Vol. 11, No. 10, 2017

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 8, 1777–2003
Issue 7, 1547–1776
Issue 6, 1327–1546
Issue 5, 1025–1326
Issue 4, 777–1024
Issue 3, 521–775
Issue 2, 231–519
Issue 1, 1–230

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Generalized Kuga–Satake theory and good reduction properties of Galois representations

Stefan Patrikis

Vol. 11 (2017), No. 10, 2397–2423

In previous work, we described conditions under which a single geometric representation ΓF H( ¯) of the Galois group of a number field F lifts through  a central torus quotient H˜ H to a geometric representation. In this paper, we prove a much sharper result for systems of -adic representations, such as the -adic realizations of a motive over F, having common “good reduction” properties. Namely, such systems admit geometric lifts with good reduction outside a common finite set of primes. The method yields new proofs of theorems of Tate (the original result on lifting projective representations over number fields) and Wintenberger (an analogue of our main result in the case of a central isogeny H˜ H).

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Galois representations, Kuga–Satake construction
Mathematical Subject Classification 2010
Primary: 11F80
Secondary: 11R37
Received: 30 April 2017
Revised: 8 August 2017
Accepted: 6 September 2017
Published: 31 December 2017
Stefan Patrikis
Department of Mathematics
University of Utah
Salt Lake City, UT
United States