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Let F be a real quadratic field in which a fixed prime p is inert, and E0 be
an imaginary quadratic field in which p splits; put E = E0 F. Let X be the
fiber over Fp2 of the Shimura variety for G(U (1, n − 1)×U (n − 1, 1)) with
hyperspecial level structure at p for some integer n≥ 2. We show that under some
genericity conditions the middle-dimensional Tate classes of X are generated by
the irreducible components of its supersingular locus. We also discuss a general
conjecture regarding special cycles on the special fibers of unitary Shimura
varieties, and on their relation to Newton stratification.
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1. Introduction

The study of the geometry of Shimura varieties lies at the heart of the Langlands
program. Arithmetic information of Shimura varieties builds a bridge relating the
world of automorphic representations and the world of Galois representations.

One of the interesting topics in this area is to understand the supersingular
locus of the special fibers of Shimura varieties, or more generally, any interesting
stratifications (e.g., Newton or Ekedahl–Oort stratification) of the special fibers
of Shimura varieties. The case of unitary Shimura varieties has been extensively
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studied. Vollaard and Wedhorn [2011] showed that the supersingular locus of the
special fiber of the GU (1, n− 1)-Shimura variety at an inert prime is a union of
Deligne–Lusztig varieties. Further, Howard and Pappas [2014] studied the case
of GU (2, 2) at an inert prime, and Rapoport, Terstiege and Wilson proved similar
results for GU (n− 1, 1) at a ramified prime. Finally, we remark that Görtz and He
[2015] studied the basic loci in a slightly more general class of Shimura varieties.

In all the work mentioned above, the authors use the uniformization theorem of
Rapoport–Zink to reduce the problem to the study of certain Rapoport–Zink spaces.
In this paper, we take a different approach. Instead of using the uniformization
theorem, we study the basic locus (or more generally other Newton strata) of certain
unitary Shimura varieties by considering correspondences between unitary Shimura
varieties of different signatures. This method was introduced by the first author in
[Helm 2010; 2012], and applied successfully to quaternionic Shimura varieties by
the second and the third authors [Tian and Xiao 2016].

Another new aspect of this work is that we study not only the global geometry
of the supersingular locus, but also their relationship with the Tate conjecture for
Shimura varieties over finite fields. We show that the basic locus contributes to
all “generic” middle-dimensional Tate cycles of the special fiber of the Shimura
variety. Similar results have been obtained by the second and the third authors
for even-dimensional Hilbert modular varieties at an inert prime [Tian and Xiao
2014]. We believe that, this phenomenon is a general philosophy which holds for
more general Shimura varieties. Our slogan is: irreducible components of the basic
locus of a Shimura variety should generate all Tate classes under some genericity
condition on the automorphic representations.

We explain in more detail the main results of this paper. Let F be a real quadratic
field, E0 be an imaginary quadratic field, and E = E0 F. Let p be a prime number
inert in F, and split in E0. Let p, p̄ denote the two places of E above p so that Ep and
Ep̄ are both isomorphic to Qp2 , the unique unramified quadratic extension of Qp. For
an integer n≥1, let G be the similitude unitary group associated to a division algebra
over E equipped with an involution of second kind. In the notation of Section 3.6,
our G is denoted G1,n−1. This is an algebraic group over Q such that G(Qp) '

Q×p×GLn(Ep) and G(R) is the unitary similitude group with signature (1, n−1) and
(n−1, 1) at the two archimedean places. (For a precise definition, see Section 2.2.)

Let A denote the ring of finite adeles of Q, and A∞ be its finite part. Fix a
sufficiently small open compact subgroup K ⊆G(A∞)with Kp=Z×p×GLn(Zp2)⊆

G(Qp), where Zp2 is the ring of integers of Qp2 . Let Sh(G)K be the Shimura
variety associated to G of level K.1

1Strictly speaking, the moduli space Sh(G)K is # ker1(Q,G)-copies of the classical Shimura
variety whose C-points are given by the double coset space G(Q) \G(A)/K∞K, where K∞ ⊆ G(R)
is the maximal compact subgroup modulo center. See [Kottwitz 1992b, page 400] for details.
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According to Kottwitz [1992b], when K p is neat, Sh(G)K admits a proper
and smooth integral model over Zp2 which parametrizes certain polarized abelian
schemes with K -level structure (See Section 2.3). Let Sh1,n−1 denote the special
fiber of Sh(G)K over Fp2 . This is a proper smooth variety over Fp2 of dimension
2(n− 1). Let Shss

1,n−1 denote the supersingular locus of Sh1,n−1, i.e., the reduced
closed subvariety of Sh1,n−1 that parametrizes supersingular abelian varieties. We
will see in Proposition 4.14 that Shss

1,n−1 is equidimensional of dimension n− 1.
Fix a prime ` 6= p. There is a natural action by Gal(Fp/Fp2)×Q`[K \G(A∞)/K ]

on the `-adic étale cohomology group H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n−1)). We will take
advantage of the Hecke action to consider a variant of the Tate conjecture for Sh1,n−1.

Fix an irreducible admissible representation π of G(A∞) (with coefficients in Q`).
The K -invariant subspace of π , denoted by πK, is a finite-dimensional irreducible
representation of the Hecke algebra Q`[K \G(A∞)/K ]. We denote the πK -isotypic
component of H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n− 1)) by H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n− 1))π

and put

H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n−1))fin
π :=

⋃
Fq/Fp2

H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n−1))Gal(Fp/Fq )
π ,

where Fq runs through all finite extensions of Fp2 . By projecting to the πK -isotypic
component, we have an `-adic cycle class map:

cln−1
π : An−1(Sh1,n−1,Fp

)⊗Z Q`→ H 2(n−1)
et (Sh1,n−1,Fp

,Q`(n− 1))fin
π , (1.0.1)

where An−1(Sh1,n−1,Fp
) is the abelian group of codimension n− 1 algebraic cycles

on Sh1,n−1,Fp
. Then the Tate conjecture for Sh1,n−1 predicts that the above map is

surjective. Our main result confirms exactly this statement under some “genericity”
assumptions on π .

From now on, we assume that π satisfies Hypothesis 2.5 to ensure the non-
triviality of the π-isotypic component of the cohomology groups. In particu-
lar, π is the finite part of an automorphic cuspidal representation of G(A), and
H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n−1))π 6=0. Let πp denote the p-component of π , which is

an unramified principal series as Kp is hyperspecial. Since G(Qp)'Q×p×GLn(Ep),
we write πp = πp,0⊗πp, where πp,0 is a character of Q×p and πp is an irreducible
admissible representation of GLn(Ep).

Our main theorem is the following.

Theorem 1.1. Suppose π is the finite part of an automorphic representation of
G(A) that admits a cuspidal base change to GLn(AE)×A×E0

, and the Satake param-
eters of πp are distinct modulo roots of unity. Then H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n−1))fin

π

is generated by the cohomological classes of the irreducible components of the
supersingular locus Shss

1,n−1. In particular, the cycle class map (1.0.1) is surjective.
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This theorem will be restated in a more precise form in Theorem 4.18. Here,
the assumption that the Satake parameters of πp are distinct modulo roots of unity
is crucial for our method. It is closely tied to our geometric description of the
irreducible components. This condition will be reformulated in Theorem 4.18 in
terms of the Frobenius eigenvalues of certain Galois representation attached to
πp via the unramified local Langlands correspondence. The other automorphic
assumption on π is of technical nature. It is imposed here to ensure certain equalities
on the automorphic multiplicity on π (See Remark 4.19). The method of our paper
may be extended to more general representations π if we have more knowledge of
the multiplicity of automorphic forms on unitary groups.

What we will prove is more precise than stated in Theorem 1.1. We need another
unitary group G ′ = G0,n over Q for E/F as in Lemma 2.9, which is the unique
inner form of G such that G ′(A∞)' G(A∞) and the signatures of G ′ at the two
archimedean places are (0, n) and (n, 0). Let Sh0,n denote the (zero-dimensional)
Shimura variety over Fp2 associated to G ′. We will show in Proposition 4.14
that the supersingular locus Shss

1,n−1 is a union of n closed subvarieties Yj with
1 ≤ j ≤ n such that each of Yj admits a fibration over Sh0,n of the same level
K ⊆ G(A∞) ' G ′(A∞) with fibers isomorphic to a certain proper and smooth
closed subvariety in a product of Grassmannians. In other words, each Yj is an
algebraic correspondence between Sh1,n−1 and Sh0,n:

Sh0,n← Yj → Sh1,n−1 .

This can be viewed as a geometric realization of the Jacquet–Langlands corre-
spondence between G and G ′ in the sense of [Helm 2010]. Alternatively, we
may view these Yj as Hecke correspondences between special fibers of unitary
Shimura varieties of different signatures. To prove Theorem 1.1, it suffices to
show that, when the Satake parameters of πp are distinct modulo roots of unity,
H 2(n−1)

et (Sh1,n−1,Fp
,Q`(n − 1))fin

π is generated by the cohomology classes of the
irreducible components of Yj . The key point is to show that the π -projection of the
intersection matrix of Yj is nondegenerate under the assumption above on πp.

We briefly describe the structure of this paper. In Section 2, we consider a more
general setup of unitary Shimura varieties, and propose a general conjecture, which
roughly predicts the existence of certain algebraic correspondences between the
special fibers of Shimura varieties with hyperspecial level at p associated to unitary
groups with different signatures at infinity (Conjecture 2.12). Theorem 1.1 is a
special case of Conjecture 2.12. We believe that our conjecture will provide a new
perspective to understand the special fibers of Shimura varieties. In Section 3, we
review some Dieudonné theory and Grothendieck–Messing deformation theory
that will be frequently used in later sections. Section 4 is devoted to the study of
the supersingular locus Shss

1,n−1, and constructing the subvarieties Yj mentioned
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above. In Section 5, we compute certain intersection numbers on products of
Grassmannian varieties. These numbers will play a fundamental role in our later
computation of the intersection matrix of the Yj . In Section 6, we will compute
explicitly the intersection matrix of the Yj (Theorem 6.7), and show that its π-
isotypic projection of the intersection matrix is nondegenerate as long as the Satake
parameters of πp are distinct (as opposed to being distinct modulo roots of unity).
Then an easy cohomological computation allows us to conclude the proof of our
main theorem. In Section 7, we will generalize the construction of the cycles Yj to
the Shimura variety associated to unitary group for E/F of signature (r, s)× (s, r)
at infinity. In this case, we only obtain some partial results on these cycles predicted
by Conjecture 2.12: the union of these cycles is exactly the supersingular locus of
the unitary Shimura variety in question (Theorem 7.8).

2. The conjecture on special cycles

We will only discuss certain unitary Shimura varieties so that the description
becomes explicit. We will discuss after Conjecture 2.12 on how to possibly extend
this conjecture to more general Shimura varieties.

2.1. Notation. We fix a prime number p throughout this paper. We fix an isomor-
phism ιp :C−→

∼ Qp. Let Qur
p be the maximal unramified extension of Qp inside Qp.

Let F be a totally real field of degree f in which p is inert. We label all real
embeddings of F, or equivalently (via ιp), all p-adic embeddings of F (into Qur

p ) by
τ1, . . . , τ f so that post-composition by the Frobenius map takes τi to τi+1. Here the
subindices are taken modulo f . Let E0 be an imaginary quadratic extension of Q in
which p splits. Put E = E0 F. Denote by v and v̄ the two p-adic places of E0. Then
p splits into two primes p and p̄ in E , where p (resp. p̄) is the p-adic place above v
(resp. v̄). Let qi denote the embedding E→ Ep

∼= Fp
τi−→Qp and q̄i the analogous

embedding which factors through Ep̄ instead. Composing with ι−1
p , we regard qi

and q̄i as complex embeddings of E , and we put 6∞,E = {q1, . . . , q f , q̄1, . . . , q̄ f }.

2.2. Shimura data. Let D be a division algebra of dimension n2 over its center E ,
equipped with a positive involution ∗ which restricts to the complex conjugation c
on E . In particular, Dopp ∼= D⊗E,c E. We assume that D splits at p and p̄, and we
fix an isomorphism

D⊗Q Qp 'Mn(Ep)×Mn(Ep̄)∼=Mn(Qp f )×Mn(Qp f ),

where ∗ switches the two direct factors. We use e to denote the element of D⊗Q Qp

corresponding to the (1, 1)-elementary matrix2 in the first factor. Let a•= (ai )1≤i≤ f

2By a (1, 1)-elementary matrix, we mean an n× n-matrix whose (1, 1)-entry is 1 and whose other
entries are zero.
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be a tuple of f numbers with ai ∈ {0, . . . , n}. Assume that there exists an element
βa• ∈ (D

×)∗=−1 such that the following condition is satisfied:3

Let Ga• be the algebraic group over Q such that Ga•(R) for a Q-algebra R
consists of elements g ∈ (Dopp

⊗Q R)× with gβa•g
∗
= c(g)βa• for some c(g) ∈ R×.

If G1
a• denotes the kernel of the similitude character c : Ga• → Gm,Q, then there

exists an isomorphism

G1
a•(R)'

f∏
i=1

U (ai , n− ai ),

where the i-th factor corresponds to the real embedding τi : F ↪→ R.
Note that the assumption on D at p implies that

Ga•(Qp)'Q×p ×GLn(Ep)∼=Q×p ×GLn(Qp f ).

We put Va• = D and view it as a left D-module. Let 〈−,−〉a• : Va• × Va•→Q be
the perfect alternating pairing given by

〈x, y〉a• = TrD/Q(xβa• y
∗) for x, y ∈ Va• .

Then Ga• is identified with the similitude group associated to (Va•, 〈−,−〉a•), i.e.,
for all Q-algebra R, we have

Ga•(R)= {g ∈ EndD⊗Q R(Va•⊗Q R) | 〈gx,gy〉a• = c(g)〈x,y〉a• for some c(g) ∈ R×}.

Consider the homomorphism of R-algebraic groups h : ResC/R(Gm)→ Ga•,R

given by

h(z)=
f∏

i=1

Diag(z, . . . , z︸ ︷︷ ︸
ai

, z̄, . . . , z̄︸ ︷︷ ︸
n−ai

), for z = x +
√
−1y. (2.2.1)

Let µh : Gm,C→ Ga•,C be the composite of hC with the map

Gm,C→ ResC/R(Gm)C ∼= C××C×, z 7→ (z, 1).

Here, the first copy of C× in ResC/R(Gm)C is the one indexed by the identity element
in AutR(C), and the other copy of C× is indexed by the complex conjugation.

Let Eh be the reflex field of µh , i.e., the minimal subfield of C where the
conjugacy class of µh is defined. It has the following explicit description. The
group AutQ(C) acts naturally on 6∞,E , and hence on the functions on 6∞,E .
Then Eh is the subfield of C fixed by the stabilizer of the Z-valued function a on
6∞,E defined by a(qi )= ai and a(q̄i )= n− ai . The isomorphism ιp : C−→

∼ Qp

3As explained in the proof of [Harris and Taylor 2001, Lemma I.7.1], when n is odd, such βa•
always exists, and when n is even, existence of βa• depends on the parity of a1+ · · ·+ a f . See also
the proof of Lemma 2.9.
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defines a p-adic place ℘ of Eh . By our hypothesis on E , the local field Eh,℘ is
an unramified extension of Qp contained in Qp f , the unique unramified extension
over Qp of degree f .

2.3. Unitary Shimura varieties of PEL-type. Let OD be a ∗-stable order of D and
3a• an OD-lattice of Va• such that 〈3a•,3a•〉a• ⊆ Z and 3a• ⊗Z Zp is self-dual
under the alternating pairing induced by 〈−,−〉a• . We put Kp =Z×p ×GLn(OEp)⊆

Ga•(Qp), and fix an open compact subgroup K p
⊆Ga•(A

∞,p) such that K =K p Kp

is neat, i.e., Ga•(Q)∩ gK g−1 is torsion free for any g ∈ Ga•(A
∞).

Following [Kottwitz 1992b], we have a unitary Shimura variety Sha• defined
over Zp f ;4 it represents the functor that takes a locally noetherian Zp f -scheme S to
the set of isomorphism classes of tuples (A, λ, η), where

(1) A is an f n2-dimensional abelian variety over S equipped with an action of
OD such that the induced action on Lie(A/S) satisfies the Kottwitz determi-
nant condition, that is, if we view the reduced relative de Rham homology
H dR

1 (A/S)◦ := eH dR
1 (A/S) and its quotient Lie◦A/S := e ·LieA/S as a module

over Fp ⊗Zp OS ∼=
⊕ f

i=1 OS , they, respectively, decompose into the direct
sums of locally free OS-modules H dR

1 (A/S)◦i of rank n and, their quotients,
locally free OS-modules Lie◦A/S,i of rank n− ai ;

(2) λ : A→ A∨ is a prime-to-p OD-equivariant polarization such that the Rosati
involution induces the involution ∗ on OD;

(3) η is a collection of, for each connected component S j of S with a geometric
point s̄ j , a π1(S j , s̄ j )-invariant K p-orbit of isomorphisms η j :3a• ⊗Z Ẑ(p) '

T (p)(As̄ j ) such that the following diagram commutes for an isomorphism
ν(η j ) ∈ Hom(Ẑ(p), Ẑ(p)(1)):

3a• ⊗Z Ẑ(p)×3a• ⊗Z Ẑ(p)

η j×η j

��

〈−,−〉
// Ẑ(p)

ν(η j )

��

T (p)As̄ j × T (p)As̄ j

Weil pairing
// Ẑ(p)(1),

where Ẑ(p) =
∏
6̀=p Z` and T (p)(As̄ j ) denotes the product of the `-adic Tate

modules of As̄ j for all ` 6= p.

The Shimura variety Sha• is smooth and projective over Zp f of relative dimension
d(a•) :=

∑ f
i=1 ai (n− ai ). Note that if ai ∈ {0, n} for all i , then Sha• is of relative

dimension zero; we call it a discrete Shimura variety.

4Although one can descend Sha• to the subring OEh,℘ of Zp f , we ignore this minor improvement.
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We denote by Sha•(C) the complex points of Sha• via the embedding

Zp f ↪→Qp
ι−1

p
−→ C.

Let K∞ ⊆ Ga•(R) be the stabilizer of h (2.2.1) under the conjugation action, and
let X∞ denote the Ga•(R)-conjugacy class of h. Then K∞ is a maximal compact-
modulo-center subgroup of Ga•(R). According to [Kottwitz 1992b, page 400], the
complex manifold Sha•(C) is the disjoint union of # ker1(Q,Ga•) copies of

Ga•(Q) \ (Ga•(A
∞)× X∞)/K ∼= Ga•(Q) \Ga•(A)/K × K∞. (2.3.1)

Here, if n is even, then ker1(Q,Ga•)= (0), while if n is odd then

ker1(Q,Ga•)= Ker(F×/Q×NE/F (E×)→ A×F /A
×NE/F (A

×

E )).

In either case, ker1(Q,Ga•) depends only on the CM extension E/F and the parity
of n but not on the tuple a•.

Let Sha• := Sha• ⊗Zp f Fp f denote the special fiber of Sha• , and let Sha• :=

Sha• ⊗Fp f Fp denote the geometric special fiber.

2.4. `-adic cohomology. We fix a prime number ` 6= p, and an isomorphism
ι` : C ' Q`. Let ξ be an algebraic representation of Ga• over Q`, and ξC be the
base change via ι−1

` . The theory of automorphic sheaves [Milne 1990, Section III]
or just reading off from the rational `-adic Tate modules of the universal abelian
variety allows us to attach to ξ a lisse Q`-sheaf Lξ over Sha• . For example, if ξ is
the representation of Ga• on the vector space Va• (Section 2.2), the corresponding
`-adic local system is given by the rational `-adic Tate module (tensored with Q`)
of the universal abelian scheme over Sha• .

We assume that ξ is irreducible. Let HK = H(K ,Q`) be the Hecke algebra
of compactly supported K -bi-invariant Q`-valued functions on Ga•(A

∞). The
étale cohomology group H d(a•)

et (Sha•,Lξ ) is equipped with a natural action of
HK × Gal(Fp/Fp f ). Since Sha• is proper and smooth, there is no continuous
spectrum and we have a canonical decomposition of HK ×Gal(Fp/Fp f )-modules
(see, e.g., [Harris and Taylor 2001, Proposition III.2.1])

H d(a•)
et (Sha•,Lξ )=

⊕
π∈Irr(Ga• (A

∞))

ι`(π
K )⊗ Ra•,`(π), (2.4.1)

where Irr(Ga•(A
∞)) is the set of irreducible admissible representations of Ga•(A

∞)

with coefficients in C, πK is the K -invariant subspace of π ∈ Irr(Ga•(A
∞)) and

Ra•,`(π) is a certain `-adic representation of Gal(Fp/Fp f ) which we specify below.
We write H d(a•)

et (Sha•,Lξ )π for the π-isotypic component of the cohomology
group, that is, the direct summand of (2.4.1) labeled by π . We make the following
assumptions on π .
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Hypothesis 2.5. (1) We have πK
6= 0.

(2) There exists an admissible irreducible representation π∞ of Ga•(R) such that
π ⊗π∞ is a cuspidal automorphic representation of Ga•(A),

(2a) π∞ is cohomological in degree d(a•) for ξ in the sense that

H d(a•)(Lie(Ga•(R)), K∞, π∞⊗ ξC) 6= 0, 5 (2.5.1)

where K∞ is a maximal compact subgroup of Ga•(R),
(2b) and π⊗π∞ admits a base change to a cuspidal automorphic representation

of GLn(AE)×A×E0
.

Note that Hypothesis 2.5(1) implies that the p-component πp is unramified.
Hypothesis 2.5 (2a) ensures that Ra•,`(π) is nontrivial. Moreover, by [Caraiani
2012, Theorem 1.2], this hypothesis implies that the base change of π ⊗ π∞ to
GLn,E is tempered at all finite places, and hence πp is tempered.

We recall now an explicit description, due to Kottwitz [1992a], of the Galois
module Ra•,`(π). As Ga•(Qp) = Q×p ×GLn(Ep), we may write πp = πp,0⊗ πp,
where πp,0 is a character of Q×p trivial on Z×p , and πp is an irreducible admissible
representation of GLn(Ep) such that πGLn(OEp )

p 6= 0. Choose a square root
√

p of
p in Q. Depending on this choice of

√
p, one has an (unramified) local Langlands

parameter attached to πp:

ϕπp = (ϕπp,0, ϕπp) :WQp →
L(Ga•,Qp)' C×× (GLn(C)

Z/ f Z oGal(Qp/Qp)).

Here, WQp is the Weil group of Qp, and Gal(Qp/Qp) permutes cyclically the f
copies of GLn(C) though the quotient Gal(Qp f /Qp) ∼= Z/ f Z. The image of
ϕπp |WQ p f

lies in (L Ga•)
◦
'C××GLn(C)

Z/ f Z. The cocharacterµh :Gm,Eh→Ga•,Eh

induces a character µ̌h of (L Ga•)
◦ over Eh . Let rµh denote the algebraic representa-

tion of (L Ga•)
◦ with extreme weight µ̌h . Denote by Frobp f a geometric Frobenius

element in WQp f . Let Q`

(
1/2

)
denote the unramified representation of WQp f which

sends Frobp f to (
√

p)− f . Then Ra•,`(π) can be described in terms of ϕπp as follows.

Theorem 2.6 [Kottwitz 1992a, Theorem 1]. Under the hypothesis and notation
above, we have an equality in the Grothendieck group of WQp f -modules:

[Ra•,`(π)] = # ker1(Q,Ga•)ma•(π)
[
ι`(rµh ◦ϕπp)⊗Q`

(
−

1
2 d(a•)

)]
,

where ma•(π) is a certain integer related to the automorphic multiplicities of
automorphic representations of Ga• with finite part π . 6

5This automatically implies that π∞ has the same central and infinitesimal characters as the
contragradient of ξC.

6Rigorously speaking, Kottwitz’s theorem describes the direct sum of the π-component of all
cohomological degrees. Since our πp is tempered, so π appears only in the middle degree for purity
reasons because Sha• is compact.
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In our case, one can make Kottwitz’s theorem more transparent. Define an `-adic
representation

ρπp = ι`(ϕ
(1),∨
πp

)⊗Q`

( 1
2(1− n)

)
:WQp f → GLn(Q`), (2.6.1)

where ϕ(1),∨πp : WQp f → GLn(C) denotes the contragredient of the projection to
the first (or any) copy of GLn(C). Both ϕπp and Q`

( 1
2

)
depend on the choice of

√
p, but ρπp does not. Explicitly, ρπp(Frobp f ) is semisimple with the characteristic

polynomial given by [Gross 1998, (6.7)]:

Xn
+

n∑
i=1

(−1)i (Np)i(i−1)/2a(i)p Xn−i , (2.6.2)

where a(i)p is the eigenvalue on π
GLn(OEp )

p of the Hecke operator

T (i)
p = GLn(OEp) ·Diag(p, . . . , p︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
n−i

) ·GLn(OEp).

An easy computation shows that rµh = Std−1
Q×p
⊗
⊗ f

i=1(∧
ai Std∨). Since the projec-

tion of ϕπp |WQ
p f

to each copy of GLn(C) is conjugate to all others, Theorem 2.6 is
equivalent to

[Ra•,`(π)]

= # ker1(Q,Ga•) ·ma•(π)
[
ρa•(πp)⊗χ

−1
πp,0
⊗Q`

(∑
i

1
2ai (ai − 1)

)]
, (2.6.3)

where ρa•(πp)= ra• ◦ρπp with ra• =
⊗ f

i=1 ∧
ai Std, and χπp,0 denotes the character

of Gal(Fp/Fp f ) sending Frobp f to ι`(πp,0(p f )).

Remark 2.7. The reason why we normalize the Galois representation as above is the
following: By Hypothesis 2.5, π is the finite part of an automorphic representation
of Ga•(A) which admits a base change to a cuspidal automorphic representation
5⊗χ of GLn(AE)×A×E0

. If ρ5 denotes the Galois representation of Gal(Q/E)
attached to 5, then ρπp is the semisimplification of the restriction of ρ5 to WEp

(See [Caraiani 2012, Theorem 1.1]).

2.8. Tate conjecture. We recall first the Tate conjecture [1966] over finite fields.
Let X be a projective smooth variety over a finite field Fq of characteristic p. Put
X = XFp

. For each prime ` 6= p and integer r ≤ dim(X), we have a cycle class map

clrX : Ar (X)⊗Z Q`→ H 2r
et (X ,Q`(r))Gal(Fp/Fq ),

where Ar (X) denotes the abelian group of codimension r algebraic cycles in X
defined over Fq . Then the Tate conjecture predicts that this map is surjective. One
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has a geometric variant of the Tate conjecture, which claims that the geometric
cycle class map:

clrX : Ar (X)⊗Z Q`→ H 2r
et (X ,Q`(r))fin

:=

⋃
m≥1

H 2r
et (X ,Q`(r))Gal(Fp/Fqm )

is surjective. Here, the superscript “fin” means the subspace on which Gal(Fp/Fq)

acts through a finite quotient. Note that the surjectivity of clr
X

implies that of clrX
by taking the Gal(Fp/Fq)-invariant subspace.

Consider the case X = Sha• with d(a•) even. Let π be an irreducible admissible
representation of Ga•(A

∞) as in Theorem 2.6. By Theorem 2.6, the π-isotypic
component of H d(a•)

et
(
Sha•,Q`

( 1
2 d(a•)

))fin is, up to Frobenius semisimplification7,
isomorphic to dim(πK ) · # ker1(Q,Ga•) ·ma•(π) copies of(

ρa•(πp)⊗χ
−1
πp,0
⊗Q`

(
(n− 1)

2

f∑
i=1

ai

))fin

. (2.8.1)

Note that χπp,0(Frobp f ) = πp,0(p f ) is a root of unity. Hence, the dimension of
(2.8.1) is equal to the sum of the dimensions of the Frobp f -eigenspaces of ρa•(πp)

with eigenvalues (p f )(n−1)/2
∑

i ai ζ for some root of unity ζ . In many examples,
this space is known to be nonzero.

For instance, when f = 2, a1 = r and a2 = n− r for some 1 ≤ r ≤ n− 1, we
have d(a•)= 2r(n− r) and

ρa•(πp)=∧
rρπp ⊗∧

n−rρπp .

Let Vπp,a• denote the space of representation ρa•(πp). If ρπp(Frobp f ) has distinct
eigenvalues α1, . . . , αn , then the eigenvalues of Frobp f on Vπp,a• are given by
αi1 · · ·αir · α j1 · · ·α jn−r , for distinct subscripts i1, . . . , ir and distinct subscripts
j1, . . . , jn−r . This product is exactly (p f )n(n−1)/2a(n)p (note that a(n)p is a root of
unity) if the set {i1, . . . , ir } and the set { j1, . . . , jn−r } are the complement of each
other as subsets of {1, . . . , n}. On the other hand, if the subsets {i1, . . . , ir } and
{ j1, . . . , jn−r } are not the complement of each other and if the αi are “sufficiently
generic”8, the eigenvalue αi1 · · ·αir · α j1 · · ·α jn−r is not a root of unity. In other
words, the dimension of (2.8.1) is “generically” equal to

(n
r

)
. As predicted by the

Tate conjecture, these cohomology classes should come from algebraic cycles. Our
main conjecture addresses exactly this, and it predicts that those desired “generic”

7Conjecturally, the Frobenius action on the étale `-adic cohomology groups of a projective smooth
variety over a finite field is always semisimple.

8For example, if r = 1 and α1 = α2, the eigenvalues α1 ·α1α3α4 · · ·αn is equal to α1 · · ·αn and
hence is pn(n−1) times a root of unity. So to be in the generic case, we will need to require that αi/α j
for i 6= j is not a root of unity if r = 1. For another example, if r = 2, “generic” will mean that αi/α j
for i 6= j and αiαi ′/α jα j ′ for {i, i ′} 6= { j, j ′} are not roots of unity.
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algebraic cycles can be given by the irreducible components of the basic locus, and
are birationally equivalent to certain fiber bundles over the special fiber of some
other Shimura varieties associated to inner forms of Ga• . To make this precise, we
need the following lemma.

Lemma 2.9. Let b•= (bi )1≤i≤ f be a tuple with bi ∈ {0, . . . , n} such that
∑ f

i=1 bi ≡∑ f
i=1 ai (mod 2) if n is even. Then there exists βb• ∈ (D

×)∗=−1 such that

• the alternating D-Hermitian space (Vb•, 〈−,−〉b•) defined using βb• in place
of βa• is isomorphic to (Va•, 〈−,−〉a•) when tensored with A∞, and

• if Gb• denotes the corresponding algebraic group over Q defined in the similar
way with βa• replaced by βb• , then

G1
b•(R)'

f∏
i=1

U (bi , n− bi ).

Proof. We reduce the problem to the existence of a certain cohomology class.
Note that G1

a• = Aut(Va•, 〈−,−〉a•) is the Weil restriction to Q of a unitary group
Ua• over F. The cohomology set H 1(Q,G1

a•)
∼= H 1(F,Ua•) is in bijection with

the isomorphism classes of one-dimensional skew-Hermitian D-modules V. As
Ua• ×F E ' GLn,E , Hilbert’s Theorem 90 for GLn implies that the inflation map
induces an isomorphism

H 1(E/F,Ua•)−→
∼ H 1(F,Ua•).

Denote by g 7→ g]βa• = βa•g
∗β−1

a• the involution on D induced by the alternating
pairing 〈−,−〉a• . Then a 1-cocycle of Gal(E/F) with values in Ua• is given by an
element α ∈ D× such that α = α]βa• , and α1, α2 ∈ D× define the same cohomology
class in H 1(F,Ua•) if and only if there exists g ∈ D× such that gα1g]βa• = α2.
Explicitly, given such an α, the corresponding skew-Hermitian D-module is given
by V = D equipped with the alternating pairing

〈−,−〉α : V × V →Q, (x, y) 7→ TrD/Q(xαβa• y
∗).

For a place v of F, we denote by

locv : H 1(F,Ua•)→ H 1(Fv,Ua•)

the canonical localization map. By [Helm 2012, Proposition 8.1], if
∑ f

i=1 bi ≡∑ f
i=1 ai mod 2, there exists a cohomology class [α] ∈ H 1(F,Ua•) such that

• locv([α]) is trivial for every finite place v of F, and

• if v = τi with 1≤ i ≤ n is an archimedean place, one has an isomorphism of
unitary groups over R: Aut(V ⊗F,τi R, 〈−,−〉α)'U (bi , n− bi ).

Then the element βb• = αβa• meets the requirements of Lemma 2.9. �
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In the sequel, we always fix a choice of βb• , and as well as an isomorphism
γa•,b• : Va• ⊗Q A∞ −→∼ Vb• ⊗Q A∞, which induces an isomorphism Ga•(A

∞) '

Gb•(A
∞). Recall that we have chosen a lattice 3a• ⊆ Va• to define the moduli

problem for Sha• . We put 3b• := Vb• ∩ γa•,b•(3a• ⊗Z Ẑ). Then applying the
construction of Section 2.3 to the lattice 3b• ⊆ Vb• and the open compact subgroup
K p
⊆ Ga•(A

∞,p)' Gb•(A
∞,p), we get a Shimura variety Shb• over Zp f of level

K p as well as its special fiber Shb• . Moreover, an algebraic representation ξ of
Ga• over Q` corresponds, via the fixed isomorphism Ga•(A

∞)' Gb•(A
∞), to an

algebraic representation of Gb• over Q`. We use the same notation Lξ to denote
the étale sheaf on Sha• and Shb• defined by ξ .

2.10. Gysin/trace maps. Before stating the main conjecture of this paper, we recall
the general definition of Gysin maps. Let f :Y→ X be a proper morphism of smooth
varieties over an algebraically closed field k. Let dX and dY be the dimensions
of X and Y respectively. Recall that the derived direct image R f∗ on the derived
category of constructible `-adic étale sheaves has a left adjoint f !. Since both X
and Y are smooth, the `-adic dualizing complex of X (resp. Y ) is Q`(dX )[2dX ]

(resp. Q`(dY )[2dY ]). Therefore, one has

f !(Q`(dX )[2dX ])=Q`(dY )[2dY ].

The adjunction map R f∗ f !Q`→Q` induces a canonical morphism

Tr f : R f∗Q`→Q`(dX − dY )[2(dX − dY )].

More generally, if L is a lisse Q`-sheaf on X, it induces a Gysin/trace map

R f∗( f ∗L)∼= L⊗ R f∗(Q`)
1⊗Tr f
−−−→ L(dX − dY )[2(dX − dY )],

where the first isomorphism is the projection formula [SGA 42 1972, XVII 5.2.9].
When f is flat with equidimensional fibers of dimension dY − dX , this is the trace
map as defined in [SGA 42 1972, XVIII 2.9]. When f is a closed immersion
of codimension r = dX − dY, it is the usual Gysin map. For any integer q, the
Gysin/trace map induces a morphism on cohomology groups:

f! : H
q
et(Y, f ∗L)→ Hq+2(dX−dY )

et (X,L(dX − dY )). (2.10.1)

2.11. Representation theory of GLn. As suggested by the description of Galois
representations appearing in the middle cohomology group of Shimura varieties
in Theorem 2.6, as well as by the Tate conjecture, we need to understand the
representation theory of GLn embedded diagonally into the Langlands dual group

(L Ga•)
◦
' C××GLn(C)

Z/ f Z.
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The Hodge cocharacterµ of Ga• gives rise to the representation ra•=
⊗ f

i=1(∧
ai Std)

of the diagonal GLn . If λ is a dominant weight of GLn (with respect to the usual
diagonal torus and upper triangular Borel subgroup) appearing in ra• , we can write
this weight λ as the sum of f dominant minuscule weights ωb1 + · · ·+ωb f , where
ωi for 0 ≤ i ≤ n is the weight of GLn that takes Diag(t1, . . . , tn) to t1 · · · ti . The
set {b1, . . . , b f } (counted with multiplicity) is unique, which we denote by Bλ.
Explicitly, if λ takes Diag(t1, . . . , tn) to tβ1

1 · · · t
βn
n (necessarily β1 ≤ f ), then

Bλ = {n, . . . , n︸ ︷︷ ︸
βn

, n− 1, . . . , n− 1︸ ︷︷ ︸
βn−1−βn

, . . . , 1, . . . , 1︸ ︷︷ ︸
β1−β0

, 0, . . . , 0︸ ︷︷ ︸
f−β1

}.

Moreover, we always have
∑

ai =
∑

bi . In particular, this implies by Lemma 2.9
that the Shimura variety Shb• makes sense, and the étale sheaf Lξ is well defined
on Shb• .

We write mλ(a•) for the multiplicity of the weight λ in ra• .

Conjecture 2.12. Let Sha• and Lξ be as in Section 2.4. Let λ be a dominant weight
that appears in the representation ra• as in Section 2.11. Define Bλ and mλ(a•) as
in Section 2.11.

Then there exist varieties Y1, . . . , Ymλ(a•) of dimension 1
2(d(a•)+ d(b•)) over

Fp f , equipped with natural action of prime-to-p Hecke correspondences, such that
each Yj fits into a diagram

Yj pr
b( j)
•

((

pr( j)
a•
vv

Sha• Shb( j)
•

satisfying the following properties.

(1) For each j, b( j)
•
= (b( j)

1 , . . . , b( j)
f ) is a reordering of the elements of the

set Bλ, and both pr( j)
a• and prb( j)

•
are equivariant for the prime-to-p Hecke

correspondences.

(2) The morphism pr( j)
a• is a proper morphism and is birational onto the image.

The morphism prb( j)
•

is proper and generically smooth of relative dimension
1
2(d(a•)− d(b•)) (note that d(b•)≡ d(a•) (mod 2) since

∑
i ai =

∑
i bi ).

(3) There exists a p-isogeny of abelian schemes over Yj

φb( j)
• ,a•
: pr∗

b( j)
•

(Ab( j)
•
)→ pr( j),∗

a• (Aa•),

where Aa• and Ab( j)
•

denote respectively the universal abelian scheme on Sha•
and Shb( j)

•
. Let

φb( j)
• ,a•,∗

: pr∗
b( j)
•

Lξ −→∼ pr( j),∗
a• Lξ .
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be the isomorphism of the `-adic sheaves induced by φb( j)
• ,a•

via the construc-
tion in Section 2.4.9

(4) Let π be an irreducible admissible representation of Ga•(A
∞)'Gb( j)

•
(A∞) sat-

isfying Hypothesis 2.5 for both a• and b•, and assume that ma•(π)= mb( j)
•
(π)

for all j 10. Suppose that the n eigenvalues α1, . . . , αn of ρπp(Frobp f ) are
“sufficiently generic” in the sense that the generalized eigenspace decomposition
of ρa•(FrobpN ) for any large N is the same as the weight space decomposition
of the algebraic representation ra• . Then the natural homomorphism of π-
isotypic components11 of the cohomology groups

mλ(a•)⊕
j=1

H d(b•)
et

(
Shb( j)

•
,Lξ

( 1
2 d(b•)

))Frobp f =λ

π

⊕ pr∗
b( j)
•

−−−−→

mλ(a•)⊕
j=1

H d(b•)
et

(
Y j , pr∗

b( j)
•

Lξ
( 1

2 d(b•)
))Frobp f =λ

π

⊕φ
b( j)
• ,a•,∗

−−−−−−→

mλ(a•)⊕
j=1

H d(b•)
et

(
Y j , pr∗a• Lξ

( 1
2 d(b•)

))Frobp f =λ

π

∑
pr( j)

a•,!
−−−−→ H d(a•)

et
(
Sha•,Lξ

( 1
2 d(a•)

))Frobp f =λ

π

is an isomorphism, where pr( j)
a•,! is the Gysin map (2.10.1) and the superscript

Frobp f = λ means taking the (direct sum of ) generalized Frobp f -eigenspace
with eigenvalues in the Weyl group orbit

λ ◦ ρπp(Frobp f ) ·χ−1
πp,0
(p f )(

√
p)− f (n−1)

∑
i bi .

Here, since the semisimple conjugacy classes of GLn(Q`) is in natural bijection
with the orbits of T (Q`) under the Weyl group of GLn , it makes sense to
evaluate a dominant weight of T on ρπp(Frobp f ) to get an orbit under the
action of the Weyl group of GLn; hence the notation λ ◦ ρπp(Frobp f ).

In particular, when ξ is the trivial representation and the weight λ is a power
of the determinant (so automatically,

∑
i ai is divisible by n, and d(a•) is even),

the cycles given by the images of Y1, . . . , Ymλ(a•) parameterized by the discrete
Shimura varieties Shb( j)

•
, generate the Tate classes of H d(a•)

et
(
Sha•,Q`

( 1
2 d(a•)

))
π

when ρπp(Frobp f ) is “sufficiently generic”.

9This isomorphism depends on the choice of the isomorphism γa•,b• made earlier.
10This assumption is satisfied when π is the finite part of an automorphic cuspidal representation

of Ga•(A) which admits a base change to a cuspidal automorphic representation of GLn(AE )×A×E .
Indeed, in this case, White [2012, Theorem E] proved that ma•(π)= m

b( j)
•

(π)= 1.
11The π -isotypic component is the same as the π p-isotypic component according to Lemma 4.17.
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Remark 2.13. (1) A key feature of this conjecture is that the codimension of the cy-
cle map pra• :Yj→Sha• is the same as the fiber dimension of prb( j)

•
:Yj→Shb( j)

•
.

(2) It seems that the fiber of prb( j)
•
: Yj → Shb( j)

•
over a generic point η ∈ Shb( j)

•
is

likely to be isomorphic to a certain “iterated Deligne–Lusztig variety,” that is,
a tower of maps Y j,η = Zα→ · · · → Z0 = η such that each Zi → Zi−1 is a
fiber bundle with certain Deligne–Lusztig varieties as fibers.

(3) Xinwen Zhu pointed out to us that since the universal abelian varieties Aa•
and Ab• are isogenous over each Yj , the union of the images of Y1, . . . , Ymλ(a•)

on Sha• is contained in the closure of the Newton strata, where the slope is the
same as the µ-ordinary slope of the universal abelian varieties on Shb( j)

•
(for

different j, they have the same µ-ordinary slopes). In fact, one should expect
the union of images to be the same as the closure of this Newton stratum.

When λ is central (i.e., a power of the determinant), Conjecture 2.12 says:
irreducible components of the basic locus of the special fiber of a Shimura
variety, generically, contribute to all Tate cycles in the cohomology. Implicitly,
this means that the dimension of the basic locus is half of the dimension of the
Shimura variety if and only if the Galois representations of the Shimura variety
has generically nontrivial Tate classes. Here two appearances of “generic”
both mean that we only consider those π-isotypic components where the
Satake parameter for πp is sufficiently generic as in Conjecture 2.12(4). For
example, the supersingular locus of Hilbert modular surface at a split prime
or the supersingular locus of a Siegel modular variety (over Q) is not half the
dimension. This is related to the fact that the π-isotypic component of the
cohomology of the Shimura varieties are not expected to have Tate classes, at
least when the Satake parameter of πp is sufficiently general.12

(4) These varieties Yj may be viewed as Hecke correspondences at p between
the special fibers of two different Shimura varieties Sha• and Shb( j)

•
. These

correspondences certainly cannot be lifted to characteristic zero. We hope that
the conjecture will bring interests into the study of such Hecke correspondences.

Remark 2.14. (1) The assumption on the decomposition of the place p in E/Q
and working with unitary Shimura varieties is to simplify our presentation and
to get to a situation where most terms can be defined. We certainly expect the
validity of analogous conjectures for the special fibers of Shimura varieties
of PEL-type or more generally of abelian type (using the integral model of
M. Kisin [2010]). This would be a more precise version of the Tate conjecture
in the context of special fibers of Shimura varieties: if ShG and ShG ′ are the

12The Siegel varieties are Shimura varieties associated to GSp2g(Q). The Langlands dual group
is isogenous to Spin(2g+ 1) and the associated representation rµ is the spin representation, which is
minuscule and hence does not contain trivial weight subspace.
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special fibers of two unitary Shimura varieties associated to the groups G and
G ′ such that G(A f ) ' G ′(A f ), then, generically, the cycles on the product
ShG ×ShG ′ predicted by the Tate conjectures are likely to be constructed by
understanding the “isogenies” between the corresponding universal abelian
varieties, and are closely related to the Newton stratifications of ShG and ShG ′ .
In the case of Shimura varieties of abelian type, we expect some technical
difficulties in reinterpreting the meaning of isogenies of abelian varieties in
terms of certain “G-crystals”.

For example, consider a real quadratic field F/Q in which a prime p is inert.
Let ShG denote the special fiber of the Hilbert–Siegel modular variety for G :=
ResF/Q GSp2g, with hyperspecial level structure at p. Then by Langlands’s
prediction of the cohomology of ShG , we should look at the representation r⊗2

spin
of the “essential part” Spin2g+1 of the Langlands dual group, where rspin is
the 2g-dimensional spin representation.13 The central weight space of r⊗2

spin has
dimension 2g. So we expect that the supersingular locus of ShG is the union of
2g collection of varieties parameterized by the discrete Shimura variety ShG ′

where G ′ is the inner form of G which is split at all finite places and is compact
modulo center at both archimedean places. Unfortunately, the moduli problem
that describes G ′ uses a different division algebra from that describing G. We do
not know how to interpret the meaning of isogenies of universal abelian varieties
in this case, and the method of our paper does not apply directly to this case.

(2) Xinwen Zhu pointed out to us that even if p is ramified, we should expect
Conjecture 2.12 continue to hold for (the special fiber of) the “splitting models”
of Pappas and Rapoport [2005]. Some evidences of this have already appeared
in the case of Hilbert modular varieties; see [Rapoport et al. 2014; Reduzzi
and Xiao 2017].

(3) In our setup, we took advantage of many coincidences that ensures that for
example the Shimura variety is compact and there is no endoscopy. It would be
certainly an interesting future question to study the case involving Eisenstein
series, as well as the case when the representations come from endoscopy
transfers.

(4) As explained in Remark 2.13(3), the images of Yj are expected to form
the closure of a certain Newton polygon where the slopes are related to λ.
Conjecture 2.12(1)–(3) may have a degenerate situation: when

∑
i ai is not

divisible by n, the representation Va• does not contain a weight corresponding
to a power of the determinant (which corresponds to the basic locus). So our

13As pointed out above, we have to work with the Hilbert–Siegel setup as opposed to the usual
Siegel setup because rspin is a minuscule representation.
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conjecture does not describe the basic locus of Sha• , and it is indeed not of
half dimension of Sha• .

Yet, this basic locus may still have a good description as the union of
some fiber bundles over the special fibers of some other Shimura varieties for
reductive groups which are not quasisplit at p. For example, the supersingular
locus of modular curve is related to the Shimura variety associated to the
definite quaternion algebra which is ramified at p, by a theorem of Serre and
Deuring [Serre 1996]. More such examples are given in [Tian and Xiao 2016]
and [Vollaard and Wedhorn 2011].

2.15. Known cases of Conjecture 2.12. Conjecture 2.12 is largely inspired by the
work of Tian and Xiao [2014; 2016], where we proved the analogous conjecture
for the special fibers of the Hilbert modular varieties assuming that p is inert in the
totally real field.

Another strong evidence of Conjecture 2.12 is the work of Vollaard and Wedhorn
[2011], where they considered certain stratification of the supersingular locus of the
Shimura variety for GU (1, n− 1) with s ∈ N at an inert prime p. What concerns
us is the case when n− 1 is even. In this case, it is hidden in the writing of their
Section 6 that one gets a correspondence (in the notation of loc. cit.)

I (Q) \ Nn ×
C (n)

p J (Qp)×G(A
(p)
f )/C p

tt ))

I (Q) \ I (A f )/C pC (n)
p Mss

C p ⊂MC p .

(2.15.1)

Note that I (A f ) ' G(A f ). Here Nn is a certain Deligne–Lusztig variety. In
[Vollaard and Wedhorn 2011], the parameterizing space, namely the first term
in (2.15.1), is interpreted very differently, in terms of Bruhat–Tits building. The
method of this paper should be applicable to their situation to verify the analogous
Conjecture 2.12. In fact, in their case, there will be only one collection of cycles as
given by (2.15.1), but the computation of the intersection matrix (only essentially
one entry in this case) of them requires some nontrivial Schubert calculus similar
to Section 5.

When n− 1 is odd, the result of [Vollaard and Wedhorn 2011] is related to the
degenerate version of the Conjecture 2.12 in the sense of Remark 2.14(4).

The aim of the rest of the paper is to provide evidence for Conjecture 2.12
for some large rank groups. In particular, we will construct cycles in the case
of the unitary group G(U (r, s)×U (s, r)) with s, r ∈ N (Section 7). While we
expect these cycles to verify Conjecture 2.12, we do not know how to compute
the “intersection matrix” in general. Nonetheless, when r = 1, we are able to
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make the computation and prove Conjecture 2.12 (with trivial coefficients for the
sake of a simple presentation) in this case; see Section 4–6. We point out that our
method should be applicable to many other examples, and even in general reduce
Conjecture 2.12 to a question of a combinatorial nature. This combinatorics problem
is the heart of the question. In the Hilbert case [Tian and Xiao 2014], we model
the combinatorics question by the so-called periodic semimeander (for GL2). The
generalization of the usual (as opposed to periodic) semimeander to other groups
has been introduced; see [Fontaine et al. 2013] for the corresponding references.
The straightforward generalization to the periodic case does seem to agree with
some of our computations with small groups. Nonetheless, the corresponding Gram
determinant formula seems to be extremely difficult. Even in the nonperiodic case,
we only know it for a special case; see [Di Francesco 1997].

We also mention that in a very recent work [Xiao and Zhu 2017] of Zhu and
the last author, we relate Conjecture 2.12 with the geometric Satake theory of Zhu
[2017] in mixed characteristic, and we proved many new cases of Conjecture 2.12.

3. Preliminaries on Dieudonné modules and deformation theory

We first introduce the basic tools that we will use in this paper.

3.1. Notation. Recall that we have an isomorphism

OD⊗Z Zp f ∼=

f⊕
i=1

(OD⊗OE ,qi Zp f ⊕OD⊗OE ,q̄i Zp f )'

f⊕
i=1

(Mn(Zp f )⊕Mn(Zp f )).

Let S be a locally noetherian Zp f -scheme. An OD ⊗Z OS-module M admits a
canonical decomposition

M =
f⊕

i=1

(Mqi ⊕Mq̄i ),

where Mqi (resp. Mq̄i ) is the direct summand of M on which OE acts via qi (resp.
via q̄i ). Then each Mqi has a natural action by Mn(OS). Let e denote the element of
Mn(OS) whose (1, 1)-entry is 1 and whose other entries are 0. We put M◦i := eMqi ,
and call it the reduced part of Mqi .

Let A be an f n2-dimensional abelian variety over an Fp f -scheme S, equipped
with an OD-action. The de Rham homology H dR

1 (A/S) has a Hodge filtration

0→ ωA∨/S→ H dR
1 (A/S)→ LieA/S→ 0,

compatible with the natural action of OD⊗ZOS on H dR
1 (A/S). We call H dR

1 (A/S)◦i
(resp. ω◦A∨/S,i , Lie◦A/S,i ) the reduced de Rham homology of A/S (resp. the reduced
invariant 1-forms of A∨/S, the reduced Lie algebra of A/S) at qi . In particular, the
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former is a locally free OS-module of rank n and the latter is a subbundle14 of the
former; when A→ S satisfies the moduli problem in Section 2.3, ω◦A∨/S,i is locally
free of rank ai .

The Frobenius morphism A→ A(p) induces a natural homomorphism

V : H dR
1 (A/S)◦i → H dR

1 (A/S)◦,(p)i−1 ,

where the index i is considered as an element of Z/ f Z, and the superscript “(p)”
means the pullback via the absolute Frobenius of S. The image of V is exactly
ω
◦,(p)
A∨/S,i−1. Similarly, the Verschiebung morphism A(p) → A induces a natural

homomorphism15

F : H dR
1 (A/S)◦,(p)i−1 → H dR

1 (A/S)◦i .

We have Ker(F)= Im(V ) and Ker(V )= Im(F).
When S = Spec(k) with k a perfect field containing Fp f , let W (k) denote the

ring of Witt vectors in k. Let D̃(A) denote the (covariant) Dieudonné module
associated to the p-divisible group of A. This is a free W (k)-module of rank
2 f n2 equipped with a Frob-linear action of F and a Frob−1-linear action of V
such that FV = V F = p. The OD-action on A induces a natural action of OD on
D̃(A) that commutes with F and V. Moreover, there is a canonical isomorphism
D̃(A)/pD̃(A)∼= H dR

1 (A/k) compatible with all structures on both sides. For each
i ∈ Z/ f Z, we have the reduced part D̃(A)◦i := eD̃(A)qi . The Verschiebung and the
Frobenius induce natural maps

V : D̃(A)◦i → D̃(A)◦i−1, F : D̃(A)◦i → D̃(A)◦i+1.

Note that D̃(A)qi = (D̃(A)◦i )
⊕n, and

⊕
i∈Z/ f Z D̃(A)qi is the covariant Dieudonné

module of the p-divisible group A[p∞].
For any f n2-dimensional abelian variety A′ over k equipped with an OD-action,

an OD-equivariant isogeny A′→ A induces a morphism D̃(A′)◦i → D̃(A)◦i compat-
ible with the actions of F and V. Conversely, we have the following.

Proposition 3.2. Let A be an abelian variety of dimension f n2 over prefect field k
which contains Fp f , equipped with an OD-action and an OD-compatible prime-to-p
polarization λ. Suppose given an integer m ≥ 1 and a W (k)-submodule Ẽi ⊆ D̃(A)◦i
for each i ∈ Z/ f Z such that

pmD̃(A)◦i ⊆ Ẽi , F(Ẽi )⊆ Ẽi+1, and V (Ẽi )⊆ Ẽi−1. (3.2.1)

14Here and after, by a subbundle of a locally free coherent sheaf, we mean a locally free coherent
sheaf that is Zariski locally a direct factor.

15The notation F for Frobenius was also used to denote the real quadratic field. But we think the
chance for confusion is minimal.
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Then there exists a unique abelian variety A′ over k (depending on m) equipped
with an OD-action, a prime-to-p polarization λ′, and an OD-equivariant p-isogeny
φ : A′→ A such that the natural inclusion Ẽi ⊆ D̃(A)◦i is naturally identified with
the map φ∗,i : D̃(A′)◦i → D̃(A)◦i induced by φ and such that φ∨ ◦ λ ◦ φ = pmλ′.
Moreover, we have

(1) If dimω◦A∨/k,i = ai and lengthW (k)(D̃(A)◦i /Ẽi )= `i for i ∈ Z/ f Z, then

dimω◦A′∨/k,i = ai + `i − `i+1. (3.2.2)

(2) If A is equipped with a prime-to-p level structure η in the sense of Section 2.3(1),
then there exists a unique prime-to-p level structure η′ on A′ such that η=φ◦η′.

Proof. By Dieudonné theory, the Dieudonné submodule⊕
i∈Z/ f Z

(Ẽi/pmD̃(A)◦i )
⊕n
⊆

⊕
i∈Z/ f Z

(D̃(A)◦i /pmD̃(A)◦i )
⊕n

corresponds to a closed subgroup scheme Hp⊆ A[pm
]. The prime-to-p polarization

λ induces a perfect pairing

〈−,−〉λ : A[pm
]× A[p̄m

] → µpm .

Let Hp̄= H⊥p ⊆ A[p̄m
] denote the orthogonal complement of Hp. Put Hp= Hp⊕Hp̄.

Let ψ : A→ A′ be the canonical quotient with kernel Hp, and φ : A′→ A be the
quotient with kernel ψ(A[pm

]) so that ψ ◦ φ = pm idA′ and φ ◦ψ = pm idA. By
construction, Hp ⊆ A[pm

] is a maximal totally isotropic subgroup. By [Mumford
2008, §23, Theorem 2], there is a prime-to-p polarization λ′ on A′ such that pmλ=

ψ∨◦λ′◦ψ . It follows also that pmλ′=φ∨◦λ◦φ. The fact that φ∗,i : D̃(A′)◦i → D̃(A)◦i
is identified with the natural inclusion Ẽi ⊆ D̃(A)◦i follows from the construction.
The existence and uniqueness of the tame level structure is clear. The dimension of
the differential forms can be computed as follows:

dimkω
◦

A′∨/k,i = dimk
V(D̃(A′)◦i+1)

pD̃(A′)◦i
= dimk

V(Ẽi+1)

pẼi

= dimk
V(D̃(A)◦i+1)

pD̃(A)◦i
−lengthW (k)

V(D̃(A)◦i+1)

V(Ẽi+1)
+lengthW (k)

pD̃(A)◦i
pẼi

= ai−`i+1+`i . �

3.3. Deformation theory. We shall frequently use Grothendieck–Messing defor-
mation theory to compare the tangent spaces of moduli spaces. We make this
explicit in our setup.

Let R̂ be a noetherian Fp f -algebra and Î ⊂ R̂ an ideal such that Î 2
= 0. Put

R = R̂/ Î. Let CR̂ denote the category of tuples ( Â, λ̂, η̂), where Â is an f n2-
dimensional abelian variety over R̂ equipped with an OD-action, λ̂ is a polarization



2234 David Helm, Yichao Tian and Liang Xiao

on Â such that the Rosati involution induces the ∗-involution on OD , and η̂ is a level
structure as in Section 2.3(3). We define CR in the same way. For an object (A, λ, η)
in the category CR , let H cris

1 (A/R̂) be the evaluation of the first relative crystalline
homology (i.e., dual crystal of the first crystalline cohomology) of A/R at the
divided power thickening R̂→ R, and H cris

1 (A/R̂)◦i := eH cris
1 (A/R̂)qi be the i-th

reduced part. We denote by Def(R, R̂) the category of tuples (A, λ, η, (ω̂◦i )i=1,..., f ),
where (A, λ, η) is an object in CR , and ω̂◦i ⊆ H cris

1 (A/R̂)◦i for each i ∈ Z/ f Z is
a subbundle that lifts ω◦A∨/R,i ⊆ H dR

1 (A/R)◦i . The following is a combination of
Serre–Tate and Grothendieck–Messing deformation theory.

Theorem 3.4 (Serre–Tate, Grothendieck–Messing). The functor

( Â, λ̂, η̂) 7→ ( Â⊗R̂ R, λ, η, ω◦
Â∨/R̂,i

),

where λ and η are the natural induced polarization and level structure on Â⊗R̂ R,
is an equivalence of categories between CR̂ and Def(R, R̂).

Proof. The main theorem of the crystalline deformation theory (cf., [Grothendieck
1974, pp. 116–118], [Mazur and Messing 1974, Chapter II §1]) says that the category
CR̂ is equivalent to the category of objects (A, λ, η) in CR together with a lift of
ωA∨/R ⊆ H cris

1 (A/R) to a subbundle ω̂ of H cris
1 (A/R̂), such that ω̂ is stable under

the induced OD-action and is isotropic for the pairing on H cris
1 (A/R̂) induced by

the polarization λ. But the additional information ω̂ is clearly equivalent to the
subbundles ω̂◦i ⊆ H cris

1 (A/R̂)◦i lifting ω◦A∨/R,i . �

Corollary 3.5. If Aa• denotes the universal abelian variety over Sha• , then the
tangent space TSha•

of Sha• is

f⊕
i=1

Lie◦A∨a•/Sha• ,i
⊗Lie◦Aa•/Sha• ,i

.

Proof. Even though this is a well-known statement often referred to as the Kodaira–
Spencer isomorphism (e.g., [Lan 2013, Proposition 2.3.4.2]), we include a short
proof, as the proof serves as a toy model of many arguments later. Let R̂ be
a noetherian Fp f -algebra and Î ⊂ R̂ an ideal such that Î 2

= 0; put R = R̂/ Î.
By Theorem 3.4, to lift an R-point (A, λ, η) of Sha• to an R̂-point, it suffices
to lift, for i = 1, . . . , f , the differentials ω◦A∨,i ⊆ H cris

1 (A/R)◦i to a subbundle
ω̂i ⊆ H cris

1 (A/R̂)◦i . Such lifts form a torsor for the group

HomR(ω
◦

A∨/R,i ,Lie◦A/R,i )⊗R Î .
It follows from this

TSha•
∼=

f⊕
i=1

Hom(ω◦A∨a•/Sha• ,i
,Lie◦Aa•/Sha• ,i

)∼=

f⊕
i=1

Lie◦A∨a•/Sha• ,i
⊗Lie◦Aa•/Sha• ,i

.

Note that this proof also shows that Sha• is smooth. �
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3.6. Notation in the real quadratic case. For the rest of the paper, we assume
f = 2 so that F is a real quadratic field in which p is inert. For nonnegative integers
r ≤ s such that n = r+ s, we denote by Gr,s the algebraic group previously denoted
by Ga• with a1 = r and a2 = s; in particular, Gr,s(R) = G(U (r, s) × U (s, r)).
If r ′, s ′ is another pair of nonnegative integers such that n = r ′ + s ′ and r ′ ≤ s ′,
Lemma 2.9 gives an isomorphism Gr,s(A

∞)' Gr ′,s′(A
∞).

Let Shr,s be the Shimura variety over Zp2 attached to Gr,s defined in Section 2.3
of some fixed sufficiently small prime-to-p level K p

⊆ Gr,s(A
∞,p). Let Shr,s

denote its special fiber over Fp2 . Let A=Ar,s denote the universal abelian variety
over Shr,s . It is a 2n2-dimensional abelian variety, equipped with an action of OD

and a prime-to-p polarization λA. Moreover, ω◦A∨/Shr,s ,1 (resp. ω◦A∨/Shr,s ,2) is a
locally free module over Shr,s of rank r (resp. rank s).

Remark 3.7. When r = 0 and s = n, the universal abelian variety A=A0,n over
Sh0,n is supersingular. Indeed, for each Fp-point z of Sh0,n , the Kottwitz condition
implies that the Frobenius induces isomorphisms

D̃(Az)
◦

1
F
−→ D̃(Az)

◦

2
F
−→ pD̃(Az)

◦

1.

In particular, (1/p)F2 induces a σ 2-linear automorphism of D̃(Az)
◦

1. By Hilbert’s
Theorem 90, there exists a Zp2-lattice L of D̃(Az)

◦

1 that is invariant under the action
of (1/p)F2; in other words, F2 acts by multiplication by p for a basis chosen from
this lattice. It follows that all slopes of the Frobenius on D̃(Az) are 1

2 , and hence
Az is supersingular.

4. The case of G(U(1, n− 1)×U(n− 1, 1))

We will verify Conjecture 2.12 for Sh1,n−1, namely the existence of some cycles Yj

having morphisms to both Sh0,n and Sh1,n−1 and generating Tate classes of Sh1,n−1

under a certain genericity hypothesis on the Satake parameters. We always fix an
isomorphism G1,n−1(A

∞)' G0,n(A
∞), and write G(A∞) for either group.

Notation 4.1. For a smooth variety X over Fp2 , we denote by TX the tangent bundle
of X, and for a locally free OX -module M, we put M∗ =HomOX (M,OX ).

4.2. Cycles on Sh1,n−1. For each integer j with 1 ≤ j ≤ n, we first define the
variety Yj we briefly mentioned in the introduction. Let Yj be the moduli space over
Fp2 that associates to each locally noetherian Fp2-scheme S, the set of isomorphism
classes of tuples (A, λ, η, B, λ′, η′, φ), where

• (A, λ, η) is an S-point of Sh1,n−1,

• (B, λ′, η′) is an S-point of Sh0,n and

• φ : B→ A is an OD-equivariant isogeny whose kernel is contained in B[p],
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such that

• pλ′ = φ∨ ◦ λ ◦φ,

• φ ◦ η′ = η and

• the cokernels of the maps

φ∗,1 : H dR
1 (B/S)◦1→ H dR

1 (A/S)◦1 and φ∗,2 : H dR
1 (B/S)◦2→ H dR

1 (A/S)◦2

are locally free OS-modules of rank j − 1 and j, respectively.

There is a unique isogeny ψ : A→ B such that ψ ◦φ= p · idB and φ◦ψ = p · idA.
We have

Ker(φ∗,i )= Im(ψ∗,i ) and Ker(φ∗,i )= Im(ψ∗,i ),

where ψ∗,i for i = 1, 2 is the induced homomorphism on the reduced de Rham
homology in the evident sense. This moduli space Yj is represented by a scheme of
finite type over Fp2 . We have a natural diagram of morphisms:

Yj pr′j
((

pr j
uu

Sh1,n−1 Sh0,n,
(4.2.1)

where pr j and pr′j send a tuple (A, λ, η, B, λ′, η′, φ) to (A, λ, η) and to (B, λ′, η′),
respectively. Letting K p vary, we see easily that both pr j and pr′j are equivariant
under prime-to-p Hecke actions given by the double cosets K p

\G(A∞,p)/K p.

4.3. Some auxiliary moduli spaces. The moduli problem for Yj is slightly com-
plicated. We will introduce a more explicit moduli space Y ′j below and then show
they are isomorphic.

Consider the functor Y ′j which associates to each locally noetherian Fp2-scheme S
the set of isomorphism classes of tuples (B, λ′, η′, H1, H2), where

• (B, λ′, η′) is an S-valued point of Sh0,n;

• H1 ⊂ H dR
1 (B/S)◦1 and H2 ⊂ H dR

1 (B/S)◦2 are OS-subbundles of rank j and
j − 1 respectively such that

V−1(H (p)
2 )⊆ H1, H2 ⊆ F(H (p)

1 ). (4.3.1)

Here,

F : H dR
1 (B/S)◦,(p)1 −→∼ H dR

1 (B/S)◦2 and V : H dR
1 (B/S)◦1 −→∼ H dR

1 (B/S)◦,(p)2

are respectively the Frobenius and Verschiebung homomorphisms, which are
actually isomorphisms because of the signature condition on Sh0,n .
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It follows from the moduli problem that the quotients H1/V−1(H (p)
2 ), F(H (p)

1 )/H2

are both locally free OS-modules of rank one.
There is a natural projection π ′j : Y

′

j → Sh0,n given by (B, λ′, η′, H1, H2) 7→

(B, λ′, η′).

Proposition 4.4. The functor Y ′j is representable by a scheme Y ′j smooth and
projective over Sh0,n of dimension n− 1. Moreover, if (B, λ′, η′,H1,H2) denotes
the universal object over Y ′j , then the tangent bundle of Y ′j is

TY ′j
∼=
(
(H1/V−1(H(p)

2 )
)∗
⊗
(
H dR

1 (B/Sh0,n)
◦

1/H1
)
⊕
(
H∗2⊗ F(H(p)

1 )/H2
)
.

Proof. For each integer m with 0≤m≤n and i=1, 2, let Gr(H dR
1 (B/Sh0,n)

◦

i ,m) be
the Grassmannian scheme over Sh0,n that parametrizes subbundles of the universal
de Rham homology H dR

1 (B/Sh0,n)
◦

i of rank m. Then Y ′j is a closed subfunctor of
the product of the Grassmannian schemes

Gr(H dR
1 (B/Sh0,n)

◦

1, j)× Gr(H dR
1 (B/Sh0,n)

◦

2, j − 1).

The representability of Y ′j follows. Moreover, Y ′j is projective.
We show now that the structural map π ′j : Y ′j → Sh0,n is smooth of relative

dimension n− 1. Let S0 ↪→ S be an immersion of locally noetherian Fp2-schemes
with ideal sheaf I satisfying I 2

= 0. Suppose we are given a commutative diagram

S0
g0
//

��

Y ′j

π ′j

��

S
h
//

g
==

Sh0,n

with solid arrows. We have to show that, locally for the Zariski topology on S0,
there is a morphism g : S→ Y ′j making the diagram commute. Let B be the abelian
scheme over S given by h, and B0 be the base change to S0. The morphism g0

gives rises to subbundles H 1 ⊂ H dR
1 (B0/S0)

◦

1 and H 2 ⊂ H dR
1 (B0/S0)

◦

2 with

F(H (p)
1 )⊃ H 2, V−1(H (p)

2 )⊂ H 1.

Finding g is equivalent to finding a subbundle Hi ⊂ H dR
1 (B/S)◦i which lifts each

H i for i = 1, 2 and satisfies (4.3.1); this is certainly possible when passing to small
enough affine open subsets of S0. Thus π ′j : Y

′

j → Sh0,n is formally smooth, and
hence smooth. We note that F∗S :OS→OS factors through OS0 . Hence V−1(H (p)

2 )

and F(H (p)
1 ) actually depend only on H 1, H 2, but not on the lifts H1 and H2.

Therefore, the possible lifts H2 form a torsor under the group

HomOS0
(H 2, F(H (p)

1 )/H 2)⊗OS0
I,
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and similarly the possible lifts H1 form a torsor under the group

HomOS0
(H 1/V−1(H (p)

2 ), H dR
1 (B0/S0)

◦

1/H 1)⊗OS0
I.

To compute the tangent bundle TY ′j , we take S=Spec(OS0[ε]/ε
2) and I = εOS . The

morphism g0 : S0→ Y ′j corresponds to an S0-valued point of Y ′j , say y0. Then the
possible liftings g form the tangent space TY ′j at y0, denote by TY ′j ,y0 . The discussion
above shows that

TY ′j ,y0
∼=HomOS0

(H2,F(H
(p)
1 )/H2)⊕HomOS0

(H1/V−1(H (p)
2 ),H dR

1 (B0/S0)
◦

1/H1),

which is certainly a vector bundle over S0 of rank j−1+(n− j)= n−1. Applying
this to the universal case when g0 : S0→ Y ′j is the identity morphism, the formula
of the tangent bundle follows. �

Remark 4.5. Let (B, λ′, η′, H1, H2) be an S-point of Y ′j .

(a) If j = n, H1 has to be H dR
1 (B/S)◦1, and H2 is a hyperplane of H dR

1 (B/S)◦2.
Condition (4.3.1) is trivial. In this case, Y ′n is the projective space over Sh0,n

associated to H dR
1 (B/Sh0,n)

◦

2, where B is the universal abelian scheme over Sh0,n .
So it is geometrically a union of copies of Pn−1

Fp
.

(b) If j = 1, then H1 is a line in H dR
1 (B/S)◦1 and H2 = 0. So Y ′1 is the projective

space over Sh0,n associated to (H dR
1 (B/Sh0,n)

◦

1)
∗.

(c) If j = 2, H2 ⊆ H dR
1 (B/S)◦2 is a line, and H1 ⊆ H dR

1 (B/S)◦1 is a subbundle
of rank 2 such that F(H (p)

1 ) contains both H2 and F(V−1(H (p)
2 )(p)). Therefore,

if H2 6= F(V−1(H (p)
2 ))(p), H1 is determined up to Frobenius pullback. If H2 =

F(V−1(H (p)
2 )(p)), then H1 could be any rank 2 subbundle containing V−1(H (p)

2 ).
We fix a geometric point z = (B, λ′, η′) ∈ Sh0,n(Fp). It is possible to find good

bases for H dR
1 (B/Fp)

◦

1, H dR
1 (B/Fp)

◦

2 such that F,V : H dR
1 (B/Fp)

◦

1→ H dR
1 (B/Fp)

◦

2
are both given by the identity matrix. With these choices, we may identify the fiber
Y ′2,z = π

′−1
2 (z) with a closed subvariety of

Gr(Fn
p, 2)× Gr(Fn

p, 1).

Moreover, one may equip Gr(Fn
p, 1)∼=Pn−1

Fp
with an Fp2-rational structure such that

H2 = F(V−1(H (p)
2 )(p)) if and only if [H2] ∈ Pn−1

Fp
is an Fp2-rational point. So Y ′2,z

is isomorphic to a “Frobenius twisted” blow-up of Pn−1
Fp

at all of its Fp2-rational
points. Here, “Frobenius twisted” means that each irreducible component of the
exceptional divisor has multiplicity p. For instance, when n = 3, each Y2,z is
isomorphic to the closed subscheme of P2

Fp
×P2

Fp
defined by

a1 bp
1 + a2 bp

2 + a3 bp
3 = 0, a p

1 b1 + a p
2 b2 + a p

3 b3 = 0,

where (a1 : a2 : a3) and (b1 : b2 : b3) are the homogeneous coordinates on the two
copies of P2.
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Lemma 4.6. Let (A, λ, η, B, λ′, η′, φ) be an S-point of Yj . Then the image of φ∗,1
contains both ω◦A∨/S,1 and F(H dR

1 (A/S)◦,(p)2 ), and the image of φ∗,2 is contained
in both ω◦A∨/S,2 and F(H dR

1 (A/S)◦,(p)1 ).

Proof. By the functoriality, φ2,∗ sends ω◦B∨/S,2 to ω◦A∨/S,2. Since ω◦B∨/S,2 =

H dR
1 (B/S)◦2 by the Kottwitz determinant condition, it follows that Im(φ∗,2) in

contained in ω◦A∨/S,2. Similar arguments by considering ψ∗,1 shows that ω◦A∨/S,1 ⊆

Ker(ψ∗,1) = Im(φ∗,1). The fact that Im(φ∗,2) is contained in F(H dR
1 (A/S)◦,(p)1 )

follows from the commutative diagram

H dR
1 (B/S)◦,(p)1

F ∼=

��

φ
(p)
∗,1 // H dR

1 (A/S)◦,(p)1

F
��

H dR
1 (B/S)◦2

φ∗,2
// H dR

1 (A/S)◦2

(4.6.1)

and the fact that the left vertical arrow is an isomorphism. Similarly, the inclusion
F(H dR

1 (A/S)◦,(p)2 ) ⊆ Im(φ∗,1) = Ker(ψ∗,1) can be proved using the functoriality
of Verschiebung homomorphisms. �

4.7. A morphism from Yj to Y ′j . There is a natural morphism α : Yj → Y ′j for
1≤ j ≤ n defined as follows. For a locally noetherian Fp2-scheme S and an S-point
(A, λ, η, B, λ′, η′, φ) of Yj , we define

H1 :=φ
−1
∗,1(ω

◦

A∨/S,1)⊆H dR
1 (B/S)◦1, H2 :=ψ∗,2(ω

◦

A∨/S,2)⊆H dR
1 (B/S)◦2. (4.7.1)

In particular, H1 and H2 are OS-subbundles of rank j and j −1, respectively. Also,
there is a canonical isomorphism ω◦A∨/S,2/ Im(φ∗,2)−→∼ H2. From the commutative
diagram (4.6.1), it is easy to see that F(H (p)

1 )⊆Ker(φ∗,2)= Im(ψ∗,2), but compar-
ing the rank forces this to be an equality. It follows that H2 ⊆ F(H (p)

1 ). Similarly,
V−1(H (p)

2 ) is identified with Im(ψ∗,1)=Ker(φ∗,1), hence V−1(H (p)
2 )⊆ H1. From

these, we deduce two canonical isomorphisms:

H1/V−1(H (p)
2 )−→∼ ω◦A∨/S,1,

F(H (p)
1 )/H2 −→

∼ H dR
1 (A/S)◦2/ω

◦

A∨/S,2
∼= Lie◦A/S,2 .

(4.7.2)

Therefore, we have a well-defined map α : Yj → Y ′j given by

α : (A, λ, η, B, λ′, η′, φ) 7→ (B, λ′, η′, H1, H2).

Moreover, it is clear from the definition that π ′j ◦α = pr′j .

Proposition 4.8. The morphism α is an isomorphism.

Proof. Let k be a perfect field containing Fp2 . We first prove that α induces a
bijection of points α : Yj (k) −→

∼ Y ′j (k). It suffices to show that there exists a
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morphism of sets β : Y ′j (k)→ Yj (k) inverse to α. Let y = (B, λ′, η′, H1, H2) ∈

Y ′j (k). We define β(y) = (A, λ, η, B, λ′, η′, φ) as follows. Let Ẽ1 ⊆ D̃(B)◦1 and
Ẽ2 ⊆ D̃(B)◦2 be respectively the inverse images of V−1(H (p)

2 ) ⊆ H dR
1 (B/k)◦1 and

F(H (p)
1 )⊆ H dR

1 (B/k)◦2 under the natural reduction maps

D̃(B)◦i → D̃(B)◦i /pD̃(B)◦i ∼= H dR
1 (B/k)◦i for i = 1, 2.

The condition (4.3.1) ensures that F(Ẽi ) ⊆ Ẽ3−i and V (Ẽi ) ⊆ Ẽ3−i for i = 1, 2.
Applying Proposition 3.2 with m=1, we get a triple (A, λ, η) and an OD-equivariant
isogeny ψ : A→ B, where A is an abelian variety over k with an action of OD , λ
is a prime-to-p polarization on A, and η is a prime-to-p level structure on A, such
that ψ∨◦λ′◦ψ = pλ, pη′=ψ ◦η and such that ψ∗,i : D̃(A)◦i → D̃(B)◦i is naturally
identified with the inclusion Ẽi ↪→ D̃(B)◦i for i = 1, 2. Moreover, the dimension
formula (3.2.2) implies that ω◦A∨/k,1 has dimension 1, and ω◦A∨/k,2 has dimension
n− 1. Therefore, (A, λ, η) is a point of Sh1,n−1. Finally, we take φ : B→ A to be
the unique isogeny such that φ ◦ψ = p · idA and ψ ◦ φ = p · idB . Thus we have
φ ◦ η′ = η. This finishes the construction of β(y). It is direct to check that β is the
set theoretic inverse to α : Yj (k)→ Y ′j (k).

We show now that α induces an isomorphism on the tangent spaces at each
closed point; as we have already shown that Y ′j is smooth, it will then follow that
α is an isomorphism. Let x = (A, λ, η, B, λ′, η′, φ) ∈ Yj (k) be a closed point.
Consider the infinitesimal deformation over k[ε] = k[t]/t2. Note that (B, λ′, η′)
has a unique deformation (B̂, λ̂′, η̂′) to k[ε], namely the trivial deformation. By
the Serre–Tate and Grothendieck–Messing deformation theory (cf., Theorem 3.4),
giving a deformation ( Â, λ̂, η̂) of (A, λ, η) to k[ε] is equivalent to giving free k[ε]-
submodules ω̂◦A∨,i ⊆ H cris

1 (A/k[ε])◦i for i = 1, 2 which lift ω◦A∨/k,i . The isogeny φ
and the polarization λ deform to an isogeny φ̂ : B̂→ Â and a polarization λ̂ : Â∨→ Â
(satisfying pλ̂′ = φ̂∨ ◦ λ̂ ◦ φ̂), necessarily unique if they exist, if and only if

ω̂◦A∨,2 ⊇ φ
cris
∗,2
(
H cris

1 (B/k[ε])◦2
)

and
(
φcris
∗,1 (H

cris
1 (B/k[ε])◦1)

)∨
⊆ (ω̂◦A∨,1)

∨,

where the second inclusion comes from the consideration at the embedding q̄2 by tak-
ing duality using the polarization λ and is equivalent to ω̂◦A∨,1⊆φ

cris
∗,1

(
H cris

1 (B/k[ε])◦1
)
.

As discussed before Proposition 4.8, we have Ker(φ∗,1) = V−1(H (p)
2 ) and

F(H (p)
1 )= Ker(φ∗,2)= Im(ψ∗,2). Then according to the relation between ω◦A∨/k,i

and H1 in (4.7.1), giving such ω̂◦A∨,i for i = 1, 2 is equivalent to lifting each Hi

to a free k[ε]-submodule Ĥi ⊆ H dR
1 (B/k)◦i ⊗k k[ε] ∼= H cris

1 (B/k[ε])◦i for i = 1, 2
such that Ĥ1 ⊇ V−1(H (p)

2 )⊗k k[ε] and Ĥ2 ⊆ F(H (p)
1 )⊗k k[ε]. This is exactly the

description of the tangent space of Y ′j at α(x). This concludes the proof. �

In the sequel, we will always identify Yj with Y ′j and pr′j with π ′j . Before
proceeding, we prove some results on the structure of Sh0,n(Fp).
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We turn to the study of the Shimura variety Sh0,n . The following proposition
was suggested by an anonymous referee of this article.

Proposition 4.9. (1) The Shimura variety Sh0,n is finite and étale over Zp2 . In
particular, the reduction map induces a bijection of geometric points

Sh0,n(Qp)−→
∼ Sh0,n(Fp).

(2) Let x̃i = (B̃i , λ̃i , η̃i ) ∈ Sh0,n(Qp) for i = 1, 2 be two geometric points in
characteristic 0, and xi = (Bi , λi , ηi ) ∈ Sh0,n(Fp) be their reductions. Then
the reduction map on

HomOD (B̃1, B̃2)−→
∼ HomOD (B1, B2)

is an isomorphism.

Proof. (1) Let z̃∈ (B̃, λ̃, η̃)∈Sh0,n(C). Put H =H1(B̃(C),Q). It is a left D-module
of rank 1 equipped with an alternating D-Hermitian pairing 〈−,−〉λ̃ induced by
the polarization λ̃. Let (V0,n = D, 〈−,−〉0,n) be the left D-module together with
its alternating D-Hermitian pairing as in the definition of Sh0,n . By results of
Kottwitz [1992b, §8], for every place v of Q, the skew-Hermitian DQv

-modules
HQv

and V0,n,Qv
are isomorphic.16 Then EndOD (B̃C)Q consists of the elements of

Dopp
= EndD(H) that preserves the complex structure on H1,R ' V0,n,R induced

the Deligne homomorphism by h :C×→G0,n(R). Since h(i) is necessarily central
(because G1

0,n is compact), it follows that EndOD (B̃C)Q = Dopp, and

D⊗E Dopp
'Mn2(E)⊆ End(B̃)Q.

For dimension reasons, the inclusion above is an equality, and B̃ is isogenous to
the product of n2-copies of abelian varieties with complex multiplication by E .
Therefore, B̃ is defined over a number field and has potentially good reduction
everywhere. This implies that Sh0,n is proper over Zp2 .

To see that Sh0,n is finite and étale over Zp2 , it remains to show its étaleness
over Zp2 . But this is clear from the description of its relative differential sheaf
in Corollary 3.5, which is trivial as LieA∨/Sh0,n,1 = LieA/Sh0,n,2 = 0 by Kottwitz’s
determinant condition.

(2) In general, the reduction map

HomOD (B̃1, B̃2) ↪→ HomOD (B1, B2)

is injective. It remains to see that every element f ∈ HomOD (B1, B2) lifts to a
homomorphism f̃ ∈ HomOD (B̃1, B̃2). Note that points x̃1, x̃2 can be viewed over

16Note that the two skew-Hermitian forms (H, 〈−,−〉)
λ̃

and (V0,n, 〈−,−〉0,n) are not necessarily
isomorphic over Q. However, they differ at most only by a scalar in F, hence define the same
similitude unitary group. See [Kottwitz 1992b, p. 400] for details.
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W (Fp). As recalled in Section 3, to show that f lifts to a map f̃ : B̃1 → B̃2, it
suffices to see that the induced map on crystalline homology

f ∗ : H cris
1 (B2/W (Fp))→ H cris

1 (B1/W (Fp))

preserves the Hodge filtrations

ωB̃∨i
⊆ H dR

1 (B̃i/W (Fp))∼= H cris
1 (Bi/W (Fp)).

It is clear that f ∗ preserves the decomposition

H dR
1 (B̃i/W (Fp))= H dR

1 (B̃i/W (Fp))1⊕ H dR
1 (B̃i/W (Fp))2

according to the two embeddings of OE into W (Fp). By the Kottwitz’s determinant
condition for Sh0,n , the Hodge filtrations on H dR

1 (B̃i/W (Fp)) are trivial, namely,

ω◦
B̃∨i /W (Fp),1

= 0, and ω◦
B̃∨i /W (Fp),2

= H dR
1 (B̃i/W (Fp))

◦

2 for i = 1, 2.

It is clear now f ∗ preserves this trivial Hodge filtration, since it does so when
tensoring with Fp. �

Fix a geometric point z = (B, λ, η) ∈ Sh0,n(Fp). Put C = EndOD (B)Q, and
denote by † the Rosati involution on C induced by λ. Let I be the algebraic group
over Q such that

I (R)= {x ∈ C ⊗Q R | xx†
∈ R×}, for all Q-algebras R. (4.9.1)

Corollary 4.10. We have an isomorphism of algebraic groups over Q: I ' G0,n .

Proof. Let z̃ = (B̃, λ̃, η̃) ∈ Sh0,n(Qp) denote the unique lift of z according to
Proposition 4.9 (1). By 4.9 (2), we have a canonical isomorphism

EndOD (B̃)Q −→∼ EndOD (B)Q = C.

In the proof of 4.9, we have seen that C = Dopp. Moreover, the Rosati involution
on C corresponds to the involution b 7→ b]β0,n = β0,nb∗β−1

0,n on Dopp, where β0,n is
the element in the definition of 〈−,−〉0,n . It follows immediately that I ' G0,n . �

Let Isog(z) ⊆ Sh0,n(Fp) denote the subset of points z′ = (B ′, λ′, η′) such that
there exists an OD-equivariant quasi-isogeny φ : B ′→ B such that φ∨ ◦λ◦φ= c0λ

′

for some c0 ∈Q>0. We denote such a quasi-isogeny by φ : z′→ z for simplicity.

Corollary 4.11. There exists a natural bijection of sets

2z : Isog(z)−→∼ G0,n(Q) \G0,n(A
∞)/K

Proof. First, we give the construction of 2z . Put V (p)(B) = T (p)(B)⊗
Ẑ(p)

A∞,p.
Then η determines an isomorphism

η̃ : V (p)
0,n ⊗Q A∞,p −→∼ V (p)(B),
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modulo right translation by K p. For any z′ = (B ′, λ′, η′) ∈ Isog(z) and a choice of
φ : B ′→ B as above. The quasi-isogeny φ induces an isomorphism φ∗ :V (p)(B ′)−→∼

V (p)(B). Then there exists a g p
∈ G0,n(A

∞,p), unique up to right multiplication
by elements of K p, such that the K p-orbit of φ−1

∗
◦ η̃ ◦ g gives η′.

We put

Lz = D̃(B)◦,F
2
=p

1 = {v ∈ D̃(B)◦1 : F
2(v)= pv}. (4.11.1)

Since B is supersingular (See Remark 3.7), this is a free Zp2-module of rank
n, and we have D̃(B)◦1 = Lz ⊗Zp2 W (Fp). Put Lz[1/p] = Lz ⊗Zp2 Qp2 . Then
φ induces an isomorphism φ∗ : Lz′[1/p] −→∼ Lz[1/p]. Fix a Zp2-basis for Lz .
Then there exists a gL ∈ GLn(Qp2) such that φ∗(Lz′)= gL(Lz), and the right coset
gL GLn(Zp2) is independent of the choice of such a basis. We put gp = (c0, gL) ∈

Q×p ×GLn(Qp2)' G0,n(Qp), which is well defined up to right multiplication by
elements of Kp = Z×p2 ×GLn(Zp2).

Finally, note that the quasi-isogeny φ′ : B ′→ B is well determined by z′ up to left
composition with an element γ ∈ I (Q)= G0,n(Q). If we replace φ by γ ◦φ, then
g := (g p, gp) ∈ G0,n(A

∞) is replaced by γ g = (γ g p, γ gp). Therefore, the map

2z : Isog(z)→ G0,n(Q) \G0,n(A
∞)/K , z′ 7→ G0,n(Q)gK

is well defined. The fact that 2z is a bijection follows from the similar classical
statement in characteristic 0. �

Remark 4.12. It follows from Proposition 4.9 and the description of Sh0,n(C) in
Section 2.3 that Sh0,n(Fp) consists of # ker1(Q,G0,n) isogeny classes of abelian
varieties equipped with additional structures.

Lemma 4.13. Let N be a fixed nonnegative integer. Up to replacing K p by an
open compact subgroup of itself , the following properties are satisfied: if (B, λ, η)
is an Fp-point of Sh0,n and f : B→ B is an OD-quasi-isogeny such that pN f ∈
EndOD (B), f ∨ ◦ λ ◦ f = λ and f ◦ η = η, then f = id.

Proof. It suffices to prove the lemma for (B, λ, η) in a fixed isogeny class Isog(z)
of Sh0,n(Fp). We write G0,n(A

∞) =
∐

i∈I G0,n(Q)gi K with K = K p Kp, where
gi = g p

i gi,p, with g p
i ∈ G0,n(A

∞,p) and gi,p ∈ G0,n(Qp), runs through a finite set
of representatives of the double coset

G0,n(Q) \G0,n(A
∞)/K .

Let (B, λ, η) be a point of Sh0,n corresponding to G0,n(Q)gi K for some i ∈ I, and
f be an OD-quasi-isogeny of B as in the statement. Then f is given by an element
of G1

0,n(Q). The condition that f ◦ η = η is equivalent to saying that the image
of f in G0,n(A

∞,p) lies in g p
i K pgi

p,−1. Moreover, pN f ∈ EndOD (B) implies that
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the image of f in G0,n(Qp) belongs to
∐
δ gi,p(KpδKp)g−1

i,p , where δ runs through
the set{
(1,Diag(pa1, pa2, . . . , pan )) ∈ G0,n(Qp)'Q×p ×GLn(Qp2)

∣∣
0≥ a1 ≥ a2 ≥ · · · ≥ an ≥−N

}
.

Write
∐
δ KpδKp =

∐
j∈J h j Kp for some finite set J. Hence, it suffices to show

that there exists an open compact subgroup K ′p ⊆ K p such that for all gi ,

G1
0,n(Q)∩ gi (K ′p · h j Kp)g−1

i = {1}

if h j Kp = Kp, and empty otherwise. Since K is neat, we have

G1
0,n(Q)∩ gi (K ′p Kp)g−1

i = {1} for any gi and any K ′p ⊆ K p.

Note that this implies that, for each i ∈ I, G1
0,n(Q)∩ gi (K p

· h j Kp)g−1
i contains at

most one element (because if it contains both x and y, then x−1 y is contained in
G1

0,n(Q)∩ gi K g−1
i = {1}). Let S ⊂ I × J be the subset consisting of (i, j) such

that h j Kp 6= Kp and G1
0,n(Q) ∩ gi (K p

· h j Kp)g−1
i indeed contains one element,

say xi, j . Then xi, j 6= 1 for all (i, j) ∈ S. Hence, one can choose a normal open
compact subgroup K ′p ⊆ K p so that xi, j /∈ g p

i K ′pg p,−1
i for all i . We claim that

this choice of K ′p will satisfy the desired property. Indeed, if K p
=
∐

l bl K ′p, then
the double coset G0,n(Q) \ G0,n(A

∞)/K ′p Kp has a set of representatives of the
form gi bl . Here, by abuse of notation, we consider bl as an element of K with
p-component equal to 1. Then one has, for h j Kp 6= Kp,

G1
0,n(Q)∩ gi bl(K ′ph j Kp)b−1

l g−1
i = G1

0,n(Q)∩ gi (K ′ph j Kp)g−1
i =∅.

The first equality uses the fact that K ′p is normal in K p. This finishes the proof. �

We come back to the discussion on the cycles Yj ⊆ Sh1,n−1 for 1≤ j ≤ n.

Proposition 4.14. Let (A, λ, η,B, λ′, η′, φuniv) denote the universal object on Yj

for 1≤ j ≤ n, and Hi ⊂ H dR
1 (B/Sh0,n) for i = 1, 2 be the universal subbundles on

Y ′j ∼= Yj .

(1) The induced map TYj → pr∗j TSh1,n−1 is universally injective, and we have
canonical isomorphisms

NYj (Sh1,n−1) := pr∗j TSh1,n−1/TYj

∼=
(
H1/V−1(H(p)

2 )
)∗
⊗ V−1(H(p)

2 )

⊕
(
F(H(p)

1 )/H2
)
⊗
(
H dR

1 (B/Sh0,n)
◦

2/F(H(p)
1 )

)∗
∼= Lie◦A∨,1⊗Coker(φuniv

∗,1 )⊕Lie◦A,2⊗ Im(φuniv
∗,2 )

∗.
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(2) Assume that K p is sufficiently small so that the consequences of Lemma 4.13
hold for N = 1. For each fixed closed point z ∈ Sh0,n , the map pr j,z :=

pr j |Y j,z : Y j,z→ Sh1,n−1 is a closed immersion, or equivalently, the morphism
(pr j , pr′j ) : Yj → Sh1,n−1×Spec(Fp2 ) Sh0,n is a closed immersion.

(3) The union of the images of pr j for all 1≤ j ≤ n is the supersingular locus of
Sh1,n−1, i.e., the reduced closed subscheme of Sh1,n−1 where all the slopes of
the Newton polygon of the p-divisible group A[p∞] are 1/2.

Proof. (1) Let S be an affine noetherian Fp2-scheme and let y= (A,λ,η,B,λ′,η′,φ)
be an S-point of Yj . Put Ŝ = S×Spec(Fp2 ) Spec(Fp2[t]/t2). Then we have a natural
bijection

Def(y, Ŝ)∼= 0(S, y∗TYj ),

where Def(y, Ŝ) is the set of deformations of y to Ŝ. Similarly, Def(pr j ◦y, Ŝ)∼=
0(S, y∗ pr∗j TSh1,n−1). To prove the universal injectivity of TYj → pr∗j TSh1,n−1 , it
suffices to show that the natural map Def(y, Ŝ) → Def(pr j ◦y, Ŝ) is injective.
By crystalline deformation theory (Theorem 3.4), giving a point of Def(y, Ŝ) is
equivalent to giving OŜ-subbundles ω̂◦A∨,i ⊆H cris

1 (A/Ŝ)◦i over Ŝ for i=1, 2 such that

• ω̂◦A∨,i lifts ω◦A∨/S,i ;

• ω̂◦A∨,1 ⊆ Im(φ∗,1)⊗ Fp2[t]/t2 and Im(φ∗,2)⊗ Fp2[t]/t2
⊆ ω̂◦A∨,2 are locally

direct factors.

Hence, one sees easily that

Def(y, Ŝ)∼= HomOS (ω
◦

A∨/S,1, Im(φ∗,1)/ω◦A∨/S,1)

⊕HomOS (ω
◦

A∨/S,2/ Im(φ∗,2), H dR
1 (A/S)◦2/ω

◦

A∨/S,2)

∼= Lie◦A∨/S,1⊗(Im(φ∗,1)/ω
◦

A∨/S,1)⊕ (ω
◦

A∨/S,2/ Im(φ∗,2))∗⊗Lie◦A/S,2 .

Similarly, Def(pr j ◦y, Ŝ) is given by the lifts of ω◦A∨/S,i to Ŝ for i = 1, 2. These lifts
are classified by HomOS (ω

◦

A∨/S,i , H dR
1 (A/S)◦i /ω

◦

A∨/S,i )
∼= Lie◦A∨/S,i ⊗k Lie◦A/S,i .

Hence, Def(pr j ◦y, Ŝ) is canonically isomorphic to

Lie◦A∨/S,1⊗OS Lie◦A/S,1⊕Lie◦A∨/S,2⊗OS Lie◦A/S,2 .

The natural map Def(y, Ŝ)→ Def(pr j ◦y, Ŝ) is induced by the natural maps

Im(φ∗,1)/ω◦A∨/S,1 ↪→ H dR
1 (A/S)◦1/ω

◦

A∨/S,1
∼= Lie◦A/S,1,

(ω◦A∨/S,2/ Im(φ∗,2))∗ ↪→ ω
◦,∗
A∨/S,2

∼= Lie◦A∨/S,2 .

It follows that Def(y, Ŝ)→ Def(pr j ◦y, Ŝ) is injective. To prove the formula for
NYj (Sh1,n−1), we apply the arguments above to affine open subsets of Yj . We see
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easily that

NYj (Sh1,n−1)∼= Lie◦A∨,1⊗OYj
Coker(φuniv

∗,1 )⊕Lie◦A,2⊗OYj
Im(φuniv

∗,2 )
∗

∼=
(
H1/V−1(H(p)

2 )
)∗
⊗ V−1(H(p)

2 )

⊕
(
F(H(p)

1 )/H2
)
⊗
(
H dR

1 (B/Yj )
◦

2/F(H(p)
1 )

)∗
.

Here, the last step uses (4.7.2) and the isomorphism

Im(φuniv
∗,2 )
∼= H dR

1 (B/Yj )
◦

2/Ker(φuniv
∗,2 )
∼= H dR

1 (B/Yj )
◦

2/F(H(p)
1 ).

(2) By statement (1), pr j,z induces an injection of tangent spaces at each closed
points of Y j,z . To complete the proof, it suffices to prove that π j,z induces injections
on the closed points. Write z = (B, λ′, η′) ∈ Sh0,n(Fp). Assume y1 and y2 are two
closed points of Y j,z with π j (y1)= π j (y2)= (A, λ, η). Let φ1, φ2 : B→ A be the
isogenies given by y1 and y2. Then the quasi-isogeny φ1,2 = φ

−1
2 φ1 ∈ EndOD (B)Q

satisfies the conditions of Lemma 4.13 for N = 1. Hence, we get φ1,2 = idB , which
is equivalent to y1 = y2. This proves that π j,z is injective on closed points.

(3) The proof resembles the work of Vollaard and Wedhorn [2011]. Since all the
points of Sh0,n(Fp) are supersingular by Remark 3.7, it is clear that the image of
each pr j lies in the supersingular locus of Sh1,n−1. Suppose now we are given a
supersingular point x = (A, λ, η) ∈ Sh1,n−1(Fp). We have to show that there exists
(B, λ′, η′) ∈ Sh0,n and an isogeny φ : B→ A such that (A, λ, η, λ′, η′;φ) lies in
Yj for some 1≤ j ≤ n.

Consider
LQ = (D̃(A)◦1[1/p])F2

=p
= {a ∈ D̃(A)◦1[1/p] | F2(a)= pa}.

Since x is supersingular, LQ is a Qp2-vector space of dimension n by the Dieudonné–
Manin classification, and D̃(A)◦1[1/p] = LQ ⊗Qp2 W (Fp)[1/p]. We put Ẽ◦1 =
(LQ ∩ D̃(A)◦1)⊗Zp2 W (Fp), and Ẽ◦2 = F(Ẽ◦1 ) ⊆ D̃(A)◦2. Thus Ẽ◦ = Ẽ◦1 ⊕ Ẽ◦2 is a
Dieudonné submodule of D̃(A)◦. We claim that Ẽ◦ contains pD̃(A)◦ as a submodule.
Then applying Proposition 3.2 with m = 1, we get an OD-abelian variety (B, λ′, η′)
together with an OD-isogeny φ : B→ A with φ∨◦λ◦φ= pλ. It is easy to see in this
case that (A, λ, η, B, λ′, η′, φ) defines a point in Yj with j = dimFp

(D̃(A)◦2/Ẽ
◦

2 ).
It then suffices to prove the claim that pD̃(A)◦ ⊆ Ẽ◦. Suppose not, then

D̃(A)◦ * (1/p)Ẽ◦. Consider Mi := D̃(A)◦i /Ẽ
◦

i for i = 1, 2. For any integer α ≥ 0,
its pα-torsion submodule is

Mi [pα] =
(
D̃(A)◦i ∩

1
pα

Ẽ◦i
)
/Ẽ◦i .

It follows easily that

Mi [pα+1
]/Mi [pα] ∼=

( 1
pα+1 Ẽ

◦

i ∩

(
D̃(A)◦i +

1
pα

Ẽ◦i
))/ 1

pα
Ẽ◦i .
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On the other hand, the Kottwitz’s signature condition implies that both F and
V : D̃(A)◦1→ D̃(A)◦2 have cokernel isomorphic to Fp, and both F and V : Ẽ◦1 → Ẽ◦2
are isomorphism. Therefore, the two induced morphisms

F and V : M1→ M2

are injective and both have cokernel isomorphic to Fp. It follows that the induced
maps on the graded pieces

F and V :
( 1

pα+1 Ẽ
◦

1 ∩

(
D̃(A)◦1+

1
pα

Ẽ◦1
))/ 1

pα
Ẽ◦1

→

( 1
pα+1 Ẽ

◦

2 ∩

(
D̃(A)◦2+

1
pα

Ẽ◦2
))/ 1

pα
Ẽ◦2 (4.14.1)

are injective maps, and are isomorphisms for all α ≥ 0 except for exactly one α.17

The assumption D̃(A)◦ * (1/p)Ẽ◦ implies that there are at least two α ≥ 0 for
which the right hand side of (4.14.1) is nonzero. So there exists α ≥ 0 such that
(4.14.1) are isomorphisms of nonzero Fp-vector spaces. Multiplication by pα gives
isomorphisms:

F and V :
( 1

p
Ẽ◦1 ∩

(
pαD̃(A)◦1+ Ẽ◦1

))
→

( 1
p
Ẽ◦2 ∩

(
pαD̃(A)◦2+ Ẽ◦2

))
. (4.14.2)

Now, Hilbert 90 theorem implies that L′=
(
(1/p)Ẽ◦1 ∩(p

αD̃(A)◦1+ Ẽ◦1 )
)F2
=p in fact

generates the source of (4.14.2). On the other hand, it is obvious that L′ ⊂ LQ and
L′ ⊆ pαD̃(A)◦1+ Ẽ◦1 ⊆ D̃(A)◦1. This means that L′, and hence LQ∩ D̃(A)◦1, generates
the entire (1/p)Ẽ◦1 ∩(p

αD̃(A)◦1+ Ẽ◦1 ), i.e., one has (1/p)Ẽ◦1 ∩(p
αD̃(A)◦1+ Ẽ◦1 )= Ẽ◦1 .

But this contradicts with the nontriviality of the vector spaces in (4.14.1) by our
choice of α. Now the proposition is proved. �

Corollary 4.15. The morphism pr1 (resp. prn) is a closed immersion, and it identi-
fies Y1 (resp. Yn) with the closed subscheme of Sh1,n−1 defined by the vanishing of
V : ω◦A∨,2→ ω

◦,(p)
A∨,1 (resp. V : ω◦A∨,1→ ω

◦,(p)
A∨,2).

Proof. We just prove the statement for pr1, and the case of prn is similar. Let Z1 be
the closed subscheme of Sh1,n−1 defined by the condition that V : ω◦A∨,2→ ω

◦,(p)
A∨,1

vanishes. We show first that pr1 : Y1 → Sh1,n−1 factors through the natural
inclusion Z1 ↪→ Sh1,n−1. Let y = (A, λ, η, B, λ′, η′, φ) be an S-valued point
of Y1. By Lemma 4.6, Im(φ2,∗) has rank n − 1 and contains both ω◦A∨/S,2 and
F(H dR

1 (A/S)◦,(p)1 ), which are both OS-subbundles of rank n − 1. This forces
ω◦A∨/S,2 = F(H dR

1 (A/S)◦,(p)1 ), and therefore V : ω◦A∨/S,2→ ω
◦,(p)
A∨/S,1 vanishes. This

shows that pr1(y) ∈ Z1.

17We point out that, for (4.14.1), F is an isomorphism if and only if V is an isomorphism, because
this is equivalent to requiring the source and the target to have the same dimension.
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To prove that pr1 :Y1→ Z1 is an isomorphism, as Y1 is smooth, it suffices to show
that it induces a bijection between closed points and tangent spaces of Y1 and Z1.
For any perfect field k containing Fp2 , one constructs a map θ : Z1(k)→ Y1(k)
inverse to pr1 : Y1(k) → Z1(k) as follows. Given x = (A, λ, η) ∈ Z1(k). Let
Ẽ◦1 = D̃(A)◦1 and Ẽ◦2 ⊆ D̃(A)◦2 be the inverse image of ω◦A∨/k,2 ⊆ D̃(A)◦2/pD̃(A)◦2.
Then the condition that y ∈ Z1 implies that Ẽ◦1 ⊕ Ẽ◦2 is stable under F and V.
Applying Proposition 3.2 with m = 1, we get a tuple (B, λ′, η′, φ) such that y =
(A, λ, η, B, λ′, η′, φ) ∈ Y1(k). It is immediate to check that x 7→ y and pr1 are the
set theoretic inverse of each other. It remains to show that pr1 induces a bijection
between TY1,y and TZ1,x . Proposition 4.14 already implies that we have an inclusion
TY1,y ↪→ TZ1,x ↪→ TSh1,n−1,x . It suffices to check that dim TZ1,x = n−1. The tangent
space TZ1,x is the space of deformations ( Â, λ̂, η̂) over k̂ = k[ε]/(ε2) of (A, λ, η)
such that V : ω◦

Â∨/k̂,2
→ ω

◦,(p)
Â∨/k̂,1

= ω
◦,(p)
A∨/k,1⊗k k̂ vanishes. This uniquely determines

the lift ω̂◦A∨,2=ω
◦
Â∨/k̂,2. So by deformation theory (Theorem 3.4), the tangent space

TZ1,x is determined by the liftings ω̂◦A∨,1=ω
◦
Â∨/k̂,1 of ω◦A∨/k,1. So it is of dimension

n− 1. This concludes the proof of the corollary. �

4.16. Geometric Jacquet–Langlands morphism. Let ` 6= p be a prime number.
For 1≤ j ≤ n, the diagram (4.2.1) gives rise to a natural morphism

JL j : H 0
et(Sh0,n,Q`)

pr′∗j
−→ H 0

et(Y j ,Q`)
pr j,!
−−→ H 2(n−1)

et (Sh1,n−1,Q`(n−1)), (4.16.1)

where pr j,! is (2.10.1), whose restriction to each H 0
et(Y j,z,Q`) for z∈Sh0,n(Fp) is the

Gysin map associated to the closed immersion Y j,z ↪→Sh1,n−1. It is clear that the im-
age of JL j is the subspace generated by the cycle classes of [Y j,z] ∈ An−1(Sh1,n−1)

with z ∈ Sh0,n(Fp). According to [Helm 2010], JL j should be considered as a
certain geometric realization of the Jacquet–Langlands transfer from G0,n to G1,n−1.
Putting all the JL j together, we get a morphism

JL=
∑

j

JL j :

n⊕
j=1

H 0
et(Sh0,n,Q`)→ H 2(n−1)

et (Sh1,n−1,Q`(n− 1)). (4.16.2)

Recall that we have fixed an isomorphism G1,n−1(A
∞) ' G0,n(A

∞), which we
write uniformly as G(A∞). Denote by H(K p,Q`)=Q`[K p

\G(A∞,p)/K p
] the

prime-to-p Hecke algebra. Then the homomorphism (4.16.2) is a homomorphism
of H(K p,Q`)-modules.

For an irreducible admissible representation π of G(A∞), we write π =π p
⊗πp,

where π p (resp. πp) is the prime-to-p part (resp. the p-component) of π .

Lemma 4.17. Let π1 and π2 be two admissible irreducible representations of
G(A∞), and (ri , si ) for i = 1, 2 be two pairs of integers with 0 ≤ ri , si ≤ n and
r1+ s1 ≡ r2+ s2 mod 2. Assume that π1 satisfies Hypothesis 2.5 with a• = (r1, s1),
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and there exists an admissible irreducible representation π2,∞ of G(r2,s2)(R) such
that π2⊗π2,∞ is a cuspidal automorphic representation of G(r2,s2)(A). If π p

1 and
π

p
2 are isomorphic as representations of G(Ap,∞), then π1,p ' π2,p, and π2⊗π2,∞

admits a base change to a cuspidal automorphic representation of GLn(AE)×A×E0
;

in particular, π2 satisfies Hypothesis 2.5 for a• = (r2, s2).

Proof. By assumption on π1, there exists an irreducible admissible representation
π1,∞ of G(r1,s1)(R) such that π1⊗π1,∞ is a cuspidal automorphic representation of
Gr1,s1(A), which base changes to a cuspidal automorphic representation (51, χ1)

of GLn(AE)×A×E0
. On the other hand, by [Shin 2014, Theorem 1.1], there exists

always a base change of π2⊗π2,∞ to an automorphic representation (52, χ2) of
GLn(AE)× A×E0

. The base changes (5i , χi ) with i = 1, 2 satisfy the following
properties:

• 5i is conjugate self-dual,

• for every unramified rational prime x , the x-component of (5i , ψi ) depends
only on the x-component of πi and

• if πi,p = πi,0⊗πi,p as representation of G(Qp)'Q×p ×GLn(Ep), then 5i,p =

(πi,p⊗ π̌
c
i,p) as a representation of GLn(E ⊗Qp)∼= GLn(Ep)×GLn(Ep̄), and

ψi,p = πi,0⊗π
−1
i,0 as a representation of (E0⊗Qp)

×
=Q×p ×Q×p . Here, π̌ c

i,p
denotes the complex conjugate of the contragredient of πi,p.

As π p
1 ' π

p
2 , (51, ψ1) and (52, ψ2) are isomorphic at almost all finite places.

By the strong multiplicity one theorem for GLn [Jacquet and Shalika 1981], we
have (51, ψ1)' (52, ψ2); in particular, (52, ψ2) is cuspidal. By the description
of (5i,p, ψi,p), it follows immediately that π1,p ' π2,p. �

Let AK be the set of isomorphism classes of irreducible admissible representa-
tions π of G(A∞) satisfying Hypothesis 2.5 with a• = (0, n). In particular, each
π ∈AK is the finite part of an automorphic cuspidal representation of G0,n(A).

We fix such a π ∈AK . Let

JLπ :
n⊕

i=1

H 0
et(Sh0,n,Q`)π p → H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π p

denote the homomorphism on the (π p)K p
-isotypic components induced by JL,

where for an H(K p,Q`)-module M we put

Mπ p := HomH(K p,Q`)
((π p)K p

,M)⊗ (π p)K p
.

Then Lemma 4.17 implies that π is completely determined by its prime-to-p part.
Hence, taking the π p-isotypic components is the same as taking the π-isotypic
components. We can thus write Mπ instead of Mπ p for a H(K ,Q`)-module M.
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Recall that the image of JLπ is included in H 2(n−1)
et (Sh1,n−1,Q`(n − 1))fin

π ,
which is the maximal subspace of H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π where the action
of Gal(Fp/Fp2) factors through a finite quotient. Note that, at this moment, it is not
clear if the target of JLπ is nonzero. But this will follow from the proof of our
main Theorem 4.18 below.

Our main result claims that this inclusion is actually an equality under certain
genericity conditions on πp. To make this precise, write πp = πp,0 ⊗ πp as a
representation of G(Qp)'Q×p ×GLn(Ep). Let

ρπp :WQp2 → GLn(Q`)

be the unramified representation of the Weil group of Qp2 defined in (2.6.1). It
induces a continuous `-adic representation of Gal(Fp/Fp2), which we denote by
the same notation. Then ρπp(Frobp2) is semisimple with characteristic polynomial
(2.6.2). Using this, we get an explicit description of H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π
and H 0

et(Sh0,n,Q`)π in terms of ρπp by (2.4.1) and (2.6.3).
We can now state our main theorem.

Theorem 4.18. Fix a π in AK. Let απp,1,...,απp,n be the eigenvalues of ρπp(Frobp2).

(1) If απp,1,...,απp,n are distinct, then the map JLπ is injective;

(2) Let m1,n−1(π) (resp. m0,n(π)) denote the multiplicity for π appearing in
Theorem 2.6 for a•= (1, n−1) (resp. for a•= (0, n)). Assume that m1,n−1(π)=

m0,n(π) and that απp,i/απp, j is not a root of unity for all 1 ≤ i, j ≤ n. Then
the map

JLπ :
n⊕

j=1

H 0
et(Sh0,n,Q`)π → H 2(n−1)

et (Sh1,n−1,Q`(n− 1))fin
π

is an isomorphism. In other words, H 2(n−1)
et (Sh1,n−1,Q`(n−1))fin

π is generated
by the cycle classes of the irreducible components of Yj for 1≤ j ≤ n.

The proof of this theorem will be given at the end of Section 6.

Remark 4.19. The equality m1,n−1(π) = m0,n(π) is conjectured to be true ac-
cording to Arthur’s formula on the automorphic multiplicities of unitary groups,
and is known to hold when π is the finite part of an automorphic representation
of G1,n−1(A) whose base change to GLn(AE)× A×E0

is cuspidal, and G1,n−1 is
quasisplit at all finite places. See for instance [White 2012, Theorem E].

On the other hand, Theorem 4.18(1) gives partial results towards the equality
m1,n−1(π)= m0,n(π). Indeed, when combining with Kottwitz’s description 2.6 of
the π-isotypic components of the cohomology groups, Theorem 4.18(1) implies
(under the assumption that the Satake parameters of πp are distinct) that m1,n−1(π)≥

m0,n(π) without using Arthur’s trace formula. If we use only the fact that JLπ
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is nonzero (which is an easy consequence of our computation of the intersection
matrix in Theorem 6.7), we get the implication m0,n(π) 6= 0⇒ m1,n−1(π) 6= 0.

5. Fundamental intersection numbers

In this section, we will compute some intersection numbers on certain Deligne–
Lusztig varieties. These numbers will play a key role in the computation in the next
section of the intersection matrix of the cycles Yj on Sh1,n−1.

Notation 5.1. Let X be an algebraic variety of pure dimension N over Fp. For an
integer r ≥ 0, let Ar (X) (resp. Ar (X)) denote the group of algebraic cycles on X of
codimension r (resp. of dimension r ) modulo rational equivalences. If Y ⊆ X is a
subscheme equidimensional of codimension r , we denote by [Y ] ∈ Ar (X) the class
of Y. We put A?(X)=

⊕N
r=0 Ar (X). For a zero-dimensional cycle η ∈ AN (X), we

denote by

deg(η)=
∫

X
η

the degree of η. Let V be a vector bundle over X. We denote by cr (V) ∈ Ar (X)
the r-th Chern class of V for 0≤ r ≤ N, and put c(V)=

∑N
r=0 cr (V)tr in the free

variable t .

5.2. A special Deligne–Lusztig variety. We fix an integer n ≥ 1. For an integer
0 ≤ k ≤ n, we denote by Gr(n, k) the Grassmannian variety over Fp classifying
k-dimensional subspaces of F⊕n

p . Given an integer k with 1≤ k ≤ n, let Z 〈n〉k be the
subscheme of Gr(n, k)× Gr(n, k − 1) whose S-valued points are isomorphism
classes of pairs (L1, L2), where L1 and L2 are respectively subbundles of O⊕n

S of
rank k and k− 1 satisfying L2 ⊆ L(p)1 and L(p)2 ⊆ L1 (with locally free quotients).
The same arguments as in Proposition 4.4 show that Z 〈n〉k is a smooth variety over
Fp of dimension n− 1. We denote the natural closed immersion by

ik : Z
〈n〉
k ↪→ Gr(n, k)× Gr(n, k− 1).

Let L1 and L2 denote the universal subbundles on Gr(n, k) × Gr(n, k − 1)
coming from the two factors, and Q1 and Q2 the universal quotients, respectively.
When there is no confusion, we still use Li and Qi for i = 1, 2 to denote their
restrictions to Z 〈n〉k . We put

Ek = (L1/L
(p)
2 )∗⊗L(p)2 ⊕ (L

(p)
1 /L2)⊗Q∗,(p)1 , (5.2.1)

which is a vector bundle of rank n− 1 on Z 〈n〉k . (This vector bundle is modeled on
the description of the normal bundle NYj (Sh1,n−1) in Proposition 4.14(1), which is
how our computation will be used in the next section; see Proposition 6.4.) We have
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the top Chern class cn−1(Ek) ∈ An−1(Z 〈n〉k ). We define the fundamental intersection
number on Z 〈n〉k as

N (n, k) :=
∫

Z 〈n〉k

cn−1(Ek). (5.2.2)

The main theorem we prove in this section is the following:

Theorem 5.3. For integers n, r with 0≤ r ≤ n, let(n
r

)
q
=
(qn
− 1)(qn−1

− 1) · · · (qn−r+1
− 1)

(q − 1)(q2− 1) · · · (qr − 1)

be the Gaussian binomial coefficients, and let d(n, k)= (2k− 1)n− 2k(k− 1)− 1
denote the dimension of Gr(n, k)× Gr(n, k− 1). Then, for 1≤ k ≤ n, we have

N (n, k)= (−1)n−1
min{k−1,n−k}∑

δ=0

(n− 2δ)pd(n−2δ,k−δ)
(n
δ

)
p2
. (5.3.1)

Remark 5.4. We point out that this theorem seems to be more than a technical
result. It is at the heart of the understanding of these cycles we constructed.

Proof. We first claim that N (n, k)= N (n, n+ 1− k) for 1≤ k ≤ n. Let (L1, L2)

be an S-valued point of Gr(n, k)×Gr(n, k−1), and Qi =O⊕n
S /L i for i = 1, 2 be

the corresponding quotient bundles. Then (L1, L2) 7→ (Q∗2, Q∗1) defines a duality
isomorphism

θ : Gr(n, k)× Gr(n, k− 1)−→∼ Gr(n, n+ 1− k)× Gr(n, n− k).

Since L(p)2 ⊆ L1 (resp. L2⊆ L(p)1 ) is equivalent to Q∗1⊆Q∗,(p)2 (resp. to Q∗,(p)1 ⊆Q∗2),
θ induces an isomorphism between Z (n)k and Z (n)n+1−k . It is also direct to check that
Ek = θ

∗(En+1−k). This verifies the claim. Now since the right hand side of (5.3.1)
is also invariant under replacing k by n+ 1− k, it suffices to prove the theorem
when k ≤ 1

2(n+ 1).
We reduce the proof of the theorem to an analogous situation where the twists

are given on one of the L i . Let Z̃ 〈n〉k be the subscheme of Gr(n, k)×Gr(n, k− 1)
whose S-valued points are the isomorphism classes of pairs (L̃1, L̃2), where L̃1 and
L̃2 are respectively subbundles of O⊕n

S of rank k and k− 1 satisfying L̃2 ⊆ L̃1 and
L̃(p

2)

2 ⊆ L̃1. The relative Frobenius morphisms on the two Grassmannian factors
induce two morphisms

Z 〈n〉k
ϕ

// Z̃ 〈n〉k
ϕ̂
// (Z 〈n〉k )(p)

(L1, L2)
� // (L(p)1 , L2)

(L̃1, L̃2)
� // (L̃1, L̃(p)2 ),
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such that the composition is the relative Frobenius on Z̃ 〈n〉k . Using a simple defor-
mation computation, we see that ϕ has degree pn−k and ϕ̂ has degree pk−1. Let L̃1

and L̃2 denote the universal subbundles on Gr(n, k)×Gr(n, k−1) when restricted
to Z̃ 〈n〉k ; let Q̃1 and Q̃2 denote the universal quotients, respectively. We put

Ẽk = (L̃1/L̃
(p2)

2 )∗⊗ L̃(p
2)

2 ⊕ (L̃1/L̃2)⊗ Q̃∗1, (5.4.1)

which is a vector bundle of rank n− 1 on Z̃ 〈n〉k .
Note that

ϕ∗(Ẽk)= (L
(p)
1 /L(p

2)

2 )∗⊗L(p
2)

2 ⊕ (L(p)1 /L2)⊗Q∗,(p)1 .

Comparing with Ek , we see that cn−1(ϕ
∗(Ẽk)) = pk−1cn−1(Ek), where the factor

pk−1 comes from the Frobenius twist on the first factor. Thus, we have∫
Z̃ 〈n〉k

cn−1(Ẽk)= (degϕ)−1
∫

Z 〈n〉k

cn−1(ϕ
∗(Ẽk))

= pk−n
∫

Z 〈n〉k

pk−1cn−1(Ek)= p2k−n−1 N (n, k). (5.4.2)

Since d(n− 2δ, k− δ)+ 2k− n− 1= 2(k− δ− 1)(n− k− δ+ 1), the theorem is
in fact equivalent to the following (for each fixed k). �

Proposition 5.5. For 1≤ k ≤ (n+ 1)/2, we have

∫
Z̃ 〈n〉k

cn−1(Ẽk)= (−1)n−1
k−1∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2
. (5.5.1)

Remark 5.6. Before giving the proof of this proposition, we point out a variant of
the construction of Z̃ 〈n〉k . Let Z̃ ′〈n〉k be the subscheme of Gr(n, k)× Gr(n, k − 1)
whose S-valued points are the isomorphism classes of pairs (L̃ ′1, L̃ ′2), where L̃ ′1 and
L̃ ′2 are respectively subbundles of O⊕n

S of rank k and k− 1 satisfying L̃ ′2 ⊆ L̃ ′1 and
L̃ ′2 ⊆ L̃ ′(p

2)

1 (Note that the twist is on L ′1 as opposed to be on L ′2). This is again a
certain partial-Frobenius twist of Z 〈n〉k ; it is smooth of dimension n− 1. Define the
universal subbundles and quotient bundles L̃′1, L̃′2, Q̃′1, and Q̃′2 similarly. We put

Ẽ ′k = (L̃
′

1/L̃
′

2)
∗
⊗ L̃′2⊕ (L̃

′(p2)

1 /L̃′2)⊗ (Q̃
′∗

1 )
(p2).

Using the same argument as above, we see that, for every fixed k,∫
Z̃ ′〈n〉k

cn−1(Ẽ ′k)= pn+1−2k N (n, k).
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Note that the exponent is different from (5.4.2). So Proposition 5.5 for each fixed k
is equivalent to∫

Z̃ ′〈n〉k

cn−1(Ẽ ′k)= (−1)n−1
k−1∑
δ=0

(n− 2δ)p2(k−δ)(n−k−δ)
(n
δ

)
p2
,

as 2(k− δ)(n− k− δ)= d(n− 2δ, k− δ)+ n− 2k+ 1.

Proof of Proposition 5.5. We first prove it in the case of k = 1, 2 and then we
explain an inductive process to deal with the general case.

When k = 1, Z̃ 〈n〉1 classifies a line subbundle L̃1 of O⊕n
S with no additional

condition (as L̃2 is zero); so Z̃ 〈n〉1
∼= Pn−1 and L̃1 =OPn−1(−1). The vector bundle

Ẽ1 is equal to L̃1⊗ Q̃∗1. It is straightforward to check that

c(Ẽ1)=
(
1+ c1(OPn−1(−1))

)n and hence
∫

Z̃ 〈n〉1

cn−1(Ẽ1)= (−1)n−1n;

the proposition is proved in this case.
When k = 2, we consider a forgetful morphism

ψ : Z̃ 〈n〉2 → Z̃ 〈n〉1 , (L̃1, L̃2) 7→ L̃2.

This morphism is an isomorphism over the closed points x ∈ Z̃ 〈n〉1 (Fp) for which
L̃2,x 6= L̃(p

2)

2,x , because in this case L̃1,x is forced to be L̃2,x + L̃(p
2)

2,x . On the
other hand, for a closed point x ∈ Z̃ 〈n〉1 (Fp) where L̃2,x = L̃(p

2)

2,x , i.e., for x ∈
Z̃ 〈n〉1 (Fp2)∼= Pn−1(Fp2), ψ−1(x) is the space classifying a line L̃1 in F⊕n

p /L̃2,x ; so
ψ−1(x)' Pn−2. A simple tangent space computation shows that ψ is the blowup
morphism of Z̃ 〈n〉1

∼=Pn−1 at all of its Fp2-points. We use E to denote the exceptional
divisors, which is a disjoint union of

(n
1

)
p2 copies of Pn−2.

Note that the vanishing of the morphism L̃2→ L̃1/L̃
(p2)

2 defines the divisor E
(as we can see using deformation); so

OZ̃ 〈n〉2
(E)∼= L̃1/L̃

(p2)

2 ⊗ L̃−1
2 .

Put η = c1(L̃2)= ψ
∗c1(OPn−1(−1)) and ξ = c1(E). Then

c(Ẽ2)= c
(
(L̃1/L̃

(p2)

2 )∗⊗ L̃(p
2)

2

)
· c
(
(L̃1/L̃2)⊗ Q̃∗1

)
= (1− ξ + (p2

− 1)η) · (1+ ξ + p2η)n/(1+ ξ + (p2
− 1)η), (5.6.1)

where the computation of the second term comes from the following two exact
sequences

0→ (L̃1/L̃2)⊗ Q̃∗1→ (L̃1/L̃2)
⊕n
→ (L̃1/L̃2)⊗ L̃∗1→ 0;

0→OZ̃ 〈n〉2
→ (L̃1/L̃2)⊗ L̃∗1→ (L̃1/L̃2)⊗ L̃∗2→ 0.
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Note that
∫

Z̃ 〈n〉2
ξ iη j
= 0 unless (i, j)= (n− 1, 0) or (0, n− 1), in which case∫

Z̃ 〈n〉2

ηn−1
= (−1)n−1 and

∫
Z̃ 〈n〉2

ξ n−1
= (−1)n

(n
1

)
p2
.

Here, to prove the last formula, we used the fact that the restriction of OZ̃ 〈n〉2
(E) to

each irreducible component Pn−2 of E is isomorphic to OPn−2(−1). So it suffices
to compute

• the ξ n−1-coefficient of (5.6.1), which is the same as the ξ n−1-coefficient of
(1− ξ)(1+ ξ)n−1 and is equal to 2− n; and

• the ηn−1-coefficient of (5.6.1), which is the same as the ηn−1-coefficient of
(1+(p2

−1)η)(1+ p2η)n/(1+(p2
−1)η)= (1+ p2η)n and is equal to np2(n−1).

To sum up, we see that∫
Z̃ 〈n〉2

cn−1(Ẽ2)= (−1)n−1np2(n−1)
+ (−1)n(2− n)

(n
1

)
p2
,

which is exactly (5.5.1) for k = 2.
In general, we make an induction on k. Assume that the proposition is proved

for k− 1≥ 1 and we now prove the proposition for k (assuming that k ≤ 1
2(n+ 1)).

By Remark 5.6, we get the similar intersection formula for Ẽ ′k−1 on Z̃ ′〈n〉k−1:∫
Z̃ ′〈n〉k−1

cn−1(Ẽ ′k−1)= (−1)n−1
k−2∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2
. (5.6.2)

We consider the moduli space W over Fp2 whose S-points are tuples (L̃1, L̃2 =

L̃ ′2, L̃ ′3), where L̃1, L̃2 and L̃ ′3 are respectively subbundles of O⊕n
S of rank k, k− 1

and k−2 satisfying L̃ ′3⊂ L̃2⊂ L̃1 and L̃ ′3⊂ L̃(p
2)

2 ⊂ L̃1. It is easy to use deformation
theory to check that W is a smooth variety of dimension n − 1. There are two
natural morphisms

W
ψ23

  

ψ12

��

(L̃1, L̃2 = L̃ ′2, L̃ ′3)0

xx

�

&&

Z̃ 〈n〉k Z̃ ′〈n〉k−1 (L̃1, L̃2) (L̃ ′2, L̃ ′3).

Let E denote the subspace of W whose closed points x ∈ W (Fp) are those such
that L̃2,x = L̃(p

2)

2,x , i.e., L̃2,x is an Fp2-rational subspace of F⊕n
p2 of dimension k− 1.

It is clear that E is a disjoint union of
( n

k−1

)
p2 copies (corresponding to the choices

of L̃2) of Pn−k
×Pk−2 (corresponding to the choice of L̃1 and L̃ ′3 respectively). It

gives rise to a smooth divisor on W.
For a point x ∈ (W \ E)(Fp), we have L̃2,x 6= L̃(p

2)

2,x and hence it uniquely deter-
mines both L̃1,x and L̃ ′3,x ; so ψ12 and ψ23 are isomorphisms restricted to W \E . On
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the other hand, when restricted to E , ψ12 contracts each copy of Pn−k
×Pk−2 of E

into the first factor Pn−k ; whereas ψ23 contracts each copy of Pn−k
×Pk−2 of E into

the second factor Pk−2. It is clear from this (with a little bit of help from a deforma-
tion argument) that ψ12 is the blowup of Z̃ 〈n〉k along ψ12(E) and ψ23 is the blowup
of Z̃ ′〈n〉k−1 along ψ23(E); the divisor E is the exceptional divisor for both blowups.

A simple deformation theory argument shows that the normal bundle of E
in W when restricted to each component Pn−k

×Pk−2 is OPn−k (−1)⊗OPk−2(−1).
Moreover, we can characterize E as the zero locus of either one of the following
natural homomorphisms

L̃(p
2)

2 /L̃′3→ L̃1/L̃2, L̃2/L̃′3→ L̃1/L̃
(p2)

2 .

So as a line bundle over W, we have

OW (E)∼= (L̃
(p2)

2 /L̃′3)
−1
⊗ (L̃1/L̃2)∼= (L̃2/L̃′3)

−1
⊗ (L̃1/L̃

(p2)

2 ).

We want to compare∫
Z̃ 〈n〉k

cn−1(Ẽk)=

∫
W

cn−1(ψ
∗

12(Ẽk)) and∫
Z̃ ′〈n〉k−1

cn−1(Ẽ ′k−1)=

∫
W

cn−1(ψ
∗

23(Ẽ
′

k−1)).

(5.6.3)

We will show that they differ by (2k− n− 2)(−1)n
( n

k−1

)
p2 and this will conclude

the proof of the proposition by inductive hypothesis (5.6.2). Indeed, we have

c
(
ψ∗12(Ẽk)

)
= c

(
(L̃1/L̃

(p2)

2 )∗⊗ L̃(p
2)

2

)
· c
(
(L̃1/L̃2)⊗ Q̃∗1

)
, (5.6.4)

c
(
ψ∗23(Ẽ

′

k−1)
)
= c

(
(L̃2/L̃′3)

∗
⊗ L̃′3

)
· c
(
(L̃(p

2)

2 /L̃′3)⊗ Q̃∗,(p
2)

2

)
, (5.6.5)

where Q̃1 and Q̃2 are the universal quotient vector bundles. Consider the following
two exact sequences where the two last terms are identified:

OW (E)⊗(L̃1/L̃
(p2)

2 )−1
⊗L̃(p

2)

2
OO

∼=
��

0 // (L̃2/L̃′3)
−1
⊗L̃′3 // (L̃2/L̃′3)

−1
⊗L̃(p

2)

2
// (L̃2/L̃′3)

−1
⊗(L̃(p

2)

2 /L̃′3) //

OO

∼=
��

0

0 // (L̃1/L̃2)⊗Q̃∗1 // (L̃1/L̃2)⊗Q̃
∗,(p2)

2
OO

∼=
��

// (L̃1/L̃2)⊗(Q̃
∗,(p2)

2 /Q̃∗1) // 0.

OW (E)⊗(L̃
(p2)

2 /L̃′3)⊗Q̃
∗,(p2)

2
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Here the right vertical isomorphism is given by

(L̃1/L̃2)⊗ (Q̃
∗,(p2)

2 /Q̃∗1)∼= (L̃1/L̃2)⊗ (L̃1/L̃
(p2)

2 )−1

∼=
(
(L̃(p

2)

2 /L̃′3)⊗OW (E)
)
⊗
(
(L̃2/L̃′3)⊗OW (E)

)−1

∼= (L̃2/L̃′3)
−1
⊗ (L̃(p

2)

2 /L̃′3).

From these two exact sequences we see that

c
(
(L̃2/L̃′3)

−1
⊗ L̃′3

)
· c
(
OW (E)⊗ (L̃

(p2)

2 /L̃′3)⊗ Q̃∗,(p
2)

2

)
= c

(
(L̃1/L̃2)⊗ Q̃∗1

)
· c
(
OW (E)⊗ (L̃1/L̃

(p2)

2 )−1
⊗ L̃(p

2)

2

)
.

Comparing this with (5.6.5) and (5.6.4), we get

cn−1(ψ
∗

12(Ẽk))−cn−1(ψ
∗

23(Ẽ
′

k−1))

=
(
ck−1((L̃1/L̃

(p2)

2 )−1
⊗L̃(p

2)

2 )−ck−1(OW (E)⊗(L̃1/L̃
(p2)

2 )−1
⊗L̃(p

2)

2 )
)
·cn−k((L̃1/L̃2)⊗Q̃∗1)

−ck−2((L̃2/L̃′3)
−1
⊗L̃′3)·

(
cn−k+1((L̃

(p2)

2 /L̃′3)⊗Q̃
∗,(p2)

2 )−cn−k+1(OW (E)⊗(L̃
(p2)

2 /L̃′3)⊗Q̃
∗,(p2)

2 )
)
.

Recall that E is the exceptional divisor for the blow-up ψ12 centered at a disjoint
union of Pn−k ; so c1(E) kills ψ∗12(A

i (Z̃ 〈n〉k )) for i ≥ n−k+1. Similarly, c1(E) kills
ψ∗23(A

i (Z̃ ′〈n〉k−1)) for i ≥ k − 1. As a result, we can rewrite the above complicated
formula as

cn−1(ψ
∗

12(Ẽk))− cn−1(ψ
∗

23(Ẽ
′

k−1))

=−c1(E)k−2
|E · cn−k((L̃1/L̃2)⊗ Q̃∗1)+ ck−2((L̃2/L̃′3)

−1
⊗ L̃′3) · c1(E)n−k

|E

= (−1)k−1cn−k((L̃1/L̃2)⊗ Q̃∗1)|ψ12(E)+ (−1)n−kck−2((L̃2/L̃′3)
−1
⊗ L̃′3)|ψ23(E).

For the first term, over each Pn−k of ψ12(E), it is to take the top Chern class of the
canonical subbundle of rank n− k twisted by OPn−k (−1); so the degree of the first
term is (−1)n−k(n− k+1) on each Pn−k. Similarly, for the second term, over each
Pk−2, it is the top Chern class of the canonical subbundle of rank k− 2 twisted by
OPk−2(−1); so the degree of the second term is (−1)k−2(k− 1) on each Pk−2. To
sum up, we have∫

W
cn−1(ψ

∗

12(Ẽk))−

∫
W

cn−1(ψ
∗

23(Ẽ
′

k−1))

= (−1)k−1(−1)n−k(n−k+1)
( n

k−1

)
p2
+(−1)n−k(−1)k−2(k−1)

( n
k−1

)
p2

= (−1)n−1(n−2k+2)
( n

k−1

)
p2
. (5.6.6)
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So by the inductive hypothesis,∫
Z̃ 〈n〉k

cn−1(Ẽk)
(5.6.3)
=

∫
W

cn−1(ψ
∗

12(Ẽk))

(5.6.6)
=

∫
W

cn−1(ψ
∗

23(Ẽk))+ (−1)n−1(n− 2k+ 2)
( n

k−1

)
p2
.

(5.6.3)
=

∫
Z̃ ′〈n〉k−1

cn−1(Ẽ ′k−1)+ (−1)n−1(n− 2k+ 2)
(

n
k− 1

)
p2

= (−1)n−1
k−2∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2

+ (−1)n−1(n− 2k+ 2)
( n

k−1

)
p2

= (−1)n−1
k−1∑
δ=0

(n− 2δ)p2(k−δ−1)(n−k−δ+1)
(n
δ

)
p2
.

This shows the statement of the proposition for k and hence concludes the proof. �

6. Intersection matrix of supersingular cycles on Sh1,n−1

Throughout this section, we fix an integer n≥ 2 and keep the notation as in Section 4.
We will study the intersection theory of cycles Yj for 1≤ j≤n on Sh1,n−1 considered
in Section 4. For this, we may assume the following:

Hypothesis 6.1. We assume that the tame level structure K p is taken sufficiently
small so that Lemma 4.13 holds with N = 2.

6.2. Hecke correspondences on Sh0,n. Recall that we have an isomorphism

G(Qp)'Q×p ×GLn(Ep)∼=Q×p ×GLn(Qp2).

Put Kp =GLn(OEp) and Kp = Z×p × Kp. The Hecke algebra Z[Kp \GLn(Ep)/Kp]

can be viewed as a subalgebra of Z[Kp \ G(Qp)/Kp] (with trivial factor at the
Q×p -component).

For γ ∈GLn(Ep), the double coset Tp(γ ) := Kpγ Kp defines a Hecke correspon-
dence on Sh0,n . It induces a set theoretic Hecke correspondence

Tp(γ ) : Sh0,n(Fp)→ S(Sh0,n(Fp)),

where S(Sh0,n(Fp)) denotes the set of subsets of Sh0,n(Fp). By Remark 4.12,
Sh0,n(Fp) is a union of # ker1(Q,G0,n)-isogeny classes of abelian varieties. Fix a
base point z0 ∈ Sh0,n(Fp). Let

2z0 : Isog(z0)−→
∼ G0,n(Q) \ (G(A∞,p)×G(Qp))/K p

× Kp.
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be the bijection constructed as in Corollary 4.11. Write Kpγ Kp =
∐

i∈I γi Kp.
If z ∈ Isog(z0) corresponds to the class of (g p, gp) ∈ G(A∞,p) × G(Qp) with
gp = (gp,0, gp), then Tp(γ )(z) consists of points in Isog(z0) corresponding to the
class of (g p, (gp,0, gpγi )) for all i ∈ I.

Alternatively, Tp(γ ) has the following description. Write z= (A, λ, η), and let Lz

denote the Zp2-free module D̃(A)◦,F
2
=p

1 . Then a point z′ = (B, λ′, η′) ∈ Sh0,n(Fp)

belongs to Tp(γ )(z) if and only if there exists an OD-equivariant p-quasi-isogeny
φ : B ′→ B (i.e., pmφ is an isogeny of p-power order for some integer m) such that

(1) φ∨ ◦ λ ◦φ = λ′,

(2) φ ◦ η′ = η,

(3) φ∗(Lz′) is a lattice of Lz[1/p] = Lz ⊗Zp2 Qp2 with the property: there exists a
Zp2-basis (e1, . . . , en) for Lz such that (e1, . . . , en)γ is a Zp2-basis for φ∗(Lz′).

When γ = Diag(pa1, . . . , pan ) with ai ∈ {−1, 0, 1}, For given z and z′, such a φ is
necessarily unique if it exists, by Lemma 4.13 (with N = 2). Therefore, Tp(γ )(z)
is in natural bijection with the set of Zp2-lattices L′ ⊆ Lz[1/p] satisfying property
(3) above.

For each integer i with 0≤ i ≤ n, we put

T (i)
p = Tp(Diag(p, . . . , p︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
n−i

)).

By the discussion above, one has a natural bijection

T (i)
p (z)−→∼ {Lz′ ⊆ Lz[1/p] | pLz ⊆ Lz′ ⊆ Lz, dimFp2 (Lz/Lz′)= i}

for z ∈ Sh0,n(Fp). Note that T (0)
p = id, and we put Sp := T (n)

p . Then the Satake
isomorphism implies Z[Kp \GLn(Ep)/Kp]

∼= Z[T (1)
p , . . . , T (n−1)

p , Sp, S−1
p ]. More

generally, for 0≤ a ≤ b ≤ n, we put

R(a,b)p = Tp(Diag(p2, . . . , p2︸ ︷︷ ︸
a

, p, . . . , p︸ ︷︷ ︸
b−a

, 1, . . . , 1︸ ︷︷ ︸
n−b

)).

Note that R(0,i)p = T (i)
p , and R(a,b)p S−1

p is the Hecke operator

Tp(Diag(p, . . . , p︸ ︷︷ ︸
a

, 1, . . . , 1︸ ︷︷ ︸
b−a

, p−1, . . . , p−1︸ ︷︷ ︸
n−b

)).

For the explicit relations between R(a,b)p and T (i)
p , see Proposition A.1.

6.3. Refined Gysin homomorphism. For an algebraic variety X over Fp of pure
dimension N and any integer r ≥ 0, we write Ar (X) = AN−r (X) to denote the
group of dimension r (codimension N−r ) cycles in X modulo rational equivalence.
Recall that the restriction of pr j : Yj → Sh1,n−1 to each Y j,z for z ∈ Sh0,n(Fp) and
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1 ≤ j ≤ n is a regular closed immersion (into Sh1,n−1). There is a well-defined
Gysin homomorphism

pr!j : An−1(Sh1,n−1)→ A0(Y j )=
⊕

z∈Sh0,n(Fp)

A0(Y j,z), (6.3.1)

whose composition with the natural projection A0(Y j )→ A0(Y j,z) is the refined
Gysin map (pr j |Y j,z )

! defined in [Fulton 1998, 6.2] for regular immersions. Let
X ⊆ Sh1,n−1 be a closed subvariety of dimension n − 1. Consider the Cartesian
diagram

Y j ×Sh1,n−1
X

gX
//

g j

��

X

��

Y j

pr j
// Sh1,n−1.

Assume that the restriction of gX to each Y j,z ×Sh1,n−1
X with z ∈ Sh0,n(Fp) is a

regular closed immersion as well. Then pr!j ([X ]) ∈ A0(Y j ) can be described as
follows. Put NY j,z (Sh1,n−1) := pr∗j (TSh1,n−1

)/TY j,z , and we define NY j,z×Sh1,n−1
X (X)

in a similar way. We define the excess vector bundle as

E(Y j,z, X) := g∗j NY j,z (Sh1,n−1)/NY j,z×Sh1,n−1
X (X).

This is a vector bundle on Y j,z×Sh1,n−1
X. Let r be its rank function, which is equal

to the dimension of Y j ×Sh1,n−1
X on each of its connected component. Then the

excess intersection formula [Fulton 1998, 6.3] shows that

pr!j ([X ])=
∑

z∈Sh0,n(Fp)

∫
Y j,z×Sh1,n−1

X
cr (E(Y j,z, X)), (6.3.2)

where cr (E(Y j,z, X)) is the top Chern class of E(Y j,z, X) over Y j,z ×Sh1,n−1
X. The

integration should be understood as the sum over all connected components of
Y j,z ×Sh1,n−1

X of the degrees of cr (E(Y j,z, X)).

Proposition 6.4. Let i, j be integers with 1≤ i ≤ j ≤ n and z, z′ ∈ Sh0,n(Fp).

(1) The subvarieties Yi,z and Y j,z′ of Sh1,n−1 have nonempty intersection if and
only if there exists an integer δ with 0 ≤ δ ≤ min{n − j, i − 1} such that
z′ ∈ R( j−i+δ,n−δ)

p S−1
p (z), or equivalently z ∈ R(δ,n+i− j−δ)

p S−1
p (z′), where R(a,b)p

and Sp are the Hecke operators defined in Section 6.2.

(2) If the condition in (1) is satisfied for some δ, then Yi,z×Sh1,n−1
Y j,z′ is isomorphic

to the variety Z 〈n+i− j−2δ〉
i−δ defined in Section 5.2. Moreover, the excess vector

bundles E(Yi,z, Y j,z′) and E(Y j,z′, Yi,z) are both isomorphic to the vector bundle
(5.2.1) on Z 〈n+i− j−2δ〉

i−δ .
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Proof. Let (Bz, λz, ηz) and (Bz′, λz′, ηz′) be the universal polarized abelian varieties
on Sh0,n at z and z′, respectively. Then Yi,z ×Sh1,n−1

Y j,z′ is the moduli space of
tuples (A, λ, η, φ, φ′) where φ : Bz → A and φ′ : Bz′ → A are isogenies such
that (A, λ, η,Bz, λz, ηz, φ) and (A, λ, η,Bz′, ηz′, φ

′) are points of Yi,z and Y j,z′

respectively.
Assume first that Yi,z ×Sh1,n−1

Y j,z′ is nonempty, and let (A, λ, η, φ, φ′) be an
Fp-valued point of it. Denote by ω̃◦A∨,k ⊆ D̃(A)◦k for k = 1, 2 the inverse image of
ω◦

A∨/Fp,k
⊆ H dR

1 (A/Fp)
◦

k
∼= D̃(A)◦k/pD̃(A)◦k . We identify D̃(Bz)

◦

k and D̃(Bz′)
◦

k with

their images in D̃(A)◦k via φz,∗,k and φz′,∗,k . Then we have a diagram of inclusions
of W (Fp)-modules:

D̃(Bz)
◦

1 � s

δ

%%

pD̃(A)◦1
� � 1

// ω̃◦A∨,1
� �n− j−δ

// D̃(Bz)
◦

1 ∩ D̃(Bz′)
◦

1

+ �

j−i+δ
99

� s

δ

%%

D̃(Bz)
◦

1+ D̃(Bz′)
◦

1
� �i−δ−1

// D̃(A)◦1.

D̃(Bz′)
◦

1

+ �

j−i+δ
99

(6.4.1)

Here the numbers on the arrows indicate the Fp-dimensions of the cokernel of the
corresponding inclusions, which we shall compute below. By the definition of Yi

and Yj , we have

dimFp
(D̃(A)◦1/D̃(Bz)

◦

1)= dimFp
Coker(φ∗,1)= i − 1,

and similarly, dimFp
(D̃(Bz′)

◦

1/ω̃
◦

A∨,1)= n− j. Therefore, if we put

δ = dimFp

(
D̃(Bz)

◦

1+ D̃(Bz′)
◦

1
)
/D̃(Bz)

◦

1 = dimFp
D̃(Bz′)

◦

1/
(
D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1
)
,

we have 0≤ δ ≤min{i − 1, n− j}. Moreover, the quasi-isogeny φz,z′ = φ
−1
◦φ′ :

Bz′→ Bz makes Bz′ an element of Isog(z). We identify Lz′ defined in (4.11.1) with
a Zp2-lattice of Lz[1/p] via φz′,z,∗,1. Then

dimFp2 (Lz ∩ Lz′)/pLz = dimFp
(D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1)/pD̃(Bz)
◦

1 = n+ i − j − δ.

Take a Zp2-basis (e1, . . . , en) of Lz such that the image of (e j−i+δ+1, . . . , en) in
Lz/pLz form a basis of (Lz ∩Lz′)/pLz and such that p−1en−δ+1, . . . , p−1en form a
basis of (Lz + Lz′)/Lz . Then

(pe1, . . . , pe j−i+δ, e j−i+δ+1, . . . , en−δ, p−1en−δ+1, . . . , p−1en) (6.4.2)

is a basis of Lz′ , that is z′ ∈ R( j−i+δ,n−δ)
p S−1

p (z) according to the convention of
Section 6.2.
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Conversely, assume that there exists δ with 1 ≤ δ ≤ min{i − 1, n − j} such
that the point z′ ∈ R( j−i+δ,n−δ)

p S−1
p (z). We have to prove statement (2), then the

nonemptiness of Yi,z×Sh1,n−1
Y j,z′ will follow automatically. Let φz′,z : Bz′→ Bz be

the unique quasi-isogeny which identifies Lz′ with a Zp2-lattice of Lz[1/p]. By the
definition of R( j−i+δ,n−δ)

p S−1
p , there exists a basis e1, . . . , en of Lz such that (6.4.2)

is a basis of Lz′ . One checks easily that p(Lz + Lz′)⊆ Lz ∩ Lz′ . We put

Mk =
(
D̃(Bz)

◦

k ∩ D̃(Bz′)
◦

k
)/

p
(
D̃(Bz)

◦

k + D̃(Bz′)
◦

k
)

for k = 1, 2. Then one has

dimFp
(Mk)= dimFp2 (Lz ∩ Lz′)/p(Lz + Lz′)= n+ i − j − 2δ.

The Frobenius and Verschiebung on D̃(Bz) induce two bijective Frobenius semilinear
maps F :M1→M2 and V−1

:M2→M1. We denote their linearizations by the same
notation if no confusions arise. Let Zδ(M•) be the moduli space which attaches
to each locally noetherian Fp-scheme S the set of isomorphism classes of pairs
(L1, L2), where L1⊆ M1⊗Fp

OS and L2⊆ M2⊗Fp
OS are subbundles of rank i−δ

and i − 1− δ respectively such that

L2 ⊆ F(L(p)1 ), V−1(L(p)2 )⊆ L1.

Note that there exists a basis (εk,1,...,εk,n+i− j−2δ) of Mk for k = 1, 2 under which
the matrices of F and V−1 are both identity. Indeed, by solving a system of equations
of Artin–Schreier type, one can take a basis (ε1,`)1≤`≤n+i− j−2δ for M1 such that

V−1(F(ε1,`))= ε1,` for all 1≤ `≤ n+ i − j − 2δ.

We put ε2,`= F(ε1,`). Using these bases to identify both M1 and M2 with F
n+i− j−2δ
p ,

it is clear that Zδ(M•) is isomorphic to the variety Z 〈n+i− j−2δ〉
i−δ considered in

Section 5.2.
We have to establish an isomorphism between Zδ(M•) and Yi,z×Sh1,n−1

Y j,z′ . Let
(L1, L2) be an S-point of Zδ(M•). Note that there is a natural surjection(

(D̃(Bz)
◦

k ∩ D̃(Bz′)
◦

k)/pD̃(Bz)
◦

k
)
⊗Fp

OS→ Mk ⊗Fp
OS.

We define Hz,k for k= 1, 2 to be the inverse image of Lk under this surjection. Then
Hz,k can be naturally viewed as a subbundle of D(Bz)

◦

k⊗Fp
OS of rank i+1−k, and

we have Hz,2 ⊆ F(H (p)
z,1 ) and V−1(H (p)

z,2 ) ⊆ Hz,1 since the pair (L1, L2) verifies
similar properties. Therefore, (L1, L2) 7→ (Bz,S, λz,S, ηz,S, Hz,1, Hz,2) gives rise to
a well-defined map ϕ′i,z : Zδ(M•)→ Y ′i,z , where (Bz,S, λz,S, ηz,S) is the base change
of (Bz, λz, ηz) to S. Similarly, we have a morphism ϕ′j,z′ : Zδ(M•)→ Y ′j,z′ defined
by (L1, L2) 7→ (Bz′,S, λz′,S, ηz′,S, Hz′,1, Hz′,2), where Hz′,k is the inverse image of



Tate cycles on some unitary Shimura varieties mod p 2263

Lk under the natural surjection:(
(D̃(Bz)

◦

k ∩ D̃(Bz′)
◦

k)/pD̃(Bz′)
◦

k
)
⊗Fp

OS→ Mk ⊗Fp
OS.

By Proposition 4.8, we get two morphisms

ϕi,z : Zδ(M•)→ Yi,z, ϕ j,z′ : Zδ(M•)→ Y j,z′ .

We claim that pri ◦ϕi,z = pr j ◦ϕ j,z , so that (ϕi,z, ϕ j,z′) defines a map

ϕ : Zδ(M•)→ Yi,z ×Sh1,n−1
Y j,z′ .

Since Yi,z ×Sh1,n−1
Y j,z′ is separated, the locus where pri ◦ϕi,z coincides with

pr j ◦ϕ j,z is a closed subscheme of Zδ(M•). As Zδ(M•) is reduced, it is enough to
show pri (ϕi,z(x)) = pr j (ϕ j,z(x)) for each closed geometric point x = (L1, L2) ∈

Zδ(M•)(Fp). Let (A, λ, η,Bz, λz, ηz, φ) and (A′, λ′, η′,Bz′, λz′, η
′

z′, φ
′) be respec-

tively the image of (L1, L2) under ϕi,z and ϕ j,z′ . To prove the claim, we have to
show that there is an isomorphism (A, λ, η) ∼= (A′, λ′, η′) as objects of Sh1,n−1.
We identify D̃(Bz′), D̃(A), D̃(A′) with W (Fp)-lattices of D̃(Bz)[1/p] via the quasi-
isogenies φz′,z : Bz′ → Bz , φ−1

: A→ Bz and φ−1
z′,z ◦ φ

′
: A′→ Bz . Then by the

construction of A (cf., the proof of Proposition 4.8), D̃(A)◦1 and ω̃◦A∨,1 fit into the
diagram (6.4.1) such that there is a canonical isomorphism

L1 ∼= ω̃
◦

A∨,1
/

p
(
D̃(Bz)

◦

1+ D̃(Bz′)
◦

1
)

⊆
(
D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1
)/

p
(
D̃(Bz)

◦

1+ D̃(Bz′)
◦

1
)
= M1. (6.4.3)

Similarly, we have

L2 ∼= pω̃◦A∨,2/p
(
D̃(Bz)

◦

2+ D̃(Bz′)
◦

2
)

⊆
(
D̃(Bz)

◦

2 ∩ D̃(Bz′)
◦

2
)/

p
(
D̃(Bz)

◦

2+ D̃(Bz′)
◦

2
)
= M2. (6.4.4)

It is easy to see that such relations determine D̃(A) uniquely from (L1, L2). But
the same argument shows that the same relations are satisfied with A replaced
by A′. Hence, we see that the quasi-isogeny f induces an isomorphism between
the Dieudonné modules of A and A′. As f is a p-quasi-isogeny, this implies
immediately that f is an isomorphism of abelian varieties, proving the claim.

It remains to prove that ϕ : Zδ(M•)−→
∼ Yi,z ×Sh1,n−1

Y j,z′ is an isomorphism. It
suffices to show that ϕ induces bijections on closed points and tangents spaces.
The argument is similar to the proof of Proposition 4.8. Indeed, given a closed
point x = (A, λ, η, φ, φ′) of Yi,z ×Sh1,n−1

Y j,z′ , one can construct a unique point
y= (L1, L2) of Zδ(M•) with ϕ(y)= x by the relations (6.4.3) and (6.4.4). It follows
immediately that ϕ induces a bijection on closed points. Let x and y be as above. By
the same argument as in Proposition 4.4, the tangent space of Zδ(M•) at y is given by

TZδ(M•),y
∼= (L1/V−1(L(p)2 ))∗⊗ (M1/L1)⊕ L∗2⊗ F(L(p)1 )/L2.
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On the other hand, using Grothendieck–Messing deformation theory, one sees easily
that the tangent space of Yi,z ×Sh1,n−1

Y j,z′ at x is given by

TYi,z×Sh1,n−1
Y j,z′ ,x

∼= HomFp

(
ω◦A∨,1,

(
D̃(Bz)

◦

1 ∩ D̃(Bz′)
◦

1
)/
ω̃◦A∨,1

)
⊕HomFp

(
ω̃◦A∨,2

/(
D̃(Bz)

◦

2+ D̃(Bz′)
◦

2
)
, D̃(A)◦2/ω̃

◦

A∨,2
)
.

From (6.4.3) and (6.4.4), we see easily that

ω◦A∨,1
∼= L1/V−1(L(p)2 ), D̃(Bz′)

◦

1)/ω̃
◦

A∨,1
∼= M1/L1,

ω̃◦A∨,2
/(

D̃(Bz)
◦

2+ D̃(Bz′)
◦

2
)
∼= L2, D̃(A)◦2/ω̃

◦

A∨,2
∼= F(L(p)1 )/L2.

It follows that ϕ induces a bijection between TZδ(M•),y and TYi,z×Sh1,n−1
Y j,z′ ,x . This

finishes the proof of Proposition 6.4. �

6.5. Applications to cohomology. Recall that we have a morphism JL j (4.16.1)
for each j = 1, . . . , n. We consider another map in the opposite direction:

ν j : H
2(n−1)
et (Sh1,n−1,Q`(n− 1))

pr∗j
−→ H 2(n−1)

et (Y j ,Q`)−→
∼ H 0

et(Sh0,n,Q`),

where the second isomorphism is induced by the trace map

Trpr′j : R
2(n−1) pr′j,∗Q`(n− 1)−→∼ Q`.

For 1≤ i, j ≤ n, we define

mi, j=ν j◦JLi :H 0
et(Sh0,n,Q`)

JLi
−−→H 2(n−1)

et (Sh1,n−1,Q`(n−1))
ν j
−→H 0

et(Sh0,n,Q`).

Putting all the morphisms JLi and ν j together, we get a sequence of morphisms:

n⊕
i=1

H 0
et(Sh0,n,Q`)

JL
−→ H 2(n−1)

et (Sh1,n−1,Q`(n− 1))

ν=(ν1,...,νn)
−−−−−−−→

n⊕
j=1

H 0
et(Sh0,n,Q`). (6.5.1)

We see that the composed morphism above is given by the matrix M= (mi, j )1≤i, j≤n ,
and we call it the intersection matrix of cycles Yj on Sh1,n−1. All these morphisms
are equivariant under the natural action of the Hecke algebra H(K p,Q`). We de-
scribe the intersection matrix in terms of the Hecke action of Q`[Kp\GLn(Ep)/Kp]

on H 0
et(Sh0,n,Q`).

The group H 0
et(Sh0,n,Q`) is the space of functions on Sh0,n(Fp) with values

in Q`. For z ∈ Sh0,n(Fp), let ez denote the characteristic function of z. Then the
image of z under Kpγ Kp for γ ∈ GLn(Ep) is

[Kpγ Kp]∗(ez)=
∑

z′∈Tp(γ )(z)

ez′,
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where Tp(γ )(z)means the set theoretic Hecke correspondence defined in Section 6.2.
In the sequel, we will use the same notation Tp(γ ) to denote the action of [Kpγ Kp]

on H 0
et(Sh0,n,Q`). In particular, we have Hecke operators T (i)

p , Sp, R(a,b)p , . . . .

Proposition 6.6. For 1≤ i ≤ j ≤ n, we have

mi, j =

min{i−1,n− j}∑
δ=0

N (n+ i − j − 2δ, i − δ)R( j−i+δ,n−δ)
p S−1

p ,

m j,i =

min{i−1,n− j}∑
δ=0

N (n+ i − j − 2δ, i − δ)R(δ,n+i− j−δ)
p S−1

p ,

where N (n+ i − j − 2δ, i − δ) are the fundamental intersection numbers defined
by (5.2.2).

Proof. We have a commutative diagram:

An−1(Y i )
pri,∗

//

cl
��

An−1(Sh1,n−1)
pr!j

//

cl
��

A0(Y j )

cl
��

H 0
et(Y i ,Q`)

Gyspri
// H 2(n−1)

et (Sh1,n−1,Q`(n− 1))
pr∗j
// H 2(n−1)

et (Y j ,Q`).

(6.6.1)

Here, the vertical arrows are cycle class maps, and pr!j is the refined Gysin map
defined in (6.3.1). For z ∈ Sh0,n(Fp), the image of ez under mi, j is given by

mi, j (ez)= Trpr′j pr∗j Gyspri
cl([Yi,z])= Trpr′j

(
cl(pr!j pri,∗[Yi,z])

)
= Trpr′j

( ∑
z′∈Sh0,n(Fp)

cl
(
cr(z,z′)(E(Y j,z′, Yi,z))

)
· cl(Y j,z′ ×Sh1,n−1

Yi,z)

)

=

∑
z′∈Sh0,n(Fp)

(∫
Y j,z′×Sh1,n−1 Yi,z

cr(z,z′)(E(Y j,z′, Yi,z))

)
ez′,

where r(z, z′) is the rank of E(Y j,z′, Yi,z), and we used (6.3.2) in the second step.
Indeed, Proposition 6.4(1) says that the schematic intersection Yi,z ×Sh1,n−1

Y j,z′ is
smooth, so the closed immersion Yi,z ×Sh1,n−1

Y j,z′ ↪→ Y j,z′ is a regular immersion
and the assumptions for (6.3.2) are thus satisfied here.

By Proposition 6.4(1), ez′ has a nonzero contribution to the summation above
if and only if there exists an integer δ with 0 ≤ δ ≤ min{i − 1, n − j} such that
z′ ∈ R( j−i+δ,n−δ)

p S−1
p (z). In that case, Proposition 6.4(2) implies that the coefficient

of ez′ is nothing but the fundamental intersection number N (n+ i − j − 2δ, i − δ)
defined in (5.2.2). The formula for mi, j now follows immediately. The formula for
m j,i is proved in the same manner. �
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If we express mi, j in terms of the elementary Hecke operators T (k)
p , we get the

following.

Theorem 6.7. Put d(n, k)= (2k−1)n−2k(k−1)−1 for integers 1≤ k ≤ n. Then,
for 1≤ i ≤ j ≤ n, we have

mi, j =

min{i−1,n− j}∑
δ=0

(−1)n+1+i− j (n+i− j−2δ)pd(n+i− j−2δ,i−δ)T ( j−i+δ)
p T (n−δ)

p S−1
p ,

m j,i =

min{i−1,n− j}∑
δ=0

(−1)n+1+i− j (n+i− j−2δ)pd(n+i− j−2δ,i−δ)T (δ)
p T (n+i− j−δ)

p S−1
p .

Proof. We prove only the statement for mi, j , and that for m j,i is similar. By
Proposition A.1 in Appendix A, the right hand side of the first formula above is

min{i−1,n− j}∑
δ=0

(−1)n+1−i− j (n+ i − j − 2δ)pd(n+i− j−2δ,i−δ)

·

( δ∑
k=0

(n+i− j−2δ+2k
k

)
p2

R( j−i+δ−k,n−δ+k)
p S−1

p

)

=

min{i−1,n− j}∑
r=0

(?)R( j−i+r,n−r)
p S−1

p .

Here, we have put r = δ− k, and the expression ? in the parentheses is

?=

min{i−1−r,n− j−r}∑
k=0

(−1)n+1+i− j (n+ i − j − 2r − 2k)

· pd(n+i− j−2r−2k,i−r−k)
(n+i− j−2r

k

)
p2

= N (n+ i − j − 2r, i − r).

Here, the last equality is Theorem 5.3. The statement for mi, j now follows from
Proposition 6.6. �

Example 6.8. We write down explicitly the intersection matrices when n is small.

(1) Consider first the case n = 2. This case is essentially the same as the Hilbert
quadratic case studied in [Tian and Xiao 2014], and the intersection matrix can be
written:

M =

(
−2p T (1)

p

T (1)
p S−1

p −2p

)
.
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(2) When n = 3, Theorem 6.7 gives

M =

 3p2
−2pT (1)

p T (2)
p

−2pT (2)
p S−1

p 3p4
+ T (1)

p T (2)
p S−1

p −2pT (1)
p

T (1)
p S−1

p −2pT (2)
p S−1

p 3p2

 .
(3) The intersection matrix for n = 4 can be written:

M=


−4p3 3p2T (1)

p −2pT (2)
p T (3)

p

3p2T (3)
p S−1

p −4p7
−2pT (1)

p T (3)
p S−1

p 3p4T (1)
p +T (2)

p T (3)
p S−1

p −2pT (2)
p

−2pT (2)
p S−1

p 3p4T (3)
p S−1

p +T (1)
p T (2)

p S−1
p −4p7

−2pT (1)
p T (3)

p S−1
p 3p2T (1)

p

T (1)
p S−1

p −2pT (2)
p S−1

p 3p2T (3)
p S−1

p −4p3

.
6.9. Proof of Theorem 4.18(1). Let π ∈AK as in the statement of Theorem 4.18(1).
Consider the (π p)K p

-isotypic direct factor of the H(K p,Q`)-equivariant sequence
(6.5.1):

n⊕
i=1

H 0
et(Sh0,n,Q`)π p

JLπ
−−→ H 2(n−1)

et (Sh1,n−1,Q`(n− 1))π p

νπ
−→

n⊕
j=1

H 0
et(Sh0,n,Q`)π p . (6.9.1)

In particular, when i = j = 1, ν1 ◦JL1 is given by multiplication by −npn−1. So
the π p-isotypic component of (6.9.1) is nonzero. This implies that π p appears in
H 2(n−1)

et (Sh1,n−1,Q`(n−1)), i.e., there exist admissible irreducible representations
π ′p of G1,n−1(Qp) and π ′

∞
of G1,n−1(R), which is cohomological in degree n− 1,

such that π p
⊗ π ′p ⊗ π

′
∞

is a cuspidal automorphic representation π ′ ⊗ π ′
∞

of
G1,n−1(AQ). By Lemma 4.17, π ′'π satisfies Hypothesis 2.5(2) for a•= (1, n−1).
Thus, taking the π p-isotypic component of (6.9.1) is the same as taking its π-
isotypic component. From now on, we use subscript π in places of subscript π p.

If a(i)p denotes the eigenvalues of T (i)
p on πKp

p for each 1≤ i ≤ n, then T (i)
p acts

as the scalar a(i)p on all the terms in (6.9.1). Therefore, νπ ◦JLπ is given by the
matrix Mπ , which is obtained by replacing T (i)

p by a(i)p in each entry of M. By
definition, the απp,i are the roots of the Hecke polynomial (2.6.2):

Xn
+

n∑
i=1

(−1)i pi(i−1)a(i)p Xn−i .

Then Theorem 4.18(1) follows easily from the following.

Lemma 6.10. We have

det(Mπ )=±p
n(n2
−1)

3

∏
i< j (απp,i −απp, j )

2(∏n
i=1 απp,i

)n−1 .

Here, ± means that the formula holds up to sign. In particular, νπ ◦ JLπ is an
isomorphism if the απp,i are distinct.
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Proof. Put βi = απp,i/pn−1 for 1 ≤ i ≤ n. For i = 1, . . . , n, let si be the i-th
elementary symmetric polynomial in β1, . . . , βn . Then we have a(i)p = pi(n−i)si . It
follows from Theorem 6.7 that the (i, j)-entry of Mπ with 1≤ i ≤ j ≤ n is given by

mi, j (π)= s−1
n

min{i−1,n− j}∑
δ=0

(−1)n+1+i− j (n+ i − j − 2δ)

· pd(n+i− j−2δ,i−δ)+( j−i+δ)(n+i− j−δ)+δ(n−δ)s j−i+δsn−δ.

A direct computation shows that the exponent index on p in each term above is
independent of δ, and is equal to e(i, j) := (n+1)(i+ j−1)− (i2

+ j2). The same
holds when i > j. In summary, we get mi, j (π)= s−1

n pe(i, j)m′i, j (π) with

m′i, j (π)=

{∑min{i−1,n− j}
δ=0 (−1)n+1+i− j (n+ i − j − 2δ)s j−i+δsn−δ, if i ≤ j,∑min{ j−1,n−i}
δ=0 (−1)n+1+ j−i (n+ j − i − 2δ)sδsn+ j−i−δ, if i > j.

For any n-permutation σ , we have

n∑
i=1

e(i, σ (i))=
n(n2
− 1)

3
.

Thus we get det(Mπ )= pn(n2
−1)/3s−n

n det(m′i, j (π)). The rest of the computation is
purely combinatorial, which is the case q =−1 of Theorem B.1 in Appendix B. �

Remark 6.11. We point out that the determinant of the intersection matrix com-
puted by Theorem B.1 holds with an auxiliary variable q. A similar phenomenon
also appeared in the case of Hilbert modular varieties [Tian and Xiao 2014], where
the computation was related to the combinatorial model of periodic semimeanders.
These motivate us to ask, out of curiosity, whether there might be some quantum
version of the construction of cycles, or even Conjecture 2.12, possibly for the
geometric Langlands setup.

6.12. Proof of Theorem 4.18(2). Given Theorem 4.18(1), it suffices to prove that

n dim H 0
et(Sh0,n,Q`)π ≥ dim H 2(n−1)

et (Sh1,n−1,Q`(n− 1))fin
π . (6.12.1)

Actually, by (2.4.1) and (2.6.3), we have

H 0
et(Sh0,n,Q`)π =π

K
⊗R(0,n),`(π), H 2(n−1)

et (Sh1,n−1,Q`)π =π
K
⊗R(1,n−1),`(π).

Write πp = πp,0⊗πp as a representation of G(Qp)'Q×p ×GLn(Ep). Let χπp,0 :

Gal(Fp/Fp2)→ Q×` denote the character sending Frobp2 to πp,0(p2), and let ρπp
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be as in (2.6.1). According to (2.6.3), up to semisimplification, we have

[R(0,n),`(π)] = # ker1(Q,G0,n)m0,n(π) (6.12.2)[
∧

nρπp ⊗χ
−1
πp,0
⊗Q`

( 1
2 n(n− 1)

)]
,

[R(1,n−1),`(π)] = # ker1(Q,G1,n−1)m0,n(π) (6.12.3)[
ρπp ⊗∧

n−1ρπp ⊗χ
−1
πp,0
⊗Q`

( 1
2(n− 1)(n− 2)

)]
.

Note that

dim
(
ρπp ⊗∧

n−1ρπp ⊗χ
−1
πp,0
⊗Q`

(
(n−1)(n−2)

2

))fin

=

∑
ζ

dim(ρπp ⊗∧
n−1ρπp)

Frobp2=pn(n−1)ζ
,

where the superscript “fin” means taking the subspace on which Gal(Fp/Fp2) acts
through a finite quotient, and ζ runs through all roots of unity. If απp,i/απp, j is not
a root of unity for any pair i 6= j, the right hand side above is equal to the sum of the
multiplicities of

∏n
i=1 απp,i = pn(n−1)ζ as eigenvalues of (ρπp⊗∧

n−1ρπp)(Frobp2),
which is n. Therefore, under these conditions on the απp,i , we have by (6.12.3)

dim R(1,n−1),`(π)
fin
≤ n · # ker1(Q,G1,n−1) ·m1,n−1(π),

and the equality holds if Frobp2 is semisimple on R(1,n−1),`(π). On the other hand,
we have from (6.12.2)

dim R(0,n),`(π)= # ker1(Q,G0,n) ·m0,n(π).

By a result of White [2012, Theorem E], the multiplicity ma•(π) above is equal to 1
for a•= (1, n−1) and a•= (0, n). Now the inequality (6.12.1) follows immediately
from this and the fact that # ker1(Q,G1,n−1)= # ker1(Q,G0,n). This finishes the
proof of Theorem 4.18(2). �

7. Construction of cycles in the case of G(U(r, s)×U(s, r))

We keep the notation of Section 3.6. In this section, we will give the construction
of certain cycles on Shimura varieties for G(U (r, s)×U (s, r)). We always assume
that s ≥ r .

7.1. Description of the cycles in terms of Dieudonné modules. Let δ be a nonneg-
ative integer with δ ≤ r . We consider the case of Conjecture 2.12 when n = r + s,
a1= r , a2= s, b1= r−δ, and b2= s+δ. The representation ra• of GLn involved is

ra• =∧
r Std⊗∧s Std .
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The weight λ of Conjecture 2.12 is

λ= (2, . . . , 2︸ ︷︷ ︸
r−δ

, 1, . . . , 1︸ ︷︷ ︸
s−r+2δ

, 0, . . . , 0︸ ︷︷ ︸
r−δ

).

By elementary calculation of representations of GLn , the multiplicity of λ in ra•
is mλ(a•)=

(s−r+2δ
δ

)
. Then Conjecture 2.12 thus predicts the existence of

(s−r+2δ
δ

)
cycles Yj on Shr,s , each of dimension

1
2(dim Shr,s + dim Shr−δ,s+δ)=

1
2(2rs+ 2(r − δ)(s+ δ))= 2rs− (s− r)δ− δ2,

and each admits a rational map to Shr−δ,s+δ . The principal goal of this section is to
construct these cycles, at least conjecturally. We start with the description in terms
of the Dieudonné modules at closed points.

Consider the interval [r − δ, s + δ]; it contains s − r + 2δ unit segments with
integer endpoints. We will parametrize the cycles on the Shimura variety by the
subsets of these s−r+2δ unit segments of cardinality δ. There are exactly

(s−r+2δ
δ

)
such subsets. Let j be one of them. Then we can write the union of all the segments
in j as

[ j1,1, j1,2] ∪ [ j2,1, j2,2] ∪ · · · ∪ [ jε,1, jε,2] (7.1.1)

such that all jα,i are integers,

r − δ ≤ j1,1 < j1,2 < j2,1 < j2,2 < · · ·< jε,1 < jε,2 ≤ s+ δ,

and we have
∑ε

α=1( jα,2 − jα,1) = δ. For notational convenience, we put j0,1 =
j0,2 = 0.

We define Z j to be the subset of Fp-points z of Shr,s such that the reduced
Dieudonné modules D̃(Az)

◦

1 and D̃(Az)
◦

2 contain submodules Ẽ1 and Ẽ2 satisfying
(3.2.1) for m = ε, i.e.,

pεD̃(Az)
◦

i ⊆ Ẽi , F(Ẽi )⊆ Ẽ3−i , and V (Ẽi )⊆ Ẽ3−i , for i = 1, 2,

and the following condition for i = 1, 2:

D̃(Az)
◦

i /Ẽi ' (W (Fp)/pε)⊕ j1,i ⊕ (W (Fp)/pε−1)⊕( j2,i− j1,i )⊕ · · ·

· · · ⊕ (W (Fp)/p)⊕( jε,i− jε−1,i ). (7.1.2)

We refer to the toy model discussed in Example 7.3 for the motivation of this
condition. For technical reasons, we will not prove the set Z j is the set of Fp-points
of a closed subscheme of Shr,s ; instead we prove that a closely related subset of Z j
is. See Remark 7.5.

Applying Proposition 3.2 with m = δ, the submodules Ẽ1 and Ẽ2 give rise to a
polarized abelian variety (A′z, λ′z) over z with an OD-action and an OD-equivariant



Tate cycles on some unitary Shimura varieties mod p 2271

isogeny A′z→Az . Moreover, by (3.2.2), we have

dimω◦A′∨z /Fp,1
= dimω◦A∨z /Fp,1

+

ε−1∑
α=0

(
(ε−α)( jα+1,1− jα,1)−(ε−α)( jα+1,2− jα,2)

)
= r−δ

and similarly dimω◦A′∨z /Fp,2= s+δ. So A′z satisfies the moduli problem for Shr−δ,s+δ;
this suggests a geometric relationship between Z j and Shr−δ,s+δ that we make
precise in Definition 7.4.

We make an immediate remark that when δ = r , the abelian variety Az coming
from a point z of Z j is isogenous to an abelian variety A′z that is a moduli object for
the Shimura variety Sh0,n . Thus both A′z and Az are supersingular. So every Z j is
contained in the supersingular locus of Shr,s . In fact, we shall show in Theorem 7.8
that the supersingular locus of Shr,s is exactly the union of these Z j .

7.2. Towards a moduli interpretation. We need to reinterpret in a more geometric
manner the Dieudonné-theoretic condition defining Z j . For α= 0, . . . , ε, we define
submodules

Ẽα,1 := D̃(Az)
◦

1 ∩
1

pε−α
Ẽ1 and Ẽα,2 := D̃(Az)

◦

2 ∩
1

pε−α
Ẽ2

of D̃(Az)
◦

1 and D̃(Az)
◦

2. They are easily seen to satisfy condition (3.2.1) with m= α.
Thus, Proposition 3.2 generates a polarized abelian variety (Aα, λα) with OD-action
and an OD-equivariant isogeny Aα→Az , where

rα := dimω◦A∨α /Fp,1
= r −

α∑
α′=1

( jα′,2− jα′,1) and

sα := dimω◦A∨α /Fp,2
= n− dimω◦A∨α /Fp,1

(7.2.1)

by the formula (3.2.2). In particular r0 = r , s0 = s, rε = r − δ and sε = s+ δ.
In fact, applying Proposition 3.2 (with m = 1) to the sequence of inclusions

Ẽi = Ẽε,i ⊂ Ẽε−1,i ⊂ · · · ⊂ Ẽ0,i = D̃(Az)
◦

i ,

we obtain a sequence of isogenies (each with p-torsion kernels):

A′z = Aε
φε−→ Aε−1

φε−1−→· · ·
φ1−→ A0 =Az. (7.2.2)

We have kerφα ⊆ Aα[p], so that there exists a unique isogeny ψα : Aα−1→ Aα
such that ψαφα = p · idAα and φαψα = p · idAα−1 .

For each α, the cokernel of the induced map on cohomology

φα,∗,i : H dR
1 (Aα/Fp)

◦

i → H dR
1 (Aα−1/Fp)

◦

i

(resp. ψα,∗,i : H dR
1 (Aα−1/Fp)

◦

i → H dR
1 (Aα/Fp)

◦

i )
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is canonically isomorphic to Ẽα−1,i/Ẽα,i (resp. Ẽα,i/pẼα−1,i ), which has dimension
jα,i (resp. n− jα,i ) over Fp by a straightforward computation using (7.1.2).

The upshot is that all these numeric information of the chain of isogenies (7.2.2)
can be used to reconstruct Ẽi inside D̃(Az)

◦

i . This idea will be made precise after
this important example.

Example 7.3. We give a good toy model for the isogenies of Dieudonné modules.
This is the inspiration of the construction of this section. We start with the Dieudonné
module D̃(Aε)◦1 =

⊕n
i=1 W (Fp)ej and D̃(Aε)◦2 =

⊕n
j=1 W (Fp) fj . The maps V1 :

D̃(Aε)◦1→ D̃(Aε)◦2 and V2 : D̃(Aε)◦2→ D̃(Aε)◦1, with respect to the given bases,
are given by the diagonal matrices

Diag(1, . . . , 1︸ ︷︷ ︸
s+δ

, p, . . . , p︸ ︷︷ ︸
r−δ

) and Diag(1, . . . , 1︸ ︷︷ ︸
r−δ

, p, . . . , p︸ ︷︷ ︸
s+δ

),

respectively. Using the isogenies φα we may naturally identify D̃(Aα)◦i as lattices
in D̃(Aε)◦i [1/p] with induced Frobenius and Verschiebung morphisms. For our toy
model, we choose

D̃(Aα)◦1 = SpanW (Fp)

{ 1
pε−α

e1,...,
1

pε−α
ejα+1,1,

1
pε−α−1 ejα+1,1+1,...,

1
pε−α−1 ejα+2,1,

1
pε−α−2 ejα+2,1+1,...,

1
p

ejε,1,ejε,1+1,...,en

}
;

D̃(Aα)◦2 = SpanW (Fp)

{ 1
pε−α

f1,...,
1

pε−α
f jα+1,2

,
1

pε−α−1 f jα+1,2+1,...,
1

pε−α−1 f jα+2,2
,

1
pε−α−2 f jα+2,2+1,...,

1
p

f jε,2, f jε,2+1,..., fn
}
.

In particular, the Verschiebung V1 : D̃(Aα)◦1→ D̃(Aα)◦2 with respect to the bases
above is given by

Diag(1, . . . , 1︸ ︷︷ ︸
jα+1,1

, ∗ ∗ ∗ · · · ∗ ∗∗, p, . . . , p︸ ︷︷ ︸
r−δ

),

where the ∗∗∗ part is p if the place is in [ jα′,1+ 1, jα′,2] for some α′ ≥ α, and is 1
otherwise. Similarly, the Verschiebung V2 : D̃(A0)

◦

2→ D̃(A0)
◦

1 with respect to the
bases above is given by

Diag(1, . . . , 1︸ ︷︷ ︸
r−δ

, p, . . . , p︸ ︷︷ ︸
jα+1,1−r+δ

, ∗ ∗ ∗ · · · ∗ ∗∗, p, . . . , p︸ ︷︷ ︸
n− jαε,2

),

where the ∗∗∗ part is 1 if the place is in [ jα′,1+ 1, jα′,2] for some α′ ≥ α, and is p
otherwise.
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So the sheaf of differentials is given by

ω◦A∨α /Fp,1
= SpanFp

{ 1
pε−α

e1,...,
1

pε−α
er−δ,

1
pε−α

ejα,1+1,...,
1

pε−α
ejα,2,

1
pε−α−1 ejα+1,1+1,...,

1
p

ejε−1,2,ejε,1+1,...,ejε,2

}
;

ω◦A∨α /Fp,2
= SpanFp

{ 1
pε−α

f 1,...,
1

pε−α
f jα+1,1

,
1

pε−α−1 f jα+1,2+1,...,
1

pε−α−1 f jα+2,1
,

1
pε−α−2 f jα+2,1

,...,
1
p

f jε,1, f jε,2+1,..., f s+δ−1

}
.

Definition 7.4. Let j be as above. Define the numbers jα,i as in (7.1.1) and the
numbers rα, sα as in (7.2.1). Let Y j be the functor taking a locally noetherian
Fp2-scheme S to the set of isomorphism classes of tuples

(A0, . . . , Aε, λ0, . . . , λε, η0, . . . , ηε, φ1, . . . , φε, ψ1, . . . , ψε) (7.4.1)

such that:

(1) for each α, (Aα, λα, ηα) is an S-point of Shrα,sα ;

(2) for each α, φα is an OD-isogeny Aα→ Aα−1, with kernel contained in Aα[p],
which is compatible with the polarizations in the sense that pλα=φ∨α ◦λα−1◦φα

and with the tame level structures in the sense that φα ◦ ηα = ηα−1;

(3) ψα is the isogeny Aα−1→ Aα such that φαψα = p ·idAα and ψαφα = p ·idAα−1 ;

(4) the cokernel of the induced map φdR
α,∗,i : H

dR
1 (Aα/S)◦i → H dR

1 (Aα−1/S)◦i is a
locally free OS-module of rank jα,i for each α and i = 1, 2;

(5) the cokernel of the induced map ψdR
α,∗,i : H

dR
1 (Aα−1/S)◦i → H dR

1 (Aα/S)◦i is a
locally free OS-module of rank n− jα,i for each α and i = 1, 2;18

(6) for each α, Ker(φdR
α,∗,2) is contained in ω◦A∨α /S,2;

(7) for each α, the (rα−1− rα + rε + 1)-st Fitting ideal of the cokernel of φdR
α,∗,1 :

ω◦A∨α /S,1→ ω◦A∨α−1/S,1 is zero, or equivalently, Zariski locally on S, if we rep-
resent the map φdR

α,∗,1 : ω
◦

A∨α /S,1 → ω◦A∨α−1/S,1 by an rα−1 × rα-matrix (after
choosing local bases), then all (rα − rε + 1)× (rα − rε + 1)-minors vanish.

(8) the (rα−rε+1)-st Fitting ideal of the cokernel of ψdR
α,∗,1 :ω

◦

A∨α−1/S,1→ω◦A∨α /S,1
is zero for each α.

Note that conditions (6)–(8) are all closed conditions. So the moduli problem
Y j is represented by a proper scheme Yj of finite type over Fp2 . The moduli
space Yj admits natural maps to Shr,s and Shr−δ,s+δ by sending the tuple (7.4.1) to

18This is in fact a corollary of (2) and (4).
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(A0, λ0, η0) and (Aε, λε, ηε), respectively.

Yjpr j
vv

pr′j
**

Shr,s Shr−δ,s+δ

We also point out that conditions (2) and (3) together imply that, for each α and
i = 1, 2, we have Im(ψdR

α,∗,i )= Ker(φdR
α,∗,i ) and Im(φdR

α,∗,i )= Ker(ψdR
α,∗,i ). We shall

freely use this property later.

Remark 7.5. Conditions (6)–(8) in Definition 7.4 are satisfied by the toy model in
Example 7.3. They did not appear in moduli problem in Section 4.2 because they
trivially hold in that case. The purpose of keeping these conditions in the moduli
problem and carefully formulating them is so that the moduli space may hope to have
the correct irreducible components. We think the picture is the following: Z j is prob-
ably or at least heuristically the set of Fp-points of a closed subscheme of Shr,s . But
this scheme has many irreducible components, which may have overlaps with other
Z j ′ . Conditions (6)–(8) will help select one irreducible component that is “special”
for j. When taking the union of all images of the Yj , we should still get the union of
the Z j . This is verified in the case of supersingular locus (i.e., r = δ) in Theorem 7.8.

Notation 7.6. Let Yj as above. It will be convenient to introduce some dummy
notation:

• φ0 is the identity map on A0;

• ψε is the identity map on Aε .

We use Y ◦j to denote the open subscheme of Yj representing the functor that takes a
locally noetherian Fp2-scheme S to the subset of isomorphism classes of tuples

(A0, . . . , Aε, λ0, . . . , λε, η0, . . . , ηε, φ1, . . . , φε, ψ1, . . . , ψε)

of Yj (S) such that

(i) for each α = 1, . . . , ε, the sum φα,∗,2(ω
◦

A∨α /S,2) + Ker(φdR
α−1,∗,2) is an OS-

subbundle of H dR
1 (Aα−1/S)◦2 of rank

rankωA∨α /S,2− rank Ker(φdR
α,∗,2)+ rank Ker(φdR

α−1,∗,2)= sα − jα,2+ jα−1,2,

(ii) for each α= 1, . . . , ε, Ker(φdR
α,∗,1)+Ker(ψdR

α+1,∗,1) is an OS-subbundle of rank

rank Ker(φdR
α,∗,1)+ rank Ker(ψdR

α+1,∗,1)= jα,1+ (n− jα+1,1),

(iii) for each α, the cokernel of φdR
α,∗,1 : ω

◦

A∨α /S,1 → ω◦A∨α−1/S,1 is a locally free
OS-module of rank rα−1− (rα − rε),

(iv) for each α, the cokernel of ψdR
α,∗,1 : ω

◦

A∨α−1/S,1 → ω◦A∨α /S,1 is a locally free
OS-module of rank rα − rε .



Tate cycles on some unitary Shimura varieties mod p 2275

We note that the ranks in conditions (i) and (ii) are maximal possible and the ranks in
conditions (iii) and (iv) are minimal possible, under the conditions in Definition 7.4.
So Y ◦j is an open subscheme of Yj .

We point out an additional benefit of having conditions (ii)–(iv). By (iii),
ω◦A∨α /S,1 ∩Ker(φdR

α,∗,1) is an OS-subbundle of ω◦A∨α /S,1 of rank rε , for α = 1, . . . , ε;
by (iv), ω◦A∨α /S,1∩Ker(ψdR

α+1,∗,1) is an OS-subbundle of ω◦A∨α /S,1 of rank rα− rε , for
α = 0, . . . , ε − 1. Combining these two rank estimates and condition (ii) which
implies that Ker(φdR

α,∗,1) and Ker(ψdR
α+1,∗,1) are disjoint subbundles, we arrive at a

direct sum decomposition

ω◦A∨α /S,1 = (ω
◦

A∨α /S,1 ∩Ker(φdR
α,∗,1))⊕ (ω

◦

A∨α /S,1 ∩Ker(ψdR
α+1,∗,1)), (7.6.1)

for α = 1, . . . , ε− 1; and we know that ω◦A∨0 /S,1 ∩Ker(ψdR
1,∗,1) has rank r0− rε = δ

and ω◦A∨ε /S,1 ⊆ Ker(φdR
ε,∗,1).

We shall show below in Theorem 7.7 that Y ◦j is smooth. Unfortunately, we do not
know how to prove the nonemptiness of Y ◦j , nor do we know if some Yj is completely
contained in some other Yj ; but the fact that the Dieudonné modules in Example 7.3
satisfy conditions (i)–(iv) above is good evidence for this nonemptiness. Of course,
if one can compute the intersection matrix in the sense of Theorem 6.7 and calculate
the determinant, one can then probably show that these Yj are essentially different.
But the difficulties of this computation lie in understanding the singularities at
Yj \ Y ◦j , which seems to be very combinatorially involved.

Theorem 7.7. Each Y ◦j is smooth of dimension rs+ (r − δ)(s+ δ) (if not empty).

Proof. Let R̂ be a noetherian Fp2-algebra and Î ⊂ R̂ an ideal such that Î 2
= 0. Put

R = R̂/ Î. Say we want to lift an R-point

(A0, . . . , Aε, λ0, . . . , λε, η0, . . . , ηε, φ1, . . . , φε, ψ1, . . . , ψε)

of Y ◦j an R̂-point and we try to compute the corresponding tangent space. By Serre–
Tate and Grothendieck–Messing deformation theory we recalled in Theorem 3.4,
it is enough to lift, for i = 1, 2 and each α = 0, . . . , ε, the differentials ω◦A∨α /R,i ⊆

H dR
1 (Aα/R)◦i to a subbundle ω̂α,i ⊆ H cris

1 (Aα/R̂)◦i such that

(a) φcris
α,∗,i (ω̂α,i ) ⊆ ω̂α−1,i and ψcris

α,∗,i (ω̂α−1,i ) ⊆ ω̂α,i (so that both φα and ψα are
lifted, which would automatically imply Ker(φα) ∈ Aα[p]),

(b) ω̂α,2 ⊇ Ker(φcris
α,∗,2), and

(c) the R̂-modules ω̂α−1,1/φ
cris
α,∗,1(ω̂α,1) and ω̂α,1/ψcris

α,∗,1(ω̂α−1,1) are flat and of
rank rα−1− (rα − rε) and rα − rε , respectively.

We shall see that condition (i) of Notation 7.6 is automatic. Also, condition
(ii) already holds: since H cris

1 (Aα/R̂)◦1/(Ker(φcris
α,∗,1) + Ker(ψcris

α+1,∗,1)) is locally
generated by jα+1,1 − jα,1 elements after modulo Î, it is so prior to modulo Î
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by Nakayama’s lemma. Note that rank of Ker(φcris
α,∗,1) and Ker(ψcris

α+1,∗,1) and the
number of the generators of the quotient above add up to exactly n; it follows
that Ker(φcris

α,∗,1) + Ker(ψcris
α+1,∗,1) is a direct sum and the sum is a subbundle of

H cris
1 (Aα/R̂)◦1.
We separate the discussion of lifts at q1 and q2, and show that the tangent space

TY ◦j is isomorphic to T1⊕T2 for the contributions T1 and T2 from the two places. We
first look at q2, as it is easier. Note that condition (b) ω̂α,2⊇Ker(φcris

α,∗,2)= Im(ψcris
α,∗,2)

automatically implies that ψcris
α,∗,2(ω̂α−1,2)⊆ ω̂α,2; so we can proceed as follows:

Step 0: First lift ω◦A∨ε /R,2 to a subbundle ω̂ε,2 of H cris
1 (Aε/R̂)◦2 so that it contains

Ker(φcris
ε,∗,2),

Step 1: then lift ω◦A∨ε−1/R,2 to a subbundle ω̂ε−1,2 of H cris
1 (Aε−1/R̂)◦2 so that it

contains φcris
ε,∗,2(ω̂ε,2)+Ker(φcris

ε−1,∗,2),

Step(s) α: then lift ω◦A∨ε−α/R,2 to a subbundle ω̂ε−α,2 of H cris
1 (Aε−α/R̂)◦2 so that it

contains φcris
ε−α+1,∗,2(ω̂ε−α+1,2)+Ker(φcris

ε−α,∗,2),

Step ε: finally lift ω◦A∨0 /R,2 to a subbundle ω̂0,2 of H cris
1 (A0/R̂)◦2 so that it contains

φcris
1,∗,2(ω̂1,2).

At Step 0, the choices form a torsor for the group

HomR(ω
◦

A∨ε /R,2/Ker(φdR
ε,∗,2),Lie◦Aε/R,2)⊗R Î ;

the Hom space is a locally free R-module of rank (sε − jε,2)rε .
At Step α= 1, . . . , ε, we observe that condition (i) of the moduli problem Y ◦j im-

plies φε−α+1,∗,2(ω
◦

A∨ε−α+1/R,2)+Ker(φdR
ε−α,∗,2) is an R-subbundle of H dR

1 (Aε−α/R)◦2
of rank

sε−α+1− jε−α+1,2+ jε−α,2= sε−α+( jε−α+1,1− jε−α,2) if α=1,...,ε−1, (7.7.1)

and of rank s1 − j1,2 if α = ε. So φcris
ε−α+1,∗,2(ω̂ε−α+1,2)+Ker(φcris

ε−α,∗,2) is an R̂-
subbundle of H cris

1 (Aε−α/R̂)◦2 of the same rank. The choices of the lifts ω̂ε−α,2
form a torsor for the group

HomR
(
ω◦A∨ε−α/R,2/(φε−α+1,∗,2(ω

◦

A∨ε−α+1/R,2)+Ker(φdR
ε−α,∗,2)),Lie◦Aε−α/R,2

)
⊗R Î .

By (7.7.1), this Hom space is a locally free R-module of rank ( jε−α+1,1− jε−α,2)rε−α
if α = 1, . . . , ε − 1 and of rank (s0 − (s1 − j1,2))r0 if α = ε. This implies that
the contribution T2 to the tangent space TY ◦j at q2 admits a filtration such that the
subquotients are

Hom
(
ω◦A∨ε−α,2

/(φε−α+1,∗,2(ω
◦

A∨ε−α+1,2
)+Ker(φdR

ε−α,∗,2)),Lie◦Aε−α,2
)
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where the Aε−α are the universal abelian varieties and φε+1,∗,2(ω
◦

A∨ε+1,2
) is inter-

preted as zero. In particular, T2 is a locally free sheaf on Y ◦j of rank

(sε − jε,2)rε + (s0− (s1− j1,2))r0+

ε−1∑
α=1

( jε−α+1,1− jε−α,2)rε−α

= (sε − jε,2)rε + j1,1r0+

ε−1∑
α=1

( jα+1,1− jα,2)rα. (7.7.2)

We now look at the place q1. By condition (ii), φcris
α,∗,1 when restricted to

Ker(ψcris
α+1,∗,1) is a saturated injection of R̂-bundles; and ψcris

α,∗,1 when restricted
to Ker(φcris

α−1,∗,1) is also a saturated injection of R̂-bundles. We first recall from the
discussion in Notation 7.6 especially (7.6.1) that, when α = 1, . . . , ε− 1, ω◦A∨α /R,1
is the direct sum of

ω
◦,Kerφ
A∨α /R,1 := ω

◦

A∨α /R,1 ∩Ker(φdR
α,∗,1) and ω

◦,Kerψ
A∨α /R,1 := ω

◦

A∨α /R,1 ∩Ker(ψdR
α+1,∗,1),

which are locally free R-modules of rank rε and rα−rε , respectively. Similarly, put

ω
◦,Kerφ
A∨ε /R,1 := ω

◦

A∨ε /R,1, ω
◦,Kerψ
A∨ε /R,1 := 0, and ω

◦,Kerψ
A∨0 /R,1 = ω

◦

A∨0 /R,1 ∩Ker(ψdR
1,∗,1);

they have ranks rε , 0, and r0−rε , respectively. We shall avoid talking about ω◦,Kerφ
A∨0 /R,1

(as it does not make sense) but only psychologically understand it as the process
that enlarges ω◦,Kerφ

A∨0 /R,1 to ω◦A∨0 /R,1.

For α = 1, . . . , ε, the lift ω̂α,1 takes the form of ω̂Kerφ
α,1 ⊕ ω̂

Kerψ
α,1 , where the two

direct summands are R̂-subbundles of Ker(φcris
α,∗,1) and of Ker(ψcris

α+1,∗,1), lifting
ω◦,Kerφ

A∨α /R,1 and ω◦,Kerψ
A∨α /R,1, respectively. Whereas, the lift ω̂0,1 contains the lift ω̂Kerψ

0,1
of ω◦,Kerψ

A∨0 /R,1 as an R̂-subbundle of Ker(ψcris
1,∗,1). Now the compatibility conditions

φcris
α,∗,1(ω̂α,1)⊆ ω̂α−1,1 and ψcris

α,∗,1(ω̂α−1,1)⊆ ω̂α,1 together with the condition (c) are
equivalent to

φcris
α,∗,1(ω̂

Kerψ
α,1 )⊆ ω̂

Kerψ
α−1,1 and ψcris

α,∗,1(ω̂
Kerφ
α−1,1)⊆ ω̂

Kerφ
α,1 .

(The condition (c) on ranks of the quotients are also automatic.) In particular,
the tangent space T1 has three contributions, coming from the lifts ω̂Kerφ

α,1 (for
α = 1, . . . , ε), from the lifts ω̂Kerψ

α,1 (for α = 0, . . . , ε), and from lifting ω◦A∨0 /R,1

to an R̂-subbundle ω̂0,1 of H cris
1 (A0/R̂)◦1 containing ω̂Kerψ

0,1 . We shall use T Kerφ
1 ,

T Kerψ
1 , and T Kerφ,0

1 to denote these three parts of the tangent space; and they will
sit in an exact sequence

0→ T Kerφ,0
1 → T1→ T Kerφ

1 ⊕ T Kerψ
1 → 0. (7.7.3)

We first determine the lifts ω̂Kerφ
α,1 for α = 1, . . . , ε. For ω̂Kerφ

1,1 , it lifts ω◦,Kerφ
A∨1 /R,1 as

an R̂-subbundle of H cris
1 (A1/R̂)◦1 of rank rε (with no further constraint). Then due
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to the rank constraint (and the injectivity of ψcris
α,∗,1 when restricted to Ker(φcris

α+1,∗,1)),
the lift ω̂Kerφ

α,1 for each α = 2, . . . , ε is then forced to be equal to the image

ψcris
α,∗,1 ◦ · · · ◦ψ

cris
1,∗,1(ω̂

Kerφ
1,1 ).

So it suffices to consider the choices of the lift ω̂Kerφ
1,1 , which form a torsor for the

group
HomR(ω

◦,Kerφ
A∨1 /R,1,Ker(φdR

1,∗,1)/ω
◦,Kerφ
A∨1 /R,1)⊗R Î .

This Hom space is a locally free R-module of rank

rε( j1,1− rε). (7.7.4)

It follows that the tangent space T Kerφ
1 is simply just

Hom(ω◦,Kerφ
A∨0 ,1

,Ker(φdR
1,∗,1)/ω

◦,Kerφ
A∨0 ,1

).

We now determine the lifts ω̂Kerψ
α,1 for α = 0, . . . , ε following the steps below:

Step 0: We start with putting ω̂Kerψ
ε,1 = 0 because ω◦,Kerψ

A∨ε /R,1 is,

Step(s) α: liftω◦,Kerψ
A∨ε−α/R,1 to a subbundle ω̂Kerψ

ε−α,1 of Ker(ψcris
ε−α+1,∗,1) so that it contains

φcris
ε−α+1(ω̂

Kerψ
ε−α+1,1),

Step ε: finally lift ω◦,Kerψ
A∨0 /R,1 to a subbundle ω̂Kerψ

0,1 of Ker(ψcris
1,∗,1) so that it contains

φcris
1,∗,1(ω̂

Kerψ
1,1 ).

At Step α = 1, . . . , ε, the choices of the lifts ω̂Kerψ
ε−α,1 form a torsor for the group

HomR
(
ω
◦,Kerψ
A∨ε−α/R,1

/
φε−α+1,∗,1(ω

◦,Kerψ
A∨ε−α+1/R,1),Ker(ψdR

ε−α+1,∗,1)
/
ω
◦,Kerψ
A∨ε−α/R,1

)
⊗R Î .

This Hom space is a locally free R-module of rank(
(rε−α − rε)− (rε−α+1− rε)

)(
(n− jε−α+1,1)− (rε−α − rε)

)
.

This implies that the tangent space T Kerψ
1 admits a filtration such that the subquo-

tients are

Hom
(
ω
◦,Kerψ
A∨ε−α,1

/
φε+1−α,∗,1(ω

◦,Kerψ
A∨ε+1−α,1

),Ker(ψdR
ε+1−α,∗,1)/ω

◦,Kerψ
A∨ε−α,1

)
.

In particular, T Kerψ
1 is a locally free sheaf on Y ◦j of rank

ε∑
α=1

(
(rε−α − rε)− (rε−α+1− rε)

)(
(n− jε−α+1,1)− (rε−α − rε)

)
=

ε−1∑
α=0

(rα − rα+1)(sα − jα+1,1+ rε). (7.7.5)
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Finally, we discuss the R̂-module ω̂0,1 that lifts ω◦A∨0 /R,1 and contains ω̂Kerψ
0,1 we

obtained earlier. The lift is subject to one condition: ω̂0,1 ⊆ (ψ
cris
1,∗,1)

−1(ω̂
Kerφ
1,1 ). So

the choices of the lift form a torsor for the group

HomR
(
ω◦A∨0 /R,1/ω

◦,Kerψ
A∨0 /R,1, (ψ

dR
1,∗,1)

−1(ω
◦,Kerφ
A∨1 /R,1)/ω

◦

A∨0 /R,1

)
⊗R Î .

This implies that

T Kerφ,0
1 =Hom

(
ω◦A∨0 ,1

/ω
◦,Kerψ
A∨0 ,1

, (ψdR
1,∗,1)

−1(ω
◦,Kerφ
A∨1 ,1

)/ω◦A∨0 ,1
)
,

which is locally free of rank(
r0− (r0− rε)

)(
(rε + n− j1,1)− r0

)
= rε(s0+ rε − j1,1). (7.7.6)

To sum up, the tangent space TY ◦j , as the direct sum T1⊕T2 with T1 sitting in the
exact sequence (7.7.3), is a locally free sheaf of rank given by (7.7.6)+ (7.7.4)+
(7.7.5)+ (7.7.2), that is,

rε(s0+ rε − j1,1)+ rε( j1,1− rε)+
ε−1∑
α=0

(rα − rα+1)(sα − jα+1,1+ rε)

+ (sε − jε,2)rε + j1,1r0+

ε−1∑
α=1

( jα+1,1− jα,2)rα

= rεs0+

ε−1∑
α=0

rα(sα − jα+1,1+ rε)−
ε∑
α=1

rα(sα−1− jα,1+ rε)

+ (sε − jε,2)rε + j1,1r0+

ε−1∑
α=1

( jα+1,1− jα,2)rα

= rεs0+ r0(s0− j1,1+ rε)+ rε(sε−1− jε,1+ rε)+ (sε − jε,2)rε + j1,1r0

+

ε−1∑
α=1

rα((sα − jα+1,1+ rε)− (sα−1− jα,1+ rε)+ ( jα+1,1− jα,2)).

One easily checks that the first line adds up to rεsε + r0s0, and the second line
cancels to zero. This concludes the proof. �

In the special case of δ = r , each abelian variety Aα appearing in the moduli
problem of Yj is isogenous to Aε , which is a certain abelian variety parameterized
by the discrete Shimura variety Sh0,n and is hence supersingular (by Remark 3.7).
So in particular, the image pr j (Yj ) in this case is contained in the supersingular
locus of Shr,s . In fact, the converse is also true.

Theorem 7.8. Assume δ = r . The supersingular locus of Shr,s is the union of all
pr j (Yj ).
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Proof. We say a finite torsion W (Fp)-module has divisible sequence (a1, a2, . . . , aε)
with nonnegative integers a1 ≤ · · · ≤ aε if it is isomorphic to

(W (Fp)/pε)⊕a1 ⊕ (W (Fp)/pε−1)⊕(a2−a1)⊕ · · ·⊕ (W (Fp)/p)⊕(aε−aε−1).

The following is an elementary linear algebra fact, whose proof we omit.

Claim: If M1 ⊆ M2 are two torsion W (Fp)-modules with divisible sequences
(a1,i ,...,aε,i ) for i = 1, 2 respectively, then aα,1 ≤ aα,2 for all α = 1,...,ε.

The proof of the theorem is similar to the proof of Proposition 4.14(3), which is
a special case of this theorem. It suffices to look at the closed points of Shr,s . Let
z = (Az, λ, η) ∈ Shr,s(Fp) be a supersingular point. Consider

LQ = (D̃(Az)
◦

1[1/p])F2
=p
= {a ∈ D̃(Az)

◦

1[1/p] | F2(a)= pa}.

Since x is supersingular, LQ is a Qp2-vector space of dimension n, and D̃(Az)
◦

1[1/p]
may be identified with the extension of scalars of LQ from Qp2 to W (Fp)[1/p]. Put

Ẽ◦1 = (LQ ∩ D̃(Az)
◦

1)⊗Zp2 W (Fp) and Ẽ◦2 = F(Ẽ◦1 )= V (Ẽ◦1 )⊆ D̃(Az)
◦

2.

Then we have

D̃(Az)
◦

i /Ẽi ' (W (Fp)/pε)⊕ j1,i ⊕ (W (Fp)/pε−1)⊕( j2,i− j1,i )⊕ · · ·

· · · ⊕ (W (Fp)/p)⊕( jε,i− jε−1,i ), (7.8.1)

for nondecreasing sequences 0≤ j1,i ≤ j2,i ≤ · · · ≤ jε,i ≤ n with i = 1, 2; in other
words, D̃(Az)

◦

i /Ẽi has divisible sequence ( j1,i , . . . , jε,i ). Without loss of generality,
we assume that j1,1 and j1,2 are not both zero. The essential part of the proof
consists of checking the sequence of inequalities

0≤ j1,1 < j1,2 < j2,1 < j2,2 < · · ·< jε,1 < jε,2 ≤ n. (7.8.2)

We first prove (7.8.2) with all strict inequalities replaced by nonstrict ones.
Indeed, the obvious inclusion F(D̃(Az)

◦

i )⊆ D̃(Az)
◦

3−i implies that

F(D̃(Az)
◦

1/Ẽ1)= F(D̃(Az)
◦

1)/Ẽ2 ⊆ D̃(Az)
◦

2/Ẽ2, and

F(D̃(Az)
◦

2/Ẽ2)= F(D̃(Az)
◦

2)/pẼ1 ⊆ D̃(Az)
◦

1/pẼ1.

By (7.8.1), the first inclusion embeds a torsion W (Fp)-module with divisible
sequence ( j1,1, . . . , jε,1) into a torsion W (Fp)-module with divisible sequence
( j1,2, . . . , jε,2). The Claim above implies that jα,1 ≤ jα,2 for all α = 1, . . . , ε.
Similarly, by (7.8.1), the second inclusion embeds a torsion W (Fp)-module with
divisible sequence ( j1,2, . . . , jε,2) into a torsion W (Fp)-module with divisible se-
quence ( j1,1, . . . , jε,1, n). The Claim above implies that jα,2 ≤ jα+1,1 for all
α = 1, . . . , ε− 1, and jε,2 ≤ n.
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We now use the construction of LQ to show the strict inequalities in (7.8.2).
Suppose first that jα,1 = jα,2 for some α = 1, . . . , ε. Then it follows that the maps

F, V :
(

pε−αD̃(Az)
◦

1 ∩
1
p
Ẽ◦1
)
+ Ẽ◦1 →

(
pε−αD̃(Az)

◦

2 ∩
1
p
Ẽ◦2
)
+ Ẽ◦2 (7.8.3)

are both isomorphisms (due to an easy length computation as Ẽ◦2 = F(Ẽ◦1 )= V (Ẽ◦1 )).
By the definition of LQ and Ẽ◦1 , we must have((

pε−αD̃(Az)
◦

1 ∩
1
p
Ẽ◦1
)
+ Ẽ◦1

)F=V
⊆ LQ ∩ D̃(Az)

◦

1 ⊆ Ẽ◦1 .

But this is absurd because the isomorphisms (7.8.3) implies by Hilbert’s Theorem
90 that the left hand side above generates the source of (7.8.3), which is clearly not
contained in Ẽ◦1 .

Similarly, suppose that jα,2 = jα+1,1 for some α = 1, . . . , ε − 1. Then the
following morphisms are isomorphisms

F, V :
(

pε−αD̃(Az)
◦

2 ∩
1
p
Ẽ◦2
)
+ Ẽ◦2 → (pε−αD̃(Az)

◦

1 ∩ Ẽ
◦

1 )+ pẼ◦1 , (7.8.4)

since pẼ◦1 = F(Ẽ◦2 )= V (Ẽ◦2 ) and for length reasons. By the definition of LQ and Ẽ◦1 ,(
(pε−αD̃(Az)

◦

1 ∩ Ẽ
◦

1 )+ pẼ◦1
)F−1

=V−1

⊆ LQ ∩ pD̃(Az)
◦

1 ⊆ pẼ◦1 .

(Note that ε − α ≥ 1 now.) But this is absurd because the isomorphisms (7.8.4)
imply by Hilbert’s Theorem 90 that the left hand side above generates the target
of (7.8.4), which is clearly not contained in pẼ◦1 .

Summing up, we have proved the strict inequalities (7.8.2). So the jα,i define
a j as in the beginning of Section 7.1. We now construct a point of Yj which maps
to the point z ∈ Shr,s . Put

Ẽα,1 := D̃(Az)
◦

1 ∩
1

pε−α
Ẽ1 and Ẽα,2 := D̃(Az)

◦

2 ∩
1

pε−α
Ẽ2. (7.8.5)

Using the exact construction in Section 7.2, we get the sequence of isogenies of
abelian varieties

Aε
φε
// Aε−1

ψε

oo

φε−1
//
· · ·

ψε−1

oo

φ1
// A0 =Az,

ψ1

oo

such that Aα together with the induced polarization λα and the tame level structure
ηα gives an Fp-point of Shrα,sα , and D̃(Aα)◦i = Ẽα,i for all α and i = 1, 2.

Conditions (2)–(5) of Definition 7.4 easily follow from the description of the
quotients D̃(Az)

◦

i /Ẽi in (7.8.1). Condition (6) of Definition 7.4 is equivalent to

pD̃(Aα−1)
◦

2 ⊆ V (D̃(Aα)◦1).
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By the construction of these Dieudonné modules in (7.8.5), this is equivalent to

p
(
D̃(Az)

◦

2 ∩
1

pε−α+1 Ẽ2

)
⊆ V

(
D̃(Az)

◦

1 ∩
1

pε−α
Ẽ1

)
.

But this follows from pD̃(Az)
◦

2 ⊆ V D̃(Az)
◦

1 and Ẽ2 = V Ẽ1. Condition (7) of
Definition 7.4 is equivalent to ω◦A∨α /Fp,1 ∩Ker(φdR

α,∗,1) having dimension rε , which
is zero in our case. Translating it into the language of Dieudonné modules, this is
equivalent to

V D̃(Aα)◦2 ∩ pD̃(Aα−1)
◦

1 = pD̃(Aα)◦1.

By the construction of these Dieudonné module in (7.8.5), this is equivalent to(
V D̃(Az)

◦

2 ∩
1

pε−α
V Ẽ2

)
∩

(
pD̃(Az)

◦

1 ∩
1

pε−α
Ẽ1

)
= pD̃(Az)

◦

1 ∩
1

pε−α−1 Ẽ1,

which follows from observing that V D̃(Az)
◦

2⊇ pD̃(Az)
◦

1 and V Ẽ2= pẼ1. Condition
(8) of Definition 7.4 is equivalent to ω◦A∨α−1/Fp,1 ⊆ Ker(ψdR

α,∗,1) (note that rε = 0 in
our case). Translating it into the language of Dieudonné modules and using (7.8.5),
this is equivalent to

V D̃(Aα−1)
◦

2 ⊆ D̃(Aα)◦1, or equivalently,

V D̃(Az)
◦

2 ∩
1

pε−α+1 V Ẽ2 ⊆ D̃(Az)
◦

1 ∩
1

pε−α
Ẽ1,

which follows from observing that V D̃(Az)
◦

2 ⊆ D̃(Az)
◦

1 and V Ẽ2 = pẼ1. This
concludes the proof. �

Conjecture 7.9. The varieties Yj together with the natural morphisms to Shr−δ,s+δ

and Shr,s satisfy condition (3) of Conjecture 2.12. Moreover, the union of the images
of Yj in Shr,s is the closure of the locus where the Newton polygon of the universal
abelian variety has slopes 0 and 1 each with multiplicity 2(r − δ)n, and slope 1

2
with multiplicity 2(n− 2r + 2δ)n.

This conjecture in the case of r = δ = 1 was proved in Theorem 4.18.

Appendix A: An explicit formula in the local spherical Hecke algebra
for GLn

In this appendix, let F be a local field with ring of integers O, $ ∈ O be a
uniformizer, F = O/$O and q = #F. Fix an integer n ≥ 1. We consider the
spherical Hecke algebra HK = Z[K \GLn(F)/K ] with K = GLn(O). Here, the
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product of two double cosets u = K x K and v = K yK in HK is defined as

u · v =
∑
w

m(u, v;w)w, 19 (A.0.1)

where the sum runs through all the double cosets w = K zK contained in K x K yK,
and the coefficient m(u, v;w) ∈ Z is determined as follows: If K x K =

∐
i∈I xi K

and K yK =
∐

j∈J y j K, then

m(u, v;w)= #{(i, j) ∈ I × J | xi y j K = zK for a fixed element z in w}. (A.0.2)

By the theory of elementary divisors, all double cosets K x K are of the form

T (a1, . . . , an) := K Diag($ a1, . . . ,$ an )K for ai ∈ Z with a1 ≥ a2 ≥ · · · ≥ an.

They form a Z-basis of HK . We put

T (r)
= T (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
n−r

) for 0≤ r ≤ n,

R(r,s) = T (2, . . . , 2︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
s−r

, 0, . . . , 0︸ ︷︷ ︸
n−s

) for 0≤ r ≤ s ≤ n.

In particular, R(0,s) = T (s) and T (0)
= [K ].

Because of the lack of references, we include a proof of the following:

Proposition A.1. For 1≤ r ≤ n, let(n
r

)
q
=
(qn
− 1)(qn−1

− 1) · · · (qn−r+1
− 1)

(q − 1)(q2− 1) · · · (qr − 1)
(A.1.1)

be the Gaussian binomial coefficients, and put
(n

0

)
q = 1. Then for 0≤ r ≤ s ≤ n,

T (r)T (s)
=

min{r,n−s}∑
i=0

(s−r+2i
i

)
q

R(r−i,s+i).

Proof. We fix a set of representatives F̃ ⊆ O of F = O/$O which contains 0.
Then we have T (r)

=
∐

x∈S(n,r) x K , where S(n, r) is the set of n × n matrices
x = (xi, j )1≤i, j≤n such that

• r of the diagonal entries are $ and the remaining n− r ones are 1;

• if i 6= j, then xi, j = 0 unless i > j, xi,i = 1 and x j, j =$ , in which case xi, j

can take any values in F̃.

19 We may also view elements of HK as Z-valued locally constant and compactly supported
functions on GLn(F) which are bi-invariant under K, and define the product of f, g ∈ HK as
( f ∗ g)(x) =

∫
GLn(F) f (y)g(y−1x) dy, where dy means the unique bi-invariant Haar measure on

GLn(F) with
∫

K dy = 1. For the equivalence between these two definitions, see [Gross 1998, p. 4].
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For instance, the set S(3, 2) consists of matrices: 1 0 0
x2,1 $ 0
x3,1 0 $

 ,
$ 0 0

0 1 0
0 x3,2 $

 ,
$ 0 0

0 $ 0
0 0 1

 ,
with x2,1, x3,1, x3,2 ∈ F̃. We have a similar decomposition T (s)

=
∐

y∈S(n,s) yK. We
write T (r)T (s) as a linear combination of T (a1, . . . , an)with ai ∈Z and a1≥· · ·≥an .
By looking at the diagonal entries of xy, we see easily that only R(r−i,s+i) with
0≤ i ≤min{r, n− s} have nonzero coefficients, namely, we have

T (r)T (s)
=

min{r,n−s}∑
i=0

C (r,s)(n, i)R(r−i,s+i) for some C (r,s)(n, i) ∈ Z.

By (A.0.1), C (r,s)(n, i) is the number of pairs (x, y) ∈ S(n, r)×S(n, s) such that

xyK = Diag($ 2, . . . ,$ 2︸ ︷︷ ︸
r−i

,$, . . . ,$︸ ︷︷ ︸
s−r+2i

, 1, . . . , 1︸ ︷︷ ︸
n−s−i

)K .

In this case, x and y must be of the form

x =

$ Ir−i 0 0
0 A 0
0 0 In−s−i

 , y =

$ Ir−i 0 0
0 B 0
0 0 In−s−i

 ,
where Ik denotes the k × k identity matrix, and A ∈ S(s − r + 2i, i) and B ∈
S(s − r + 2i, s − r + i) satisfy AB ·GLs−r+2i (O) = $ Is−r+2i GLs−r+2i (O). By
(A.0.1), we see that C (r,s)(n, i)=C (i,s−r+i)(s−r+2i, i). Therefore, one is reduced
to proving the following lemma, which is a special case of our proposition. �

Lemma A.2. Under the notation and hypothesis of Proposition A.1, assume more-
over that n = r + s. Then the coefficient of R(0,n) in the product T (r)T (s) is

(n
r

)
q .

Proof. We induct on n ≥ 1. The case n = 1 is trivial. We assume thus n > 1, and
that the statement is true when n is replaced by n − 1. The case of r = 0 being
trivial, we may assume that r ≥ 1. We say a pair (x, y) ∈ S(n, r)×S(n, n− r) is
admissible if xyK =$ In K. We have to show that the number of admissible pairs
is equal to

(n
r

)
q . Let (x, y) be an admissible pair. Denote by I (resp. by J ) the

set integers 1 ≤ i ≤ n such that xi,i =$ (resp. yi,i =$ ). Note that (x, y) being
admissible implies that J = {1, . . . , n} \ I.

Assume first that x1,1 = 1. Then x and y must be of the form x =
( 1
∗

0
A

)
and

y =
(
$
0

0
B

)
where (A, B) ∈ S(n− 1, r)×S(n− 1, n− 1− r) admissible. Note that

xyK =$ In K always hold. We have xi,1 = 0 for i /∈ I, and xi,1 can take any values
in F for i ∈ I. Therefore, the number of admissible pairs (x, y) with x1,1 = 1 is
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equal to q#I
= qr times that of the admissible (A, B). The latter is equal to

(n−1
r

)
q

by the induction hypothesis.
Consider now the case x1,1 = $ . One can write x =

(
$
0

0
A

)
, and y =

( 1
∗

0
B

)
with (A, B) ∈ S(n− 1, r − 1)×S(n− 1, n− r) admissible. Put z = xy. Then an
easy computation shows that z j,1 = y j,1 if j ∈ J, and z j,1 = 0 if j /∈ J. Hence,
xyK =$ In K forces that y j,1= 0 for all j > 1. Therefore, the number of admissible
(x, y) in this case is equal to that of the admissible (A, B), which is

(n−1
r−1

)
q

by the
induction hypothesis. The lemma now follows immediately from the equality(n

r

)
q
= qr

(n−1
r

)
q
+

(n−1
r−1

)
q
. �

Appendix B: A determinant formula

In this appendix, we prove the following:

Theorem B.1. Let α1, . . . , αn be n indeterminates. For i = 1, . . . , n, let si denote
the i-th elementary symmetric polynomial in the α, and s0 = 1 by convention. Let
q be another indeterminate. We put qr = qr−1

+ qr−3
+ · · · + q1−r . Consider the

matrix Mn(q)= (mi, j ) given as follows:

mi, j =

{∑min{i−1,n− j}
δ=0 qn+i− j−2δs j−i+δsn−δ if i ≤ j;∑min{ j−1,n−i}
δ=0 qn+ j−i−2δsδsn+ j−i+δ if i > j.

Then we have
det(Mn(q))= α1 · · ·αn

∏
i 6= j

(
qαi −

1
q
α j

)
.

Proof. Let Nn(q) be the resultant matrix of the polynomials f (x)=
∏n

i=1(x+q−1αi )

and g(x)=
∏n

i=1(x + qαi ), that is, Nn(q) is the 2n× 2n matrix given by

Nn(q)=



s0 q−1s1 q−2s2 · · · q1−nsn−1 q−nsn 0 · · · 0
0 s0 q−1s1 · · · q2−nsn−2 q1−nsn−1 q−nsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · s0 q−1s1 q−2s2 · · · q−nsn

s0 qs1 q2s2 · · · qn−1sn−1 qnsn 0 · · · 0
0 s0 qs1 · · · qn−2sn−2 qn−1sn−1 qnsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · s0 qs1 q2s2 · · · qnsn


.

It is well known that det(Nn(q))=
∏

i, j (−q−1αi + qα j ). Thus it suffices to show
that det(Nn(q))= (q − q−1)n det(Mn(q)).

We first make the following row operations on Nn(q): subtract row i from row
n+ i for all i = 1, . . . , n. We obtain a matrix whose first column is all 0 except
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the first entry being 1; moreover, one can take out a factor (q − q−1) from row
n+ 1, . . . , 2n. Let N ′n(q) be the right lower (2n− 1)× (2n− 1) submatrix of the
remaining matrix. Then we have

N ′n(q)=



s0 q−1s1 q−2s2 · · · q1−nsn−1 q−nsn 0 · · · 0
0 s0 q−1s1 · · · q2−nsn−2 q1−nsn−1 q−nsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · s0 q−1s1 q−2s2 · · · q−nsn

q1s1 q2s2 q3s3 · · · qn−1sn−1 qnsn 0 · · · 0
0 q1s1 q2s2 · · · qn−2sn−2 qn−1sn−1 qnsn · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 q1s1 q2s2 · · · qnsn


with det(Nn(q)) = (q − q−1)n det(N ′n(q)). Thus we are reduced to proving that
det(N ′n(q))= det(Mn(q)). Consider the (2n− 1)× (2n− 1) matrix R =

( In−1
C

0
D

)
with the lower n× (2n− 1) submatrix given by

(
C D

)
=


−q1s1 −q2s2 ··· −qn−1sn−1 1 q−1s1 q−2s2 ··· q2−nsn−2 q1−nsn−1

0 −q1s1 ··· −qn−2sn−2 0 1 q−1s1 ··· q3−nsn−3 q2−nsn−2
...

...
. . .

...
...

...
...

. . .
...

...

0 0 ··· −q1s1 0 0 0 ··· 1 q−1s1

0 0 ··· 0 0 0 0 ··· 0 1

.

By a careful computation, one verifies without difficulty that RN ′n(q)=
(U

0
∗

Mn(q)

)
,

where U is an (n− 1)× (n− 1)-upper triangular matrix with all diagonal entries
equal to 1. Note that det(R) = det(D) = det(U ) = 1, and it follows immediately
that det(N ′n(q))= det(Mn(q)). �
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