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We establish a height inequality, in terms of an (ample) line bundle, for a sum
of subschemes located in `-subgeneral position in an algebraic variety, which
extends a result of McKinnon and Roth (2015). The inequality obtained in this
paper connects the result of McKinnon and Roth (the case when the subschemes
are points) and the results of Corvaja and Zannier (2004), Evertse and Ferretti
(2008), Ru (2017), and Ru and Vojta (2016) (the case when the subschemes are
divisors). Furthermore, our approach gives an alternative short and simpler proof
of McKinnon and Roth’s result.

1. Introduction and statements

McKinnon and M. Roth [2015] introduced the approximation constant αx(L) to
an algebraic point x on an algebraic variety V with an ample line bundle L . The
invariant αx(L) measures how well x can be approximated by rational points on
V with respect to the height function associated to L . They showed that αx(L) is
closely related to the Seshadri constant εx(L) measuring the local positivity of L
at x . They also showed that the invariant αx(L) can be computed through another
invariant βx(L) in the height inequality they established (see Theorem 5.1 and
Theorem 6.1 in [McKinnon and Roth 2015]). By computing the Seshadri constant
εx(L) for the case of V = P1, their result recovers Roth’s theorem, so the height
inequality they established can be viewed as a generalization of this theorem to
arbitrary projective varieties.

In this paper, we provide a simpler proof of the above results. Furthermore,
we extend the results from the points of a projective variety to subschemes. The
generalized result in terms of subschemes connects, as well as gives a clearer
explanation to, the above mentioned result of McKinnon and Roth with the recent
Diophantine approximation results in terms of the divisors obtained in [Corvaja and
Zannier 2004; Evertse and Ferretti 2008; Levin 2014; Ru and Vojta 2016; Ru 2017].

We now state our result. Let V be a projective variety defined over a number
field k.
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Definition 1.1. Let L be a line bundle over V with h0(V, NL)≥1 for N big enough.
Let Y be a proper closed subscheme of V and π : Ṽ → V be the blow-up along Y ,
and E be the exceptional divisor. We define

βL ,Y := lim inf
N→∞

∑
∞

m=1 h0(Ṽ , Nπ∗L −m E)
N · h0(V, NL)

.

Remark 1.2. (a) If Y is an effective Cartier divisor, then the blow-up is an iso-
morphism. Without loss of generality, we let π be the identity map, Ṽ = V
and E = Y .

(b) Let D be an effective divisor on V , we define βD,Y := βO(D),Y , where O(D)
is the line sheaf associated to D.

(c) In the case when L is big, the limN→∞ in the definition above exists. Indeed
(see [McKinnon and Roth 2015, pp. 544–545]), we have

βL ,Y =

∫ γeff

0

Vol(Lγ )
Vol(L)

dγ,

where Lγ := π∗L − γ E and γeff = sup{γ ≥ 0 | Lγ is effective}.

Definition 1.3. We say that the closed subschemes Y1, . . . , Yq of a projective variety
V are in `-subgeneral position if, for any x ∈ V , there are at most ` subschemes
among Y1, . . . , Yq which contain x .

Remark 1.4. In the case that Y1 = y1, . . . , Yq = yq are points (as in [McKinnon
and Roth 2015]), the condition that y1, . . . , yq are distinct implies that Y1, . . . , Yq

are in 1-subgeneral position (i.e., with `= 1).

We establish the following result.

Main Theorem. Let k be a number field and Mk be the set of places on k. Let
S ⊂ Mk be a finite subset containing all archimedean places. Let V be a projective
variety defined over k and Y1, . . . , Yq be closed subschemes of V defined over k in
`-subgeneral position. For any v ∈ S, choose a local Weil function λY j ,v for each
Y j , 1≤ j ≤ q. Let L be a big line bundle. Then for any ε > 0∑

v∈S

q∑
i=1

λYi ,v(x)≤ `(max
1≤i≤q
{β−1

L ,Yi
}+ ε)hL(x) (1-1)

holds for all x outside a proper Zariski-closed subset Z of V (k).

The following corollary of our main theorem recovers the main result of [Mc-
Kinnon and Roth 2015]. The proof will be given in Section 3.

Corollary 1.5 [McKinnon and Roth 2015, Theorem 6.1]. Let V be a projective
variety over k. Then for any ample line bundle L and any x ∈ V (k) either

• αx(L)≥ βL ,x or
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• there exists a proper subvariety Z ⊂ V , irreducible over k, with x ∈ Z(k) so
that αx,V (L) = αx,Z (L|Z), i.e., “αx(L) is computed on a proper subvariety
of V ”,

where αx(L) is the approximation constant defined in [McKinnon and Roth 2015,
Definition 2.9], and βL ,x is defined in Definition 1.1 (with Y taken as a point x).

We will show in Lemma 2.2 that for any line bundle L , x ∈ V

βL ,x ≥
n

n+1
εx(L), (1-2)

where n= dim V . We note that the Seshadri constant εx(L) does not decrease when
restricting to a subvariety [McKinnon and Roth 2015, Proposition 3.4], so we can
use induction to further get, from Corollary 1.5 and (1-2), the following result.

Corollary 1.6 [McKinnon and Roth 2015, Theorem 6.2, alternative statement]. Let
V be a projective variety over k. Let L be any ample line bundle and choose any
x ∈ V (k). Then for any δ > 0, there are only finitely many solutions y ∈ V (k) to

dv(x, y) < HL(y)−((n+1)/(nεx (L))+δ).

In the case when V =Pn and L =OPn (1), we have εx(L)= 1 for all x ∈Pn (see
[McKinnon and Roth 2015, Lemma 3.3]). Therefore the above result generalizes
the theorem of Roth.

We now turn to another extreme case when the subschemes Y1, . . . , Yq are
effective Cartier divisors D1, . . . , Dq . Let D := D1 + · · · + Dq . Assume that
each D j is linearly equivalent to a fixed ample divisor A. Then we have the
following relation of height functions hD = qh A+O(1). On the other hand, by the
Riemann–Roch theorem, with n = dim V ,

h0(N D)= h0(q N A)=
(q N )n An

n!
+ o(N n)

and

h0(N D−m D j )= h0((q N −m)A)=
(q N −m)n An

n!
+ o(N n).

Thus∑
m≥1

h0(N D−m D j )=
An

n!

q N−1∑
l=0

ln
+ o(N n+1)=

An(q N−1)n+1

(n+1)!
+ o(N n+1).

Hence

βD,D j = lim
N→∞

An(q N−1)n+1

(n+1)! + o(N n+1)

N (q N )n An

n! + o(N n+1)
=

q
n+ 1

.

Thus the Main Theorem, together with the above computation, implies the following
result of Chen, Ru, and Yan [2012] (see also [Corvaja and Zannier 2006]).
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Theorem 1.7. Let k be a number field and Mk the set of places on k. Let S ⊂ Mk

be a finite subset containing all archimedean places. Let V be a projective variety
of dimension n defined over k. Let D1, . . . , Dq be effective Cartier divisors in
`-subgeneral position on V . Assume that each D j , 1≤ j ≤ q , is linearly equivalent
to a fixed ample divisor A. For any v ∈ S, choose a Weil function λD j ,v for
each D j , 1≤ j ≤ q. Then for any ε > 0

∑
v∈S

q∑
i=1

λDi ,v(x)≤ `(n+ 1+ ε)h A(x) (1-3)

holds for all x outside a proper Zariski-closed subset Z of V (k). In particular, if
D1, . . . , Dq are in general position on V , then the inequality

∑
v∈S

q∑
i=1

λDi ,v(x)≤ n(n+ 1+ ε)h A(x) (1-4)

holds for all but finitely many x ∈ V (k).

In the general case when D1, . . . , Dq are only assumed to be big and nef, we
can also compute βD,D j . The details will be carried out in the next section.

We note that recently the first named author and P. Vojta [2016] obtained the
following sharp result in the case when D1, . . . , Dq are in general position and
when V is Cohen–Macaulay (for example when V is smooth).

Theorem 1.8 [Ru and Vojta 2016]. Let k be a number field and Mk be the set of
places on k. Let S ⊂ Mk be a finite subset containing all archimedean places. Let
V be a projective variety defined over k. Assume that V is Cohen–Macaulay. Let
D1, . . . , Dq be effective Cartier divisors in general position on V . For any v ∈ S,
choose a Weil function λD j ,v for each D j , 1≤ j ≤ q. Let L be a line bundle on V
with h0(V, NL)≥ 1 for N big enough. Then for any ε > 0∑

v∈S

q∑
i=1

λDi ,v(x)≤ (max
1≤i≤q
{β−1

L ,Di
}+ ε)hL(x) (1-5)

holds for all x outside a proper Zariski-closed subset Z of V (k).

Theorem 1.8, together with the above computation, recovers the result of [Evertse
and Ferretti 2002; 2008] in the case when V is smooth.

2. Computation of the constant βL,Y

We first compute the constant βL ,y , i.e., we let Y = y be a point in V (k). The
following lemma is a reformulation of Lemma 4.1 in [McKinnon and Roth 2015].
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Lemma 2.1. Let V be a projective variety and x be a point in V . Let π : Ṽ → V
be the blow-up along x , and E be the exceptional divisor. Let L be an ample line
bundle and m a positive integer. Then

(i) h0(Ṽ , Nπ∗L−m E)= 0 if m > N ·γeff,x , where γeff,x is defined in [McKinnon
and Roth 2015], and

(ii) h0(Ṽ , Nπ∗L −m E)≥ h0(V, NL)−mn multx V/n! + O(N n−1) for N � 0.

Proof. Write h0(Ṽ , Nπ∗L −m E) = h0(Ṽ , Nπ∗L − N · γ E), where γ = m/N .
The argument in [McKinnon and Roth 2015] shows that h0(Ṽ , Nπ∗L −m E) ≥
h0(V, NL)−mn multx V/n! + O(N n−1). �

The following is a restatement of Corollary 4.2 in [McKinnon and Roth 2015].

Lemma 2.2. For any ample line bundle L , x ∈ V and positive integer m, we have

βL ,x ≥
n

n+ 1

(
Ln

multx V

)1/n

≥
n

n+ 1
εx(L).

Proof. Choose a sufficiently large N . By Lemma 2.1 and the Riemann–Roch
theorem,

h0(Ṽ , π∗NL −m E)≥ h0(V, NL)
(

1−
multx V

Ln

(
m
N

)n)
+ O(N n−1). (2-1)

The right-hand side of (2-1) is less than zero when m > u = [N (Ln/multx V )1/n
],

hence
∞∑

m=1

h0(Ṽ , π∗NL−m E)≥h0(V, NL)
u∑

m=1

(
1−

multx V
Ln

(
m
N

)n)
+O(N n). (2-2)

Consequently,

βL ,x ≥
1
N

u∑
m=1

(
1−

multx V
Ln

(
m
N

)n)
+ O

(
1
N

)

=
1
N

(
u−

multx V
Ln ·

un+1

(n+ 1)N n

)
+ O

(
1
N

)
≥

nu
(n+ 1)N

+ O
(

1
N

)
. (2-3)

Let N run through all sufficiently large integers. Then we have

βL ,x ≥
n

n+ 1

(
Ln

multx V

)1/n

. �

Next we consider the case when Y j = D j , 1≤ j ≤ q, are effective big and nef
Cartier divisors on V .
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Definition 2.3. Suppose X is a complete variety of dimension n. Let D1, . . . , Dq

be effective Cartier divisors on X and let D = D1+ D2+ · · · + Dq . We say that
D has equidegree with respect to D1, D2, . . . , Dq if Di · Dn−1

= Dn/q for all
i = 1, . . . , q .

Lemma 2.4 [Levin 2009, Lemma 9.7]. Let V be a projective variety of dimension n.
If D j , 1 ≤ j ≤ q, are big and nef Cartier divisors on V , then there exist positive
real numbers r j such that D =

∑q
j=1 r j D j has equidegree.

Since divisors r j D j and D j have the same support, the above lemma tells us
that we can always make the given big and nef divisors have equidegree without
changing their supports. So now we assume that D :=D1+· · ·+Dq is of equidegree.
To compute βD,D j for j = 1, . . . , q , we use the following lemma.

Lemma 2.5 [Autissier 2009, Lemma 4.2]. Suppose E is a big and base-point free
Cartier divisor on a projective variety V and F is a nef Cartier divisor on V such
that F − E is also nef. Let δ > 0 be a positive real number. Then, for any positive
integers N and m with 1≤ m ≤ δN , we have

h0(N F −m E)

≥
Fn

n!
N n
−

Fn−1
· E

(n− 1)!
N n−1m+

(n− 1)Fn−2
· E2

n!
N n−2 min{m2, N 2

}+ O(N n−1),

where the implicit constant depends on β.

We compute
∑

m≥1 h0(N D − m Di ) for each 1 ≤ i ≤ q. Let n = dim V and
assume that n ≥ 2. Let b = Dn/(nDn−1

· Di ) and A = (n− 1)Dn−2
· D2

i . Then, by
Lemma 2.5,
∞∑

m=1

h0(N D−m Di )

≥

[bN ]∑
m=1

(
Dn

n!
N n
−

Dn−1
· Di

(n− 1)!
N n−1m+

A
n!

N n−2 min{m2, N 2
}

)
+ O(N n)

≥

(
Dn

n!
b−

Dn−1
· Di

(n− 1)!
b2

2
+

A
n!

g(b)
)

N n+1
+ O(N n)

=

(
b
2
+

A
Dn g(b)

)
Dn N n+1

n!
+ O(N n)

=

(
b
2
+α

)
Nh0(N D)+ O(N n),

where α := g(b)A/Dn and g : R+ → R+ is the function given by g(x) = x3/3
if x ≤ 1 and g(x) = x − 2

3 for x ≥ 1. Now from the assumption of equidegree
Di · Dn−1

= Dn/q, so b = q/n. Moreover, α > 0 since dim V ≥ 2 and the Di are
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big and nef divisors. Hence

βD,Di = lim inf
N

∑
m≥1 h0(N D−m Di )

Nh0(N D)
≥

b
2
+α.

Thus we have proved the following.

Proposition 2.6. Let V be a projective variety of dim V ≥ 2 and assume that
D :=

∑q
j=1 D j has equidegree with respect to D1, . . . , Dq which are big and nef.

Then

βD,Di = lim inf
N

∑
m≥1 h0(N D−m Di )

Nh0(N D)
>

q
2n
+α,

where α is a computable positive number.

Proposition 2.6, together with the Main Theorem, implies the following result.

Theorem 2.7 [Hussein and Ru 2018]. Let k be a number field and let S ⊆ Mk be
a finite set containing all archimedean places. Let V be a projective variety of
dimension ≥ 2 over k and let D1, . . . , Dq be effective, big, and nef Cartier divisors
on V defined over k, located in `-subgeneral position. Let ri > 0 be real numbers
such that D :=

∑q
i=1 ri Di has equidegree (such numbers exist due to Lemma 2.4).

Then, for ε0 > 0 small enough, the inequality

∑
v∈S

q∑
j=1

r jλDi ,v(x) < `
(

2 dim V
q
− ε0

)( q∑
j=1

r j hD j (x)
)

holds for all x ∈ V (k) outside a proper Zariski-closed subset of V .

3. Proof of the Main Theorem

We first recall some basic properties of local Weil functions associated to closed
subschemes from [Silverman 1987, Section 2]. We assume that the readers are
familiar with the notion of Weil functions associated to divisors (see [Lang 1983,
Chapter 10], [Hindry and Silverman 2000, B.8] or [Silverman 1987, Section 1]).

Let Y be a closed subscheme on a projective variety V defined over k. Then one
can associate to each place v ∈ Mk a function

λY,v : V \ supp(Y )→ R

satisfying some functorial properties (up to an Mk-constant) described in [Silverman
1987, Theorem 2.1]. Intuitively, for each P ∈ V and v ∈ Mk ,

λY,v(P)=−log(v-adic distance from P to Y ).

The following lemma indicates the existence of local Weil functions.
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Lemma 3.1. Let Y be a closed subscheme of V . There exist effective divisors
D1, . . . , Dr such that

Y = ∩Di .

Proof. See Lemma 2.2 from [Silverman 1987]. �

Definition 3.2. Let k be a number field, and Mk be the set of places on k. Let V be
a projective variety over k and let Y ⊂ V be a closed subscheme of V . We define
the (local) Weil function for Y with respect to v ∈ Mk as

λY,v =min
i
{λDi ,v}, (3-1)

when Y = ∩Di (such Di exist according to the above lemma).

Lemma 3.3 [Vojta 1987, Lemma 2.5.2; Silverman 1987, Theorem 2.1(h)]. Let Y
be a closed subscheme of V and let Ṽ be a blow-up of V along Y with exceptional
divisor E = π∗Y . Then λY,v(π(P))= λE,v(P)+ Ov(1) for P ∈ Ṽ .

Note that in the original statement of Lemma 2.5.2 in [Vojta 1987], V is assumed
to be smooth, but from the proof it is easy to see that it works for a general projective
variety from Theorem 2.1(h) in [Silverman 1987].

For our purpose, it suffices to fix a choice of local Weil functions λYi ,v for each
1≤ i ≤ q and v ∈ S.

Lemma 3.4. Let Y1, . . . , Yq be closed subschemes of a projective variety V in
`-subgeneral position. Then

q∑
i=1

λYi ,v(x)≤max
I

∑
j∈I

λYj ,v(x)+ Ov(1), (3-2)

where I runs over all index subsets of {1, . . . , q} with ` elements for all x ∈ V (k).

Proof. Let {i1, . . . , iq} = {1, . . . , q}. Since the Yi , 1≤ i ≤ q, are in `-subgeneral
position,

⋂`+1
t=1 Yit =∅. Then

min
1≤i≤`+1

{λYi ,v} = {λ
⋂`+1

t=1 Yit ,v
} = Ov(1). (3-3)

We note that the first equality follows from (3-1), the definition of the local Weil
function; and the second equality follows from Corollary 3.3 in [Lang 1983, Chap-
ter 10]. For x with the following ordering

λYi1 ,v
(x)≥ λYi2 ,v

(x)≥ · · · ≥ λYiq ,v
(x),

we have
q∑

i=1

λYi ,v(x)=
∑̀
i=1

λYi ,v(x)+ Ov(1).

Then assertion (3-2) follows directly as the number of subvarieties under consid-
eration is finite. �
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We also need the following generalized Schmidt subspace theorem.

Theorem 3.5 [Ru and Vojta 2016, Theorem 2.7]. Let k be a number field, S be
a finite set of places of k containing all archimedean places, X be a complete
variety over k, D be a Cartier divisor on X , W be a nonzero linear subspace of
H 0(X,O(D)), s1, . . . , sq be nonzero elements of W , ε > 0, and c ∈ R. For each
j = 1, . . . , q, let D j be the Cartier divisor (s j ) and λD j be a Weil function for D j .
Then there is a proper Zariski-closed subset Z of X , depending only on k, S, X ,
D, W , s1, . . . , sq , ε, c, and the choices of Weil and height functions, such that the
inequality ∑

υ∈S

max
J

∑
j∈J

λD j ,υ(x)≤ (dim W + ε)hD(x)+ c (3-4)

holds for all x ∈ (X \ Z)(k). Here the set J ranges over all subsets of {1, . . . , q}
such that the sections (s j )j∈J are linearly independent.

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. Let δ > 0 be a sufficiently small number. We may
choose a sufficiently large integer N such that, for i = 1, . . . , q ,

∞∑
m=1

h0(Ṽi , Nπ∗L − Ei )≥ (βL ,Yi − δ)Nh0(V, NL), (3-5)

where πi : Ṽi → V is the blow-up at Yi and Ei = π
−1(Yi ) is he exceptional divisor

of πi .
Let x ∈ V (k) and v ∈ S. Since the Yi , 1≤ i ≤ q , are in `-subgeneral position, it

follows from Lemma 3.4 that
q∑

i=1

λYi ,v(x)≤ `λYi0 ,v
(x)+ Ov(1), (3-6)

for some i0 with 1≤ i0 ≤ q, where the constant Ov(1) is independent of x . Note
that i0 depends on the point x , but Ov(1) is independent of x .

Write Ṽi0 as Ṽ , πi0 as π and Ei0 as E . We consider the following filtration.

H 0(Ṽ , π∗NL)⊇ H 0(Ṽ , π∗NL − E)⊇ H 0(Ṽ , π∗NL − 2E)⊇ · · · (3-7)

We identify H 0(V, NL) with H 0(Ṽ , π∗NL) as vector spaces (note: according to
the footnote on page 553 in [McKinnon and Roth 2015], if X is not normal, then
H 0(V, NL) may only be a proper subspace of H 0(Ṽ , π∗NL). However, since the
volume is a birational constant, the asymptotic calculations go through without
change). Choose regular sections s1, . . . , sM ∈ H 0(V, NL) successively so that
their pull-back π∗s1, . . . , π

∗sM ∈ H 0(Ṽ , π∗NL) form a basis associated to this
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filtration, where M = h0(Ṽ , Nπ∗L). For a section π∗s ∈ H 0(Ṽ , π∗NL −m E)
(regarded as a subspace of H 0(Ṽ , π∗NL)) we have

div(π∗s)≥ m E . (3-8)

Hence, λ(π∗s),v ≥ mλE,v + Ov(1). Note that although Ov(1) here depends on i0

(which depends on x), there are q choices of such i0 and V is compact, so we can
again make Ov(1) independent of x . Therefore, also using Lemma 3.3 and (3-5),

M∑
j=1

λ(π∗s j ),v

≥

∞∑
m=1

m(h0(Ṽ , π∗NL−m E)−h0(Ṽ , π∗NL−(m+1)E))λE,v+Ov(1)

=

∞∑
m=1

m(h0(Ṽ , π∗NL−m E)−h0(Ṽ , π∗NL−(m+1)E))λYi0 ,v
◦π+Ov(1)

=

∞∑
m=1

h0(Ṽ , π∗NL−m E)λYi0 ,v
◦π+Ov(1)

≥ (βL ,Yi0
−δ)Nh0(V, NL)λYi0 ,v

◦π+Ov(1).

The functorial property of Weil functions implies λ(π∗s j ),v = λ(s j ),v ◦ π + Ov(1).
Hence, the above inequality, together with (3-6), implies that

q∑
i=1

λYi ,v(x)

≤
`

N · h0(V, NL)(min1≤i≤q{βL ,Yi }− δ)
max

J

{∑
j∈J

λ(s j ),v(x)
}
+ Ov(1), (3-9)

where J is a subset containing M linearly independent sections taken among the
collection of sections {s j (i0, v)|1≤ i0 ≤ q, v ∈ S} coming from the claim (3-6). It
then follows from Theorem 3.5 and a suitable choice of δ that for a given ε > 0
there exists a proper algebraic subset Z of V defined over k such that∑

v∈S

q∑
i=1

λYi ,v(x)≤ (` · max
1≤i≤q
{β−1

L ,Yi
}+ ε)hL(x), (3-10)

for all x ∈ V (k) \ Z(k). �

Proof of Corollary 1.5. Let v be a place of k. The main point of the proof is to
reformulate the distance function dv( · , · ) defined on V (k) [McKinnon and Roth
2015, Section 2] into a product of several distance functions on V (K ), where K
is a finite extension of k. Following the construction in [McKinnon and Roth 2015,
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Section 2], we fix an extension of v to k. The place defines an absolute value ‖·‖v
on k. If K ⊂ k is a finite extension of k, then dv( · , · )K = dv( · , · )

[Kv : kv]
k . Here

dv( · , · )K refers to the distance function defined by using the same embedding
and normalizing with respect to K and dv( · , · )k the distance function normalized
with respect to k (see [McKinnon and Roth 2015, Proposition 2.1(b)]). Assume
that V ⊂ PN (given by the canonical map associated to the ample line bundle L).
For a given fixed point y = [y0 : · · · : yN ] ∈ V (k), let K be the Galois closure of
k(y0, . . . , yN ) over k. For each v ∈Mk , the inclusion map (iv)|K : K→ kv induces a
placew0 :=v of K over v, and other placesw of K over v are conjugates by elements
σw ∈ Gal(K/k) such that ‖σw(a)‖w = ‖a‖v for all a ∈ K . Then, for x, y ∈ K ,∏

w∈MK ,w|v

dw(σw(x), σw(y))K =
∏

w∈MK ,w|v

dv(x, y)K

=

∏
w∈MK ,w|v

dv(x, y)[Kv : kv]
k

= [K : k]dv(x, y)k,

i.e.,

dv(x, y)k =
∏

w∈MK ,w|v

dw(σw(x), σw(y))
1/[K : k]
K , for x, y ∈ K . (3-11)

To compute αy(L), we consider any sequence {xi } ⊆ V (k) of distinct points with
dv(y, xi )→ 0. By (3-11), we have dv(y, xi )k =

∏
w∈MK ,w|v

dw(σw(y), xi )
1/[K : k]
K .

(Here we extend σw ∈ Gal(K/k) to the map from V (K ) to V (K ) by acting on the
coordinates of the points.) The distance function dw(y, x) in [McKinnon and Roth
2015] is constructed by choosing an embedding φL : V → PN into a projective
space via the sections of L and measuring the distance in the embedded space. For
a fixed y we denote −log dw(y, · ) by λφ(y),w, which is a local Weil function on the
embedded space. We note that this fact can also be proved by a slight modification of
Lemma 2.6 in [McKinnon and Roth 2015]. By the functoriality of Weil functions of
closed subschemes [Silverman 1987, Theorem 2.1(h)] we have−log dw(σw(y), x)=
λσw(y),w(x)+ O(1). On the other hand, it is clear from the definition that βL ,y =

βL ,σw(y) for very σw ∈Gal(K/k). The Main Theorem then implies that for any ε >0

log dv(y, xi )=
1

[K : k]

∑
w∈MK ,w|v

log dw(y, xi )≥−({β
−1
L ,y}+ ε)hL(xi ) (3-12)

holds for all xi outside a proper Zariski-closed subset Z of V (K ) (note that, in this
case, `= 1). We note that Z is indeed defined over k since all the xi are in k. In
conclusion, we have shown that for all sequences {xi }⊆ V (k) of distinct points with
dv(y, xi )→ 0, if αy({xi }, L) < βL ,y , then all but finitely many of the points of {xi }

lie in Z . If (a) holds, then we are done. Therefore we assume that αy(L) > βL ,y .
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Then the previous conclusion shows, in this case, that αy(L)= αy,Z (L|Z ). To see
Z is irreducible over k, we first use Proposition 2.14(f) in [McKinnon and Roth
2015] to reduce Z to one of the irreducible components of Z over k, say Y such that
αy,Z (L|Z )=αy,Y (L|Y ). Without loss of generality we can assume that Z=Y , i.e., Z
itself is irreducible over k. We then apply Lemma 2.17 in [McKinnon and Roth 2015]
to conclude that Z is indeed geometrically irreducible, i.e., Z is irreducible over k. �

4. The complex case

In this section, we consider the analogous result of our Main Theorem in Nevanlinna
theory. Let V be a complex projective variety. We use the standard notation in
Nevanlinna theory (see, for example, [Ru 2016]). Note that the Weil function for
divisors has been defined, so the Weil function λY for a subscheme Y ⊂ V can also
be defined using Lemma 3.1, similar to Definition 3.2. We define, for a holomorphic
map f : C→ V with f (C) 6⊂ Y , the proximity function

m f (r, Y )=
∫ 2π

0
λY ( f (reiθ ))

dθ
2π
.

We note that all the properties used above about the Weil functions in the arithmetic
case hold for the complex case (see, for example, [Ru 2016; Ru and Vojta 2016]).

Theorem 4.1. Let V be a complex projective variety and Y1, . . . , Yq be closed
subschemes of V in `-subgeneral position. Let L be a big line bundle. Let f :C→V
be a holomorphic map with Zariski dense image. Then for any ε > 0

q∑
i=1

m f (r, Yi )≤ `(max
1≤i≤q
{β−1

L ,Yi
}+ ε)T f,L(r)

∥∥, (4-1)

where ‖ means that the inequality holds for all r ∈ (0,+∞) outside a set of finite
Lebesgue measure.

To prove the theorem, we need the following result.

Theorem 4.2 [Ru and Vojta 2016, Theorem 2.8]. Let X be a complex projective va-
riety, D be a Cartier divisor on X , W be a nonzero linear subspace of H 0(X,O(D)),
and s1, . . . , sq be nonzero elements of W . Let f : C→ X be a holomorphic map
with Zariski-dense image. Then∫ 2π

0
max

J

∑
j∈J

λ(s j )( f (reiθ ))
dθ
2π
≤ (dim W )T f,D(r)+O(log+ T f,D(r))+o(log r)

∥∥,
where the set J ranges over all subsets of {1, . . . , q} such that the sections (s j )j∈J

are linearly independent.
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Proof of Theorem 4.1. Similar to the proof of the Main Theorem, let δ > 0 be a
sufficiently small number. We choose N large enough that, for i = 1, . . . , q ,

∞∑
m=1

h0(Ṽi , Nπ∗i L −m Ei )≥ (βL ,Yi − δ)Nh0(V, NL).

Let x ∈V . Since Yi , 1≤ i ≤q , are in `-subgeneral position, similar to Lemma 3.4,
we have

q∑
i=1

λYi (x)≤ `λYi0
(x)+ O(1), (4-2)

for some i0 with 1≤ i0≤q , where i0 depends on the point x , but O(1) is independent
of x .

Let π : Ṽ→ V be the blow-up at Yi0 and E =π−1(Yi0) be the exceptional divisor
of π . We consider the filtration of H 0(Ṽ , π∗NL) defined in (3-7). By identifying
H 0(V, NL) with H 0(Ṽ , π∗NL) as vector spaces, we can choose regular sections
s1, . . . , sM ∈ H 0(V, NL), where M = h0(V, NL), successively so that their pull-
backs π∗s1, . . . , π

∗sM ∈ H 0(Ṽ , π∗NL) form a basis associated to this filtration.
Then, in the same way as deriving (3-9), we can get

q∑
i=1

λYi (x)≤
`

N · h0(V, NL)(min1≤i≤q{βL ,Yi }− δ)

q∑
j=1

λ(s j )(x)+ O(1).

Note that the basis {s1, . . . , sM} depends only on i0, so the number of such choices
is finite, since i0 ∈ {1, . . . , q}, while x varies in (4-2). We denote the set of bases
as J1, . . . , JT . Thus we get, for every x ∈ V ,

q∑
i=1

λYi (x)≤
`

N · h0(V, NL)(min1≤i≤q{βL ,Yi }− δ)
max

1≤t≤T

∑
j∈Jt

λ(s j )(x)+ O(1).

By taking x = f (reiθ ) and then integrating, it then follows from Theorem 4.2 and
a suitable choice of δ that, for the given ε > 0,

q∑
i=1

∫ 2π

0
λYi ( f (reiθ ))

dθ
2π
≤ `(max

1≤i≤q
{β−1

L,Yi
}+ ε)T f,L(r)

∥∥.
This finishes the proof. �

Theorem 4.1, together with Lemma 2.2, implies the following corollary.

Corollary 4.3. Let V be a complex projective variety of dimension n and a1, . . . , aq

be distinct points on V . Let L be an ample line bundle. Let f : C→ V be a
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holomorphic map with Zariski dense image. Then for any ε > 0,
q∑

i=1

m f (r, ai )≤

(
n+1

n
max

1≤i≤q
{ε−1

ai
(L)}+ ε

)
T f,L(r)

∥∥,
where εx(L) is the Seshadri constant of L at the point x ∈ V .

In particular, if V = Pn , then for any ε > 0,
q∑

i=1

m f (r, ai )≤

(
n+1

n
+ ε

)
T f,L(r)

∥∥.
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