,,; C I.

Suppose that (V, h) is strongly hermitian, and let B be a basis as in the definition.
Let I : V — V be the a-semilinear isomorphism obtained by applying « to the
coordinates of elements of V with respect to the basis 8 (this map is inspired by the
constructions of [Taylor 2012]). Then A({ (x), I (¥)) = a(h(x,y)). Let60 : H - H
be given as 64(g) = [4g14 for an F-algebra A and a D ®r A-linear automorphism g
of V®pr A. Let L C D be a maximal subfield. More precisely, if D = K, then
L =K, and if D is a quaternion division algebra, take L = K (), where A is a pure
quaternion in Dy. Let § = S g be the subgroup of H defined as follows. For an
F-algebra A, H(A) C Autpg,A(V @F A), and we let

S(A)={he H(A):h(v;®1)=(v;®1)A; for some A; e (LRrA)* (i=1,...,n)}.
This is a maximal torus in H.

Proposition 4.1.7. With the above hypotheses, the following statements are true:
(a) The involution 6 : H — H is an opposition involution.
(b) We have 6(S) = S and for every v € I, 6, : H, — H, induces cs, on S,.
In particular, 03 : H* — H induces Cgu ON 53 for v € Iye.

Proof. For part (a), it suffices to see that ; : Hy — Hj is an opposition involution.
We can identify Hg with SLy,p, where SLy,p(A) consists, for a K-algebra A, of
the D® g A-linear automorphisms of V ® g A with reduced norm 1. Using the basis 3,
we can further identify SLy,p(A) =SL,(D ®k A). Let Q € GL,(K) be the matrix
of h with respect to 8. Then it is easy to see that 84 : SL,(D®g A) - SL,(D®g A)
is explicitly given by the formula

04(X)=0""'(x"1H 0,

where o : D — D is the canonical involution of D if D is a quaternion division
algebra, and o0 =id if D = K. Note that Q is a diagonal matrix in GL,(K).

If D =K, we denote by ¢ : D @ L — L the unique obvious isomorphism.
If D is a quaternion division algebra, we take ¢ : D ®x L — M>(L) to be an
isomorphism of L-algebras taking L ® ¢ L to the subalgebra of diagonal matrices
in M,(L), as constructed above (we use for this the pure quaternion A € Dy and
another pure quaternion p € Dy such that Ay = —pA). In particular, o preserves L.
The identification Hg (A) =SL,(D®x A) sends Sk (A) to the subgroup of matrices
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in SL,(D®xk A) which are diagonal and have entries in L&Q g A. Since o preserves L,
it follows that 6 sends the torus Sk to itself. Moreover, if we now extend scalars
to L, the map ¢ provides an isomorphism

Hy = SLy 1, (4.1.8)

where S, is the usual group of nm x nm matrices of determinant 1; furthermore,
the torus Sz maps to the torus of diagonal matrices in SL,,,, 1, (so S is indeed a maxi-
mal torus, as claimed). If m =1, then 8, (X) = Q=" X~ Q for X € SL,, ;. Suppose
that m =2. Write Q =diag(qy, ..., g,), and let Q =diag(q1, ..., qGn>q1---,qn) €
GLy,(K). Write matrices X € SLy, 1, as blocks

A B
X =
(¢ 1)
with A, B, C, D of size n x n. Then 0y, : SLy, 1 — SLa,, 1 is explicitly given as

o= ID _tB ~
GL(X)—Q (—’C tA) Q

From this explicit expression of 6 as an involution of SL,,, 1, it is easy to see
that it preserves the maximal torus Sy of diagonal matrices and that it induces the
opposition involution on the root datum.

For part (b), fix v € I,,.. We need to check thatif y € X = X™*(S,) =Hom(S, xrC,
Gm.c), then x 06, c = “x. To compute “x, we need to compute how complex
conjugation acts on H,(C). Choose once and for all an extension t : L — C
of v to L. Using the embedding t and the isomorphism (4.1.8), we can identify
H, xp C= Hy x  C=SL,, c. Moreover, the action of ¢ on H,(C) = SL,,,(C)
ii explicitly given as follows. Let Q, = diag(v(qy), ..., v(gn)) € GL,(R) and
0, =diag(v(q1), ..., v(gn), v(q1), ..., v(gs)) € GLy,(R). Let

_ 0 I,
()
Ifm=1and X € SL,(C), then ¢(X) = Q' X*~'Q. If m =2 and X € SLy,(C), then
c(X)=Q;'yx*~1y~1Q,. The last case easily follows from (4.1.8) and the fact
that Dy , is split. We can identify X*(S,) in the standard way with Z"" /L, where
L={(k,k,...,k):keZ}. It then follows easily from our calculations of the action
of ¢ that if x € X*(S,) is identified with the class of the tuple (ay, .. ., a,) in the case
m = 1, respectively the class of the tuple (ay, ..., a,, by, ..., b,) in the case m =2,
then € x is identified with (—ay, ..., —a,) or with (—=by, ..., —b,, —ay, ..., —ay),
respectively. This, together with our formulas for 6, show that 6, induces cs, on S,
which is what we wanted to prove. U
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Remark 4.1.9. When D , is not split, there is also an explicit formula for ¢ that
involves a matrix y as above, but y turns out to be a diagonal matrix. So in this
case 6, does not induce cg, on S,. We only care about noncompact places, hence
our assumption /I,y C I.

Remark 4.1.10. Keep the assumptions and notation as above. For each v € I,
we will constructamap y: S — de satisfying Deligne’s axioms [1979, §1.2.1]
and factoring through S;‘}d. Namely, fix t : L < C an extension of v to L, and let
w=rt|g (sow=1twhen D=K =1L). Let D,, = D ®g,, Cand J,, : D,, = D,
be defined by J,,(d ® z) = J(d) ® z. The group H,(A) can be identified, using the
basis B, with the group of matrices X € GL,(D,, ®g A) such that ' X/» QX = Q
and Nrd(X) = 1. If m =1, let ¢, : D,, — C be the unique isomorphism. If m = 2,
consider the C-algebra isomorphism ¢, : D,, — M, (C) given by

T(W)0 0 v(u2)>

¢1<A®K,w1>=( 0ty L0

>7 ¢r(M®K,w 1):<

As above, for any R-algebra A, this induces an isomorphism GL, (D, ®r A) =
GL,,,(C ®g A) taking the subgroup of diagonal matrices with entries in L., Qg A
(where L,y = L ®g ,, C) to the subgroup of diagonal matrices in GL,,,(C Qr A).
Moreover, the corresponding involution X +— 'X”/» gets identified with X
yX*y~!, whereif m =1,y =I,, and if m =2, y is the hermitian matrix defined by

(0 il
L

_(~vd1, 0
V‘( 0 1,l>

if v(12) < 0 (note that in this case, we must have v(u?) > 0). In this way, we can
write

if v(A?) > 0, and

Hy(A) ={X €GLy,(CR®r A): (yX*y HQ'X = 0/, det(X) = 1},

where Q' = Q, if m =1 and Q' = Q, = diag(v(q1), ..., v(qn), ..., v(q1), - . .,
v(gy)) if m =2. Thus, we can identify H, with the special unitary group SU(y ~' Q")
of the hermitian matrix y ~' Q’, and the maximal torus S, is the torus of diagonal
matrices. Note that H2 is also the adjoint group of the similitude unitary group
GU(y~'Q’). We define y' : S — GU(y ~! Q') as follows. For an R-algebra A and
7€ S(A), let

Vi (2) = (diag(yg(z)u ce Y @) 0 )
4 0 diag(y/, (21, .-, Yy (@) )

where y', (z); =z if v(g;) > 0and y), (2); =Zif v(g;) <0. Welet y = yad:S — H,
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Using the explicit computation of ¥ ~' Q' in each case, the group GU(y ~' Q') is
isomorphic to a similitude unitary group GU(p, ¢g) of a certain signature (p, q)
(furthermore, if m = 2, in our case where Dy, is split, the signature is always
(n, n), so the group H, is in fact quasisplit). It is then standard that y’, and hence y,
satisfy Deligne’s axioms (see for instance the Appendix of [Milne and Shih 1981]).

4.2. Groups of type D; (I = 4 odd). Suppose that D = D; with [ > 5 odd. Then
H = Spin(B, t), where B is a central simple algebra over F' of degree 2/ and t
is an orthogonal involution [Knus et al. 1998, Theorem 26.15]. The adjoint group
is H* = PGO™ (B, 7). In order to avoid introducing spin groups, we will work
in this section with H%. Since the map Aut(H) — Aut(H ady is an isomorphism,
an opposition involution on H* will uniquely lift to an opposition involution
on H; moreover, suppose that S C H is a maximal torus and the involution on H3¢
preserves S%¢ and induces ¢ s ON 534 for every v € I,.. Then the lifted involution
on H preserves S and also obviously induces cgw on 53 for every v € Ic. This
will allow us to concentrate on H*! and avoid spin groups.

Since F is a number field, it can be shown that B = Endp(A), where D = F
or a quaternion division algebra over F' [Scharlau 1985, §8.2.3], and A is a right
D-vector space of finite dimension n. Let m = degz D. Moreover, the involution
7 : B — B must be attached to a nondegenerate F'-bilinear formg: A x A — D. In
the case D = F (where dimp A = 2[), g is a symmetric bilinear form. In the case
that D is a quaternion division algebra (where dimp A =), g is a skew-hermitian
form with respect to the canonical involution o : D — D. We will only treat the
case where D is a quaternion division algebra. Let Iy C I = Hom(F, R) be the set
of v: F — Rsuch that D, = D ®F,, R is split, and let I,,; be its complement in /.
For v € I, the skew-hermitian form g, on A, defines a nondegenerate symmetric
bilinear form b, over a real vector space W, of dimension 2n [Scharlau 1985], and
then we have that I, C I is the set of split places where b, is definite. As in the
Appendix of [Milne and Shih 1981] (type D™), we will assume that I, = I,. We
call the pair (A, g) a skew-hermitian space over D. Note that n = is odd.

Let 8 = {vy,..., vy} be a D-basis of A, which is g-orthogonal. The group
H* =PGO™ (A, ¢) can also be seen as the adjoint group of G =SO(A, ¢), where

G(A) ={g € Autpg,a(A4) :Nrd(g) =1 and
qa(g(x), g(y)) =qa(x,y) forall x, y € As}

for an F-algebra A. Here Ay = A ®p A and Nrd is the reduced norm in Endp (A).
We let §' = S,’g C G be the subgroup of G defined as follows. Foreveryi =1, ..., n,
let gi = q(v;, v;). This is a pure quaternion in D, and so L; = F(g;) is a quadratic
field extension of F. For an F-algebra A, let

S (A)={geG(A):g(v;®1)=(v;®1)A; for some A; € (L;QrA)* (i=1,...,n)}.
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Then S’ C G is a maximal torus of G, and it defines maximal tori S C H and
Sad — S/ad C Had‘

We will construct involutions on H modeled after our constructions for the case
of type A;. For this we need to make an analogous extra assumption.

Definition 4.2.1. We say that the skew-hermitian space (A, g) over D is strongly
skew-hermitian if there exists a g-orthogonal D-basis 8 = {vy, ..., v,} of A and
an F-automorphism « : D — D such that g (v;, v;) = —a(g (v}, v;)) and a?=1.

Remark 4.2.2. Any automorphism « : D — D as above must be necessarily inner,
of the form a(d) = rdr~' for some r € D* such that r> € F*. This implies that
ro(r)~! e F* as well (because F is the set of elements of D fixed by o). Moreover,
since ¢ (v;, v;) € D*, r must be a pure quaternion in D. As in the previous case,
the existence of the basis 8 will allow us to construct an explicit involution. The
map « plays the role of the canonical conjugation of case A;.

Suppose that (A, g) is strongly hermitian, and let 8 and o = int(r) be as in
the definition. We then have oo = oa. Let I : A — A be the o-semilinear
automorphism obtained by applying « to the coefficients of elements of A with
respect to the basis 8. Then g (I (x), I (y)) =—a(g(x, y)). Let6 : G — G be defined
by 64(g) = I4g14 for an F-algebra A and a (D ®f A)-linear automorphism g
of AQr A.

Let L = F(r), where r € D is as above. This is again a quadratic extension of F
(and a maximal subfield of D). Let S’ and S be the maximal tori of G and H*
defined above using the basis S.

Proposition 4.2.3. With the above hypotheses, the following statements are true:
(@) The map 0 : G — G is an opposition involution (and hence so is 6*).
(b) We have 0(S") = S’ and for every v € I, 6, : G, — G, induces cg, on S,,.
In particular, 03 : H* — H induces Cgu ON S3 for v € Iye.

Proof. For part (a), it suffices to see that 6 : Gg — G is an opposition involution,
for a convenient extension E/F. Using the basis 8 and the isomorphism ¢ :
D ®pr L — M>(L) as constructed above, we can identify G as follows. Implicit

in the construction of ¢ is the choice of a pure quaternion s € D with rs = —rs,
and we let r = v(s?) € R. Let qi = q(v;, v;). Since o (g;) = —¢q; and rq,-r_1 = —qi,
we have

600 = _y) e0ta

0 b
¢ (qi) = (Ci 0)

and
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for some b;, ¢c; € L. The image in M, (L) under ¢ of L; ® r L C D ® L consists
of the matrices in M, (L) of the form

X yb;
yei X

for some x, y € L. Thus, the induced isomorphism ¢ : M,,(D @ L) — M3, (L)
sends the subalgebra of diagonal matrices L1 ®p L x --- X L, @ L to the set of
matrices in My, (L) of the form

¥ — < diag(xy,...,x,) diag(ybi,..., ynbn)>

) i 4.2.4
diag(yicy, ..., yncn)  diag(xy, ..., xp) ( )

with x;, y; € L. Let

~ 0 diag(by, ..., by)
0= (diag(cl, e 0 ) € GLan(L).

Then, for any L-algebra R, writing a matrix X € GL,(R) as X = (é g), there is
an isomorphism

~

ty _t N
G(R) = {X € GLay(R) : (_,]g ﬁ) 0 (é‘ g) = 0. det(X) = 1} 4.2.5)

that takes the subgroup S’ to the subgroup of matrices of the form (4.2.4) in the
right-hand side. Note that the equation is equivalent to ' X Q' X = Q’, where

é,_ diag(cl, ...,Cn) 0
- 0 —diag(by, ..., by)

(the matrix é/ is the matrix of the associated bilinear form [Scharlau 1985, §10.3]).

Moreover, if
_(rl, O
=lo —rl,)’

then Oz (X) = )/X)/_1 for X € G(R); in block matrix terms,

(e n)=(e 5)

It is clear then that 6 preserves S’.

Let E/L be a field extension such that there exist elements ¢;, f; € E with 61‘2 =c;
and fi2 = b; (for example, take £ = C with a fixed embedding of L). For elements
ai, ..., ay, let adiag(ay, ..., a,) be the antidiagonal matrix whose (i, n + 1 —i)-th
entry is a;, and let J,, = adiag(1, ..., 1). Let

_( adiag(ey, ...,e1) adiag(—fu, ..., —f1)

diag(e1/2, ..., e,/2) diag(f1/2,..., fn/z)) € GLan(E).
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Then the map X — §X 871 sends Gy (viewed inside GL,, r via (4.2.5)) to the
special orthogonal group SOy, of the matrix Jy, over E. The maximal torus st
maps to the subgroup of diagonal matrices in SO,,, and 6 becomes conjugation by

the matrix
0 2rJ,
Sys ! = "
Y ((r/z)Jn 0 )

inside GL,,. We identify in the usual way X*(S’) = Z". As a Borel subgroup
of G we take the subgroup B of upper-triangular matrices belonging to G g. The
map 6 sends B to the subgroup B~ of lower-triangular matrices. Let J;, be the
matrix obtained from J,, by swapping the rows n and n + 1. Then it is easy to see
that J;, € G(E) and sends B~ to B. It follows that W (0)(x) = x oint(J;,) o6 for
x € X*(S). If x is parametrized by (ay, ..., a,), then Wy(0)(x) is parametrized by
(ai,...,ay—1, —ay) = (ay,...,a,)* [Bourbaki 2002, Plate IV]. Thus, 0 : G — G
is an opposition involution.

Letv: F— R,andlett:L <> Cbeanextensionofvto L. If t=7,thent(r) e R.
Thus, 7(r)? € R-, and this implies that D, is split, so v € Iy = I.. In part (b), we
only care for v € I,., so suppose from now on that T # 7, so that t(r) € iR. . By
the same reasoning we have that r = v(s%) < 0. We use 7 to identify G¢ = SO,
as above. We first work out the induced complex conjugation on G(C) = SO,, (C).
Using the isomorphisms D ®r, C ~ (D ®F L) @1 C = M,(C) (the last one
coming from ¢), it is easy to see that complex conjugation on D ®F , C corresponds
to taking a matrix X € M,(C) to

t 0\ (X2 X1\ [t O
01)\Xp XpnJ\ 0 1)°
where t = v(s?) as above. Note that gi € D C D®F, C, so this implies that

t7(c;) = t(b;) and thus
tei/fi=—fi/éi. (4.2.6)

It follows that the induced complex conjugation on G (C), viewed inside GL,, (C)
as in (4.2.5), is given by

A B v D iC
X:(C D)'_)C(X)_C—IE A)‘

Finally, we apply conjugation by § to identify G¢ with SO,,,. We only need to con-
sider the action of ¢ on diagonal matrices. Let X =diag(xy, ..., x,, xn_1 e xl_l) €

S0,,(C). Then ¢(X) = 8¢'(8)~'¢/(X)c’(8)8~", and a long but easy direct calcula-
tion using (4.2.6) shows that

-1 (2adiag(en/ fu, ..., e1/f1) 0
8c'(d) —( 0 %adiag(f]/él,...,fn/én))’
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and thus,

c(diag(ri, -y Xy oo, 2D = diag (D)7 )T Fns e D
This implies that, if x € X*(S’) is parametrized by (ay, ..., a,) € Z", then “x
is parametrized by (—ay, ..., —a,). This is also easily seen to be the parameter
of x o6, which shows that 6, induces cg; on S’ U

Remark 4.2.7. Keep the assumptions and notation as above. For each v € I, we
will construct a map y : S — H satisfying Deligne’s axioms [1979, §1.2.1] and
factoring through Sf}d. Recall that 7 = v(s?), and let u = v(r?). Since v € I, by
our assumptions D, is not split. This implies that u <O and ¢t <O0. Let ¢ : D, - H
be the isomorphism of R-algebras sending r ® 1 to /—uey and s ® 1 to /—te3.
Here e, €3, e3, and e4 are the following elements of H:

i 0 01
el =1, 2=\, _; ) a=\_10) es = eres.

As above, we can write ¥ (q;) = (_0 yi) with y; € C*. Let

yi 0
T:( 0 diag()’h---dn))
—diag(y1, ..+, ¥n) 0 '
We then have, for an R-algebra R,
~ A B N
G,(R)=1X= B A €GL,,(C®rR) : X'TX =T, det(X)=1;. (4.2.8)

The maximal torus S’ corresponds to the subgroup of matrices on the right-hand
side where A = diag(ay, ..., a,) and B = diag(byy, ..., b,y,) with a;, b; € R.
We can actually see H, as the adjoint group of G/, where G’ (R) is isomorphic to

{X = <_g g) € GLy,(C®rR) : X*'TX =v(X)T, det(X) = v(X)"}.

We define y’ : S — G/, by the formula

Re(z)1, diag(—lm(z) Vi eons Im(z) yn>

' (2) = |Yn|
YR diag(—m_i,.--,—m_» Re(2)1,
|y1] [ynl

for z € S(R). Conjugating by a suitable matrix U € GL,,(C), we can write
G, = GO*(2n) and y becomes the map in the Appendix of [Milne and Shih 1981],

so it satisfies Deligne’s axioms, and hence also does y = y’d,
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5. Involutions on certain Shimura varieties

In this section we combine all our previous results to prove the existence of descent
data on certain Shimura varieties Sh(G, X). As we said before, we only consider
the case where the simple groups H; are of type A or DY In the previous section,
we constructed opposition involutions on some of these groups, preserving a certain
maximal torus S; and inducing complex conjugation on its characters. Furthermore,
we constructed maps y; , : S — Hf"g for every v € I; . satisfying Deligne’s axioms
[1979, §1.2.1], factoring through Sl?f‘f). We now show that we can always find an
element x € X such that x; , factors through Sff‘li) for every i and v € [; ,.. The
existence of descent data will follow by combining this with Proposition 3.4.8.

5.1. Existence of particular elements x € X. Let H be an almost simple, simply
connected group over R (to play the role of one of the noncompact H; ;). Suppose
that there exist morphisms y : S — H satisfying Deligne’s axioms [1979, §1.2.1];
in particular, H is absolutely almost simple. Let D be the Dynkin diagram of He¢
associated with a choice of maximal torus and Borel subgroup. To each H*(R)-
conjugacy class Y of morphisms y as above, we can attach a special node sy € D,
and sy = sy ifand only if Y = Y’.

Lemma 5.1.1. Under the above conditions, there exist at most two H (R)-conjugacy
classes Y of morphisms satisfying Deligne’s axioms [1979, §1.2.1]. Moreover, given
such a conjugacy class Y, any morphism satisfying these axioms must belong to
either Y or Y1,

Proof. Suppose first that D is not of type A;. This case is easy because there are not
too many special nodes. Indeed, assume first that H (R) is connected, and fix Y one
of the conjugacy classes. Then sy-1 = s} # sy [Deligne 1979, §1.2.8], and hence,
Y~! and Y are two distinct conjugacy classes. Suppose that Z is a third conjugacy
class, that is, 57 is neither equal to sy nor to s}. Again by [Deligne 1979, §1.2.8],
sz # 57, and thus, we have four distinct special nodes sy, s}, sz, and s7,. There
is no connected Dynkin diagram with four special nodes which is not of type A,
and thus, this is a contradiction. If H(R) is not connected, then sy = s}. If Z is
another conjugacy class, then again by [op. cit.] we must have sz = s7,. But for any
connected Dynkin diagram, there is at most one special node which is fixed under
the opposition involution, and thus Z =Y.

Suppose now that H is of type A; with [ > 2, so H =SU(p, ¢g) for some nonzero
pair of integers p, g such that p+q =1+ 1. The isomorphism C®rC ~ C x C given
by z ® a — (za, za) induces by projection on the first coordinate an isomorphism
Hc =~ SL;4 c; fix the usual Borel pair here to define the Dynkin diagram. Define
a morphism

y0:S— H¥ =PGU(p, q)
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with yo(z) being the class of the matrix

zl, 0
0 zI,)"

Then yy satisfies Deligne’s axioms [1979, §1.2.1], and the special node s¢ attached
to its H2(R)-conjugacy class Yy is « p- From the conjugate map yo = y, U'we get
the special node o, associated with Y;° U If Y is another conjugacy class, say with
special node «;, then there would be an isomorphism PGU(p, ¢) =PGU(¢, [+1—1)
sending Yo or Y 'to Y. In particular, f = p or r = ¢, and we conclude that there are
at most two possible conjugacy classes of morphisms satisfying Deligne’s axioms
for the fixed form PGU(p, q) of PGL;1; ¢ (and there are exactly two in all cases
except when p = ¢, when there is only one). O

Going back to our general Shimura datum (G, X), for each i, let S; C H; be
a maximal torus, 7", =Resg 08 C éi, T; C G, its image in G;, T’ C G the
image of their product, and 7 = Z°T’. Note that Tﬂgd = Tu;f‘d =11, Sft‘f), where
Siw C H;, and S is its image in H.
Lemma 5.1.2. Suppose that T C G is the maximal torus defined above. Suppose
that for each v € I; ., there exists a morphism y; , ©'S — Hfg satisfying axioms
[Deligne 1979, §1.2.1] and factoring through Sff‘,ij. Then there exists an element
x € X such that x™ factors through Tusd.

Proof. Let z € X be an arbitrary element. The previous lemma implies that z; , is
Hfg (R)-conjugate to amap y; , : S — Sft‘,i). Thus, we can write z; , = u; y - yi., for
Uiy € Hlf’"ﬂ (R). We claim that, after possibly changing the y; ,, we can arrange for
u;, to be in Hfg (R)*. Indeed, if u; , is not in that connected component, then in
particular Hf"ﬂ (R) is not connected, and thus, there is only one conjugacy class in
question, with two connected components, one containing z; ,, and the other one
containing y; ,. Thus, we only need to replace y; , with Vi vl, which also factors
through S;"CL. For v € I; ., let u; ,, = 1. It follows that u = (u; ,) € G*(R)™, and
thus, there exists g € G (R) lifting u. Let x = g~ -z € X, so that x* = (y; ), which
factors through Tﬁd as desired. U

5.2. The main theorem. In this subsection we put all the ingredients together to
obtain the main theorem on the existence of involutions of G taking X to X.

Definition 5.2.1. The Shimura datum (G, X) is said to be strongly of type (AD")
if each of the groups H; is either of type A; with [ > 2 and attached to a strongly
hermitian space (as in Definition 4.1.4), or of type D; with [ > 5 odd and attached
to a strongly skew-hermitian space (as in Definition 4.2.1).
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For example, a Shimura variety defined by a similitude unitary group attached to
a hermitian space over a CM field is strongly of type (A D™). Note however that
the definition only restricts the semisimple part of G.

Theorem 5.2.2. Suppose that (G, X) is strongly of type (AD"). Then there exists

an involution 6 : G — G such that 0(X) = X, and hence, there exists a model
of Sh(G, X) over E™ as in Theorem 2.3.1.

Proof. In Subsections 4.1 and 4.2, we constructed for every i, an opposition
involution 6; : H; — H; and a maximal torus S; C H; such that 6;(S;) = S; and
Gfi induces cgu for every v € I; ,.. Moreover, by Remarks 4.1.10 and 4.2.7, for
every i and v lév Ii nc, there is amap y; , : S — Hi‘j‘g satisfying Deligne’s axioms
[1979, §1.2.1], and factoring through Sl?f‘,i). The result then follows by combining
Proposition 3.4.8 and Lemma 5.1.2. (I

Remark 5.2.3. The conclusion of the previous theorem holds in other cases as well.
For instance, if G is adjoint and there exists an opposition involution 6 : G — G
(which is always the case if G is also quasisplit, for example), then by the adjointness
of G, we conclude that 6(X) = X. On the other hand, the cases that we considered in
this paper are concretely given by simple algebras, and thus are intimately related to
moduli problems, even though we do not use the moduli interpretation explicitly. It
is an interesting problem to consider factors of other types, for instance of type Eg,
and analyze whether it is possible to construct opposition involutions with the
desired properties in some of these cases. We plan to investigate this problem in
the future.
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A subspace theorem for subvarieties
Min Ru and Julie Tzu-Yueh Wang

We establish a height inequality, in terms of an (ample) line bundle, for a sum
of subschemes located in £-subgeneral position in an algebraic variety, which
extends a result of McKinnon and Roth (2015). The inequality obtained in this
paper connects the result of McKinnon and Roth (the case when the subschemes
are points) and the results of Corvaja and Zannier (2004), Evertse and Ferretti
(2008), Ru (2017), and Ru and Vojta (2016) (the case when the subschemes are
divisors). Furthermore, our approach gives an alternative short and simpler proof
of McKinnon and Roth’s result.

1. Introduction and statements

McKinnon and M. Roth [2015] introduced the approximation constant o, (L) to
an algebraic point x on an algebraic variety V with an ample line bundle L. The
invariant o, (L) measures how well x can be approximated by rational points on
V with respect to the height function associated to L. They showed that «, (L) is
closely related to the Seshadri constant €, (L) measuring the local positivity of L
at x. They also showed that the invariant o, (L) can be computed through another
invariant 8, (L) in the height inequality they established (see Theorem 5.1 and
Theorem 6.1 in [McKinnon and Roth 2015]). By computing the Seshadri constant
€ (L) for the case of V = P!, their result recovers Roth’s theorem, so the height
inequality they established can be viewed as a generalization of this theorem to
arbitrary projective varieties.

In this paper, we provide a simpler proof of the above results. Furthermore,
we extend the results from the points of a projective variety to subschemes. The
generalized result in terms of subschemes connects, as well as gives a clearer
explanation to, the above mentioned result of McKinnon and Roth with the recent
Diophantine approximation results in terms of the divisors obtained in [Corvaja and
Zannier 2004; Evertse and Ferretti 2008; Levin 2014; Ru and Vojta 2016; Ru 2017].

We now state our result. Let V be a projective variety defined over a number
field k.

MSC2010: primary 11J97; secondary 11J87, 14G0S.
Keywords: Schmidt’s subspace theorem, Roth’s theorem, Diophantine approximation, Vojta’s
conjecture.
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Definition 1.1. Let L be a line bundle over V with h°(V, NL) > 1 for N big enough.
Let Y be a proper closed subscheme of V and 7 : V — V be the blow-up along Y,
and E be the exceptional divisor. We define

% WOV, Na*L —mE)

m=1
N -h%(V, NL)

Remark 1.2. (a) If Y is an effective Cartier divisor, then the blow-up is an iso-
morphism. Without loss of generality, we let  be the identity map, V =V
and £ =Y.

(b) Let D be an effective divisor on V, we define Bp y := Bo(p),y, where O(D)
is the line sheaf associated to D.

ﬂL,y := lim inf
N—o00

(c) In the case when L is big, the limy_, » in the definition above exists. Indeed
(see [McKinnon and Roth 2015, pp. 544-545]), we have

; _/VeffVol(Ly)d
LY= 1 Nour)

where L, :=7*L — y E and yefr = sup{y >0 | L, is effective}.

Definition 1.3. We say that the closed subschemes Y1, ..., ¥, of a projective variety
V are in £-subgeneral position if, for any x € V, there are at most £ subschemes
among Y1, ..., Y, which contain x.

Remark 1.4. In the case that Y1 =y, ..., Y, =y, are points (as in [McKinnon
and Roth 2015]), the condition that yi, ..., y, are distinct implies that Yy, ..., Y,
are in 1-subgeneral position (i.e., with £ = 1).

We establish the following result.
Main Theorem. Let k be a number field and My be the set of places on k. Let
S C My, be a finite subset containing all archimedean places. Let V be a projective
variety defined over k and Yy, ..., Y, be closed subschemes of V defined over k in

L-subgeneral position. For any v € S, choose a local Weil function Ly, , for each
Y;,1<j=<gq. Let L be a big line bundle. Then for any € > 0

q
DD ) < e(glaé]{ﬂ;}y,.} +€)hp(x) (1-1)

vesS i=1
holds for all x outside a proper Zariski-closed subset Z of V (k).

The following corollary of our main theorem recovers the main result of [Mc-
Kinnon and Roth 2015]. The proof will be given in Section 3.
Corollary 1.5 [McKinnon and Roth 2015, Theorem 6.1]. Let V be a projective
variety over k. Then for any ample line bundle L and any x € V (k) either

e ay(L)> ,BL,x or
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o there exists a proper subvariety Z C V., irreducible over k, with x € Z (k) so
that oy v (L) = oy, z(L|Z), i.e., “ax (L) is computed on a proper subvariety
Of V n’
where oy (L) is the approximation constant defined in [McKinnon and Roth 2015,
Definition 2.9], and B, . is defined in Definition 1.1 (with Y taken as a point x).
We will show in Lemma 2.2 that for any line bundle L, x € V
n
n+1
where n = dim V. We note that the Seshadri constant €, (L) does not decrease when

restricting to a subvariety [McKinnon and Roth 2015, Proposition 3.4], so we can
use induction to further get, from Corollary 1.5 and (1-2), the following result.

,BL,)C = Gx(L)’ (1-2)

Corollary 1.6 [McKinnon and Roth 2015, Theorem 6.2, alternative statement]. Let
V be a projective variety over k. Let L be any ample line bundle and choose any
x € V(k). Then for any 8 > 0, there are only finitely many solutions y € V (k) to

dy(x, y) < Hy (y)~ 1D/ (ex(D)+8),

In the case when V =P" and L = Op» (1), we have €, (L) =1 for all x € P" (see
[McKinnon and Roth 2015, Lemma 3.3]). Therefore the above result generalizes
the theorem of Roth.

We now turn to another extreme case when the subschemes Yy, ..., Y, are
effective Cartier divisors Dy, ..., Dy. Let D := Dy +---+ D,;. Assume that
each D; is linearly equivalent to a fixed ample divisor A. Then we have the
following relation of height functions ip = gh 4 + O(1). On the other hand, by the
Riemann—Roch theorem, withn =dim V,

N nAn
hO(ND) = h®(gNA) = % +o(N")
and N nan
hO(ND —mD;) =h'((gN —m)A) = (q_—"") +o(N™).
Thus
ndN~1 n _1\yn+l

SO HWD—mD) = 3 1oy = AN vy,

m>1 A (n+D)!
Hence

An(qul)’H»l +1
ﬂ _ hm (l’l-‘rl)' +0(Nn ) _ q
D,D; — nAn - .
/ N—oo N(‘INn)!A +0(Nn+l) n+1

Thus the Main Theorem, together with the above computation, implies the following
result of Chen, Ru, and Yan [2012] (see also [Corvaja and Zannier 2006]).
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Theorem 1.7. Let k be a number field and My, the set of places on k. Let S C M
be a finite subset containing all archimedean places. Let V be a projective variety
of dimension n defined over k. Let Dy, ..., D, be effective Cartier divisors in
L-subgeneral position on V. Assume that each D;, 1 < j < q, is linearly equivalent
to a fixed ample divisor A. For any v € S, choose a Weil function Ap, . for
each D;, 1 < j <q. Then for any € > 0

q
DD hpw®) <+ 14 )ha(x) (1-3)

ves i=1

holds for all x outside a proper Zariski-closed subset Z of V (k). In particular, if
Dy, ..., D, are in general position on 'V, then the inequality

q
3> hpw) <nm+ 1+ 6)ha(x) (1-4)

veS i=1
holds for all but finitely many x € V (k).

In the general case when Dy, ..., D, are only assumed to be big and nef, we
can also compute fSp, D;- The details will be carried out in the next section.

We note that recently the first named author and P. Vojta [2016] obtained the
following sharp result in the case when Dy, ..., D, are in general position and
when V is Cohen—Macaulay (for example when V is smooth).

Theorem 1.8 [Ru and Vojta 2016]. Let k be a number field and My be the set of
places on k. Let S C My, be a finite subset containing all archimedean places. Let
V be a projective variety defined over k. Assume that V is Cohen—Macaulay. Let
Dy, ..., D, be effective Cartier divisors in general position on V. For any v € §,
choose a Weil function Ap, , for each Dj, 1 < j < q. Let L be a line bundle on 'V
with h°(V, NL) > 1 for N big enough. Then for any € > 0

q
D0 hpwx) < (max (B ) +€)hL(x) (1-5)
, Isizg = ™™
veS i=l1
holds for all x outside a proper Zariski-closed subset Z of V (k).
Theorem 1.8, together with the above computation, recovers the result of [Evertse
and Ferretti 2002; 2008] in the case when V is smooth.
2. Computation of the constant f; y

We first compute the constant 8, , i.e., we let Y = y be a point in V (k). The
following lemma is a reformulation of Lemma 4.1 in [McKinnon and Roth 2015].



A subspace theorem for subvarieties 2327

Lemma 2.1. Let V be a projective variety and x be a pointin V. Let 1 : Vv
be the blow-up along x, and E be the exceptional divisor. Let L be an ample line
bundle and m a positive integer. Then

@) hO(V, Nr*L—mE)=0ifm > N - Yefr x, where Ve x is defined in [McKinnon
and Roth 2015], and

(i) KOV, Nn*L —mE) > h°(V, NL) — m" mult, V /n! + O(N"™") for N > 0.

Proof. Write ho(f;, Nr*L —mE) = ho(?, Nn*L — N -yE), where y = m/N.
The argument in [McKinnon and Roth 2015] shows that WOV, Nn*L —mE) >
ho(V, NL) —m" mult, V/n! + O (N"™1). O

The following is a restatement of Corollary 4.2 in [McKinnon and Roth 2015].

Lemma 2.2. For any ample line bundle L, x € V and positive integer m, we have

oz (<2 )
L=\, v) a1

Proof. Choose a sufficiently large N. By Lemma 2.1 and the Riemann—Roch
theorem,

. It, V
WOV, 7*NL —mE) > hO(V, NL)<1—mu x (m

" n—1
o ﬁ) >+O(N ). (1)

The right-hand side of (2-1) is less than zero when m > u = [N (L" /mult, vHl/m,
hence

o0 u
Z WOV, n*NL—mE)>h°(V, NL) Z <1—

1 & mult, V /[ m\" 1
x> — 1-— — ol -
oz (-5 (5) ) roly)

m=

1 mult, V u"t! 1
N L" (n+1)N" N

LY 23
_(n+l)N+ (N) 2-3)

Let N run through all sufficiently large integers. Then we have
n L" I/n
> . O
Praxz n+1 (multx V)

Next we consider the case when Y; = D;, 1 < j < ¢, are effective big and nef
Cartier divisors on V.

mult, V (m

T N) >+O(N”). 22)

Consequently,
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Definition 2.3. Suppose X is a complete variety of dimension n. Let Dy, ..., D,
be effective Cartier divisors on X and let D = Dy + Dy + - - -+ D,. We say that
D has equidegree with respect to Dy, Dy, ..., Dy if D; - D"~! = D"/q for all
i=1,...,q.

Lemma 2.4 [Levin 2009, Lemma 9.7]. Let V be a projective variety of dimension n.
If Dj,1 < j < gq, are big and nef Cartier divisors on V, then there exist positive
real numbers r; such that D = Z}q.: | 7jD;j has equidegree.

Since divisors r; D; and D; have the same support, the above lemma tells us
that we can always make the given big and nef divisors have equidegree without
changing their supports. So now we assume that D := Dy +- - -+ D, is of equidegree.
To compute Bp p, for j =1, ..., g, we use the following lemma.

Lemma 2.5 [Autissier 2009, Lemma 4.2]. Suppose E is a big and base-point free
Cartier divisor on a projective variety V and F is a nef Cartier divisor on 'V such
that F — E is also nef. Let 6 > 0 be a positive real number. Then, for any positive
integers N and m with 1 <m <8N, we have

h'(NF —mE)
F" Fn—l . E -1 Fn—2 . E2

Sy VAt VL (n—1) N2 min{m?, N2} + O(N" ),
n! (n—1! n!

where the implicit constant depends on B.

We compute Zmzl hWO(ND —mD;) foreach 1 <i < qg. Let n =dimV and
assume thatn > 2. Let b= D"/(nD"~'- D;) and A = (n — 1)D"~2 . D?. Then, by
Lemma 2.5,

> h%ND—mD;)

m=1

[bN] n 1
D n D" - D, n—1 A n—-2_ - 2 2 n
D' DV'.Dip* A
>(—b——o 5 +-e®))N" oW
n! n—10"! 2 n!
b A ; n+1 O(N"
=|=-+—gb)|D
2+Dng<)> o)

= g+oz>Nh0(ND) + O(N™),

where o := g(b)A/D" and g : R — R is the function given by g(x) = x3/3
ifx <1land g(x) =x — % for x > 1. Now from the assumption of equidegree
D;-D""'=D"/q, so b=¢q/n. Moreover, « > 0 since dim V > 2 and the D; are
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big and nef divisors. Hence
> =1 h*(ND —mDj) .
NhO(N D) -

b
. = liminf 5 toa.
Bp.p, imin 2—|—a

Thus we have proved the following.

Proposition 2.6. Let V be a projective variety of dimV > 2 and assume that
D := Z;?: | Dj has equidegree with respect to Dy, ..., Dy which are big and nef.
Then

Zm>lh0(ND—mDi) q
= > — 4,
NhO(N D) 2n

Bp.p; = lin]lvinf

where o is a computable positive number.
Proposition 2.6, together with the Main Theorem, implies the following result.

Theorem 2.7 [Hussein and Ru 2018]. Let k be a number field and let S C My be
a finite set containing all archimedean places. Let V be a projective variety of
dimension > 2 over k and let D1, . .., D, be effective, big, and nef Cartier divisors
on'V defined over k, located in £-subgeneral position. Let r; > 0 be real numbers
such that D := Z?: | i Di has equidegree (such numbers exist due to Lemma 2.4).
Then, for €y > 0 small enough, the inequality

q . q
S5 < Z(Zdl;n v 60) (erhDj(x)>

ves j=1 j=1

holds for all x € V (k) outside a proper Zariski-closed subset of V.

3. Proof of the Main Theorem

We first recall some basic properties of local Weil functions associated to closed
subschemes from [Silverman 1987, Section 2]. We assume that the readers are
familiar with the notion of Weil functions associated to divisors (see [Lang 1983,
Chapter 10], [Hindry and Silverman 2000, B.8] or [Silverman 1987, Section 1]).

Let Y be a closed subscheme on a projective variety V defined over k. Then one
can associate to each place v € Mj a function

Ayy i V\supp(Y) — R

satisfying some functorial properties (up to an My-constant) described in [Silverman
1987, Theorem 2.1]. Intuitively, for each P € V and v € M,

Ay»(P) = —log(v-adic distance from P to Y).

The following lemma indicates the existence of local Weil functions.
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Lemma 3.1. Let Y be a closed subscheme of V. There exist effective divisors
Dy, ..., D, such that
Y =nND;.

Proof. See Lemma 2.2 from [Silverman 1987]. O

Definition 3.2. Let k be a number field, and M} be the set of places on k. Let V be
a projective variety over k and let Y C V be a closed subscheme of V. We define
the (local) Weil function for ¥ with respect to v € My, as

Ay =min{Ap, o}, (3-1)

when Y = ND; (such D; exist according to the above lemma).

Lemma 3.3 [Vojta 1987, Lemma 2.5.2; Silverman 1987, Theorem 2.1(h)]. Let Y
be a closed subscheme of V and let V be a blow-up of V along Y with exceptional
divisor E =n*Y. Then Ay ,(m(P)) = Ag »(P)+ O,(1) for P € V.

Note that in the original statement of Lemma 2.5.2 in [Vojta 1987], V is assumed
to be smooth, but from the proof it is easy to see that it works for a general projective
variety from Theorem 2.1(h) in [Silverman 1987].

For our purpose, it suffices to fix a choice of local Weil functions Ay, , for each
l<i<gandveSs.

Lemma 3.4. Let Y, ..., Y, be closed subschemes of a projective variety V in
L-subgeneral position. Then

q
D hyw@) £max Y hy o (x) + 0u(1), (3-2)
I
i=1 jel
where I runs over all index subsets of {1, ..., q} with £ elements for all x € V (k).
Proof. Let{iy,...,ig}=1{l,...,q}. Since the Y;, 1 <i < g, are in {-subgeneral
position, 2| ¥;, = @. Then
15?151?+1{kyi’”} - {)”ﬂfill Ymv} = Ou(D). (3-3)

We note that the first equality follows from (3-1), the definition of the local Weil
function; and the second equality follows from Corollary 3.3 in [Lang 1983, Chap-
ter 10]. For x with the following ordering

)\Yil,v(x) = )\Y,-Z,v(x) == )inq,v(x),
we have

q ¢
D hrw) =)y () + 0u(1).
i=1 i=1
Then assertion (3-2) follows directly as the number of subvarieties under consid-
eration is finite. 0
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We also need the following generalized Schmidt subspace theorem.

Theorem 3.5 [Ru and Vojta 2016, Theorem 2.7]. Let k be a number field, S be
a finite set of places of k containing all archimedean places, X be a complete
variety over k, D be a Cartier divisor on X, W be a nonzero linear subspace of
HO(X, O(D)), s1, ..., Sq be nonzero elements of W, € > 0, and ¢ € R. For each
J=1,...,q,let D; be the Cartier divisor (s;) and \p,; be a Weil function for D;.
Then there is a proper Zariski-closed subset Z of X, depending only on k, S, X,

D, W,si1,...,54, €, c,and the choices of Weil and height functions, such that the
inequality
Y “max Y " ap, ., (x) < (dim W+ e)hp(x) +¢ (3-4)
J
vesS jeJ

holds for all x € (X \ Z)(k). Here the set J ranges over all subsets of {1, ..., q}
such that the sections (s;)jcy are linearly independent.

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. Let § > 0 be a sufficiently small number. We may

choose a sufficiently large integer N such that, fori =1, ..., q,
(0.¢]
> WOV, No*L — E;) = (BL.y, = )Nh°(V, NL), (3-5)
m=1

where 7; : X7, — V is the blow-up at ¥; and E; = 7~ 1(Y;) is he exceptional divisor
of i

Let x € V(k) and v € S. Since the Y;, 1 <i < g, are in £-subgeneral position, it
follows from Lemma 3.4 that

q
D hyw(®) < Ly w(x) + Oy (D), (3-6)
i=1

for some iy with 1 < iy < g, where the constant O, (1) is independent of x. Note
that ig depends on the point x, but O, (1) is independent of x.
Write Vi, as V, m;, as w and E;, as E. We consider the following filtration.

HO(V,7n*NL) D H(V,n*NL—E)D H'(V,7*NL—-2E)D>---  (3-7)

We identify H(V, NL) with H O(V, m*NL) as vector spaces (note: according to
the footnote on page 553 in [McKinnon and Roth 2015], if X is not normal, then
H°(V, NL) may only be a proper subspace of H O(V, m*NL). However, since the
volume is a birational constant, the asymptotic calculations go through without
change). Choose regular sections sy, ..., sy € H°(V, NL) successively so that
their pull-back 7*sy, ..., 7% sy € HO(V, m*NL) form a basis associated to this
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filtration, where M = ho(‘7, Nn*L). For a section w*s € HO(‘7, T*NL —mE)
(regarded as a subspace of H O(V, n*NL)) we have

div(z*s) > mE. (3-8)

Hence, A(z+5),v = mAg , + O,(1). Note that although O, (1) here depends on i
(which depends on x), there are g choices of such iyp and V is compact, so we can
again make O, (1) independent of x. Therefore, also using Lemma 3.3 and (3-5),

M
Z)L(n*sj-),v
j=1

o
> m(h*(V, x*NL—mE)—h®(V, 7*NL— (m+1)E))Ag.o+ Oy (1)
0.¢]
=Y m(h°(V,n*NL=mE)—h®(V, n*NL = (m+1)E))Ay, o + Oy (1)

o0
=Y WV, 7*NL —mE)Ly, yor + O0y(1)

> (BL.v,, —8)Nh’(V, NL)Ay, yom + 0,(1).

The functorial property of Weil functions implies A (zxs;) v = A(s;).0 © T + Oy(1).
Hence, the above inequality, together with (3-6), implies that

q
> Ay
i=1
£

<<
= N-hO%(V, NL)(minj<;<4{Br v,} — )

mjax{ jXEij(s_,>,v(x>} +0,(1), (3-9)
where J is a subset containing M linearly independent sections taken among the
collection of sections {s;(ip, v)|1 <ip < ¢q, v € S} coming from the claim (3-6). It
then follows from Theorem 3.5 and a suitable choice of § that for a given € > 0
there exists a proper algebraic subset Z of V defined over k such that

q
DD b0 < (€ max (B )+ he (o), (3-10)
ves i=l1 -
forall x e V(k) \ Z(k). g

Proof of Corollary 1.5. Let v be a place of k. The main point of the proof is to
reformulate the distance function d, (-, -) defined on V (k) [McKinnon and Roth
2015, Section 2] into a product of several distance functions on V (K), where K
is a finite extension of k. Following the construction in [McKinnon and Roth 2015,
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Section 2], we fix an extension of v to k. The place defines an absolute value ||-||,
on k. If K C k is a finite extension of k, then d, (-, - )x = d,( -, -),[CK”:k”]. Here
dy(-, )k refers to the distance function defined by using the same embedding
and normalizing with respect to K and d,( -, - ) the distance function normalized
with respect to k (see [McKinnon and Roth 2015, Proposition 2.1(b)]). Assume
that V. C PV (given by the canonical map associated to the ample line bundle L).
For a given fixed point y =[yp:---: yn] € V (k), let K be the Galois closure of
k(yo, ..., yn) over k. For each v € My, the inclusion map (i,)|x : K — k, induces a
place wo :=v of K over v, and other places w of K over v are conjugates by elements
oy € Gal(K /k) such that ||oy(a)|lw = lla|l, for all a € K. Then, for x, y € K,

[] dww@.ontx= [] dx yx

weMg ,w|v weMg ,wlv

= [ d ™

weMg ,wlv
=[K : kldy(x, y)k,

1.e.,

dx. =[] duow®).onOoN™* forx.yek.  (-11)

weMg ,w|v

To compute ay (L), we consider any sequence {x;} € V (k) of distinct points with
dy(y. x;) = 0. By (3-11), we have dy(y. x1)k = [Tyeprg pp du(@w (), x:) ¢,
(Here we extend oy, € Gal(K /k) to the map from V (K) to V(K) by acting on the
coordinates of the points.) The distance function d,, (y, x) in [McKinnon and Roth
2015] is constructed by choosing an embedding ¢; : V — PV into a projective
space via the sections of L and measuring the distance in the embedded space. For
a fixed y we denote —logdy,(y, -) by Ag(y),w, Which is a local Weil function on the
embedded space. We note that this fact can also be proved by a slight modification of
Lemma 2.6 in [McKinnon and Roth 2015]. By the functoriality of Weil functions of
closed subschemes [Silverman 1987, Theorem 2.1(h)] we have —log d,, (0, (y), x) =
Aoy (v),w(X) + O(1). On the other hand, it is clear from the definition that 8;, , =
BL.0.(y) for very o, € Gal(K / k). The Main Theorem then implies that for any € > 0

1
logdy(v, ) = s D logdu(vx) 2 =B} + () (-12)

weMg ,wlv

holds for all x; outside a proper Zariski-closed subset Z of V (K) (note that, in this
case, £ = 1). We note that Z is indeed defined over k since all the x; are in k. In
conclusion, we have shown that for all sequences {x;} C V (k) of distinct points with
dy(y, x;) = 0, if ay({x;}, L) < By, then all but finitely many of the points of {x;}
lie in Z. If (a) holds, then we are done. Therefore we assume that a, (L) > By y.
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Then the previous conclusion shows, in this case, that oy (L) = o, 7(L|7). To see
Z is irreducible over k, we first use Proposition 2.14(f) in [McKinnon and Roth
2015] to reduce Z to one of the irreducible components of Z over k, say Y such that
ay z(L|z)=ay y(L|y). Without loss of generality we can assume that Z=Y,i.e., Z
itself is irreducible over k. We then apply Lemma 2.17 in [McKinnon and Roth 2015]
to conclude that Z is indeed geometrically irreducible, i.e., Z is irreducible over k. [

4. The complex case

In this section, we consider the analogous result of our Main Theorem in Nevanlinna
theory. Let V be a complex projective variety. We use the standard notation in
Nevanlinna theory (see, for example, [Ru 2016]). Note that the Weil function for
divisors has been defined, so the Weil function Ay for a subscheme Y C V can also
be defined using Lemma 3.1, similar to Definition 3.2. We define, for a holomorphic
map f:C— V with f(C) ¢ Y, the proximity function

2 )
me(r,Y) = /0 Ay (f(re'®)) g—i-

We note that all the properties used above about the Weil functions in the arithmetic
case hold for the complex case (see, for example, [Ru 2016; Ru and Vojta 2016]).

Theorem 4.1. Let V be a complex projective variety and Y1, ..., Y, be closed
subschemes of 'V in £-subgeneral position. Let L be a big line bundle. Let f :C—V
be a holomorphic map with Zariski dense image. Then for any € > 0

q
> mp(r, i) < t(max (B, y ) + 70| 4-1)

i=1

where || means that the inequality holds for all r € (0, +00) outside a set of finite
Lebesgue measure.

To prove the theorem, we need the following result.

Theorem 4.2 [Ru and Vojta 2016, Theorem 2.8]. Let X be a complex projective va-
riety, D be a Cartier divisor on X, W be a nonzero linear subspace ofHO(X, O(D)),
and sy, ..., Sq be nonzero elements of W. Let f : C — X be a holomorphic map
with Zariski-dense image. Then

| ’

where the set J ranges over all subsets of {1, ..., q} such that the sections (s;);ey

21
/ max Y " A (f(re’®)) 49 _ (dim W)T s p(r)+0(og" Ty p(r))+o(logr)
0 J I, 2

are linearly independent.
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Proof of Theorem 4.1. Similar to the proof of the Main Theorem, let § > 0 be a
sufficiently small number. We choose N large enough that, fori =1, ..., q,

o0
> 1 (Vi, NafL —mE;) = (B, = )NA*(V, NL).

m=1

Letx € V. Since Y;, 1 <i <g, are in £-subgeneral position, similar to Lemma 3.4,
we have

q
Y () < Oy, () + 0(1), (4-2)

i=1

for some i with 1 <iy <g, where iy depends on the point x, but O (1) is independent
of x.

Let7:V — V be the blow-up at ¥;, and E = a1 (Y;,) be the exceptional divisor
of . We consider the filtration of H%( V, m*NL) defined in (3-7). By identifying
H°(V, NL) with H O(V, m*NL) as vector spaces, we can choose regular sections
Sly ..., SM E HO(V, NL), where M = hO(V, NL), successively so that their pull-
backs w*sy, ..., w*sy € HO(V, m*NL) form a basis associated to this filtration.
Then, in the same way as deriving (3-9), we can get

q ' .
K' As (@) + O (1),
; 1) = N ROV, NL) (min g (o] —8) 2 s +0(0)

Note that the basis {sy, ..., sy} depends only on iy, so the number of such choices
is finite, since ip € {1, ..., g}, while x varies in (4-2). We denote the set of bases
as Ji, ..., Jr. Thus we get, for every x € V,

q
12

Ay, < As; o).

20 = i N enini g o] 9 @%]Ze, et + O

By taking x = f(re'?) and then integrating, it then follows from Theorem 4.2 and
a suitable choice of § that, for the given € > 0,

Lo o\, dO
3 / M (Fee) 20 < o(max (8211 + OT1c ().
= Jo T l<i=q

This finishes the proof. U
Theorem 4.1, together with Lemma 2.2, implies the following corollary.

Corollary 4.3. Let V be a complex projective variety of dimensionn and ay, . . ., a4
be distinct points on V. Let L be an ample line bundle. Let f : C — V be a
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holomorphic map with Zariski dense image. Then for any € > 0,

me(r a;) < (— max €, 1(L)}—i—«s)

i=1

where €, (L) is the Seshadri constant of L at the point x € V.
In particular, if V.= P", then for any € > 0,

me(r a;) < <—+€)Tf,L(r)H-

i=1
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Variation of
anticyclotomic lwasawa invariants
in Hida families

Francesc Castella, Chan-Ho Kim and Matteo Longo

Building on the construction of big Heegner points in the quaternionic setting
by Longo and Vigni, and their relation to special values of Rankin—Selberg L-
functions established by Castella and Longo, we obtain anticyclotomic analogues
of the results of Emerton, Pollack and Weston on the variation of Iwasawa
invariants in Hida families. In particular, combined with the known cases of the
anticyclotomic Iwasawa main conjecture in weight 2, our results yield a proof
of the main conjecture for p-ordinary newforms of higher weights and trivial
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Introduction

In the remarkable paper [Emerton et al. 2006], Emerton, Pollack and Weston
obtained striking results on the behavior of the cyclotomic Iwasawa invariants
attached to p-ordinary modular forms as they vary in Hida families. In particular,
combined with Greenberg’s conjecture on the vanishing of the p-invariant, their
main result reduces the proof of the main conjecture to the weight two case. In
this paper, we develop analogous results for newforms base-changed to imaginary
quadratic fields in the definite anticyclotomic setting. In particular, combined with

MSC2010: primary 11R23; secondary 11F33.
Keywords: Iwasawa theory, Hida theory, Selmer groups, Heegner points, special values of
L-functions.

2339


http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2017.11-10
http://dx.doi.org/10.2140/ant.2017.11.2339

2340 Francesc Castella, Chan-Ho Kim and Matteo Longo

Vatsal’s result [2003] on the vanishing of the anticyclotomic p-invariant, and the
known cases of the anticyclotomic main conjecture in weight 2 (thanks to the
works of Bertolini and Darmon [2005], Pollack and Weston [2011], and Skinner
and Urban [2014]), our results yield a proof of Iwasawa’s main conjecture for
p-ordinary modular forms of higher weights £ > 2 and trivial nebentypus in the
anticyclotomic setting.

Let us begin by recalling the setup of [Emerton et al. 2006], but adapted to the
context at hand. Let

p: Gg :=Gal(Q/Q) — GL,(F)

be a continuous Galois representation defined over a finite field F of characteristic
p > 3, and assume that p is odd and irreducible. After the proof of Serre’s conjecture
[Khare and Wintenberger 2009], we know that o is modular, meaning that p is
isomorphic to the mod p Galois representation p 7, associated to an elliptic newform
Jfo. Throughout this paper, it will be assumed that p >~ o4, for some newform fj of
weight 2 and trivial nebentypus.

Let N(p) be the tame conductor of p, and let K/Q be an imaginary quadratic
field of discriminant prime —Dg < 0 to pN(p). The field K then determines a
decomposition

N@)=N@)" - Np)~

with N(p)™ (resp. N(p) ™) only divisible by primes which are split (resp. inert) in K.
We similarly define the decomposition M = M™ - M~ for any positive integer M
prime to Dg.

As in [Pollack and Weston 2011], we consider the following conditions on a pair
(p, N7), where N~ is a fixed square-free product of an odd number of primes inert
in K:

Assumption (CR). (1) p is irreducible;
(2) N(p)~ N~
(3) p is ramified at every prime £ | N~ such that £ = £1 (mod p).

Let H(p) be the set of all p-ordinary and p-stabilized newforms with mod p
Galois representation isomorphic to p, and let I' := Gal(K /K ) denote the Galois
group of the anticyclotomic Z ,-extension of K. Associated with each f € H(p) of
tame level Ny with N; =N, defined over say a finite extension F/Q, with ring
of integers O, there is a p-adic L-function

L,(f/K)€OITl']

constructed by Bertolini and Darmon [1996] in weight two, and by Chida and Hsieh
[2016] for higher weights. The p-adic L-function L,(f/K) is characterized, as
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x runs over the p-adic characters of I' corresponding to certain algebraic Hecke
characters of K, by an interpolation property of the form

L(f/K, x.k/2)
Qf’N*

’

X(Lp(f/K)) =Cp(f. x)- Ep(f. x)-

where C, (f, x) is an explicit nonzero constant, E,(f, x) is a p-adic multiplier, and
Q2 y- is a complex period making the above ratio algebraic. (Of course, implicit in

all the above is a fixed choice of complex and p-adic embeddings C S0 SN Q p-)
The anticyclotomic Iwasawa main conjecture gives an arithmetic interpretation
of L,(f/K). More precisely, let

Pr: Gg — AutF(Vf) ~ GLy(F)

be a self-dual twist of the p-adic Galois representation associated to f, fix an
O-stable lattice Ty C Vy, and set Ay := V;/T;. Let D, € Gg be the decompo-
sition group corresponding to our fixed embedding ¢, and let &.yc be the p-adic
cyclotomic character. Since f is p-ordinary, there is a unique one-dimensional
D,-invariant subspace FPJr Vy C Vy where the inertia group at p acts via ef){cz v,
with ¢ a finite order character. Let F;’A r be the image of FPJr Vi in Ay and set
FrAp:=Ay/ Fp+A 7. Following the terminology in [Pollack and Weston 2011],
the minimal Selmer group of f is defined by

Sel(Koo, f) ::ker{Hl (Koo Ag) > [ [H' (Koo Ap) x [ [H' (Koo,w, F;Af)},
wip wlp

where w runs over the places of K. By standard arguments (see [Greenberg
1989], for example), one knows that the Pontryagin dual of Sel(K ., f) is finitely
generated over the anticyclotomic Iwasawa algebra A := O[[I']. The anticyclotomic
main conjecture is then the following:

Conjecture 1. The Pontryagin dual Sel(K ., f)V is A-torsion, and

Cha(Sel(Koo, £)7) = (Lp(f/K)).

For newforms f of weight 2 corresponding to elliptic curves E/Q with ordinary
reduction at p, and under rather stringent assumptions on p  which were later relaxed
by Pollack and Weston [2011], one of the divisibilities predicted by Conjecture 1
was obtained by Bertolini and Darmon [2005] using Heegner points and Kolyvagin’s
method of Euler systems. More recently, after the work of Chida and Hsieh [2015]
the divisibility

Cha(Sel(Koo, 1)) 2 (Lp(f/K))

is known for newforms f of weight k£ < p — 2 and trivial nebentypus, provided the
pair (ps, N ) satisfies a mild strengthening of Hypotheses (CR). This restriction
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to small weights comes from the use of Thara’s lemma [Diamond and Taylor 1994],
and it seems difficult to directly extend their arguments in [Chida and Hsieh 2015]
to higher weights. Instead, as we shall explain in the following paragraphs, in this
paper we will complete the proof of Conjecture 1 to all weights k=2 (mod p—1) by
a different approach, using Howard’s big Heegner points in Hida families [Howard
2007], as extended by Longo and Vigni [2011] to quaternionic Shimura curves.

Associated with every f € H(p) there are anticyclotomic Iwasawa invariants
1 Koo, ), A" Koo, ), n¥8 (Koo, f), and A¥2(K o, f). The analytic (resp. al-
gebraic) A-invariants are the number of zeros of L ,(f/K) (resp. of a generator of
the characteristic ideal of Sel(K«, f)"), while the p-invariants are defined as the
exponent of the highest power of @ (with @ € O any uniformizer) dividing the
same objects. Our main results on the variation of these invariants are summarized
in the following. (Recall that we assume p > p 4, for some newform fy of weight 2
and trivial nebentypus.)

Theorem 2. Assume in addition that:
e p is irreducible;

e p is p-ordinary, “nonanomalous” and p-distinguished.:

5lp, ~ & *

10 Dp —_— 0 S ’
with 8,8 : D, — F* characters such that § is unramified, S(Frob p) #xl and
8 £ &;

o N(p)~ is the square-free product of an odd number of primes.

Let H™(p) :=HN P (p) consist of all newforms f € H(p) with Nf_ =N(p)~,and
fix % € {alg, an}. Then the following hold:

(1) Forall f € H™ (p), we have
w (Koo, f)=0.

(2) Let fi1, f» € H™(p) lie on the branches T(ay), T(ay) (defined in §1D), respec-
tively. Then

W (Koo, [1) =2 (Koo, f) = ) ee(da) —eq(a),
LN NG

where the sum is over the split primes in K which divide the tame level of f|
or f>, and ey(a;) is an explicit nonnegative invariant of the branch T(a;) and
the prime £.
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Provided that p splits in K, and under the same hypotheses on p as in Theorem 2,
the work of Skinner and Urban [2014] establishes one of the divisibilities in
their “three-variable” Iwasawa main conjecture. Combining their work with our
Theorem 2, and making use of the aforementioned results of Bertolini and Darmon
[2005] and Pollack and Weston [2011] in weight 2, we obtain many new cases of
Conjecture 1 (cf., Corollary 5.5):

Corollary 3. Suppose that p is as in Theorem 2 and that p splits in K. Then
the anticyclotomic Iwasawa main conjecture holds for every f € H™(p) of weight
k=2 (mod p — 1) and trivial nebentypus.

Let us briefly explain the new ingredients in the proof of Theorem 2. As it
will be clear to the reader, the results contained in Theorem 2 are anticyclotomic
analogues of the results of Emerton, Pollack and Weston [Emerton et al. 2006] in
the cyclotomic setting. In fact, on the algebraic side the arguments of loc.cit. carry
over almost verbatim, and our main innovations in this paper are in the development
of anticyclotomic analogues of their results on the analytic side. Indeed, the analytic
results of [Emerton et al. 2006] are based on the study of certain two-variable p-adic
L-functions a la Mazur and Kitagawa, whose construction relies on the theory of
modular symbols on classical modular curves. In contrast, we need to work on a
family of Shimura curves associated with definite quaternion algebras, for which
cusps are not available. In the cyclotomic case, modular symbols are useful in two
ways: They yield a concrete realization of the degree-one compactly supported
cohomology of open modular curves, and provide a powerful tool for studying the
arithmetic properties of critical values of the L-functions attached to modular forms.
Our basic observation is that in the present anticyclotomic setting, Heegner points
on definite Shimura curves provide a similarly convenient way of describing the
central critical values of the Rankin L-series L(f/K, x, s).

Also fundamental for the method of [Emerton et al. 2006] is the possibility to
“deform” modular symbols in Hida families. In our anticyclotomic context, the
construction of big Heegner points in Hida families was obtained in the work [Longo
and Vigni 2011] of one of us in collaboration with Vigni, while the relation between
these points and Rankin—Selberg L-values was established in the work [Castella
and Longo 2016] by two of us. With these key results at hand, and working over
appropriate quotients of the Hecke algebras considered in [Emerton et al. 2006] via
the Jacquet-Langlands correspondence, we are then able to develop analogues of
the arguments of loc. cit. in our setting, making use of the ramification hypotheses
on p to ensure a multiplicity one property of certain Hecke modules, similarly as in
the works of Pollack and Weston [2011] and one of us [Kim 2017].

We conclude this introduction with an overview of the contents of the paper.
In the next section, we briefly recall the Hida theory that we need, following the
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exposition in [Emerton et al. 2006, §1] for the most part. In Section 2, we describe
a key extension of the construction of big Heegner points of [Longo and Vigni
2011] to “imprimitive” branches of the Hida family. In Section 3, we construct two-
variable p-adic L-functions attached to a Hida family and to each of its irreducible
components (or branches), and prove Theorem 3.10 relating the two. This theorem
is the key technical result of this paper, and the analytic part of Theorem 2 follows
easily from this. In Section 4, we deduce the algebraic part of Theorem 2 using
the residual Selmer groups studied in [Pollack and Weston 2011, §3.2]. Finally,
in Section 5 we give the applications of our results to the anticyclotomic Iwasawa
main conjecture.

1. Hida theory
Throughout this section, we fix a positive integer N admitting a factorization
N=N*N~

with (N*, N7) =1 and N~ equal to the square-free product of an odd number of
primes. We also fix a prime p{6N.

1A. Hecke algebras. For each integer k > 2, denote by by, the Z,-algebra
generated by the Hecke operators Ty for £4 N p, the operators Uy for £ | Np, and the
diamond operators (a) for a € (Z/p"Z)*, acting on the space Si(I'o 1 (N, p"), Q »)
of cusp forms of weight k on I'g | (N, p") := T'o(N) NT'1(p"). For k = 2, we
abbreviate hy , := by 2.

Let ¢° :=1lim,_ o U !Z’! be Hida’s ordinary projector, and define

ord .__ ord ord .__ ord ord ._ 1: ord
hN,r,k = hN,r,k’ N.,r =e hN,ra N -— lélm[]N’rv
r

where the limit is over the projections induced by the natural restriction maps.
ord

Denote by m", «_the quotient of hY¢ , acting faithfully on the subspace of
eordSk(Fo,l(N , p"), Q) consisting of forms which are new at all primes dividing
N~. Set T%; = T%;,z and define

Ty :=lim T%;
r

Each of these Hecke algebras is equipped with natural Z ,[[Z ] ]l-algebra structures

via the diamond operators, and by a well-known result of Hida, b‘;\}d is finite and

flat over Z,[[1+ pZ, 1.

1B. Galois representations on Hecke algebras. For each positive integer M | N
we may consider the new quotient T}7" of hﬁ,r]d, and the Galois representation

PM - G@ — GLz(—U—IEW ® ﬁ)
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described in [Emerton et al. 2006, Theorem 2.2.1], where £ denotes the fraction
field of Z,[1+ pZ, 1.

Let T'y be the Z,[[1 + pZ p]]—sllbalgebra of TT%_ generated by the image under
the natural projection [)j’\fd — T% of the Hecke operators of level prime to N. As
in [Emerton et al. 2006, Proposition 2.3.2], one can show that the canonical map

—l]—§\1 — 1_[ Thew ,
M

where the product is over all integers M > 1 with N~ | M | N, becomes an isomor-
phism after tensoring with £. Taking the product of the Galois representations py
we thus obtain
p:Gg— GLy(Ty ® L).
For any maximal ideal m of T/, let (T, )m denote the localization of T/, at m
and let
pm i Ga = GLo((Thy)m ® £)

be the resulting Galois representation. If the residual representation py, is irreducible,
then p, admits an integral model (still denoted in the same manner)

Pm : Ga = GL2((Ty)m)

which is unique up to isomorphism.

1C. Residual representations. Let p: Gg — GL,([F) be an odd irreducible Galois
representation defined over a finite field F of characteristic p > 3. As in the
introduction, we assume that p >~ p, for some newform fj of weight 2, level N,
and trivial nebentypus. Consider the following three conditions we may impose on
the pair (p, N7):
Assumption (SU). (1) p is p-ordinary: the restriction of p to a decomposition
group D, C Gg at p has a one-dimensional unramified quotient over [;
(2) pis p-distinguished: p|p, ~ (%) with & # §;
(3) p is ramified at every prime £ | N ™.

Fix once and for all a representation p satisfying Assumption (SU), together
with a p-stabilization of p in the sense of [Emerton et al. 2006, Definition 2.2.10].
Let V be the two-dimensional F-vector space which affords p, and for any finite
set of primes X that does not contain p or any factor of N, define

NE)=N@ []em. ey

lex

where N (p) is the tame conductor of p, and m, := dimg \_/1,5.
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Remark 1.1. By Assumption (SU) we have the divisibility N~ | N(p); we will
further assume that (N, N(p)/N7) = 1.

Combining [Emerton et al. 2006, Theorem 2.4.1] and [Emerton et al. 2006,
Proposition 2.4.2] with the fact that p is ramified at the primes dividing N, one can
see that there exist unique maximal ideals n and m of T%;Z) and T;vo:)’ respectively,
such that

e n T?\/(z) =m;
. (T?V(Z))m > (T%(E))n by the natural map on localizations;
* Pm = P.
Define the ordinary Hecke algebra Ty attached to p and ¥ by
—ﬂ—g = (—H—;V(Z))m‘
Thus Ty is a local factor of T;vo:)’ and we let
px 1 Gg —> GLa(Tyx)

denote the Galois representation deduced from pp,.

Adopting the terminology of [Emerton et al. 2006, §2.4], we shall refer to
Spec(Ty) as “the Hida family” 7~ (o) attached to p (and our chosen p-stabilization)
that is minimally ramified outside X.

Remark 1.2. Note that by Assumption (SU), all the p-stabilized newforms in
‘H~(p) have tame level divisible by N ™.

1D. Branches of the Hida family. 1f a is a minimal prime of Ty (for a finite set
of primes X as above), we put T(a) := Ty /a and let

p(a): Gg — GLy(T(a))

be the Galois representation induced by px. As in [Emerton et al. 2006, Proposi-

tion 2.5.2], one can show that there is a unique divisor N (a) of N(X) and a unique

minimal prime a’ C TN (s above a such that the diagram

Tf T;\/(2) HN*\M|N(E) Trﬁw
Ts/a —— T(a) TN/

commutes. We call N (a) the tame conductor of a and set
T(a)° =T/

In particular, note that N~ | N(a) by construction, and that the natural map
T(a) = T(a)° is an embedding of local domains.
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1E. Arithmetic specializations. For any finite Z,[1 + pZ,]-algebra T, we say
that a height one prime g of T is an arithmetic prime of T if g is the kernel of a
Z ,-algebra homomorphism T — Q,, such that the composite map

1+ pZ, - 7,01+ pZ,* - T* — @;

is given by y > y*~2 on some open subgroup of 1+ pZ p» for some integer k > 2.
We then say that g has weight k.
Let a € Ty be a minimal prime as above. For each n > 1, let @, € T(a)° be the

image of T, under the natural projection h‘;\;‘(iz) — T(a)° and form the g-expansion

f@=>"aq" €T(@°lqll.
n>1
By [Hida 1986, Theorem 1.2], if o is an arithmetic prime of T (a) of weight &,
then there is a unique height one prime g’ of T(a)° such that

fo(@):=> (a, mod p)q" € O3 4],
n>1
where O, :=T(a)°/ ¢', is the g-expansion of a p-ordinary eigenform f, of weight k
and tame level N (a) (see [Emerton et al. 2006, Proposition 2.5.6]).

2. Big Heegner points

As in Section 1, we fix an integer N > 1 admitting a factorization N = NTN~
with (N7, N7) =1 and N~ equal to the square-free product of an odd number of
primes, and fix a prime p{6N. Also, we let K /Q be an imaginary quadratic field of
discriminant —Dg < 0 prime to Np and such that every prime factor of N (resp.
N7) splits (resp. is inert) in K.

In this section we describe a mild extension of the construction in [Longo and
Vigni 2011] (following [Howard 2007]) of big Heegner points attached to K. Indeed,
using the results from the preceding section, we can extend the constructions of
loc.cit. to branches of the Hida family which are not necessarily primitive (in the
sense of [Hida 1986, §1]). The availability of such an extension is fundamental for
the purposes of this paper.

2A. Definite Shimura curves. Let B be the definite quaternion algebra over Q@ of
discriminant N~. We fix once and for all an embedding of (Q-algebras K — B,
and use it to identity K with a subalgebra of B. Denote by z > z the nontrivial
automorphism of K, and choose a basis {1, j} of B over K such that

o j7=PB€Q* with g <0;

o jt=tjforallt e K,

« Be(Z)*forq|pN*, and B € Z) forgq | Dg.
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Fix a square-root x = «/— Dk, and define # € K by

DK leTDK,

0:=1D +68x, where D' :=
27 TR Ipx if2| Dg.

Note that Og = Z + 76, and for every prime g | pN ¥, define i, : B, := BQg Q, ~
MZ(@q) by

. Tr() —Nm(0 . —1 Tr(6
lq(o)z(ri) g‘()), zq(1)=ﬁ(0 rf)),

where Tr and Nm are the reduced trace and reduced norm maps on B, respectively.
On the other hand, for each prime ¢ { Np we fix any isomorphism i, : B, ~M>(Q,)
with the property that i, (Og ®z Z,) C Ma(Z,).

For each r > 0, let Ry+ , be the Eichler order of B of level N™ p” with respect
to the above isomo/r\phisms {ig : B4 =~ M2(Qg)}gin-, and let Uy+ , be the compact
open subgroup of R1>\</+,r defined by

UN-%—J = !(xq)q € R]>\<I+,r

ip(xp) = ((1) :) (mod p’)}.

Consider the double coset spaces
Xy+,=B*\ (Homg(K, B) x B*)/Uy+., 2)
where b € B* acts on (¥, g) € Homg(K, B) x B by
b- (¥, g)=(bWYb ' bg)

and Uy+ , acts on B~ by right multiplication. As is well known (see, e.g., [Longo
and Vigni 2011, §2.1]), X N+, may be naturally identified with the set of K -rational
points of certain genus zero curves defined over Q. Nonetheless, there is a nontrivial
Galois action on §N+,r defined as follows: If o € Gal(Kab/K) and P € )N(Nt, is
the class of a pair (¥, g), then

P? = [(¥, ¥(a)g)],

where a € K™\ K * is chosen so that rec k (a) = o. It will be convenient to extend
this action to an action of G := Gal(Q/K) in the obvious manner.

Finally, we note that X n+,r 18 also equipped with standard actions of U,, Hecke
operators 7; for £ Np, and diamond operators (d) for d € (Z/p"Z)* (see [Longo
and Vigni 2011, §2.4], for example).

2B. Compatible systems of Heegner points. For each integer ¢ > 1, let O, =
Z + cOk be the order of K of conductor c.
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Definition 2.1. We say that a point P € X N+.r 1S a Heegner point of conductor ¢
if P is the class of a pair (¥, g) with
W(O) =W(K)N(BNgRN+,g™")

and

U,((0:®Z,) NI+ p Ok ®2,)")=V,((0.Q®Z,)") ﬁngN+,r,1m§’;1,
where Uy+ ,,, denotes the p-component of Uy+ ;.

Fix a decomposition N*TOg = 991+, and for each prime g # p define

e c,=1ifgtNT;

¢ 5= 3}1 (61’ 6;) € GL,(Kq) = GL2(Qy), if ¢ = qq splits with q | 91T,

and for each s > 0, let

. S'z(f) _ (? _(1)) (g (1)) € GLy(Ky) = GL2(Q)), if p = pp splits in K;

S
. §1(7s) _ (_(1) (1)) (g ?) if p is inert in K.

Set ¢@ = ¢ T] 4+p Sq» Viewed as an element in B> via the isomorphisms
{ig : By = M2(Qy)}44n- introduced in Section 2A. Let 1x : K <> B be the inclusion.
Then one easily checks (see [Castella and Longo 2016, Theorem 1.2]) that for all
n,r = 0 the points

~

B, =10k, ")) € X+,

n—+r

are Heegner points of conductor p"™" with the following properties:

« Field of definition: By, € H*(Lyn », X+ ,), where Ly, := Hyr (R ) and
H_, is the ring class field of K of conductor c.

e Galois equivariance: for all o € Gal(L pn ,/Hn+r), we have

%g,r = <19(O’)> ° F[)J",}”

where ¥ : Gal(L pn -/ Hpnir) — Z;/{:I:l} is such that 9% = Eeye-
o Horizontal compatibility: if r > 1, then

~ ~O“ ~
Z O‘r([;yrgr) = Up : B)”,r—ly
o €Gal(L /Lot )

where @, : X+, — X+ ,—1 is the map induced by the inclusion Uy+ , C
Un+ r-1.
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o Vertical Compatibility: if n > 0, then

§ [;g’r - Up . Ppnfl,r.
O‘EGal(Lpn,,/Lpnflvr)

Remark 2.2. We will only consider the points P’;n’r for a fixed a value of N—
(which amounts to fixing the quaternion algebra B/Q), but it will be fundamental
to consider different values of N7, and the relations between the corresponding
I?,n’, (which clearly depend on N) under various degeneracy maps.

2C. Critical character. Factor the p-adic cyclotomic character as
Ecyc = Etame * Ewild - Gg — Z; =Ry X (I+ PZp)
and define the critical character © : Gg — Z,[[1+ pZ,]* by

O(0) =621 (0)], 3)

where evlv/ﬂzd is the unique square root of eyiq taking values in 1+ pZ,, and the map

[-1:14pZ, — Z,[1+ pZ,]* is given by the inclusion as group-like elements.

2D. Big Heegner points. Recall the Shimura curves X N+, pr from Section 2A,
and set

Dy+, 1= e DIV(Xy+,) ®2Z,).

By the Jacquet-Langlands correspondence, ® y+ , is naturally endowed with an
action of the Hecke algebra T} . Let (T} )" be the free T}  -module of rank one
equipped with the Galois action via the inverse of the critical character ®, and set

Do, =D Opy- (TY )T,

Let }A’,Zny, eX ~N+.r be the system of Heegner points of Section 2B, and denote
by P, , the image of ed B, , in ®y+ ,. By the Galois equivariance of B , (see
[Longo and Vigni 2011, §7.1]), we have

,P;n’r == @(U) N Pp”’r
for all o € Gal(L y» ,/H ,n+r), and hence Py, defines an element
Porr @& € HO(Hpir, @jw,r)- 4)

In the next section we shall see how this system of points, for varying n and r,
can be used to construct various anticyclotomic p-adic L-functions.
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3. Anticyclotomic p-adic L-functions

3A. Multiplicity one. Keep the notation introduced in Section 2. For each integer
k > 2, denote by L (R) the set of polynomials of degree less than or equal to k —2
with coefficients in a ring R, and define

Inerk = Ho(Xy+r, Li(Z ),

where Ly (Z ) is the local system on X N+, associated with Li(Z,). The module
In+ rk 1s endowed with an action of the Hecke algebra Tx_r « and with perfect
“intersection pairing”:

(s Mkt IN+rk XIN+ k= Qp )

(see [Chida and Hsieh 2016, Equation (3.9)]) with respect to which the Hecke
operators are self-adjoint.

Theorem 3.1. Let m be a maximal ideal of TTIN\,; « Whose residual representation is
irreducible and satisfies Assumption (SU). Then (Jn+ ik )m is free of rank one over
(T%; Om. In particular, there is a (T%;’ m-module isomorphism

~ ON . rk —

Qverm = Ty, m.
Proof. If k =2 and r = 1, this follows by combining Theorem 6.2 and Proposition 6.5
of [Pollack and Weston 2011]. The general case will be deduced from this case in
Section 3C using Hida theory. ]

Let f € Sx(I'o,1(N, p")) be an N~ -new eigenform, and suppose that m is
the maximal ideal of Tx_r « containing the kernel of the associated Z ,-algebra
homomorphism

7 (TN edm = O,

where O is the finite extension of Z, generated by the Fourier coefficients of f.
Composing 7y with an isomorphism ay ,; as in Theorem 3.1, we obtain an O-
valued functional

Vi @ntrkdm = 0.

By the duality (5), the map v corresponds to a generator g s of the 7 ¢-isotypical
component of Jy+ ,r, and following [Pollack and Weston 2011, §2.1] and [Chida
and Hsieh 2016, §4.1] we define the Gross period 2 y- attached to f by

Qe = (fs f)l"g(N)‘ ©)

1, -
(8f, 81k

Remark 3.2. By Vatsal’s work [2003] (see also [Pollack and Weston 2011, Theo-
rem 2.3] and [Chida and Hsieh 2016, §5.4]), the anticyclotomic p-adic L-functions
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L,(f/K) in Theorem 3.14 below (normalized by the complex period €2 ¢ x-) have
vanishing p-invariant. The preceding uniform description of ¥ for all f with a
common maximal ideal m will allow us to show that this property is preserved in
Hida families.

3B. One-variable p-adic L-functions. Denote by I' the Galois group of the an-
ticyclotomic Z,-extension K.,/K. For each n, let K, C K, be defined by
Gal(K,/K)~Z/p"Z and let I';, be the subgroup of I" such that I'/ I",, ~ Gal(K,, / K).

Let Pp“'m ®¢r € HO(Hpn+l+)', ©L+,r) be the Heegner point of conductor p"*,
and define

Q. = Corh 1y 1k, (P, ® ) € HO(K, D4 )5 @)

with a slight abuse of notation, we also denote by Q, . its image under the natural
map
HO(Ky, D}y ) —=> Dyep — Invs
composed with localization at m, where Jy+ , := Jn+.r2.
Definition 3.3. For any open subset o T",, of I", define
pp(oly) :=U,"- Q. € AN+ r)m-
Proposition 3.4. The rule i, is a measure on T.

Proof. This follows immediately from the “horizontal compatibility” of Heegner
points. ([

3C. Gross periods in Hida families. Keep the notation of Section 3A, and let

AN Hm =1IMF N+ ),

r

which is naturally equipped with an action of the big Hecke algebra T%_ =1lim, T%_r

Theorem 3.5. Let m be a maximal ideal of T%_ whose residual representation is
irreducible and satisfies Assumption (SU). Then (Jn+)m is free of rank one over
(TN m. In particular, there is a (TN )m-module isomorphism

G m = (T

Proof. As in [Emerton et al. 2006, Proposition 3.3.1]. Note that the version of
Hida’s control theorem in our context is provided by [Hida 1988, Theorem 9.4]. [J

We can now conclude the proof of Theorem 3.1 just as in [Emerton et al. 2006,
§3.3]. For the convenience of the reader, we include the argument here.
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Proof of Theorem 3.1. Let g . be the product of all the arithmetic primes of T%_
of weight k which become trivial upon restriction to 1+ p"Z,. By [Hida 1988,
Theorem 9.4], we then have

Qv @ TN /N rk = @GN+ rk)mys ®)

where m, ; is the maximal ideal of T%; « Induced by m. Since (Jy+)m is free of
rank one over Ty by Theorem 3.5, it follows that (J N+,rk)m,, 18 free of rank one
over TN /N rx = T%;,k, as was to be shown. O

Remark 3.6. In the above proofs we made crucial use of [Hida 1988, Theorem 9.4],
which is stated in the context of totally definite quaternion algebras which are
unramified at all finite places, since this is the only relevant case for the study of
Hilbert modular forms over totally real number fields of even degree. However, the
proofs immediately extend to the (simpler) situation of definite quaternion algebras
over (.

3D. Two-variable p-adic L-functions. By the “vertical compatibility” satisfied
by Heegner points, the points

Up_r : Qn,r € (3N+,r)m
are compatible for varying r, thus defining an element

Q,:=1lmU,"-Q,, € An+)m.
r

Definition 3.7. For any open subset o', of ', define
p(oly):=U,"- 9y € In+)n-
Proposition 3.8. The rule w is a measure on I

Proof. This follows immediately from the “horizontal compatibility” of Heegner
points. U

Upon the choice of an isomorphism « as in Theorem 3.5, we may regard p as
an element

L(m, N) e (T Hn®z,Z,[T1.

Denoting by £(m, N)* the image of £(m, N) under the involution induced by
¥ — y~! on group-like elements, we set

L(m, N):=L(m, N) - L(m, N)*,

to which we will refer as the two-variable p-adic L-function attached to (T%f)m.
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3E. Two-variable p-adic L-functions on branches of the Hida family. Let Ty
be the universal p-ordinary Hecke algebra

Ty := (—ﬂ—gv(z))m ~ (—ﬂ—%(_z))n 9)

associated with a mod p representation p and a finite set of primes X as in
Section 1C.

Remark 3.9. Recall that N~ | N (p) by Assumption (SU). Throughout the following,
it will be further assumed that every prime factor of N(X)/N~ splits in K. In
particular, every prime £ € X splits in K, and any f € H™(p) = Spec(Tx) has tame
level Ny with

N, =N(p) =N".

The construction of the preceding section produces a two-variable p-adic L-
function

L(n, N(2)) € (TN 5)a®z,Z,[T1,
which combined with the isomorphism (9) yields an element
Ls(p) € Ts®z,Z,[T].
If a is a minimal prime of Ty, we thus obtain an element
Ly (p.a) € T(a)°®z,Z,[T']

by reducing Lx (0) mod a (see Section 1D). On the other hand, if we let m denote
the inverse image of the maximal ideal of T(a)° under the composite surjection

Thw = Thim = Thw /o =T@°, (10)
the construction of the preceding section yields an L-function
L(m, N(a)) € (Tyo))u®z,Z,[T]
giving rise, via (10), to a second element
L(p,a) € T(0)°®z,Z,[T].

It is natural to compare Ly (p, a) and L(p, a), a task that is carried out in the next
section, and provides the key for understanding the variation of analytic Iwasawa
invariants.
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3F. Comparison. Write ¥ = {{;, ..., ¥{,} and for each £ = {; € X, let ¢; be the
valuation of N(X)/N(a) at £, and define the reciprocal Euler factor E;(a, X) €
T(a)°[X] by

1 if ey = 0;
E¢(a,X):=1{1—(T; mod a)O (&)X ife, =1
1 —(Ty mod )OI ()X +¢X? ife,=2.
Also, writing £ = ([, define E;(a) € T(a)°®szp|[F]] by
Eo(a) :=E¢(a, £ 'p) - Eo(a, €71y, (11)

where y1, y; are arithmetic Frobenius maps at [, [in T, respectively, and put Ex(a) :=

HEEE Eg(a).
Recall that N~ | N(a) | N(X) and set

N(@*:=N(®)/N", N(Z)T:=N(Z)/N,
both of which consist entirely of prime factors which split in K. The purpose of
this section is to prove the following result.
Theorem 3.10. There is an isomorphism of T (a)°-modules
T(a)° BTN AnEyn = T(a)° BN GN@*+)m
such that the map induced on the corresponding spaces of measures valued in these
modules sends Lx (p, a) to Ex(a)-L(p, a).

Proof. The proof follows closely the constructions and arguments in [Emerton et al.
2006, §3.8], suitably adapted to the quaternionic setting at hand. Letr > 1. If M
is any positive integer with (M, pN~) =1, and d’ | d are divisors of M, we have
degeneracy maps N _

Baa Xy —> Xpyd,r

induced by (U, g) — (¥, s g), where 7, € B* has local component ( (1) (V318<d’)) at
every prime £ |d’ and 1 outside d’. We thus obtain a map on homology

(Baa)x 1 € Ho(Xp1,r. Zy) — e Ho(Xpya.rs Zp)
and we may define
& 1 e Hy(Xn(sy v Zp) = " Ho(Xnayr Zp) (12)
by €, :=€(£,;) 0---0€(f), where for every £ = ¢; € X we put
1 if e, =0;
€() :={ (Be.1)x — (Be.o)l 1Ty ifeg=1;
(B )sx— (B )l ' To+ (B )N (O Ny  iTeg =2.
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As before, let M be a positive integer with (M, pN~) =1 all of whose prime
factors split in K, and let £/ M p be a prime which also splits in K. We shall adopt the
following simplifying notation for the system of points E’;n’r eX N+, constructed
in Section 2B:

P:=BM™eXy, PYO=BM eXy,, PD:=BM"ecX,p,.
It is easy to check that we have the following relations in X M.r:
(Be.)«(PY) =P, (B (PO)= P (Bp )u(P) =P
(B )« (P) = P, (B, 2)u(P®)) = PW,
where oy € Gal(L ,» ,/K) is a Frobenius element at a prime [ | £. Letting P denote

the image of ¢®™ P in ® ., and defining P© € D7, and P Ned ez, similarly,
it follows that

(Be):(PY Q1) =P R,

(Be.)«(PO®L) =P ®@¢ =0 (o) (P®E)™,
(Be )P ®L) =P,
Be)«PO®L) =P @5 =07 (o) - (PR,
(Be)+(PO®0) =P @1, =07 (0) - (P L,)"

as elements in @T Flnally, setting Q : CorH n+l+r/K (P) e H(K,, @L ), and
defining Q¥ ¢ HO(K,,, MZ ) and Q) ¢ HO(Kn, QMEZ ) similarly, we see that

(Be.)«(Q9) =9, (Be,0)«(Q9) =0 (o)) - 7,
(Bp)«(Q) =0
(B )x(Q) =07 (01)- %, (B 2)x(Q“) =0 2(op) - Q°

in HY(K,,, @;,I,r). Each of these equalities is checked by an explicit calculation.
For example, for the second one:

(Be,0)s(QY) = (Be.o)«(Cory ., 1k, (PO ®8,))

=(Bz,z)*<< > @(&—1>-<P“))5)®¢r)

GEGal(Hpn+l+r/Kn)

— 3 OG- (Be«((PP)Y ®¢)

UeGal(Hpn-H-H /Kn)

- 3 O6G He ' e) - (P R¢)"

UEGal(Hpn+l+r /Kn)

=0 (op- Q™.
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Now let Q, , € Jn(x)+,» be as in (7) with N = N(X). Using the above formulae,
we easily see that of any finite order character x of I' of conductor p”, the effect of
€. on the element ) - /T, X(0)Qy , is given by multiplication by

[T0-® o' 1)

ey =1

[T0- G ) T, + (x©) 0 (i) niayp)-

ey =2

Similarly, we see e, has the effect of multiplying the element  >"  x~!(0) Q. by
oel'/T,

[Ta-&'® e ' 1)

e; =1

[T0=G'® )6 T, + (' ©) 2016 () wiayp)-

ey; =2
Hence, using the relations
X)) =x""0).  O@)=0(c)=0(t).  0°)={L)Nw@p

it follows that the effect of €, on the product of the above two elements is given by
multiplication by

[T =x@)o~" e " To) T] (1= x(e)07 (€)' To, + x> (@) ).
[ilzi [ilei
e«izl e(i:Z

Taking the limit over r, we thus obtain a T (a)°-linear map
T@° 8y~ ), Ovedn = T@° Oy, @ (13)

having an effect on the corresponding measures as stated in Theorem 3.10. Hence
to conclude the proof it remains to show that (13) is an isomorphism.

By Theorem 3.5, both the source and the target of this map are free of rank one
over T (a)° and as in [Emerton et al. 2006, p. 559] (using [Hida 1988, Theorem 9.4]),
one is reduced to showing the injectivity of the dual map modulo p:

HO(XN(G)Jr’l; [’:P)Ord[m] - (—ﬂ—ll\gga)/m) ®T%&)/n (HO(}ZN(a)+,1§ [Fp)ord[m/])
— (—H—ZI\\;ga)/m) ®T%<_E)/n (Ho(gN(E)‘*',l; ﬂ:p)ord[m/])
= (TN /M) @y (HXnzyes Fp)™ ;- (14)

or equivalently (by a version of [Emerton et al. 2006, Lemma 3.8.1]), to showing
that the composite of the first two arrows in (14) is injective.
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In turn, the latter injectivity follows from Lemma 3.11 below, where the notations
are as follows:

o M™ is any positive integer with (M, pN™) =1;
e { # pis a prime;
e ny =1 or 2 according to whether or not £ divides M™;
o« Nt =Mt
and
€7 :H X 1) ml = (T - /M@ e (HO Xy 13F) D) (15)
is the map defined by
o {BZ1 — B} 07T, ifn,=1;
By, — B T Te+ Bl T (O, e =2.
Lemma 3.11. The map (15) is injective.
Proof. As in the proof of the analogous result [Emerton et al. 2006, Lemma 3.8.2]

in the modular curve case, it suffices to show the injectivity of the map

(HO(X yv 1: D Mme) ! L5 HOX w1 F)Omy]

defined by
By = BZlnl—i_BZan ifng =1,
6= B; 1T + B;z /2 + Bz; 2703 if np =2.

But in our quaternionic setting the proof of this injectivity follows from [Skinner
and Wiles 1999, Lemma 3.26] for ny = 1 and [loc.cit., Lemma 3.28] for ny = 2. [

Applying inductively Lemma 3.11 to the primes in X, the proof of Theorem 3.10
follows. (]

3G. Analytic Iwasawa invariants. Upon the choice of an isomorphism
2T =Z,0T1

we may regard the p-adic L-functions Ly (p, a) and L(p, a), as well as the Euler
factor Ex (0, a), as elements in T(a)°[T]. In this section we apply the main result
of the preceding section to study the variation of the Iwasawa invariants attached to
the anticyclotomic p-adic L-functions of p-ordinary modular forms.

For any power series f(T) € R[T] with coefficients in a ring R, the content of
f(T) is defined to be the ideal 1 (f(T)) € R generated by the coefficients of f(T).
If o is a height one prime of Ty belonging to the branch T (a) (in the sense that a
is the unique minimal prime of Ty contained in ), we denote by L(p, a)(g¢) the
element of O, [[I']] obtained from L(p, a) via reduction modulo . In particular,
we note that L(p, a)(g¢) has unit content if and only if its u-invariant vanishes.
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Theorem 3.12. The following are equivalent:
() w(L(p, a)(9)) =0 for some newform f, in H™(p);
(2) w(L(p, a)(p)) = 0 for every newform fy, in H™(p);
(3) L(p, a) has unit content for some irreducible component T (a) of H™ (0);
(4) L(p, a) has unit content for every irreducible component T (a) of H™ (p).

Proof. The argument in [Emerton et al. 2006, Theorem 3.7.5] applies verbatim,
replacing the appeal to [loc.cit., Corollary 3.6.3] by our Theorem 3.10 above. [

When any of the conditions in Theorem 3.12 hold, we shall write
u*(p) =0.

For a power series f(7) with unit content and coefficients in a local ring R, the
A-invariant A( f (7)) is defined to be the smallest degree in which f(7) has a unit
coefficient.

Theorem 3.13. Assume that u*"(p) = 0.

(1) Let T(a) be an irreducible component of H™(p). As g varies over the arith-
metic primes of T(a), the A-invariant A(L(p, a)(g)) takes on a constant value,
denoted \*"(p, a).

(2) For any two irreducible components T(ay), T(ap) of H™(p), we have that

WB, a) = AP, ) =) er(an) —ee(ar),
t#p

where eg(a) = L(E¢(a)).

Proof. The first part follows immediately from the definitions. For the second part,
the argument in [Emerton et al. 2006, Theorem 3.7.7] applies verbatim, replacing
their appeal to [loc.cit., Cor. 3.6.3] by our Theorem 3.10 above. (Il

By Theorem 3.12 and Theorem 3.13, the Iwasawa invariants of L(p, a)(g) are
well behaved as g varies. However, for the applications of these results to the
Iwasawa main conjecture it is of course necessary to relate L(p, a)(¢) to p-adic
L-functions defined by the interpolation of special values of L-functions. This
question was addressed in [Castella and Longo 2016], as we now recall.

Theorem 3.14. If © is the arithmetic prime of T (a) corresponding to a p-ordinary
p-stabilized newform f, of weight k > 2 and trivial nebentypus, then

L(p, a)(9) = Lp(fo/K),

where L, (f,/K) is the p-adic L-function of Chida and Hsieh [2016]. In particular,
ifx: I - C; is the p-adic avatar of an anticyclotomic Hecke character of K
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of infinity type (m, —m) with —k/2 <m < k/2, then L(p, a)(g) interpolates the

central critical values
Qy N-

as x varies, where Q2 fo.N- IS the complex Gross period (6).

Proof. This is a reformulation of the main result of [Castella and Longo 2016].
(Note that the constant A, € F @X in [Castella and Longo 2016, Theorem. 4.6] is not
needed here, since the specialization map of [loc.cit., §3.1] is being replaced by
the map (Jn+)m = (IN+,rk)m,, induced by the isomorphism (8), which preserves
integrality.) U

Corollary 3.15. Let f1, f> € H™ (p) be newforms with trivial nebentypus lying in
the branches T(ay), T(ay), respectively. Then u*(p) = 0 and

MLp(f1/K) =MLy (f2/K) = er(ar) —eclar),
t#p
where ey(a;) = A(E¢(a;)).
Proof. By [Chida and Hsieh 2016, Theorem. 5.7] (extending Vatsal’s result [2003]
to higher weights), if f € H~(p) has weight k < p + 1 and trivial nebentypus, then
w(L,(f/K))=0. By Theorems 3.12 and 3.14, this implies 1*"(p) = 0. The result
thus follows from Theorem 3.13, using Theorem 3.14 again to replace A**(p, a;)

by AM(L,(fi/K)). O
4. Anticyclotomic Selmer groups

We keep the notation of the previous sections. In particular, p : Gg — GL2(F) is an
odd irreducible Galois representation satisfying Assumption (SU) and isomorphic
to oy, for some newform fo of weight 2, H™(p) is the associated Hida family, and
Y is a finite set of primes split in the imaginary quadratic field K.

For each f € H™(p), let V denote the self-dual Tate twist of the p-adic Galois
representation associated to f, fix an O-stable lattice Ty C V¢, and set Ay :=
V¢/Ty. Since f is p-ordinary, there is a unique one-dimensional Gq,-invariant
subspace F,"Vy C V; where the inertia group at p acts via elgy/cz Y, with ¥ a finite
order character. Let F;A ¢ be the image of FPJr Vi in Ay, and as recalled in the
Introduction define the minimal Selmer group of f by

Sel(K oo, f) ::ker{Hl(Koo,Af) — ]_[H‘(Koo,w,Af) x ]_[H‘(Koo,w,F;Af)},
wip wlp
where w runs over the places of Koo and we set F,"A ¢ := Af/Fp+Af.
It is well known that Sel(K, f) is cofinitely generated over A. When it
is also A-cotorsion, we define the p-invariant u(Sel(K, f)) (resp. A-invariant
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A(Sel(Kso, f))) to the largest power of @ dividing (resp. the number of zeros of)
the characteristic power series of the Pontryagin dual of Sel(K ., f).

A distinguishing feature of the anticyclotomic setting (in comparison with cy-
clotomic Iwasawa theory) is the presence of primes which split infinitely in the
corresponding Z ,-extension. Indeed, being inert in K, all primes £| N~ are infinitely
split in Ko, /K. As a result, the above Selmer group differs in general from the
Greenberg Selmer group of f, defined as

Gel(Koo, f) 1= keriHl(Koo,Af) — ]_[Hl(loo,w,Af) x HHI(KOO,W, F;Af)},
wip w|p

where I, € Gk, denotes the inertia group at w.

If S is a finite set of primes in K, we let SelS(Koo, f) and Ge[S(Koo, f) be the
“S-primitive” Selmer groups defined as above by omitting the local conditions at
the primes in S (except those above p, when any such prime is in S). Moreover, if
S consists of the primes dividing a rational integer M, we replace the superscript S
by M in the above notation.

Immediately from the definitions, we see that there is as exact sequence

0 — Sel(Koo» f) = Sel(Koo, £) > [ | 1" (16)
¢IN-
where

HIM = ker{l_[ H' (Koo Ap) > [ [H' Uoow Af)}
wll wll

is the set of unramified cocycles. In [Pollack and Weston 2011, §§3, 5], Pollack
and Weston carried out a careful analysis of the difference between Sel(K o, f)
and Gel(K o, f). Even though [loc. cit.] is mostly concerned with cases in which
f is of weight 2, many of their arguments apply more generally. In fact, the next
result follows essentially from their work.

Theorem 4.1. Assume that p satisfies Hypotheses (SU). Then the following are
equivalent:

(1) Sel(Ko, fo) is A-cotorsion with p-invariant zero for some newform fy €
H™(p);
(2) Sel(Ko, f) is A-cotorsion with j-invariant zero for all newforms f € H™(p);
(3) Gel(Keo, f) is A-cotorsion with w-invariant zero for all newforms f € H™(p).
Moreover, in that case Sel(K o, ) =~ Gel(Koo, f).

Proof. Assume fy is a newform in H ™~ (p) for which Sel(K, fo) is A-cotorsion
with p-invariant zero, and set N := N(X)/N~. By [Pollack and Weston 2011,
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Proposition 5.1], we then have the exact sequences

0 — Sel(Koo. fo) = SelV (Koo, fo) > [] He— 0 (17)
2IN+

0— Sel(Koo, fo) = Sel¥ (Koo, fo) = [T He— 0, (18)
2N+

where H, is the product of Hl(Kooﬁw, Ay over the places w | £ in K. Since
every prime £ | NT splits in K (see Remark 3.9), the A-cotorsionness and the
vanishing of the p-invariant of 7, can be deduced from [Greenberg and Vatsal 2000,
Proposition 2.4]. Since Sel(K o, fo)[z] is finite by assumption, it thus follows
from (17) that Sel” i (Koo, fo)lw] is finite. Combined with (16) and [Pollack
and Weston 2011, Corollary 5.2], the same argument using (18) shows that then
GelV (Koo, fo)le] is also finite.

On the other hand, following the arguments in the proof [Pollack and Weston
2011, Proposition 3.6] we see that for any f € H(p) we have the isomorphisms

SelV (Koo, p) = Sel™ (Koo, Nl SelV (Koo, p) = SelV (Koo, [l ].

As a result, the argument in the previous paragraph implies that, for any newform
feH (p),both SelV (Koo, f)lzr] and GelV" (Koo, f)[er] are finite, from where
(using (17) and (18) with f in place of fj) the A-cotorsionness and the vanishing
of both the p-invariant of Sel(K o, f) and of Gel(K o, f) follows. In view of (16)
and [Pollack and Weston 2011, Lemma 3.4], the result follows. O

Let w be a prime of K, above £ # p and denote by G, € G g_, its decomposition
group. Let T(a) be the irreducible component of Ty passing through f, and define

Sy () :=dimg A?“”/w.

(Note that this is well defined by [Emerton et al. 2006, Lemma 4.3.1].) Assume
¢ = [l splits in K and put
Se(a) := ) 8u(a), (19)
wll
where the sum is over the (finitely many) primes w of K, above £.
In view of Theorem 4.1, we write 1*¢(p) = 0 whenever any of the p-invariants

appearing in that result vanish. In that case, for any newform f in #™ (p) we may
consider the A-invariants A(Sel(K o, f)) = A(Gel(Ko, f)).

Theorem 4.2. Let p and X be as above, and assume that n™&(p) = 0. If fi and f>
are any two newforms in H~(p) lying in the branches T (ay) and T (a;), respectively,
then

A(Sel(Keo, f1)) — A(Sel(K o, f2)) = ) 8e(ar) — 8¢(az).
t#p
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Proof. Since we have the divisibilities N~ | N (a;)| N (X) with the quotient N (X) /N~
only divisible by primes that are split in K, the arguments of [Emerton et al. 2006,
§4] apply verbatim (cf., [Pollack and Weston 2011, Theorem 7.1]). (I

5. Applications to the main conjecture

5A. Variation of anticyclotomic Iwasawa invariants. Recall the definition of the
analytic invariant e, (a) = L(E¢(a)), where E,(a) is the Euler factor from Section 3F,
and of the algebraic invariant §;(a) introduced in (19).

Lemma 5.1. Let ay, ay be minimal primes of Tyx. For any prime £ # p split in K,

de(ar) —8e(ar) = ep(ar) —eg(ay).

Proof. Let a be a minimal prime of Ty, let f be a newform in the branch T (a), and
let oy C a be the corresponding height one prime. Since ¢ = [l splits in K, we have

D H (Koo Af) = (@ H' (Koo, Af)) ® (@ H' (Koo w, Af)>
wll

w|l w]l

and [Greenberg and Vatsal 2000, Proposition 2.4] immediately implies that

Chn (@ H' (Koo, Ap)Y) = Ee(f, 7170 Ee(f, €',
wll

where E¢(f, £ ') - E¢(f, (Z‘l)f() is the specialization of E(a) at g . The result
thus follows from [Emerton et al. 2006, Lemma 5.1.5]. O

Theorem 5.2. Suppose that p satisfies Assumption (SU). If for some newform
fo € H™(p) we have the equalities

n(Sel(Koo, fo)) = n(Ly(fo/K)) =0 and r(Sel(Koo, fo)) = M(Lp(fo/K)),

then the equalities

w(Sel(Koo, f)) = u(Lp(f/K) =0 and A(Sel(Keo, f)) =A(Lp(f/K))
hold for all newforms f € H™(p).

Proof. Let f be any newform in H ™ (p). Since the algebraic and analytic -
invariants of fy both vanish, the vanishing of (Sel(K~, f)) and w(L,(f/K))
follows from Theorems 4.1 and 3.12, respectively. On the other hand, combining
Theorems 3.13 and 4.2, and Lemma 5.1, we see that

A(Sel(Koo, f)) — A(Sel(Koo, f0)) = A(L,(f/K)) —A(Lp(fo/K)),

and hence the equality A(Sel(K, fo)) = A(L,(fo/K)) implies the same equality
for f. U
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5B. Applications to the main conjecture. As an immediate consequence of Weier-
strass preparation theorem, Theorem 5.2 together with one the divisibilities predicted
by the anticyclotomic main conjecture implies the full anticyclotomic main conjec-
ture.

Theorem 5.3 (Skinner—Urban). Let f € Sy (I'g(N)) be a newform of weight k =
2 (mod p — 1) and trivial nebentypus. Suppose that py satisfies Assumption (SU)
and that p splits in K. Then

(Lp(f/K)) 2 Cha(Sel(Keo, £)7).

Proof. This follows from specializing the divisibility in [Skinner and Urban 2014,
Theorem 3.26] to the anticyclotomic line. Indeed, let f = Z@l a,(fHq" €llql
be the A-adic form with coefficients in [ := T (a)° associated with the branch of the
Hida family containing f, let X be a finite set of primes as in Section 3E, let ¥’ 2> X
be a finite set of primes of K containing X and all primes dividing pN (a) Dk, and
assume that ¥’ contains at least one prime ¢ # p that splits in K. Under these
assumptions, in [Skinner and Urban 2014, Theorem 3.26] it is shown that

(2 (f/K)) 2 Cha 1) (Gel™ (Loo, Ap)), (20)

where Lo = Koo Kcyc is the Zz -extension of K, A f(Loo) is the three-variable
Iwasawa algebra IJI[Gal(LOO/K)]] and 22 (f/K) and Gel™ (Lo, Ay) are the “X'-
primitive” p-adic L-function and Se]mer group defined in [Skinner and Urban 2014,
§3.4.5] and [Skinner and Urban 2014, §§3.1.3, 3.1.10], respectively.

Recall the character ©® : Gg — Z,[1+ pZ,]* from Section 2C, regarded as a
character on Gal(L,/K), and let

TW@—I . Af(Loo) —> Af(Loo)

be the [-linear isomorphism induced by Twg-1(g) = ®~!(g)g for g € Gal(Lo/K).
Choose a topological generator y € Gal(K¢y./K), and expand

Twe-1(£) (f/K) =L} (f/K)+ & (f/K)(y = 1)+

with 22 (f/K) € Ap(Kx) = I[I']l. In particular, note that Szo(f/K) is the
restrlctlon of the twisted three-variable p-adic L-function Twg- 1(13E (f/K)) to
the “self-dual” plane.

Because of our assumptions on f, the A-adic form f has trivial tame character,
and hence denoting by Frob, an arithmetic Frobenius at any prime €1 N (a) p, the
Galois representation

p(a) : Gg — GL(Ty) ~ GLy(T(a)°)
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considered in Section 1D (which is easily seen to agree with the twisted representa-
tion considered in [Skinner and Urban 2014, p. 37]) satisfies

det(X — Froby |Ty) = X* —ay(f)X + ©2(£)¢.

The twist T} =Tr® ®~! is therefore self-dual. Thus combining [Rubin 2000,
Lemma 6.1.2] with a straightforward variant of [Skinner and Urban 2014, Proposi-
tion 3.9] having Gal(K /K in place of Gal(K¢y./K), we see that divisibility (20)
implies that

(£ 0(f/K)) 2 Cha (k) (Sel™ (Koo, ADY). 1)

(Here, as above, Ay denotes the Pontryagin dual 7y ®) Hom(l, Q,/Z ), and A}
is the corresponding twist.) We next claim that, setting X" := X'\ X, we have

(LE(f/K) = <Lz(/3, o- [] Ev<a)), (22)
veX”, vip
where Ly (0, a) is the two-variable p-adic L-function constructed in Section 3D,
and if v lies over the rational prime ¢, E,(a) is the Euler factor given by

E,(a) = det(Id — Froby, X|(V})1,)x=¢ Frob,

where V¢ := Ty ® Frac(l), and Frob, is an arithmetic Frobenius at v. (Note that
for ¢ = ([ split in K, E((a) - Ei(a) is simply the Euler factor (11).) Indeed, combined
with Theorems 3.10 and 3.14, equality (22) specialized to any arithmetic prime
© € T(a) of weight 2 is shown in [Skinner and Urban 2014, (12.3)], from where the
claim follows easily from the density of these primes. (See also [Pollack and Weston
2011, Theorem 6.8] for the comparison between the different periods involved in
the two constructions, which differ by a p-adic unit under our assumptions.)

Finally, (21) and (22) combined with Theorem 3.10 and [Greenberg and Vatsal
2000, Propositions 2.3,8] imply that

(L(B, @) 2 Cha (ko) (Sel(Koo, A,

from where the result follows by specializing at g, using Theorem 3.14 and
Theorem 4.1. U

In the opposite direction, we have the following result:

Theorem 5.4 (Bertolini-Darmon). Let f =Y -, a,(f)q" be a p-ordinary new-
form of weight 2, level N, and trivial nebentypus. Suppose that py satisfies
Assumption (CR) and that

ap(f) #=x1 (mod p). (PO)
Then
(Lp(f/K)) € Chp(Sel(Keo, ).



2366 Francesc Castella, Chan-Ho Kim and Matteo Longo

Proof. This is the main result of [Bertolini and Darmon 2005], as extended by Pollack
and Weston [Pollack and Weston 2011] to newforms of weight 2 not necessarily
defined over @ and under the stated hypotheses (weaker that in [Bertolini and
Darmon 2005]) on py. See also [Kim et al. 2017] for a detailed discussion on the
additional “nonanomalous” hypothesis (PO) on f. ([

Before we combine the previous two theorems with our main results in this paper,
we note that condition (PO) in Theorem 5.4 can be phrased in terms of the Galois rep-
resentation ps associated to f. Indeed, let f =Y 72| a,(f)q" be a p-ordinary new-
form as above, defined over a finite extension F/Q),, with ring of integers O. Then

NeE
prlp, = 0 s

on a decomposition group D, € Gg at p, with § : D, — O* an unramified
character sending Frob,, to the unit root ,, of X 2_a »(f)X + p. Since clearly
a =a,(f) (mod p), we see that condition (PO) amounts to the requirement that

d(Frob,) # £1 (mod p). (PO)

Now we are finally in a position to prove our main application to the anticyclo-
tomic Iwasawa main conjecture for p-ordinary newforms.

Corollary 5.5. Suppose that p satisfies Assumptions (SU) and (PO) and that p
splits in K, and let f be a newform in H™ (p) of weight k =2 (mod p — 1) and
trivial nebentypus. Then the anticyclotomic Iwasawa main conjecture holds for f.

Proof. After Theorems 5.2 and 5.3, to check the anticyclotomic main conjecture
for any newform f as in the statement, it suffices to check the three equalities

n(Sel(Koo, fo)) = n(Lp(fo/K)) =0, A(Sel(Kuo, f0)) = A(L,(fo/K)) (23)

hold for some fy € H™(p) of weight k =2 (mod p — 1) and trivial nebentypus.
Let T(a) be the irreducible component of ™ (p) containing f, and let fp €
S2(T"g(Np)) be the p-stabilized newform corresponding to an arithmetic prime
@ C T(a) of weight 2 and trivial nebentypus. By Assumption (PO), the form fj is
necessarily the p-stabilization of a p-ordinary newform f(;i € $2(Tg(N)) (see, e.g.,
[Howard 2007, Lemma 2.1.5]). From the combination of Theorems 5.3 and 5.4, the
anticyclotomic Iwasawa main conjecture holds for fg, and since we clearly have

Lp(fo/K)=Ly(f5/K) and Sel(Keo, fo) = Sel(Koo. £§)

(note that the latter isomorphism relies on the absolute irreducibility of p), the anti-
cyclotomic Iwasawa main conjecture holds for fj as well. In particular, equalities
(23) hold for this fj, and the result follows. O



Anticyclotomic lwasawa invariants in Hida families 2367

Acknowledgements

During the preparation of this paper, Castella was partially supported by the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 682152); Kim was partially
supported by an AMS—Simons Travel Grant; Longo was partially supported by
PRIN 2010-11 “Arithmetic Algebraic Geometry and Number Theory” and by PRAT
2013 “Arithmetic of Varieties over Number Fields”.

References

[Bertolini and Darmon 1996] M. Bertolini and H. Darmon, “Heegner points on Mumford-Tate
curves”, Invent. Math. 126:3 (1996), 413-456. MR Zbl

[Bertolini and Darmon 2005] M. Bertolini and H. Darmon, “Iwasawa’s main conjecture for elliptic
curves over anticyclotomic Z p-extensions”, Ann. of Math. (2) 162:1 (2005), 1-64. MR Zbl

[Castella and Longo 2016] F. Castella and M. Longo, “Big Heegner points and special values of
L-series”, Ann. Math. Qué. 40:2 (2016), 303-324. MR Zbl

[Chida and Hsieh 2015] M. Chida and M.-L. Hsieh, “On the anticyclotomic Iwasawa main conjecture
for modular forms”, Compos. Math. 151:5 (2015), 863-897. MR Zbl

[Chida and Hsieh 2016] M. Chida and M.-L. Hsieh, “Special values of anticyclotomic L-functions
for modular forms”, Journal fiir die reine und angewandte Mathematik (Crelles Journal) (online
publication January 2016).

[Diamond and Taylor 1994] F. Diamond and R. Taylor, “Nonoptimal levels of mod / modular
representations”, Invent. Math. 115:3 (1994), 435-462. MR Zbl

[Emerton et al. 2006] M. Emerton, R. Pollack, and T. Weston, “Variation of Iwasawa invariants in
Hida families”, Invent. Math. 163:3 (2006), 523-580. MR Zbl

[Greenberg 1989] R. Greenberg, “Iwasawa theory for p-adic representations”, pp. 97-137 in Alge-
braic number theory, edited by J. Coates et al., Adv. Stud. Pure Math. 17, Academic Press, Boston,
1989. MR Zbl

[Greenberg and Vatsal 2000] R. Greenberg and V. Vatsal, “On the Iwasawa invariants of elliptic
curves”, Invent. Math. 142:1 (2000), 17-63. MR Zbl

[Hida 1986] H. Hida, “Galois representations into GL2 (Z[[X]]) attached to ordinary cusp forms”,
Invent. Math. 85:3 (1986), 545-613. MR Zbl

[Hida 1988] H. Hida, “On p-adic Hecke algebras for GL, over totally real fields”, Ann. of Math. (2)
128:2 (1988), 295-384. MR Zbl

[Howard 2007] B. Howard, “Variation of Heegner points in Hida families”, Invent. Math. 167:1
(2007), 91-128. MR Zbl

[Khare and Wintenberger 2009] C. Khare and J.-P. Wintenberger, “Serre’s modularity conjecture. I”,
Invent. Math. 178:3 (2009), 485-504. MR Zbl

[Kim 2017] C.-H. Kim, “Anticyclotomic Iwasawa invariants and congruences of modular forms”,
Asian J. Math. 21:3 (2017), 499-530. MR

[Kim et al. 2017] C.-H. Kim, R. Pollack, and T. Weston, “On the freeness of anticyclotomic Selmer
groups of modular forms”, Int. J. Number Theory 13:6 (2017), 1443-1455. MR Zbl

[Longo and Vigni 2011] M. Longo and S. Vigni, “Quaternion algebras, Heegner points and the
arithmetic of Hida families”, Manuscripta Math. 135:3-4 (2011), 273-328. MR Zbl


http://dx.doi.org/10.1007/s002220050105
http://dx.doi.org/10.1007/s002220050105
http://msp.org/idx/mr/1419003
http://msp.org/idx/zbl/0882.11034
http://dx.doi.org/10.4007/annals.2005.162.1
http://dx.doi.org/10.4007/annals.2005.162.1
http://msp.org/idx/mr/2178960
http://msp.org/idx/zbl/1093.11037
http://dx.doi.org/10.1007/s40316-015-0045-3
http://dx.doi.org/10.1007/s40316-015-0045-3
http://msp.org/idx/mr/3529184
http://msp.org/idx/zbl/06631949
http://dx.doi.org/10.1112/S0010437X14007787
http://dx.doi.org/10.1112/S0010437X14007787
http://msp.org/idx/mr/3347993
http://msp.org/idx/zbl/1326.11067
http://dx.doi.org/10.1515/crelle-2015-0072
http://dx.doi.org/10.1515/crelle-2015-0072
http://dx.doi.org/10.1007/BF01231768
http://dx.doi.org/10.1007/BF01231768
http://msp.org/idx/mr/1262939
http://msp.org/idx/zbl/0847.11025
http://dx.doi.org/10.1007/s00222-005-0467-7
http://dx.doi.org/10.1007/s00222-005-0467-7
http://msp.org/idx/mr/2207234
http://msp.org/idx/zbl/1093.11065
http://msp.org/idx/mr/1097613
http://msp.org/idx/zbl/0739.11045
http://dx.doi.org/10.1007/s002220000080
http://dx.doi.org/10.1007/s002220000080
http://msp.org/idx/mr/1784796
http://msp.org/idx/zbl/1032.11046
http://dx.doi.org/10.1007/BF01390329
http://msp.org/idx/mr/848685
http://msp.org/idx/zbl/0612.10021
http://dx.doi.org/10.2307/1971444
http://msp.org/idx/mr/960949
http://msp.org/idx/zbl/0658.10034
http://dx.doi.org/10.1007/s00222-006-0007-0
http://msp.org/idx/mr/2264805
http://msp.org/idx/zbl/1171.11033
http://dx.doi.org/10.1007/s00222-009-0205-7
http://msp.org/idx/mr/2551763
http://msp.org/idx/zbl/1304.11041
http://dx.doi.org/10.4310/AJM.2017.v21.n3.a5
http://msp.org/idx/mr/3672216
http://dx.doi.org/10.1142/S1793042117500804
http://dx.doi.org/10.1142/S1793042117500804
http://msp.org/idx/mr/3656202
http://msp.org/idx/zbl/06737269
http://dx.doi.org/10.1007/s00229-010-0409-6
http://dx.doi.org/10.1007/s00229-010-0409-6
http://msp.org/idx/mr/2813438
http://msp.org/idx/zbl/1320.11054

2368 Francesc Castella, Chan-Ho Kim and Matteo Longo

[Pollack and Weston 2011] R. Pollack and T. Weston, “On anticyclotomic p-invariants of modular
forms”, Compos. Math. 147:5 (2011), 1353-1381. MR Zbl

[Rubin 2000] K. Rubin, Euler systems, Annals of Mathematics Studies 147, Princeton University
Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study. MR Zbl
[Skinner and Urban 2014] C. Skinner and E. Urban, “The Iwasawa main conjectures for GL,”, Invent.

Math. 195:1 (2014), 1-277. MR Zbl
[Skinner and Wiles 1999] C. M. Skinner and A. J. Wiles, “Residually reducible representations and
modular forms”, Inst. Hautes Etudes Sci. Publ. Math. 89 (1999), 5-126. MR Zbl

[Vatsal 2003] V. Vatsal, “Special values of anticyclotomic L-functions”, Duke Math. J. 116:2 (2003),
219-261. MR Zbl

Communicated by John Henry Coates
Received 2017-01-09 Revised 2017-09-05 Accepted 2017-10-23

fcabello@math.princeton.edu Department of Mathematics, Princeton University,
Princeton, NJ, United States

chanho.math@gmail.com School of Mathematics, Korea Institute for Advanced Study
(KIAS), Seoul, South Korea

mlongo@math.unipd.it Dipartimento di Matematica, Universita di Padova, Padova,
Italy

mathematical sciences publishers :'msp


http://dx.doi.org/10.1112/S0010437X11005318
http://dx.doi.org/10.1112/S0010437X11005318
http://msp.org/idx/mr/2834724
http://msp.org/idx/zbl/1259.11101
http://dx.doi.org/10.1515/9781400865208
http://msp.org/idx/mr/1749177
http://msp.org/idx/zbl/0977.11001
http://dx.doi.org/10.1007/s00222-013-0448-1
http://msp.org/idx/mr/3148103
http://msp.org/idx/zbl/1301.11074
http://www.numdam.org/item?id=PMIHES_1999__89__5_0
http://www.numdam.org/item?id=PMIHES_1999__89__5_0
http://msp.org/idx/mr/1793414
http://msp.org/idx/zbl/1005.11030
http://dx.doi.org/10.1215/S0012-7094-03-11622-1
http://msp.org/idx/mr/1953292
http://msp.org/idx/zbl/1065.11048
mailto:fcabello@math.princeton.edu
mailto:chanho.math@gmail.com
mailto:mlongo@math.unipd.it
http://msp.org

ALGEBRA AND NUMBER THEORY 11:10 (2017)
dx.doi.org/10.2140/ant.2017.11.2369

Effective nonvanishing for Fano
weighted complete intersections

Marco Pizzato, Taro Sano and Luca Tasin

We show that the Ambro—Kawamata nonvanishing conjecture holds true for a
quasismooth WCI X which is Fano or Calabi—Yau, i.e., we prove that, if H is an
ample Cartier divisor on X, then |H| is not empty. If X is smooth, we further
show that the general element of |H| is smooth. We then verify the Ambro—
Kawamata conjecture for any quasismooth weighted hypersurface. We also verify
Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface.

For the proofs, we introduce the arithmetic notion of regular pairs and highlight
some interesting connections with the Frobenius coin problem.

1. Introduction

Complete intersections in weighted projective spaces (WCls for short) form a
natural class of varieties which are particularly interesting from the point of view
of higher dimensional algebraic geometry. We refer to [Dolgachev 1982], [Mori
1975] and [Dimca 1986] for a general treatment of these varieties.

Reid [1980; 1987] and lano-Fletcher [2000] systematically investigated notable
examples of WCls and started their classification. Several results have since been
obtained concerning boundedness and classification; see for example [Johnson and
Kollar 2001; Chen et al. 2011; Ballico et al. 2013; Chen 2015; Przyjalkowski and
Shramov 2016].

The main motivation of this paper is to study the following conjecture in the realm
of WCls, in particular for what concerns the case of Fano and Calabi—Yau varieties.

Conjecture 1.1 (Ambro—Kawamata). Let (X, A) be a kit pair and H be an ample
Cartier divisor on X such that H — Kx — A is ample. Then |H| # @.

For an introduction to this conjecture, see [Ambro 1999] and in particular [Kawa-
mata 2000] where the 2-dimensional case is proven. In the smooth setting, Ionescu
[Lanteri et al. 1993, p. 321] and Beltrametti and Sommese [1995] proposed related
conjectures.

MSC2010: primary 14M10; secondary 11D04, 14J45.
Keywords: weighted complete intersections, nonvanishing, Ambro—Kawamata conjecture.
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The Ambro—Kawamata conjecture is known to be true in full generality only in di-
mensions 1 and 2. Several cases have been studied, especially in dimension 3; see for
instance [Xie 2009; Broustet and Horing 2010; Horing 2012; Cao and Jiang 2016].

A fundamental divisor on a Fano variety X is an ample Cartier divisor H which
is primitive and proportional to —Kx. In the classification of Fano varieties, it is
important to investigate the properties of the general member of the linear system
given by H; see for instance [Ambro 1999]. The second purpose of this note is to
study this problem in the case of Fano and Calabi—Yau smooth WCls.

The main result of this paper is the following.

Theorem 1.2. Let X = Xy4,...4. C P(ao, ..., a,) be a well-formed quasismooth
weighted complete intersection which is not a linear cone and H be an ample
Cartier divisor on X. Assume that X is Fano or Calabi-Yau. Then |H| # @.

Moreover, if X is smooth, then the number of a; = 1 is at least ¢ and the general
element of |Ox(1)| is smooth.

.....

For a smooth Fano WCI, it was already proved in [Przyjalkowski and Shramov
2016, Lemma 3.3] that at least two weights are 1, which implies the nonvanishing
for a smooth Fano WCI. In addition, it is easy to prove Conjecture 1.1 for any
smooth WCI of codimension 1 and 2, see Remark 4.9.

It is particularly interesting that, in the smooth case, we can prove the smoothness
of the general member of the fundamental linear system (Corollary 5.3(ii)).

Theorem 1.2 is a direct consequence of Corollaries 5.3 and 5.13. In particular,
in Corollary 5.3, we show that if X = X4, 4. C P(ao, ..., a,) is a smooth well-
formed Fano WCI which is not a linear cone, then the number of i for which
a; =1 1is at least ¢ + 1. By using this, we can then show that the general element
of |Ox(1)| is quasismooth (from which smoothness follows easily). One can not
expect a similar statement for a general member of the fundamental linear system
of a singular quasismooth WCI, as Example 5.8 shows. We also give a description
of the base locus of |Ox(1)| in Remark 5.5 and an example whose base locus
Bs|Ox(1)] is singular and not quasismooth in Example 5.6.

In [Przyjalkowski and Shramov 2017, Corollary 4.2], the authors show that
for a smooth well-formed Fano WCI X the number of a; equal to 1 is at least
I(X) =) a; — ) d; when ¢ <2 and write that they expect this to hold for any
codimension. As a consequence of Proposition 5.2, we can confirm this expectation;
see Corollary 5.11.

In the case of hypersurfaces, we can prove the following stronger result, which
is the combination of Propositions 6.2 and 6.3:

Theorem 1.3. Let X = X; C P = P(ao, ..., a,) be a well-formed quasismooth
hypersurface of degree d which is not a linear cone.
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(1) If H is an ample Cartier divisor on X such that H — Kx is ample, then |H| is
not empty.

(2) If X is Gorenstein and H is an ample Cartier divisor, then Kx+mH is globally
generated for any m > n.

The second part of the statement is known as Fujita’s freeness conjecture and it
has been proven in the smooth setting up to dimension 5; see [Reider 1988; Ein
and Lazarsfeld 1993; Kawamata 1997; Ye and Zhu 2015].

The methods. The above theorems are obtained by studying the arithmetic prop-
erties of quasismooth WClIs. More precisely, in Section 3, we prove a criterion
(Proposition 3.1) for a WCI to be quasismooth, which generalizes Iano-Fletcher’s cri-
terion in codimension 1 and 2 (see [lano-Fletcher 2000, Section 8]). We then exploit
some arithmetic consequences of quasismoothness. In particular, Proposition 3.6
motivates the introduction of an h-regular pair (see Definition 4.1) which turns out
to be a key tool in our treatment.

Given a positive integer &, a pair (d;a) = (dy,...,d.;ap,...,a,) € N x N+l
is said to be h-regular if for any I = {iy,...,ix} C {0,...,n} such that a; :=
gcd(ai,,...,a;,) > 1, either ay | h or there are distinct integers p,..., px such that

a,ldpl,...,dpk.

Set §(d; a) 1= %_, dj — Y_i_oai- By Proposition 3.6, any quasismooth (well-
formed) WCI X = X4, ... 4. C P(ao, ..., a,) gives rise to an h-regular pair (d; a) =
(di,...,d¢; ag, ..., a,), where h is the smallest positive integer for which Ox (h) is
Cartier. Remembering that Kx = Ox (§), the nonvanishing for a Fano or Calabi—Yau
WCI follows from Proposition 5.12, which says that, if (d; a) is h-regular such
that a; # d; and q; {1 h for any i, j, then §(d; a) > 0. A more accurate statement
(Corollary 5.3) is needed to prove that, if X is smooth, then the general element of
|Ox (1)] is also smooth.

We now spend some words for the case 4 = 1. In this case, the pair (d; a) is
simply called regular. A smooth WCI X gives rise to a regular pair (d; a). The
nonvanishing is then equivalent to prove that

3(d;a) > Glag, ..., an),

where G(ao, ..., a,) is the Frobenius number of ay, . . ., a,, i.e., the greatest integer
which is not a nonnegative integral combination of ay, . .., a,. In Conjecture 4.8,
we speculate that §(d; a) > G(ao, ..., a,) for a regular pair (d; a), under some
natural assumptions. This would imply the Ambro—Kawamata conjecture for any
smooth WCI.



2372 Marco Pizzato, Taro Sano and Luca Tasin

We believe that this conjecture is interesting also from the arithmetic point of
view, since it would give new bounds for the Frobenius number (see page 2382 for
details).

2. Preliminaries and notation

In this section, we recall some basic facts about weighted complete intersections
and fix our notation. See [Dolgachev 1982] or [lano-Fletcher 2000] for further
details.

Let N (resp. N1 ) be the set of nonnegative (resp. positive) integers. Let ay, ...,a, €
N.. We define P := P(ao,...,a,) to be the weighted projective space with weights
ag, ..., a,, i.e., P = ProjClx, ..., x,], where x; has weight a;. We denote

Po1,....b1,.... b1, ..., by)
[ ———; —_———
ki ki

by P(bﬁkl), e bl(k’)) for short.
Note that if we start with xo, . . ., x, to be affine coordinates on A"*! and C*
acting on A"*+! via

A (X0, ... X0) = (A%x0, ..., A" Xy)
for any A € C*, then P is just the quotient (A"*+1\ {0})/C*.

We always assume that P is well-formed, i.e., the greatest common divisor of any
n weights is 1. For any I = {iy, ..., it} C {0, ..., n}, the stratum I1; is defined as

H1:={x,-=0:i¢l}.

The singular locus of P is the union of all strata I1; for which a; := gcd(a;)ier > 1.
Any point of the interior H? of a stratum I1; is locally isomorphic to a quotient
singularity of type

1

—(a(),...,CAll'],...,CAl,'k,...,an) x CK1.

ar
Here, for r € Ny and ay, ..., a, € N such that ged(r, ay, ..., a,) = 1, a quotient
singularity of type 1/r(ay, . . ., a,) means a quotient C" /Z, by the action of a cyclic
group Z, of order r as g -z; = {/'z; fori =1, ..., n, where g € Z, is a generator
and ¢, is an r-th primitive root of unity. We also denote by C"/Z,(ay, ..., a,)
this quotient affine variety. Let x : C" — U :=C"/Z,(ay, ..., a,) be the quotient

morphism. We have an eigendecomposition

r—1
7[*0@" - @E,
i—0
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where F; :={f €Ocn | g- f = {ri f} is the Oy -submodule of 7,O¢» consisting
of Z,-eigenfunctions of eigenvalue {,i . Note that F; >~ Oy (Dy), where a divisor
D¢ :=(f =0)/Z, on U is defined by a function f € F;.

Proposition 2.1. The divisor class group of U :=C"/Z,(ay, ..., a,) is
ClU ~Z, - Fi. (1)

Proof. We have an inclusion ¢ : Z, - 71 < ClU. It is enough to show that this
is surjective. Let D C U be a prime divisor. Then 7~ (D) is a divisor on C"
defined by some Z,-eigenfunction fp € Oc¢». Leti(D) € Z, be an element such
that g - fp = ;,“D)f. Then we can check that Oy (D) >~ F;(p). Since g - Fi~F
for i € Z,, we see that ¢ is surjective.

We can also check the isomorphism by toric computation. Since C"/Z,(ay,...,a,)
is a toric variety, we can compute its class group by using the information of the
cone and lattice. (cf., [Fulton 1993, p. 63, Proposition]) More precisely, it is the
quotient Z" /M, where M := {(m1,...,m,) € Z" | >_;_;m;a; =0 modr}. O

Definition 2.2. Let X be a (closed) subvariety of codimension ¢ in . Then X is
well-formed if
codimy (X N Sing(P)) > 2.

Let 7 : A"T1\ {0} — P be the natural projection. Then X is quasismooth if 7 1(X)
is smooth.

The variety X is said to be a weighted complete intersection (WCI for short)
of multidegree (di, ..., d.) if its weighted homogenous ideal in C[xy, ..., x,]
is generated by a regular sequence of homogenous polynomials {f;} such that
deg fj=d; for j=1,...,c. We denote by Xy, . 4 ageneral element of the family
of WClIs of multidegree (dy, ..., d.).

Finally, Xy, ...4. C P is said to be a linear cone if d; = a; for some i and ;.

.....

.....

Note that by [Dimca 1986, Proposition 8], if X is a well-formed quasismooth
WCI, then
Sing(X) = X N Sing(P).

Proposition 2.3. If X is a quasismooth WCI of dimension > 3, then its divisor class
group is a free Z-module generated by Ox (1), where Ox (1) := Op(1)|x. (We freely
mix the divisorial and the sheaf notation.)

Proof. The proof is the same as [Corti et al. 2000, Lemma 3.5]. This follows from
the parafactoriality of an l.c.i. local ring [Call and Lyubeznik 1994]. ]

If X C P is a well-formed quasismooth WCI, then

n

wX:KX:OX(Zdj_Zai)’

j=1 i=0
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see [Dolgachev 1982, Theorem 3.3.4]. We usually write § := > %_; dj — >_i_ ai.

The following result shows that the dimension of the linear system |Ox (n)| can
be computed by the weights of the coordinates.

Lemma 2.4 [Iano-Fletcher 2000, Lemma 7.1]. Let X C P(ao, ..., a,) be a well-
formed quasismooth WCI. Let A :=k[xo, ..., x,1/(f1, ..., fc) be the homogeneous
coordinate ring of X and Ay be the k-th graded part for k € Z. Then

HO(X, Ox(k)) ~ Ay.

Proof. See also [Dolgachev 1982, 3.4.3]. This follows since the homogeneous
coordinate ring A is Cohen—Macaulay and Hnll(A) =0, where m := (xg, ..., X,) 18
the maximal ideal. U

3. Properties of quasismooth WCls

In the following proposition, we give a necessary and sufficient condition for
quasismoothness of a WCI.

Proposition 3.1. Let X = X4, . 4. C P(ao, ..., an) =: P be a quasismooth WCI

which is not a linear cone. Let xy, . . ., X, be the coordinates of P(ay, ..., a,). Fix

I:={i,...,ix} C{0,...,n}and let p; := min{c, k}. Form = (m, ..., my), let

xyi= ]_[];=1 x?;j. For a finite set A, let |A| be the number of its elements. Then one

of the following holds.

(Q1) There exist distinct integers pi, ..., pp, €{1,...,ctand My, ..., M,, € Nk
such that the monomial x, 7 has the degree dp forj=1,...,pr

(Q2) There exist a permutation p1, ..., pc of {1,...,c}, an integer | < p;, and
integers e, j €{0,...,n}\I form=1,...,k—land j=1+1,...,csuch
that there are monomials xﬁwj of degree dp,; for j =1, ..., and distinct k —1
monomials {xewx;w“" :u=1,... . k—l}ofdegreed,, foreach j=I+1, ..., c
which satisfy the following: for any subset J C {L+ 1, ..., c}, we have
Heu,j:jed,u=1,....,k=1l}| =k—1+|J| - L

Conversely, if we have (Q1) or (Q2) for all I, then a general WCI X4,
P(ao, ..., an) is quasismooth.

d. C

.....

Remark 3.2. This generalizes [lano-Fletcher 2000, Theorem 8.7] in codimension
2 case. A weaker necessary condition for the quasismoothness is written in [Chen
2015, Proposition 2.3]. Although we shall not use the new part of Proposition 3.1
in the main part of this paper, we believe it is an interesting result on its own.

Proof. The framework of the proof is similar to that of [Iano-Fletcher 2000,
Theorem 8.7].
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Let Fj :=|Op(d;)| be the linear system of weighted homogeneous polynomials of

degree d;. For j =1, ..., c, let f; be a general homogeneous polynomial of degree
djsuchthat X = (fi =---= f. =0) CP(ap, . .., ay). Let C% C A"\ {0} be the
cone over X defined by the polynomials f, ..., f. with the following diagram

Ci—— A"\ {0}

| |

X———P
Without loss of generality, we may assume I = {0, ..., k — 1} in the statement. Let
IM:=(x=--=x, =0) C A" be the stratum corresponding to / and n’crnm
be the open toric stratum. By expanding f, for A=1, ..., cinterms of xg, ..., x,,

we can write "
fo=hu(xo, ..., x-1) + ingi(xo, e Xk—1) + Ry (X0, ..., Xp),
i=k
where 4y, gt € Clxo, ..., xx—1] and R; € Clxo, ..., x,] satisfies deg, . Ri>2.
Note that X is quasismooth if and only if C% is smooth along all the coordinate
strata. We shall show that C% is smooth along I1° when either (Q1) or (Q2) holds
for 1. Let p := p; for short.

Suppose that (Q1) holds. Then A, ..., h),, are nonzero on I1° If some of & P
involves only one monomial, then we have T1° N Cy = 9. So we may assume that
eachof hp,..., h P involves at least 2 monomials. Thus we see that the linear
systems de e de,, do not have base locus on IT°% By Bertini’s theorem, we see
that (fp, =---=fp,=0) C A"+1 is smooth along IT° when k > ¢. When k < c,
we have (fp, =---=f,, =0)N T1° = @. Therefore C% is nonsingular along I°,

Next suppose that (Q2) holds. By permutation, we may assume that p; =i. Then
hi, ..., h; are nonzero on I1°. Hence the base locus of F, is disjoint with I1° for
A=1,...,/[. By Bertini’s theorem, we see that (f; =--- = f; =0) is nonsingular
along TT1°. We may assume that the Jacobian of (f; =--- = f. = 0) C A"*! at
P e I1° is of the form

dx0 0Xk—1
: : *
9x0 dx_1 . . (P),
814177 8141
gt - &
since we have h;, =0for A =1[+1, ..., c. Note that the block matrix
dx0 0Xp—1
: L)
i afi

dx0 0Xp—1
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has maximal rank / at P € T1° since (f; = --- = f; = 0) is nonsingular along
I1°. Hence it is enough to show that the matrix

81 8l
Mp := (P) (2)
gt v 8
has maximal rank ¢ — 1.
Note that there are at least k — [ elements of K, :={i € {k,...,n}: gi # 0}
foreach A =141, ...,c. By |K,| > k — 1, we see that each row vector of Mp is

nonzero for P € Y. Indeed, for each A’ =1+ 1, ..., ¢, the intersection

1 n
(. =0n()e =0 nT°
r=1

i=k

is contained in at least k =/ 4 (k —[) free linear systems on k-dimensional 1% and
it is empty. Thus we may assume that glk+ 1(P) # 0. We shall make elementary
matrix operations on Mp to calculate the rank of Mp.

Fora=I1+2,...,c,let

Zy(P):={Qe(fi=-=fi=0)nT1":
g (P)E(Q) — g¥(P)gl (@) =0G=k+1,...,n)}.

Note that the first row M 1£ and the (A —1/)-th row M g_l of Mp are linearly dependent
if and only if P € Z,(P). By condition (Q2) for J with |J| = 2, there are at least
k — [ nonzero elements of G, (P) := {glk+1(P)gi — g’k‘(P)gl"Jrl i=k+1,...,n}
and they define k — I free linear systems on I1°. Hence we obtain Z,(P) = @
and the two rows M 11, and M Iﬁ_l are linearly independent. Thus, by elementary
operations on Mp, we obtain a matrix of the following form;

k
LS 8141
0 hyffy--hiyy
o A NC2
0 hk+L... pn

By column exchange operations, we may assume that hﬁzl (P) # 0 and repeat the

process to

k+1
h1+2 h7+2

My = : : (P).
h/C<+1 R

Let G, (P) := {h} 15 (P)hi, —h\ TN (P)h! ,:i =k+2, ..., n}. By condition (Q2)
for J with |J| = 3, there are at least k — [ nonzero elements of G (P) and they
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define free linear systems on I1°. By this, we again see that the first row and another
row of M/, are linearly independent.
After repeating these elementary operations, we obtain a matrix of the form

A4+
.ok ok
0 .
for some a;41, ..., a. € C\ {0} and see that the rank of Mp is ¢ —[. Thus C¥ is

nonsingular at P € IT°

Suppose that conditions (Q1) and (Q2) do not hold for some /. We shall show
that X is not quasismooth. We may again assume that / = {0, ...,k — 1} and
[M1=(xf =---=x, =0). Moreover, since (Q1) and (Q2) do not hold, we may
assume that, for some [ < p;, wehave I[1 Z (f;, =0) forA=1,...,land [T C (f, =0)
for A=1[1+1,...,c. Then the singular locus of C;} on I1° can be described as

Z:={Pe(fi=-=fi=00NT":tkMp <c—1),

where Mp is the matrix defined in (2). By the hypothesis, we may also assume that
there exists J C {{+ 1, ..., ¢} such that there are at most k — [ + |J| — 2 nonzero
elements among {gf\ A e J,i=k,...,n}. This implies that there are at most
k —1+|J|—2 nonzero columns of the matrix My := (gf\(P))];iS". We can choose
J so that the number |J| is minimal among such subsets of {{+1, ..., ¢}. Then, by
elementary operations as in the first part of the proof, we can transfer M 1! to the form

k k+[J] n
hl—H hl+1 hl+1
. : : (P).
k+1J1=1 , k+]J]| n
O hz+|J\ hl+|]| hl+|]|

Note that on the bottom row we have at most k — [ — 1 nonzero entries. Hence we
obtain

dim(fi=---=fi=0)N " = =hn ,=0n0°
>k—1l—(k—1—-1)=1.
Since the rank of M is not maximal on the subset (hfj:lljjl‘_1 =---=hj,;=0),

we see that C is singular along the above positive dimensional subset. Hence X
is not quasismooth in this case. This concludes the proof of Proposition 3.1.  [J

In the following example, we use Proposition 3.1 to check quasismoothness of a
given WCL.

Example 3.3. Let Xg5g3 C PR2®W, 3 56)) be a general WCI of codimension 3.
We can check the quasismoothness of X g g by Proposition 3.1 as follows. Consider
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I1=1{4,5,6,7, 8}, thatis, ag = - - - =ag = 3. Then (Q1) does not hold for this I and
we have k =5,/ =01n (Q2). We can choose {e,, ;: j=1,2,3, u=1,...,5} C
{0,1,2,3,9,10, 11} so that (Q2) is satisfied for this /. We can similarly check
that (Q2) holds for I = {9, 10, 11}. For other I, we have (Q1), thus we see the
quasismoothness of X3 3 g.

On the other hand, we see that X é’g g C PR2®, 3% 50)) is not quasismooth.
Indeed, for I = {7, 8, 9}, that is, a7 = a{; = a9 = 5, neither (Q1) nor (Q2) hold.

The following proposition treats the special situation where some weight of P
divides none of the degrees of a WCL

Proposition 3.4. Let X =Xy, . 4. CP(ao, ..., a,) be a (well-formed) quasismooth
WCI which is not a linear cone. Assume that there exists iy such that a;, does not
divide d; for all j. Let H = Ox (h) be the fundamental divisor on X, that is, an
ample Cartier divisor on X which generates Pic X. Then

(1) X has a quotient singularity of type 1/a;,(c1,...,cn—c) for some cy,...,ch—c €
Z>q such that ged(ay,, c1,...,cn—c) = 1;

(1) aj, | h. As a consequence, we have |H| # @.

Proof. Let f1,..., f. € Clxo, ..., x,] be the defining equations of X such that

degfj=djforl <j<cand X =(fi=---= f. =0) CPl(ao, ...,a,), where
degx; = a; for 0 <i < n. By applying Proposition 3.1 to I = {ip}, we see that
there exist distinct integers ey, ...,e. € {0, ..., iAo, ..., n} and positive integers
ki, ..., ke suchthatd; = kja;, +a.; for 1 < j <c,i.e., we can write

kj
fj = 'xi() xe.i + g]

for 1 < j <c, where g; is a weighted homogeneous polynomial of degree d;.
By the inverse function theorem, we see that X has a quotient singularity of type

1/aiy(ao, ..., Qigy -y Qeyy - vy ey - - ay) at Pig:=[0:---:1:--.:0]. We shall
show that g := ged(ag, ..., ey, - -, de, - - ., an) = 1. Suppose that g > 1.

Claim 3.5. Up to a permutation on {1, . .., ¢}, we may choose 0 < ¢’ < ¢ with the
following properties:

(*) For j =1,...,c, some monomial in g; does not contain any element of

{xej, coey Xe )

(**) For j=c"+1, ..., c, every monomial in g contain some of {xecm, ceey Xe, )
Proof of the claim. If (**) holds forall j =1,...,c and {x,, ..., x.}, then we
put ¢’ := 0. Otherwise there is some j such that 1 < j < ¢ and (*) holds for
{xeys ..., xe ). We then exchange (f1, 1) and (f;, ¢;) and repeat the same process

starting from j = 2 till we obtain the claim, that is, check whether (**) holds for
new {f>, ..., f.} and {es, ..., e.} and so on. O
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b;

..,ecxi .

Hence, for 1 < j </, there exists a monomial in g jof the formh ; = ]_[l- Lej..

gla, forl1<j<c. 3)

Now let IT:= (x,,,, =+ =x,, =0) CP. We have Il C Sing P, in particular
Im£P
We also have fj|n =0 for ¢’ +1 < j < c by the property (**) of ¢’. Thus we
obtain
dmINX >dimIl—c¢ =dimP —c.

This contradicts the fact that X ¢ IT since X is not a linear cone. Hence we obtain
g = 1, concluding the proof of Proposition 3.4. (]

The following proposition is useful for calculating the fundamental divisor of a
WCI and is the motivation of the definition of i-regular pair (see Definition 4.1).

Proposition 3.6. Let X = X4, 4. C Plao, ..., a,) be a quasismooth well-formed

WCI which is not a linear cone. Let H = Ox(h) be the fundamental divisor of X.

Assume that there exists I = {iy, ..., ix} such that a; := ged(a;,, ..., a;) > 1.
Then one of the following holds:

(i) There exist distinct integers p1, ..., px suchthataj |dp,, ..., dp;
>ii) ay | h.
Proof. We apply Proposition 3.1 to I = {iy, ..., i¢}. Let

Pri=(xo=- X ==k =-=x,=0CP
be the (k — 1)-dimensional stratum corresponding to / and PIO C P; be the open
toric stratum.
Suppose that condition (Q1) in Proposition 3.1 holds, that is, there exist distinct
integers p1, ..., px and nonnegative integers k;; for j =1,...,k and i € I such
thatd, =) ., kjia;. Then we have (i) in this case.

iel
Suppose that (Q2) holds. Then there exist a permutation py, ..., p. of {1,...,c},
an integer / < p := min{c, k}, nonnegative integers k;; for j =1,...,candi € I,
and distinct integers e 1, . . ., e, which satisfy the following:

e forj=1,...,1,wehave ), , k;a; =dy,,

o forj=1I1+1,...,c,wehave a,, + ) ;c  kjiai =d,,.
We may assume that (f,, =0) N P,0 # & since X is irreducible and the linear
system |Op(dp,;)| does not have a fixed component. Hence, on p € X N P?, the

variety X is analytic locally isomorphic to a quotient singularity of type

1 ~ ~ ~ ~ k—1
a—(ao,...,ail,...,aik,...,aeHl,...,aeC,...,an)xC .
I
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Now the proof is reduced to the following claim:
Claim 3.7. We have g := gcd(ag, ..., deyyys -5 Ge,s .., an) = 1.

Proof of Claim. Suppose that g > 1. We shall have a similar contradiction as in the
proof of Proposition 3.4. As in Claim 3.5, up to a permutation of {1, ..., c}, we
may choose ¢’ with [ + 1 < ¢’ < ¢ with the following properties:

(*) For j=1+1,..., ¢, some monomial in g; does not contain any element of
{xejs oy Xe )

(**) For j =c'+1, ..., c, every monomial in gj contain some of {xec,ﬂ, ceey Xe, )

Let IT := (xe,,, = ="+ = Xe, = 0) C P. Then, as in Proposition 3.6, we see

that fjln =0for j =c¢ +1,...,cand I1 C SingP(ay, ..., a,) since g | a; for

ié¢{est1,...,e.}. Thus we have dim ITNX > dim [P —c as before and it contradicts

that X ¢ IT since X is not a linear cone. Thus we obtain the claim. ([

The sheaf Ox (1) induces a generator of the class group of a quotient singularity
of the above type. Since the class group is a cyclic group of order a; as in (1), we
see that a; | h. Thus we have finished the proof of Proposition 3.6. (]

The following corollary restricts Proposition 3.6 to the smooth case.

Corollary 3.8 [Przyjalkowski and Shramov 2016, Lemma 2.15]. Let X =Xy, .. 4. C

P(ao, ..., a,) be a smooth WCI. Assume that there exists I = {iy, ..., iy} such that
ar :=ged(a;,, ..., a;,) > 1.
Then there exist distinct integers py, ..., pi such thatay |d,,, ..., dp,.

Proof. Since X is smooth, the fundamental divisor of X is Ox (1), thatis A =1 in
the notation of Proposition 3.6. Thus the statement follows from Proposition 3.6. [J

4. Regular pairs and Frobenius coin problem

The following definition is motivated by Proposition 3.6 and Corollary 3.8.

Definition 4.1. Let c € N and n € Z-_ be integers and (d; a) be a pair, where
d=(d,...,d) eNS and a = (ag, ...,a,) € N Let ¢+ :={1,...,c} and
n:={0,...,n}

We say that (d; a) is h-regular for a positive integer 4 if, for any subset [ =

{i1, ..., ik} C n such that a; := ged(a;,, ..., a;) > 1, one of the following holds:
(i) There exist distinct integers py, ..., px € ¢T such that a; ldp,,....dp;
(i) ay | h.

If a pair is h-regular for & = 1, we simply call it regular.

Remark 4.2. For technical reasons, in Definition 4.1 we admit the cases ¢ =0 or
n = —1, i.e., pairs of the form (d; @), (&; a) and (2, 9).
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We need to fix some notation. If (d; a) is a pair withd = (dy, ..., d.) € N¢ and
a=(ao,...,a,) € N"" then we define

§(dia):=Y _dj— ) aj.
j=1 i=0

In the case where the pair (d; a) comes from a well-formed quasismooth WCI
,,,,, d. C P(ao, ..., ay), we have wx = Ox(6(d; a)).

Let g be a prime number. Set [, :={i € :q|a;} and J, :={j €ct:q|d;}. We
consider two new pairs obtained from (d; a). The pair (d?; a?) is given by

d?:=(dj/q)jes, ([dj)jecr\s,), a¥:=(ai/Qic1,> (@i)ienr1,)

in which we divided by ¢ all the divisible d; and a; and the pair (d(q), a(q)) is
given by
d(q) :=(dj)jes,, alq):=(ai)iel,

in which only the divisible d; and a; appear. Note that
qg-—1
8(d;a)=46(d?;a?) + Té(d(q); a(q)).

Definition 4.3. For a pair (d; a), we may choose subsets Jz:q) = {j1,..., i} C¢T
and /(4;q) = {i1,...,i;} C n uniquely for some / € N so thatd; =a;, fork=1,...,]
and d; # a; forall j € ct\ Ja.ay and i € i\ I(4.q). We define a pair (d; a) by

(d; @) 1= ((d)) jeer\ Iy (@ici\ ) )
that is, we cancel the doubles (d;, a;) with d; = a;.
Lemma 4.4. The pair (d; @) is h-regular if (d; a) is h-regular.

Proof. Let I :={i1,...,ix} C n\ Iy4.q) be a subset with a; > 1. Since (d; a) is
h-regular, either (i) holds for some {p1, ..., py} C ¢ or (ii) holds. In the latter
case, there is nothing to check. Thus we consider the former case and need to find
pis ... Pp €T\ Ja:q) such that a; |dp} for j=1,...,k. Let

J/ = {jGJ(d;a)Za1|dj}, I/ = {ieI(d;a):alla,-}.

Then we have |I'| = |J/| =:1". Let I” := I UI'. By a;j = ay», there exist distinct

integers pq, ..., pxar € ¢ such that a; |dp for j=1,...,k +1I'. Then the set
{p1. ..., pesr}\ J' contains k elements p, ..., p; € ¢\ Ji:q) such that a; |dp;_
for j = 1,...,k. Thus (i) holds for (ci; a) and I. Hence we see that (d~; a) is
h-regular. O

The following straightforward lemmas show how /A-regular pairs are very suitable
for inductive arguments.
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Lemma 4.5. Let (d; a) be an h-regular pair and q be a prime not dividing h. Then
the pairs (d9; a?) and (d(q); a(q)) are h-regular. Hence (d(q)/q; a(q)/q) is also
h-regular.

Proof. We write the details for the pair (d?; a?). The proof for (d(q); a(q)) is
easier.

Let I ={iy,...,ix} Cnsuchthata; :=gcd(a;,, ..., a;) > 1. By the h-regularity
of (d; a), we have either condition (i) of Definition 4.1, i.e., there exist distinct
integers pi, ..., px such that

arldy,,....dy

or (ii), i.e., ay | h.
If ¢ | ar, then we have g | a;, for all iy € I and a; th. Thus we have (i) and

gea( %t %)za_"dﬂ p.

7 g i PR

as we wanted.
If gfay, then

ged((ai/qiery, (@ieaniy)) = ai

where Ié :={i € I :q|a;}. If a; | h, then there is nothing to prove, so we can
assume that a; { i and that (i) holds. Since g {a;, we get that a; divides (d¥),, for
j=1,..., k. This concludes the proof. O

Lemma 4.6. Let (d; a) be an h-regular pair and q be a prime dividing h. Then
(d?; a?) is h/q-regular and (d(q); a(q)) is h-regular, hence (d(q)/q; a(q)/q) is
h/q-regular.

Proof. We give the proof for the pair (d9; a?). Consider a set I = {i1,...,ix} Cn
such that ay := ged(a;,, ..., a;) > 1 and let a;’ = gcd(aiq),-el be the gcd of the a;
in (d?; a?).

Assume first that ged(ay, ) = 1, so thata? =ay. If a; | h, we obtain thata? |h/q
and we are done. If a; 1 h, then there exist distinct integers py, ..., px such that
ar|dp,, ..., dp,. Wehave af {h/q and the dj, work.

If a; = gt for some positive integer ¢, then a? =t.Ifqt|h,wehavet|h/q. If

qt1h, then there exist distinct integers p1, ..., pi such that a; |dp,, ...,dp,. Forthe
same integers, we have a;’ ldp,/q, .. .,dp,/q so the first condition of & /g-regularity
is satisfied and we are done. |

The Frobenius coin problem. In this subsection we want to enlighten some inter-
esting connections among the Ambro—Kawamata conjecture, regular pairs and the
Frobenius coin problem.
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Question 4.7 (Frobenius coin problem). Given positive integers ay, ..., a, such
that gcd(ao, ..., a,) = 1, find the largest integer G = G (ay, . . ., a,) so that there
do not exist nonnegative integers xo, . . ., X, satisfying

G =apxo+...+a,x,.
Such G is called the Frobenius number of ay, ..., a,.

For n =1, it is classically known that
G(ag, ar) = apay —ap —ai.

For n > 2, the problem is considerably harder: precise methods have been developed
to compute G(ag, aj, az) and some algorithms and (lower and upper) bounds are
known for the general case (see for instance [Johnson 1960] and [Brauer and
Shockley 1962]).

By Lemma 2.4, the Ambro—Kawamata conjecture for smooth WCI would fol-
low from the following purely arithmetic statement, which we believe to be of
independent interest.

Conjecture 4.8. Let (d;a) = (dy, ..., d:; ag, ..., a,) € N x N"*! be a regular
pair suchthat a; # 1 and d; # a; for any i, j. Assume ¢ <n and gcd(ay, ..., a,) =1.
Then

8(d;a) > Glag, ..., a).

One of the best known lower bounds for G is given in [Brauer 1942]. Let
aop, . . ., a, be positive coprime integers, set g; := gcd(ao, ..., a;) for j=0,...,n
and consider

8j-1
Br(ag, ...,a,) = ZajJ—_ — Zai.
j=1 8j i=0
Brauer proved that Br(ao, ...,a,) > G(aop,...,a,). Setd; :=ajgj_1/g; for
j =1,...,n. Then it is easy to check that (d; a) := (dy, ..., dy; ao, ..., a,) is

actually a regular pair.

On the other hand, it is not difficult to see that, considering big prime numbers
p and g, the pair (pq, 6p, 6q;2p,3p,2q, 3q) is regular, §(d; a) > G(ag, ..., ay),
but §(d; a) < Br(ag, ..., ay).

This shows that regular pairs can give better bounds for the Frobenius number
with respect to the known ones. For this reason, it seems to be a challenge and
interesting problem to study Conjecture 4.8.

Remark 4.9. It is not difficult to check that Conjecture 4.8 is true for ¢ = 1, 2,
which implies that the nonvanishing holds for a smooth WCI of codimension 1 or 2.
For simplicity, we omit the detail in the codimension 2 case.
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For ¢ =1, a stronger and more general result is given in Lemma 6.1, which is
the key step to prove Theorem 1.3.

5. Proof of Theorem 1.2

Theorem 1.2 is the combination of Corollary 5.3 and Corollary 5.13 below.

Smooth case. The pair (d; a) in the following lemma does not come from a
nonempty WCI. Nevertheless this lemma is important in the proof of Proposition 5.2.

Lemma 5.1. Let (d; a) e N x N'fl be a regular pair such that a; # d; for any i, j.
Let q be a prime number such that q | a; and q | d; for any i, j. Then

6(d;a)>cq.
Moreover, if the equality holds, then c = n + 1.

Proof. Note that ¢ > n 4 1 which does not occur for a nonempty WCI.

Assume first that ¢ is the only prime dividing the a;, that is for any i =0, ..., n,
we have a; = g% for some «; > 1. We can assume that ag > a; > ... > a,. We
can also order the d; in such a way that v, (d;) > v,(d;) for any s < t, where
vy(d;) =max{e e N:g°|d;}. Then we have a; |d; 1 forany i =0, ..., n and so

c—n—1 n

C n
Zdj - Zai = Z dnt1+k + Z(di—i-l —a;) > cq
j=1 i=0 k=1 i=0

and the equality is possible only if c =n +1, d; = 2q and a; = q for any i, j.

Assume now that g # 2 and that g and 2 are the only primes dividing the q;,
that is for any i =0, ..., n we have a; = 2""'q/3" for some «; > 0 and B; > 1 such
that o; > O for at least one i. We proceed by induction on t = maxo<;<,{fi}, the
greatest power of ¢ dividing at least one q;.

Suppose = 1. We can assume that v2(a;) > va(a;) and v2(d;) > va(d;) for any
i < j. Then again a; |d;1| forany i =0, ..., n and we conclude as before.

Suppose ¢t > 2. Let Iy :={i € n:q" |a;} and Jy :={j € ¢* : ¢" | dj}. We
consider the following pairs: (d’; a’), where d’ = ((dj/D)jes, - (d))ject\s,) and
a' = (@/qier,, @)icm1,)) and (d";a"), where d” = (d;/q) ey, and a” =
(ai/qie1, - 1tis straightforward to check as in Lemma 4.5 that (d’; a’) and (d”; a”)
are regular. Consider the regular pair (d’; a@’) constructed in (4) which satisfies
ci; #a) forany i € n\ Iig.qy, j € ¢T\ Jaiary, Where Ig.qy C 1 and Jigr.qy C €
are the subsets defined in Definition 4.3.

Let

m:=|{j€Jy:dj/qg=a;|forsomeiecn\ I},

m:=|{i €Iy :dj =a;/q | for some j € ct\ Jy}l.
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Note that |I(g;0)| = |J(@';ar)| <m~+m. Let k :=|J,|. By induction on 7, we may as-
sume that we have 8 (d’; a’) =8(d’; a’) > (c—m—m)q and §(d"; @) > kq. We have
that |I,| <|J,| since (d; a) is regular. Since m < k and m < |I,| < k, we obtain

8(d;a)=8(d";a)+(q—18";a") > (c—2k)g + (q — kg
=cq —2kq +kq* — kg
=cq+kq(q—3)=cq (5)

because g > 3. The equality is possible only if we have it for both (d’; @’) and
(d”; a”). This implies by induction on 7 that ¢ = n + 1 in this case.

We now pass to the general case. For any prime p, different from ¢ and 2, let
e, :=max{e € N : p®|a; for some i}. The proof is by induction on D = Zp ep,
where the index varies over all prime numbers different from g and 2. The case
D = 0 has already been treated in the first part of the proof. So assume D > 1 and
that the inequality holds up to D — 1. Consider (d?; a”) and let

mp = |{j ect :dj/p=a;forsomei €n\ I},

mp:=|{i €n:dj =a;/pfor some j € E+\Jp}|.
Let us again consider the pair (d”; @”) as in Definition 4.3 by removing subsets
Jar.ary C ¢t and I(ar,qry C 1. Then this satisfies the hypothesis (c?p)j # (aP); for
any i and j. We again have that |Jgr.qr)| <m,-+m,. By induction on D, we obtain
8(dP;al)= 8(&”; a?) > (c—m,—m,)q. Now consider the pair (d(p)/p; a(p)/p).
Again by induction on D, we obtain §(d(p)/p; a(p)/p) = sq, where s ;= |{j €
¢t pld;}|. We see that m, < s by the definition of m ,. Let s :=|{i e n : p|a;}|.
We see that s < s by the regularity of (d; ) and that m, < s’ by the definition of
m . Thus we have m, < s. By these inequalities and p > 3, we conclude that

8(d;a) =8(d";a”) + (p—1)é(d(p)/p; a(p)/p)
> (c—mp—mp)g+(p—1sq
=cq+psq—mpq—mpq —Ssq >cq+ psq—3sq >cq
as we wanted. Again, the equality is possible only if c =n + 1. O
By using Lemma 5.1, we prove the following key proposition.

Proposition 5.2. Let (d; a) € N x N’f‘l be a regular pair such that a; > 1 and
a; #d; for any i, j. Then the following holds.

(i) We have
d(d;a) > c. (6)

(i) If ged(ao, ..., ay) = 1, then the equality holds only if (d; a) is of the form
(6(5), 1(e=5), 20) 3(3))f0r some integer s.
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Proof. (i) The proof is by induction on n, the case n = 0 being obvious. We can
assume that no prime divides every a;, otherwise we are in the case of Lemma 5.1.
In particular, we may assume that there is a prime ¢ # 2 which divides some a;. Let
m:=|{ject :dj/q =a; forsome i en\ I }|,
m:=|{i en:dj=a;/q for some j € ¢t \ J,, d; # 1},
t:=ien:a=q}l, s:=|{ject:qld}| =1yl
We note that m < s by definition and £ + m < s by the regularity.

Case 1: Suppose that £ +m +m > 1. Then the pair (d?; a?) has some redundant
a;, in the sense that a; /g =1, d;/q = a; or dj = a;/q for some i, j. That is, we
consider a regular pair (44, @4) and, by removing all Ezf = 1, we obtain a new
regular pair (d%; 49) € Ni X N’i“ for some ¢ < ¢ and 72 < n. Note that 7 < n by
the hypothesis £ +m +m > 1. Let £; := |{j € ¢* :dj =1}| and €' := min{¢, £,}.
Then we see that ¢ > ¢ —m —im — £ by the construction of (d~‘1 ;a?). Since we
have [{i e n\ I(g9.q9) : Zliq = 1}| = £ — ¢/, we obtain, by induction on 7, that

8% a%) =8(d;a7)—(U—t)>¢—(U—t)>c—Ll—m—in.
By applying Lemma 5.1 to (d(g), a(g)), we obtain

8(d(q); a(q)) = sq.

By these and £ +m 4 in < 2s, we obtain
—1
5(d; a) =8(d?; a%) + T—=5(d(q); a(@) = c—E—m — i + (g — s
q
>c+qgs—3s>c @)

since g > 3.

Case 2: Suppose now that £ +m +m = 0. Then the pair (d?; a?) satisfies the
assumptions of the proposition. We note that

8(d;a)=26(@d?;a%) + qT_IS(d(CI); a(q)) > 8(d?; a?)

since we have §(d(q); a(g)) > 0 by Lemma 5.1. So we can replace the pair
(d; a) with (d?; a?) without changing the number ¢ of the j and we can repeat the
argument from the beginning of the proof (possibly changing the prime ¢) till either
we end up in Case 1 or we reach the situation of Lemma 5.1. In both cases, we
are done and obtain (6).

(i) We now study when the identity holds in the case gcd(ao, ..., a,) = 1.
Note that the case n =1 is clear, being equivalent to asking apa; —ag — a; = 1.
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Assume n > 2 and let g # 2 be a prime number such that g | a; for some i. We
shall follow the proof of the inequality. In particular, we look at

8(d;a)=46(d?;a?) + qT_15(d(Q); a(q)).

With the same notation as above, we note that the equality can hold only if we
are in Case 1 and, by Lemma 5.1, the number |{i € n : g | a;}| must be equal to
s =|J4|. Moreover we obtain g = 3 by (7). This implies that the only possible
prime numbers that divide at least one a; are 2 and 3.

We must also have m =s and £ +m = 5. By m = s, we see that any d; /3 € N
must be equal to some a; which is not divisible by 3. Hence we can write

(dya) = (3.2, ..., 3.2P 2P [ 2BeipPi | 0fs 3001 3.0
for some nonnegative integers o; and §;. Then
8(d;a)=58(2P+,.. 2P 2% 2% +25(3:201, .., 3:2F5;3.0%01 [ 3.0%m),

Also note that £ +m = s impliesthatn+1—s=|{i en:3|a;}| =€+ m =, thus
n+1=2s. By the regularity of (d(3); a(3)) and the assumption d; # a; for any
i, j, to have the equality §(d(3); a(3)) =3s weneed B; =1for j=1,...,s and
aj=0fori=s+1,...,n+ 1, which implies
c—S
8(d;a) =8P+, . 2P0, D +2s=) 2P — (4 1—5)+2s,
i=1
ie.,c=8(d;a) =1 2P+ +5.
Hence, we must have 8; =0 for j =s+1, ..., ¢, which finishes the proof. []

As a corollary of Proposition 5.2, we obtain the nonemptiness of |O(1)| and the
smoothness of its general member on a smooth Fano or Calabi—Yau WCI.

Corollary 5.3. Let X := Xg4,....a. C P(ao, ..., an) be a well-formed smooth Fano
or Calabi—Yau WCI which is not a linear cone. Let ¢\ := |{i € n : a; = 1}|. Then the
following hold.

.....

(i) We have c| = c. Moreover the equality is possible only if X is Calabi—Yau of
nype X6 CP(1©, 20 3@),

(i) The linear system |Ox (1)| is nonempty and its general member H is smooth.

Proof. (i) We may assume that ag <--- <a,. Thus we have ap =--- =a,,-1 = 1.
Since X is smooth, we see that (dy, ..., d.; ac,, ..., ay) is regular. By this and
Proposition 5.2(i), we obtain

8(dy,....desac,, ..., ay) >c.

By the assumptions, 0 > §(d; a) > ¢ — ¢y, and this implies the former statement.
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Let (d; a) be a regular pair which satisfies ¢c; = c¢. Let (c? ; @) be the regular
pair obtained by removing all ¢; = 1. Then (d; &) satisfies the hypothesis of
Proposition 5.2(ii) since (d; a) defines a smooth WCI. Hence, by Proposition 5.2(ii),
we see that (d; a) = (6©; 20, 3©) and (d; a) = (6©; 2, 3 1)),

(ii) By the latter part of Proposition 5.2, we can assume that X is not of the form
Xs...6 C P2, 3() 1) otherwise the conclusion is immediate. In particular,
we may assume c; > ¢+ 1.

By (i), we see that |Ox(1)| # &. Since X is smooth and well-formed, we have
Sing P(ay, . .., a,)NX =&. Thus HNSing P(ay, ..., a,) = 2. Hence it is enough
to check H is quasismooth at P :=TI(p), where p e IT~ ! ((xg=. .. =x,-1=0NX)
and IT : A" t! \ {0} = P(ay, ..., a,) is the quotient map.

Set H; :=XN(x; =0) fori =0, ..., c;—1. We shall look at the Jacobi matrices of
X and H; CP(ag, ..., ai—1,ai+1,-..,ay). Let fi, ..., f bethe defining equations
of X such that deg f; =d;. Fori =0,...,n, set

af1/0x;
vi(p) = ( : ) (p)-
8fc‘/axi

The Jacobi matrix Jx(p) and Jy, (p) of X and H; can be written as

Jx(p) = (wo(p),...,vu(P)), Ju.(p) = Wo(p),....0i—1(P),Viy1(P),...,0a(P)).

Since X is quasismooth, there exist linearly independent vectors

v, (p),....v.(p).

Since ¢; > ¢+ 1, we can choose i so thati ¢ {iy, ..., i.}. Then we see that H; is
quasismooth at P :=TI1(p). Thus a general member H is also quasismooth at P. []

Remark 5.4. Let X C P(ay, ..., a,) be a smooth WCI as in Corollary 5.3. For
I C n such that a; = 1, it may a priori happen that (Q1) does not hold, but (Q2)
holds. That is why we make an argument as in Corollary 5.3 (ii).

Remark 5.5. Let X, . 4. be a smooth WCI as in Corollary 5.3. Motivated by
a question by Andreas Horing, we consider the description of the base locus
Bs |Ox(1)].

Up to reordering dy, . . ., d.., we can assume that there is an integer ¢’ < ¢ with the
following properties: for 1 < j < ¢/, there are weighted homogeneous polynomials
fi(xes ..., xp) of degree d; and, for ¢4+ 1 < j < c, all monomials of degree
d; contain one of the variables xo, ..., x,, - of weights 1. Since the base locus
Bs|Ox(1)]is (xo="-+-=x¢—1 =0)N Xg,,... 4. it is isomorphic to a general WCI

.....

------
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Thus the base locus is again a WCI. However this is not necessarily (quasi)smooth
in general. We shall see this in Example 5.6.

Example 5.6. Let X := X231231.26 C P:=P(3,3,7,7, 11, 11, 1447 be a general
WCI. We can check that this is a smooth Fano WCI as follows: for I = {0, 1}, {2, 3}
or {4, 5}, (that is, two variables of weights 3, 7 or 11), we have (Q1) for d; = 231,
dr, = 231. Also, for I ={0,1, 2,3} or {0, 1,4, 5}, we have (Q1) for d; = 231,
dr =231, d3 =26since 26 =7-2+3-4=1143-5. For I = {2, 3, 4, 5}, we have
(Q2) for dy =231, d» =231, d3 =26="7-2-+ 11+ 1. By Proposition 3.1, we see
that X is quasismooth, and smooth since X NSing P = &.

The base locus Bs |Ox (1) isa WCL Y :=Y23123126 C P :=P(3,3,7,7, 11, 11).
This is not quasismooth. Indeed, for I = {2, 3, 4, 5}, neither (Q1) nor (Q2) holds
because of the lack of suitable degree 26 polynomials. In fact, Y is a nonnormal
surface singular along a curve (xg = x; = f1 = f> =0) C [P, where fi, f> are part
of defining polynomials of degrees 231 and xg, x; are the variables of weights 3.

Hence we can not expect smoothness of the base locus of the fundamental linear
system even if it contains a smooth member.

Remark 5.7. Let W = Wy, 4. C P(ao, ..., a,) be a smooth WCI which is not a
linear cone, where a; > 1 for any i =0, ..., n. By Corollary 5.3 we know that W
is not Fano. Then we can consider a WCI

df C P(a()? L] al’lv 1(6))

.....

where ¢ = §(W) 4+ 1. In this way X is a smooth Fano with — Ky = Ox (1) and
Bs|Ox(1)] is exactly W.

In Corollary 5.3 we showed that for a smooth Fano WCI, the general member of
the fundamental divisor is quasismooth. This is not true in general for a quasismooth
Fano WCI as the following example shows.

Example 5.8. Let X = X35 C P(5, 7, 2(®) 30y where k > 5. Then X is a quasi-
smooth Fano WCI with fundamental divisor Ox (6), but X356 C P(5,7, 2%, 3%)
is not quasismooth. However, we see that a general member of |Ox(6)| has only
terminal singularities. Indeed it has an isolated singularity at [* : % :0:---:0]
which is locally isomorphic to 0 € (xl3 +t x,f + x,fH +-+ x%k =0) c C*,

It is also natural to look at the general element of | — K| in the case of a Fano
variety X. For instance, Shokurov [1979] and Reid [1983] proved that a Fano 3-fold
with only canonical Gorenstein singularities admits an anticanonical member with
only Du Val singularities. Here we give an example of a smooth Fano WCI whose
anticanonical members are singular (and not quasismooth). See also [Horing and
Voisin 2011, 2.12] for an example of a Fano 4-fold with singular fundamental divisor.
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Example 5.9. (cf., [Sano 2014, Example 2.9]) For m € Z., let X be a weighted
hypersurface X = Xam+1)@mt+2) C P(1UF2mCHD) 9 4 1 2m + 2) of degree
(2m 4+ 1)(2m +2). Then we see that — Ky = Ox(2) and the linear system |—i K|
does not contain a smooth member for i = 1, ..., m. Thus we can not expect a
smooth element of the plurianticanonical system on a Fano manifold. However,
in the above example, we can find a member with only terminal singularities.
Moreover, the base locus of | H| consists of a point.

Remark 5.10. It is well known that following the arguments in [Ambro 1999, Sec-
tion 5] or [Kawamata 2000, Section 5] and assuming Conjecture 1.1, it is possible to
show that the general element of | —m Kx | has always only klt singularities for m > 0
such that —m K is Cartier (we thank Chen Jiang for pointing this fact out to us).

Finally, we also get the following corollary, which generalizes [Przyjalkowski
and Shramov 2017, Corollary 4.2] to any codimension.

Corollary 5.11. Let X := X4, .. 4. C P(ao, ..., a,) be a well-formed smooth Fano
or Calabi—Yau WCI which is not a linear cone. Let ¢ == |{i € n : a; = 1}|. Then
c1>1(X):==68(d;a) =" yai — 2521 d;.

Proof. Consider the regular pair (d; a) associated with X. We may assume that
ap<---<ap,sothatag=---=a,_; =1. Let (d’; a’) be the pair (d; ac,, ..., ay),
where we took away every 1 from (d; a). This pair is regular with no a; =1 and so
by Proposition 5.2 we get

8(d';a)>c>0,

which implies
8(d;a)=68(d;a)—c1 > —ci,

1e., I (X) < ¢y, as we wanted. [l

General case. The following is a key proposition to deduce the nonvanishing in
the quasismooth Fano case.

Proposition 5.12. Let h € N and (d; a) € N x N'jfl be an h-regular pair with
c> 1. Ifaith foranyi =0, ...,nand a; #d; for any i, j, then

é(d;a) > 0.

Proof. Let us write h = p'f‘ e p,‘f", where the p; are distinct prime numbers. The
proof is by induction on o = Zf;l o; > 0. If @ =0, then the pair (d; a) is regular
and the statement follows from Proposition 5.2, so we assume « > 1.

Let p be a prime number dividing 4 and consider (d?”; a”). As usual,

§(d;a)=6(d”;a”) + pT?15(d(P); a(p)).
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By Lemma 4.6, (d”; a?) and (d(p)/p; a(p)/p) are h/ p-regular. Note that there
does not exist i such that a;/p = 1 by the hypothesis a; 1 h. Thus, after cancellation
on (d”; a?) (see Definition 4.3), we see that (d~1’; aP) and d(p)/p;a(p)/p) are
h/ p-regular and satisfy the hypothesis of the proposition.

If p|a; or p|d; for some i or j, then we obtain 5(d(p)/p; a(p)/p) > 0 by the
induction hypothesis and conclude §(d; @) > 0 by induction since we have either
8(dP;al) = S(Lip; al) > 0 or (cfl’; ab) is empty.

If pfa; and p{d; for any i, j, then §(d”; a”) > 0 by the induction hypothesis
since (d”; a?) = (d; a) is h/p-regular. Moreover (d(p); a(p)) is empty. Hence
we can again conclude that §(d; a) > 0. Ol

Corollary 5.13. Let X = X4, 4. C P(ao, ..., a,) be a well-formed quasismooth
WCI which is Fano or Calabi—Yau and which is not a linear cone. Then |H| # &
for any ample Cartier divisor H on X.

Proof. Write H = Ox (h). If there exists i € n such that g; | &, then we are done.
Otherwise, we are in the situation of Proposition 5.12, and so the variety can not be
Fano or Calabi—Yau since (d; a) is h-regular by Proposition 3.6. (I

6. Weighted hypersurfaces

The following lemma gives a proof of a generalized version of Conjecture 4.8 in
the case ¢ = 1.

Lemma 6.1. Let ay, . .., a, be positive integers, n > 1 and set
h :=lcm;;(ged(a;, aj)).

Assume that a; 1 h for any i and set f :=lcm(ay, ..., a,). Then

n
S _Zai > lem(ay, a;) — as — a;

i=0
forany s and t.

Proof. We first note that, for any proper subset I of i := {0, ..., n}, we have
f #lem;eg(a;). In fact, suppose that the equality holds and let k € n \ 1. For any
prime power p¢ such that e > 1 and p° | ax, we have p¢| f. In particular, we have
p° | ae for some ¢ € 1. This implies that p¢ | gcd(ay, a¢) and so ai | h, which is a
contradiction. In particular, f > 2lcm;¢;(a;).

The proof of the lemma is by induction on n and the case n = 1 is trivial, so
assume n > 2. Let s, t € n be such that s # ¢. Then

- f f
f—Z ai =73 —as—a+5— Z a; > lem(as, a;) —as—a;+lem; g (a;) — Z a;.
i=0 i#s.t i
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If n = 2, then we have

lem; 2, (a;) — » | a; =0
i#s,t
and we are done.
If n > 3, then we have

lem; 20 (a;) — Y a; = lem(ay, ap) — ay — ay
i#s,t
fors’, t' e n\{s, t} such that s’ # ¢’ by induction on n and lcm(ay’, a;/) —ay —ay >0
because we are assuming that a; 1k for any i. O

Proposition 6.2. Let X = X; CP =Play, ..., a,) be a well-formed, quasismooth
hypersurface of degree d which is not a linear cone. Let H be an ample Cartier
divisor on X such that H — Kx is ample.

Then |H| is not empty.

Proof. Write Ox(H) = Ox (h) for a positive integer h.

By Proposition 3.4, we can assume that a; | d for any i. Then X is a Cartier
divisor which intersects any stratum Pj; ;; in some interior point. The condition of
H to be Cartier is then equivalent to

lem; . (ged(a;, aj)) | h.

If there exists a; such that a; | h, then we are done. So assume that a; 1 h for any
i and let f :=lcm(ag, ..., a,). By Lemma 6.1, we get

n
f— Z a; > lem(ay, a;) —ag — a;
i=0
for any s and ¢. Since h > f — Y _, a; (because H — Ky is ample and f | d) and
g :=gcd(ay, a;) | h for any s # ¢, we can use the Frobenius number G(a,/g, a;/g) =
(1/g)(cm(ay, a;) —as — a;) as on page 2382 to conclude that there are nonnegative
integers A, A, such that
Asas +Aia; = h,

which implies that | H| is not empty by Lemma 2.4. U

In the following, we prove the basepoint freeness on a Gorenstein weighted
hypersurface.

Proposition 6.3. Let X = X; CP =Play, ..., a,) be a well-formed, quasismooth

hypersurface of degree d which is not a linear cone such that Kx is Cartier. Let H

be the fundamental divisor of X and h be the positive integer such that H = Ox (h).
Then L = Kx +mH is globally generated for any m > n.
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Proof. Suppose by contradiction that there is a point p = [pg:---: p,] € Bs|L|
and take £ such that L = Ox (£).

Note that if p; # 0 for some s, then a, 1 h, otherwise x¢ € |L| for some positive
integer e and so p ¢ Bs|L|. Also note that, for all i € 2 such that a; { h, we have
a; | d by Proposition 3.4.

Assume first that there exists a unique s € n such that p; # 0. Since p € X and
agth, we get that a; | d. Let f; be the defining polynomial of X,. If f; contains a
monomial xf/ % then we obtain p ¢ X, and this is a contradiction. If f; does not
contain such a monomial, then it should contain a monomial of the form xfxi for
some k > 0 and i # s by the quasismoothness of X;. Then we see that a; | a; by
as | d, and X4 has a quotient singularity of index a;. Thus we obtain ay | 4 and this
is a contradiction.

Hence we can assume that there exist s and ¢ such that s #¢, p; #0and p, #0,
thus ay, a,th. We have

Z:d—Xn:ai+mh:d—Zai—Zai+mh.
i=0

a,-fh ailh

Assume that — Za,-\h a; +mh > 1. Since a; | d for all i such that a; th, we can
apply Lemma 6.1 to conclude that

£ > lem(ay, a;) — ay — ay,

which implies that xi*x;" € |L| for some nonnegative integers e; and e,. So we
again have p ¢ Bs|L]|.

Assume now that — Za,-lh a; +mh < 0. Then we can check that |{i : a; = h}| >
n — 1, because m > n. Moreover, since P is well-formed, the greatest common
factor of any n weights is 1. By these, when |{i : a; = h}| = n, we have h = 1 and
P =P(ap, 1,...,1) for some ag > 1. When |{i :a; =h}| =n—1, we have h =2

and P =P(1,1,2,...,2). In both cases, we can check that L is basepoint free,
and we have derived a contradiction. [l
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Generalized Kuga—Satake theory
and good reduction properties
of Galois representations

Stefan Patrikis

In previous work, we described conditions under which a single geometric repre-
sentation I'r — H (@5) of the Galois group of a number field F lifts through a
central torus quotient H—> Htoa geometric representation. In this paper,
we prove a much sharper result for systems of £-adic representations, such as
the ¢-adic realizations of a motive over F, having common “good reduction’
properties. Namely, such systems admit geometric lifts with good reduction
outside a common finite set of primes. The method yields new proofs of theorems
of Tate (the original result on lifting projective representations over number fields)
and Wintenberger (an analogue of our main result in the case of a central isogeny
H—H ).

>

1. Introduction

Let F be a number field, and let 'y = Gal(F /F) be its absolute Galois group with
respect to a fixed algebraic closure F. A fundamental theorem of Tate (see [Serre
1977, §6]) asserts that H>(I'r, Q /Z) vanishes; as a result, all (continuous, £-adic)
projective representations of I'r lift to genuine representations, and more generally,
whenever H — H is a surjection of linear algebraic groups over @, with kernel
equal to a central torus in H, all representations pg : [y — H (Qy) lift to H (Qp).

The ¢-adic representations of greatest interest in number theory are those with
conjectural connections to the theories of motives and automorphic forms; if the
monodromy group of p, is semisimple, then it is expected — by conjectures of
Fontaine—Mazur, Tate, Grothendieck—Serre, and Langlands — that the p, arising
from pure motives or automorphic forms are precisely those that are geometric in
the sense of Fontaine-Mazur, i.e., unramified outside a finite set of places of F, and
de Rham at all places dividing £. The paper [Patrikis 2016c] established a variant
of Tate’s lifting theorem for such geometric Galois representations. There are

I am grateful to the anonymous referee for helpful comments that have improved the exposition.
MSC2010: primary 11F80; secondary 11R37.
Keywords: Galois representations, Kuga—Satake construction.
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obstructions when F has real embeddings, but at least for totally imaginary F, any
geometric p; : [r — H(Qy) satisfying a natural “Hodge symmetry” requirement
admits a geometric lift py : ['p — H (Qy) [Patrikis 2016¢, Theorem 3.2.10]. This
geometric lifting theorem leads to a precise expectation for the corresponding lifting
problem for motivic Galois representations. Namely, if Gr g denotes the motivic
Galois group for pure motives over F with coefficients in a number field E —
we will make this setup precise in Section 2, but for now the reader may take
homological motives under the standard conjectures — and if H — H is now a
surjection of groups over E with central torus kernel, then we conjecture [Patrikis
2016¢, Conjecture 4.3.1] that any motivic Galois representation p : G g — H lifts
to H, at least after some finite extension of coefficients:

H
i l
7
P Ve
IE e

There is essentially one classical example (with several variants) of this conjecture,
a well-known construction of Kuga and Satake [1967], which associates to a
complex, for our purposes projective, K3 surface X a complex abelian variety
KS(X), related by an inclusion of Hodge-structures H>(X, Q) c H'(KS(X), Q)®2.
In the motivic Galois language, finding KS(X) amounts (when F' = C) to finding a
lift p of the representation px : Gc.g - H =SO(H 2(X)(1)), through the surjection
H= GSpin(H 2(X)(1)) = H. Progress on the general conjecture, when the motives
in question do not lie in the Tannakian subcategory of motives generated by abelian
varieties, seems to require entirely new ideas. !

The aim of this paper is to establish a Galois-theoretic result which is necessary
for this conjecture to hold, but considerably more delicate than the basic geometric
lifting theorem of [Patrikis 2016¢, Theorem 3.2.10]. Namely, any motive M over
F has good reduction outside a finite set of primes: for any choice of variety X in
whose cohomology M appears, X spreads out as a smooth projective scheme over
Opr[1/N] for some integer N. In particular, by the base-change theorems of étale
cohomology [Deligne 1977] and the crystalline p-adic comparison isomorphism
[Faltings 1989], for any motivic Galois representation p : Gr g — H, the A-adic
realizations p, : 'r — H(E,) have good reduction outside a finite set of primes S,
in the sense (also see Definition 1.1) that each p; factors through I'r sus, and is
crystalline at all places of S, \ (S N S); here S, denotes the primes of F with the
same residue characteristic as A, and I'r sus, is the Galois group of the maximal
extension of F inside F that is unramified outside of S U S;. Certainly a necessary

Ipor some, admittedly limited, examples, see [Patrikis 2016a; 2016b].
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condition for the generalized Kuga—Satake conjecture to hold is that the realizations
{pa}s of p should lift to geometric representations g, : I'r pus, — H (E;) that
likewise have good reduction outside a common finite set of places P. This is what
we will show, as a consequence of a more general result. To state it, we first make
a couple of definitions.

Definition 1.1. A collection {p, : [r — H(E,)},, as A varies over finite places
of E, of geometric Galois representations is ramification-compatible if there exist

(1) a finite set S of places of F such that each p, is unramified outside of SU S;,
i.e., factors through

px: Trsus, = H(E}),
and for v in S, but not in S, p;|r,, is crystalline; and

(2) acentral cocharacter o : G, g — H and a collection of conjugacy classes
{lnr: Gm,E — Hpl}peo

satisfying ;] = w- [,uc_rl] for any choice of complex conjugation ¢ € Gal(E /Q),
such that for all E-embeddings ¢ : E<—E;, inducing via t some 7,, : F}, < E;,
the conjugacy class [u: ®f E;]is equal to the conjugacy class of 7,,-labeled
Hodge-Tate cocharacters associated to p;|ry, -

If a single representation p, satisfies the condition in item (1), we say p, has good
reduction outside S. If it satisfies the condition in item (2) (for some collection of
cocharacters w, {{t;}), then we say it satisfies Hodge symmetry.

Remark 1.2.  « Note that the p, need not be “compatible” in the usual sense
(frobenii acting compatibly): if the “coefficients” of the p, are bounded in a
rather strong sense — there exists a common number field over which their
frobenius characteristic polynomials are defined — one expects that our collec-
tion of p, should partition (dividing up the A’s) into finitely many compatible
systems.2

o The Hodge symmetry requirement of part (2) of Definition 1.1 is not the most
general constraint that pertains to a compatible system of £-adic representations.
It will always hold for the A-adic realizations of motives, as we will see in
Lemma 2.3, when we take the ambient group to be the motivic Galois group G,
of the underlying motivic Galois representation o, and not some larger group.
But there may be compatible systems (of motivic origin) where the criterion in
part (2) of Definition 1.1 fails; for example, consider py : I'g — PGL3 (@g) given

2To see the relevance of bounding the coefficients, the reader may contrast the case of elliptic
curves (over @, say) unramified outside S with that of all weight-two modular forms unramified
outside S: of the former there are finitely many isogeny classes, since the conductor is bounded,
whereas the latter can have level divisible by arbitrarily high powers of the primes in S.
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by the projectivization of k, & 1 @ 1, with k, denoting the £-adic cyclotomic
character. The relation [14;] = @ - [1;'] implies in this case [u.] = [u; '],
which is false. A way around this is given in [Patrikis 2016¢, §3.2], where the
Hodge symmetry hypothesis is formulated in a way that conjecturally holds for
any geometric representation p; : I'r — H (@g), regardless of its (reductive)
algebraic monodromy group. The proof of [Patrikis 2016¢, Theorem 3.2.10]
thus requires a slightly trickier group-theoretic argument than the one we
require here. We have opted in this paper to keep the simpler condition (2)
above, so as to focus on what is new in the arguments, and because of its
obvious centrality from a motivic point of view (in particular, its sufficiency
for Corollary 1.6).

Here is the main theorem:

Theorem 1.3. Let E be a number field, and let H— Hbea surjection of linear
algebraic groups over E with kernel equal to a central torus in H. Let F be a
totally imaginary number field, and let S be a finite set of places of F containing the
archimedean places. Fix a set of cocharacters {ji},.p.,  satisfying the “Hodge
symmetry” condition of part (2) of Definition 1.1. Then there exists a finite set of
places P O S such that for any place X of E, any embedding 1, : E < E,, and any
geometric representation p; : I'r sus, — H (E;) such that

e p, has good reduction outside S, and

o the conjugacy classes of labeled Hodge—Tate cocharacters of p,. are induced
via v, from {u.}..p, g (again, see Definition 1.1 for details),

the representation p, admits a geometric lift py : I'r pus, — H (E ») having good
reduction outside P.

In particular, if {p) : I'F sus, — H(L_?;L)};L is a ramification-compatible system,
then there exist a finite set of places P O S and lifts p) : I'r pus, — I’:IJ(E,\) such
that {py },. is a ramification-compatible system.

Remark 1.4. All results of this paper, once we take into account the caveat of [Pa-
trikis 2016c¢, §2.8] (see too [Patrikis 2015, Proposition 5.5]), admit straightforward
variants when F has real places. Thus, for real F, the analogue of Theorem 1.3
either holds exactly as written, or after replacing F by any totally imaginary (e.g.,
composite with a quadratic imaginary) extension. We do not want to discuss this
at any length here, but we simply remind the reader that the prototypical example
in which F is totally real, and Theorem 1.3 fails as stated, is that of the projective
motivic Galois representation associated to a mixed-parity Hilbert modular form.

The proof of this theorem is completed in Theorem 1.3. The typical application
is to the collection of Galois representations {0, }, associated to a motivic Galois
representation; we make this precise in Corollary 1.6.
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Next we describe applications of Theorem 1.3 to the more general problem
of lifting through surjections H" — H with central kernel of multiplicative type.
Here in general we cannot expect as strong a result as Theorem 1.3. First, the
Hodge—Tate cocharacters of p; may not lift to H’, in which case there can be
no geometric lifts to H’. Second, even if the Hodge-Tate cocharacters lift, the
Galois representations may only lift after a finite base change of F. For example,
if p, is the projectivization of the Galois representation associated to a weight
3 modular form, det(p;) : T'g — E f does not admit a square root. A beautiful
result of Wintenberger [1995, Théoreme 2.1.4, Théoréme 2.1.7] shows that when
H' — H is an isogeny, a result similar to Theorem 1.3 holds, as long as in the
conclusion F is replaced by a suitable finite extension. Here we treat the general
case of multiplicative-type quotients:

Theorem 1.5 (see Corollary 3.18). Let H' — H be a surjection of linear algebraic
groups over E whose kernel is central and of multiplicative type. Let F be a number
field, and let S be a finite set of places of F containing the archimedean places.

Fix a set of cocharacters {1} 7 as in part (2) of Definition 1.1, and moreover,

T:F—
assume that each . lifts to a cocharacter of H'.

Then there exist a finite set of places P D S, and a finite extension F'/F, such
that any geometric representation p; : T r sus, — H(E)) having good reduction
outside S, and whose Hodge—Tate cocharacters arise from the set {|i.},.p_, § via
some embedding E < E,, admits a geometric lift p : I'pr_pus, — H'(E,) having
good reduction outside P.

In particular, if {05 : T'r sus, = H (E))y isa ramification-compatible system
with Hodge cocharacters {ji.},.r., g, then there exist a finite set of places P D S,
a finite extension F'/F, and lifts p; : T'p' pus, — H'(E,) such that {0} is a
ramification-compatible system.

We deduce Wintenberger’s original result in Corollary 3.16. Our proof differs in
an essential way, as it passes through Theorem 1.3, which cannot be deduced from
the methods of [Wintenberger 1995]. Our problem resembles Wintenberger’s in
that both lead to a basic difficulty of annihilating cohomological obstruction classes
in infinitely many Galois cohomology groups, one for each A, but needing to do so
in an “independent-of-A” fashion. The arguments themselves, however, are in fact
orthogonal to one another: Wintenberger always kills cohomology by making a
finite base change on F, whereas that is precisely what we are forbidden from doing
if we want the more precise results of Theorem 1.3. Moreover, our methods also
yield a novel proof of Tate’s original vanishing theorem (see Corollary 3.9). In fact,
Corollary 3.9 establishes a more precise form of Tate’s theorem: the latter of course
shows that the image under the canonical map HZ(FF,S, Z/N)— H*(Tr, Q/7)
is zero, and our refinement quantifies how much additional ramification must be
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added, and how much the coefficients must be enlarged, in order to annihilate
H*( F.s, Z/N). Our arguments thus achieve, from scratch, a satisfying common
generalization of the theorems of Wintenberger and Tate.

In Corollaries 3.12 and 3.14, we give a couple of applications to lifting A-adic
realizations such that the associated ““similitude characters” (e.g., determinant or
Clifford norm) of the lifts form strongly compatible systems. Note that even in the
case of the classical Kuga—Satake construction, this compatibility is only achieved as
a consequence of having an arithmetic descent of the (Hodge-theoretically defined)
Kuga—Satake abelian variety; such a descent depends on the deformation theory of
K3 surfaces and monodromy arguments (due to Deligne [1972] and André [1996a]).

Our final result is the promised motivic application:

Corollary 1.6. Let F be a totally imaginary number field, let E be a number field,
and let Gr g denote the motivic Galois group, defined by André’s motivated cycles,
of pure motives over F with coefficients in E (see Section 2). Let H—> Hbea
surjection of linear algebraic groups over E whose kernel is a central torus in H,
and let p : Gr g — H be any motivic Galois representation, with associated \-adic
realizations p), : I'r sus, = H (E;) for some finite set S of places of F. Then there
exist a finite, independent of A, set P O S of places of F and, for all A, lifts

H(E))
Pd

B - l
-
-

-

Lrpus, —— H(E))

such that each p,, is de Rham at all places in S, , and is moreover crystalline at all
places in S) \ (S, N P).

Now suppose H' — H is a surjection of linear algebraic groups whose kernel
is central but of arbitrary multiplicative type, and let p : Gr. p — H again be a
motivic Galois representation. Assume that the labeled Hodge cocharacters of p
(see Definition 2.1) lift to H'. Then there exist a finite set P O S of places of F, a
finite extension F'/F, and, for all A, lifts

H'(E;)
21

o~ l
-~
-

-

Tr pus, —— H(E;)
oxIr g

such that p,, is de Rham at all places above S,, and is moreover crystalline at all
places above S, \ (S, N P).
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Remark 1.7. Even admitting a strong finiteness conjecture, that there are finitely
many isomorphism classes of p (as in Corollary 1.6), having coefficients in E,
prescribed Hodge—Tate cocharacters, and good reduction outside a fixed finite
set S, Theorem 1.3 still says rather more than Corollary 1.6, since even for fixed
A it applies to infinitely many distinct p, simultaneously (because we have not
bounded the coefficients: recall the example of modular forms of weight two whose
nebentypus characters have unbounded conductor, even though supported on the
fixed finite set S of primes).

We close this introduction by emphasizing what we do not prove. The realiza-
tions {p,}, of p should, moreover, form a weakly compatible system of Galois
representations in the sense that the conjugacy class of p, (fr,) is defined over
E and is suitably independent of A (for v outside S U S;), and in turn one would
hope to construct lifts p, with the same frobenius compatibility. This problem
seems to be out of reach: I know of no way to establish such results using only
Galois-theoretic techniques, although indeed they would follow (assuming the
standard conjectures) from the generalized Kuga—Satake conjecture. Alternatively,
it is possible to establish results of this nature in settings where p, and p, are
constructed as automorphic Galois representations: the most significant example
of this is the recent work of Kret and Shin [2016] associating GSpin-value Galois
representations to certain (discrete series at infinity, Steinberg at some finite place)
cuspidal automorphic representations of GSp,,(AF), for F totally real. Crucially,
their construction uses the already-known construction of (SO, +1-valued) Galois
representations for the restrictions of such automorphic representations to Sp,, (A r),
so it is very much in the spirit of the generalized Kuga—Satake lifting problem.

2. Hodge symmetry

In this section we establish a motivic setting in which our general Galois-theoretic
results apply; this setting will both serve as motivation for subsequent sections
and allow us to deduce Corollary 1.6 from Theorem 1.3 (and Corollary 3.18). The
reader who does not find the motivic language illuminating can safely skip this
section.

Rather than working with (pure) homological motives and assuming the standard
conjectures, we work with a category of motives that is unconditionally semisim-
ple and Tannakian — and in which we can prove unconditional results — but that
would, under the standard conjectures, turn out to be equivalent to the category
of homological motives. Namely, let M g denote André’s category of motivated
motives over F' with coefficients in E; see [André 1996b]. We begin by elaborating
on the consequences of Hodge symmetry in Mg g. Throughout this discussion, it
will be convenient to fix embeddings 7o : F < E and (o, : E < C. The composite
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looTo : F <= C yields a Betti fiber functor H,_,: MFr g — Vectg, making M g into
a neutral Tannakian category over E. We denote by G = Gp(15Tp) the associated
Tannakian group (tensor automorphisms of the fiber functor), so that H, , induces
an equivalence of tensor categories Mr g — Rep(G).

We will consider other cohomological realizations on My g, and their compar-
isons with the Betti fiber functor. Let Hyg : M g — Filpg, g denote the de Rham
realization, taking values in filtered F ®g E-modules, and for each place A of E,
let H; denote the A-adic realization, which takes values in finite E;-modules with
a continuous action of I'z. For all embeddings 7 : F < E, we obtain an E-valued
fiber functor

WdR .7 + M — gr.(eerR(M))»
where e; is the idempotent induced by t®1: FQgE — E. LetGur ()= Aut®(a)dR,,)
be the associated Tannakian group over E. Of course this fiber functor factors
through the category Grj of graded E-vector spaces

M F,E GrE

NS

Vectz

so we obtain a corresponding homomorphism i : G,, g — Gar (7). Without specify-
ing 7, we obtain a fiber functor (see [Deligne and Milne 1982, §3]) wyg = gr®* Hyr on
M g valued in projective F' ®qg E-modules. By [loc. cit., Theorem 3.2], the functor
Ho_m®(Hloof0, wgr) 1s a G-torsor over F ®qg E. In particular, for all T : F — E, we
can choose a point of H()_m‘g’(HLmTO ®rE, wqr,z) to induce a cocharacter p, of Gz,
and the conjugacy class [u.] of u. is independent of this choice.

Definition 2.1. For each 7 : F < E, we call any [ : Gm,E — Gg as above
a t-labeled Hodge cocharacter; it is a representative of the conjugacy class of
cocharacters [, ], the latter being canonically independent of any of the above
choices of isomorphisms of fiber functors.

Lemma 2.2. Forall o € Gal(E/E), [u:]1=[io<] In particular, [ ] only depends
on the restriction of T to the maximal CM (or totally real) subfield F,, of F.

Proof. We decompose F ®q E =[], E; into a product of fields, writing p; for
the projection onto E;. Any E-algebra homomorphism 7 : F ®q E — E factors
through p; ;) for a unique i (), and then the Gal(E/E)-orbit of 7 is precisely those
E-algebra homomorphisms (i.e., embeddings F < E) t’: F ®g E — E such that
i(t) =i(t’). The first claim follows, since both wgg ; and wgg »- can be factored
through p; () o wgr. The second claim follows from the first, and the fact that all
motives arise by scalar extension from motives with coefficients in CM (or totally
real) fields [Patrikis 2016c, Lemma 4.1.22]. U
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Next note that the canonical weight-grading on M ¢ g induces a central weight

homomorphism
w: Gm,E — G,

and likewise for any other choice of fiber functor and Tannakian group (because w is
central, it is in fact canonically independent of any choice of isomorphism between
fiber functors). Hodge symmetry then results from the complex conjugation action
on Betti cohomology, interpreted via the Betti—-de Rham comparison isomorphism,
which is a distinguished C-point of Hom® (war,: OF, o C, H_:®k,, C). Namely,
complex conjugation on complex-analytic spaces induces (see [Patrikis 2016c,
Lemma 4.1.24]) natural isomorphisms (without restricting to particular graded
pieces for the weight and Hodge filtrations, these are isomorphisms of fiber functors
over C)

o’ (e Hip (M) ®5 ,_ C > g P (e Hip (M) ®5,_©), (1)

where ¢ € Aut(E) is the choice of complex conjugation for which icoT = tsocT. We
deduce the following relation:

Lemma 2.3. For any embedding t : F < E, and any choice of complex conjugation
¢ € Aut(E), the conjugacy classes of cocharacters [ji.] and [ ] satisfy

(el = [ug'l,
where w is the weight cocharacter.

Proof. For the choice of complex conjugation specified by iocT = toCT, the relation
[u:]=w- [,uc_rl] follows, after base extension (o, : E — C, from (1) above; but this
relation necessarily descends to E, since the conjugacy classes of cocharacters are
defined over any algebraically closed subfield of C. It only remains to observe that
[14c7] is independent of the choice of complex conjugation on E. This follows from
the second assertion of Lemma 2.2. O

The comparison isomorphisms of p-adic Hodge theory then imply that the
analogue of Lemma 2.3 also holds for the associated Hodge—Tate cocharacters.
For any place A of E, fix an algebraic closure E;. Embeddings 7 : F < E and
1, : E <> E, then induce 7, Fy— E, for a suitable place v of F of the same residue
characteristic p as A. Meanwhile, the restriction to I'r, of the A-adic realization
induces

Hlrp, dR Dur . Cuy er
Mrp g —— RepEk (va) — Flva@@pEx — FIIEA —> GI'EA — Vectgx, 2)

where Dyg : Rep‘gf (I'r,) — Fil F,®a, E; denotes Fontaine’s functor restricted to the
category of de Rham representations. (Here we have invoked Faltings’ p-adic de
Rham comparison isomorphism from [Faltings 1989], and the fact — already noted
by André [1996b] — that it extends to a comparison isomorphism on all of Mr g;
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for details of the latter point, see [Patrikis 2016¢, Lemma 4.1.25].) Of course,
Rep[gf (I'r,) also has its standard forgetful fiber functor (let us say E;-valued),
yielding a Tannakian group I'% for de Rham I'f -representations over E;; by
choosing an isomorphism between the two E-valued fiber functors on Rep‘gf Tk,
we obtain a canonical conjugacy class (recalling [Deligne and Milne 1982, Theorem
3.2]) of “1,,-labeled Hodge—Tate cocharacters” [,u,q] of Ffﬁ. Specializing, this
construction defines the labeled Hodge—Tate cocharacters of any de Rham Galois
representation p : I'r, = H(E,), for any affine algebraic group H over E).

To relate the t,-labeled Hodge—Tate cocharacters in the motivic setting to
the Hodge cocharacters previously discussed, note that the de Rham compari-
son isomorphism [Faltings 1989] yields a natural isomorphism of tensor functors
Mrp g — GrEA:

gr(e: (Har(M) ® E) ® ,, E;) = gr(er, (Dar(Hy(M)|r;,) @, E2)).
We deduce the following corollary.

Corollary 2.4. For any embedding © : F — E, and any embedding 1, : E — E;,
there is an equality of conjugacy classes

(e ®E,[A EA] = [MILA]-

In particular, for all A, and for all E-embeddings 1, : E — E,, the conjugacy
classes [:“%A] are independent of (A, t,) when regarded as valued in the common
group Gg.

3. Lifting

In this section we prove our main results. First we recall the setting and some
notational conventions that will be in effect for the rest of the paper.

Let F be a totally imaginary field (see Remark 1.4), let S be a finite set of places
of F containing the infinite places, and let E be any number field. Fix an algebraic
closure F, and set 'y = Gal(F/F). We write F(S) for the maximal extension of
F inside F that is unramified outside of S, and we set T’ r.s =Gal(F(S)/F). We
denote the ring of S-integers in F' by Op[1/S]. We also set Fs =[], g Fo. If L is
a finite extension of F (inside F), we then abusively continue to write S for the
set of all places of L above those in S, with corresponding notation L(S), I'L s,
etc. For a place A of E, let S, denote the set of places of F' with the same residue
characteristic as A. We freely use the terminology established in Definition 1.1.

Torus quotients. In this subsection we prove Theorem 1.3. We begin in the next
few paragraphs by gathering together all of the “independent of A and p,” data,
and the auxiliary constructions we make on top of this data. Continuing with
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F., S, and E as above, also fix a surjection H — H of linear algebraic groups
over E whose kernel is a central torus, which we denote by C. (We will without
comment also write C for the base change to various algebraically closed fields
containing E.) Next fix an isogeny complement H; of C in H (for existence of
such Hi, see [Conrad 2011, Proposition 5.3, Step 1]); thus, H; - C = ﬁ, and HHNC
is finite. For technical reasons, we will later want to include all primes dividing
#(H,NC)(E) in the set of bad primes S; this will be indicated at the necessary point
(see the discussion following Lemma 3.5), but it does no harm 51mply to add these
primes to S from now. Consider the quotlent map § : H—H JH; Z¥ = =H /H\ is
a torus, and there is an isogeny C — Z", with kernel C N H;. Fix a spht torus Z
over F' whose dual group (constructed over E)is isomorphic to 7V ® z E, and fix
such an identification (implicit from now on).

Fix a set of cocharacters {u. : G, g — Hg},.p., 5, and a central cocharacter
o : G, g — Hg, satisfying the Hodge symmetry requirement of item (2) of
Definition 1.1. Denote by F, the maximal CM subfield of F. The condition
in Definition 1.1 implies that the cocharacter w, depends only on the restriction of t
to F,,; we denote this restriction by ., : Fep < E. We fix a set of representatives
I of Hom(F,,,, E) modulo complex conjugation, and for each o € I, we fix a lift
Ly to H of W, as well as a (central) 1ift @ of w. Note that this is possible, because
Cisatorus. If 7 : F < E restricts to a o € I, we then set [I; = [iy; if not, then

7: F — E restricts to a o € I, and we then set [i7 = &jlg |

Lemma 3.1. Fix once and for all an embedding 1o, : E < C. There exists an
algebraic automorphic representation  of Z(Ar) such that forall T : F — E,
inducing v, : F, < C by composition with (., the local component Vr,, : F, — C*
is given by . —

Vo(z) = T, (Z)E(/ir).[LOC (Z)S(l‘cr)‘

(Recall that € is the quotient H — Z".)

Proof. We readily reduce to the case Z = G,,, where it follows from the description,
due to Weil [1956], of the possible archimedean components of algebraic Hecke
characters. (This is where Hodge-symmetry is required.) (]

From now on we fix such a i, and we let T denote the finite set of places of F
such that v is unramified outside 7. For any embedding ¢, : £ < E,, we can then
consider the A-adic realization’

W, :Trrus, = ZY(E)).

Each v, is a geometric Galois representation, with good reduction outside 7', and
for any t : F — E, inducing 1, : F,, — E;, the Hodge-Tate cocharacter of v,
associated to 7, is £(ii7) ® ,, Es.-

3To be precise, this depends on (s and ¢ ; but 1 is fixed throughout the paper.
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Now we consider any geometric representation

s : Tr.sus, — H(E;)

having good reduction outside S, along with an embedding 1, : E < E such that the
Hodge-Tate cocharacters of p, arise from the collection {u; : G, g > Hg},.p E
via ¢,. Because the kernel of H — H is a central torus, a fundamental theorem
of Tate (see [Serre 1977, §6]) ensures in this case that p,, as a representation
of I'p, lifts to H. As we will see, our arguments in fact imply Tate’s theorem
(Corollary 3.9), so we do not need to assume it in what follows.

We can define an obstruction class O(p;) to lifting p;, to a continuous represen-
tation I'r sus, = H 1(E}) in the usual way: choose a topological (but not group-
theoretic) lift p;, and then form the 2-cocycle (g, h) = p} (gh)p; (h)~'p;(g)~",
defining 5
O(pn) € H*(T'F sus,, HINC).

Here and in what follows, we simply write H; N C for the E;-points of this finite
group scheme.

Remark 3.2. Here lies the essential difficulty to be overcome: while Tate’s theo-
rem allows us to annihilate the cohomology classes O(p, ) — after allowing some
additional ramification and enlarging the subgroup H; N C of C — we have to carry
out this annihilation in a way that is independent of A, and moreover, for fixed A
independent of p,. Simultaneous annihilation of the O(p, ) using only a uniform,
finite enlargement of the allowable ramification set and of the subgroup of C in fact
does not seem to be possible; we will as a first step have to define modified versions
of these obstruction classes that take into account the Hodge numbers of .

Before proceeding, we reinterpret the obstruction O(p,) (we will only use the
local version of what follows; in particular, the arguments of the present section
depend only on the local version of Tate’s theorem, which is an almost immediate
consequence of local duality).

Lemma 3.3. Let v be a finite place of F, and suppose that p, : I'r, — ﬁ(]:_?k)
is any continuous homomorphism lifting p;|r.,. Then O(p;)|r,, is equal to the
inverse of O(£(p,)), the obstruction associated to lifting £(p;) : I'r, — A% (E;)
to C. (The same holds if we replace I'r, by I'r, but we do not require this.)

Proof. Before beginning the proof proper, we make precise our convention for
coboundary maps: the inverse appearing in the conclusion of the lemma is crucial,
and it is easy to get confused if one is not careful with the definitions. Let " be a
group and M a (for simplicity) trivial ['-module. For a function « : I'* — M, set

n
8@)(g1, - gnr) = (82, g) + Y (=D (g1, &igitts s Gnt1)
i=1
’ + (=D g, . ga).
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For n =1, this says § (@) (g, h) = a(h)a(gh)_la(g), and in the situation considered
above (g, h) — pi(gh)pi(h)*lpi(g)*l is in fact a 2-cocycle.

Tate’s theorem implies that, for sufficiently large m, the image of O(p,) in
HZ(I‘FU, C[m]) vanishes, i.e., O(p,) =8(¢) for some ¢ : I'r, — C[m]. The product
p; - ¢ is then a homomorphism I', — (H| -C[m))(E,) lifting p;; we set f;, = P - .
Clearly £(p,) = £(¢), and then O(£(p;)) is (tautologically) represented by the
cocycle (g, h)— ¢ (gh)p(h) "' d(g)!, i.e., by 8(p) ' =O(pr) "' € Z*(Tr, HINC).*
This proves the claim for our particular lift o, , but any other lift ,5; gives rise to the
same obstruction O(& (,5,{)). (The global claim holds for the same reasons, if we
admit the global version of Tate’s theorem.) (I

To address the difficulty indicated in Remark 3.2, we begin by using the abelian
representations coming from ¥ to construct a second obstruction class. Namely,
consider the realization 1,,, which, for notational simplicity, from now on we
simply denote by ;. The automorphic representation ¥ is unramified outside the
finite set of places T of F, so ¥, is a geometric representation I'r 7us, — 4 V(E,),
which has good reduction outside 7T (i.e., is crystalline at primes of S, not in 7T').
Via the isogeny C — ZY, we can then form a cohomology class measuring the
obstruction to lifting v, to C: let ¥; denote a topological lift I'r 7ys, — C (E,),
defining as before a cohomology class

OW,) € H*(Tr.rus,, HiNC).
We can in turn define (via inflation) a cohomology class

O(ps, 1) = O(p) - O(WYr) € H* (T surus,, HiNC),

which is represented by the 2-cocycle (recall that C is central in H)

(8. h) = (0}, - Y3 (gh) (o} - i) ()~ (o} - i) ()"

(Note, however, that the function g — (p; - ¥;)(g) is valued in H, not in H, J)
We need one more lemma before getting to the crucial local result (Lemma 3.5).

Lemma 3.4. For all places v € Sy, and for any choice of embedding i, : E — E;,
there exists a de Rham lift

H(E;)

2

or -
7
7

e —
Ip, T> H(E;)

of pi|ry, such that for all embeddings <, : F, — E,, the T, -labeled Hodge-Tate

4Note that ¢ is valued in C[m], not H NC, so §(¢) need not be a coboundary in Zz(FFv, HiNC).
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cocharacter of py, is (conjugate t0) [ty ® Eu E;, where T : F < E is defined by the
diagram

T =
Fv —_— E)\

]
F—>E
Moreover, if p; is crystalline, then p, may be taken to be crystalline.

Proof. For each 1, : F, — E;, set for notational simplicity [i;, = ii; ® B E,,
where 7 is determined as in the diagram, and where 7 is the lift of . we have
fixed above. The proof of [Patrikis 2016c, Corollary 3.2.12] shows that for any
collection of cocharacters lifting the Hodge cocharacters of p,, and in particular
for our fi7,, there exists a Hodge-Tate lift p; : ['r, — H (E,) whose 1,-labeled
Hodge-Tate cocharacter is (i, . Now consider the isogeny lifting problem

H(E))

X
~
_
-
-
-

Tk, ————— H(E;) x ZY(E))
(2.,6(02))

Since (p;, £(0,)) admits a Hodge-Tate lift (namely, p; ), and is itself de Rham (p,, is
de Rham by assumption, and any abelian Hodge—Tate representation is de Rham),
we can apply [Conrad 2011, Corollary 6.7] to deduce the existence of a de Rham
lift o}, which clearly has the same Hodge—Tate cocharacters as 5y, since they differ
by a finite-order twist. If we further assume p,, is crystalline, then we need only a
minor modification to this argument: some power £(5;)? is crystalline, so if we
instead consider the problem of lifting the crystalline representation (o, [d]£(0,.))
through the composite isogeny

ﬁ%HxiVMHxiv,
then again [Conrad 2011, Corollary 6.7] applies to produce a crystalline lift of p,
with the desired Hodge—-Tate cocharacters. ([

Here is the key lemma:
Lemma 3.5. For any place v € S, not belonging to the finite set SUT , the restriction
O(px, ¥a)lry, is trivial.

Proof. Under the assumption on v, both p, and y, are crystalline at v. Lemma 3.4
above shows that p; |, admits a crystalline lift p; : I'r, — H (E}) such that £(p;)
has the same (labeled) Hodge-Tate cocharacters as ¥, |r,, . Since they are both
crystalline, it follows (see [Chai et al. 2014, 3.9.7 Corollary]) that £(py) - ¥, ! Irs,
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is unramified; this is an elaboration of the familiar fact that a crystalline character
whose Hodge—Tate weights are zero must be unramified. In particular, replac-
ing the initial lift p|r, by an unramified twist, we may assume &(0;) = ¥
as homomorphisms I'r, — ZY(E;). But recall that Lemma 3.3 implies that
O(py) = OE(B)) L, so we deduce that O(py) - OW)Iry, 1s trivial. O

Since the set of places S U T is finite, by the local version of Tate’s theorem, the
vanishing of H2(I' r,» Q/7) for all places v of F, we may enlarge H; U C to some
C[m] inside the torus C so as to kill the image of HZ(FFU, HNC)— HZ(FFU, Clm))
for all v e SUT. (We emphasize that m only depends on the set of places SU T of
F and the finite group H; N C.) It follows then from Lemma 3.5 that if A does not
belong to SU T, then O(p,, ¥,) in fact belongs to

HléUTUSA(F,C[mD=ker<H2<FF,surusx,C[m]>—> ) H2<FFU,C[m]>).
l)ESUTUS}L

We can moreover guarantee that this holds regardless of A by an additional finite
enlargement of m (since the number of exceptional A is finite). Furthermore, by
including the primes dividing #(H; N C) in SU T (if necessary), we can assume
that m is divisible only by primes in S U T'. (Note that inflation to allow additional
primes of ramification still has image in the corresponding Shafarevich—Tate group,
since I'r, /I, has cohomological dimension one for all finite places v.) Thus, after
these uniform enlargements of m and SUT (which we do not reflect in the notation),
we have O(py., ¥2) € L5 75 (F, Clm]).

We are now in a position to apply global duality to analyze the cohomology
group IH%UTU SA(F , C[m]). We will need, however, to allow still more primes of
ramification in order to kill the class O(p;, ¥,); the following crucial lemma allows
us to do this in a way that does not depend on A, but before stating the lemma, we
have to recall the Grunwald—Wang theorem (in a somewhat specialized form).

Theorem 3.6 (Grunwald—Wang; see Theorem X.1 of [Artin and Tate 1968]). Let F
be a number field, and let m be a positive integer. Then an element x € F* belongs
to (F*)™ if and only if x is in (F,)™ for all places v of F, except when all three of
the following conditions, referred to as the special case, hold for the pair (F, m):

o Let sp denote the largest integer r such that n, = {or + &5/ Vis an element of
F (here &y denotes a primitive 2"-th root of unity). Then —1, 2 + n;,., and
—(2 4 ny,) are nonsquares in F.

e ordy(m) > sp.

o The set of 2-adic places of F at which —1, 2 + n,,., and —(2 4 n,,) are
nonsquares in F is empty.



2412 Stefan Patrikis

In the special case, the element (2 + n; F)’"/ 2 js the unique (up to (F>)"-multiple)
counterexample to the local-global principle for m-th powers in F*.

Here is the lemma:

Lemma 3.7. Recall that SUT is a fixed finite set of places of the number field F,
and that m is a fixed integer. Let V be a finite set of finite places of F such that
o all elements of V are unramified in F (i,,),
o the places of F () lying above V generate the class group of F (iun,), and
o every element of Gal(F(u;,)/F) is equal to a (geometric, say) frobenius
element at v for some v € V.
Then for all places )\ of E we can deduce:
(1) If (F, m) is not in the Grunwald—Wang special case, ].H%UTUVUSA(F, Clm]) is
trivial.

2) If (F, m) is in the Grunwald—Wang special case, then the image of the canoni-
cal map

TS 7oy us, (F, Clml) = T royus, (F, Cl2m])
is trivial.
Proof. First note that such sets V exist, by finiteness of the class number and the
Cebotarev density theorem. Since (all places of F above) the primes dividing m are

contained in SU T, an application of Poitou—Tate duality immediately reduces us to
showing (as a Galois module, C[m] is dim(C) copies of Z/m) the following cases:

(1) If (F, m) is not in the Grunwald—Wang special case, then

1
Wsuruvus, (F, tm) = 0.

(2) If (F, m) is in the special case, then the map

1 1
H‘[SUTUVUSA(F’ Mom) —> H-[SUTUVUSA(F’ Mm)

. 2 .
induced by w2, — Wy is zero.

We first restrict to I'r(,,,), suruvus, (note that this is actually restriction to a sub-
group, since F(u,,)/F is ramified only at primes in S U T'), obtaining an element
of III éuwvu SA(F (m), ). After this restriction, as we will see, the Grunwald—
Wang theorem does not intervene.

To lighten the notation in the rest of the proof, we define L = F(u,,) and
0, =SUT UV US,. We also refer the reader to the notation established at the
beginning of Section 3. Recall that F(Q,) denotes the maximal extension of F
inside F that is unramified outside Q;; it contains L. Let O (g, denote the ring
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of Q,-integers in F(Q;) (i.e., the elements of F(Q;,) that are integral outside of
places above Q;). We then have an exact (Kummer theory) sequence

1=ty — O;(Qx) 2 0%

Fon b

and the corresponding long exact sequence in I'z, o, -cohomology yields an isomor-
phism
1 X 1 X\ m ~ 1 .
OL[E] /(OL[E] ) — H (T'L.g,, m);
critically, surjectivity here follows from the vanishing of H'(T'z | 0., OF (0,))> Which
itself is a consequence of the natural isomorphism Clg, (L) = H r L,0> O;( Qx))
[Neukirch et al. 2000, Proposition 8.3.11(ii)] and our assumption that V (and hence
0,) generates the class group of L. Restricting the Kummer theory isomorphism to
classes that are locally trivial at each place of Q;,, we also obtain the isomorphism
(ofgr] nwem) (o] )" = it
“los o “los 01 o
We claim these groups are trivial. Indeed, take @ € Or[1/Q;]* N (L E_A)’", and
consider the (abelian) extension L (c'/™) /L. Global class field theory yields the
reciprocity isomorphism

AL /(LN amyn (A qumy)) = Gal(L@'/™)/L),

but by assumption the source of this map admits a surjection

AZ/(LXL;)LEA ]_[ o,f) = AL/ (L7 Ny @my A qm))-
wgQ)
(At unramified places, the image of the norm map contains the local units; and at
places in Qy, L(a'/™)/L is split.) By assumption (Clg, (L) =0), the source of this
surjection is trivial, so L(a'/™) = L, and we deduce that I_HIQA(L, Um) =0.

It follows that inflation identifies the group Hlle(F , Lm) with the classes in
H'(Gal(L/F), u,,) that are trivial upon restriction to Q,. Since every element
of Gal(L/F) is a frobenius element at some prime in V C Q,;, H_IIQA(F, Um) 18
actually equal to the set of everywhere locally trivial classes

Iy (F, i) :=ker(H1<FF, um) > [ H' (T, m),
ve|F|

where |F'| denotes the set of all places of F. This is precisely the subject of
the Grunwald—Wang theorem, and it is zero if (¥, m) is not in the special case.
Thus, we need only consider the possibility that (F, m) is in the special case, where
H_[l1 F| (F, ) has order two, and a representative of the nontrivial class is the (image
under the Kummer map of the) element (2 + 5, F)’"/ 2 of (F*)™/2. This description
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holds regardless of m, so in particular the nontr1v1al class of HI‘ F|(F, tom) 1s
represented by (2 + n,,)". Its image under oy, 2, Um, wWhich via Kummer theory
is induced by the identity map F* — F*, is again (24 1,,)", which is now visibly
an m-th power, completing the proof.’ ([

We summarize our conclusion, noting that the value of m in the following
corollary may be 2m in the earlier notation:

Corollary 3.8. There is an integer m and a finite set of places Q D SUT, both
independent of A and of the choice of p, having good reduction outside S and the
prescribed Hodge—Tate cocharacters {{i+},.p., g, such that the image of O(p;,, ¥5.)
in HZ(FF,QUSA, C[m)) is zero.

Before proceeding, it is worth noting that the argument just given yields a novel
proof of the global version of Tate’s vanishing theorem (taking as input the much
easier local theorem); it is also a stronger proof, yielding an explicit upper bound
on how much ramification has to be allowed, and how much the coefficients need
to be enlarged, in order to kill a cohomology class in H>(I'r.y, Z/N) for some
finite set of places V and integer N.

Corollary 3.9. Let V be a finite set of places of F, and let N be an integer. Then
the image of HZ(FF,V, Z/N) in HZ(I‘F,VUW, Z/2NM) is trivial, where

o M is large enough that for all v € V, the image of

H*(Tf,,Z/N) — H*(Tf,, Z/NM)
is zero,® and
o once M is fixed as above, W is large enough that

— VUW contains (all places above) 2NM,

- Clyuw (F(unm)) =0, and

— each element of Gal(F (unwy)/F) is equal to a frobenius element at w for
some w € W.

(The factors of two are only necessary in the Grunwald—Wang special case.) In
particular, H*(Tp, Q/7) =

Remark 3.10. A different proof of Tate’s theorem (without arithmetic duality
theorems, but instead relying on a finer study of Hecke characters of F') is given in
[Serre 1977, §6.5]. There Serre remarks that Tate originally proved the vanishing
theorem using global duality, but further assuming Leopoldt’s conjecture; we have
of course circumvented Leopoldt here.

5In concrete terms, this says that if an element of F* is everywhere locally a (2m)-th power, then
it is globally an m-th power.
OThis is easy to make explicit, using local duality, in terms of peo (Fy).
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Now we return to the conclusion of Corollary 3.8. Let b;, : I'r gus, — C[m] be
a cochain trivializing O(py, ¥, ). Then

0. = py V5 by i Tr gus, — H(E,)

is a homomorphism lifting p,. We claim that p, is, moreover, de Rham at all places
in ;. To see this, note that under the isogeny H—>HxZ, 0, pushes forward
to (px, ¥1.£(b,)), the second coordinate being a finite-order twist of i, (and in
particular, de Rham). But now we can invoke the local results of Wintenberger
[1995, §1] and Conrad [2011, Theorem 6.2], asserting that a lift of a de Rham repre-
sentation through an isogeny is de Rham if and only if the Hodge—Tate cocharacter
lifts through the isogeny (which is obviously the case here, as { was constructed to
ensure this).

Finally, we can refine this to the statement that p; admits a geometric lift that
is moreover crystalline at all places of S, provided S, does not intersect a certain
finite set of primes that is independent of A and p, (but somewhat larger than the
set O we have thus far constructed). This will complete the proof of Theorem 1.3.

Proof of Theorem 1.3. We resume the above discussion. So far we have a constructed
geometric lifts o, : I'r gus, — H (E;), where O contains SUT and whatever other
additional primes are needed for the conclusion of Corollary 3.8. The only remaining
task is to show that for some (independent of p; ) set P, we can modify the initial
lift (by a finite-order twist) to guarantee that it has good reduction outside P. Under
the isogeny H— H x zV/S(C[m]), 0> pushes forward to

T, = (o, Y2 mod §(C[m])),

which is crystalline for all v in S butnotin SUT. For all v € S, \ (S, N (SUT)),
oxlr r 18 of course a de Rham lift of 7;, so [Conrad 2011, Theorem 6.2 and
Corollary 6.7] (building on [Wintenberger 1995]) shows that t,|r, admits some
crystalline lift 7, , : I'r, — H (E;), and therefore there are finite-order characters
Xrv - I'r, = C[m] such that each p; |y, - x5.v is crystalline. We wish to glue the
inertial restrictions x; |/ together into a global character, with an independent-
of-A control on the ramification. The cokernel of the restriction map

Hom(I'r, gus, . C[m]) — @D Hom(If,, Clm])"*/ ! 3)

veS;

may be nontrivial;” but we will show that any element of the cokernel is annihilated
by appropriate enlargements of Q and m.

70f course, we only need to consider the cokernel of the map to the direct sum over
v e S\ (SyN(SUT)); to lighten the notation we will work with all v € Sy, taking some arbitrary
(e.g., trivial) choice of x; , at any placesin (SUT)NS;.
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By the congruence subgroup property for GL; (a theorem of Chevalley [1951]),
there is an ideal n of Of such that

{x€eOF:x=1 (modn)} € (O)".

Let R be the set of primes supporting n (note that n and R are independent of p, !),
and set

Ugr = {(xv)veR € 1_[ (’);u :x, =1 (modn) forall v e R}.
vER

Then whenever S, N R = @ (so, excluding a finite number of bad A), consider the

character (here and in what follows, we suppress the class field theory identifications)

(Xrv)ves, X I x1x1: l_[ Op x HURX 1_[ Op x F5 — Clm],
veES) vER v¢RUS;,

which extends by 1 to a character

(]_[ op x[Turx[] 03, xFoXo)-FX—>C[m]
veS) veER vgRUS;,
(an element of the intersection is a global unit congruent to 1 modulo n, hence is
contained in (Of)™, where x; , is obviously trivial). We can then extend from this
finite-index subgroup of A}X, to a character y; : A; /F* = eo(C). In fact, we see
that x; can be chosen to be valued in C[M] for m sufficiently large but independent
of A: m can be quantified in terms of the generalized class group of level Ug, but
the details do not concern us.
Replacing p, by its finite-order twist

o1 X : T'F,ourus, — H(E,),

we have achieved geometric lifts of p, with compatible Hodge—Tate cocharacters,
and which are crystalline at all places in S outside of RUSUT. U

Remark 3.11. Contrast the final step [Wintenberger 1995, §2.3.5] of Winten-
berger’s main theorem, where to ensure crystallinity of the lifts he makes a further
finite base change on F (having already made several such in order to show lifts
exist, as is necessary in his isogeny setup), adding appropriate roots of unity and
then passing to a Hilbert class field to kill a cokernel analogous to that of (3). As
elsewhere, our argument is orthogonal to Wintenberger’s, in allowing additional
ramification and larger coefficients, rather than passing to a finite extension of F.

We now deduce some corollaries on finding lifts of ramification-compatible
systems whose “similitude characters” (determinant, Clifford norm, etc.) form
strongly compatible systems, in the sense that at all finite places their associated
Weil group representations are isomorphic (see, e.g., [Barnet-Lamb et al. 2014,
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§5.1], where these are called strictly compatible). As with Theorem 1.3 and the
preceding results, we show a somewhat stronger finiteness result, which applies to
all representations with good reduction outside a fixed finite set S. These corollaries
will follow from the above results and the Hermite—Minkowski finiteness theorem.

Corollary 3.12. Let F, S, and {1} be as in the statement of Theorem 1.3, except
now F may be any number field. Then there exist a finite set of places P O S and a
finite extension F'/F such that any geometric p; with good reduction outside S, and
with Hodge—Tate cocharacters arising from {iu.} via an embedding 1, : E — E;,
admits a geometric lift p). : U'r pus, — H (E,) such that the restrictions

£(5y) : T pus, = Z"(E;)

are equal to the v, -adic realizations of the single (independent of A and p,) algebraic
Hecke character W of 2(AF).

In particular, let {p; : T'F sus, = H (E 2) 1}, be a ramification-compatible system.
Then there exist a ramification-compatible system of lifts {p, : I'r, pus, — H (E)}
and a finite, independent-of-). extension F'/F such that the restrictions

£(52) : T, pus, = 2 (E3)
form a strongly compatible system.

Proof. We may assume that the number field F is totally imaginary. Consider the
lifts p : I'r, pus, — ﬁ(EA) produced by Theorem 1.3. We write £(0,) = ¥ - Wa,
where 1, : I'r pus, — 2V[M ] is a finite-order character; the independent-of-A
bound on the order was established within the proof of Theorem 1.3. Moreover, for
all v e S; \ (S, N P), p, and ¥, are crystalline at v, so as long as S N P is empty, 1,
factors through I'r p — A% [M] (we again use that a finite-order crystalline character
is unramified). By the Hermite—Minkowski theorem, there are a finite number of
such characters 7,. For the finite number of bad A (at which S, N P # @), the same
finiteness assertion holds. Thus, after a finite base change F’/F, trivializing this
finite collection of possible characters n,, we see that & (,51)|1"F4 pus, = Yalr,. pus,
for all A. The second part of the corollary follows since the A-adic realizations
of an abelian L-algebraic representation form a strongly compatible system, as is
evident from the construction of v, as in, e.g., [Serre 1968]. U

We would like to upgrade this to a compatibility statement not just for the push-
forwards £(,), but for the full abelianizations 5% : I’ F.PUS, —> H ab(F.Y. Of course,
such a result requires first (taking H=H ) having the corresponding assertion for
the abelianizations pi‘b :Tpsus, > H ab(F,). Here, however, it is of course false
without imposing further conditions on the system {p; }, (see Remark 3.15). There
are various conditions we might impose on the p, to ensure (potential) compatibility
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of the ,oilb. Perhaps most interesting is to restrict the coefficients of pj\lb. To that
end, we first prove a finiteness result for Galois characters:

Lemma 3.13. Let F be a number field, and let S be a finite set of places of F.
Fix a finite extension E'/E (inside E), a set {m<},.p, g of integers satisfying the
Hodge-symmetry condition of Definition 1.1, and an embedding 1~ : E < C. Then
there exist a finite extension F'/F, and an algebraic Hecke character a of Ap:,
such that any geometric character w;,, : I'r sus, — E ;

e having good reduction outside S;

o having labeled Hodge—Tate weights corresponding to {m.} via some embed-
ding 1), : E < E,;and

e for which w) (fry) belongs to (E')* for a density-one set of places v of F’;

will upon restriction wy|r,, become isomorphic to the v, -adic realization of .

Proof. We may assume F is totally imaginary. Invoking the Hodge symmetry
hypothesis, we apply Lemma 3.1 to produce an algebraic Hecke character o of
F whose archimedean components are given in terms of the m, exactly as in
Lemma 3.1 (with £(it;) = m). Let T denote the finite set of ramified places of «,
and let Q(«) denote the field of coefficients of « (by definition the fixed field of
all automorphisms of C that preserve the nonarchimedean component of «; we
will regard Q(«) as a subfield of E via our fixed ts,). Thus the ¢;-adic realizations
ay :Trrus, — E AX have labeled Hodge—Tate weights matching those of w,. Since
() contains the values «; (fr,) forall v ¢ T US,, and wka;l: I'rsurus, = Ef
is finite-order (all of its Hodge—Tate weights are zero), we see that (wxocx_l)( fry)
belongs to the finite (independent of 1) set oo (E’Q(cx)) for a density-one set of v.
By Cebotarev, the character ;.05 'takes all of its values in Uoo(E'Q()). Aslong as
S, N(SUT) is empty, wyo, !is moreover unramified at S, (because it is crystalline
of finite order), so as in Corollary 3.12, there are (again by Hermite—Minkowski) a
finite number of such characters a)ka;l. We deduce the existence of a single number
field F’ over which w, |1 «~ = aulr,,, for any A and any w; as in the statement of
the lemma. O

We deduce a potential compatibility statement for the full abelianizations ﬁi‘b:

Corollary 3.14. For simplicity, assume that H*® is of multiplicative type. Let F,
S, and {u} be as in the statement of Theorem 1.3, except with F now allowed
to be any number field. Also fix a finite extension E' of E. Then there exist
a finite set of places P D S, a finite extension F'/F, and an algebraic Hecke
character B of the split group D over F' whose dual group over E is isomorphic
to (H®)° @ E (and we fix such an isomorphism), satisfying the following: if a
geometric p; : I'r sus, — H(E;)
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e has good reduction outside S;
o has Hodge—Tate cocharacters arising from {{.} via ;. : E < E,;

e and admits, for some faithful representation r of H*®, a density-one set of
places v of F such that the characteristic polynomial ch(r o ﬁi‘b)( fry) has
coefficients in E’;

then there is a geometric lift py : I'r py SA—>ﬁ (E ) having good reduction outside P,
such that the restriction ﬁib e pus, = H ab(F.Yis equal to the 1 -adic realization
B of B. .

In particular, let {p; : I'r sus, = H(E))}, be a ramification-compatible system,
and assume that for some faithful representation r of H*®®, some number field E’',
and for almost all A, there is a density-one set of places v of F such that the
characteristic polynomial ch(r o ﬁf}b)( fry) has coefficients in E'. Then there is
a ramification-compatible system p, : I'r pus, — H (E;) lifting p;., and a finite
extension F'/F such that

Ak, i Tr pus, — H™(E;)
forms a strongly compatible system.

Proof. The proof follows familiar lines. Since C is central, the abelianization H®
is simply H/ Hlder, so there is a natural map

f:H® > H/H| x H/im(H) = Z" x H®

under which ﬁ;‘b pushes forward to (£(p,), pi‘b). (We have chosen {0,}, as in
Theorem 1.3 and Corollary 3.12, of course.) First we claim that a conclusion
analogous to that of the corollary holds for the pair (£(0,), pi‘b), and certainly it
suffices to check this independently for the two components. The assertion for
£(p,) is Corollary 3.12, and for ,oi‘b it follows easily from Lemma 3.13 (first reduce,
by a finite base change, to the case where H? is connected, using the fact that
o(H®™) is of course finite and independent of ). Thus, letting D denote a split
torus whose dual group is identified with (H)°, there exists a finite extension
F1/F such that f (ﬁib)lr r.pus, 18 the 1y -adic realization of a Hecke character (which
does not depend on A or p;) of Z x D.

Now suppose that 8 is a Hecke character of D for which the 1 -adic realization
Br:Trrus, = (ﬁ a)0(E, ) has labeled Hodge-Tate cocharacters matching those

of ,5§b. Since b |
cab e
f(:O)L : IB)L )|T‘F1,Purus~A

is automorphic (independently of X, p;) of finite order, it is trivial after a finite base
change F,/ F;. Now observe that the kernel of f is finite, so (ﬁi‘b-ﬂfl)hpz,mwsh has
finite order, bounded only in terms of #ker( f), and is crystalline away from P UT;
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as before, we find a further finite extension F3/F;, such that (ﬁf{b By Y 5 =1
The conclusion of the corollary then holds with F' = Fj. U

Remark 3.15. < It does not suffice to ask for a fixed number field E such that
all ,oi‘b are valued in H®(E,). For instance, taking F = Q and § = {p},
and for all n choosing a prime ¢, = 1 (mod ¢(p")), we can define py, :
Ca,p — @2; as the composition of the mod p" cyclotomic character with an
inclusion (Z/p"Z)* <~ g,—1 = @Xn, and for all £ & {¢,},, we can take p, to
be the trivial character. Then {p, : 'y — @Z }, 18 an abelian, ramification-
compatible system that does not become a strongly compatible system after
any finite base change.

» Having only hypothesized ramification-compatibility for the {p, },, we cannot
hope for the stronger conclusion that the { ,5;‘[’} , form a strongly compatible
system over F itself.

General multiplicative-type quotients. In fact, the argument of Theorem 1.3 di-
rectly implies the main theorem of [Wintenberger 1995], as well as a generalization
to lifting through quotients where the kernel is central of multiplicative type. We
thus obtain an essentially different proof (and generalization) of Wintenberger’s
result. In this section, we briefly describe how this works.

Corollary 3.16 (Wintenberger). Let Hy — H be a central isogeny of linear alge-
braic groups over E, and let S be a finite set of places of F. Then there exist a
finite extension F’' | F and a finite set of places P D S of F such that any geometric
representation

pr :T'rsus, = H(E})

having

e good reduction outside S, and

e labeled Hodge—Tate cocharacters that lift to Hy,

lifts to a geometric representation p; : I' g pus, — Hi(E)), which moreover has
good reduction outside P.

Proof. We begin by replacing F by a finite extension Fy such that image of
PrIrg, is contained in the image of H,(E,) — H(E,). That such an extension,
depending only on H; — H, S, and F, exists follows as in [Wintenberger 1995,
2.3.2], and we do not repeat the argument. We note, though, that making this
construction in an independent-of-A fashion already uses liftability of the Hodge—
Tate cocharacters. (If we were not concerned with preserving E,-rationality of the
lift, then we could skip this step.) It is then possible to build an obstruction class
O(py) € HZ(FFO,SUSA, ker(H; — H)(E,)) via a topological lift p] to H,(E;).
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Embed ker(H, — H) ®f E into a torus C, and with the kernel embedded
antldlagonally, form the new group H=(H xC) / ker(H; — H). The sur]ectlon
H — H now has kernel equal to a central torus C, and as before we let Z" be the
(torus) quotient H /Hj. By hypothesis, we can lift the Hodge—Tate cocharacters
of p, to Hi; when pushed forward to 2V, these lifts are of course trivial. Thus,
in the notation of Lemma 3.1, we may take the trivial Hecke character ¢ = 1 of
Z (Af,). For topological lifts ¥} to C(E}) (as in Lemma 3.3) of the (trivial) A-adic
realizations v;, we may of course also take ¥; = 1. Theorem 1.3 then produces a
finite set of primes P D S and an integer M, both only depending on H; — H, S,
and F, and a geometric lift p, : ', pus, = H1(E,) - C[M] such that p, has good
reduction outside P. (The assertion that p, is valued in the subset H|(E}) - C[M]
of H (E;) follows from the explicit description of p,, since ,oi lands in H;(E),
and 5 is trivial.) For all A for which S, NP =@, £(p,) : Ty, pus, = iV[M] is
also unramified at S, and all such characters are trivialized by a common finite
extension F)/Fy. For the finite number of A such that S, N P is nonempty, we
can again trivialize the possible £(0;) by restricting to a common finite extension
F>/Fy. Taking F' = F\ F>, all /5/\|FF/, pUS, land in H|(E}), proving the corollary. [

Remark 3.17. For Wintenberger’s result, take £ = (). He also shows [1995, 2.3.6]
that there is a second finite extension F”/F’ (only depending on H; — H, F,
and S) such that any two lifts p; as in the corollary become equal after restriction
to I'pr. This refinement similarly follows in our setup, but there is no need to repeat
Wintenberger’s argument.

Here is the more general version with multiplicative-type kernels. Note that, as
with Theorem 1.3, but unlike Corollary 3.16, it makes use of a “Hodge symmetry”
hypothesis.

Corollary 3.18. Ler H' — H be a surjection of linear algebraic groups over E
whose kernel is central and of multiplicative type. Let F be a number field, and
let S be a finite set of places of F containing the archimedean places. Fix a set of
cocharacters {{i:},.p, g as in part (2) of Definition 1.1, and moreover, assume that
each . lifts to a cocharacter of H'.

Then there exist a finite set of places P D S, and a finite extension F'/F, such
that any geometric representation p; : T'r sus, — H(E)) having good reduction
outside S, and whose Hodge—Tate cocharacters arise from the set {|i.},.p_, § Via
some embedding E < E,, admits a geometric lift py : 'pr pus, = H’(Ek) having
good reduction outside P.

In particular, if {p, : T'r sus, = H(EA)}A is a ramification-compatible system
with Hodge cocharacter {ji+},.p, g, then there exist a finite set of places P O S,
a finite extension F'/F, and lifts p; : T pus, — H'(E,) such that {p;}; is a
ramification-compatible system.
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Proof. As in the proofs of Theorem 1.3 and Corollary 3.16, we construct an isogeny
complement H; C H to ker(H' — H), as well as an enlargement H>H surjecting
onto H with a central torus kernel. We then run the argument of Theorem 1.3,
starting from lifts {u)} to H' of the Hodge cocharacters: the Hecke character v (in
the notation of that proof) then constructed has A-adic realizations that push-forward
to finite-order characters v, : I'r 7us, — H /H' (E ), and from here it is easy to
proceed; we omit the details, since the argument will by now be familiar. U
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Remarks on the arithmetic
fundamental lemma

Chao Li and Yihang Zhu

W. Zhang’s arithmetic fundamental lemma (AFL) is a conjectural identity between
the derivative of an orbital integral on a symmetric space with an arithmetic
intersection number on a unitary Rapoport—Zink space. In the minuscule case,
Rapoport, Terstiege and Zhang have verified the AFL conjecture via explicit
evaluation of both sides of the identity. We present a simpler way for evaluating
the arithmetic intersection number, thereby providing a new proof of the AFL
conjecture in the minuscule case.

1. Introduction

1.1. Zhang’s arithmetic fundamental lemma. The arithmetic Gan—Gross—Prasad
conjectures (arithmetic GGP) generalize the celebrated Gross—Zagier formula to
higher-dimensional Shimura varieties [Gan et al. 2012, §27; Zhang 2012, §3.2]. The
arithmetic fundamental lemma (AFL) conjecture arises from Zhang’s relative trace
formula approach for establishing the arithmetic GGP for the group U (1, n —2) x
U(1,n —1). It relates a derivative of orbital integrals on symmetric spaces to an
arithmetic intersection number of cycles on unitary Rapoport—Zink spaces,

0'(y, 1s,@,) = =0 (¥ )(AWNu—1), (id x @) AN,—1)). (1.1.0.1)

For the precise definitions of quantities appearing in the identity, see [Rapoport
et al. 2013, Conjecture 1.2]. The left-hand side of (1.1.0.1) is known as the analytic
side and the right-hand side is known as the arithmetic-geometric side. The AFL
conjecture has been verified for n = 2, 3 [Zhang 2012], and for general » in the
minuscule case (in the sense that g satisfies a certain minuscule condition) by
Rapoport, Terstiege and Zhang [2013]. In all these cases, the identity (1.1.0.1) is
proved via explicit evaluation of both sides. When g satisfies a certain inductive
condition, Mihatsch [2016] has recently developed a recursive algorithm which

MSC2010: primary 11G18; secondary 14G17, 22ESS.
Keywords: arithmetic Gan—Gross—Prasad conjectures, arithmetic fundamental lemmas,
Rapoport—Zink spaces, special cycles.
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reduces the identity (1.1.0.1) to smaller 7, thus establishing some new cases of the
AFL conjecture.

In the minuscule case, the evaluation of the analytic side is relatively straightfor-
ward. The bulk of [Rapoport et al. 2013] is devoted to a highly nontrivial evaluation
of the arithmetic-geometric side, which is truly a tour de force. Our main goal
in this short note is to present a new (and arguably simpler) way to evaluate the
arithmetic-geometric side in [Rapoport et al. 2013], henceforth abbreviated [RTZ].

1.2. The main results. Let p be an odd prime. Let F =Q,, k = Fp, W = Wi(k)
and K = W[1/p]. Let o be the p-Frobenius acting on Fp, Wand K. Let E=Q),»
be the unramified quadratic extension of F. The unitary Rapoport—Zink space N,
is the formal scheme over Spf W parametrizing deformations up to quasi-isogeny
of height O of unitary p-divisible groups of signature (1, n—1) (definitions recalled
in Section 2.1). Fix n > 2 and write N’ = N,, and M = N,,_; for short. There is a
natural closed immersion § : M — N. Denote by A C M x w N the image of (id, §) :
M — M xw N, known as the (local) diagonal cycle or GGP cycle on M xw N

Let C,_; be a nonsplit o-Hermitian E-space of dimension n — 1. Let C,, =
C,—1 @ Eu (where the direct sum is orthogonal and u# has norm 1) be a nonsplit
o-Hermitian E-space of dimension n. The unitary group J = U(C,) acts on A/ in
a natural way (see Section 2.2). Let g € J(Q,). The arithmetic-geometric side of
the AFL conjecture (1.1.0.1) concerns the arithmetic intersection number of the
diagonal cycle A and its translate by id x g, defined as

(A, (id xg)A) :=log p- x(M xw N, Or @ Ofidxg)a)-
When A and (id x g) A intersect properly, namely when the formal scheme
ANGId xg)A=ZS(M)NNE (1.2.0.1)

is an Artinian scheme (where A8 denotes the fixed points of g), the intersection
number is simply log p times the W-length of the Artinian scheme (1.2.0.1).
Recall that g € J(Q)) is called regular semisimple if

L&) = Op a4 O -gut—-+05 '~

is an Og-lattice in C,. In this case, the invariant of g is the unique sequence of
integers
inv(g) =1 >rn>-->ry)

characterized by the condition that there exists a basis {e;} of the lattice L(g) such
that { p~"7e;} is a basis of the dual lattice L(g)". It turns out that the “bigger” inv(g)
is, the more difficult it is to compute the intersection. With this in mind, recall that a
regular semisimple element g is called minuscule if r; =1 and r, > 0 (equivalently,
pL(g)Y € L(g) € L(g)Y). In this minuscule case, the intersection turns out to be
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proper, and one of the main results of [RTZ] is an explicit formula for the W-length
of (1.2.0.1) at each of its k-point.

To state the formula, assume g is regular semisimple and minuscule, and suppose
N¢ is nonempty. Then g stabilizes both L(g)" and L(g) and thus acts on the
[ ,2-vector space L(g)V/L(g). Let P(T) € F,2[T] be the characteristic polynomial
of g acting on L(g)"/L(g). For any irreducible polynomial R(T) € F,2[T], we
denote its multiplicity in P(T") by m(R(T)) and define its reciprocal by

R*(T) := TR . 5(R(F)).

We say R(T) is self-reciprocal if R(T) = R*(T). By [RTZ, 8.1], if (§(M)NN3) (k)
is nonempty, then P(T) has a unique self-reciprocal monic irreducible factor
Q(T) | P(T) such that m(Q(T)) is odd. We denote

1
c:= E(m(Q(T)) +1).

Then 1 <c¢ < %(n + 1). Now we are ready to state the intersection length formula.

Theorem A [RTZ, Theorem 9.5]. Assume g is regular semisimple and minuscule.
Assume p > c. Then for any x € (§(M) N N¥8)(k), the complete local ring of
3(M)N NS at x is isomorphic to k[ X1/ X¢, and hence has W-length equal to c.

We will present a simpler proof of Theorem A in Theorem 4.3.5. Along the way,
we will also give a simpler proof of the following Theorem B in Corollary 3.2.3,
which concerns minuscule special cycles (recalled in Section 2.10) on unitary
Rapoport-Zink spaces and may be of independent interest.

Theorem B [RTZ, Theorems 9.4 and 10.1]. Let v = (vy, ..., v,) be an n-tuple
of vectors in Cy. Assume it is minuscule in the sense that L(v) := spangy, v is
an Og-lattice in C, satisfying pL(v)Y C L(v) € L(v)". Let Z(v) C N be the
associated special cycle. Then Z(v) is a reduced k-scheme.

1.3. Novelty of the proof. The original proofs of Theorems A and B form the
technical heart of [RTZ] and occupy its two sections §10-§11. As explained below,
our new proofs presented here have the merit of being much shorter and more
conceptual.

1.3.1. Theorem A. The original proof of Theorem A uses Zink’s theory of windows
to compute the local equations of (1.2.0.1). It requires explicitly writing down
the window of the universal deformation of p-divisible groups and solving quite
involved linear algebra problems. Theorem B ensures that the intersection is entirely
concentrated in the special fiber so that each local ring has the form k[X]/X*. The
assumption p > c ensures £ < p so that the ideal of local equations is admissible
(see the last paragraph of [RTZ, p. 1661]), which is crucial in order to construct the
frames for the relevant windows needed in Zink’s theory.
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Our new proof of Theorem A does not use Zink’s theory and involves little
explicit computation. Our key observation is that Theorem B indeed allows us
to identify the intersection (1.2.0.1) as the fixed point scheme V(A)é of a finite
order automorphism g on a generalized Deligne—Lusztig variety V(A) (Section 4.1),
which becomes purely an algebraic geometry problem over the residue field k.
When p > c, it further simplifies to a more elementary problem of determining the
fixed point scheme of a finite order automorphism g € GL,;4 (k) on a projective
space P over k (Section 4.2). This elementary problem has an answer in terms
of the sizes of the Jordan blocks of g (Lemma 4.3.4), which explains conceptually
why the intersection multiplicity should be equal to c¢. Notice that our method
completely avoids computation within Zink’s theory, and it would be interesting to
explore the possibility of removing the assumption p > ¢ using this method.

1.3.2. Theorem B. The original proof of Theorem B relies on showing two things
(by [RTZ, Lemma 10.2]): (1) the minuscule special cycle Z(v) has no W/ p*-
points and (2) its special fiber Z(v); is regular. Step (1) is relatively easy using
Grothendieck—Messing theory. Step (2) is more difficult: for super-general points
x on Z(v)y, the regularity is shown by explicitly computing the local equation of
Z(v)y at x using Zink’s theory; for points which are not super-general, the regularity
is shown using induction and reduces to the regularity of certain special divisors,
whose local equations can again be explicitly computed using Zink’s theory.

Our new proof of Theorem B does not use Zink’s theory either and involves
little explicit computation. Our key observation is that to show both (1) and (2)
it suffices to consider the thickenings O of k which are objects of the crystalline
site of k. These O-points of Z(v) then can be understood using only Grothendieck—
Messing theory (Theorem 3.1.3). We prove a slight generalization of (1) which
applies to possibly nonminuscule special cycles (Corollary 3.2.1). We then prove
the tangent space of the minuscule special cycle Z(v); has the expected dimension
(Corollary 3.2.2). The desired regularity (2) follows immediately.

1.3.3. Our new proofs are largely inspired by our previous work on arithmetic
intersections on GSpin Rapoport-Zink spaces [Li and Zhu 2017]. The GSpin
Rapoport—Zink spaces considered there are not of PEL type, which makes them
technically more complicated. So the unitary case treated here can serve as a
guide to [Li and Zhu 2017]. We have tried to indicate similarities between certain
statements and proofs, for both clarity and the convenience of the readers.

1.4. Structure of the paper. In Section 2, we recall necessary backgrounds on
unitary Rapoport—Zink spaces and the formulation of the arithmetic intersection
problem. In Section 3, we study the local structure of the minuscule special cycles
and prove Theorem B. In Section 4, we provide an alternative moduli interpretation
of the generalized Deligne—Lusztig variety V(A) and prove Theorem A.
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2. Unitary Rapoport-Zink spaces

In this section we review the structure of unitary Rapoport—Zink spaces. We refer
to [Vollaard 2010; Vollaard and Wedhorn 2011; Kudla and Rapoport 2011] for the
proofs of these facts.

2.1. Unitary Rapoport-Zink spaces. Let p be an odd prime. Let F =Q,,, k = Fp,
W = W(k) and K = W[1/p]. Let o be the p-Frobenius acting on Fp, and we also
denote by o the canonical lift of the p-Frobenius to W and K. For any [,-algebra
R, we also denote by o the Frobenius x — x” on R.

Let E = Q> be the unramified quadratic extension of F. Fix a Q,-algebra
embedding ¢g : O < W and denote by ¢ the embedding o o ¢g : O <— W. The
embedding ¢ induces an embedding between the residue fields F,» < k, which
we shall think of as the natural embedding. For any Og-module A we shall write
Aw for A ®(95,¢0 Ww.

Let r and s be positive integers and let n = r +s. We denote by N, ; the unitary
Rapoport—Zink spaces of signature (r, s), a formally smooth formal W-scheme,
parametrizing deformations up to quasi-isogeny of height O of unitary p-divisible
groups of signature (r, s). More precisely, for a W-scheme S, a unitary p-divisible
groups of signature (r, s) over S is a triple (X, ¢, 1), where

(1) X is a p-divisible group of dimension n and height 2n over S,

(2) ¢: Og — End(X) is an action satisfying the signature (r, s) condition, i.e., for
o € Og,

char(¢(a) : Lie X)(T) = (T — ¢o(e)) (T — ¢1(0))* € Os[T],

(3) A: X — X is aprincipal polarization such that the associated Rosati involution
induces a — o () on Of via (.

Over k, there is a unique such triple (X, ¢, A) such that X is supersingular, up to
Og-linear isogeny preserving the polarization up to scalars. Fix such a framing
triple and denote it by (X, tx, Ax).

Let Nilpy, be the category of W-schemes on which p is locally nilpotent. Then
the unitary Rapoport-Zink space N, 5 represents the functor Nilpy, — Sets which
sends S € Nilpy, to the set of isomorphism classes of quadruples (X, ¢, A, p), where
(X, t, A) is a unitary p-divisible group over S of signature (r, s) and p : X x5S —
X x Sk 1s an Og-linear quasi-isogeny of height zero which respects A and Ax up
to a scalar c(p) € O = Z} (ie., p¥okxop=c(p)-A).

In the following we denote N := N} ,—1, M : =N 2 and N :=Np | =Spf W.
They have relative dimension n — 1, n and O over Spf W respectively. We denote
by Y = (Y, ty, Ay) the framing object for N and denote by ¥ = (Y, Ly, Ay) the
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universal p-divisible group over Nj. We may and shall choose framing objects
X = (X, tx, Ax) and X° = (X, 150, Aye») for A" and M respectively such that

X=X xY
as unitary p-divisible groups.

2.2. The group J. The covariant Dieudonné module M = D(X) of the framing
unitary p-divisible group is a free W-module of rank 2n together with an Og-action
(induced by ¢) and a perfect symplectic W-bilinear form (-,-) : M x M — W
(induced by A), see [Vollaard and Wedhorn 2011, §2.3]. Let N = M ®w K be the
associated isocrystal and extend (-, -) to N bilinearly. Let ¥ and V be the usual
operators on N. We have

(Fx, Fy)=po({x,y)), Vx,yeN. (2.2.0.1)

The E-action decomposes N into a direct sum of two K -vector spaces of dimen-
sion n,
N = No® Ny, (2.2.0.2)

where the action of £ on N; is induced by the embedding ¢;. Both Ny and N; are
totally isotropic under the symplectic form. The operator F' is of degree one and
induces a o-linear bijection Ny = Nj. Since the isocrystal N is supersingular, the
degree 0 and o 2-linear operator

o=V F=plF?

has all slopes zero [Kudla and Rapoport 2011, §2.1]. We have a K -vector space Ny
together with a o-2-linear automorphism ®.! The space of fixed points

C =Ny
is an E-vector space of dimension n and No = C ®g 4, K. Fix § € OE such that
0 (8) = —4. Define a nondegenerate o-sesquilinear form on Ny by
{x,y} = (p8)~'(x, Fy). (2.2.0.3)

Using (2.2.0.1) it is easy to see that
o({x,yh) ={®y,x}, Vx,yeN. (2.2.0.4)
In particular, when restricted to C, the form { -, - } is o-Hermitian, namely

o({x,yD=1{y.x}, Vx,yeC. (2.2.0.5)

ISuch a pair (Ng, @) is sometimes called a relative isocrystal.
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In fact, (C, {-, -}) is the unique (up to isomorphism) nondegenerate nonsplit o -
Hermitian E-space of dimension n. Let J/ =U(C) be the unitary group of (C, { -, - }).
It is an algebraic group over F = Q. By Dieudonné theory, the group J(Q,) can
be identified with the automorphism group of the framing unitary p-divisible group
(X, tx, Ax) and hence acts on the Rapoport—Zink space N .

2.3. Special homomorphisms. By definition, the space of special homomorphisms
is the Og-module Homp, (Y, X). There is a natural Og-valued o -Hermitian form
on Homp,, Y, X) given by

(x,y) —~ x; oyoixox €Endp, (Y) = Of.

By [Kudla and Rapoport 2011, Lemma 3.9], there is an isomorphism of o -Hermitian
E-spaces
Homp, (Y, X) ®0, E => C. (2.3.0.1)

Therefore we may view elements of C as special quasi-homomorphisms.

2.4. Vertex lattices. For any Og-lattice A C C, we define the dual lattice A :=
{x € C:{x, A} € Op}. It follows from the o-Hermitian property (2.2.0.5) that we
have (AY)Y = A.

A vertex lattice is an Og-lattice A C C such that pA € AY C A. Such lattices
correspond to the vertices of the Bruhat—Tits building of the unitary group U(C).
Fix a vertex lattice A. The fype of A is defined to be 5 := dim[pp2 A/AY, which is
always an odd integer such that 1 <1, <n (see [Vollaard 2010, Remark 2.3]).

We define Q¢(A) := A/A" and equip it with the perfect o-Hermitian form

(+,+) 1 Qo(A) X Q0(A) = Fp2,  (x,y):= p{x, y} mod p,

where { -, - } is the Hermitian form on C defined in (2.2.0.3), and X, ¥ € A are lifts
of x and y.
We define

Q(A) = Q0(A) @, k.

Remark 2.4.1. Our Qy(A) is the space V in [Vollaard 2010, (2.11)], and our
pairing (-, -) differs from the pairing (-, - ) defined in [loc. cit.] by a factor of the
reduction § € [F;2 of 8.

2.5. The variety V(A). Let A be a vertex lattice and let Q¢ = ¢(A). Recall from
Section 2.4 that €2 is an [2-vector space whose dimension is equal to the type
t =tp of A, an odd number. Let d := (t — 1) /2. We define V(£2) to be the closed
[,2-subscheme of the Grassmannian Grg1(£20) (viewed as a scheme over [F,2) such
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that for any [sz—algebra R,

V(L20)(R) = { R-module local direct summands U C ®[sz R:
rankU =d+1and Ut CU}. (2.5.0.1)

Here U™ is by definition {v € Qo ® R : (v,u)g = 0,Vu € U}, where (-, )g is
the R-sesquilinear form on €29 ® R obtained from (-, -) by extension of scalars
(linearly in the first variable and o -linearly in the second variable). Then V(£2p) is a
smooth projective [,2-scheme of dimension d by [Vollaard 2010, Proposition 2.13]
and Remark 2.4.1. In fact, V(€2) can be identified as a (generalized) Deligne—
Lusztig variety, by [Vollaard and Wedhorn 2011, §4.5] (though we will not use this
identification in the following).
We write V(A) for the base change of V(£2¢) from [ to k.

2.6. Structure of the reduced scheme N’ red  FEor each vertex lattice A C C, we
define Ny € N to be the locus where ,0;1 o AY C Hom(Y, X), i.e., where the
quasi-homomorphisms p~! o v lift to actual homomorphisms for any v € A". Then
N, is a closed formal subscheme by [Rapoport and Zink 1996, Proposition 2.9].
By [Vollaard and Wedhorn 2011, §4] we have an isomorphism of k-varieties

N =5 YA, (2.6.0.1)

2.7. Some invariants associated to a k-point of N'. We follow [Kudla and Rapo-
port 2011, §2.1].

Let x be a point in NV'(k). Then x represents a tuple (X, ¢, A, p) over k as recalled
in Section 2.1. Via p, we view the Dieudonné module of X as a W-lattice M, in N,
which is stable under the operators F' and V. The endomorphism structure ¢ induces
an action of Of ®z, W =W @ W on M,, which is equivalent to the structure of a
Z/27-grading on M, (into W-modules). We denote this grading by

M, =gro M, ®gr; M,.
This grading is compatible with (2.2.0.2) in the sense that
gr, My =M,NN;, i=0,1.

Moreover both gry M, and gr; M, are free W-modules of rank n.

Consider the k-vector space My ; := My ®@w k. It has an induced Z/27-grading,
as well as a canonical filtration Fill(Mx,k) C M, . Explicitly, Fill(Mx,k) is the
image of V (M,) € M, under the reduction map M, — M ;. Define

Fil' (gr; M, ;) :=Fil' (M, ;) Ngr; M, ;.

Then
Fil' (M, ;) = Fil' (gry M, ) ® Fil' (gr; M, 1),
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and by the signature (1, n—1) condition we know that Fil' (gry M, ) is a hyperplane
and Fill(gr1 M, ) is a line in gry M, i and gr{ M, i, respectively.

The symplectic form (-, -) on N takes values in W on M,, and hence induces a
symplectic form on M, ; by reduction. The latter restricts to a k-bilinear nondegen-
erate pairing

gro My i x gry My — k.

Under the above pairing, the spaces Fil! (gro My ;) and Fil! (gr; My ) are annihila-
tors of each other. Equivalently, Fil' (M, ;) is a totally isotropic subspace of M k.

2.8. Description of k-points by special lattices. For a W-lattice A in Ny, we define
its dual lattice to be AY :={x € Ny : {x, A} € W}. If A is an Og-lattice in C, then
we have (Aw)" = (A")w. In the following we denote both of them by A};,.

Definition 2.8.1. A special lattice is a W-lattice A in Ny such that
AV g A g pflA\/
and such that A/A" is a one-dimensional k-vector space.

Remark 2.8.2. The apparent difference between the above definition and the con-
dition in [Vollaard 2010, Proposition 1.10] (for i = 0) is caused by the fact that we
have normalized the pairing { -, - } on Ny differently from [loc. cit.], using an extra
factor (p8)~! (see (2.2.0.3)). Our normalization is the same as that in [RTZ].

Recall the following result.

Proposition 2.8.3 [Vollaard 2010, Proposition 1.10]. There is a bijection from N (k)
to the set of special lattices, sending a point x to gro M, considered in Section 2.7.

O

Remark 2.8.4. Let x € N'(k) and let A be the special lattice associated to it by
Proposition 2.8.3. Let A be a vertex lattice. Then x € M (k) if and only if A C Ay,
if and only if A}, € AY. (See also Remark 3.1.5 below.)

2.9. Filtrations. We introduce the following notation:

Definition 2.9.1. Let A be a special lattice. Write Ay := A Qw k. Let x € NV (k)
correspond to A under Proposition 2.8.3. Thus Ay = gry M, . Define Fill(Ak) =
Fill(gro M, 1) (see Section 2.7). It is a hyperplane in Ay.

Lemma 2.9.2. Let A be a special lattice. Then ®~'(AV) is contained inside A,
and its image in Ay is equal to Fil' (Ap).

Proof. Let A correspond to x € N (k) under Proposition 2.8.3. Then F and V both
preserve the W-lattice M, in N (see Section 2.7). By definition, Fil'(M «.k) 1s the
image of V(M) € M, under the reduction map M, — M, x. Since the operator V
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is of degree 1 with respect to the Z/2Z-grading, we see that Fil' (A) is the image
of V(gr; M;) € A under A — Ay. It suffices to prove that

d~1(AY) = V(gr, M,). (2.9.2.1)

By the proof of [Vollaard 2010, Proposition 1.10], we have gr; M, = F~'AV.
(Note that because of the difference of normalizations as discussed in Remark 2.8.2,
what is denoted by A" here is denoted by pA"Y in [loc. cit.]. Also note that the
integer i appearing [loc. cit.] is 0 in our case.) Therefore V (gr, M) = V(F~1AY).
But VF~! = (V-!F)~! = & ! because VF = FV = p. Thus (2.9.2.1) holds as
desired. ([

2.10. Special cycles. Let v be an arbitrary subset of C. We define the special
cycle Z(v) € N to be the locus where p~' o v € Hom(Y, X) for all v € v, i.e.,
all the quasi-homomorphisms p~! o v lift to actual homomorphisms. Note that
Z(v) only depends on the Og-submodule L (v) spanned by v in C, and we have
Z(v) = Z(L(v)).

We say v is minuscule if L(v) is an Og-lattice in C satisfying pL(v)Y C L(v) C
L(v)Y, or equivalently, if L(v) is the dual of a vertex lattice. When this is the case
we have Z(v) = N (v by definition.

2.11. The intersection problem. Let C’ be the analogue for M of the Hermitian
space C. Then C = C” @ Eu for some vector denoted by u which is of norm 1 and
orthogonal to C”. We have a closed immersion

S5 M— N,

sending (X, (, A, p) to (X XY, 1 x ly, A X Ay, p xid). We have §(M) = Z(u). The
closed immersion § induces a closed immersion of formal schemes

id, 8) : M —> M xwN.

Denote by A the image of (id, §), which we call the (local) GGP cycle. For any
g € J(Q,), we obtain a formal subscheme

(dxg)A S M xwyN,

via the action of g on V. Let g € J(Q),) and let V¥ C A\ be the fixed locus of g.
Then by definition we have

ANGd xg)A=S(M)NNE,
Our goal is to compute the arithmetic intersection number

(A, (id xg)A),
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when g is regular semisimple and minuscule (as defined in the introduction). Notice
that g € J(Q,) is regular semisimple if and only if v(g) := (u, gu, ..., g" lu)is
an E-basis of C. Also notice that a regular semisimple element g is minuscule if
and only if v(g) is minuscule in the sense of Section 2.10.

3. Reducedness of minuscule special cycles

3.1. Local structure of special cycles.
Definition 3.1.1. Let %6 be the following category:

» Objects in € are triples (O, O — k, §), where O is a local Artinian W-algebra,
O — k is a W-algebra map, and § is a nilpotent divided power structure on
ker(O — k) (see [Berthelot and Ogus 1978, Definitions 3.1, 3.27]).

e Morphisms in € are W-algebra maps that are compatible with the structure
maps to k and the divided power structures.

3.1.2. Let x € N'(k) correspond to a special lattice A under Proposition 2.8.3. Let
O € €. By a hyperplane in Ap := A @w O we mean a free direct summand of
Ao of rank n — 1. We define the Z/27-grading on M, o := M, Q@w O by linearly
extending that on M, (see Section 2.7). Denote by ]\7x the completion of N at x.
For any x € N, (0), we have a unitary p-divisible group of signature (1, n—1) over
O deforming that over k defined by x. By Grothendieck—Messing theory, we obtain
the Hodge filtration Fil}E M, o € M, ». Define fo(X) to be the intersection

Fﬂ)lz Mx,(? negry Mx,O

inside M, o. By the signature (1, n—1) condition, fo(X) is a hyperplane in Ap. It
also lifts Fil' A (see Definition 2.9.1) by construction. Thus we have defined a
map

fo : Nie(0) => {hyperplanes in Ap lifting Fil' Az} (3.1.2.1)

By construction, f is functorial in O in the sense that the collection ( fo)peg is @
natural transformation between two set-valued functors on €. Here we are viewing
the right hand side of (3.1.2.1) as a functor in O using the base change maps.
The following result is the analogue of [Li and Zhu 2017, Theorem 4.1.7]. As
a direct consequence of the PEL moduli problem, it should be well known to the
experts and is essentially proved in [Kudla and Rapoport 2011, Proposition 3.5].

Theorem 3.1.3. Keep the notations in Section 3.1.2:

(1) The natural transformation ( fo)pee is an isomorphism.
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(2) Let v be a subset of C. If x € Z(v)(k), then v C A. Suppose x € Z(v)(k). Then
for any O € € the map fo induces a bijection

Z(0).(0) =
{hyperplanes in Ao lifting Fil' Ay and containing the image of v in Ap)}.

Proof. (1) We need to check that for all O € € the map fp is a bijection. Let
% € Ni(0). This represents a deformation over O of the p-divisible group at x.
Similarly to the situation in Section 2.7, the compatibility with the endomorphism
structure implies that

1
Fil} My 0 = @D Fill M, o Ngr; My 0.
i=0

By the compatibility with the polarization, we know that Fil)lE M, o is totally
isotropic under the symplectic form on M, . It follows that the two modules
Fil)lz M, o Ngry M, o and Fil)lE M, o Ngry M, o are annihilators of each other if
we identify gr; M, o as the O-linear dual of gry M, o using the symplectic form
on M, o. Therefore, Fil}c M, o can be recovered from fo(x). This together with
Grothendieck—Messing theory proves the injectivity of fo. The surjectivity of fo
also follows from Grothendieck—Messing theory and the above way of reconstructing
Fil)lz M, o from its intersection with gry My ». Note that the unitary p-divisible
groups reconstructed in this way do satisfy the signature condition because we have
started with hyperplanes in Ao.

(2) The statements follow from the proof of [Kudla and Rapoport 2011, Proposi-
tion 3.5] and the definition of (2.3.0.1) in [Kudla and Rapoport 2011, Lemma 3.9].
We briefly recall the arguments here. If ¢ € Homp, Y, X) ®o, E is a special
quasi-homomorphism, the element v € C corresponding to ¢ under (2.3.0.1) is by
definition the projection to Ny of qb*(io) € N, where ¢, is the map DY) ®w K —
D(X) ®w K = N induced by ¢, and 1 is a certain fixed element in D(Y). In fact,
1o is chosen such that

o Wlg = gryD(Y), where the grading is with respect to the Og-action on Y,
o« Wiy = Fil% D(Y), the Hodge filtration for the deformation Y of Y over W.

In particular v and ¢ are related by the formula v = ¢, (1), as the projection to Ny
is not needed.

From now on we assume without loss of generality that v = {v}, with v corre-
sponding to ¢ as in the above paragraph. If x € Z(v)(k), then ¢, has to map D(Y)
into M,, so v € M,. Since ¢, is compatible with the Z/27-gradings, we further
have v € A. We have shown that if x € Z(v)(k), then v € A.
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Now suppose x € Z(v)(k). Let O € €. Write vp :=v® 1 € Ap C M, ». For
all ¥ € N (0), by Grothendieck—Messing theory we know that X € Z/(Z)x((’)) if
and only if the base change of ¢, to O (still denoted by ¢,) preserves the Hodge
filtrations, i.e.,

¢.(Fil;, D(Y)) S Fily M, o.

Since W1y = Fil%, [D(\_/), this last condition is equivalent to vp € Fil; M, o. Again,
because ¢, is compatible with the Z/27-gradings, the last condition is equivalent
to vo € fo(x). In conclusion, we have shown that X € N, (0) is in Z/(Z)x((’)) if
and only if vp € fo(X), as desired. O

Corollary 3.1.4. Let x € N (k) correspond to the special lattice A. Let v be a subset
of C. Then x € Z(v)(k) if and only if v C A.

Proof. By part (2) of Theorem 3.1.3 applied to O =k, we see that x € Z(v) (k) if
and only if ¥ C A and the image of v in Ay is contained in Fil' (A). The corollary
follows from Lemma 2.9.2 and the ®-invariance of v. [l

Remark 3.1.5. Note that Remark 2.8.4 is a special case of Corollary 3.1.4.

3.2. Proof of the reducedness.

Corollary 3.2.1. Let A be an Og-lattice in C with p' A € AV C A for some i € 7~,.
Then the special cycle Z(AY) defined by AV has no (W/p'*1)-points. In particular,
taking i = 1 we see that Na(W/ p*) = @ for any vertex lattice A.

Proof. Let O = W/p'*!, equipped with the reduction map W/p'*! — k and the
natural divided power structure on the kernel pO. Then O € €. Assume Z(AY)
has an O-point X reducing to a k-point x. Let A be the special lattice corresponding
to x (see Section 2.8). By Theorem 3.1.3, there exists a hyperplane P in Ap lifting
Fill(Ak), such that P 2 AY ®p, O. Since P is a hyperplane in Ao, there exists an
element / € Homp(Ap, O) such that

[(P)=0 and [(Ap)=0. (3.2.1.1)

We may find an element [ € AY C Nj to represent [, in the sense that for all
a®1e Ap witha € A, we have

l(a ® 1) = the image of {a, I} under W — O.

Since [(AY ® ©) CI(P) =0, we know that {v, [} € p'T'W for all v € A". Since
AY € C = NQ, applying (2.2.0.4) we see that {{,v} € p""!W for all v € AV.
Therefore

p~ e (M) = Aw,
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and thus [ € p’t!' Ay, which is contained in pAy, by hypothesis. Since A is
®-invariant, we also have ®(I) € pAy,. But A}, € AY by Corollary 3.1.4, so
®(l) € pAY. It follows that for all a € A, we have {®(l), a} € pW, and therefore
=~ (22.04)

{a, [}

contradicting the second condition in (3.2.1.1). O

o '({@), a}) € pW,

Corollary 3.2.2. Let A be a vertex lattice of type t and let x € N'o (k). Then the
tangent space TN i to Na i at x, where N  is the special fiber (i.e., base change
to k) of N, is of k-dimension (t—1) /2.
Proof. This can be deduced from Theorem 3.1.3 elementarily, in the same way as in
[Li and Zhu 2017, §4.2]. Here we provide a shorter proof. Firstly we make an easy
observation. Denote by € the full subcategory of € consisting of characteristic p ob-
jects. Let Wi and W, be two formal schemes over k. For i =1, 2 fix y; € W; (k) and
define the set-valued functor F; on 6 sending O to the set of O-points of WW; which
induce y; under the structure map O — k. Assume F; = F,. Then the tangent spaces
Ty, Wi are isomorphic. In fact, this observation is a direct consequence of the defini-
tion of the vector space structure on the tangent spaces from the point of view of func-
tor of points, as recalled in the proof of [Li and Zhu 2017, Lemma 4.2.6] for instance.
Denote by B the k-subspace of Ay spanned by the image of A in Aj. Consider
the Grassmannian Gr,_;(Ay) parametrizing hyperplanes in the n-dimensional k-
vector space Ay. Let W be the subvariety of Gr,,_; (Ay) defined by the condition that
the hyperplane should contain B, and let y; € W (k) corresponding to Fil! (Ap) C Ay
Let W, := N x and y, :=x. By Theorem 3.1.3, the assumption on (W}, y;), i =1, 2
in the previous paragraph is satisfied. Hence it suffices to compute the dimension of
Ty, Wi. Note that W, is itself a Grassmannian, parametrizing hyperplanes in A /B.
The proof is finished once we know that Ay /B has k-dimension (¢ + 1)/2. But this
is true by the (o-linear) duality between the k-vector spaces A;/B = A/Aj, and
Aw/AY under the o-sesquilinear form on € (A) obtained by extension of scalars
from the o-Hermitian form (-, -) on Qy(A) (see Section 2.4) and the fact that
A/AY is a 1-dimensional k-vector space (see Definition 2.8.1). O

In the following corollary we reprove [RTZ, Theorems 9.4 and 10.1].

Corollary 3.2.3. Let A be a vertex lattice. Then Ny = Npj = /\f/r\ed and it is
regular.

Proof. Let t be the type of A. Recall from Section 2.6 that N[rfd is a smooth
k-scheme of dimension (¢ — 1)/2. By Corollary 3.2.2, all the tangent spaces of
Na.x have k-dimension (f — 1)/2, and so Ny x is regular. In particular Ny j is
reduced, namely N x = ./\//r\ed. Knowing that Ny ; is regular, and that A/, has no
(W/ p?)-points (Corollary 3.2.1), it follows that A’y = Aa by the general criterion
[RTZ, Lemma 10.3]. (]
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4. The intersection length formula

4.1. The arithmetic intersection as a fixed point scheme. Fix aregular semisimple
and minuscule element g € J(Q,). Let L := L(v(g)) and A := L. They are both
Og-lattices in C. Recall from the end of Section 2.10 that A is a vertex lattice and
Z(L) = Nn. From now on we assume N8 (k) # &. As shown in [RTZ, §5], this
assumption implies that both L and A are g-cyclic and stable under g. In particular,
the natural action of g on A stabilizes Ny .

Let ¢ = Qo(A) and Q@ = Q(A). Lett =1 and d = (t — 1)/2 as in Section 2.5.
Let g € GL(£20)(F,2) be the induced action of g on €2. Then g preserves the
Hermitian form (-, -) on €2¢ and hence acts on V(A). It is clear from the definition
of the isomorphism (2.6.0.1) given in [Vollaard and Wedhorn 2011, §4] that it is
equivariant for the actions of g and g on the two sides.

Remark 4.1.1. Since A and A" are g-cyclic, the linear operator g € GL(QO)([sz)
has equal minimal polynomial and characteristic polynomial. Equivalently, in the
Jordan normal form of g (over k) there is a unique Jordan block associated to any
eigenvalue.

Proposition 4.1.2. §(M) NN?¥ is a scheme of characteristic p (i.e., a k-scheme)
isomorphic to V(A)8.

Proof. Recall from Section 2.11 that §(M) = Z(u). Since the Og-module L
is generated by u, gu, --- , " 'u and stable under g, we have §(M) N N8 =
Z(L)8 = NI{. By Corollary 3.2.3, we know that \/§ = (N/rfd)g. But the latter is
isomorphic to the characteristic p scheme V(A)é under (2.6.0.1). ([

4.2. Study of V(A)#. We start with an alternative moduli interpretation of V().
The idea is to rewrite (in Lemma 4.2.2) the procedure of taking the complement
U +— U~ with respect to the Hermitian form, in terms of taking the complement
with respect to some quadratic form and taking a Frobenius. The alternative moduli
interpretation is given in Corollary 4.2.3 below.

Let ® be a r-dimensional nondegenerate quadratic space over [,. Let [-,-]:
©p x ®9 — [, be the associated bilinear form. Since there is a unique isomorphism
class of nondegenerate o-Hermitian spaces over [,2, we may assume that Qo =
O F ) F,> and that the o-Hermitian form (-, -) (see Section 2.5) is obtained
by extension of scalars (linearly in the first variable and o-linearly in the second
variable) from [ -, - ].

Definition 4.2.1. Let R be an [,-algebra. We define [ -, - | to be the R-bilinear
form on O Qr, R obtained from [ -, - ] by extension of scalars. For any R-submodule
L C O ®[F,, R, define

£ .=y e 0 ®F, R:[v,[]r =0,V € L}.



2440 Chao Li and Yihang Zhu

Define 0, (L) to be the R-module generated by the image of £ under the map
0:00®F, R—> BOo®, R, v®r—>verr.

Let R be an [sz—algebra. Let U be an R-submodule of 2 ®[sz R. Since
Qo ®[sz R = 0Oy ®r, R, we may view U as an R-submodule of the latter and define
04 (U) as in Definition 4.2.1.

Lemma 4.2.2. We have U+ = (0, (U))!"+.
Proof. Consider two arbitrary elements
X =Zu.,-®rj and y =ka®sk
j k
of ® ®r, R. We have
(v, x)r = Zskl’f vk, ujlr = Zskr]’.’ [uj, vilg = [o(x), ylr.

J.k ik
Hence for y € ® ®r, R, we have y € U+t if and only if (y,x)g =0forall x e U,
if and only if [0 (x), y]g = O for all x € U, if and only if y € (0, (U))!i"t. O

Corollary 4.2.3. For any [F,2-algebra R, the set V(S2)(R) is equal to the set of
R-submodules U of

$20 ®F, R = 09 ®, R,
such that U is an R-module local direct summand of rank d+1, satisfying
(o (U)™ C U.
Proof. This is a direct consequence of (2.5.0.1) and Lemma 4.2.2. U

In the following we denote V(A) by V for simplicity, where A is always fixed
as in the beginning of Section 4.1. Denote ® := ©¢ ®y, k. Fix a point x¢ € V& (k).
Let Uy correspond to xg under (2.5.0.1) or Corollary 4.2.3. Define

linl Lemma 4.2.2 |
U™ = Uy

Lav1:=Uy and L;:= (0o,
They are subspaces of ® stable under g, of k-dimensions d 4 1 and d respectively.
Definition 4.2.4. Define 7 := P(® /L), a projective space of dimension d over k.

Then L;4; defines an element in Z(k), which we still denote by xg by abuse of
notation. We have a natural action of g on Z that fixes xo. Let R, and S, be the
quotient of the local ring of Z¢ and of V8 at x( divided by the p-th power of its
maximal ideal, respectively.

Lemma 4.2.5. There is a k-algebra isomorphism R, = S,,.
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Proof. The proof is based on exactly the same idea as [Li and Zhu 2017, Lemma
5.2.9]. Let 7~3,, and S » be the quotient of the local ring of Z and of V at x( divided
by the p-th power of its maximal ideal, respectively. Let R be an arbitrary local
k-algebra with residue field k such that the p-th power of its maximal ideal is zero.
Then by Lemma 4.2.2, the R-points of V lifting x¢ classify R-module local direct
summands U of ® ®; R of rank d+1 that lift £, 1, and such that

U 2 (o: (U™
But by the assumption that the p-th power of the maximal ideal of R is zero, we have

orx(U) = (ok,«(Lat1)) Ok R,

where we have written og and oy, to distinguish between the Frobenius on R and
on k. Therefore

(R (U™ = (04 4 (Lat1)) ®k R)'™ = (04 4 (La1))™ ®1 R = L4 ® R.

Thus we see that the set of R-points of V lifting x is in canonical bijection with
the set of R-points of Z lifting xo. We thus obtain a canonical R p-point of V lifting
xo € V(k), and a canonical S p-point of 7 lifting xo € Z(k). These two points induce
maps S = R p and R p— S » respectively. From the moduli interpretation of these
two maps we see that they are k-algebra homomorphisms inverse to each other and
equivariant with respect to the actions of g on both sides. Note that S, and R, are
the quotients of S » and 7~€p by the augmentation ideal for the g-action, respectively.
It follows that R, = S,. ]

4.3. Study of I8.

Definition 4.3.1. Let A be the eigenvalue of g on the 1-dimensional k-vector space
Lar1/La = Uy/Ug-, and let ¢ be the size of the unique (see Remark 4.1.1) Jordan
block of g|.,,, associated to A. Notice our c is denoted by ¢ + 1 in [RTZ, §9].

Remark 4.3.2. By the discussion before [Rapoport et al. 2013, Proposition 9.1], ¢
is the size of the unique Jordan block associated to A of gon ® /L; = Q/ UOL, and
is also equal to the quantity %(m(Q(T)) + 1) introduced in the introduction.

Proposition 4.3.3. The local ring Oz , of T8 at x is isomorphic to k[ X1/ X¢ as
a k-algebra.

Proof. By Remark 4.3.2 and Definition 4.2.4, the proposition is a consequence of
the following general lemma appliedto L=0/L; and h = g. ]

Lemma 4.3.4. Let L be a k-vector space of dimension d+1. Let P(L) = P? be the
associated projective space. Let xg € P(L)(k), represented by a vector £ € L. Let
h € GL(L) (k) = GLy4 (k). Assume that:
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(1) The natural action of h on P(L) fixes xo. Denote the eigenvalue of h on £ by A.

(2) There is a unique Jordan block of h associated to the eigenvalue A. Denote its
size by c.

Let R := Opyr x, be the local ring of the fixed point scheme P(L)" at xo. Then
R=k[X]/X°.

Proof. Extend £ to a basis {€p=¢, {1, ..., £y} of L such that the matrix (h;;)o<i, j<da
of h under this basis is in the Jordan normal form. Under this basis, the point xg
has projective coordinates [Xg:---: Xg]=[1:0:---:0] € P4, Let Z; = Xi/Xo
(1 <i <d) and let A4 be the affine space with coordinates (Zy, ..., Z;). Then
we can identify the local ring of P at xo with the local ring of A? at the origin.
Since h fixes x(, we know that /4 acts on the local ring of A? at the origin (although
h does not stabilize A? in general). Since (h;;) is in the Jordan normal form, we
know that the action of 4 on the latter is given explicitly by

_hiiXi+hiiviXivr  hiiZi+hiip1Zig

hZ; = = 1<i<d,
hooXo+ho 1 X ho.o+ho1Z,

where h; j11Z;+1 is understood as 0 when i = d. Hence the local equations at the
origin of A? which cut out the A-fixed point scheme are given by

(hoo—hii)Zi+ho1Z\Zi =h;i1Ziy1, 1=<i=d.

By hypothesis (2), we have ho o — h;; # 0 if and only if i > ¢. Thus when i > c,
we know that (ho o — h; ;) + ho,1Z is a unit in the local ring of A4 at the origin,
and so Z; can be solved as a multiple of h; ;1 Z; | when i > c. It follows that

Z, =0, i>c.
If c=1,then Z; =--- = Z; =0 and the local ring R in question is isomorphic to
k as desired. If ¢ > 1, then hp; = 1 and we find the equations fori =1,--- ,c—1
simplify to
22y =2y, 21Zr=23,- ,Z1Ze 2=Zc 1, 21Z.—1=0.

Hence the local ring R in question is isomorphic to (the localization at the ideal
(Z1, 2y, -+, Zc—y) o1 (Zy) of)

K(Zi, Zas ..oy Ze))(ZE =22, 23 — Z3y -+ 257 — Zoy, Z§) =121/ Z5,
as desired. ]

Theorem 4.3.5. Let g € J(Q)) be regular semisimple and minuscule. Let x( be
a point in (§(M) NNE) (k). Also denote by xq the image of xo in V(A) (k) as in
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Proposition 4.1.2 and define A and c as in Definition 4.3.1. Assume p > c. Then the
complete local ring of §(M) NN8 at x¢ is isomorphic to k[X]/ XC.

Proof. Let S be the complete local ring of (M) NAN¢ at xo. By Proposition 4.1.2
and by the fact that V(A) is smooth of dimension d (Section 2.5), we know that
Sisa quotient of the power series ring k[ X1, --- , X4]l. By Proposition 4.1.2,
Lemma 4.2.5 and Proposition 4.3.3, we know that S /mg is isomorphic to k[ X]/ X¢
as a k-algebra. In such a situation, it follows from the next abstract lemma that
SZK[X]/XC. O

Lemma 4.3.6. Let I be a proper ideal of k[ X1, - - -, X4]| and let
S=kIXy, -+, Xal/1.

Let m be the maximal ideal of k[ X1, - - -, X4l and let mg be the maximal ideal of S.
Assume there is a k-algebra isomorphism 8 : S/ mg => k[X]/ X€ for some integer
1 <c<p. Then Sis isomorphic to k| X1/ X€ as a k-algebra.

Proof. We first notice that if R; is any quotient ring of k[ X, - - - , X4] with its
maximal ideal m; satisfying m; = m% (i.e., Ry has zero cotangent space), then
Ry =k. In fact, R, is noetherian and we have ml1 =m, forall/ € Z-,, so by Krull’s
intersection theorem we conclude that m; = 0 and R; = k.

Suppose ¢ = 1. Then S /m? =k, so S has zero cotangent space and thus S=k

as desired. Next we treat the case ¢ > 2. Let o be the composite
o k[Xy, -, X4 — S/mg L5 k[x1/x°.

Let J = kera. Since « is surjective, we reduce to prove that / = J. Note that
because g is an isomorphism we have

I+m? =J. 4.3.6.1)

In the following we prove m? C I, which will imply / = J and hence the lemma.
The argument is a variant of [RTZ, Lemma 11.1].
LetY e k[ X1, ---, X4] be such that «(Y) = X. Since X generates the maximal
ideal in k[ X]/ X€, we have
m=J+ (). (4.3.6.2)

Then by (4.3.6.1) and (4.3.6.2) we have m = I + (¥Y) +m?”, and so the local ring
k[ X1, -, Xqall/( 4 (Y)) has zero cotangent space. We have observed that the
cotangent space being zero implies that the ring has to be k, or equivalently

m=1+(). (4.3.6.3)

Now we start to show m” C [. By (4.3.6.3) we have m” C [ 4 (Y?), so we only
need to prove Y? € I. We will show the stronger statement that Y € /. By Krull’s
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intersection theorem, it suffices to show that Y¢ € I +mP! for all / > 1. In the
following we show this by induction on /.
Assume [/ = 1. Note that o(Y¢) =0, so by (4.3.6.1) we have

YeeJ=1+m’.

Suppose Y¢ € I +m”! for an integer [ > 1. Write

Ye=i+m, iel, meml. (4.3.6.4)
By (4.3.6.2) we know
pl
mP c(J+ @) c Z JE(Y)Ps
s=0

Thus we can decompose m € m”! into a sum
pl
m=Y_j Y, el (4.3.6.5)
s=0
By (4.3.6.4) and (4.3.6.5), we have

pl
YO=i+ ) ¥,
s=0

and so
pl—c pl
Y- YT =i Y iy (4.3.6.6)
s=0 s=pl—c+1
Denote
pl—c

A= Z jsypl—s—c'
s=0

Then the left hand side of (4.3.6.6) is equal to (1 — A)Y*¢. Hence we have

pl
(1—A)Yc=i+ Z stpl_S C I+Jpl—c+1
s=pl—c+1
(4.3.6.1) I+(1+mp)pl—6+l :I+mp(pl—c+l) - I_i_mp(l-i-l)’
where for the last inclusion we have used ¢ < p. Since 1 — A is a unit in
kX1, -, X4l (because ¢ < p), we have Y¢ € [ + mPU+D By induction,
Yeel+mP foralll e Z>, as desired. O
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