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Complex conjugation and Shimura varieties
Don Blasius and Lucio Guerberoff

In this paper we study the action of complex conjugation on Shimura varieties and
the problem of descending Shimura varieties to the maximal totally real field of the
reflex field. We prove the existence of such a descent for many Shimura varieties
whose associated adjoint group has certain factors of type A or D. This includes
a large family of Shimura varieties of abelian type. Our considerations and
constructions are carried out purely at the level of Shimura data and group theory.

1. Introduction

The goal of this paper is to analyze some aspects of complex conjugation acting on
Shimura varieties. This topic has been studied for a long time by several authors,
notably Shimura, Deligne, Langlands, Milne, Shih, and more recently Taylor. In
general, given a Shimura variety Sh(G, X) defined by a Shimura datum (G, X), and
any automorphism α of C, Langlands [1979] conjectured that the conjugate variety
α Sh(G, X)= Sh(G, X)×C,α C can be realized as a Shimura variety Sh(αG, αX)
for a very explicit pair (αG, αX). This has been proved by Milne [1983] (see also
[Borovoı̆ 1983; 1987; Milne 1999]). The case of α = c (complex conjugation) has,
among other properties, the particularity that the pair (cG, c X) is very concrete.
Namely, it can be identified with (G, X), where X is obtained by composing the
elements of x with complex conjugation on the Deligne torus S. This simple
description is hard to find in the literature, and hence, we include a proof of how it
is deduced from the general constructions.

Assuming a few standard extra conditions on the Shimura datum (G, X), the
reflex field E can be seen to be either totally real or a CM field. The Shimura
variety has a canonical model Sh(G, X)E over E , and the Hecke operators are
defined over E as well. In this paper we investigate descent of these varieties to the
maximal totally real subfield E+ of E . The existence of such descent can be seen
as a nice generalization of the useful fact that the field obtained by adjoining to Q

the j-invariant of an order in an imaginary quadratic field has a real embedding.
From now on, assume that E is CM. We show in many cases that Sh(G, X) has
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a model over E+. Although the Hecke operators are not defined over E+, they can
nevertheless be characterized. The general framework for constructing such models
comes from the construction of descent data arising from automorphisms of G of
order 2 taking X to X . Using the classification of (adjoint) Shimura data in terms of
special nodes on Dynkin diagrams, our aim is to construct an involution of G that
induces the opposition involution on the based root datum (or the Dynkin diagram).
The construction we make follows from the classification of semisimple groups.
The groups G with which we work are, roughly speaking, those for which the simple
factors of Gad are of classical type A or D, and satisfy an extra condition on the
hermitian or skew-hermitian space defining them (see Definitions 4.1.4 and 4.2.1).
For example, a factor of type A is attached to a hermitian space over a central
division algebra D over a CM field K endowed with an involution of the second
kind J . We show that, if there exists an opposition involution on these groups,
then D must be either K or a quaternion division algebra, and the involution J is
easily described. We carry out the construction of involutions if we assume the
aforementioned extra condition, which in this case amounts to the existence of a basis
of the underlying vector space such that the matrix of the hermitian form is diagonal
with entries in K . In the quaternion algebra case, we can write D = D0 ⊗F K ,
where F is the maximal totally real subfield of K , and D0 is a quaternion division
algebra over F . We assume furthermore in this case that, if D0,v is not split for an
embedding v : F ↪→R, then the corresponding factor of Gad

R is compact. If D = K ,
the conditions in Definition 4.1.4 are automatically satisfied. For factors of type D,
there is a similar scenario, although we only restrict to groups of type DH as in the
Appendix of [Milne and Shih 1981]. This encompasses a large family of Shimura
varieties of abelian type. Under these assumptions, the existence of the involution
on the group G follows from a concrete construction of involutions on each of the
simple factors of Gad, which are explicitly given in terms of simple algebras.

To give a flavor of the type of involutions constructed in the paper, suppose that
SU(V, h) is a simple factor of type A, corresponding to a hermitian space (V, h)
of dimension n over a CM field K . Let F be the maximal totally real subfield
of K , and let ι be the nontrivial automorphism of K/F . We take an orthogonal
basis {v1, . . . , vn} of V , and we let I : V → V be the ι-semilinear map obtained
by applying ι to the coordinates of elements of V with respect to the given basis.
Then the map θ : SU(V, h)→ SU(V, h) given by

θ(g)= IgI

is an opposition involution.
We stress here that our methods are group-theoretic and we work purely at the

level of Shimura data, in the sense that we do not directly make use of a moduli
interpretation. However, the methods rely on Langlands conjugation of Shimura
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varieties, which in turn is proved using the moduli interpretation in terms of abelian
varieties [Milne 1990, §II.9]. An interesting question would be to consider factors
of type E6, which is the only other type apart from A or DH that contributes to the
reflex field being CM instead of totally real. We plan to investigate this question in
the future.

Let us describe the organization of the paper and outline the main argument. In
Section 2, we start by recalling the general formalism of conjugation of Shimura
varieties by an arbitrary automorphism of C, we study the special case of complex
conjugation explicitly, and we prove in this case that the conjugate Shimura datum
is (G, X), where X is the complex conjugate conjugacy class of X . We show
(Theorem 2.3.1) that, if (G, X) is a Shimura datum and θ : G→ G is an involution
such that θ(X)= X , then θ induces an isomorphism of algebraic varieties from the
complex conjugate c Sh(G, X) to Sh(G, X), defined over the reflex field E , that
constitutes a descent datum from E to E+.

In Section 3, we recall some basic facts about root data and opposition involutions,
and in Proposition 3.4.8, we lay the ground for the prototype of involutions θ :G→G
that we will construct. Roughly speaking, suppose that T ⊂ G is a maximal torus
of G, and x ∈ X factors through TR. If θ :G→G is an involution that preserves TR

and induces complex conjugation on the group of characters X∗(T ), then θ(x)= x
and thus θ(X)= X . This is basically the type of involution that we will construct,
with some slight changes. Since we will make use of the explicit classification of
semisimple groups, we need to work with either Gder or Gad. We let Gi be the
almost simple factors of Gder, and G̃i be their simply connected covers, so that
G̃i = ResFi/Q Hi , for certain groups Hi which are absolutely almost simple, simply
connected, over a totally real field Fi . We recall the classification of these groups
in Section 4, where we also construct opposition involutions on them preserving
specific maximal tori Si and inducing complex conjugation on their characters (for
noncompact places v of Fi ). We only do this for groups of type A or DH. These,
together with type E6, are the only ones that give a CM reflex field, as opposed to
totally real. Furthermore, as noted above, we impose some extra conditions in order
to construct the involutions. From the tori Si , we get maximal tori T ′ ⊂ Gder and
T ⊂ G, and an opposition involution θ ′ : Gder

→ Gder preserving T ′. As shown
in Proposition 3.4.8, θ ′ extends uniquely to an involution on G. To show that
θ(X) = X , we need to relate in some way the choice of our tori Si , which is a
priori unrelated to the Shimura datum, to the conjugacy class X . In Section 5, we
show that there always exists x ∈ X such that xad factors through the image of TR

in Gad
R . This is all we need for Proposition 3.4.8. In Theorem 5.2.2, we state the

existence of descent datum for Shimura varieties defined by groups (G, X) such
that the simple factors of Gad are of the type described in Section 4. We call these
strongly of type (ADH). Finally, we also note that involutions inducing the desired
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descent datum on Sh(G, X) can be constructed whenever G is adjoint and there
exists an opposition involution θ :G→G. This is always the case if G is quasisplit,
for example.

The existence of the involutions constructed in this paper should have interesting
applications, which will be explored in the future, for example, in the setting of
integral models and the zeta function problem, and periods of automorphic forms.

Notation and conventions. We fix an algebraic closure C of the real numbers R

and a choice of i =
√
−1, and we let Q denote the algebraic closure of Q in C. We

let c ∈ Gal(C/R) denote complex conjugation on C, and we use the same letter to
denote its restriction to Q. Sometimes we also write c(z)= z for z ∈ C.

Let k be a field. By a variety over k we will mean a geometrically reduced
scheme of finite type over k. We let Gm,k denote the usual multiplicative group
over k. For any algebraic group G over k, we let Lie(G) denote its Lie algebra.
For us, a reductive group will always be connected. If G is reductive, we let Gad

(resp. Gder) denote its adjoint group G/Z(G) (resp. its derived subgroup), where
Z(G) is the center of G. We let Gab

= G/Gder (a torus). If T ⊂ G is a torus, we
denote by T ad the image of T under the projection G→Gad. For any commutative
group scheme G, we denote by invG : G→ G the map g 7→ g−1.

We denote by A (resp. A f ) the ring of adèles of Q (resp. finite adèles). A CM
field K is a totally imaginary quadratic extension of a totally real field F .

We let S = RC/RGm,C. We denote by c = cS the algebraic automorphism
of S induced by complex conjugation. For any R-algebra A, this is c ⊗R idA :

(C⊗R A)×→ (C⊗R A)× on the points of S(A). This is often denoted by z 7→ z,
and on complex points it should not be confused with the other complex conjugation
idC⊗ c on S(C)= (C⊗R C)× on the second coordinate.

An involution of a group is an automorphism of order 2, whereas an involution
of a ring is an antiautomorphism of order 2. This should not cause any confusion.

We will denote by H the nonsplit quaternion algebra over R, identified with the
set of matrices of the form (

x y
−y x

)
in M2(C).

2. Shimura varieties, conjugation, and descent

We will first review some basic facts about Shimura varieties and conjugation by
an automorphism of C, specializing to the case of complex conjugation. Then
we set up our descent problem, describe some general considerations about reflex
fields and Dynkin diagrams, and explain how to construct descent data based on
involutions of a Shimura datum.
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2.1. Shimura varieties. A Shimura datum (G, X)will be understood in the sense of
Deligne’s axioms [1979, (2.1.1.1–3)]. We will assume moreover that the connected
component Z0 of the center Z of G splits over a CM field. For a compact open
subgroup K ⊂ G(A f ), we put ShK (G, X)(C) = G(Q)\X × G(A f )/K . For K
sufficiently small (which we assume from now on), this complex analytic space
is smooth and is equal to the complex points of a complex quasiprojective variety
ShK (G, X)C. Let E = E(G, X) ⊂ C be the reflex field of (G, X); under our
hypotheses, this is contained in a CM field, and thus, it is either a CM field or a totally
real field. In any case, we let E+ be the maximal totally real subfield of E . The
variety ShK (G, X)C admits a canonical model over E , denoted by ShK (G, X)E . We
use the same notation for the pro-objects Sh(G, X)(C), Sh(G, X)C, and Sh(G, X)E .
We denote by wX :Gm,R→GR the composition of x ∈ X with the weight morphism
w :Gm,R→S, for some (or any) x ∈ X , and call it the weight morphism of (G, X).
For x ∈ X , we let µx : Gm,C→ GC be the map given by µx(z)= xC(z, 1), under
the identification of SC

∼= Gm,C×Gm,C given by (z⊗ a) 7→ (za, za).
We will fix the following notation once and for all. Let p : G → Gad be the

projection onto Gad. The natural isogeny Z0
× Gder

→ G and the projection
G → Gab define an isogeny Z0

→ Gab. Let G1, . . . ,Gr be the almost simple
factors of Gder over Q, and let G̃i → Gi be their simply connected covers. We
can write G̃i = ResFi/Q Hi , where the fields Fi are totally real and the groups Hi

are simply connected, absolutely almost simple over Fi . For each embedding
v ∈ Ii =Hom(Fi ,C), we have groups Hi,v= Hi⊗Fi ,vR, and for a fixed i = 1, . . . , r ,
all these groups have the same Dynkin type Di , which will be called the Dynkin type
of G̃i (or of Gi or Hi ). We let Ii,c={v ∈ Ii : H ad

i,v(R) is compact} and we let Ii,nc be
its complement in Ii , which must be nonempty if Hi is nontrivial. We also have that
Gad is the direct product of the Gad

i = ResFi/Q H ad
i , and Gad

R is the direct product
of the H ad

i,v for i = 1, . . . , r and v ∈ Ii . Let X ad be the Gad(R)-conjugacy class
containing pR(X), and write X ad

=
∏

i,v X i,v with X i,v an H ad
i,v(R)-conjugacy class

of morphisms S→ H ad
i,v . For each i and each v ∈ Ii,nc, there is a special node si,v in

the Dynkin diagram Di,v of Hi,v attached to X i,v , which uniquely determines X i,v

as a conjugacy class with target H ad
i,v (in the sense that if Y is an H ad

i,v(R)-conjugacy
class satisfying Deligne’s axioms, for which its associated special node is si,v , then
Y = X i,v [Deligne 1979, §1.2.6]).

2.2. Conjugation. For the general properties of conjugation of Shimura varieties,
we mainly follow [Milne 1990; Milne and Shih 1982b; Deligne 1982; Milne and
Shih 1982a]; see also [Langlands 1979]. Let (G, X) be a Shimura datum. A special
pair (T, x) consists of a maximal torus T ⊂G and a point x ∈ X factoring through TR.
Fix x ∈ X a special point, and let σ ∈ Aut(C). We denote by (σ,x G, σ,x X) the
conjugate Shimura datum. We recall its construction below. By Theorem II.4.2 of
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[Milne 1990], there exists a unique isomorphism

ϕσ,x : σ Sh(G, X)C = Sh(G, X)C×C,σ C' Sh(σ,x G, σ,x X)C

satisfying certain conditions. Choosing a different special point gives canonically
isomorphic results [Milne 1990, Proposition II.4.3]. The reflex field of (σ,x G, σ,x G)
is σ(E), and ϕσ,x identifies σ Sh(G, X)E = Sh(G, X)E×E,σ σ(E) with the canoni-
cal model of Sh(σ,x G, σ,x G)C over σ(E) [Milne 1990, Theorem II.5.5]. In particular,
if σ(E)= E , then ϕσ,x defines an isomorphism

ϕσ,x : σ Sh(G, X)E ' Sh(σ,x G, σ,x X)E

over E . All of this also works at finite level: if K ⊂ G(A f ) is compact open,
ϕσ,x sends σ ShK (G, X)C to Shσ,x K (

σ,x G, σ,x X)C (same thing replacing C by E
and σ(E)), where σ,x K ⊂ σ,x G(A f ) is explicit (see below).

We are interested mainly in the case σ = c, but nevertheless it will be useful
to recall the general construction of (σ,x G, σ,x X). Let S be the (connected) Serre
group. This can be defined as the group of automorphisms of the forgetful fiber
functor from the Tannakian category of CM Q-Hodge structures to the category
of finite-dimensional Q-vector spaces. (Here a Q-Hodge structure is a Q-vector
space V such that V ⊗C is endowed with a Hodge structure; the structure is CM if
the algebra of elements of End(V ) which induce morphisms of Hodge structure
contains a commutative semisimple subalgebra of dimension dimQ(V ).) Let T
denote the Taniyama group, defined here as the group of automorphisms of the Betti
fiber functor in Deligne’s Tannakian category of CM motives for absolute Hodge
cycles over Q; this is the Tannakian category generated by Artin motives and by
the cohomology of abelian varieties over Q which are potentially CM. These are
proalgebraic groups, and there is a natural exact sequence

1→S→ T
π
−→ Gal(Q/Q)→ 1,

where the second arrow corresponds to the functor taking a CM motive M to its
CM Hodge structure HB(M), and π corresponds to the natural inclusion of the
category of Artin motives into the category of CM motives. The group Gal(Q/Q)
is to be considered as the proalgebraic group given by the inverse limit of the finite
constant groups Gal(L/Q), for L ⊂ C a finite Galois extension of Q. There is a
continuous section of π over A f denoted by

sp : Gal(Q/Q)→ T(A f ).

For a motive M , sp(σ ) corresponds to the automorphism of HB(M)⊗Q A f obtained
from the Galois action of σ on étale cohomology using the comparison isomorphism.
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Suppose that σ = c is complex conjugation. Then sp(c)∈T(A f ) can be described
as follows, as explained in [Deligne 1982, Lemme 5]. Suppose that M is a CM mo-
tive over Q, realized as the cohomology of an algebraic variety X over Q. The action
of complex conjugation on X (C) induces an involution F on the Betti realization
HB(M)= H i (X (C),Q). The automorphism sp(c) : HB(M)⊗A f → HB(M)⊗A f

is then equal to F ⊗Q idA f . This implies, in particular, that sp(c) ∈ T(Q).
For any σ ∈ Gal(Q/Q), we let σS = π−1(σ ). There is a cocharacter µcan :

Gm,C→SC, which in Tannakian terms gives rise to the Hodge cocharacter of the
Hodge structures on HB(M)⊗Q C.

Let G be any algebraic group over Q and ρ : S→ Gad be a homomorphism,
inducing an action of S on G by group automorphisms (conjugation). Let σ,ρG =
σS×S,ρ G be the group obtained by twisting G by the torsor σS. Thus, σ,ρG is
the fpqc sheaf associated with the presheaf sending a Q-algebra R to the group
σS(R)×S(R),ρ G(R), which is the quotient of σS(R)×G(R) by the right action
(s, g)s1 = (ss1, s−1

1 g) of S(R). The class of an element (s, g) in this quotient will
be denoted by s · g.

Lemma 2.2.1. Keep the notation and assumptions as above, with σ = c. There
exists a natural isomorphism c,ρG→ G.

Proof. As explained above, sp(c)∈ cS(Q), so cS is trivialized over Q. In particular,
the map sp(c)R · g 7→ g (for g ∈ G(R)) defines a group isomorphism between the
presheaves defining c,ρG and G. A fortiori, this defines an isomorphism c,ρG→G.

�

Remark 2.2.2. If H ⊂ G is a subgroup on which S acts trivially, then c,ρH is
canonically isomorphic to H (this is true for any σ ). This identification is compatible
with that of Lemma 2.2.1.

Remark 2.2.3. In [Milne 1990, §II.4], an isomorphism G(A f )→
c,ρG(A f ) is

constructed, which is denoted by g 7→ cg. When identifying c,ρG with G using
Lemma 2.2.1, this becomes the identity map. A similar remark applies to the
isomorphism g 7→ cg between GC and c,ρGC defined in [Milne 1990, §III.1] (note
that the element z∞(c) defined in [op. cit.] is equal to sp(c)C).

Suppose that (G, X) is a Shimura datum as before, and (T, x) is a special pair.
The map µx factors through TC, and there exists a unique homomorphism

ρad
x :S→ Gad

such that (ρad
x )C ◦ µcan = µ

ad
x . For σ ∈ Aut(C), the group σ,x G is defined to be

σ,ρad
x G in the previous notation (where we take the restriction of σ to Q). Since the

cocharacter σ(µx) of T = σ,ρx T commutes with its complex conjugate, it is the
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Hodge cocharacter associated with a map S→ σ,x GR which we denote by

σ x : S→ σ,x GR.

Finally, σ,x X is defined to be the σ,x G(R)-conjugacy class of σ x .
Assume now that σ = c. By Lemma 2.2.1, we can identify c,x G with G, and

hence, we can see cx : S→ c,x GR as a map

cx : S→ GR

with target GR. Let c = cS : S → S be complex conjugation on S. For any
h : S→ GR, let h = h ◦ c.

Lemma 2.2.4. In the notation above, we have that

cx = x .

Proof. It is enough to show that x(C) = (cx)(C) : S(C)→ G(C). Recall that we
are identifying S(C)= (C⊗R C)× with C××C× via the map (z⊗ a) 7→ (za, za).
Then c= cS :S(C)→S(C), which is given by c(z⊗a)= z⊗a, becomes the map
(a, b) 7→ (b, a). This is an algebraic automorphism of S. There is another complex
conjugation, which will be denoted by c′ here, on the complex points of S. Namely,

c′ : S(C)→ S(C),

which is induced by complex conjugation on C. It is given by c′(z⊗ a) = z⊗ a.
Then, as a map on C××C×, it is given by (a, b) 7→ (b, a).

Recall that µx(a)= x(C)(a, 1) for a ∈ C×. For readability purposes, we use the
notation xC(a, b) instead of x(C)(a, b) in what follows. Then, for a, b ∈ C×, we
have that

xC(a, b)= xC(b, a)= xC(b, 1)xC(1, a). (2.2.5)

Similarly,
(cx)C(a, b)= µcx(a)µcx(b). (2.2.6)

Now, by definition, µcx = c(µx), where c now denotes the action on cocharacters.
If we let g 7→ g denote the map on G(C) induced by c : C→ C, then

µcx(a)= µx(a)= xC(a, 1) (2.2.7)

for a ∈ C×. Since x is defined over R, it commutes with the maps on complex
points induced by c : C→ C. That is, the diagram

S(C) G(C)

S(C) G(C)

xC

c′ g 7→g

xC
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is commutative. From this and (2.2.7), it follows that

µcx(a)= xC(1, a). (2.2.8)

Similarly,
µcx(b)= cxC(b, 1)= (cx)C(1, b)= µc(cx)(b).

But µc(cx) = c(µcx)=µx , so this equals xC(b, 1). The proof finishes by combining
(2.2.5), (2.2.6), and (2.2.8). �

By the last lemma, we can identify c,x X with the G(R)-conjugacy class of x .
The map h 7→ h defines an antiholomorphic isomorphism between X and c,x X .
This does not depend on x , and from now on we let

X = {h : h ∈ X}.

Thus, the pair (c,x G, c,x X) becomes naturally identified with the pair (G, X).
The isomorphism ϕc,x becomes, under this identification, an isomorphism ϕ :

ShK (G, X)E×E,c E→ShK (G, X)E . On complex points, it defines an antiholomor-
phic isomorphism between ShK (G, X)(C) and ShK (G, X)(C), which we denote
by φ. For [h, g] ∈ShK (G, X)(C), we have that φ([h, g])=[h, g] ∈ShK (G, X)(C).

For example, suppose that E ⊂ R. Then there is an antiholomorphic involution
on ShK (G, X)(C) defined by complex conjugation acting on C. It follows from the
theory of canonical models that this involution takes the form [h, g] 7→ [η(h), g],
where η : X→ X is an antiholomorphic involution of the form η(g · x)= (gn) · x
for some n ∈ N (R) (here N is the normalizer in G of T ). See [Milne 1990, §II.7]
for details. In fact, the theory implies that there exists n ∈ N (R) such that cx = n · x ,
and thus, X = X . Then the map η becomes what we called φ; that is, η(h)= h for
any h ∈ X .

2.3. Involutions of Shimura data and descent. Fix a Shimura datum (G, X), with
reflex field E . For an involution θ : G→ G, let θ(X) be the G(R)-conjugacy class
{θ(h) : h ∈ X}, where θ(h)= θR ◦ h. Since we want to consider involutions θ that
send X to X 6= X , from now on, we will focus on the case where E is a CM field (if
E is totally real, the identity map on G takes X to X ). Let E+ ⊂ E be the maximal
totally real subfield, and let ι ∈ Gal(E/E+) be the nontrivial automorphism, i.e.,
the restriction of complex conjugation c to E .

Suppose that θ is an involution of G such that θ(X) = X . For a compact
open subgroup K ⊂ G(A f ), denote by θK = θ(K ) ⊂ G(A f ). Then θ induces
an isomorphism of algebraic varieties Sh(θ) : ShK (G, X)E → Shθ K (G, X)E . On
complex points, this takes [h, g] to [θR ◦ h, θ(g)]. Suppose that θK = K . Then
Sh(θ)−1

◦ϕ defines an isomorphism ψ : ι(ShK (G, X)E)= ShK (G, X)E ×E,ι E→
ShK (G, X)E .
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Let V be an arbitrary scheme over E . Recall that an E/E+-descent datum is a
pair of isomorphisms ψid : id(V )= V ×E,id E→ V and ψι : ιV = V ×E,ι E→ V
of schemes over E satisfying the cocycle condition

ψσ ◦ σ(ψτ )= ψστ

for all σ, τ ∈Gal(E/E+), using the natural identification σ(τ(V ))= (στ)V . Then
necessarily ψid is the first projection id(V )→ V , and thus, to give a descent datum
amounts to give an isomorphismψ=ψι : ι(V )→V such thatψ◦ι(ψ) : ι(ι(V ))→V
is equal to the identity map, when identifying ι(ι(V ))= V . By definition, such a
descent datum is effective if there exists a scheme V0 over E+ and an isomorphism
m : V → V0,E = V0×E+ E such that m ◦ψ = ι(m), after identifying ι(V0,E)= V0,E .
If V is a quasiprojective algebraic variety, then any descent datum for V is effective.
This was first proved by Weil [1956]. For a modern reference, see [Bosch et al.
1990, §6.2].

Theorem 2.3.1. The map ψ : ι(ShK (G, X)E)→ ShK (G, X)E obtained as above
from an involution θ : G → G such that θ(X) = X and θK = K is an effective
E/E+-descent datum on the Shimura variety ShK (G, X)E . Hence, there exists a
quasiprojective, smooth, algebraic variety ShK (G, X)E+ over E+, and an isomor-
phism m : ShK (G, X)E → ShK (G, X)E+ ×E+ E such that m ◦ψ = ι(m).

Proof. Let V = ShK (G, X)E and V = ShK (G, X)E , and let n : V → ι(ι(V )) be
the natural isomorphism. We need to check that ψ ◦ ι(ψ) ◦ n = idV , and for this
it is enough to see that both morphisms are equal on the set of complex points
V (C). Let cV : V (C)→ (ιV )(C) be the bijection that sends x : Spec(C)→ V
to p−1

ι,V ◦ x ◦ Spec(c), where pι,V : ιV → V is the first projection, and define
cιV : (ιV )(C)→ (ι(ιV ))(C) similarly. Then we have that n(C)= cιV ◦cV , ι(ψ)(C)=
cV ◦ ψ(C) ◦ c−1

ιV , and ψ satisfies that ψ(C) ◦ cV = Sh(θ)−1(C) ◦ φ. Recall that
φ : V (C)→ V (C) sends [h, g] to [h, g]. Putting all this together, we get that

(ψ ◦ ι(ψ) ◦ n)(C)= Sh(θ)−1(C) ◦φ ◦Sh(θ)−1(C) ◦φ,

and thus,
(ψ ◦ ι(ψ) ◦ n)(C)([h, g])=

[
θ−1(θ−1(h)

)
, θ−2(g)

]
.

But for any y ∈ X , θ−1(y)= θ−1
R ◦ y, and so

θ−1(θ−1(h)
)
= θ−1(θ−1

R ◦ h
)
= θ−1(θ−1

R ◦ h ◦ c
)
= θ−1(θ−1

R ◦h)= θ
−2
R ◦h= θ

−2(h),

and thus, (ψ◦ι(ψ)◦n)(C)([h, g])=[h, g], using the fact that θ2
= id. Finally, since

ShK (G, X)E is quasiprojective, the descent datum just constructed is effective. �

Remark 2.3.2. The model of Theorem 2.3.1 depends on the descent datum, which
in turns depends on the particular involution θ .
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We note that, by the nature of the descent datum, Hecke operators do not
descend to the model ShK (G, X)E+ . Given q ∈ G(A f ), the Hecke operator Tq is a
morphism of algebraic varieties Tq : ShK (G, X)E → Shq−1 K q(G, X)E , which on
complex points is given by Tq([h, g])= [h, gq]. Then Tθ(q) ◦Sh(θ)= Sh(θ) ◦ Tq :

ShK (G, X)E → Shθ(q)−1θ K θ(q)(G, X)E . The Hecke operator Tq descends to a map
ShK (G, X)E+→ Shq−1 K q(G, X)E+ if and only if Tθ(q) = Tq .

In the following sections we will construct several examples of involutions θ as
above, and explain a general framework for such constructions.

3. Opposition involutions

In this section we recall some basic facts about opposition involutions and prove
a few results that will be needed in the forthcoming sections. For the basic facts
regarding root data, see [Springer 1979].

3.1. Root data. Let 9 = (X,8, X∨,8∨) be a root datum with 8 6=∅. Let Q be
the subgroup of X generated by 8, and V = Q⊗Z Q. Let W =W (8) be the Weyl
group of the root system 8 in V . This can be naturally identified with the Weyl
group of 8∨ and with the subgroup of AutZ(X) generated by the reflections sα
for α ∈ 8. Choose a basis 1, and consider the associated based root datum
90 = (X,8,1, X∨,8∨,1∨).

There is an obvious notion of isomorphism of root data (resp. based root data)
9→9 ′ (resp. 90→9 ′0). It amounts to giving a Z-linear isomorphism f : X→ X ′

such that f (8) = 8′ and t f ( f (α)∨) = α∨ for all α ∈ 8 (resp. and f (1) = 1′).
Here t f denotes the transpose with respect to the root data pairings. We denote by
Aut(9) (resp. Aut(90)) the group of automorphisms of 9 (resp. 90). Each sα can
be seen as an automorphism of9, and thus, there is a natural inclusion W ⊂Aut(9).
We also denote by −1 ∈ Aut(9) the automorphism that sends x ∈ X to −x ∈ X .

Assume from now on that 8 is reduced. If 1 is a basis, let w0 be the longest
element of W with respect to it. Then w0(1)=−1, and thus, −w0 =−1 ◦w0 ∈

Aut(90). We call ? = −w0 the opposition involution of 90 (since w2
0 = 1 it is

indeed an involution). We denote the action of ? on elements x (which can be
characters of T , nodes of the Dynkin diagram, etc.) by x 7→ x?. When 8=∅, in
which case 9 is called toral, we directly define ?=−1 ∈ AutZ(X).

Remark 3.1.1. An isogeny (in particular, an isomorphism) of based root data will
commute with the corresponding opposition involutions. In particular, ? is a central
element of Aut90.

Remark 3.1.2. Let X0 ⊂ X denote the subgroup of X orthogonal to 8∨. The root
datum 9 is called semisimple when X0 = 0. If this is not the case, then there
exists a nonzero x ∈ X0, which hence must be invariant under W . In particular,
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x? =−x 6= x , so ? cannot be the identity map if the root datum is not semisimple.
In the same vein, if the root datum is toral, then ? 6= 1 unless 9 is trivial (that is,
also semisimple).

Suppose now that k is an algebraically closed field of characteristic 0, and let
G be a reductive group over k. Let T ⊂ G be a maximal torus, and 9 =9(G, T )
be the associated root datum, so that X = X∗(T ). Let B ⊃ T be a Borel subgroup,
and let 90 =90(G, T, B) be the corresponding based root datum. Let Aut(G) be
the group of automorphisms of G, and Inn(G)⊂ Aut(G) be the subgroup of inner
automorphisms (that is, defined by elements in G(k)). Thus, Inn(G)' Gad(k)'
G(k)/Z(k), where Z is the center of G. Then there is a split exact sequence

1→ Inn(G)→ Aut(G)→ Aut90→ 1 (3.1.3)

where, for f ∈Aut(G), the third arrow sends f to the automorphism of 90 induced
by f ′ ∈ Aut(G, T, B), where f ′ = int(g) ◦ f for any element g ∈ G(k) such that
int(g) f (B, T ) = (B, T ). We define an opposition involution of G (with respect
to (B, T )) to be any element θ ∈Aut(G) of order 1 or 2 that induces the opposition
involution ? in Aut90. Note that this definition does not require θ to preserve T or B.
If θ ′ is another such involution, then θ ′ = int(g) ◦ θ for some g ∈ G(k). If θ is an
opposition involution for (B, T ) and (B ′, T ′) is another Borel pair, then it is also an
opposition involution for (B ′, T ′). The exact sequence (3.1.3) is split by the choice
of a pinning. More precisely, let 1⊂8 be the set of simple roots corresponding
to B. For each α ∈1, let Uα ∈ G be the root group of α [Springer 1979, §2.3], and
let uα ∈Uα be a nontrivial element. The pinning is the datum {uα}α∈1 with respect
to (B, T ), and a splitting Aut90→ Aut(G) of (3.1.3) associated with this pinning
is given by an isomorphism Aut90 ' Aut(G, T, B, {uα}α∈1); two such splittings
differ by an automorphism int(t) for some t ∈ T (k). In particular, after choosing a
pinning, we can take θ ∈ Aut(G) to be the image of ? under the splitting and this
will be an opposition involution, which proves their existence. Note that we are
actually showing that there are opposition involutions in Aut(G) which preserve T
and B (and a fixed pinning).

Let k be any field of characteristic 0, and k be an algebraic closure of k. Let
0 = Aut(k/k). Let G be a reductive group over k, T ⊂ G a maximal torus, and
B ⊃ Tk a Borel subgroup of Gk . Let 9 = 9(Gk, Tk) and 90 = 90(Gk, Tk, B).
There is a natural action of 0 on X , denoted by χ 7→ γχ , where

γχ(t)= γ (χ(γ−1(t)))

for γ ∈ 0 and t ∈ T (k). We call it the usual action of 0 on X . It defines an
action of 0 on 9. Let γ ∈ 0. Then we define a second action µG(γ ) on X , the
∗-action, given by µG(γ )(χ)(t) = γχ(n−1tn) for t ∈ T (k), where n ∈ G(k) is
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an element such that int(n) sends the Borel pair (γ (B), γ (Tk)) to (B, Tk). For
example, if B is a Borel defined over k, then we can take n = 1 and the ∗-action
is just the usual action χ 7→ γχ . Going back to the general case, this gives a
morphism µG : 0→ Aut90, and it induces an action of 0 on Aut90 by taking
ρ 7→ µG(γ ) ◦ ρ ◦ µG(γ )

−1 for ρ ∈ Aut90. There is also an action of 0 on
Aut(Gk) given by γ · f = (idG ×Spec(k) Spec(γ−1)) ◦ f ◦ (idG ×Spec(k) Spec(γ )),
which on G(k)-points is simply g 7→ γ ( f (γ−1(g))). It preserves the subgroup
Inn(Gk)=G(k)/Z(k), where it acts as usual. The exact sequence (3.1.3) becomes

1→ Inn(Gk)→ Aut(Gk)→ Aut90→ 1 (3.1.4)

and is0-equivariant. We define an opposition involution of G to be an automorphism
θ ∈ Aut(G) of order 1 or 2 such that θk is an opposition involution on Gk .

There may not be a 0-equivariant splitting of (3.1.4), so it may not always be
possible to construct in this way an opposition involution of G. However, if G is
quasisplit and B is a Borel subgroup defined over k, it can be shown [Demazure
1965/66, §3.10] that there exists a 0-equivariant splitting. Since ? ∈ Aut90 is
central, it commutes with µG(γ ) for any γ ∈0, and thus, it is a 0-invariant element
in the last group of (3.1.4). Thus, for quasisplit reductive groups over k, there
always exist opposition involutions on G over k, but the condition of G being
quasisplit is far from necessary. There are many nonquasisplit cases where the
opposition involution is trivial (see below), and so obviously defined over k. There
are many nontrivial examples as well, as we will see later.

Remark 3.1.5. If G = T is a torus, then there exists one and only one opposition
involution θ ∈ Aut(G), namely θ = invG .

Lemma 3.1.6. If θ is an opposition involution of G, then θZ : Z → Z is equal
to invZ .

Proof. It is enough to see that both maps induce the same map on X∗(Z), that is,
that θ∗Z : X

∗(Z)→ X∗(Z) is multiplication by −1, and thus, we can assume that
k = k. Let (B, T ) be a Borel pair. Then Z ⊂ T . Let χ ∈ X∗(Z). Then there exists
µ∈ X∗(T ) such that µ|Z = χ . We claim that θ∗Z (χ)= (µ

?)|Z . Indeed, for z ∈ Z(k),
θ∗Z (χ)(z) = χ(θ(z)), whereas (µ?)|Z (z) = 90(θ)(µ)(z) = µ((int(g) ◦ θ)(z)) =
µ(θ(z)) (where g ∈ G(k) sends θ(B, T ) to (B, T )), which shows that θ∗Z = (µ

?)|Z .
On the other hand, if n0 ∈ NG(T )(k) represents w0 ∈W = NG(T )(k)/T (k), then

for z ∈ Z(k), µ?(z) = µ(n−1
0 z−1n0) = µ(z−1) = µ−1(z) because z ∈ Z(k). Thus,

θ∗Z (χ)=−χ , as desired, where we have switched back to the additive notation for
the group X∗(Z). �

Remark 3.1.7. The last lemma shows in particular that if the identity map is an
opposition involution, then Z is killed by 2. Then Z0 must be trivial; that is, G
must be semisimple (see also Remark 3.1.2).
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3.2. Dynkin diagrams and special nodes. Let 90 be a based root datum with
8 6= ∅ and reduced, and let D be its Dynkin diagram. Then the opposition
involution ? acts on D. We include for reference the list of connected Dynkin
diagrams and their opposition involutions; see [Bourbaki 2002] for notation of
nodes and more details. We also list the special nodes of each diagram (see
[Deligne 1979, §1.2.5], for the definition of special node). Also, note that if 9 is
semisimple, then ? is trivial on 90 if and only if it is trivial on D. For a Shimura
datum (G, X), the only factors of Gad that contribute to a CM reflex field are the
ones of type Al (l ≥ 2), Dl (l ≥ 5 odd), or E6. This follows from the list below and
Proposition 2.3.6 of [Deligne 1979]:

• D= Al (l ≥ 1).
α?i = αl+1−i (so ? is trivial if l = 1).
All nodes αi are special.

• D= Bl (l ≥ 2) or Cl (l ≥ 3).
? is trivial.
There is only one special node: α1 in the Bl case, and αl in the Cl case.

• D= Dl (l ≥ 4).
If l is even, ? is trivial.
If l is odd, α?i = αi for i < l − 1, and α?l−1 = αl .
The special nodes are α1, αl−1, and αl .

• D= E6.
α?1 = α6, α?2 = α2, α?3 = α5, and α?4 = α4.
The special nodes are α1 and α6.

• D= E7, E8, F4, or G2.
? is trivial.
Only E7 has a special node, which is α7.

3.3. Multiplicative groups of CM type. From now on let k=Q and 0=Gal(Q/Q).
Let T1 and T2 be algebraic groups over Q of multiplicative type, not necessarily con-
nected. Then there is a natural bijection Hom(T1, T2)'Hom0(X2, X1), where Aut0
means 0-equivariant morphisms for the natural Galois structures on X i = X∗(Ti ).
In particular, for T over Q of multiplicative type, there is a natural isomorphism
Aut(T )' Aut0(X), with X = X∗(T ). We let c∗T : X→ X be the map c∗T (χ)=

cχ .
We say T splits over an extension K ⊂Q of Q if Aut(Q/K ) acts trivially on X∗(T ).

Lemma 3.3.1. If T is a group of multiplicative type that splits over a CM field, then
c∗T ∈ Aut0(X).

Proof. Suppose that T splits over K ⊂ Q, a CM field. Let χ ∈ X . Then γχ = χ

for any γ ∈ Aut(Q/K ), and thus, γ1χ = γ2χ if γ1, γ2 ∈ 0 have the same restriction
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to K . For any γ ∈ 0, γ c and cγ have the same restriction to K , and so c∗T (
γχ)=

c(γχ)= cγχ = γ cχ = γ (c∗T (χ)). �

Under the assumptions of the last lemma, we let cT : T → T denote the unique
involution inducing c∗T on X . If T1 and T2 are groups of multiplicative type which
are split over a CM field, and f : T1→ T2 is a morphism, then f ◦ cT1 = cT2 ◦ f ,
because both maps induce the same morphism X2→ X1.

Suppose now that T is a group of multiplicative type over R. Using the same
procedure, there exists a unique involution cT :T→T inducing complex conjugation
on characters. If T is defined over Q and split over a CM field, these definitions
are compatible with base change from Q to R.

Example 3.3.2. For T = S over R, the map cS is given by cS(z⊗ a)= z⊗ a for
an R-algebra A and z⊗ a ∈ (C⊗R A)×.

Remark 3.3.3. If T is an anisotropic R-torus (that is, if T (R) is compact), then it
is easy to see that cχ = −χ for any χ ∈ X and thus cT = invT is the opposition
involution on T .

3.4. Involutions taking X to X. Let (G, X) be a Shimura datum. Recall that we
are assuming that Z0 splits over a CM field, and hence, we have the conjugation
involution cZ0 : Z0

→ Z0.

Remark 3.4.1. Let x ∈ X . From the fact that int(x(i)) : Gad
R → Gad

R is a Cartan
involution, it follows that Gad

R is an inner form of an anisotropic group H over R

(that is, H(R) is compact). A similar statement holds for Gder
R (the element x(i)

may not belong to Gder(R); however, over C, int(x(i)) can be replaced by int(x(i)′)
for some x(i)′ ∈ (T ∩Gder)(C)). The next lemma is well known.

Lemma 3.4.2. Let G be a reductive group over R, and assume that it is an inner
form of a group H over R which is anisotropic. Assume furthermore that T ⊂ G
is a maximal torus, and the inner automorphism of GC defining a cocycle for H is
given by int(t0) for some t0 ∈ T (C). Then the following hold.

(i) cT = invT .

(ii) For a Borel subgroup B ⊃ TC, the opposition involution acting on90(G, T, B)
is given by the ∗-action of c.

(iii) The subgroup c(B)⊂ GC is the opposite Borel subgroup of B; that is,

c(B)∩ B = TC.

Proof. By hypothesis, we can choose an isomorphism φ : GC → HC such that
f : GC → GC defined by f (g) = φ−1(φ(g)) is an inner automorphism of the
form int(t0), with t0 ∈ T (C). Then there exists a maximal torus TH ⊂ H such
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that TH,C = φ(TC), and we let BH = φ(B). Since TH (R) is compact, this im-
plies that T (R) is compact, so (i) follows from Remark 3.3.3. Let r = 90(φ) :

90(H, TH , BH ) → 90(G, T, B) be the induced isomorphism. It is Gal(C/R)-
equivariant for the ∗-actions, as follows from the fact that the forms are inner, and
it commutes with ?, so it is enough to prove part (ii) when G itself is anisotropic,
which is well known. For (iii), the fact that f preserves TC and B again allows us to
reduce to the case of G anisotropic, in which case the statement is well known. �

Remark 3.4.3. In the last lemma, if the group is quasisplit and B is a Borel
subgroup defined over R, the inner automorphism will not usually belong to T (C);
otherwise, we would have B = T . There are quasisplit semisimple groups with
B 6= T which are inner forms of anisotropic groups, for example SU(n, n). In
this case, the Cartan involution coming from a certain Shimura datum and special
pair will preserve the maximal torus and a Borel subgroup containing it, but not a
rational Borel subgroup.

Remark 3.4.4. Suppose that (G, X) is a Shimura datum, and let (T, x) be a special
pair. Then Gder

R satisfies all the hypotheses of the previous lemma. Here the inner
automorphism defining the cocycle is int(x(i)′) as before. Alternatively, we can
work with the adjoint group Gad

R and x(i).

Remark 3.4.5. Suppose that θ : G→ G is an involution such that there exists a
special pair (T, x) with the property that θ preserves T and induces cTR

on TR.
Then θR(x)= cTR

◦ x = x ◦ cS = x , and thus, θ(X)= X .

Lemma 3.4.6. Let G be a reductive group over R, and T ⊂ G a maximal torus. If
θ :G→G is an involution such that θ(T )⊂T and θ |T =cT , then θ(B)=c(B)⊂GC

for any Borel subgroup B ⊃ TC.

Proof. Let R ⊂ X = X∗(T ) denote the set of roots of (GC, TC). Let R+ denote the
set of positive roots with respect to B. Then θ(B) is the Borel subgroup whose Lie
algebra is Lie(TC)⊕

⊕
α∈R+ Lie(GC)α◦θ . Since α ◦ θ = cα, it follows that this is

the Lie algebra of c(B), and since both θ(B) and c(B) are connected, this proves
the lemma. �

The construction of involutions taking X to X that we will perform will be
based on involutions θ which will roughly be as in Remark 3.4.5. By the following
proposition, we need to look for opposition involutions on semisimple groups.

Proposition 3.4.7. Let (G, X) be a Shimura datum, and let θ : G → G be an
involution of G, such that there exists a special pair (T, x) with the property that
θ preserves T and induces cTR

on TR. Then θder
: Gder

→ Gder is an opposition
involution, and θ0 = θ |Z0 : Z0

→ Z0 is equal to cZ0 .

Proof. Suppose that θ is an involution with (T, x) as in the statement. To see that
θ0 = cZ0 , it is enough to see that θR,0 = cZ0

R
. Since Z0

R ⊂ TR and θR|TR
= cTR

,
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it follows that θ0,R = cZ0
R
. Let T ′ = T ∩ Gder, let B ⊂ GC be a Borel subgroup

containing TC, and B ′ = B ∩ Gder
C
⊃ T ′

C
. Let 9 ′0 = 90(Gder, T ′, B ′), and let

r=90(θ
der) :9 ′0→9 ′0 be the induced isomorphism. It is given by r(χ)=χ◦int(q)◦

θder
|T ′

C
for χ ∈ X ′ = X∗(T ′), where q ∈ Gder(C) is such that int(q)θder(T ′

C
, B ′)=

(T ′
C
, B ′). On the other hand, by Lemma 3.4.2(ii), ? : 9 ′0→ 9 ′0 is given by χ? =

cχ ◦ int(a−1), where a ∈ Gder(C) is such that int(a)c(T ′
C
, B ′) = (T ′

C
, B ′). By

Lemma 3.4.6, we can take a = q . Finally, the hypothesis that θder
|T ′ = cT ′ implies

that χ? = χ ◦ θ ◦ int(q−1). Thus, to see that r(χ) = χ?, it is enough to see that
θder
◦ int(q−1) and θder

◦ int(ϕ(q)) induce the same automorphism of T ′
C

, and this
follows from the fact that both elements θ−1(q) and q−1 conjugate the Borel pair
(T ′

C
, B ′) to the same Borel pair. �

The following proposition is a partial converse and the main result of this section.
Since our construction will be explicit using the classification of semisimple groups,
we need to work with either the derived group or the adjoint group. The idea is to
construct an involution on G taking X to X by extending an opposition involution
on Gder. Ideally we would want the involution to be as in Remark 3.4.5, but it is
enough to consider a weaker hypothesis, as stated in the proposition. Recall the
notation from Section 2.1. Suppose that for each i , Si ⊂ Hi is a maximal torus, and
let T̃i = ResFi/Q Si ⊂ G̃i , Ti ⊂ Gi its image in Gi , T ′ ⊂ Gder the image of their
product, and T = Z0T ′. Note that T ad

R = T
′ad

R =
∏

i,v Sad
i,v, where Si,v ⊂ Hi,v and

Sad
i,v is its image in H ad

i,v.

Proposition 3.4.8. Suppose that θi : Hi→ Hi is an opposition involution for each i .
Suppose moreover that θi (Si ) = Si and θ ad

i,v|Sad
i,v
= cSad

i,v
for every i and v ∈ Ii,nc.

Finally, assume that there exists x ∈ X such that xad factors through T ad
R . Then

there exists an involution θ : G→ G such that θ(X)= X.

Proof. For each i , the involution ResFi/Q θi defines an opposition involution of G̃i .
Moreover, the kernel Ki of the projection G̃i → Gi is contained in the center
of G̃i . By Lemma 3.1.6, ResFi/Q θi induces x 7→ x−1 on the center. In particular, it
preserves Ki and induces an opposition involution on Gi . Similarly, the product
of these involutions defines an opposition involution θ ′ : Gder

→ Gder. Let q :
Z0
× Gder

→ G be the natural isogeny. We can look at the product involution
θ ′× cZ0 : Gder

× Z0
→ Gder

× Z0. We claim that this preserves ker(q), and thus, it
induces an involution on G. To show this, we can work with C-points. The kernel
consists of pairs (g, z) such that zg = 1, so we need to check that if (g, z) is such
a pair, then θ ′(g)cZ0(z) = 1. The element g = z−1 belongs to Z0

∩Gder
⊂ ZGder .

The maps cZ0 : Z0
→ Z0 and cZGder : ZGder→ ZGder are equal on Z0

∩Gder, and by
part (i) of Lemma 3.4.2, cZGder = invZGder , so cZ0(z)= z−1. On the other hand, by
Lemma 3.1.6, θ ′ induces invZGder on ZGder , and so θ ′(g) = g−1

= z. This proves
that there exists a (unique) involution θ : G→ G such that θder

= θ ′ and θ0 = cZ0 .
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We also have that θ preserves T and θ ad
R =

∏
i,v θ

ad
i,v. Now, we know that there

exists x ∈ X such that xad factors through T ad
R . Let y = θR(x). Then yad

= θ ad
R (x

ad).
For v ∈ Ii,nc, we have θ ad

i,v(xi,v) = xi,v because θ ad
i,v induces cSad

i,v
and xi,v factors

through Sad
i,v. For v ∈ Ii,c, xi,v = 1. Thus, yad

= xad. Also, since θR induces
cZ0

R
on Z0

R, and q : Z0
→ Gab is an isogeny, it follows that θR induces cGab

R
on Gab

R .
From this it follows that y and x have the same projections to Gad

R and to Gab
R , and

thus, y = x (see for instance the proof of Proposition 5.7 of [Milne 2005]). Since
y = θR(x), this shows that θ(X)= X . �

4. Involutions on classical semisimple groups

In this section, we make use of several results regarding the classification of semi-
simple algebraic groups over totally real fields. For notation and terminology
regarding algebras with involutions and their associated groups, we freely follow our
main reference [Knus et al. 1998]. We are only interested in the explicit classification
of groups of type A and D in order to construct our desired involutions on certain
Shimura varieties. Furthermore, not all the groups in the general classification
appear in the theory of Shimura varieties, so we are only interested in classifying the
groups Hi (in the notation of Section 2.1) of type Al (l≥2) or Dl (l≥4 odd) that can
occur. Furthermore, in accordance with the previous section, we are also interested
in constructing, whenever possible, opposition involutions on these groups.

The following construction regarding quaternion algebras will be used often in the
following. Suppose that D is a quaternion division algebra over a number field K .
Let λ ∈ D× be a pure quaternion (that is, such that σ(λ)=−λ, where σ : D→ D
is the canonical involution), and choose another pure quaternion µ ∈ D× such that
λµ=−µλ. Then {1, λ, µ, λµ} is a standard basis of D. If we let L = K (λ), then L
is a maximal subfield of D (a quadratic extension of K ). We have an isomorphism
of L-algebras φ : D⊗K L→ M2(L) defined by

φ(λ⊗ 1)=
(
λ 0
0 −λ

)
and

φ(µ⊗ 1)=
(

0 µ2

1 0

)
.

Then the isomorphism φ sends L ⊗K L to the subalgebra of diagonal matrices
in M2(L).

Throughout this section, let F be a totally real field and H be an absolutely
almost simple, simply connected algebraic group over F . We let D be the Dynkin
diagram of HF (where F is some algebraic closure of F). We let I = Hom(F,R),
Ic = {v ∈ I : H ad

v (R) is compact}, and let Inc be its complement in I .
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4.1. Groups of type Al (l ≥ 2). Suppose that D= Al with l ≥ 2. Then there exists
a quadratic étale extension K/F (so K/F is a quadratic extension of fields, or
K = F× F), and a central simple algebra B over K , of degree l+1, endowed with
an involution τ : B→ B of the second kind (that is, inducing ι on K , where ι is
the nontrivial automorphism of K which fixes F) such that H = SU(B, τ ) [Knus
et al. 1998, Theorem 26.9]. If H is one of the Hi as above, then K must be a field.
Indeed, if otherwise, then H ' SL1(A) for some central simple algebra A over F
of degree l + 1. For each v ∈ Hom(F,R), we have

Av = A⊗F,v R' Ml+1(R) or Av ' M(l+1)/2(H).

In both cases, it follows that Hv is an inner form of SLl+1,R, so the ∗-action of c
is trivial (a condition that does not depend on the Borel pair), and thus, it cannot
be the opposition involution because l ≥ 2. From this and Lemma 3.4.2 it follows
that H cannot occur as one of the factors Hi . Thus, we have proved that K must
be a field. Moreover, a similar argument implies that K must be totally imaginary,
that is, K/F is a CM extension. The adjoint group H ad is PGU(B, τ ).

We can then write B = EndD(V ) for some central division algebra D over K ,
endowed with an involution J : D → D of the second kind, whose action we
denote by d 7→ d J , and a finite-dimensional right D-vector space V . There is a
nondegenerate hermitian form h : V × V → D inducing the involution τ : B→ B.
The pair (V, h) is called a hermitian space over D.

Suppose that θ : H → H is an opposition involution. There is a natural iso-
morphism between Aut(H) and the group of F-algebra automorphisms of B that
commute with τ [Knus et al. 1998, Theorem 26.9], and thus, there exists such an
automorphism γ : B→ B of order 2, inducing θ . If γ |K is the identity map on K ,
then γ = int(b0) for some b0 ∈ B× by the Skolem–Noether theorem, and b0 is
moreover a similitude for τ . The induced map θ : H → H would thus be an inner
automorphism, inducing the identity map on the Dynkin diagram, but the opposition
involution on Al is nontrivial for l ≥ 2. Hence, γ |K must be ι. Let B and D denote
the K -algebras B and D with ι-conjugate structure. Thus, γ : B→ B is a K -algebra
isomorphism. We let Br(K ) be the Brauer group of K and [B] = [D] ∈ Br(K ) be
the class of B in it. Then [D] = [B] = [B] = [D], which implies that there must
exist a ring automorphism α : D→ D inducing ι on K .

Proposition 4.1.1. Let D be a central division algebra over a CM extension K/F
of number fields, endowed with an involution J : D→ D of the second kind. Then
the following are equivalent:

(a) D = K or D is a quaternion division algebra over K .

(b) The order of [D] ∈ Br(K ) is 1 or 2.

(c) There exists a ring automorphism α : D→ D inducing ι on K .
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Moreover, in this case, α is unique up to composition with an inner automorphism
of D. Furthermore, it can be chosen to have order 2 and such that α J = Jα is either
idD if D = K or the canonical involution if D is a quaternion division algebra.

Proof. The fact that (a) implies (b) in the quaternion algebra case follows from the
existence of the canonical involution on D, which gives an isomorphism D→ Dop,
so [D] = [D]−1. To see that (b) implies (a), use [Scharlau 1985, 10.2.3].

Now suppose that (a) is true. If D = K , then take α = ι. If D is a quaternion
division algebra, let σ : D→ D be its canonical involution, and take α = Jσ = σ J
(they commute because Jσ J is a symplectic involution of the first kind on D, and
hence equal to σ ).

Finally, suppose that α : D→ D is as in (c). The involution J : D→ D induces
an isomorphism D → Dop, where D is the conjugate algebra λ · d = ι(λ)d for
λ ∈ K . Similarly, α induces an isomorphism D→ D, and thus, in the end we have
an isomorphism D→ Dop, which implies that the order of [D] is 1 or 2.

The uniqueness of α up to inner automorphism follows because if β is another
such automorphism, then αβ−1

: D→ D is a K -linear automorphism and hence
inner by the Skolem–Noether theorem. �

Remark 4.1.2. Suppose that D is a quaternion division algebra. Under the condi-
tions of the previous proposition, there exists a unique quaternion algebra D0 ⊂ D
over F such that D = D0 ⊗F K and J = σ0 ⊗F ι, where σ0 is the canonical
involution of D0 [Knus et al. 1998, §II.22]. Then the map α constructed in the proof
is α = idD0 ⊗F ι. We define the canonical conjugation α : D→ D (attached to J
or D0) to be α = idD0 ⊗F ι. If D = K , we also call α = ι the canonical conjugation.

Thus, we have shown that if there exists θ : H→ H an opposition involution, then
either D = K (and J = ι) or D is a quaternion division algebra (and J = σ0⊗F ι).
Conversely, suppose that D = K or D is a quaternion division algebra. We will
construct suitable opposition involutions under an additional assumption.

Remark 4.1.3. Suppose that D = K (and D0 = F) or D is a quaternion division
algebra. Let Is ⊂Hom(F,R) be the subset of places v ∈ I =Hom(F,R) such that
D0,v = D0⊗F,v R is split, and let Ins ⊂ I be its complement. We let Ic ⊂ I be the
subset of places v such that H ad

v (R) is compact, and Inc its complement. The group
HR can be written as a product of special unitary groups

∏
v∈I SU(pv, qv), and the

compact places are exactly the places where pvqv = 0.

Definition 4.1.4. We say that a hermitian space (V, h) over D (where D = K or a
quaternion division algebra) is strongly hermitian if there exists an h-orthogonal
D-basis β = {v1, . . . , vn} of V such that h(vi , vi ) ∈ K× for all i . In the quaternion
algebra case, we ask furthermore that Ins ⊂ Ic.

Remark 4.1.5. A hermitian space over D = K is always strongly hermitian.
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Remark 4.1.6. The existence of the basis β in Definition 4.1.4 is what allows us to
explicitly construct an opposition involution θ : H → H . In the quaternion algebra
case, this involution will define an involution θv : Hv→ Hv, and we want this to
induce complex conjugation on Sad

v when v ∈ Inc. The involution that we construct
does not satisfy this at places v ∈ Ins (see Remark 4.1.9). Since we only care about
noncompact places, we make the assumption Ins ⊂ Ic.

Suppose that (V, h) is strongly hermitian, and let β be a basis as in the definition.
Let I : V → V be the α-semilinear isomorphism obtained by applying α to the
coordinates of elements of V with respect to the basis β (this map is inspired by the
constructions of [Taylor 2012]). Then h(I (x), I (y))= α(h(x, y)). Let θ : H→ H
be given as θA(g)= IAgIA for an F-algebra A and a D⊗F A-linear automorphism g
of V ⊗F A. Let L ⊂ D be a maximal subfield. More precisely, if D = K , then
L = K , and if D is a quaternion division algebra, take L = K (λ), where λ is a pure
quaternion in D0. Let S = SL ,β be the subgroup of H defined as follows. For an
F-algebra A, H(A)⊂ AutD⊗F A(V ⊗F A), and we let

S(A)={h ∈ H(A) :h(vi⊗1)= (vi⊗1)λi for some λi ∈ (L⊗F A)× (i =1, . . . , n)}.

This is a maximal torus in H .

Proposition 4.1.7. With the above hypotheses, the following statements are true:

(a) The involution θ : H → H is an opposition involution.

(b) We have θ(S)= S and for every v ∈ Inc, θv : Hv→ Hv induces cSv on Sv.

In particular, θ ad
v : H

ad
v → H ad

v induces cSad
v

on Sad
v for v ∈ Inc.

Proof. For part (a), it suffices to see that θL : HL → HL is an opposition involution.
We can identify HK with SLV/D , where SLV/D(A) consists, for a K -algebra A, of
the D⊗K A-linear automorphisms of V⊗K A with reduced norm 1. Using the basis β,
we can further identify SLV/D(A)∼= SLn(D⊗K A). Let Q ∈GLn(K ) be the matrix
of h with respect to β. Then it is easy to see that θA :SLn(D⊗K A)→SLn(D⊗K A)
is explicitly given by the formula

θA(X)= Q−1(t X−1)σ Q,

where σ : D→ D is the canonical involution of D if D is a quaternion division
algebra, and σ = id if D = K . Note that Q is a diagonal matrix in GLn(K ).

If D = K , we denote by φ : D ⊗K L → L the unique obvious isomorphism.
If D is a quaternion division algebra, we take φ : D ⊗K L → M2(L) to be an
isomorphism of L-algebras taking L ⊗K L to the subalgebra of diagonal matrices
in M2(L), as constructed above (we use for this the pure quaternion λ ∈ D0 and
another pure quaternion µ ∈ D0 such that λµ=−µλ). In particular, σ preserves L .
The identification HK (A)∼=SLn(D⊗K A) sends SK (A) to the subgroup of matrices
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in SLn(D⊗K A)which are diagonal and have entries in L⊗K A. Since σ preserves L ,
it follows that θK sends the torus SK to itself. Moreover, if we now extend scalars
to L , the map φ provides an isomorphism

HL ∼= SLnm,L , (4.1.8)

where Snm,L is the usual group of nm×nm matrices of determinant 1; furthermore,
the torus SL maps to the torus of diagonal matrices in SLnm,L (so S is indeed a maxi-
mal torus, as claimed). If m= 1, then θL(X)= Q−1t X−1 Q for X ∈ SLn,L . Suppose
that m=2. Write Q=diag(q1, . . . , qn), and let Q̃=diag(q1, . . . , qn, q1, . . . , qn)∈

GL2n(K ). Write matrices X ∈ SL2n,L as blocks

X =
(

A B
C D

)
,

with A, B,C, D of size n× n. Then θL : SL2n,L → SL2n,L is explicitly given as

θL(X)= Q̃−1
( t D −t B
−

tC t A

)
Q̃.

From this explicit expression of θ as an involution of SLnm,L , it is easy to see
that it preserves the maximal torus SL of diagonal matrices and that it induces the
opposition involution on the root datum.

For part (b), fix v∈ Inc. We need to check that if χ ∈ X= X∗(Sv)=Hom(Sv×RC,

Gm,C), then χ ◦ θv,C = cχ . To compute cχ , we need to compute how complex
conjugation acts on Hv(C). Choose once and for all an extension τ : L ↪→ C

of v to L . Using the embedding τ and the isomorphism (4.1.8), we can identify
Hv ×R C= HL ×L ,τ C∼= SLnm,C. Moreover, the action of c on Hv(C)∼= SLnm(C)

is explicitly given as follows. Let Qv = diag(v(q1), . . . , v(qn)) ∈ GLn(R) and
Q̃v = diag(v(q1), . . . , v(qn), v(q1), . . . , v(qn)) ∈ GL2n(R). Let

γ =

(
0 In

−In 0

)
.

If m=1 and X ∈SLn(C), then c(X)=Q−1
v X∗,−1 Q. If m=2 and X ∈SL2n(C), then

c(X)= Q−1
v γ X∗,−1γ−1 Qv. The last case easily follows from (4.1.8) and the fact

that D0,v is split. We can identify X∗(Sv) in the standard way with Znm/L , where
L = {(k, k, . . . , k) : k ∈Z}. It then follows easily from our calculations of the action
of c that if χ ∈ X∗(Sv) is identified with the class of the tuple (a1, . . . , an) in the case
m = 1, respectively the class of the tuple (a1, . . . , an, b1, . . . , bn) in the case m = 2,
then cχ is identified with (−a1, . . . ,−an) or with (−b1, . . . ,−bn,−a1, . . . ,−an),
respectively. This, together with our formulas for θ , show that θv induces cSv on Sv ,
which is what we wanted to prove. �
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Remark 4.1.9. When D0,v is not split, there is also an explicit formula for c that
involves a matrix γ as above, but γ turns out to be a diagonal matrix. So in this
case θv does not induce cSv on Sv. We only care about noncompact places, hence
our assumption Ins ⊂ Ic.

Remark 4.1.10. Keep the assumptions and notation as above. For each v ∈ Inc,
we will construct a map y : S→ H ad

v satisfying Deligne’s axioms [1979, §1.2.1]
and factoring through Sad

v . Namely, fix τ : L ↪→ C an extension of v to L , and let
w = τ |K (so w = τ when D = K = L). Let Dw = D⊗K ,w C and Jw : Dw→ Dw

be defined by Jw(d⊗ z)= J (d)⊗ z. The group Hv(A) can be identified, using the
basis β, with the group of matrices X ∈ GLn(Dw ⊗R A) such that t X Jw Q X = Q
and Nrd(X)= 1. If m = 1, let φτ : Dw→ C be the unique isomorphism. If m = 2,
consider the C-algebra isomorphism φτ : Dw→ M2(C) given by

φτ (λ⊗K ,w 1)=
(
τ(λ)0

0 −τ(λ)

)
, φτ (µ⊗K ,w 1)=

(
0 v(µ2)

1 0

)
.

As above, for any R-algebra A, this induces an isomorphism GLn(Dw ⊗R A) ∼=
GLmn(C⊗R A) taking the subgroup of diagonal matrices with entries in Lw⊗R A
(where Lw = L ⊗K ,w C) to the subgroup of diagonal matrices in GLmn(C⊗R A).
Moreover, the corresponding involution X 7→ t X Jw gets identified with X 7→
γ X∗γ−1, where if m= 1, γ = In , and if m= 2, γ is the hermitian matrix defined by

γ =

(
0 i In

−i In 0

)
if v(λ2) > 0, and

γ =

(
−v(µ2)In 0

0 In

)
if v(λ2) < 0 (note that in this case, we must have v(µ2) > 0). In this way, we can
write

Hv(A)∼= {X ∈ GL2n(C⊗R A) : (γ X∗γ−1)Q′X = Q′, det(X)= 1},

where Q′ = Qv if m = 1 and Q′ = Q̃v = diag(v(q1), . . . , v(qn), . . . , v(q1), . . . ,

v(qn)) if m=2. Thus, we can identify Hv with the special unitary group SU(γ−1 Q′)
of the hermitian matrix γ−1 Q′, and the maximal torus Sv is the torus of diagonal
matrices. Note that H ad

v is also the adjoint group of the similitude unitary group
GU(γ−1 Q′). We define y′ : S→ GU(γ−1 Q′) as follows. For an R-algebra A and
z ∈ S(A), let

y′A(z)=
(

diag(y′A(z)1, . . . , y′A(z)n) 0
0 diag(y′A(z)1, . . . , y′A(z)n)

)
,

where y′A(z)i = z if v(qi )> 0 and y′A(z)i = z if v(qi )< 0. We let y= y′ad
:S→ H ad

v .



2312 Don Blasius and Lucio Guerberoff

Using the explicit computation of γ−1 Q′ in each case, the group GU(γ−1 Q′) is
isomorphic to a similitude unitary group GU(p, q) of a certain signature (p, q)
(furthermore, if m = 2, in our case where D0,v is split, the signature is always
(n, n), so the group Hv is in fact quasisplit). It is then standard that y′, and hence y,
satisfy Deligne’s axioms (see for instance the Appendix of [Milne and Shih 1981]).

4.2. Groups of type Dl (l ≥ 4 odd). Suppose that D = Dl with l ≥ 5 odd. Then
H = Spin(B, τ ), where B is a central simple algebra over F of degree 2l and τ
is an orthogonal involution [Knus et al. 1998, Theorem 26.15]. The adjoint group
is H ad

= PGO+(B, τ ). In order to avoid introducing spin groups, we will work
in this section with H ad. Since the map Aut(H)→ Aut(H ad) is an isomorphism,
an opposition involution on H ad will uniquely lift to an opposition involution
on H ; moreover, suppose that S ⊂ H is a maximal torus and the involution on H ad

preserves Sad and induces cSad
v

on Sad
v for every v ∈ Inc. Then the lifted involution

on H preserves S and also obviously induces cSad
v

on Sad
v for every v ∈ Inc. This

will allow us to concentrate on H ad and avoid spin groups.
Since F is a number field, it can be shown that B = EndD(3), where D = F

or a quaternion division algebra over F [Scharlau 1985, §8.2.3], and 3 is a right
D-vector space of finite dimension n. Let m = degF D. Moreover, the involution
τ : B→ B must be attached to a nondegenerate F-bilinear form q :3×3→ D. In
the case D = F (where dimF 3= 2l), q is a symmetric bilinear form. In the case
that D is a quaternion division algebra (where dimD 3= l), q is a skew-hermitian
form with respect to the canonical involution σ : D→ D. We will only treat the
case where D is a quaternion division algebra. Let Is ⊂ I = Hom(F,R) be the set
of v : F→ R such that Dv = D⊗F,v R is split, and let Ins be its complement in I .
For v ∈ Is , the skew-hermitian form qv on 3v defines a nondegenerate symmetric
bilinear form bv over a real vector space Wv of dimension 2n [Scharlau 1985], and
then we have that Ic ⊂ Is is the set of split places where bv is definite. As in the
Appendix of [Milne and Shih 1981] (type DH), we will assume that Ic = Is . We
call the pair (3, q) a skew-hermitian space over D. Note that n = l is odd.

Let β = {v1, . . . , vn} be a D-basis of 3, which is q-orthogonal. The group
H ad
= PGO+(3, q) can also be seen as the adjoint group of G = SO(3, q), where

G(A)= {g ∈ AutD⊗F A(3A) : Nrd(g)= 1 and
qA(g(x), g(y))= qA(x, y) for all x, y ∈3A}

for an F-algebra A. Here 3A =3⊗F A and Nrd is the reduced norm in EndD(3).
We let S′= S′β ⊂G be the subgroup of G defined as follows. For every i = 1, . . . , n,
let qi = q(vi , vi ). This is a pure quaternion in D, and so L i = F(qi ) is a quadratic
field extension of F . For an F-algebra A, let

S′(A)={g∈G(A) :g(vi⊗1)= (vi⊗1)λi for some λi ∈ (L i⊗F A)× (i=1, . . . , n)}.



Complex conjugation and Shimura varieties 2313

Then S′ ⊂ G is a maximal torus of G, and it defines maximal tori S ⊂ H and
Sad
= S′ad

⊂ H ad.
We will construct involutions on H modeled after our constructions for the case

of type Al . For this we need to make an analogous extra assumption.

Definition 4.2.1. We say that the skew-hermitian space (3, q) over D is strongly
skew-hermitian if there exists a q-orthogonal D-basis β = {v1, . . . , vn} of 3 and
an F-automorphism α : D→ D such that q(vi , v j )=−α(q(v j , vi )) and α2

= 1.

Remark 4.2.2. Any automorphism α : D→ D as above must be necessarily inner,
of the form α(d)= rdr−1 for some r ∈ D× such that r2

∈ F×. This implies that
rσ(r)−1

∈ F× as well (because F is the set of elements of D fixed by σ ). Moreover,
since q(vi , vi ) ∈ D×, r must be a pure quaternion in D. As in the previous case,
the existence of the basis β will allow us to construct an explicit involution. The
map α plays the role of the canonical conjugation of case Al .

Suppose that (3, q) is strongly hermitian, and let β and α = int(r) be as in
the definition. We then have ασ = σα. Let I : 3 → 3 be the α-semilinear
automorphism obtained by applying α to the coefficients of elements of 3 with
respect to the basis β. Then q(I (x), I (y))=−α(q(x, y)). Let θ :G→G be defined
by θA(g) = IAgIA for an F-algebra A and a (D ⊗F A)-linear automorphism g
of 3⊗F A.

Let L = F(r), where r ∈ D is as above. This is again a quadratic extension of F
(and a maximal subfield of D). Let S′ and Sad be the maximal tori of G and H ad

defined above using the basis β.

Proposition 4.2.3. With the above hypotheses, the following statements are true:

(a) The map θ : G→ G is an opposition involution (and hence so is θ ad).

(b) We have θ(S′)= S′ and for every v ∈ Inc, θv : Gv→ Gv induces cS′v on S′v.

In particular, θ ad
v : H

ad
v → H ad

v induces cSad
v

on Sad
v for v ∈ Inc.

Proof. For part (a), it suffices to see that θE : G E→ G E is an opposition involution,
for a convenient extension E/F . Using the basis β and the isomorphism φ :

D⊗F L→ M2(L) as constructed above, we can identify GL as follows. Implicit
in the construction of φ is the choice of a pure quaternion s ∈ D with rs = −rs,
and we let t = v(s2) ∈R. Let qi = q(vi , vi ). Since σ(qi )=−qi and rqir−1

=−qi ,
we have

φ(r)=
(

r 0
0 −r

)
∈ GL2(L)

and

φ(qi )=

(
0 bi

ci 0

)
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for some bi , ci ∈ L . The image in M2(L) under φ of L i ⊗F L ⊂ D⊗F L consists
of the matrices in M2(L) of the form(

x ybi

yci x

)
for some x, y ∈ L . Thus, the induced isomorphism φ : Mn(D⊗F L)→ M2n(L)
sends the subalgebra of diagonal matrices L1⊗F L × · · ·× Ln ⊗F L to the set of
matrices in M2n(L) of the form

X =
(

diag(x1, . . . , xn) diag(y1b1, . . . , ynbn)

diag(y1c1, . . . , yncn) diag(x1, . . . , xn)

)
(4.2.4)

with xi , yi ∈ L . Let

Q̃ =
(

0 diag(b1, . . . , bn)

diag(c1, . . . , cn) 0

)
∈ GL2n(L).

Then, for any L-algebra R, writing a matrix X ∈ GL2n(R) as X =
( A

C
B
D

)
, there is

an isomorphism

G(R)∼=
{

X ∈ GL2n(R) :
( t D −t B
−

tC t A

)
Q̃
(

A B
C D

)
= Q̃, det(X)= 1

}
(4.2.5)

that takes the subgroup S′ to the subgroup of matrices of the form (4.2.4) in the
right-hand side. Note that the equation is equivalent to t X Q̃′X = Q̃′, where

Q̃′ =
(

diag(c1, . . . , cn) 0
0 − diag(b1, . . . , bn)

)
(the matrix Q̃′ is the matrix of the associated bilinear form [Scharlau 1985, §10.3]).
Moreover, if

γ =

(
r In 0
0 −r In

)
,

then θR(X)= γ Xγ−1 for X ∈ G(R); in block matrix terms,

θR

(
A B
C D

)
=

(
A −B
−C D

)
.

It is clear then that θ preserves S′.
Let E/L be a field extension such that there exist elements ei , fi ∈ E with e2

i = ci

and f 2
i = bi (for example, take E = C with a fixed embedding of L). For elements

a1, . . . , an , let adiag(a1, . . . , an) be the antidiagonal matrix whose (i, n+ 1− i)-th
entry is ai , and let Jn = adiag(1, . . . , 1). Let

δ =

(
adiag(en, . . . , e1) adiag(− fn, . . . ,− f1)

diag(e1/2, . . . , en/2) diag( f1/2, . . . , fn/2)

)
∈ GL2n(E).
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Then the map X 7→ δXδ−1 sends G E (viewed inside GL2n,E via (4.2.5)) to the
special orthogonal group SO2n of the matrix J2n over E . The maximal torus S′E
maps to the subgroup of diagonal matrices in SO2n , and θ becomes conjugation by
the matrix

δγ δ−1
=

(
0 2r Jn

(r/2)Jn 0

)
inside GL2n . We identify in the usual way X∗(S′) ∼= Zn . As a Borel subgroup
of G E we take the subgroup B of upper-triangular matrices belonging to G E . The
map θ sends B to the subgroup B− of lower-triangular matrices. Let J ′2n be the
matrix obtained from J2n by swapping the rows n and n+ 1. Then it is easy to see
that J ′2n ∈ G(E) and sends B− to B. It follows that 90(θ)(χ)= χ ◦ int(J ′2n)◦ θ for
χ ∈ X∗(S′). If χ is parametrized by (a1, . . . , an), then90(θ)(χ) is parametrized by
(a1, . . . , an−1,−an)= (a1, . . . , an)

? [Bourbaki 2002, Plate IV]. Thus, θ : G→ G
is an opposition involution.

Let v : F ↪→R, and let τ : L ↪→C be an extension of v to L . If τ =τ , then τ(r)∈R.
Thus, τ(r)2 ∈ R>0, and this implies that Dv is split, so v ∈ Is = Ic. In part (b), we
only care for v ∈ Inc, so suppose from now on that τ 6= τ , so that τ(r) ∈ iR>0. By
the same reasoning we have that t = v(s2) < 0. We use τ to identify GC

∼= SO2n

as above. We first work out the induced complex conjugation on G(C)∼= SO2n(C).
Using the isomorphisms D ⊗F,v C ' (D ⊗F L)⊗L ,τ C ∼= M2(C) (the last one
coming from φ), it is easy to see that complex conjugation on D⊗F,vC corresponds
to taking a matrix X ∈ M2(C) to(

t 0
0 1

)(
X22 X21

X12 X11

)(
t−1 0
0 1

)
,

where t = v(s2) as above. Note that qi ∈ D ⊂ D ⊗F,v C, so this implies that
tτ(ci )= τ(bi ) and thus

tei/ f i =− fi/ei . (4.2.6)

It follows that the induced complex conjugation on G(C), viewed inside GL2n(C)

as in (4.2.5), is given by

X =
(

A B
C D

)
7→ c′(X)=

(
D tC

t−1 B A

)
.

Finally, we apply conjugation by δ to identify GC with SO2n . We only need to con-
sider the action of c on diagonal matrices. Let X=diag(x1, . . . , xn, x−1

n , . . . , x−1
1 )∈

SO2n(C). Then c(X)= δc′(δ)−1c′(X)c′(δ)δ−1, and a long but easy direct calcula-
tion using (4.2.6) shows that

δc′(δ)−1
=

(
2 adiag(en/ f n, . . . , e1/ f 1) 0

0 1
2 adiag( f1/e1, . . . , fn/en)

)
,
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and thus,

c(diag(x1, . . . , xn, x−1
n , . . . , x−1

1 ))= diag((x1)
−1, . . . , (xn)

−1, xn, . . . , x1).

This implies that, if χ ∈ X∗(S′) is parametrized by (a1, . . . , an) ∈ Zn , then cχ

is parametrized by (−a1, . . . ,−an). This is also easily seen to be the parameter
of χ ◦ θ , which shows that θv induces cS′v on S′v. �

Remark 4.2.7. Keep the assumptions and notation as above. For each v ∈ Inc, we
will construct a map y : S→ H ad

v satisfying Deligne’s axioms [1979, §1.2.1] and
factoring through Sad

v . Recall that t = v(s2), and let u = v(r2). Since v ∈ Inc, by
our assumptions Dv is not split. This implies that u < 0 and t < 0. Let ψ : Dv→H

be the isomorphism of R-algebras sending r ⊗ 1 to
√
−ue2 and s ⊗ 1 to

√
−te3.

Here e1, e2, e3, and e4 are the following elements of H:

e1 = I2, e2 =

(
i 0
0 −i

)
, e3 =

(
0 1
−1 0

)
, e4 = e2e3.

As above, we can write ψ(qi )=
( 0 yi

−yi 0

)
with yi ∈ C×. Let

T =
(

0 diag(y1, . . . , yn)

− diag(y1, . . . , yn) 0

)
.

We then have, for an R-algebra R,

Gv(R)∼=
{

X =
(

A B
−B A

)
∈GL2n(C⊗R R) : X∗T X = T, det(X)= 1

}
. (4.2.8)

The maximal torus S′ corresponds to the subgroup of matrices on the right-hand
side where A = diag(a1, . . . , an) and B = diag(b1 y1, . . . , bn yn) with ai , bi ∈ R.
We can actually see Hv as the adjoint group of G ′v , where G ′v(R) is isomorphic to{

X =
(

A B
−B A

)
∈ GL2n(C⊗R R) : X∗T X = ν(X)T, det(X)= ν(X)n

}
.

We define y′ : S→ G ′v by the formula

y′R(z)=

 Re(z)In diag
( Im(z)
|y1|

y1, . . . ,
Im(z)
|yn|

yn

)
diag

(
−

Im(z)
|y1|

yi , . . . ,−
Im(z)
|yn|

yn

)
Re(z)In


for z ∈ S(R). Conjugating by a suitable matrix U ∈ GL2n(C), we can write
G ′v ∼= GO∗(2n) and y becomes the map in the Appendix of [Milne and Shih 1981],
so it satisfies Deligne’s axioms, and hence also does y = y′ad.
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5. Involutions on certain Shimura varieties

In this section we combine all our previous results to prove the existence of descent
data on certain Shimura varieties Sh(G, X). As we said before, we only consider
the case where the simple groups Hi are of type A or DH. In the previous section,
we constructed opposition involutions on some of these groups, preserving a certain
maximal torus Si and inducing complex conjugation on its characters. Furthermore,
we constructed maps yi,v :S→ H ad

i,v for every v ∈ Ii,nc satisfying Deligne’s axioms
[1979, §1.2.1], factoring through Sad

i,v. We now show that we can always find an
element x ∈ X such that xi,v factors through Sad

i,v for every i and v ∈ Ii,nc. The
existence of descent data will follow by combining this with Proposition 3.4.8.

5.1. Existence of particular elements x ∈ X. Let H be an almost simple, simply
connected group over R (to play the role of one of the noncompact Hi,v). Suppose
that there exist morphisms y :S→ H ad satisfying Deligne’s axioms [1979, §1.2.1];
in particular, H is absolutely almost simple. Let D be the Dynkin diagram of HC

associated with a choice of maximal torus and Borel subgroup. To each H ad(R)-
conjugacy class Y of morphisms y as above, we can attach a special node sY ∈ D,
and sY = sY ′ if and only if Y = Y ′.

Lemma 5.1.1. Under the above conditions, there exist at most two H(R)-conjugacy
classes Y of morphisms satisfying Deligne’s axioms [1979, §1.2.1]. Moreover, given
such a conjugacy class Y , any morphism satisfying these axioms must belong to
either Y or Y−1.

Proof. Suppose first that D is not of type Al . This case is easy because there are not
too many special nodes. Indeed, assume first that H(R) is connected, and fix Y one
of the conjugacy classes. Then sY−1 = s?Y 6= sY [Deligne 1979, §1.2.8], and hence,
Y−1 and Y are two distinct conjugacy classes. Suppose that Z is a third conjugacy
class, that is, sZ is neither equal to sY nor to s?Y . Again by [Deligne 1979, §1.2.8],
sZ 6= s?Z , and thus, we have four distinct special nodes sY , s?Y , sZ , and s?Z . There
is no connected Dynkin diagram with four special nodes which is not of type Al ,
and thus, this is a contradiction. If H(R) is not connected, then sY = s?Y . If Z is
another conjugacy class, then again by [op. cit.] we must have sZ = s?Z . But for any
connected Dynkin diagram, there is at most one special node which is fixed under
the opposition involution, and thus Z = Y .

Suppose now that H is of type Al with l ≥ 2, so H = SU(p, q) for some nonzero
pair of integers p, q such that p+q= l+1. The isomorphism C⊗R C'C×C given
by z⊗ a 7→ (za, za) induces by projection on the first coordinate an isomorphism
HC ' SLl+1,C; fix the usual Borel pair here to define the Dynkin diagram. Define
a morphism

y0 : S→ H ad
= PGU(p, q)
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with y0(z) being the class of the matrix(
z Ip 0
0 z Iq

)
.

Then y0 satisfies Deligne’s axioms [1979, §1.2.1], and the special node s0 attached
to its H ad(R)-conjugacy class Y0 is αp. From the conjugate map y0 = y−1

0 we get
the special node αq associated with Y−1

0 . If Y is another conjugacy class, say with
special node αt , then there would be an isomorphism PGU(p, q)∼=PGU(t, l+1−t)
sending Y0 or Y−1

0 to Y . In particular, t = p or t = q , and we conclude that there are
at most two possible conjugacy classes of morphisms satisfying Deligne’s axioms
for the fixed form PGU(p, q) of PGLl+1,C (and there are exactly two in all cases
except when p = q , when there is only one). �

Going back to our general Shimura datum (G, X), for each i , let Si ⊂ Hi be
a maximal torus, T̃i = ResFi/Q Si ⊂ G̃i , Ti ⊂ Gi its image in Gi , T ′ ⊂ Gder the
image of their product, and T = Z0T ′. Note that T ad

R = T
′ad

R =
∏

i,v Sad
i,v, where

Si,v ⊂ Hi,v and Sad
i,v is its image in H ad

i,v.

Lemma 5.1.2. Suppose that T ⊂ G is the maximal torus defined above. Suppose
that for each v ∈ Ii,nc, there exists a morphism yi,v : S→ H ad

i,v satisfying axioms
[Deligne 1979, §1.2.1] and factoring through Sad

i,v. Then there exists an element
x ∈ X such that xad factors through T ad

R .

Proof. Let z ∈ X be an arbitrary element. The previous lemma implies that zi,v is
H ad

i,v(R)-conjugate to a map yi,v : S→ Sad
i,v . Thus, we can write zi,v = ui,v · yi,v for

ui,v ∈ H ad
i,v(R). We claim that, after possibly changing the yi,v , we can arrange for

ui,v to be in H ad
i,v(R)

+. Indeed, if ui,v is not in that connected component, then in
particular H ad

i,v(R) is not connected, and thus, there is only one conjugacy class in
question, with two connected components, one containing zi,v and the other one
containing yi,v. Thus, we only need to replace yi,v with y−1

i,v , which also factors
through Sad

i,v. For v ∈ Ii,c, let ui,v = 1. It follows that u = (ui,v) ∈ Gad(R)+, and
thus, there exists g ∈G(R) lifting u. Let x = g−1

· z ∈ X , so that xad
= (yi,v), which

factors through T ad
R as desired. �

5.2. The main theorem. In this subsection we put all the ingredients together to
obtain the main theorem on the existence of involutions of G taking X to X .

Definition 5.2.1. The Shimura datum (G, X) is said to be strongly of type (ADH)

if each of the groups Hi is either of type Al with l ≥ 2 and attached to a strongly
hermitian space (as in Definition 4.1.4), or of type Dl with l ≥ 5 odd and attached
to a strongly skew-hermitian space (as in Definition 4.2.1).
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For example, a Shimura variety defined by a similitude unitary group attached to
a hermitian space over a CM field is strongly of type (ADH). Note however that
the definition only restricts the semisimple part of G.

Theorem 5.2.2. Suppose that (G, X) is strongly of type (ADH). Then there exists
an involution θ : G → G such that θ(X) = X , and hence, there exists a model
of Sh(G, X) over E+ as in Theorem 2.3.1.

Proof. In Subsections 4.1 and 4.2, we constructed for every i , an opposition
involution θi : Hi → Hi and a maximal torus Si ⊂ Hi such that θi (Si ) = Si and
θ ad

i,v induces cSad
i,v

for every v ∈ Ii,nc. Moreover, by Remarks 4.1.10 and 4.2.7, for
every i and v ∈ Ii,nc, there is a map yi,v : S→ H ad

i,v satisfying Deligne’s axioms
[1979, §1.2.1], and factoring through Sad

i,v. The result then follows by combining
Proposition 3.4.8 and Lemma 5.1.2. �

Remark 5.2.3. The conclusion of the previous theorem holds in other cases as well.
For instance, if G is adjoint and there exists an opposition involution θ : G→ G
(which is always the case if G is also quasisplit, for example), then by the adjointness
of G, we conclude that θ(X)= X . On the other hand, the cases that we considered in
this paper are concretely given by simple algebras, and thus are intimately related to
moduli problems, even though we do not use the moduli interpretation explicitly. It
is an interesting problem to consider factors of other types, for instance of type E6,
and analyze whether it is possible to construct opposition involutions with the
desired properties in some of these cases. We plan to investigate this problem in
the future.

Acknowledgements

The first author thanks the Erwin Schrödinger International Institute for Mathematics
and Physics for its support during a visit when a part of the work for this project
was undertaken. A substantial part of this work was carried out while the second
author was a guest at the Max Planck Institute for Mathematics in Bonn, Germany.
It is a pleasure to thank the Institute for its hospitality and the excellent working
conditions. The authors would also like to thank the anonymous referees for many
useful comments and suggestions which helped us improve the paper.

References

[Borovoı̆ 1983] M. V. Borovoı̆, “Langlands’ conjecture concerning conjugation of connected Shimura
varieties”, Selecta Math. Soviet. 3:1 (1983), 3–39. MR

[Borovoı̆ 1987] M. V. Borovoı̆, “The group of points of a semisimple group over a totally real-closed
field”, pp. 142–149 in Problems in group theory and homological algebra, edited by A. L. Onishchik,
Yaroslavl State University, 1987. In Russian. MR

http://msp.org/idx/mr/732450
http://msp.org/idx/mr/1174804


2320 Don Blasius and Lucio Guerberoff

[Bosch et al. 1990] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der
Mathe. und ihrer Grenzgebiete (3) 21, Springer, 1990. MR Zbl

[Bourbaki 2002] N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Elements of Math. 9,
Springer, 2002. MR Zbl

[Deligne 1979] P. Deligne, “Variétés de Shimura: interprétation modulaire, et techniques de construc-
tion de modèles canoniques”, pp. 247–289 in Automorphic forms, representations and L-functions
(Corvallis, OR, 1977), vol. 2, edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33,
American Math. Society, 1979. MR Zbl

[Deligne 1982] P. Deligne, “Motifs et groupes de Taniyama”, pp. 261–279 in Hodge cycles, motives,
and Shimura varieties, Lecture Notes in Math. 900, Springer, 1982. MR Zbl

[Demazure 1965/66] M. Demazure, “Automorphismes des groupes réductifs”, exposé XXIV in
Schémas en groupes, Fasc. 7: Exposés 23 à 26 (Séminaire de Géométrie Algébrique de l’Institut
des Hautes Études Scientifiques, 1963/64), edited by M. Demazure and A. Grothendieck, IHES,
Paris, 1965/66. Reprinted as pp. 323–409 in Schémas en groupes, Tome III: Structure des schémas
en groupes réductifs, Lecture Notes in Math. 153, Springer, 1970. MR Zbl

[Knus et al. 1998] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions,
AMS Colloquium Publications 44, American Math. Society, 1998. MR Zbl

[Langlands 1979] R. P. Langlands, “Automorphic representations, Shimura varieties, and motives:
ein Märchen”, pp. 205–246 in Automorphic forms, representations and L-functions (Corvallis, OR,
1977), vol. 2, edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33, American Math.
Society, 1979. MR Zbl

[Milne 1983] J. S. Milne, “The action of an automorphism of C on a Shimura variety and its special
points”, pp. 239–265 in Arithmetic and geometry, vol. I, edited by M. Artin and J. Tate, Progr. Math.
35, Birkhäuser, 1983. MR Zbl

[Milne 1990] J. S. Milne, “Canonical models of (mixed) Shimura varieties and automorphic vector
bundles”, pp. 283–414 in Automorphic forms, Shimura varieties, and L-functions, I (Ann Arbor, MI,
1988), edited by L. Clozel and J. S. Milne, Perspect. Math. 10, Academic, 1990. MR Zbl

[Milne 1999] J. S. Milne, “Descent for Shimura varieties”, Michigan Math. J. 46:1 (1999), 203–208.
MR Zbl

[Milne 2005] J. S. Milne, “Introduction to Shimura varieties”, pp. 265–378 in Harmonic analysis, the
trace formula, and Shimura varieties (Toronto, 2003), edited by J. Arthur et al., Clay Math. Proc. 4,
American Math. Society, 2005. MR Zbl

[Milne and Shih 1981] J. S. Milne and K.-y. Shih, “The action of complex conjugation on a Shimura
variety”, Ann. of Math. (2) 113:3 (1981), 569–599. MR Zbl

[Milne and Shih 1982a] J. S. Milne and K.-y. Shih, “Conjugates of Shimura varieties”, pp. 280–356
in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, Springer, 1982. MR
Zbl

[Milne and Shih 1982b] J. S. Milne and K.-y. Shih, “Langlands’s construction of the Taniyama
group”, pp. 229–260 in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900,
Springer, 1982. MR Zbl

[Scharlau 1985] W. Scharlau, Quadratic and Hermitian forms, Grundlehren der mathe. Wissenschaften
270, Springer, 1985. MR Zbl

[Springer 1979] T. A. Springer, “Reductive groups”, pp. 3–27 in Automorphic forms, representations
and L-functions (Corvallis, OR, 1977), vol. 1, edited by A. Borel and W. Casselman, Proc. Sympos.
Pure Math. 33, American Math. Society, 1979. MR Zbl

http://dx.doi.org/10.1007/978-3-642-51438-8
http://msp.org/idx/mr/1045822
http://msp.org/idx/zbl/0705.14001
http://msp.org/idx/mr/1890629
http://msp.org/idx/zbl/0983.17001
http://dx.doi.org/10.1090/pspum/033.2
http://dx.doi.org/10.1090/pspum/033.2
http://msp.org/idx/mr/546620
http://msp.org/idx/zbl/0437.14012
http://dx.doi.org/10.1007/978-3-540-38955-2_6
http://msp.org/idx/mr/654325
http://msp.org/idx/zbl/0499.14001
http://www.msri.org/publications/books/sga/sga/pdf/sga3-3.pdf
http://msp.org/idx/mr/0274460
http://msp.org/idx/zbl/0212.52810
http://dx.doi.org/10.1090/coll/044
http://msp.org/idx/mr/1632779
http://msp.org/idx/zbl/0955.16001
http://dx.doi.org/10.1090/pspum/033.2
http://dx.doi.org/10.1090/pspum/033.2
http://msp.org/idx/mr/546619
http://msp.org/idx/zbl/0447.12009
http://dx.doi.org/10.1007/978-1-4757-9284-3_10
http://dx.doi.org/10.1007/978-1-4757-9284-3_10
http://msp.org/idx/mr/717596
http://msp.org/idx/zbl/0527.14035
http://www.jmilne.org/math/Books/AA1988a.pdf
http://www.jmilne.org/math/Books/AA1988a.pdf
http://msp.org/idx/mr/1044823
http://msp.org/idx/zbl/0704.14016
http://dx.doi.org/10.1307/mmj/1030132370
http://msp.org/idx/mr/1682899
http://msp.org/idx/zbl/0984.11028
http://msp.org/idx/mr/2192012
http://msp.org/idx/zbl/1148.14011
http://dx.doi.org/10.2307/2006998
http://dx.doi.org/10.2307/2006998
http://msp.org/idx/mr/621017
http://msp.org/idx/zbl/0443.14014
http://dx.doi.org/10.1007/978-3-540-38955-2_7
http://msp.org/idx/mr/654325
http://msp.org/idx/zbl/0478.14029
http://dx.doi.org/10.1007/978-3-540-38955-2_5
http://dx.doi.org/10.1007/978-3-540-38955-2_5
http://msp.org/idx/mr/654325
http://msp.org/idx/zbl/0478.12011
http://dx.doi.org/10.1007/978-3-642-69971-9
http://msp.org/idx/mr/770063
http://msp.org/idx/zbl/0584.10010
http://dx.doi.org/10.1090/pspum/033.1
http://msp.org/idx/mr/546587
http://msp.org/idx/zbl/0416.20034


Complex conjugation and Shimura varieties 2321

[Taylor 2012] R. Taylor, “The image of complex conjugation in l-adic representations associated to
automorphic forms”, Algebra Number Theory 6:3 (2012), 405–435. MR Zbl

[Weil 1956] A. Weil, “The field of definition of a variety”, Amer. J. Math. 78 (1956), 509–524. MR
Zbl

Communicated by Shou-Wu Zhang
Received 2016-02-21 Revised 2017-03-30 Accepted 2017-04-29

blasius@math.ucla.edu Mathematics Department, University of California, Los
Angeles, Los Angeles, CA, United States

lguerb@gmail.com Department of Mathematics, University College London,
London, United Kingdom

mathematical sciences publishers msp

http://dx.doi.org/10.2140/ant.2012.6.405
http://dx.doi.org/10.2140/ant.2012.6.405
http://msp.org/idx/mr/2966704
http://msp.org/idx/zbl/1303.11065
http://dx.doi.org/10.2307/2372670
http://msp.org/idx/mr/0082726
http://msp.org/idx/zbl/0072.16001
mailto:blasius@math.ucla.edu
mailto:lguerb@gmail.com
http://msp.org




Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 11 No. 10 2017

2213Tate cycles on some unitary Shimura varieties mod p
DAVID HELM, YICHAO TIAN and LIANG XIAO

2289Complex conjugation and Shimura varieties
DON BLASIUS and LUCIO GUERBEROFF

2323A subspace theorem for subvarieties
MIN RU and JULIE TZU-YUEH WANG

2339Variation of anticyclotomic Iwasawa invariants in Hida families
FRANCESC CASTELLA, CHAN-HO KIM and MATTEO LONGO

2369Effective nonvanishing for Fano weighted complete intersections
MARCO PIZZATO, TARO SANO and LUCA TASIN

2397Generalized Kuga–Satake theory and good reduction properties of Galois
representations

STEFAN PATRIKIS

2425Remarks on the arithmetic fundamental lemma
CHAO LI and YIHANG ZHU

1937-0652(2017)11:10;1-7

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.10


	1. Introduction
	2. Shimura varieties, conjugation, and descent
	2.1. Shimura varieties
	2.2. Conjugation
	2.3. Involutions of Shimura data and descent

	3. Opposition involutions
	3.1. Root data
	3.2. Dynkin diagrams and special nodes
	3.3. Multiplicative groups of CM type
	3.4. Involutions taking X to 3mu-3mu X-1mu1mu

	4. Involutions on classical semisimple groups
	4.1. Groups of type Al (l2)
	4.2. Groups of type Dl (l4 odd)

	5. Involutions on certain Shimura varieties
	5.1. Existence of particular elements xX
	5.2. The main theorem

	Acknowledgements
	References
	
	

