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Test vectors and central L-values for GL(2)
Daniel File, Kimball Martin and Ameya Pitale

We determine local test vectors for Waldspurger functionals for GL2, in the
case where both the representation of GL2 and the character of the degree two
extension are ramified, with certain restrictions. We use this to obtain an explicit
version of Waldspurger’s formula relating twisted central L-values of automorphic
representations on GL2 with certain toric period integrals. As a consequence, we
generalize an average value formula of Feigon and Whitehouse, and obtain some
nonvanishing results.
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1. Introduction

1A. Global results. Let F be a number field and π be a cuspidal automorphic
representation of GL2(AF ). Let L/F be a quadratic extension and � an idèle class
character of L× such that �|A×F = ωπ , the central character of π . We are interested
in the central value of the L-function

L(s, πL ⊗�)= L(s, π × θ�),

where πL denotes the base change of π to GL2(AL) and θ� denotes the theta series
on GL2(AF ) associated to �. Note this contains the following interesting special
case: when � is trivial, then L(s, πL ⊗�)= L(s, π)L(s, π ⊗ η), where η = ηL/F

denotes the quadratic character of A×F associated to L via class field theory. Assume

MSC2010: primary 11F67; secondary 11F41, 11F70, 11F66.
Keywords: modular forms, test vectors, periods, L-values.

253

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2017.11-2
http://dx.doi.org/10.2140/ant.2017.11.253


254 Daniel File, Kimball Martin and Ameya Pitale

that ωπ is trivial or η. Then ε
(1

2 , πL ⊗�
)
=±1, even though πL ⊗� need not be

self-dual (cf. [Jacquet and Chen 2001]). In the case where ε
( 1

2 , πL ⊗�
)
=−1, the

central value L
( 1

2 , πL ⊗�
)
= 0. Henceforth, assume ε

( 1
2 , πL ⊗�

)
=+1.

Let D be a quaternion algebra over F containing L such that π has a Jacquet–
Langlands transfer to an automorphic representation π ′ of D×(AF ). We allow for
the possibility that D = M2(F) and π ′ = π , so there is always at least one such π ′.
Embed L× as a torus T inside D×. The period integrals we are interested in are

PD(φ) =

∫
Z(AF )T (F)\T (AF )

φ(t)�−1(t) dt, (1-1)

where φ ∈ π ′ and Z denotes the center of D× (with dt as in Section 7). If F =Q

and L is imaginary quadratic, then this period simplifies to a finite sum over certain
“CM points”.

When ωπ is trivial, a beautiful theorem of Waldspurger [1985] states that

|PD(φ)|
2

(φ, φ)
= ζ(2)

∏
v

αv(L , �, φ)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
(1-2)

for any φ ∈ π ′. Here ( · , · ) is a certain inner product on π ′ and the factors
αv(L , �, φ) are certain local integrals which equal 1 at almost all places. For
all but one D, PD ≡ 0 for local reasons. Namely, the linear functional PD factors
into a product of local linear functionals PD,v . There is a unique D ⊃ L for which
all PD,v 6= 0, and this D is determined by local epsilon factors in work of Tunnell
[1983] and Saito [1993]. Fixing this D, one now gets the nonvanishing criterion:
L
( 1

2 , πL ⊗�
)
6= 0 if and only if PD 6= 0.

It is useful to have a more explicit version of this formula for certain applications
like equidistribution, nonvanishing, subconvexity, p-adic L-functions, etc.; see, e.g.,
[Popa 2006; Martin and Whitehouse 2009; Feigon and Whitehouse 2009; Hsieh
2014]. In particular, it is not even obvious from (1-2) that L

( 1
2 , πL ⊗�

)
≥ 0, as

predicted by the grand Riemann hypothesis. This positivity result was subsequently
shown by Jacquet and Chen [2001] using a trace formula identity.

Explicit versions of (1-2) have been considered by many authors under various
assumptions; see, e.g., [Gross 1987; Zhang 2001; Xue 2006; Popa 2006; Martin
and Whitehouse 2009; Murase 2010; Hida 2010; Hsieh 2014]. These explicit
formulas rely on picking out a suitable test vector φ in (1-2). All of these works
rely on the theta correspondence (as did [Waldspurger 1985]), except for [Martin
and Whitehouse 2009], which uses the trace formula identity from [Jacquet and
Chen 2001]. The only assumption in [Martin and Whitehouse 2009] is that π and
� have disjoint ramification, i.e., for any finite place v of F, π and � are not both
ramified at v. In this case one has a natural choice for the test vector φ from the
work of Gross and Prasad [1991] on local test vectors. In [Martin and Whitehouse
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2009], it was noted that this restriction of disjoint ramification is not essential to
the method and could be removed if one had a reasonable way to define the test
vector φ in a more general setting.

The main local results of this paper (see Theorems 1.6 and 1.7 below) are the
existence and characterization of suitable local test vectors in the case of joint
ramification under certain conditions. This allows us to extend the formula of
[Martin and Whitehouse 2009] to these cases. To be precise, for a finite place v
of F, let c(πv) be the (exponent of) the conductor of πv and c(�v) be the (exponent
of) the “F-conductor” of � (see (2-19)). Then we make the following assumption:

If v <∞ is inert in L and c(πv), c(�v) > 0, then we have c(�v)≥ c(πv). (1-3)

In particular, if the level N =
∏
v<∞$

c(πv)
v of π is squarefree, there is no condition

on�. We note that a consequence of our determination of test vectors is that assump-
tion (1-3) implies that D and � do not have joint ramification at any finite place.

Theorems 1.6 and 1.7 below give suitable local test vectors φv under assumption
(1-3), which yields the desired global test vector φ. Here suitable essentially means
that the local test vectors can be described purely in terms of ramification data, and
do not require more refined information about local representations. This is crucial
for global applications. Note that it is not even a priori clear if suitable test vectors
should exist in general.

Let us now describe the L-value formula more precisely. Denote the abso-
lute value of the discriminants of F and L by 1 and 1L . Let e(Lv/Fv) be the
ramification degree of Lv/Fv. Let Sinert be the set of places of F inert in L .
Let S(π) be the set of finite places of F where π is ramified, S(�) the set of
finite places of F where � is ramified, S1(π) the set of places in S(π) where
c(πv) = 1 and S2(π) the set of places in S(π) where c(πv) ≥ 2. Finally, let
S0(π)= S2(π)∪{v ∈ S1(π) : Lv/Fv is ramified and �v is unramified}, and denote
by c(�) the absolute norm of the conductor of �.

Theorem 1.1. Let π be a cuspidal automorphic representation of GL2(AF ) with
trivial central character and� a character of A×L /L×A×F . Assume ε

( 1
2 , πL⊗�

)
= 1

and that π and� satisfy (1-3). Then, with the test vector φ∈π ′ defined in Section 7A
and archimedean factors Cv(L , π,�) defined in Section 7B, we have

|PD(φ)|
2

(φ, φ)

=
1
2

√
1

c(�)1L
L S(�)(1, η)L S(π)∪S(�)(1, η)L S(π)∩S(�)(1, 1F )L S(π)(2, 1F )

×

∏
v∈S(π)∩S(�)c

e(Lv/Fv)
∏
v|∞

Cv(L , π,�) ·
L S0(π)

( 1
2 , πL ⊗�

)
L S0(π)(1, π,Ad)

.
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Here ( · , · ) is the standard inner product on π ′ with respect to the measure on
D×(AF ) which is the product of local Tamagawa measures.

After our paper was originally completed, the paper [Cai et al. 2014] appeared,
which gives a similar formula using a less explicit choice of test vector.

Note φ is specified up to a scalar, and the left-hand side is invariant under scaling.
As in [Martin and Whitehouse 2009, Theorem 4.2], one can rewrite this formula
using the Petersson norm of a normalized newform in π instead of L(1, π,Ad).
See (8-19) for when π corresponds to a holomorphic Hilbert modular form. If
F =Q and π corresponds to a holomorphic new form of squarefree level N with
N | c(�), then the above formula simplifies considerably:

Corollary 1.2. Let f be a normalized holomorphic modular eigenform of weight k
and squarefree level N . Let S be the set of primes p | N which split in L. Let � be
any ideal class character of L such that N | c(�) and ε

( 1
2 , f ×�

)
= 1. Then

|PD(φ)|
2

(φ, φ)
=

C∞(L , f, �)
2k+1
√

c(�)1L
L S(�)(1, η)2

∏
p|N

(1+ p−1)εp ×
L S
( 1

2 , f ×�
)

〈 f, f 〉
,

where εp is +1 if p splits in L and −1 otherwise, and 〈 · , · 〉 is the Petersson inner
product.

In the setting of the corollary, C∞(L , f, �) is also easier to describe. If L is real
quadratic, then C∞(L , f, �)= 2k . If L is imaginary quadratic, it is described by
beta functions, and if we also assume �∞ is trivial, then

C∞(L , f, �)=

( 1
2 k− 1

)
!
2

π(k− 1)!
.

We prove Theorem 1.1 by computing local spectral distributions appearing in the
trace formula identity of [Jacquet and Chen 2001], just as in [Martin and Whitehouse
2009]. For simplicity, we only do this when ωπ = 1, though the case of ωπ = η
should be similar. (One needs either ωπ = 1 or ωπ = η to use the identity from
[Jacquet and Chen 2001].) Note this formula is considerably more general than the
one in [Martin and Whitehouse 2009] (for trivial central character) and one expects
that it should generalize the applications of the previously mentioned formulas.
For instance, we obtain the following generalization of an average value result of
Feigon and Whitehouse [2009, Theorem 1.1] by computing the geometric side of a
certain trace formula.

Theorem 1.3. Let F be a totally real number field with d = [F :Q]. Let F(N, 2k)
be the set of cuspidal automorphic representations of GL2(AF ) associated to the
holomorphic Hilbert modular eigen newforms of weight 2k and level N, with
k = (k1, . . . , kd) 6= (1, . . . , 1) and N squarefree. Let L be a totally imaginary
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quadratic extension of F, which is inert and unramified above each place p | N.
Fix a unitary character � of A×L /L×A×F , and let C be the norm of its conductor in
F. Suppose N =N0N1 and C = C0N1 with N0, N1 and C0 all coprime. Assume
N1 is odd, and that the number of primes dividing N0 has the same parity as d.
Further assume that for each infinite place v of F, we have kv > |mv|, where
�v(z)= (z/z̄)mv .

Then, if
|N0|> dL/F (|C0|/|N1|)

hF ,

where hF is the class number of F, we have

∏
v|∞

(
2kv − 2

kv −mv − 1

)∑
N′

∑
π∈F(N′,2k)

L
( 1

2 , πL ⊗�
)

L S(N)(1, π,Ad)

= 22−d13/2
|N|L S(N0)(2, 1F )L S(N1)(1, 1F )L S(C0)(1, η),

where N′ runs over ideals dividing N which are divisible by N0, and S(J) denotes
the set of all primes dividing J.

The parity condition guarantees the sign ε
( 1

2 , πL ⊗�
)

of the relevant functional
equation is +1 for π ∈ F(N, k). Without a condition to the effect that N (or N0)
is large, one does not expect a nice explicit formula, but rather just an asymptotic
in N, which miraculously stabilizes for N large (cf. [Michel and Ramakrishnan
2012; Feigon and Whitehouse 2009]). Hence the condition above on the size of N0

means we are in the stable range. The other assumptions in the theorem allow for
simplifications of the trace formula we will use, but are not necessary to express
such averages as the geometric side of an appropriate trace formula.

Theorem 1.3 specializes to [Feigon and Whitehouse 2009, Theorem 1.1] in the
case that N and C are coprime, i.e., N=N0. This case N=N0 is particularly nice
as one can transfer the problem to a trace formula computation on a quaternion
algebra that only picks up forms of exact level N. Additionally, one can rewrite the
formula in terms of the complete adjoint L-value at 1, as in [Feigon and Whitehouse
2009]. However, this is impossible to manage in general, and the primary difficulty
in going from Theorem 1.1 to Theorem 1.3 is to determine the contribution to the
spectral side of the relevant trace formula coming from the oldforms. (In general,
it is not easy to isolate the newforms in such formulas — see, e.g., [Knightly and
Li 2010] or [Nelson 2013] — and the issue for us is that the contribution from the
oldforms is now weighted by local adjoint L-factors.)

Still, one can use the above formula together with formulas for smaller levels
to get both explicit bounds and asymptotics for average values over just the forms
of exact level N. We do this in the case N1 is prime. This immediately implies
L
( 1

2 , πL ⊗�
)
6= 0 for some πL ∈ F(N, 2k).
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Theorem 1.4. With assumptions as in Theorem 1.3, and further assuming that
N1 = p is an odd prime and |N0|> dL/F |C|

hF , we have

|p| −
1

1− 2|p|−1+ |p|−2 ≤6(N)≤ |p| −
1

1+ 2|p|−1+ |p|−2 ,

where 6(N) is equal to

2d−2

13/2|N0|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η)

×

∏
v|∞

(
2kv − 2

kv −mv − 1

) ∑
π∈F(N,2k)

L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
.

In particular,6(N)∼|p|−1+O(|p|−1) as |N0p|→∞ such that |N0|>dL/F |C|
hF .

Furthermore, with p fixed, we have

lim
|N0|→∞

6(N)= |p| − 1.

In both of these asymptotics, N0 travels along squarefree ideals coprime to C which
are products of unramified primes and satisfy our previous parity assumption.

Note the above theorem implies the nonvanishing of 6(N), and therefore at least
one of these central values, provided |p|> 1

2(3+
√

5) and |N0|> dL/F |C|
hF , or p

is arbitrary and |N0| is sufficiently large.
We remark that the bounds come from having to estimate the p-th Hecke eigen-

values {ap, a−1
p } of the oldforms of level N0. The latter asymptotic comes from an

asymptotic for a weighted analogue of Theorem 1.3 in the case of disjoint ramifica-
tion (see [Feigon and Whitehouse 2009, Theorem 1.2]) to pick off the contribution
from the oldforms. One should be able to prove a version of Theorem 1.3 involving
weighting by Hecke eigenvalues (namely, extend [Feigon and Whitehouse 2009,
Theorem 6.1] to the case of joint ramification) whereby one could inductively
obtain asymptotics for the average values 6(N) in the case where gcd(N,C) has
an arbitrary number of prime factors. (We remark Sugiyama and Tsuzuki [2016]
have recently obtained asymptotics for weighted averages using a different relative
trace formula approach when � is trivial, but N need not be squarefree.)

Note that in previous studies of such averages, N is typically required to be
prime (e.g., [Ramakrishnan and Rogawski 2005]) or have an odd number of prime
factors (e.g., [Feigon and Whitehouse 2009]) to force the sign of the functional
equation to be +1 if, say, d is odd. However, allowing for joint ramification we
can treat levels N with an arbitrary number of prime divisors, though we do not
always get an exact formula in this situation.

Lastly, we include another application of Theorem 1.3 when N = N0 (i.e.,
[Feigon and Whitehouse 2009, Theorem 1.1]). Here, having an exact formula for
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the average value over newforms allows us to deduce the nonvanishing mod p of
the algebraic part Lalg

( 1
2 , πL ⊗�

)
(see (8-18)) of the central value for p suitably

large.

Theorem 1.5. With notation and assumptions as in Theorem 1.3, suppose that
|N| > dL/F |C|

hF , that N is coprime to C, and that mv is even for each v | ∞. Let
p be an odd rational prime satisfying p > q + 1 for all primes q ∈ S(�), and P a
prime of Q above p. Then there exists π ∈ F(N, 2k) such that

Lalg(1
2 , πL ⊗�

)
6≡ 0 mod P.

This generalizes a theorem of Michel and Ramakrishnan [2012] on the case
F =Q and N= N is prime. The parity condition on mv ensures that � is algebraic
and that the above central value is critical.

As in [Feigon and Whitehouse 2009], one should be able to use Theorem 1.1 to
get estimates on more general averages of L-values, and apply this to subconvexity
and equidistribution problems, but we do not address this here. Theorem 1.1 has also
been used in very recent works of Hamieh [2014] on valuations of Rankin–Selberg
L-values in anticyclotomic towers and Van Order [2014] on constructing p-adic
L-functions.

We remark that similar L-value formulas have been recently proven in certain
cases of joint ramification with L totally imaginary, namely in Hida [2010] for F=Q

and in Hsieh [2014] for Hilbert modular forms of squarefree level (these works
have some additional conditions, but they do not assume trivial central character).
In general, when the joint ramification does not satisfy (1-3), this problem appears
considerably more complicated.

1B. Local results. Now, we pass to the local situation and discuss the local test
vectors in some detail.

Let F be a p-adic field and L a quadratic separable extension of F (either a
field or F ⊕ F). We may then embed L× as a torus T (F) of GL2(F). All such
embeddings are conjugate in GL2(F), so the choice of embedding will be merely
one of convenience. Consider an (infinite-dimensional) irreducible admissible
representation π of GL2(F). We do not assume that the central character ωπ is
trivial. A basic question to ask is the following: which characters of T (F) appear as
quotients in π |T (F)? Let� be a character of T (F). If� is an irreducible constituent
of π |T (F), i.e., if

HomT (F)(π,�) 6= 0,

then we must have �|Z(F) = ωπ , where Z denotes the center of GL2. Hence we
will assume �|Z(F) = ωπ .

Let D be the unique quaternion division algebra over F, and let π ′ be the
Jacquet–Langlands transfer to D×(F) when it exists. If π ′ exists and T (F) embeds
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into D×(F), put A(π)= {π, π ′}. Otherwise, put A(π)= {π}. From [Waldspurger
1985], one knows that ∑

τ∈A(π)

dimC HomT (F)(τ,�)= 1.

In other words, � is a constituent of π |T (F) if and only if it does not occur in that
of π ′|T (F) (when this makes sense), and it occurs with multiplicity at most one.
Further, Tunnell [1983] and Saito [1993] gave a local ε-factor criterion:

dimC HomT (F)(π,�)=
1
2

(
1+ ε

( 1
2 , πL ⊗�

)
ωπ (−1)

)
.

Applications to a global L-value formula (discussed in Section 1A) require
finer information than this. Namely, suppose dimC HomT (F)(π,�) = 1 and let
` ∈ HomT (F)(π,�) be nonzero. Then one would like to have a test vector for `,
i.e., an element φ ∈ π such that `(φ) 6= 0. For the applications, we will need φ to
satisfy two further conditions:

(i) φ ∈ V K
π for a compact subgroup K of GL2(F) with dim(V K

π )= 1.

(ii) The compact subgroup K above depends only on the ramification data attached
to π and �.

Let us note that, if ` 6= 0, then some translate of the new vector of π is always a test
vector for `. Hence, we can always find a test vector satisfying the first condition
above. Under some restriction on the conductors of π and �, we will obtain a test
vector satisfying the second condition as well.

Specifically, let o be the ring of integers of F, p its maximal ideal and $
a uniformizer. Let c(π) be the exponent of the conductor of π as defined in
Section 2A, and let

K1(p
c(π))=

{[ a b
c d

]
∈ GL2(o) : c ∈ pc(π), d ∈ 1+ pc(π)

}
.

Let c(�) be the conductor of � as defined in (2-19). Gross and Prasad [1991]
determine a test vector when c(π)= 0 (π is unramified) or c(�)= 0 (� is unrami-
fied). In particular, when c(π)= 0 so A(π)= {π}, the vector they obtain can be
described as a translate of the new vector.

We will now describe test vectors when π and � are both ramified. We will
distinguish the split and field case.

1B1. The split case. In the following, w =
[ 0
−1

1
0

]
.

Theorem 1.6. Suppose L = F ⊕ F and let T (F) ∼= L× be the diagonal torus in
GL2(F). Let π be any infinite-dimensional, irreducible, admissible representa-
tion of GL2(F) with central character ωπ and conductor pc(π), c(π) ≥ 0. Let
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�(diag(x, y))=�1(x)�2(y) be a character of T (F) such that �1�2 = ωπ . With-
out loss of generality, assume that c(�1) ≥ c(�2). Write �1 = | · |

1/2−s0µ for
some s0 ∈ C and some unitary character µ of F× such that µ($) = 1. Then
dimC HomT (F)(π,�) = 1, and for nonzero ` ∈ HomT (F)(π,�), the subgroup
hK1(p

c(π))h−1 fixes a 1-dimensional space of π consisting of test vectors for `,
where

h =


[

1 $−c(�)

0 1

]
if c(µ)= 0

or L(s, π ⊗µ−1) does not have a pole at s = s0;

w

[
1 $−c(�)

0 1

]
if c(µ) > 0 and L(s, π ⊗µ−1) has a pole at s = s0,

but L(1− s, π̃ ⊗µ) does not have a pole at s = s0.

In particular, if both � and π are unitary, then we are always in the first case
above.

The proof of the above theorem uses the theory of zeta integrals for GL2 repre-
sentations given by their Whittaker models. The zeta integral Z(s0, ∗, µ

−1) (defined
in (3-1)) divided by the L-value L(s0, π ⊗µ

−1) gives a concrete realization of a
nonzero ` ∈ HomT (F)(π,�). One checks that the newform in the Whittaker model
translated by the matrix h in the statement of the above theorem is a test vector
for `.

Note that we do not give a compact subgroup that fixes a 1-dimensional space of
π consisting of test vectors for ` when both L(s, π ⊗µ−1) and L(1− s, π̃ ⊗µ)
have a pole at s = s0.

1B2. The field case.

Theorem 1.7. Suppose L is a field. Let π be any infinite-dimensional, irre-
ducible, admissible representation of GL2(F) with central character ωπ and
conductor pc(π). Let � be a character on L× such that �|F× = ωπ . Assume that
c(�) ≥ c(π) > 0. Embed L× as a torus T (F) in GL2(F) as in Section 2C. Then
dimC HomT (F)(π,�)= 1, and for a nonzero ` ∈ HomT (F)(π,�), the subgroup[

o× pc(�)

pc(π)−c(�) 1+ pc(π)

]
∩GL2(F)= hK1(p

c(π))h−1, h =
[
$ c(�)−c(π) 0

0 1

]
w,

fixes a 1-dimensional space of π consisting of test vectors for `.

If π has trivial central character, then we can replace the compact subgroup in
the statement of the above theorem by[

$ c(�)

1

][
o× o

pc(π) o×

][
$−c(�)

1

]
,

since the Atkin–Lehner element normalizes the group
[ o×

pc(π)
o
o×

]
.
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The proof of the theorem breaks up into several cases depending on the type of
the representation π . Although the proofs are quite different in all cases, it turns out
that one of the key ingredients of the proof is that a function roughly of the form
x 7→ �(1+ xβ) (see Section 2B for details on notation) is an additive character
of o of a specific conductor. The condition c(�) ≥ c(π) is required to make this
key ingredient work. Also, in certain cases we obtain test vectors for more general
situations than the one mentioned above.

Principal series. If π is a principal series representation, then we realize it in its
induced model and explicitly define a linear functional

`( f )=
∫

Z(F)\T (F)

f (t)�−1(t) dt.

It is easy to see that `∈HomT (F)(π,�). We are able to show, for any c(π), c(�)≥0,
that ` 6= 0. See (4-4) and (4-5) for details. It is not clear if the explicit test vector
for ` obtained in (4-4) belongs to a 1-dimensional subspace of π of vectors right-
invariant under a compact subgroup. It is also not clear how to obtain a component
that is right invariant under a conjugate of K1(p

c(π)). To obtain a test vector with
the right invariance mentioned in the statement of the theorem, we evaluate ` at
a translate of the newform of π by h and show that that is nonzero. For this, we
need c(�) ≥ c(π) > 0. If we replace the h in the statement of the theorem by
h =

[
$ s

1

]
, s = c(π)− c(�)− v(a), where a depends on a particular embedding

of T (F) in GL2(F), then we can extend the result to the case c(�)≥ 2c(χ1) (see
Proposition 4.2). Here, π = χ1×χ2 and c(χ1)≤ c(χ2).

Twists of the Steinberg representation. If π is a twist of the Steinberg representation
by a ramified character χ , then realizing it as a subrepresentation of the reducible
induced representation χ | · |1/2×χ | · |−1/2, we see that we get the same linear func-
tional and the same nonvanishing of the translate of newform as in the irreducible
principal series case.

If π is a twist of the Steinberg representation by an unramified character χ , then
we use the fact that such representations are characterized by the existence of a
unique (up to constant) vector that is right invariant under the Iwahori subgroup
I and is an eigenvector of the Atkin–Lehner operator with eigenvalue −χ($).
If we assume that c(�) ≥ c(π), then [Waldspurger 1985] implies the existence
of a nonzero ` ∈ HomT (F)(π,�). As in Section 2D, we can then realize π as a
subrepresentation of the space of smooth functions B : GL2(F)→ C satisfying
B(tg)=�(t)B(g). In this latter space, we look for a vector B with three properties:
one that is right invariant under I , is zero when averaged over GL2(o)/I , and is an
eigenvector for the Atkin–Lehner operator with eigenvalue −χ($). Using a double
coset decomposition for T (F)\GL2(F)/I , we obtain in Lemma 4.4 the explicit
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values of such a B for all g ∈GL2(F). This gives us B(h) 6= 0, for h defined in the
statement of the theorem. The advantage of the above method is twofold. It gives
us the explicit values of the newform in the Waldspurger model and it also gives
another proof of the uniqueness of the Waldspurger model. One can also obtain an
independent proof of existence using the methods of [Pitale 2011], but we do not
do that here.

Supercuspidal representations. In the case that π is an irreducible supercuspidal
representation we may appeal to Mackey theory. We begin with the explicit con-
struction of supercuspidal representations of GL2(F) by induction from an open
subgroup that is compact modulo the center. Suppose that J is such a subgroup and
π = c-IndGL2(F)

J ρ. We first describe the situation when π is minimal, i.e., when the
conductor of π cannot be lowered upon twisting by a character.

We say that ρ and � intertwine on T (F)g J if HomJ∩g−1T (F)g(ρ,�
g) 6= 0.

Understanding HomT (F)(π,�) then reduces to understanding the double cosets
T (F)\GL2(F)/J on which ρ and � intertwine. We do this in two steps. The first
step is to consider a larger subgroup KA ⊇ J where KA is one of two subgroups
depending on J . There is a unique double coset T (F)h0KA that depends only on
c(π) and c(�) containing a T (F)\GL2(F)/J double coset on which ρ and � can
possibly intertwine. This double coset decomposes as the disjoint union of finitely
many T (F)\GL2(F)/J double cosets

T (F)h0KA =

⊔
i

T (F)hi J.

When c(�) >
[1

2 c(π)
]
, we describe this decomposition explicitly, show that one

may choose the representatives hi to be diagonal matrices, and show for each i that

(J ∩ h−1
i T (F)hi ) ker ρ/Z(F) ker ρ ∼= (J ∩ N )/(ker ρ ∩ N ),

where N is the subgroup of lower triangular unipotent matrices. It suffices to exam-
ine ρ|J∩N , which decomposes as a direct sum of characters. We show that there is a
unique i0 such that ρ and � intertwine on T (F)hi0 J . We conclude that there exists
a nonzero linear functional ` ∈ HomT (F)(π,�). We describe the translate of the
newvector in the induced model explicitly, and show that this translate is a test vector.

Finally, we deal with the case of an irreducible supercuspidal representation τ
that is not minimal. In this case τ ∼= π ⊗χ , where π is a minimal supercuspidal
representation and χ is a character of F×. We construct a vector ϕχ ∈ π so that
ϕχ ⊗χ is a translate of the newvector in τ . Using the results of the minimal case,
we show that ϕχ is a test vector for �⊗χ−1.

Similarly to the irreducible principal series case, if we replace h in the statement of
the theorem by h=

[
$ s

1

]
, s=c(π)−c(�)−v(a), then in the minimal supercuspidal

case, we can extend the result to the case c(�)≥
⌊ 3

4 c(π)
⌋
+ 1.
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1B3. Relation to test vectors of Gross–Prasad. We recall some results of Gross
and Prasad [1991]. For simplicity assume that ωπ = 1, that L/F is unramified and
that

dimC HomT (F)(π,�)= 1.

For an order R of M2(F), let d(R) be the exponent of its reduced discriminant
and c(R) be the smallest c ≥ 0 such that o+$ coL ⊂ R. It is clear that R× can
only fix a test vector if c(R) ≥ c(�). Moreover, if we want R× to fix a line in
π , it is reasonable to try R with d(R) = c(π). Thus one might consider orders
with c(R)= c(�) and d(R)= c(π). If either c(�)= 0 or c(π)= 0, then there is
a unique-up-to-L×-conjugacy order R with c(R) = c(�) and d(R) = c(π), and
[Gross and Prasad 1991] shows that R× fixes a line consisting of test vectors. If
c(π)= 0 then R is a maximal order, but in general R is not an Eichler order.

When c(�) > 0 and c(π) > 0, the invariants c(R) and d(R) no longer specify R
uniquely up to conjugacy by L×. However, with the above assumptions, Theorem 1.7
can be interpreted as follows: when c(�)≥ c(π), there is an Eichler order R with
c(R) = c(�) and d(R) = c(π) such that R× fixes a line in π which consists of
test vectors. Moreover, this R can be described uniquely up to L×-conjugacy
as the intersection of two maximal ideals R1 and R2, with c(R1) = c(�) and
c(R2)= c(�)− c(π), which are the maximal possible distance apart in the Bruhat–
Tits tree, i.e., d(R1, R2)= c(π). This provides an intrinsic description of our test
vectors, i.e., one without reference to a specific embedding of L× in GL2(F). It
would be interesting to know whether other Eichler orders R satisfying c(R)= c(�)
and d(R)= c(π) also pick out test vectors.

Note that if c(π) > 2c(�), there is no Eichler order with c(R) = c(�) and
d(R)= c(π), which suggests that the case when π is highly ramified, in comparison
with �, is more complicated than the reverse situation.

1C. Outline. Our paper consists of two parts, one local and one global.
In the first (local) part of the paper we prove our results on local test vectors,

which we treat in three separate cases. Section 2 contains our local notation and
embedding of L× into GL2(F). Then in Section 3 we treat the case where L/F is
split, using zeta integrals. This proves Theorem 1.6. Now assume L/F is inert. In
Section 4, we treat the case of principal series and Steinberg representations. In
Section 5, we treat the case of supercuspidal representations. These two sections
complete Theorem 1.7. Finally, in Section 6 we compute certain local spectral
distributions associated to our local test vectors.

The global part of the paper consists of two sections. In Section 7, we use the
local spectral calculations of Section 6 to prove our L-value formula (Theorem 1.1).
In Section 8, we deduce our results on average values and nonvanishing (Theorems
1.3, 1.4 and 1.5).
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2. Local setup

Let F be a nonarchimedean local field of characteristic zero, o its ring of integers, p
the maximal ideal of o and $ a generator of p. Denote by q the size of the residue
field and by v the normalized valuation map on F.

For a character χ of F×, let c(χ) be the exponent of its conductor, i.e., c(χ)≥ 0
is minimal such that χ is trivial on (1+ pc(χ))∩ o×.

2A. Subgroups and representations of GL2. We use the following compact sub-
groups of GL2(F). Put K1(o)= K2(o)= GL2(o). For n > 0, put

K1(p
n)=

[
o× o

pn 1+ pn

]
, (2-1)

K2(p
n)=

[
1+ pn o

pn 1+ pn

]
. (2-2)

For s ∈ Z, n ≥ 0, let

K (s)
1 (pn)=

[
$ s

1

]
K1(p

n)
[
$−s

1

]
. (2-3)

We also have the Iwahori subgroup

I =
[ o o

p o

]
∩GL2(o). (2-4)

Let (π, V ) be an infinite-dimensional, irreducible, admissible representation
of GL2(F). For n ≥ 0, denote by V n the subspace of K1(p

n)-fixed vectors. By
[Jacquet et al. 1981], one knows V n

6= 0 for some n. Further, if c(π) is the minimal
n such that V n

6= 0, then dim(V c(π))= 1. Call the ideal pc(π) the conductor of π .
If c(π)= 0, then π is unramified.

Such a π is a principal series, twist of Steinberg (special), or supercuspidal
representation. Let χ1, χ2 be two characters of F×. The representation π = χ1×χ2

is the standard induced representation of GL2(F) consisting of locally constant
functions f : GL2(F)→ C such that

f
([ a b

d

]
g
)
= χ1(a)χ2(d)

∣∣ad−1∣∣1/2 f (g),

for all g ∈ GL2(F), a, d ∈ F×, b ∈ F. (2-5)

This is irreducible if and only if χ1χ2 6= | · |
±1, in which case we say χ1×χ2 is a

principal series representation. For a character χ of F×, the twist of the Steinberg
representation by χ , which we denote by χ StGL2 , is the unique irreducible sub-
representation of the induced representation χ | · |1/2×χ | · |−1/2. The supercuspidal
representations are described in Section 5.
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2B. The degree-two extension. As in [Furusawa 1993], we fix three elements
a, b, c ∈ F such that d = b2

− 4ac 6= 0. We let L = F
(√

d
)

if d /∈ F×2, and
L = F ⊕ F otherwise. In the latter case we consider F diagonally embedded in L .
Let z 7→ z̄ be the obvious involution on L whose fixed point set is F. We define the
Legendre symbol as

(L
p

)
=


−1 if L/F is an unramified field extension,

0 if L/F is a ramified field extension,
1 if L = F ⊕ F.

(2-6)

We make the following assumptions:

• a, b ∈ o and c ∈ o×.

• If d /∈ F×2, then d is a generator of the discriminant of L/F.

• If d ∈ F×2, then d ∈ o×.

We define elements β and ξ0 of L by

β =


b+
√

d
2c if L is a field,(
b+
√

d
2c ,

b−
√

d
2c

)
if L = F ⊕ F,

(2-7)

ξ0 =


−b+

√
d

2
if L is a field,(

−b+
√

d
2

,
−b−

√
d

2

)
if L = F ⊕ F.

(2-8)

If L is a field, let oL be its ring of integers, $L a uniformizer, and vL the normalized
valuation. If L = F ⊕ F, put oL = o⊕ o and $L = ($, 1). By [Pitale and Schmidt
2009, Lemma 3.1.1], in either case,

oL = o+ oβ = o+ oξ0. (2-9)

Lemma 2.1. Suppose L is a field. The possible valuations of β and a are

vL(β)= v(a)= 0 if
(L
p

)
=−1, (2-10)

vL(β)= v(a) ∈ {0, 1} if
(L
p

)
= 0. (2-11)

Proof. Consider the identity

b+
√

d
2c ·

b−
√

d
2c =

a
c . (2-12)
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If
( L
p

)
=−1, we get the result by observing that d is a nonsquare unit. If

( L
p

)
= 0,

we get the result since 1, β is an integral basis. �

Fix the ideal in oL given by

PL := poL =


pL if

( L
p

)
=−1,

p2
L if

( L
p

)
= 0,

p⊕ p if
( L
p

)
= 1.

(2-13)

Here pL is the maximal ideal of oL when L is a field. We have Pn
L ∩ o= pn for all

n ≥ 0.
Under our stated assumptions, it makes sense to consider the quadratic equation

cu2
+ bu+ a = 0 over the residue class field o/p. The number of solutions of this

equation is
( L
p

)
+ 1. In the ramified case we will fix an element u0 ∈ o such that

cu2
0+ bu0+ a ∈ p; (2-14)

see [Pitale and Schmidt 2009, Lemma 3.1.1]. Further, note that in the ramified case
we have

b+ 2cu0 ∈ p. (2-15)

This follows from the fact that u0 is a double root of cu2
+ bu+ a over o/p.

2C. The torus. We now specify an embedding of L× as a torus in GL2 for conve-
nience of calculations. With a, b, c as above, let

S =
[

a 1
2 b

1
2 b c

]
, ξ =

[ 1
2 b c
−a −1

2 b

]
.

Then F(ξ)= F · I2+ F · ξ is a 2-dimensional F-algebra isomorphic to L . If L is a
field, then an isomorphism is given by x + yξ 7→ x + y

√
d/2. If L = F ⊕ F, then

an isomorphism is given by x+ yξ 7→
(
x+ y
√

d/2, x− y
√

d/2
)
. The determinant

map on F(ξ) corresponds to the norm map on L . Let

T (F)= {g ∈ GL2(F) : tgSg = det(g)S}. (2-16)

One can check that T (F) = F(ξ)×. Note that T (F) ∼= L× via the isomorphism
F(ξ) ∼= L . Under the same isomorphism the group T (o) := T (F) ∩ GL2(o) is
isomorphic to o×L . Note that T (F) consists of all matrices

t (x, y)=
[

x + 1
2 yb cy
−ay x − 1

2 yb

]
,

for all x, y ∈ F, det(g)= x2
−

1
4 y2(b2

− 4ac) 6= 0. (2-17)

We give a useful structural lemma here.
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Lemma 2.2. Let L/F be a field extension. For any m, n ≥ 0, we have

T (F)
[
$−m

1

]
K1(p

n)= T (F)
[
$m−v(a)

1

]
wK1(p

n). (2-18)

Proof. Set y =$−m and x = 1
2 yb. Then[

$−m

1

]
=

−1
a$−v(a)

t (x, y)
[
$m−v(a)

1

]
wk,

with

k =

[ a$−v(a)
c

b$m−v(a)

c
1

]
∈ K1(p

n) for all n ≥ 0,

since v(b)≥ 1 whenever v(a)= 1. �

2D. The Waldspurger model. Let � be any character of L×, which we may view
as a character of the torus T (F). Define

c(�) :=min{m ≥ 0 :�|(1+Pm
L )∩o

×

L
≡ 1}. (2-19)

Note that this is the (exponent of the) conductor of � only in the case L/F is an
unramified field extension. Let B(�) be the space of all locally constant functions
B : GL2(F)→ C satisfying

B(tg)=�(t)B(g) for all t ∈ T (F), g ∈ GL2(F). (2-20)

Let (π, V ) be any infinite-dimensional, irreducible, admissible representation
of GL2(F). We say that π has an �-Waldspurger model if π is isomorphic to
a subrepresentation of B(�). We call a linear functional ` on π an �-Waldspurger
functional if it satisfies

`(π(t)v)=�(t)`(v) for all t ∈ T (F), v ∈ V . (2-21)

If π has an �-Waldspurger model then we obtain an �-Waldspurger functional ` by
`(B)= B(1). On the other hand, if π has an �-Waldspurger functional `, we obtain
an �-Waldspurger model for π by the map v 7→ Bv, where Bv(g) = `(π(g)v).
Observe that a necessary condition for an �-Waldspurger model or functional to
exist is that �|F× = ωπ , the central character of π .

If π has an �-Waldspurger functional `, we say that v ∈ V is a test vector for `
if `(v) 6= 0. From the discussion above, this is equivalent to Bv(1) 6= 0. Suppose
B0 is the newform in an �-Waldspurger model of π . Lemma 2.2 states that, in the
field case, for m ≥ 0, the vector

π
([ $m−v(a)

1

]
w
)

B0
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is a test vector if and only if π
([
$−m

1

])
B0 is also a test vector. This will be used

in the proof of Theorem 1.7 below.
Criteria for existence of Waldspurger functionals, which must be unique up to

scalars, are given in Section 1B.

3. Zeta integrals and test vectors for split Waldspurger models

In this section we show that any irreducible admissible representation π of GL2(F)
has a split �-Waldspurger model for every character � of L× = F×⊕ F×. Under
certain restrictions on the poles of the L-function of π , we also determine test vectors
for the Waldspurger functional that are right invariant under certain conjugates
of the compact group K1(p

c(π)). The conjugating elements depend only on c(π)
and c(�).

Let π be any irreducible admissible representation of GL2(F) with central char-
acter ωπ (not assumed to be trivial). Let π be given by its Whittaker model W(π, ψ),
where ψ is a nontrivial character of F with conductor o. For any W ∈W(π, ψ)

and a unitary character µ of F×, define the zeta integral

Z(s,W, µ−1) :=

∫
F×

W
([ x

1

])
|x |s−1/2µ−1(x) d×x, (3-1)

where d×x is the Haar measure on F× giving o× volume 1− q−1. Since µ is
unitary, there is an r ∈ R not depending on µ such that Z(s,W, µ−1) converges
absolutely for <(s) > r . By the theory of L-functions, we have

Z(s,W, µ−1)

L(s, µ−1⊗π)
∈ C[q−s, qs

] (3-2)

and the functional equation

Z(1− s, π(w)W, µω−1
π )

L(1− s, µ⊗ π̃)
= ε(s, µ−1

⊗π,ψ)
Z(s,W, µ−1)

L(s, µ−1⊗π)
(3-3)

for any W ∈W(π, ψ). Here w =
[
−1

1]. Please refer to Theorem 6.12 of [Gelbart
1975] for details.

Let W0 be the unique K1(p
c(π))-right invariant vector in W(π, ψ) such that

W0(1) = 1. The formula for W0
([ x

1

])
in various cases is given in Table 1 (see,

e.g., [Schmidt 2002]).

Proposition 3.1. Let π be any irreducible, admissible representation of GL2(F)
with central character ωπ and conductor pc(π). Let W0 be the newform in the
Whittaker model W(π, ψ) of π such that W0(1)= 1. Let µ be a unitary character
of F×.
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(i) If c(µ)= 0 then, for any π , we have

Z
(

s, π
([

1 $−c(µ)

1

])
W0, µ

−1
)
=

(
1− 1

q

)
L(s, µ−1

⊗π).

(ii) If c(µ) > 0 then

Z
(

s, π
([

1 $−c(µ)

1

])
W0, µ

−1
)
= q−c(µ)/2µ($−c(µ))ε

(1
2
, µ,ψ

)
.

Proof. If c(µ) = 0, then the values of the newform W0 from Table 1 and the
normalization of the measure give us (i). We have, for any k ∈ Z and any π ,

Z
(

s, π
([

1 $ k

1

])
W0, µ

−1
)

=

∫
F×

ψ(a$ k)W0

([ a
1

])
|a|s−1/2µ−1(a) d×a

=

∑
j∈Z

∫
o×

ψ(a$ j+k)W0

([
a$ j

1

])
|a$ j

|
s−1/2µ−1(a$ j ) d×a

=

∑
j∈Z

q− j (s−1/2)µ−1($ j )W0

([
$ j

1

])∫
o×

ψ(a$ j+k)µ−1(a) d×a.

If c(µ) > 0, then, by the definition of the epsilon factor for µ (see [Schmidt 2002,
equation (5)]), we have∫
o×

ψ(a$ j+k)µ−1(a) d×a

=

{
q−c(µ)/2µ($ j+k)ε

( 1
2 , µ,ψ

)
if j + k =−c(µ),

0 if j + k 6= −c(µ).
(3-4)

Now the proposition follows since W0(1)= 1. �

π W0

([ x
1

])
χ1×χ2,

|x |1/2
( ∑

k+l=v(x)
χ1($

k)χ2($
l)
)

1o(x)with χ1, χ2 unramified, χ1χ
−1
2 6= | · |

±1

χ1×χ2,
|x |1/2χ1(x)1o(x)with χ1 unramified, χ2 ramified

χ StGL2, with χ unramified |x |χ(x)1o(x)

L(s, π)= 1 1o×(x)

Table 1. Whittaker newform values.
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Proof of Theorem 1.6. For any W ∈W(π, ψ), define

`(W ) :=
Z(s0,W, µ−1)

L(s0, µ−1⊗π)
. (3-5)

The well-definedness of ` for all s0 and µ follows from (3-2). By [Gelbart 1975,
Theorem 6.12], ` is nonzero. The definition of the zeta integral and �1�2 = ωπ

gives us the transformation property

`
(
π
([ x

y

])
W
)
=�1(x)�2(y)`(W ), x, y ∈ F×.

Hence, we get HomT (F)(π,�) 6= 0. The 1-dimensionality follows from [Wald-
spurger 1985]. Note that, if c(µ)= 0 or if L(s, µ−1

⊗π) does not have a pole at
s = s0, then we have

`

(
π

([
1 $−c(�)

1

])
W0

)
6= 0

by Proposition 3.1. If c(µ) > 0 and L(s, µ−1
⊗π) has a pole at s = s0, then

`

(
π

([
1 $−c(�)

1

])
W0

)
= 0

by Proposition 3.1. In this case, if we assume that L(1− s, µ⊗ π̃) does not have a
pole at s = s0, then we can use the local functional equation (3-3), which gives us
the test vectors for `. The uniqueness statement follows from the uniqueness of W0.
If � and π are unitary, then s0 =

1
2 and one can check that L(s, µ−1

⊗π) does not
have a pole at s = 1

2 . �

4. Nonsupercuspidal representations

Here we assume that L is a field and prove Theorem 1.7 when π is not supercuspidal.
Let us define Haar measures dg on GL2(F) such that GL2(o) has volume 1;

d×x on F× = Z(F), the center of GL2(F), such that o× has volume 1 (note this is
different from Section 3); and dt on T (F)= L× such that the volume of o×L is 1.

4A. Irreducible principal series representation. Let π be a ramified irreducible
principal series representation of GL2(F) given by

π = χ1×χ2, χ1χ
−1
2 6= | · |

±1, c(χ2)≥ c(χ1),

c(π)= c(χ1)+ c(χ2) > 0, ωπ = χ1χ2.
(4-1)

Recall that π consists of locally constant functions f on GL2(F) satisfying (2-5).
The unique, up to scalars, right K1(p

c(π))-invariant vector f0 in π is given by the



272 Daniel File, Kimball Martin and Ameya Pitale

formula

f0(g)=

|a/d|1/2χ1(a)χ2(d) if g ∈
[ a ∗

d

]
γc(χ2)K1(p

c(π)),

0 if g 6∈ B(F)γc(χ2)K1(p
c(π)),

(4-2)

where γc(χ2) =
[ 1
$ c(χ2) 1

]
and B(F) is the Borel subgroup of GL2(F) consisting of

upper triangular matrices. See [Schmidt 2002] for details.
Let � be a character of L× such that �|F× = ωπ . Let B(�) be the space of all

locally constant functions B :GL2(F)→C satisfying (2-20) defined in Section 2D.
Define an intertwining operator A : π→ B(�) by the formula

(A( f ))(g) :=
∫

Z(F)\T (F)

f (tg)�−1(t) dt, f ∈ π, g ∈ GL2(F). (4-3)

Since Z(F)\T (F) is compact and �|F× = ωπ , this integral is well defined and
convergent. Note Z(F)\T (F) is isomorphic to Z(o)\T (o) if

( L
p

)
= −1, and to

Z(o)\T (o)t$L(Z(o)\T (o)) if
( L
p

)
= 0.

Next we show that A is nonzero for all � and, assuming c(�) ≥ 2c(χ1),
obtain g ∈ GL2(F) such that (A( f0))(g) 6= 0. First observe that we can write
GL2(F) = M2(F)T (F), where M2(F) =

{[a
0

b
1

]
: a, b ∈ F

}
∩ GL2(F) is the

mirabolic subgroup of GL2(F) and M2(F)∩ T (F)= {1}. Hence, the function f̂
defined by

f̂
([ a b

0 1

]
t
)
= |a|1/2χ1(a)�(t),

[ a b
0 1

]
∈ M2(F), t ∈ T (F), (4-4)

is a well-defined element of π and, for t ∈ T (F), satisfies π(t) f̂ =�(t) f̂ , which
implies

A( f̂ ) 6= 0. (4-5)

For the computation of A applied to the newvector f0, we need to know when the
argument tg of f0 is in the support of f0 for certain elements g ∈ GL2(F). We
obtain that information in the following lemma.

Lemma 4.1. Let t = t (x, y) ∈ T (F). For s ∈ Z, we have the following decomposi-
tion of t

[
$ s

1

]
as bk with b ∈ B(F) and k ∈ GL2(o).

(i) If x − 1
2 by ∈$−lo×, l ≥ 0, a$ s+l y ∈ o, then

t
[
$ s

1

]
=

[
det(t)$ s/

(
x − 1

2 by
)
$−l cy/

(
x − 1

2 by
)

0 $−l

]
×

[
1 0

−a$ s+l y $ l
(
x − 1

2 by
) ].
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(ii) If x − 1
2 by ∈$−lo×, l ≥ 0, a$ s+l y 6∈ o, then

t
[
$ s

1

]
=

[
det(t)/(ay) −$ s

(
x + 1

2 by
)

0 a$ s y

][
0 1
−1

(
x − 1

2 by
)
/(a$ s y)

]
.

(iii) If x − 1
2 by ∈ p,

(
x − 1

2 by
)
/($ s ay) ∈ o, then

t
[
$ s

1

]
=

[
det(t)/(ay) −$ s

(
x + 1

2 by
)

0 $ s ay

][
0 1
−1

(
x − 1

2 by
)
/($ s ay)

]
.

(iv) If x − 1
2 by ∈ p,

(
x − 1

2 by
)
/($ s ay) 6∈ o, then

t
[
$ s

1

]
=

[
det(t)$ s/

(
x − 1

2 by
)

cy
0 x − 1

2 by

][
1 0

−a$ s y/
(
x − 1

2 by
)

1

]
.

Proof. The lemma is obtained by direct computation. �

Proposition 4.2. Let c(�)≥ 2c(χ1) and set s = c(π)− c(�)− v(a). Then

(A( f0))

([
$ s

1

])
6= 0.

Proof. Since�|F× =ωπ and c(�)≥ 2c(χ1), we have c(�)> 0. Let us first compute
the part of the integral (A( f0))

([
$ s

1

])
over Z(o)\T (o). The argument of f0 is

given by t
[
$ s

1

]
, where

t =
[

x + 1
2 by cy
−ay x − 1

2 by

]
∈ T (o),

i.e., y, x− 1
2 by ∈ o and x2

−
1
4 y2d ∈ o×. We write t

[
$ s

1

]
as bk with b ∈ B(F) and

k ∈ GL2(o) according to Lemma 4.1. Since t ∈ T (o), we must have l = 0 in parts
(i) and (ii) of Lemma 4.1, and a, y ∈ o× in parts (iii) and (iv) of Lemma 4.1. The
support of f0 is B(F)γc(χ2)K1(p

c(π)) and an element k ∈GL2(o) lies in the support
if and only if the (2, 1) entry of k has (strictly positive) valuation c(χ2) if c(χ1) > 0
and ≥ c(χ2) if c(χ1)= 0. Hence, the k obtained in parts (ii) and (iii) of Lemma 4.1
is never in the support of f0. Since s < c(χ2)− v(a), the k obtained in part (iv) of
Lemma 4.1 is not in the support of f0 as well. Hence, the only possibility is part
(i) of Lemma 4.1. First suppose that c(χ1) > 0. By successive change of variable
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x→ x + 1
2 by and y→ xy, we have∫

Z(o)\T (o)

f0

(
t
[
$ s

1

])
�−1(t) dt

=

∫
y∈$ c(χ2)−s−v(a)o×

f0

([
$ s(1+ by+ acy2) cy

0 1

][
1 0

−ay$ s 1

])
×�−1(1+ cyβ) dy

= q−s/2χ1($
s)

∫
y∈$ c(χ2)−s−v(a)o×

χ1(1+ by+ acy2) f0

([
1 0

−ay$ s 1

])
×�−1(1+ cyβ) dy

= (1− q−1)qs/2−c(χ2)+v(a)χ1($
s)

×

∫
o×

χ1(1+ b$ c(χ2)−s−v(a)y+ ac$ 2(c(χ2)−s−v(a))y2)

× f0

([
1 0

−ay$ c(χ2)−v(a) 1

])
�−1(1+ c$ c(χ2)−s−v(a)yβ) d×y. (4-6)

We get the factor (1−q−1) above by the normalization of measures. Now, we have[
1 0

−ay$ c(χ2)−v(a) 1

]
=

[
−$ v(a)/(ay) 0

0 1

]
γc(χ2)

[
−ay$−v(a)

1

]
.

Hence the integral (4-6) is equal to

(1− q−1)qs/2−c(χ2)+v(a)χ1($
s)

×

∫
o×

χ1(1+ b$ c(χ2)−s−v(a)y+ ac$ 2(c(χ2)−s−v(a))y2)

×χ1(−$
v(a)/(ay))�−1(1+ c$ c(χ2)−s−v(a)yβ) d×y (4-7)

Using c(χ2)− s− v(a)= c(�)− c(χ1)≥ c(χ1), we get

(1− q−1)q(c(χ1)−c(χ2)−c(�)+v(a))/2χ1(−$
c(π)−c(�)/a)

×

∫
o×

χ−1
1 (y)�−1(1+ c$ c(�)−c(χ1)yβ) d×y.

Since c(�)≥ 2c(χ1), the map y 7→�−1(1+ c$ c(�)−c(χ1)yβ) is an additive char-
acter of o of conductor c(χ1). This character extends to a character ψ̂ of F with
conductor c(χ1).
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Hence, using (3-4), we get∫
Z(o)\T (o)

f0

(
t
[
$ c(π)−c(�)−v(a)

1

])
�−1(t) dt

= (1− q−1)q(−c(χ2)−c(�)+v(a))/2χ1(−$
c(χ2)−c(�)/a)ε

( 1
2 , χ1, ψ̂

)
. (4-8)

If c(χ1)= 0, the integral is much simpler. We get∫
Z(o)\T (o)

f0

(
t
[
$ s

1

])
�−1(t) dt

=

∫
y∈pc(�)

f0

([
$ s(1+ by+ acy2) cy

0 1

])
�−1(1+ cyβ) dy

= χ1($
s)q−s/2−c(�). (4-9)

If L/F is a ramified field extension, then it is also necessary to integrate over
$L(Z(o)\T (o)). Let

t =
[

x + 1
2 by cy
−ay x − 1

2 by

]
∈$L T (o).

Hence, we have

x2
−

1
4 y2d =

(
x + 1

2 by
)(

x − 1
2 by

)
+ acy2

∈$o×.

We claim that, for r < c(χ2)− v(a), the element t
[
$ r

1

]
is never in the support of

f0. We look at the four possibilities from Lemma 4.1. We know that the values
of x, y satisfying the conditions of parts (ii) and (iii) never give elements in the
support of f0.

• Suppose x − 1
2 by ∈$−lo× with l ≥ 0 and ay$ r+l

∈ o. To prove the claim, it
is enough to show that v(y)≤−l. Suppose y ∈ p−l+1. Then we have $ l y ∈ p.
By assumption, we have $ l

(
x − 1

2 by
)
∈ o×. Hence $ l

(
x + 1

2 by
)
∈ o×. But

then we get $ 2l
(
x2
−

1
4 y2d

)
∈ o×, which is a contradiction.

• Suppose x− 1
2 by ∈ p,

(
x− 1

2 by
)
/($ r ay) 6∈ o. To prove the claim, it is enough

to show that v(y) ≤ 0. Suppose y ∈ p. Then x + 1
2 by ∈ p. But then we get(

x2
−

1
4 y2d

)
∈ p2, a contradiction.

Hence, for r < c(χ2)− v(a), we have∫
$L (Z(o)\T (o))

f0

(
t
[
$ r

1

])
�−1(t) dt = 0. (4-10)

This completes the proof of the proposition by observing that s < c(χ2)− v(a). �
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Observe that in the above proof, we have used c(�)≥ 2c(χ1) at two crucial steps
to simplify the integral. In the case c(�) < 2c(χ1), it is not clear if the statement
of the proposition still remains valid.

Proof of Theorem 1.7 for principal series representations. By the definition (4-3) of
A and (4-5), the linear functional on π given by `( f ) = (A( f ))(1) is a nonzero
functional satisfying `(π(t) f ) = �(t)`( f ) for all t ∈ T (F) and f ∈ π . Hence,
HomT (F)(π,�) 6= 0. The 1-dimensionality follows from [Waldspurger 1985]. Since
c(�)≥ c(π), we can apply Lemma 2.2 together with Proposition 4.2 to obtain the
existence of the required test vector. The uniqueness follows from the uniqueness
of f0. �

4B. Steinberg representation. Let π = χ | · |1/2×χ | · |−1/2. Let V0 be the unique
invariant (infinite-dimensional) subspace of π , so π |V0 is the twisted Steinberg
representation χ StGL2 . If we set χ1 = χ | · |

1/2 and χ2 = χ | · |
−1/2, then V0 is

characterized as the kernel of the intertwining operator M : χ1 × χ2→ χ2 × χ1,
given by

(M( f ))(g)=
∫
F

f
([

−1
1

][ 1 x
1

]
g
)

dx .

Case 1: χ ramified. If χ is a ramified character, then f0, defined as in (4-2),
is in V0 and is, in fact, the unique (up to a constant) newform in χ StGL2 (see
[Schmidt 2002]). Hence the proof of Proposition 4.2 is valid in this case without
any modification.

Case 2: χ unramified. If χ is unramified, then the vector f0, defined as in (4-2),
is a spherical vector in χ1×χ2, hence clearly not the newform of χ StGL2 , which
has conductor p. Any vector in χ StGL2 which is right K1(p)-invariant is also right
I -invariant, where I is the Iwahori subgroup defined in (2-4). It is known (see
[Schmidt 2002]) that the newform in the induced model is given by

f0(g)=


|a/d|χ(ad)q if g ∈

[ a ∗
d

]
I,

−|a/d|χ(ad) if g ∈
[ a ∗

d

]
w I.

(4-11)

We can try to compute (A( f0))(g) (defined in (4-3)) in this case for various
values of g. But instead, we use a double coset decomposition and properties of
the Steinberg representation to obtain the test vector. This has the added advantage
of obtaining a new proof of the uniqueness (up to a constant) of the Waldspurger
functional, and also gives us the explicit formula for B(g), where B is the newform
in the corresponding Waldspurger model and g is any element of GL2(F). By
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[Sugano 1985, Lemma 2-4], there is the disjoint double coset decomposition

GL2(F)=
∞⊔

r=0

T (F)
[
$ r

1

]
GL2(o). (4-12)

Note that, by the Iwasawa decomposition of SL2(o/p), we have

GL2(o)= w I t
⊔

u∈o/p

[
1
u 1

]
I, w =

[
1

−1

]
. (4-13)

For u ∈ o and r ≥ 0 set βu,r := a$ 2r
+ b$ r u+ cu2. Arguing as in Lemma 3.1 of

[Pitale 2011], we have

T (F)
[
$ r

1

]
w I = T (F)

[
$ r

1

][
1
u 1

]
I ⇐⇒ βu,r ∈ o

×. (4-14)

Lemma 3.2 of [Pitale 2011] tells us exactly when βu,r ∈ o
×. Putting everything

together, we get the following proposition.

Proposition 4.3. For r > 0, we have

T (F)
[
$ r

1

]
GL2(o)= T (F)

[
$ r

1

]
I t T (F)

[
$ r

1

]
w I.

For r = 0,
( L
p

)
=−1, we have

T (F)GL2(o)= T (F) I = T (F)w I.

For r = 0,
( L
p

)
= 0, we have

T (F)GL2(o)= T (F)w I t T (F)
[

1
u0 1

]
I,

where u0 is chosen as in (2-14).

The twisted Steinberg representation is characterized as the representation π
with a newform v0 which is invariant under I and satisfies the two conditions∑

γ∈GL2(o)/I

π(γ )v0 = 0, π
([ 1
$

])
v0 =−χ($)v0.

These conditions follow from the action of the Atkin–Lehner element and the fact
that π does not have a vector invariant under GL2(o). See Proposition 3.1.2 of
[Schmidt 2002]. Let � be a character of L× with �|F× = ωπ .
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Let B : GL2(F)→ C be a function that satisfies B(tgk) = �(t)B(g) for all
t ∈ T (F), g ∈ GL2(F), k ∈ I and

∑
u∈o/p

B
(

g
[ 1

u 1

])
=−B(gw), (4-15)

B
(

g
[ 1
$

])
=−χ($)B(g) (4-16)

for all g ∈ GL2(F). If π has a �-Waldspurger model, then B will precisely be the
unique (up to scalars) newform of π in the �-Waldspurger model; otherwise B will
be 0.

Lemma 4.4. (i) If c(�)≥ 2, then

B
([

$ r

1

]
w

)
= 0 if r ≤ c(�)− 2. (4-17)

(ii) For r > 0, we have

B
([

$ r

1

])
=

−q B
([

$ r

1

]
w

)
if r ≥ c(�),

0 if r < c(�).
(4-18)

(iii) For r ≥max{c(�)− 1, 0}, we have

B
([

$ r+1

1

]
w

)
=
χ($)

q
B
([

$ r

1

]
w

)
. (4-19)

(iv) If
( L
p

)
= 0, then

B
([ 1

u0 1

])
=

{
−q B(w) if c(�)= 0,

0 if c(�) > 0.
(4-20)

(v) If c(�)= 0 and �= χ ◦ NL/F , then

B(w)= 0. (4-21)

Proof. We illustrate the proof of (i) and (ii) in detail here. Let u, v ∈ pc(�)−1 be
such that �(1+u+vβ) 6= 1. Take y = v/c, x = 1+u+ 1

2 by and, for r ≤ c(�)−2,
let

k =
[

1+ u a/cv$ r

−$−rv 1+ u+ b/cv

]
∈ I.
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Then

B
([

$ r

1

]
w

)
= B

([
$ r

1

]
wk
)
= B

(
t (x, y)

[
$ r

1

]
w

)
=�(1+ u+ vβ)B

([
$ r

1

]
w

)
.

This gives us (4-17) and completes the proof of (i).
Next, we give the proof of (ii). Substitute g =

[
$ r

1

]
in (4-15) to get∑

u∈o/p

B
([

$ r

1

][
1
u 1

])
=−B

([
$ r

1

]
w

)
.

For u 6= 0, setting x = b/2$ r
+ cu, y =$ r , we get[

$ r

1

][
1
u 1

][
−c b$ r

+ cu
−βu,r

]
= t (x, y)

[
$ r

1

]
w.

Since r > 0 by assumption, βu,r ∈ o
×. Hence, for u 6= 0 we have

B
([

$ r

1

][
1
u 1

])
=�(u+$ rβ)B

([
$ r

1

]
w

)
.

This gives us

B
([

$ r

1

])
=−

( ∑
u∈(o/p)×

�(u+$ rβ)+�(1)
)

B
([

$ r

1

]
w

)
.

Using (4-17) and the definition of c(�)we get the result for r ≥ c(�) or r ≤ c(�)−2.
For r = c(�)− 1, using Lemma 3.4 of [Pitale 2011], we see that the expression in
the parentheses on the right-hand side above is 0. This completes the proof of (ii).

Using (4-15), (4-16) and similar calculations as above, we get the remaining
results. �

Proof of Theorem 1.7 for twists of Steinberg representations. Let D be the quaternion
division algebra over F and ND/F be the reduced norm. Since π =χ St corresponds
to the 1-dimensional representation π ′ = χ ◦ ND/F of D×(F), one knows by
[Waldspurger 1985] that π has an�-Waldspurger model if and only if� 6=χ ◦NL/F .
Since c(�)≥ c(π), this must be the case, i.e., dimC HomT (F)(π,�)= 1. The case
of ramified χ follows exactly as in the principal series case. For χ unramified, the
result follows from Lemma 4.4. �

5. Supercuspidal representations

Throughout this section we continue to assume that L/F is a field.
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5A. Chain orders and strata. This section contains a summary of the facts about
chain orders and fundamental strata that we will use to construct test vectors for the
supercuspidal representations π of GL2(F), all of which can be found in [Bushnell
and Henniart 2006, Chapter 4].

Let A be a chain order in M2(F). Up to GL2(F)-conjugacy, A must be either
M=M2(o) or J=

[ o
p
o
o

]
, so we always take A to be M or J.

Write eA = 1 if A=M and eA = 2 if A= J. For more intrinsic definitions, see
[Bushnell and Henniart 2006]. Let P= radA, the Jacobson radical of A. There is
an element 5 ∈ GL2(F) such that P=5A, and one has

radM=$M, rad J=
[ 1
$

]
J.

Let Pn
= 5nA for n ∈ Z. Let U 0

A = UA := A×, U n
A := 1+Pn for n ≥ 1, and

KA = {g ∈ GL2(F) : gAg−1
= A}. Then

KA =


Z(F)GL2(o) if A=M,〈[ 1
$

]〉
n J× if A= J.

We fix a character ψ1 : F→ C× so that the conductor of ψ1 is p. For α ∈M2(F),
define a function of UA by ψα(x) = ψ1(Trα(x − 1)). Then for 1 ≤ m ≤ n ≤ 2m,
there is an isomorphism

P−n/P−m
→
(
U m+1
A /U n+1

A

)∧
,

α+P−m
7→ ψα.

The normalized level of π is defined to be

`(π)=min{n/eA : π |U n+1
A

contains the trivial character}.

A stratum in M2(F) is a triple (A, n, α) where A is a chain order in M2(F) with
radical P, n is an integer and α ∈P−n . For n ≥ 1 one associates to a stratum the
character ψα of U n

A which is trivial on U n+1
A .

We say that a smooth representation π contains the stratum (A, n, α) if π |U n
A

contains ψα . A fundamental stratum is one such that α+P1−n contains no nilpotent
elements. If an irreducible smooth representation π of GL2(F) contains a stratum
(A, n, α), then (A, n, α) is fundamental if and only if `(π)= n/eA [Bushnell and
Henniart 2006, 12.9 Theorem].

Suppose that (A, n, α) is a fundamental stratum with eA = 1. Write α =$−nα0

for α0 ∈A. Let fα(t)∈ o[t] be the characteristic polynomial of α0, and let f̃α ∈ k[t]
be its reduction modulo p. Here k is the residue class field. If f̃α has two solutions
in k, then (A, n, α) is said to be a split fundamental stratum. If f̃α is irreducible,
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then the stratum (A, n, α) is said to be unramified simple. On the other hand, if
(A, n, α) is a fundamental stratum with eA = 2, and n odd, then (A, n, α) is said
to be ramified simple. A simple stratum is either a simple unramified stratum or
a simple ramified stratum. Suppose that (A, n, α) is a simple stratum with α0 as
above and let E = F[α0]. Bushnell and Henniart define what it means for α to be
minimal [Bushnell and Henniart 2006, 13.4 Definition], and when this is the case
oE = o[α0] [Bushnell and Henniart 2006, 13.4 Lemma]. If (A, n, α) is a simple
stratum with A=M, then α0 ∈M but α0 /∈P.

Define π to be minimal if, for all characters χ of F×, `(π ⊗χ)≥ `(π). Every
irreducible supercuspidal representation of GL2(F) is either minimal, or isomorphic
to the twist of a minimal irreducible supercuspidal representation. Every minimal
irreducible smooth representation of GL2(F) contains exactly one of the following:
a ramified simple stratum, an unramified simple stratum, or a split fundamental stra-
tum [Bushnell and Henniart 2006, 13.3 Corollary]. If π contains a split fundamental
stratum, then π is not supercuspidal.

5B. Construction of minimal supercuspidals. In this section we review the con-
struction of minimal irreducible supercuspidal representations. See [Bushnell and
Henniart 2006, Section 19] for more details. In each case we describe a distinguished
vector v0 in the inducing representation. This vector v0 will be used to construct a
test vector for π .

We remark that if a representation π contains a simple stratum (A, n, α), then
it contains all GL2(F)-conjugates of (A, n, α). Therefore, we may always take
A to be either M or J. Since KA normalizes UA, we may also consider α up to
KA-conjugacy.

For the rest of Section 5 we assume that all supercuspidal representations are
irreducible.

5B1. A=M, `(π)= 2r + 1. Suppose that π is a minimal supercuspidal represen-
tation containing the simple stratum given by (M, 2r + 1, α). Then E = F[α] is an
unramified quadratic extension of F, and π ∼= c-IndGL2(F)

Jα λ, where Jα = E×U r+1
M

and λ is a character.
We have that λ|U r+1

M
= ψα with α ∈ P−2r−1

M and α is minimal. One may take
α0 =$

2r+1α to be in rational canonical form, i.e.,

α0 =

[ 0 1
a0 a1

]
, (5-1)

for ai ∈ o, i = 0, 1. Then

1+
[
pr+1 p2r+2

p2r+2 p2r+2

]
⊆ kerψα.



282 Daniel File, Kimball Martin and Ameya Pitale

5B2. A= J, `(π)= 1
2(2r + 1). Suppose that π is a minimal supercuspidal repre-

sentation containing the simple stratum (J, 2r+1, α), and let E = F[α]. In this case
E/F is a ramified extension, and `(π)e(E/F)= 2r + 1. Then π = c-IndGL2(F)

Jα λ,
where Jα = E×U r+1

J and λ is a character. Observe

U r+1
J = 1+Pr+1

=


1+

[
pr/2+1 pr/2

pr/2+1 pr/2+1

]
if r is even,

1+
[
p(r+1)/2 p(r+1)/2

p(r+3)/2 p(r+1)/2

]
if r is odd.

Note that

U 2r+2
J = 1+

[
pr+1 pr+1

pr+2 pr+1

]
⊆ ker λ.

Let α0 = $
r+1α be of the form (5-1), where now a0 ∈ $o× and a1 ∈ p, and

k :=
[ 1

2r
]
+ 1. Then

1+
[

pk pr+1

pr+2 pr+1

]
⊆ ker λ.

5B3. A = M, `(π) = 2r > 0. Now suppose π contains an unramified simple
stratum (M, 2r, α) for some α ∈ P−2r so that `(π) = 2r > 0 and e(E/F) = 1,
where as before E = F[α]. Continue to assume that α0 =$

2rα has the form (5-1).
In this case, π is not induced from a character, and E is an unramified quadratic
extension of F. We describe a representation ρ of Jα = E×U r

M so that π is
compactly induced from ρ, and we follow Kutzko [1978, §1] since his construction
is more convenient for our applications.

Write U 1
E =U 1

M ∩ E×. Since α0 ∈MrP and oE = o[α0] (see Section 5A), a
simple argument shows U 1

E ⊂ 1+ pE . The opposite inclusion is obvious; therefore,
U 1

E = 1+ pE . We similarly note that E× ∩UM =:UE ∼= o×E . There is a character
χ of E× such that χ(1+ x)= ψ1 ◦TrE/F (αx) for all x ∈ pr+1

E . Define a character

λ : H 1
α :=U 1

EU r+1
M → C×

by λ(ux)= χ(u)ψα(x) for u ∈U 1
E and x ∈U r+1

M .
Let A =

{[ x
1

]
: x ∈ F×

}
, and set An

= A ∩U n
M for n ≥ 0. The character λ

can be extended to a character λ̃ of Ar H 1
α by λ̃(yx)= λ(x) for y ∈ ArU 2r+1

M and
x ∈ H 1

α [Kutzko 1978, Definition 1.8].
Let J 1

α =U 1
EU r

M, and define η= IndJ 1
α

Ar H1
α
λ̃. Then η is an irreducible representation

of J 1
α of dimension q. There is an irreducible representation ρ of Jα such that

π ∼= IndGL2(F)
Jα ρ, and ρ|J 1

α

∼= η [Kutzko 1978, Lemma 1.10 and Proposition 1.15].
Note that U 2r+1

M ⊂ ker ρ. We must compute ρ|Ar ∼= η|Ar . We have [J 1
α : A

r H 1
α ] = q ,

and an irredundant set of coset representatives is given by
{[ 1

a 1

]
: a ∈ pr/pr+1

}
.
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It is a simple computation to show that η|Ar = IndJ 1
α

Ar H1
α
λ̃|Ar is isomorphic to the

regular representation of Ar/Ar+1. In particular it contains the trivial character
with multiplicity one, so there is a vector v0 ∈ ρ that is unique up to scalars which
is fixed by 1+

[ pr

p2r+1
p2r+1

p2r+1

]
.

Sometimes it will be convenient to consider the corresponding vector f0 ∈ η

given by

f0(k)=
{
λ̃(k) if k ∈ Ar H 1

α ,

0 otherwise.
(5-2)

5B4. Depth zero supercuspidals. Now, consider a depth zero supercuspidal rep-
resentation, i.e., `(π) = 0. Then π is induced from a representation ρ of KM

that is inflated from a cuspidal representation ρ̃ of GL2(o/p), i.e., ρ is trivial on
U 1
M = 1+ pM2(o) and it factors through ρ̃. The cuspidal representations ρ̃ are

parameterized by Galois conjugacy classes of regular characters θ : F×q2→C1. Such
a character θ can also be regarded as a character of o×E that is trivial on 1+ pE ,
where E/F is the unique unramified quadratic extension. Embed o×E in GL2(o),
and identify F×q2 with the image of o×E under the reduction map modulo p. The
following proposition gives the character table for ρ̃, which is a well-known result
(see, e.g., [Bushnell and Henniart 2006, 6.4.1]).

Proposition 5.1. The character table of ρ̃ is given by

Tr ρ̃(z)= (q − 1)θ(z), z ∈ Z;

Tr ρ̃(zu)=−θ(z), z ∈ Z , u ∈ N , u 6= 1;

Tr ρ̃(y)=−(θ(y)+ θq(y)), y ∈ F×q2 r Z .

If g is not conjugate to an element of F×q2 ∪ Z N , then Tr ρ̃(g)= 0.

From the character table one sees that the restriction of ρ to A0 is isomorphic to
the regular representation of A0/A1. In particular there is a vector v0 ∈ ρ such that
ρ(a)v0 = v0 for a ∈ A0.

5C. Remarks on minimal supercuspidals. We consider a minimal supercuspidal
representation π = c-IndGL2(F)

Jα ρ, where E = F[α] for α ∈P−n such that π contains
the simple stratum (A, n, α). When e(E/F)`(π) is odd, then ρ = λ is a character
which restricts to ψα. When e(E/F)`(π) is even, then ρ is not a character, and if
additionally `(π) > 0, then we sometimes identify ρ|J 1

α
with η as described above.

From the discussion in the previous section, we may always take J = Jα of the
form E×

(
1+P[(eA`(π)+1)/2]

)×, where we take E = F if `(π)= 0. In all cases, we
have E× ⊂ KA, so J ⊂ KA.

Definition 5.2. Suppose π = c-IndGL2(F)
J ρ is an irreducible minimal supercuspidal

representation.
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(i) If ρ = λ is a character, define v0 to be the unique vector up to scalar multiples
in ρ. That is, ρ(k)v0 = λ(k) for k ∈ J . Then according to the constructions in
Sections 5B1 and 5B2, ρ(a)v0 = λ(a)= 1 for a ∈ A∩ J .

(ii) Suppose dimC ρ > 1. Define v0 ∈ ρ to be the vector described in Sections 5B3
and 5B4 such that ρ(a)v0 = v0 for a ∈ A∩ J .

Let N =
{[ 1 x

1

]}
⊂GL2(F), N =

{[ 1
x 1

]}
⊂GL2(F) and N r

= N ∩U r
M for r ≥ 0.

Lemma 5.3. Suppose that π is a minimal supercuspidal representation and that
`(π)= 2r . Write π = c-IndGL2(F)

J ρ, where ρ is not a character.

(i) If `(π) = 0, then ρ|N 0 =
⊕q−1

i=1 ψi , where ψi runs over all the nontrivial
characters of N 0/N 1.

(ii) If `(π) > 0 and J = Jα, then ρ|N∩Jα =
⊕

j ψ j , where the sum runs over all
characters ψ j of N ∩ Jα such that ψ j |N∩Hα = ψα|N∩Hα , and Hα := E×U r+1

M .

Proof. The first part may be deduced from Proposition 5.1. Now, suppose that
`(π)> 0. Since Jα = E×U r

M, we have N ∩ Jα = N r , and similarly N ∩Hα = N r+1.
Also, recall that ρ|J 1

α

∼= η = IndJ 1
α

Ar H1
α
λ̃, where λ̃ is obtained from λ by extending it

trivially to Ar.
A set of irredundant coset representatives for Ar H 1

α\J
1
α is given by{[ 1

a 1

]
: a ∈ pr/pr+1

}
.

Let ψ ′ be one of the characters ψ j of N r as in (ii). For a ∈ pr/pr+1, define

fa(y)=

ψ ′
([ 1

a 1

])
λ̃(x) if y = x

[ 1
a 1

]
, x ∈ Ar H 1

α ,

0 otherwise.
(5-3)

This is well defined since ψ ′ and λ̃ agree on N r+1. Note the fa span η, and when
a = 0, (5-3) agrees with (5-2). Define fψ ′ =

∑
a∈pr/pr+1 fa . Then we have

η
([ 1

x 1

])
fψ ′ = ψ ′(x) fψ ′ .

From the explicit basis we computed for η, one sees that each of these characters
appear with multiplicity one. This proves the lemma. �

Later, it will be useful to have a case-by-case description of the kernel of ρ. We
summarize what we know about the kernel from the previous section in Table 2.
The quantities in the latter two columns will be denoted i and i ′ in Propositions 5.5
and 5.9, and are included here for the later convenience of the reader.



Test vectors and central L-values for GL(2) 285

`(π) J ⊂ ker ρ
[
`(π)+3/2

2

] [
`(π)+

3
2

]
−

[
`(π)

2

]
−1

2r+1 E×(1+Pr+1) 1+
[
pr+1 p2r+2

p2r+2 p2r+2

]
r+1 r+1

2r > 0 E×(1+Pr ) 1+
[
pr+1 p2r+1

p2r+1 p2r+1

]
r r

0 Z(F)GL2(o) 1+P 0 0

2r+1
2

E×(1+Pr+1) 1+
[
p[r/2]+1 pr+1

pr+2 pr+1

] [r
2

]
+1 r−

[r
2

]
+1

Table 2. Data for minimal supercuspidal representations.

5D. Mackey theory. In this section we describe the strategy to obtain the desired
test vector for π . Consider a minimal supercuspidal representation π of GL2(F).
There is an open subgroup J of GL2(F) that contains the center Z(F), is compact
modulo Z(F) and has an irreducible representation ρ of J with π ∼= c-IndGL2(F)

J ρ.
As before, let � : T (F)→ C× be a character such that �|Z(F) = ωπ .

Consider the space

HomT (F)(π,�)∼= HomGL2(F)
(
c-IndGL2(F)

J ρ, B(�)
)
. (5-4)

See Section 2D for the definition of B(�) and details of the above isomorphism.
Following the proof of Proposition 1.6 of [Bushnell and Henniart 1998] and [Kutzko
1977], define H (GL2(F), ρ, �) to be the space of functions

f : GL2(F)→ HomC(ρ,C)

satisfying

f (tgk)=�(t) f (g) ◦ ρ(k), t ∈ T (F), g ∈ GL2(F), k ∈ J.

Then for ϕ ∈ c-IndGL2(F)
J ρ and f ∈ H (GL2(F), ρ, �), the convolution f ∗ ϕ

defined as

f ∗ϕ(g) =
∫

GL2(F)/Z(F)

f (x)ϕ(x−1g) dx̄, g ∈ GL2(F),

gives a function in the space B(�). Furthermore, GL2(F) acts on H (GL2(F), ρ,�)
through the convolution by (g · f ) ∗ϕ = f ∗ (g ·ϕ), and there is a GL2(F) homo-
morphism

H (GL2(F), ρ,�)→ HomGL2(F)
(
c-IndGL2(F)

J ρ, B(�)
)
,

f 7→ (ϕ 7→ f ∗ϕ).
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This is in fact an isomorphism. By [Waldspurger 1985],

dimC HomGL2(F)
(
c-IndGL2(F)

J ρ, B(�)
)
≤ 1.

Hence, there is at most one double coset T (F)h0 J which has nontrivial inter-
section with the support of any f ∈H (GL2(F), ρ, �), and each f is uniquely
determined by its value at h0 (see 1.8 of [Bushnell and Henniart 1998]). Suppose
that f ∈ H (GL2(F), ρ, �) has support in a double coset T (F)h0 J , and that
f (h0) = `0 ∈ Hom(ρ,C). For k ∈ J ∩ h−1

0 T (F)h0, define �h0(k) = �(h0kh−1
0 ).

Then `0 has the property that for k ∈ J ∩ h−1
0 T (F)h0,

`0(ρ(k)v)=�h0(k)`0(v).

Therefore,
`0 ∈ HomJ∩h−1

0 T (F)h0
(ρ, �h0). (5-5)

When the Hom space in (5-5) is not 0, we say that π and � intertwine on h0. If
this is the case, then the double coset T (F)h0 J supports a nonzero function in
H (GL2(F), ρ, �), and the Hom space in (5-4) is not zero.

5E. Test vectors for minimal supercuspidal representations. By [Henniart 2002,
Section A.3], if π is a minimal representation with level `(π), then c(π)=2`(π)+2.
Let π = c-IndGL2(F)

J ρ as described above. Let v0 ∈ ρ be the vector described in
Definition 5.2. Assume that c(�)≥ c(π). Set

m0 =
[
`(π)+ 3

2

]
− c(�)− v(a). (5-6)

In the next proposition, we determine a double coset representative h0 of
T (F)\GL2(F)/J such that HomJ∩h−1

0 T (F)h0
(ρ, �h0) 6= 0. We remark that this

result depends on our choice of inducing subgroup J , and in particular the quadratic
extension E = F[α] = F[α0], where α0 is always assumed to be of the form (5-1).
For m ∈ Z and z ∈ o×, we define g(m, z) :=

[ z$m

1

]
.

Lemma 5.4. For z ∈ o×, T (F)∩g(m0, z)Jg(m0, z)−1
= F×

(
1+Pc(�)−[`(π)/2]−1

L

)
.

Proof. We give the details when A = M. First, suppose `(π) = 0. In this
case J = Z(F)GL2(o) and m0 = 1 − c(�) − v(a). Furthermore, for z ∈ o×,
g(m0, z)Jg(m0, z)−1

=g(m0, 1)Jg(m0, 1)−1. Let t ′∈T (F)∩g(m0, 1)Jg(m0, 1)−1.
Since J = Z(F)GL2(o), there is a unique integer k such that

$ k t ′ ∈ T (F)∩ g(m0, 1)GL2(o)g(m0, 1)−1.

Let t =$ k t ′ =
[ x+by

ay
cy
x

]
. Then

g(m0, 1)−1tg(m0, 1)=
[

x + by cy$−m0

ay$m0 x

]
∈ GL2(o).
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Therefore, y ∈ p−m0−v(a) = pc(�)−1
⊂ p. Since g(m0, 1)−1tg(m0, 1) ∈ GL2(o), we

have x ∈ o×. This proves that T (F)∩ g(m0, z)Jg(m0, z)−1
⊆ F×

(
1+Pc(�)−1

L

)
.

The other inclusion is straightforward. This completes the proof for `(π)= 0.
Now, assume `(π) > 0. Note that t ∈ T (F)∩ g(m0, z)Jg(m0, z)−1 if and only

if wt ∈ T (F)∩ g(m0, z)Jg(m0, z)−1 for all w ∈ Z(F).
Suppose that t ′ ∈ T (F) ∩ g(m0, z)Jg(m0, z)−1, where t ′ =

[ x ′+by′
−ay′

cy′
x ′
]
. Let

k =max{−v(x ′),−v(y′)−m0− v(a)}, x = x ′$ k, y = y′$ k and t =$ k t ′. Then

g(m0, z)−1tg(m0, z)=
[

x + by z−1cy$−m0

−zay$m0 x

]
.

Let i =
[1

2(`(π)+ 1)
]
, so J = E×U i

M. There is a u ∈U i
M such that

g(m0, z)−1tg(m0, z)u ∈ E×.

Since g(m0, z)−1tg(m0, z) ∈M2(o) and u ∈U i
M, this implies that

a0z−1cy$−m0 ≡−zay$m0 mod pi

(see (5-1) for a0). As y$−m0 ∈p−2m0−v(a), we have y∈pi−m0−v(a)=pc(�)−[`(π)/2]−1.
But this means that v(ay$m0) > 0, and hence v(x) = 0 by our choice of k.
Therefore, we have t ∈ o×(1+Pc(�)−[`(π)/2]−1

L ). The discussion above shows that
t ′ ∈ F×(1+Pc(�)−[`(π)/2]−1

L ). The inclusion

T (F)∩ g(m0, z)Jg(m0, z)−1
⊇ F×

(
1+P

c(�)−[`(π)/2]−1
L

)
is straightforward. �

Proposition 5.5. Let i =
[ 1

2

(
`(π)+ 3

2

)]
. There is a unique z0 ∈ o

×/(1+ pi ) such
that we have

HomJ∩g(m0,z0)−1T (F)g(m0,z0)(ρ,�
g(m0,z0)) 6= 0 for g(m0, z0) :=

[
z0$

m0

1

]
.

Proof. We give the details when `(π) > 0 and A = M. In this case, we have
m0 = `(π)+ 1− c(�)− v(a) and i =

[ 1
2(`(π)+ 1)

]
. By Lemma 5.4,

T (F)∩ g(m0, z)Jg(m0, z)−1
= F×

(
1+P

c(�)−[`(π)/2]−1
L

)
.

Since �|F× = ωπ , intertwining only depends on �|1+Pc(�)−[`(π)/2]−1
L

. Recall the
definition of ξ from Section 2. The function given by y 7→�

(
1+ y

(
ξ − 1

2 b
))

is an
additive character of pc(�)−[`(π)/2]−1/pc(�).

On the other hand, we have an isomorphism

pc(�)−[`(π)/2]−1/pc(�)
→ N iU `(π)+1

M /U `(π)+1
M ,

y 7→ g(m0, z)−1(1+ y
(
ξ − 1

2 b
))

g(m0, z).
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Therefore, �g(m0,z) determines a character of N iU `(π)+1
M /U `(π)+1

M
∼= N i/N `(π)+1.

As z runs over o×/(1+ p`(π)+1−i ), the character determined by �g(m0,z) runs over
all characters of N i/N `(π)+1 that are nontrivial on N `(π). In an abuse of notation
we also refer to the character of N i/N `(π)+1 by �g(m0,z).

If `(π) is odd, then ρ is a character of J . Then ρ|N i = ψ ′, i.e., ρ restricts to a
single character, and `(π)+ 1− i = i , giving the proposition in this case.

Otherwise `(π) > 0 is even and, according to Lemma 5.3, ρ|N i is the direct sum
of characters all of which restrict to the same character ψ ′ on N i+1. In this case
there is a unique z0 ∈ o

×/(1+ pi ) such that

ρ|N i
∼=

⊕
z∈o×/(1+pi+1)

z≡z0 (mod pi )

�g(m0,z),

proving the proposition. The other cases follow similarly. �

Remark 5.6. Let us comment on the choice of the m0 in (5-6). Put gm = g(m, 1).
One can exhibit the following double coset decomposition:

GL2(F)=



⊔
m≥v(a)

T (F)g−m KM if A=M,⊔
m≥0

T (F)g−m KJ if A= J,
(L
p

)
=−1,

⊔
m≥v(a)

T (F)g−m KJ t T (F)
[

1

u0 1

]
KJ if A= J,

(L
p

)
= 0.

Then, still assuming c(�)≥ c(π), one can prove that if f ∈H (GL2(F), ρ,�) is
nonzero and is supported on the double coset T (F)g−m KA, one must have−m=m0.
Thus it makes sense to look for intertwining on an element of T (F)g−m KA. The
decomposition above involves negative powers of the uniformizer in the double coset
representatives, whereas (4-12) uses positive exponents in the representatives. The
difference in the indices occurs because for m ≥ v(a), g−m and gm−v(a) represent
the same double coset.

Next, we define a vector in π which will be a test vector for a �-Waldspurger
functional and have the desired right-invariance. Recall v0 from Definition 5.2.
Define ϕ0 ∈ π by

ϕ0(g)=
{
ρ(k1)v0 if g = k1g−1

m0
k2, k1 ∈ J, k2 ∈ K (m0+[`(π)+1])

1 (p2`(π)+2),

0 otherwise.
(5-7)

See (2-3) for the definition of K (s)
1 (pn). The vector ϕ0 is well defined because of

the inclusion

J ∩ g−1
m0

K (m0+[`(π)+1])
1 (p2`(π)+2)gm0 ⊆ Stab(v0).
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Since ϕ0 is a translate of the newform in π , we see that ϕ0 is the unique (up to
scalar) K (m0+[`(π)+1])

1 (pc(π)) fixed vector in π .
For z ∈ o×, define

ϕz(g)=
{
ρ(k)v0 if g = kg(m0, z)−1, k ∈ J,
0 otherwise.

(5-8)

Proposition 5.7. Suppose π is a minimal supercuspidal representation. Let i and
z0 be as in Proposition 5.5. Then

(i) ϕ0 =
∑

z∈o×/(1+pi )

ϕz , and

(ii) `(ϕ0)= `(ϕz0) for ` ∈ HomT (F)(π,�).

Proof. The space
(
gm0 Jg−1

m0
∩ K (m0+[`(π)+1])

1 (p2`(π)+2)
)
\K (m0+[`(π)+1])

1 (p2`(π)+2)

has an irredundant set of coset representatives given by {g(0, z) : z ∈ o×/(1+ pi )}.
This shows (i). It is a straightforward computation to show that the double cosets
T (F)g(m0, z)J for z ∈ o×/(1+ pi ) are disjoint. Hence, z0 is the unique element
in o×/(1+ pi ) such that the double coset T (F)g(m0, z0)J is in the support of a
nonzero f ∈H (GL2(F), ρ, �). By the discussion in Section 5D, this gives (ii). �

Proposition 5.8. Let π be a minimal supercuspidal representation. There is a
nonzero ` ∈ HomT (F)(π,�) satisfying `(ϕ0) 6= 0.

Proof. Let z0 ∈ o
×/(1+ pi ) be as in Proposition 5.5 and `0 be a nonzero element

of the space HomJ∩g(m0,z0)−1T (F)g(m0,z0)(ρ,�
g(m0,z0)). Define

ξ = 1T (F)g(m0,z0)J ⊗ `0 ∈H (GL2(F), ρ, �).

As in Section 5D, define `(ϕ) = ξ ∗ ϕ(1) ∈ HomT (F)(π,�). After appropriate
normalization of measures, `(ϕ0)= `(ϕz0)= `0(v0).

When ρ is a character, it follows immediately that `(ϕ0) 6= 0. However, when ρ
is not a character, it must be shown that v0 /∈ ker `0.

Suppose that `(π)= 2r > 0 and write J = Jα . Recall that under the identification

ρ|J 1
α

∼= η = IndJ 1
α

Ar H1
α
λ̃,

the vector v0 is identified with f0 defined by (5-2). Consider any character ψ ′

which is a summand of ρ|N r , and the vectors fa ∈ η defined by (5-3) with respect
to ψ ′. We may take `0 to be given by

`0

( ∑
a∈pr/pr+1

ca fa

)
:=

∑
a∈pr/pr+1

ca.
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Indeed, with this definition, note that for f ∈ η and x ∈ pr ,

`0

(
η
([ 1

x 1

])
f
)
= ψ ′

([ 1
x 1

])
`0( f )

=�g(m0,z)
([ 1

x 1

])
`0( f ),

viewing �g(m0,z) as a character of N r for some choice of z ∈ o×/(1+ pi+1) corre-
sponding to ψ ′ as in the proof of Proposition 5.5. Hence `0(v0)= `0( f0)= 1 6= 0.

Finally, suppose that `(π) = 0, so c(π) = 2 and s = 1 − c(�) − v(a) < 0.
Let h = gs . The linear functional `0 is the projection onto one of the irreducible
summands of ρ|N 0 . Let a ∈ o×, and denote by ψa the character of N 0 given by
ψa
([ 1

u 1

])
=ψ1(au). Denote by va the vector in ρ such that ρ

([ 1
u 1

])
va =ψa(u)va .

Now, write v0 =
∑

cava , where ca ∈ C and a runs over o×/(1+ p). For b ∈ o×,
we have ρ(g(0, b))v0 = v0. However, ρ(g(0, b))va = vba . Therefore, ca = cba for
all b ∈ o×. Therefore, v0 has a nonzero component in each summand of ρ|N 0 . �

Proof of Theorem 1.7 for minimal supercuspidal representations. Since c(�)≥ c(π),
we can apply Lemma 2.2 together with Proposition 5.8 and the definition (5-7) to see
that HomT (F)(π,�) 6= 0 and that ϕ0 is a test vector with the required properties. �

5F. Nonminimal representations. In this section we consider a nonminimal super-
cuspidal representation τ and let � be a character of T (F) such that �|Z(F) = ωτ
and c(�) ≥ c(τ ). There exists a minimal supercuspidal representation π and a
(ramified) character χ of F× such that τ ∼= π ⊗χ . Identify τ with π ⊗χ . Since π
is minimal and τ is not, Proposition 3.4 of [Tunnell 1978] tells us

c(τ )= 2c(χ) > c(π).

Then c(�⊗χ−1)≥ c(�) > c(π).
Observe that the considerations of the previous section guarantee the existence

of a vector in π that is a test vector for an (�⊗χ−1)-Waldspurger functional and is
the unique vector (up to scalars) in π that is right invariant under the corresponding
conjugate of K1(p

c(π)). To get the desired test vector for τ , we actually need a
vector in π with respect to �⊗χ−1, but which transforms according to χ−1

◦ det
under right translation by a conjugate of K1(p

c(τ )). In the next proposition, we
obtain a vector ϕχ with the correct right-transformation property, and then show
that it is a test vector for the appropriate linear functional.

Proposition 5.9. Suppose that π = c-IndGL2(F)
J ρ. Let s = 2c(χ)− c(�)− v(a),

b =
[
`(π)+ 3

2

]
− c(χ), m0 =

[
`(π)+ 3

2

]
− c(�)− v(a), i =

[ 1
2

(
`(π)+ 3

2

)]
and

i ′ =
[
`(π)+ 3

2

]
−
[ 1

2`(π)
]
− 1.
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(i) There is a unique u ∈ o×/((1+ pi )∩ o×), and vχ ∈ ρ depending on u, which
is unique up to scaling, such that for all x ∈ pi ′,

ρ

([
1+ x$−b 0

xu−1 1

])
vχ = χ

−1(1+ x$−b)vχ . (5-9)

(ii) Suppose u and vχ satisfy (5-9). Let

ϕχ (g)=
{
(χ−1

◦ det)(k1)ρ(k2)vχ if g = k2gχk1, k2 ∈ J, k1 ∈ K (s)
1 (p2c(χ)),

0 otherwise,

where gχ =
[

$−m0

u−1$ c(χ)−s
0
1

]
. Then ϕχ is well defined, and is the unique vector (up

to scalars) in π such that, for k ∈ K (s)
1 (p2c(χ)), π(k)ϕχ = (χ−1

◦ det)(k)ϕχ .

Note that i = i ′ when `(π) ∈ Z or `(π)= 1
2(2r + 1) with r even; otherwise they

are off by 1 (see Table 2).

Proof. Observe that for
[a11

a21

a12
a22

]
∈ K (s)

1 (p2c(χ)), we have

gχ
[ a11 a12

a21 a22

]
g−1
χ ∈

[
a11 0

(a11− 1)u−1$ b 1

]
+P`(π)eA+1. (5-10)

We remark that b≤ 0. If gχ
[a11

a21

a12
a22

]
g−1
χ ∈ J , then a11≡ 1 mod pi ′−b. To show that

ϕχ is well defined, we must check that ρgχ and χ agree on g−1
χ Jgχ ∩ K (s)

1 (p2c(χ)).
This is precisely the condition (5-9). Once this is established, uniqueness then
follows since ϕχ ⊗χ is a translate of the newform for τ . Therefore, part (ii) of the
proposition will follow from part (i).

First, suppose ρ = λ is a character. As in Section 5B we have

ρ

([
1+ x$−b 0

xu−1 1

])
vχ = λ

([ 1 0
xu−1 1

])
.

As a function of x , both sides of (5-9) are nontrivial characters of pi ′/p[`(π)+3/2]

(see Table 2). Therefore, there is a unique u ∈ o×/(1+ pi ) such that (5-9) holds.
This proves part (i) when ρ is a character.

If ρ is not a character, then b < 0. By Section 5B,

ρ

([
1+ x$−b 0

xu−1 1

])
vχ = ρ

([ 1 0
xu−1 1

])
vχ .

Suppose that π is a depth zero supercuspidal representation. Let u = 1. By
Lemma 5.3 there is a unique up to scalar vχ ∈ ρ such that, for x ∈ o,

ρ
([ 1 0

x 1

])
vχ = χ

−1(1+ x$ c(χ)−1)vχ .

Finally, suppose that `(π) = 2r > 0, and π = c-IndGL2(F)
J ρ, where ρ is not a

character of J . By Lemma 5.3, ρ|N∩Hα is a multiple of ψα|N∩Hα . There exists a



292 Daniel File, Kimball Martin and Ameya Pitale

unique u ∈ o×/(1+ pi ) such that (5-9) holds for x ∈ pi ′. By Lemma 5.3, with this
choice of u there is a unique up to scalar multiple vχ ∈ ρ such that (5-9) holds.
This completes the proof of (i) of the proposition. �

The next lemma gives a double coset decomposition of the support of ϕχ .

Lemma 5.10. Let gχ =
[

$−m0 0
u−1$ c(χ)−s 1

]
as in Proposition 5.9. Then

JgχK (s)
1 (p2c(χ))=

⊔
z∈o×/(1+pc(χ)−[`(π)/2]−1)

Jgχ
[ z

1

]
.

Proof. Recall

K (s)
1 (p2c(χ))=

[
1 ps

pc(�)+v(a) 1+ p2c(χ)

][
o×

1

]
.

We have, for z ∈ o×,

gχ

[
1 ps

pc(�)+v(a) 1+ p2c(χ)

]
g−1
χ =

[
1+ pc(χ) p2c(χ)−[`(π)+3/2]

p[`(π)+3/2] 1+ pc(χ)

]
, (5-11)

gχ
[ z

1

]
g−1
χ =

[
z

u−1$ c(χ)−s+m0(z− 1) 1

]
. (5-12)

Using the description of J in Table 2, we see that the right-hand side of (5-11) lies
in J . Also, the right-hand side of (5-12) lies in J if and only if z∈1+pc(χ)−[`(π)/2]−1.
This completes the proof of the lemma. �

The next two lemmas give a useful decomposition of gχ . Fix gχ and u to be
as in Proposition 5.9, and set y0 = −u−1a−1$ c(�)+v(a)−c(χ). For y ∈ F, define
ty = t

(
1+ 1

2 by, y
)
=
[ 1+by
−ay

cy
1

]
.

Lemma 5.11. We have gχ = k0g−1
m0

ty0 , where k0 ∈U `(π)eA+1
A .

Proof. Write gχ = g−1
m0

g, where g =
[ 1
−ay0 1

]
. Let k−1

0 = g−1
m0

ty0 g−1gm0 . We see
that

k−1
0 =

[
1+ by0+ acy2

0 cy0$
−m0

0 1

]
.

So k0 ∈U `(π)eA+1
A and gχ = k0g−1

m0
ty0 . �

Lemma 5.12. For each z ∈ o×, there exists kz ∈U `(π)eA+1
A such that

g−1
m0

ty0

[ z
1

]
= kzg−1

m0

[ z
1

]
tzy0 . (5-13)



Test vectors and central L-values for GL(2) 293

Proof. Write gχ = k0g−1
m0

ty0 as in Lemma 5.11. Then

g−1
m0

ty0

[ z
1

]
= k−1

0 gχ
[ z

1

]
= k−1

0 g−1
m0

[ 1
−ay0 1

][ z
1

]
= k−1

0

[ z
1

]
g−1

m0

[ 1
−azy0 1

]
= k−1

0

[ z
1

]
k ′0g−1

m0
tzy0

= kz

[ z
1

]
g−1

m0
tzy0 .

For the second to last equality we have used a decomposition similar to Lemma 5.11,
and k ′0 is the corresponding element of U `(π)eA+1

A . For the last equality we use the
fact that the subgroup U `(π)eA+1

A is normalized by A0. �

Let us remark here that U `(π)eA+1
A lies in the kernel of ρ (see Table 2 for details).

For any g ∈ GL2(F) and v ∈ ρ, define

ϕg,v(h)=
{
ρ(k)v if h = kg, k ∈ J,
0 otherwise.

Note that, for any z ∈ o×, the support of π
([ z−1

1

])
ϕgχ ,vχ is exactly Jgχ

[ z
1

]
. Then

ϕχ =
∑

z∈o×/(1+pc(χ)−[`(π)/2]−1)

χ−1(z) π
([ z−1

1

])
ϕgχ ,vχ

= q−[`(π)/2]−1
∑

z∈o×/(1+pc(χ))

χ(z) π
([ z

1

])
ϕgχ ,vχ

= q−[`(π)/2]−1
∑

z∈o×/(1+pc(χ))

χ(z) π
(
t−1
z−1 y0

)
ϕg(m0,z)−1,vχ . (5-14)

The first equality follows from the double coset decomposition in Lemma 5.10. To
get the second equality, note that for z ∈ 1+ pc(χ)−[`(π)/2]−1, we can apply (5-9) to
the right-hand side of (5-12). Finally, the third equality follows from Lemmas 5.11
and 5.12.

Write c0 =
[1

2(c(χ)+ 1)
]
. For x ∈ pc0 , x 7→ χ(1+ x) is an additive character

of pc0/pc(χ).

Proposition 5.13. Suppose ` ∈ HomT (F)(π,� ⊗ χ
−1). Then there is a unique

w0 ∈ o
×/(1+ pc(χ)−c0) satisfying the following conditions:

(i) If ∑
z∈(1+pc0 )/(1+pc(χ))

χ(zw)`
(
π
(
t−1
(zw)−1 y0

)
ϕg(m0,zw)−1,vχ

)
6= 0,

then w ≡ w0 mod pc(χ)−c0 .

(ii) `(ϕg(m0,zw0)−1,vχ ) 6= 0.
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Proof. Recall y0=−u−1a−1$ c(�)+v(a)−c(χ). First, note χ◦det is trivial on elements
tzy0 for z ∈ o×. We can define an additive character of o by ψ�(x) :=�(txy0). By
(5-14), we have

`(ϕχ )= q−[`(π)/2]−1

×

∑
w∈o×/(1+pc0 )

∑
z∈(1+pc0 )/(1+pc(χ))

χ−1(wz)ψ−1
� (wz)`(ϕg(−m0,zw),vχ ). (5-15)

If z ∈ 1+pc0 , then ρ(g(0, z−1))vχ = vχ , and ϕg(−m0,zw),vχ =ϕg(−m0,w),vχ . Consider
the inner sum of (5-15):∑
z∈(1+pc0 )/(1+pc(χ))

χ−1(wz)ψ−1
� (wz)

= χ−1(w)ψ−1
� (w)

∑
x∈pc0/pc(χ)

χ−1(1+ x)ψ−1
� (wx). (5-16)

This sum does not equal zero if and only if χ−1(1+ x)= ψ�(xw) for all x ∈ pc0 ,
and this occurs for exactly one element w = w0 ∈ o

×/(1+ pc(χ)−c0). This proves
the first part.

Consider an element t ∈ T (F) ∩ gm0 Jg−1
m0
= F×

(
1 + P

c(�)−[`(π)/2]−1
L

)
(see

Lemma 5.4). Since 2c(χ) > c(π)= 2`(π)+ 2, we see(
c(�)−

[ 1
2`(π)

]
− 1

)
− (c(�)− c(χ))= c(χ)−

[ 1
2`(π)

]
− 1> c0.

Therefore, there exist x ∈ pc0 and z ∈ F× such that t = ztxy0 , and, by the remarks
after (5-16),

χ−1(1+w−1
0 x)= ψ�(x)=�(txy0)=�(z)

−1�(t).

By (5-9) we have

ρ
([ 1

u−1x 1

])
vχ = χ

−1(1+ x$−b)vχ .

Therefore, for all t ∈ T (F)∩ gm0 Jg−1
m0
= T (F)∩ gm0,w0 Jg−1

m0,w0
,

ρ(g−1
m0,w0

t gm0,w0)vχ =�(t)vχ =�(t)(χ
−1
◦ det)(t)vχ .

This implies that there is `0 ∈ Homg(m0,w0)−1T (F)g(m0,w0)∩J (ρ, (�⊗χ
−1)g(m0,w0))

such that `0(vχ ) 6= 0, and from the discussion in Section 5D, after a normalization,
`(ϕg(m0,w0)−1,vχ )= `0(vχ ). �

Proof of Theorem 1.7 for nonminimal supercuspidal representations. We compute,
by Proposition 5.13,

`(ϕχ )= q−[`(π)/2]−1`(ϕg(m0,w0)−1,vχ )
∑

χ−1(ww−1
0 )ψ−1

� (ww−1
0 )

= q−[`(π)/2]−1−[c(χ)/2]ψ−1
� (w−1

0 )G(χ, ψ−1
� )`(ϕg(m0,w0)−1,vχ ) 6= 0,
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where the sum is over w ∈ (1+ pc(χ)−c0)/(1+ pc0), w0 is the unique element of
o×/(1+pc(χ)−c0) such that χ−1(1+z)=ψ�(zw−1

0 ) for all z∈pc0 , and G(χ, ψ−1
� ) is

the Gauss sum for the pair χ , ψ−1
� . For the last equality see [Bushnell and Henniart

2006, 23.6 Proposition]. This shows that HomT (F)(τ,�) 6= 0. The 1-dimensionality
follows from [Waldspurger 1985]. Since c(�) ≥ c(τ ), we can apply Lemma 2.2
to obtain the test vector with the required properties. The uniqueness of the test
vector follows from the uniqueness of the newform in π . �

6. Local spectral distributions

Now we return to the setting where F is a p-adic field and L is a quadratic separable
extension as in Section 2B. Let π be an infinite-dimensional, irreducible, admissible
representation of GL2(F), and � a character of L× such that �|F× = ωπ . In this
section, we calculate certain local spectral distributions J̃π ( f ) defined by Jacquet
and Chen [2001] for certain test functions f ∈ C∞c (GL2(F)). These are used in
Section 7 to generalize the global L-value formula previously obtained in [Martin
and Whitehouse 2009]. For simplicity, we prove this global L-value formula when
the central character of our automorphic representation is trivial, so we may as well
assume ωπ = 1 in this section also. We also assume that π and � are unitary, since
the global objects in the following sections are unitary as well.

The calculation of J̃π ( f ) is contained in [Martin and Whitehouse 2009] in the
cases where F is archimedean, L/F is split, or π and � have disjoint ramification.
Hence, we assume L/F is a quadratic extension of nonarchimedean fields and
c(π), c(�)> 0. In particular, either L(s, π)= 1 or π = χ StGL2 , where, for the rest
of this section, χ denotes an unramified quadratic character. Further, we assume
c(�)≥ c(π) to use our determination of test vectors.

Write L× = F(ξ)×, where ξ = 1
2

√
d. Let T = T (F) be the torus in GL2(F)

isomorphic to L× defined in (2-16). Here it is convenient to take a slightly different
parameterization for T than the one given by t (x, y) in (2-17). Namely, we map

x + yξ0 7→

[ x cy
−ay x − by

]
, (6-1)

where

ξ0 = ξ −
1
2 b= 1

2

(√
d− b

)
.

By [Tunnell 1983; Saito 1993] or Theorem 1.7, the assumption c(�)≥ c(π) implies
dimC HomT (π,�)= 1. Fix a nonzero linear functional ` ∈ HomT (π,�).

Consider the Kirillov model for π and the inner product on π given by

(φ1, φ2)=

∫
F×

φ1(a)φ2(a) d×a,
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where d×a is the Haar measure giving vol(o×)= 1. This inner product is GL2(F)-
invariant. Let e be the unique (up to scalars) vector in π such that π(t)e =�(t)e
for t ∈ T , which we normalize so that (e, e)= 1. Let dg denote the local Tamagawa
measure on GL2(F). Then the local distribution we are interested in is defined in
[Jacquet and Chen 2001] by

J̃π ( f )= (π( f )e, e)=
∫

GL2(F)

f (g)(π(g)e, e) dg, f ∈ C∞c (GL2(F)). (6-2)

Put s = c(�)− c(π), h =
[
$ s

1

]
w, and

K ′ = hK1(p
c(π))h−1

=

[
1+ pc(π) pc(�)

pc(π)−c(�) o×

]
. (6-3)

Then Theorem 1.7 says there is a unique (up to scalars) test vector φ ∈ π which is
right invariant by K ′ such that `(φ) 6= 0. Let φ0 be the newvector in π normalized
so that φ0(1)= 1. Then we may take φ = π(h)φ0.

Observe that � is trivial on T ∩ Z K ′, where Z = Z(T ), since φ is fixed by Z K ′.
Consider the vector e′ ∈ π given by

e′ =
∑

t∈T/(T∩Z K ′)

�−1(t)π(t)φ. (6-4)

Note the index set for the sum is finite, so e′ is well defined. Then for any t ∈ T ,
we have π(t)e′ =�(t)e′, and `(e′) 6= 0. In other words, we may assume

e =
e′

(e′, e′)1/2
.

We take for our test function f = 1K ′/vol(K ′), so our calculations do not in fact
depend on the normalization of dg in (6-2). Then

J̃π ( f )= vol(K ′)−1
∫
K ′

(π(k)e, e) dk = vol(K ′)−1
∫
K ′

(π(k)e′, e′)
(e′, e′)

dk.

Note, using the GL2(F)-invariance of the inner product, we get

(e′, e′)=
∑

t∈T/(T∩Z K ′)

�−1(t)(φ, π(t−1)e′)

= |T/(T ∩ Z K ′)|(φ, e′).

Since π( f ) is simply orthogonal projection onto 〈φ〉 = πK ′,

vol(K ′)−1
∫
K ′

(π(k)e′, e′) dk = (π( f )e′, e′)=
(e′, φ)(φ, e′)
(φ, φ)

.
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Hence
J̃π ( f )=

1
|T/(T ∩ Z K ′)|

(e′, φ)
(φ, φ)

. (6-5)

Note that

(φ, φ)= (φ0, φ0)=

{
L(2, 1F ) if π = χ StGL2,

1 if L(s, π)= 1,
(6-6)

so it remains to compute |T/(T∩Z K ′)| and (e′, φ). (Recall χ denotes an unramified
character.) Only the latter computation is involved. This requires knowing some
facts about values of the Whittaker newform and determining a set of representatives
for T/(T ∩ Z K ′). We first tackle these two tasks, and then compute (e′, φ), and
hence J̃π ( f ), under our above assumptions.

Whittaker values. Assume π has trivial central character and let ψ be a nontrivial
additive character of F of conductor o. Let W(π, ψ) be the Whittaker model for
π with respect to ψ . Let W0 be the newform normalized so that W0(1) = 1, and
therefore φ0(a)=W0

([a
1

])
.

We are interested in certain values of the Whittaker newform when the local
L-factor of π has degree 1 or 0. For this, we recall (see Table 1 in Section 3) that
φ0(a) = χ(a)|a|1o(a) when π = χ StGL2 and φ0(a) = 1o×(a) when L(s, π) = 1.
From this, one obtains the following result on Whittaker newform values.

Lemma 6.1. (i) If u, v ∈ o×, then

W0

(
g
[ u

v

]
w
)
=W0(gw).

(ii) If π = χ StGL2 with χ unramified, then for j ∈ Z,

W0

([
$ j

1

]
w

)
=

{
−χ($) j q− j−1 if j ≥−1,
0 else.

If L(s, π)= 1, then for any j ∈ Z,

W0

([
$ j

1

]
w

)
=

{
ε
( 1

2 , π
)

if j =−c(π),
0 else.

(iii) If π = χ StGL2 with χ unramified, for j ≥ 0≥ k, we have∫
o×

W0

([
$ j u

1

][
1
$ k 1

])
d×u =−q−1(χ($)q−1) j−2k .

If L(s, π)= 1, then for all j, k ∈ Z,∫
o×

W0

([
$ j u

1

][
1
$ k 1

])
d×u =


1 if j = 0 and k ≥ c(π),
(1− q)−1 if j = 0 and k = c(π)− 1,
0 else.



298 Daniel File, Kimball Martin and Ameya Pitale

Proof. Part (i) follows simply from the facts that W0 is right invariant by K1(p
c(π))

and ωπ = 1. The proof of parts (ii) and (iii) follows from the functional equation
(3-3) with µ= 1 by comparing coefficients of qs . �

The toric quotient. We identify t = x + yξ0 ∈ L× with its image in T via (6-1).
Since we have assumed that c(�)≥ c(π), we have t = x + yξ0 ∈ K ′ if and only if
x ∈ 1+ pc(π) and y ∈ pc(�).

Lemma 6.2. We have

|T/(T ∩ Z K ′)| =
{

qc(�)(1+ q−1) if L/F is unramified,
2qc(�) if L/F is ramified.

(6-7)

Furthermore, if L/F is unramified or v(a)=1, then a complete set of representatives
of T/(T ∩ Z K ′) is given by

{1+ yξ0 : y ∈ o/pc(�)
} ∪ {x + ξ0 : x ∈ p/pc(�)+v(a)

}, (6-8)

while if L/F is ramified and v(a) = 0, then a complete set of representatives of
T/(T ∩ Z K ′) is given by

{1+ yξ0 : y ∈ o/pc(�), y 6≡ u′0 mod p}

∪ {1+ (u′0+ y)ξ0 : y ∈ p/pc(�)+1
} ∪ {x + ξ0 : x ∈ p/pc(�)

}, (6-9)

where u′0 =−u0/a ∈ o× with u0 as in (2-14).

Proof. We obtain the set of representatives of T/(T ∩ Z K ′), from which (6-7)
follows. Given an arbitrary t = x + yξ0 ∈ T , we may multiply t by an element of
Z to assume that x, y ∈ o and either x = 1 or y = 1. Further, if x and y are both
units, we may assume x = 1. So we may consider a set of representatives of the
form x + ξ0 and 1+ yξ0, where x ∈ p and y ∈ o. Observe ξ 2

0 = −ac− bξ0. For
t, t ′ ∈ T , write t ∼ t ′ if t = t0t ′ for some t0 ∈ T ∩ Z K ′.

First we observe that x+ ξ0 ∼ 1+ yξ0, where x ∈ p and y ∈ o, is not possible. If
it were, there would exist u ∈ 1+ pc(π), r ∈ pc(�) and z ∈ F× such that

zx + zξ0 = (u+ rξ0)(1+ yξ0)= u− acr y+ (uy+ r − br y)ξ0.

Since u− acr y ∈ o×, we see v(z) < 0, but z = uy+ r − br y ∈ o, a contradiction.
Now consider x1 + ξ0 ∼ x2 + ξ0 for x1, x2 ∈ p. Then, for some u ∈ 1+ pc(π),

r ∈ pc(�) and z ∈ F×, we have

zx1+ zξ0 = (u+ rξ0)(x2+ ξ0)= ux2− acr + (u+ r x2− br)ξ0.

Hence z = u+ r x2− br ∈ 1+ pc(π) and

zx1 = ux1+ r x1x2− br x1 = ux2− acr,
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which implies

u(x2− x1)= r(ac− bx1+ x1x2).

In particular, we must have x1 ≡ x2 mod pc(�)+v(a).
In fact, if v(a)= 0, we have x1+ ξ0 ∼ x2+ ξ0 if and only if x1 ≡ x2 mod pc(�).

Similarly, if v(a)= 1, then v(b) > 0 and x1+ ξ0 ∼ x2+ ξ0 if and only if x1 ≡ x2

mod pc(�)+1. The rest of the cases are computed similarly. �

Let us remark that the coset representatives in the previous lemma depend only
on c(�) since we are in the case c(�)≥ c(π).

Projection onto the test vector. Put e(L/F)= 1 if L/F is unramified, e(L/F)= 2
if L/F is ramified. Denote by η the quadratic character of F× associated to L/F.

Proposition 6.3. If c(π)≥ 2, then

J̃π ( f )= q−c(�) L(1, 1F )L(1, η)
e(L/F)

. (6-10)

If c(π)= 1, then

J̃π ( f )= q−c(�) L(1, 1F )L(1, η)
e(L/F)L(2, 1F )

. (6-11)

Proof. By (6-5), (6-6) and (6-7), this proposition is equivalent to the statement that

(e′, φ)= L(1, 1F ).

To show this, first observe

(e′, φ)=
∑

t∈T/(T∩Z K ′)

�−1(t)(π(t)φ, φ)=
∑

t∈T/(T∩Z K ′)

�−1(t)(π(h−1th)φ0, φ0).

Recall that h =
[
$ s

1

]
w with s = c(�)− c(π). We give the details of the case

c(π)≥ 2 here. The other case is computed similarly. Hence, assume that c(π)≥ 2,
so L(s, π)= 1. Then, for g ∈ GL(2),

(π(g)φ0, φ0)=

∫
o×

W0

([ u
1

]
g
)

d×u.

First suppose t = x + ξ0, where x ∈ p and v(x)≤ c(�)+ v(a). Note

h−1th =
[

x − b $ s a
−$−s c x

]
=$−s c

[
1 (b− x)$ s/c

1

][
det(t)$ 2s/c2

1

]
w

[
1 −$ s x/c

1

]
.
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Since the rightmost matrix lies in K1(p
c(π)), we have

(π(h−1th)φ0, φ0)=W0

([
det(t)$ 2s/c2

1

]
w

)
= 0,

where the last equality follows from Lemma 6.1(ii). Now suppose t = 1+ yξ0,
where y ∈ o. If y = 0, then

(π(h−1th)φ0, φ0)= (φ0, φ0)= 1.

Otherwise, assume v(y) < c(�) and write

h−1th =
[

1 $ s ay
1

][
det(t)

1

][
1

−$−s cy 1

]
.

Then, by Lemma 6.1(iii),

(π(h−1th)φ0, φ0)=

∫
o×

W0

([
det(t)u

1

][
1

−$−s cy 1

])
d×u

=

{
(1− q)−1 if v(y)= c(�)− 1,
0 else.

Observe that
∫

1+$ koL
�−1(u) d×u = 0 for 0< k < c(�), together with �−1

|o× = 1,
implies ∑

y∈o/pc(�):v(y)≥k

�−1(1+ yξ0)= 0.

Hence, for 0< k ≤ c(�), we have

∑
y∈o/pc(�):v(y)=k

�−1(1+ yξ0)=


0 if 0< k < c(�)− 1,
−1 if k = c(�)− 1 and c(�) > 1,

1 if k = c(�).

Summing up gives the desired calculation

(e′, φ)= 1+ (1− q)−1
∑

y∈o/pc(�):v(y)=c(�)−1

�(1+ yξ0)
−1
=

1
1− q−1 ,

since here c(�)≥ 2. �

7. A central-value formula

In this section we work globally. Specifically, let L/F be a quadratic extension of
number fields, A the adèles of F and AL the adèles of L . Let 1 and 1L be the
absolute values of the discriminants of F and L , and let η = ηL/F be the quadratic
idèle class character associated to L/F via class field theory.
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Set G = GL(2)/F. Let π be a cuspidal automorphic representation of G(A)
with trivial central character, and � a unitary character of A×L /L×A×. Assume the
sign of the functional equation ε

( 1
2 , πL⊗�

)
= 1, where πL is the base change of π

to L . Then by [Waldspurger 1985; Tunnell 1983; Saito 1993], one knows that there
is a unique quaternion algebra (possibly the split matrix algebra) D/F in which
L embeds, such that π has a Jacquet–Langlands transfer to a representation π ′ of
D×(A) and the local Hom spaces HomL×v (π

′
v, �v) 6= 0 for all places v, and in fact

have dimension 1. Fix this D and π ′, and write G ′ for D×, regarded as an algebraic
group over F. Let T be a torus in G ′ whose F-points are isomorphic to L×, and
view � as a character of T (A)/Z(A), where Z is the center of G ′.

Let ψ be the standard additive character on A/F, i.e., the composition of the
trace map with the standard additive character on AQ. Let S be a finite set of places
of F containing all archimedean places, such that, for all v 6∈ S, ψ , π and � are
unramified and L is not ramified at or above v.

Put on G ′(A) the product of the local Tamagawa measures times L S(2, 1F ),
i.e., take the local Tamagawa measure dgv for v ∈ S and dgv normalized so that
G(ov)∼=G ′(ov) has volume 1 if v 6∈ S (see, e.g., [Jacquet and Chen 2001, Section 2]
for the definition of local Tamagawa measures). Note we will renormalize our
measure on G ′(A) later in Section 7C.

Jacquet and Chen [2001] prove a formula for a distribution appearing on the
spectral side of the relative trace formula,

Jπ ′( f )=
∑
φ

∫
T (A)/Z(A)T (F)

π ′( f )φ(t)�(t)−1 dt
∫

T (A)/Z(A)T (F)

φ(t)�(t)−1 dt, (7-1)

where φ runs over an orthonormal basis for the space of π ′. Here T (A) and Z(A)
are given the product of local Tamagawa measures, T (F) has the counting measure,
and dt is the quotient measure.

Let Sinert be the set of finite places v in S such that Lv/Fv is inert (ramified or
unramified). For v ∈ Sinert, as in (6-2), define

J̃π ′v ( fv)=
∫

G ′(Fv)

fv(g)(π ′v(g)e
′

v, e′v) dgv,

where e′v is a norm 1 vector such that π ′v(t)e
′
v = �v(t)e

′
v for all t ∈ T (Fv). For

v ∈ S− Sinert, set

J̃π ′v ( fv)=
∑

W

( ∫
F×v

π ′v( fv)W
([ a

1

])
�
([ a

1

])−1
d×a

×

∫
F×v

W
([ a

1

])
�
([ a

1

])−1
d×a

)
,
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where d×a is the local Tamagawa measure and W runs over an orthonormal basis
for the local Whittaker model W(πv, ψv).

With the above normalizations, the formula of Jacquet and Chen is as follows.

Theorem 7.1 [Jacquet and Chen 2001]. Let S be a set of places containing all
infinite places and all places at which L , π or � is ramified. Let

f =
∏

fv ∈ C∞c (G
′(AF ))

with fv the unit element of the Hecke algebra for v 6∈ S. Then

Jπ ′( f )= 1
2

∏
S

J̃π ′v ( fv)
∏
v∈Sinert

2ε(1, ηv, ψv)L(0, ηv)×
L S(1, η)L S

( 1
2 , πL ⊗�

)
L S(1, π,Ad)

.

Note that if π ′( f ) is an orthogonal projection onto a 1-dimensional subspace 〈φ〉,
then

Jπ ′( f )=

∣∣∫
T (A)/Z(A)T (F) φ(t)�(t)

−1 dt
∣∣2

(φ, φ)
. (7-2)

This expression is written to be invariant under replacing φ by a scalar multiple.

7A. Choice of test vector. To obtain an explicit L-value formula, we choose
f =

∏
fv so that it picks out a global test vector φ =

⊗
φv as follows.

First suppose v is a finite place of F. We denote by ov , oLv , pv and $v what was
denoted in previous sections by these symbols without the subscript v for the local
field Fv . Since we have assumed that the central character is trivial, we may work
with the congruence subgroups

K0,v(p
n
v)=

{[ a b
c d

]
∈ G(ov) : c ∈ pn

v

}
.

We assume that at any finite v∈ Sinert such that c(�v)>0, we have c(�v)≥ c(πv).
Recall that, if Lv/Fv is split or 0 ≤ c(πv) ≤ c(�v), then we can identify G ′(Fv)
with G(Fv).

For v 6∈ S, let fv be the characteristic function of G(ov). Then πv ∼= π ′v, and
π ′v( fv) is orthogonal projection onto the local newvector φv.

Let v ∈ S − Sinert. Take gv ∈ G(Fv) such that g−1
v T (Fv)gv is the diagonal

subgroup of G(Fv). Let fv be the characteristic function of the subgroup of G(Fv)
given by

g−1
v

[
1 −$−c(�v)

v

1

]
K0,v(p

c(πv)
v )

[
1 $

−c(�v)
v

1

]
gv

divided by its volume. Then φv is the unique (up to scalar multiples) vector in πv
fixed by this subgroup.

Consider v ∈ Sinert.
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Suppose c(πv) = 0 or c(�v) = 0. Let R(π ′v) be an order in D(Fv) of reduced
discriminant pc(πv)

v such that R(π ′v) ∩ Lv = ov + $
c(�v)
v oLv (see [Gross 1988,

Proposition 3.4]). Note R(π ′v) is unique up to T (Fv)-conjugacy. In this case, we
take fv to be the characteristic function of R(π ′v)

× divided by its volume. Then
π ′v( fv) acts as orthogonal projection onto the local Gross–Prasad test vector φv
[Gross and Prasad 1991], except in the case that c(πv)≥ 2 and Lv/Fv is ramified.
(Note [Gross and Prasad 1991] also assumes Fv has odd residual characteristic if
πv is supercuspidal because of this restriction in [Tunnell 1983], but this hypothesis
is no longer needed due to [Saito 1993].) When c(�v)= 0, c(πv)≥ 2 and Lv/Fv is
ramified, π ′v( fv) acts as orthogonal projection onto a 2-dimensional space containing
a vector φv which satisfies π ′v(tv)φv=�v(tv)φv for all tv ∈ T (Fv) [Gross and Prasad
1991, Remark 2.7]; hence on this space any linear form in Hom(πv, �v) is simply
a multiple of the map φ′v 7→ (φ′v, φv).

If 0 < c(πv) ≤ c(�v), take gv so that g−1
v T (Fv)gv is of the form (2-16), and

let Kv be such that gvKvg−1
v is the subgroup in (6-3). Let fv be the characteristic

function of Kv divided by its volume, so πv( fv) acts as orthogonal projection onto
the line generated by φv, the unique (up to scalar multiples) vector in πv fixed
by Kv.

Lastly, suppose v is an infinite place of F. Let Kv be a maximal compact
subgroup of G ′(Fv) whose restriction to T (Fv) remains maximal compact. Let φv
be a vector of minimal weight such that π ′v(tv)φv =�v(tv)φv for tv ∈ Kv ∩ T (Fv).
Choose fv so that π ′v( fv) is orthogonal projection onto 〈φv〉.

Take f =
∏

fv and φ=⊗φv , so π( f ) acts as orthogonal projection onto a finite-
dimensional space V containing φ. Local considerations show the toric period
integral vanishes on the orthogonal complement of 〈φ〉 in V , and hence one has (7-2).

7B. Archimedean factors. Here we recall from [Martin and Whitehouse 2009]
certain archimedean constants Cv(L , π,�). Let v be an infinite place of F. By
assumption, �v is a unitary character of Lv.

First suppose Fv = R and Lv = R⊕R. Write

�v(x1, x2)=

∣∣∣∣ x1

x2

∣∣∣∣i t

sgnmv

(
x1

x2

)
,

where t ∈R and mv is 0 or 1. If πv =µv×µ−1
v is a principal series with Laplacian

eigenvalue λv , let εv ∈ {0, 1} such that µv�v = | · |r sgnεv for some r . Then we put

Cv(L , π,�)=
(

8π2

λv

)εv
.

If π is a discrete series of weight kv, put

Cv(L , π,�)= 2kv .
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Now suppose Fv = R and Lv = C. Write �v(z)= (z/z̄)±mv , where mv ∈
1
2 Z≥0.

If πv = µv ×µ−1
v is a principal series where µv is of the form | · |rvsgnεv , then

Cv(L , π,�)= (2π)2mv

mv−1∏
j=0

(λv + j ( j + 1))−1,

where λv = 1
4 − r2

v . If πv is a discrete series of weight kv, then

Cv(L , π,�)=
1

πB(kv/2+mv, kv/2−mv)

if mv <
1
2(kv − 1) and

Cv(L , π,�)=
(2π)2mv−kvkv!

mv!B(kv/2+mv, 1− kv/2+mv)

if mv ≥
1
2(kv − 1). Here B(x, y) denotes the beta function.

Lastly suppose Fv = C, so Lv = C⊕C. Write �v in the form

�v(z1, z2)= (z1 z̄1)
i t
(

z1

z̄1

)mv

(z2 z̄2)
−i t
(

z2

z̄2

)−mv

,

where t ∈ R and mv ∈
1
2 Z≥0. Then πv is a principal series. Let kv be its weight, λv

the Laplacian eigenvalue and `v =max(kv,mv). Then

Cv(L , π,�)=
(1

2
+ `v

)( 2`v
|kv −mv|

) `v∏
j=kv+1

4π2

4λv + j2− 1
.

7C. Proof of Theorem 1.1. We consider a measure on G ′(A) which is the product
of local Tamagawa measures. Write 1=1inert1split, where 1inert is the part of 1
coprime to every place over which L/F splits. Then note that∏

v∈Sinert

2ε(1, ηv, ψv)L(0, ηv)=
1√

c(η)c(ψ)

∏
v∈Sinert

e(Lv/Fv)

=

√
1inert
1L

∏
v∈Sinert

e(Lv/Fv).

Let v ∈ S be finite. The calculations of J̃π ′v ( fv) below for when Lv/Fv is split,
v is infinite, or at most one of πv and �v is ramified are taken from [Martin and
Whitehouse 2009].
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Suppose Lv = Fv ⊕ Fv. Then

J̃π ′v ( fv)=


q−c(�v)
v

L
(1

2 , πLv ⊗�v
)

(Wπv ,Wπv )
if �v is unramified,

q−c(�v)
v

L(1, 1Fv )
2

(Wπv ,Wπv )
if �v is ramified,

where Wπv is the normalized Whittaker newvector. Furthermore,

vol(o×v )(Wπv ,Wπv )=


L(1, πv,Ad)L(1, 1Fv )/L(2, 1Fv ) if πv is unramified,
L(1, πv,Ad)= L(2, 1Fv ) if c(πv)= 1,
1 if c(πv) > 1.

Since we are using local Tamagawa measures, the product over all such v of vol(o×v )
is
√
1split.

Suppose now Lv/Fv is inert. If π ′v is unramified, then J̃π ′v ( fv) is

q−c(�v)
v

e(Lv/Fv)
L
( 1

2 , πLv ⊗�v
)
L(2, 1Fv )

L(1, πv,Ad)
L(1, ηv)δv ,

where δv =−1 if�v is unramified and δv = 1 if�v is ramified. If πv is ramified and
�v is unramified, then J̃π ′v ( fv)= 1. When both πv and �v are ramified, J̃π ′v ( fv) is
calculated in Proposition 6.3.

Summing up, if πv is unramified, then, up to factors of the form vol(o×v ) and
e(Lv/Fv), J̃π ′v ( fv) is

q−c(�v)
L
( 1

2 , πLv ⊗�v
)
L(2, 1Fv )

L(1, πv,Ad)
L(1, ηv)δv .

If c(πv)= 1, then, up to factors of the form vol(o×v ) and e(Lv/Fv), J̃π ′v ( fv) is

L
( 1

2 , πLv ⊗�v
)

L(1, πv,Ad)

if �v is unramified and Lv/Fv is split or unramified; 1 if �v is unramified and
Lv/Fv is ramified; and

q−c(�v)
L
( 1

2 , πLv ⊗�v
)

L(1, πv,Ad)
L(1, 1Fv )L(1, ηv)

if �v is ramified.
If c(πv)≥ 2, then, up to factors of the form vol(o×v ) and e(Lv/Fv), J̃π ′v ( fv) is 1

if �v is unramified and q−c(�v)L(1, 1Fv )L(1, ηv) if �v is ramified.
Now suppose v | ∞. Then from [Martin and Whitehouse 2009] one has

J̃π ′v ( fv)=
Cv(L , π,�)

e(Lv/Fv)
L
( 1

2 , πLv ⊗�v
)
L(2, 1Fv )

L(1, πv,Ad)L(1, ηv)
.
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Combining the above calculations completes the proof of Theorem 1.1.

Remark 7.2. When S(π)∩ S(�)=∅, Theorem 1.1 is exactly the main theorem of
[Martin and Whitehouse 2009], though their choice of measure on G ′(A) is slightly
different. Our set S0(π) is denoted by S′(π) in that paper.

As in [Martin and Whitehouse 2009], one can rewrite this formula using the
Petersson norm (φπ , φπ ) of the new vector φπ ∈ π instead of L(1, π,Ad). The
formula in [Martin and Whitehouse 2009] is also valid when ωπ = η, and one could
treat that case here similarly. The restriction that ωπ ∈ {1, η} is not inherent in the
method, but is due to this assumption in [Jacquet and Chen 2001].

Remark 7.3. For many applications, one would like a formula for the complete
ratio of L-values L

( 1
2 , πL ⊗�

)
/L(1, π,Ad). Theorem 1.1 of course gives this

when S0 =∅ (e.g., if the conductor c(π) of π is squarefree and π and L/F have
disjoint ramification). In general, one can of course multiply both sides by the
appropriate local factors, but then the rest of the formula will depend on more than
just the ramification of π and � together with their infinity types. Specifically, for
v ∈ S1(π) and πv = χv Stv , the local factor L

( 1
2 , πLv ⊗�v

)
depends on the sign of

χv when Lv/Fv is ramified. Similarly, for v ∈ S2(π), the local factor L(1, πv,Ad)
depends on more than just the ramification of πv.

8. An average-value formula

In this section, we prove Theorems 1.3, 1.4 and 1.5. Fix notation as in the first
paragraph of Theorem 1.3.

8A. The trace formula. Let D/F be the quaternion algebra which is ramified
precisely at the infinite primes and the primes dividing N0. Set G ′ = D× and
G = GL(2)/F. Let Z denote the center of either of these. Let ε be an element of
the normalizer of T (F) inside G ′(F) which does not lie in T (F), so ε2

∈ Z(F)
and D(F)= L ⊕ εL . Then we may write an element of G ′(F) in the form[

α βε

β̄ ᾱ

]
, α, β ∈ L .

With this representation,

T =
{[
α 0
0 ᾱ

]}
.

As in Section 7, let ψ be the standard additive character of A/F, and take the
product of the local Tamagawa measures on T (A), G ′(A), G(A) and Z(A). For
a cuspidal automorphic representation π ′ of G ′(A), let JL(π ′) denote its Jacquet–
Langlands transfer to G(A). Denote by F ′(N, 2k) the set of cuspidal automorphic
representations π ′ of G ′(A) such that JL(π ′) ∈F(N, 2k). We call N the conductor
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of π ′ and write c(π ′)=N. Subject to assumption (1-3), we note that our choice of
D guarantees HomT (π

′, �) 6= 0 for all π ′ ∈ F ′(N, 2k).
We now recall Jacquet’s relative trace formula for G ′ from [Jacquet 1987]. This

is an identity of the form
I ( f )= J ( f ), (8-1)

where I ( f ) is a certain geometric distribution, and J ( f ) is a certain spectral
distribution. Specifically, let f =

∏
fv ∈ C∞c (G

′(A)). The geometric (relative)
orbital integrals of f are defined by

I (0, f )=
∫

T (A)

f (t)�(t) dt,

I (∞, f )=
∫

T (A)

f
(

t
[ 0 ε

1 0

])
�(t) dt

and

I (b, f )=
∫

T (A)/Z(A)

∫
T (A)

f
(

s
[

1 εβ

β̄ 1

]
t
)
�(st) ds dt,

where b = εN (β) for β ∈ L×. Note this latter integral only depends on b and not
the choice of a specific β. Then the left-hand (geometric) side of (8-1) is

I ( f )=vol(T (A)/Z(A)T (F))(I (0, f )+δ(�2)I (∞, f ))+
∑

b∈εN (L×)

I (b, f ), (8-2)

where δ(χ)= 1 if χ is trivial and δ(χ)= 0 otherwise.
We now describe J ( f ), but for simplicity only in the situation that is rele-

vant for us. Namely, for each v | ∞, fix an embedding ιv : G ′(Fv) ↪→ GL2(C)

and let π ′2kv be the irreducible (2kv − 1)-dimensional representation of G ′(Fv)
given by π ′2kv = (Sym2kv−2

⊗ det1−kv ) ◦ ιv. Hence JL(π ′2kv ) is the holomorphic
discrete series of weight 2kv on G(Fv). The assumption that |mv| < kv implies
that there is a 1-dimensional subspace of π ′2kv consisting of vectors wv such that
π ′2kv (t)wv =�v(t)wv for all t ∈ T (Fv). Fix such a vector wv ∈ π ′2kv which satisfies
(wv, wv) = 1. For all v | ∞, we may take fv ∈ C∞c (G

′(R)) as in Section 7A, so
that ∫

Z(Fv)

fv(zg) dz =
2kv − 1

vol(G ′(Fv)/Z(Fv))
(π ′2kv(g)wv, wv)

(cf. [Feigon and Whitehouse 2009, Lemma 3.4]).
For a cuspidal automorphic representation π ′ of G ′(A)/Z(A), we consider the

spectral distribution

Jπ ′( f )=
∑
φ

PD(π
′( f )φ)PD(φ),
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where φ runs over an orthonormal basis for π ′ and PD is defined as in (1-1). In
general, the spectral side J ( f ) of (8-1) is a sum over all π ′ of Jπ ′( f ) plus a
noncuspidal contribution. However, things simplify greatly for our choice of f .

We already specified fv for v | ∞. Now let v <∞ and put mv = c(�v). For
such a v, as in Section 7A, we take fv to be the characteristic function of R×v
divided by its volume, for an order Rv of G ′(Fv) chosen as follows. If v - N,
then G ′(Fv)∼= G(Fv) and we take Rv to be a maximal order optimally containing
ov +$

mv
v oLv . If v |N0, then G ′(Fv) is not split and we take Rv to be a maximal

order containing oLv . If v |N1, then G ′(Fv)∼= G(Fv) and, at least when v is odd,
we can take

Rv =
{[
α βεv

β̄ ᾱ

]
: Tr(α),Tr(β) ∈ ov, α, β ∈ p1−mv

v oLv ,

and α−β ∈ ov + pmv
v oLv

}
. (8-3)

Note that for each v -N0, this agrees with our choice of test functions in Section 7A.
The difference of the present choice of fv for v |N0 is simply out of convenience
so we can directly apply local calculations from [Feigon and Whitehouse 2009].
What is important is that one still has πv( fv) being orthogonal projection onto our
local test vector for v |N0 (cf. [Feigon and Whitehouse 2009, Lemma 3.3]).

Consequently, for this f , assuming kv > 1 for some v | ∞, the spectral side of
(8-1) is given by

J ( f )=
∑
N′

∑
π ′∈F ′(N′,2k)

Jπ ′( f ), (8-4)

where N′ runs over ideals which divide N and are divisible by N0. This is because,
for our choice of f ′, π ′( f ′) is zero unless π ′ is of weight 2k and has conductor
dividing N. Furthermore, by our choice of D, Jπ ′( f ) vanishes for local reasons
if the conductor of π ′ is not divisible by N0 (cf. [Feigon and Whitehouse 2009,
Lemmas 3.6 and 3.7]). (The avoidance of the case kv = 1 for all v | ∞ is purely
for simplicity, for in this case there is also contribution from the residual spectrum,
which one would treat as in [Feigon and Whitehouse 2009].)

8B. Spectral calculations. Here we compute the spectral expansion (8-4). For
π ′ ∈F ′(N, 2k), we see that Jπ ′( f )=|PD(φ)|

2/(φ, φ). Hence Theorem 1.1 implies

Jπ ′( f )= 1
2

√
1

c(�)1L
L S(N0)(2, 1F )L S(N)(1, η)L S(C0)(1, η)

2

×

∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
. (8-5)

We now need to extend this equality to general π ′ ∈ F ′(N′, 2k), where N′

divides N and is divisible by N0. For v | (N′)−1N, let R′v be the maximal order of
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G ′(Fv)∼= G(Fv) which contains Rv given by (8-3). Let f ′ =
∏

f ′v , where f ′v = fv
if v - (N′)−1N, and f ′v is the characteristic function of (R′v)

× divided by its volume
if v | (N′)−1N. Now, f ′ agrees with our choice of test function for π ′ in Section 7A,
and Theorem 1.1 gives

Jπ ′( f ′)= 1
2

√
1

c(�)1L
L S(N0)(2, 1F )L S(N)(1, η)L S(C0)(1, η)

2

×

∏
v|(N′)−1N

L(1, ηv)
∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
. (8-6)

From Theorem 7.1, we see that

Jπ ′( f )= Jπ ′( f ′)
∏

v|(N′)−1N

J̃π ′v ( fv)

J̃π ′v ( f ′v)
.

From [Martin and Whitehouse 2009, Section 2.2.4], we know

J̃π ′v ( f ′v)= q−mv
v L(2, 1Fv )L(1, ηv)

1
L(1, πv,Ad)

,

so it remains to compute J̃π ′v ( fv). Here v | (N′)−1N⊃N1, so π ′v =πv is unramified
and mv = 1. We may write πv = χ ×χ−1, where χ = χv is an unramified (unitary)
character of F×v .

Note πv( fv) is orthogonal projection onto π R×v
v . Embedding Lv in M2(Fv) as in

(2-16), we may write

R×v = Kv :=

[
o×v pmv

v

p1−mv
v o×v

]
=

[
o×v pv
ov o×v

]
.

Note

Kv = hvGL2(ov)h−1
v ∩ hv

[
$−1
v

1

]
GL2(ov)

[
$v

1

]
h−1
v ,

where hv =
[
$v

1

]
. So if we put φ0 to be a newvector in πv and φ′0 = πv(h

−1
v )φ0,

then
πKv
v = 〈πv(hv)φ0, πv(hv)φ′0〉.

Normalize φ0 so that (φ0, φ0)= 1.

Lemma 8.1. We have

(φ0, φ
′

0)= (φ
′

0, φ0)=
q−1/2
v

1+ q−1
v

(χ($v)+χ($v)
−1). (8-7)

Proof. In the induced model for πv, we have

(φ′0, φ0)= (π(hv)φ0, φ0)=

∫
GL2(ov)

φ0(khv) dk.
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We may then use the fact that the subgroup Kv of GL2(ov) is normalized by hv to
get the lemma. �

Lemma 8.2. For v | (N′)−1N, so that πv is unramified and mv = 1, we have
J̃πv ( fv)= q−1

v .

Proof. Write φ1 = πv(hv)φ0 and

φ2 =
φ0− (φ0, φ1)φ1

(1− (φ0, φ
′

0)
2)1/2

=

(
L(1, πv,Ad)(1+ q−1

v )

L(2, 1Fv )

)1/2

(φ0− (φ0, φ1)φ1),

so that {φ1, φ2} forms an orthonormal basis for πKv
v . As in Section 6, put

e′ =
∑

t∈Tv/(Tv∩ZvKv)

�−1
v (t)πv(t)φ1,

so

J̃πv ( fv)= vol(Kv)
−1
∫
Kv

(πv(k)e′, e′)
(e′, e′)

dk =
1

|Tv/(Tv ∩ ZvKv)|(φ1, e′)
(πv( fv)e′, e′).

Since πv( fv)e′ = (e′, φ1)φ1+ (e′, φ2)φ2, we have

J̃πv ( fv)=
1

|Tv/(Tv ∩ ZvKv)|(φ1, e′)

(
(e′, φ1)(φ1, e′)+ (e′, φ2)(φ2, e′)

)
.

From [Martin and Whitehouse 2009, Section 2.2.4], where (φ1, e′) is denoted
〈v0, e′′T 〉/〈v0, v0〉, we know (φ1, e′)= L(2, 1Fv )/L(1, πv,Ad). Thus

J̃πv ( fv)=
1

|Tv/(Tv ∩ ZvKv)|

(
L(2, 1Fv )

L(1, πv,Ad)
+

L(1, πv,Ad)
L(2, 1Fv )

|(φ2, e′)|2
)
. (8-8)

Note

(φ2, e′)=
(

L(1, πv,Ad)(1+ q−1
v )

L(2, 1Fv )

)1/2(
(φ0, e′)− (φ′0, φ0)

L(2, 1Fv )

L(1, πv,Ad)

)
. (8-9)

Hence it suffices to compute

(φ0, e′) =
∑

t∈Tv/(Tv∩ZvKv)

�v(t)(φ0, πv(t)φ1)

=

∑
t∈Tv/(Tv∩ZvKv)

�−1
v (t)(πv(h

−1
v thv)φ′0, φ0).

Using the set of representatives for Tv/(Tv ∩ ZvKv) given in Lemma 6.2, we see

(φ0, e′)=
∑

x∈pv/pv

�−1
v (x + ξ0,v)

(
πv

([
$−1
v x c$−1

v

−a x − b

])
φ0, φ0

)

+

∑
y∈ov/pv

�−1
v (1+ yξ0,v)

(
πv

([
$−1
v c$−1

v y
−ay 1− by

])
φ0, φ0

)
. (8-10)
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Let φ and φ′ be the realizations of the unit newvectors φ0 and φ′0, respectively, in
the Kirillov model for πv with respect to an unramified ψv . Recall φ(z)= 0 unless
z ∈ ov. Recall also the action of the standard Borel on the Kirillov model is given
by (

πv

[ a x
d

]
φ
)
(z)= ψv(xz/d)φ(az/d).

Since v is odd and unramified, we may assume b= 0 and a is a unit. For the
x = 0 term in (8-10), note

πv

[
c$−1

v

−a

]
φ(z)= πv

[
c$−1

v

a

]
φ(z)= φ($−1

v z)= φ′(z).

For y ∈ ov, we have

πv

([
$−1
v c$−1

v y
−ay 1

])
φ(z)= πv

([
$−1(1+ acy2) c$−1

v y
1

][
1
−ay 1

])
φ(z)

= ψv(c$−1
v yz)φ($−1

v z)= φ($−1
v z)= φ′(z).

In the last line, we used the facts that 1+acy2
∈ o×v , ψ is unramified and φ vanishes

outside of ov. Hence (8-10) becomes

(φ0, e′)=
(
�−1
v (ξ0,v)+

∑
y∈ov/pv

�−1
v (1+ yξ0,v)

)
(φ′0, φ0)= 0, (8-11)

as this character sum is zero. Combining (8-7), (8-8) and (8-9) gives

J̃πv ( fv)=
1

|Tv/(Tv ∩ ZvKv)|

(
L(2, 1Fv )

L(1, πv,Ad)
+

q−1
v

1+ q−1
v

(
χ($v)+χ($v)

−1)2
)

=
1+ q−1

v

|Tv/(Tv ∩ ZvKv)|
.

This, with Lemma 6.2, gives the result. �

Hence,
J̃π ′v ( fv)

J̃π ′v ( f ′v)
=

L(1, πv,Ad)
L(2, 1Fv )L(1, ηv)

(8-12)

for v | (N′)−1N, which yields

J ( f )=

1
2

√
1

c(�)1L
L S(N0)(2, 1F )L S(N)(1, η)L S(C0)(1, η)

2
∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)

×

∑
N′

∑
π∈F(N′,2k)

( ∏
v|(N′)−1N

L(1, πv,Ad)
L(2, 1Fv )

)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
.
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Here N′ runs over all divisors of N which are divisible by N0. Writing∏
v|(N′)−1N

L(1, πv,Ad)
L(2, 1Fv )

·
1

L(1, π,Ad)

=

∏
v|N′

L(2, 1Fv )

L(1, πv,Ad)
·

1
L S(N)(2, 1F )L S(N)(1, π,Ad)

and observing L(1, πv,Ad)= L(2, 1Fv ) for v |N′ and π ∈ F(N′, k) gives

J ( f )= 1
2

√
1

c(�)1L

L S(N0)(2, 1F )

L S(N)(1, 1F )
L S(C0)(1, η)

2

×

∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)∑
N′

∑
π∈F(N′,2k)

L
( 1

2 , πL ⊗�
)

L S(N)(1, π,Ad)
. (8-13)

8C. Geometric calculations. We now obtain our average value formula from the
trace formula (8-1) and spectral calculation (8-5) by computing the geometric side
I ( f ). Most of the calculations we need are done in [Feigon and Whitehouse 2009],
with the proviso that our choice of test functions fv (for v - N1) are essentially
constant multiples of those therein (the test functions in [Feigon and Whitehouse
2009] also come “preintegrated over the center”).

Lemma 8.3. Let b ∈ εN (L×). We have the following vanishing of local orbital
integrals.

(i) If v |N0, then I (∞, fv)= 0.

(ii) If v |N0 and b 6∈ pv, then I (b, fv)= 0.

(iii) If v -N is finite and v(1− b) > v(dL/F c(�)), then I (b, fv)= 0.

(iv) If v |N1 and v(1− b) > v(c(�))− 2, then I (b, fv)= 0.

Proof. The first three results are directly from [Feigon and Whitehouse 2009,
Lemmas 4.2, 4.10 and 4.11]. So suppose v |N1 is odd and write b = εN (β) for
some β ∈ L×. For I (b, fv) to be nonzero we need that, for some α ∈ L×v and u ∈ L1

v ,[
α

ᾱ

][ 1 εβu
βu 1

]
∈ R×v ,

i.e.,

N (α)(1− b) ∈ o×v , Tr(α) ∈ o×v , α ∈ p1−mv
v oLv , α(1−βu) ∈ ov + pmv

v oLv .

Note this implies v(1− b)=−v(N (α))≤ 2mv − 2. Hence if v(1− b)≥ 2mv − 1,
then I (b, fv)= 0. �
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Proposition 8.4. If |N0|> dL/F (|C|/|N1|)
hF , then I ( f )= 2L(1, η)I (0, f ) and

I (0, f )=
12
|N|

√
c(�)1L

L S(C0)(1, η)
L S(N0)(1, 1F )

L(2, 1F )
∏
v|∞

2kv − 1
2π

.

Proof. This argument is adapted from the proof of [Feigon and Whitehouse 2009,
Lemma 4.21]. By the first part of the previous lemma, we know the global orbital
integral I (∞, f )= 0. Arguing as in Feigon and Whitehouse’s proof, we see that,
if |N0|> dL/F |N

−2
1 C|hF , then I (b, f )= 0 for all b.

Next we compute I (0, f ). For v - N1, we recall the following calculations
from [Feigon and Whitehouse 2009, Section 4.1]; see [Jacquet and Chen 2001,
Section 2; Feigon and Whitehouse 2009, Section 2.1 and proof of Proposition 4.20]
for necessary facts about local Tamagawa measures. Due to the difference in our
definition of test functions from those in [Feigon and Whitehouse 2009], our local
orbital integrals I (0, fv) (for v -N1) will be vol(Zv ∩ R×v )/vol(R×v ) times theirs
for finite v, and (2kv − 1)/vol(G ′(Fv)/Z(Fv)) times theirs for infinite v.

For v |N0,

I (0, fv)= vol(o×Lv/o
×

v )vol(Zv ∩ R×v )/vol(R×v )

= (qv − 1)L(2, 1Fv )vol(o×Lv )/vol(o×v )
4,

since vol(R×v )= L(2, 1Fv )
−1(qv − 1)−1vol(o×v )

4 and R×v ∩ Zv = o×v .
For a finite v -N, we have vol(R×v )= L(2, 1Fv )

−1vol(o×v )
4 and

I (0, fv)=


vol(o×Lv/o

×

v )vol(Zv ∩ R×v )/vol(R×v )

= L(2, 1Fv )vol(o×Lv )/vol(o×v )
4 for mv = 0,

q−mv L(1, ηv)vol(o×Lv )/vol(R×v )

= q−mv L(1, ηv)L(2, 1Fv )vol(o×Lv )/vol(o×v )
4 for mv > 0.

For v | ∞,

I (0, fv)= vol(F×v \L
×

v )
2kv − 1

vol(G ′(Fv)/Z(Fv))
=

2kv − 1
2π2 .

Now, for v |N1, our description of Rv readily implies

I (0, fv)= vol(o×v (1+ pmv
v oLv ))/vol(R×v )= q−mv L(1, ηv)vol(o×Lv )/vol(Rv)×.

A simple calculation gives vol(R×v )= q−1
v vol(o×)4/L(1, 1Fv ). Hence when v |N1,

we have
I (0, fv)= q1−mv

v L(2, 1Fv )vol(o×L )/vol(o×)4.

Putting together the nonarchimedean calculations gives∏
v<∞

I (0, fv)=
|N|
√

c(�)
Lfin(2, 1F )

∏
v|N0

L(1, 1Fv )
−1
∏
v|C0

L(1, ηv)
∏
v<∞

vol(o×Lv )

vol(o×)4
.
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Noting that
∏
v<∞ vol(o×)=1−1/2 (and similarly over L), we have∏

v<∞

I (0, fv)=
12
|N|

√
c(�)1L

Lfin(2, 1F )
∏
v|N0

L(1, 1Fv )
−1
∏
v|C0

L(1, ηv).

Recalling that L(2, 1F )= Lfin(2, 1F )/π
d, we see

I (0, f )=
12
|N|

√
c(�)1L

L(2, 1F )
∏
v|N0

L(1, 1Fv )
−1
∏
v|C0

L(1, ηv)
∏
v|∞

2kv − 1
2π

. �

8D. Proofs.

Proof of Theorem 1.3. The result immediately follows from our above calculations
of both sides of the equality J ( f )= I ( f )= 2L(1, η)I (0, f ). �

Proof of Theorem 1.4. Suppose N1 contains exactly one prime p. Put

6N(N
′)=

∏
v|∞

(
2kv − 2

kv −mv − 1

) ∑
π∈F(N′,2k)

L
( 1

2 , πL ⊗�
)

L S(N)(1, π,Ad)
.

Then Theorem 1.3 reads

6N(N0)+6N(N)= 22−d13/2
|N|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η). (8-14)

Applying our average value formula when N=N0, we also see

6N0(N0)= 22−d13/2
|N0|L S(N0)(2, 1F )L S(C0)(1, η) (8-15)

if |N0|>dL/F |C|
hF. (This is precisely [Feigon and Whitehouse 2009, Theorem 1.1].)

For πp unramified, we have

L(1, 1Fp)
1

1+ 2q−1
p + q−2

p

≤ L(1, πp,Ad)≤ L(1, 1Fp)
1

1− 2q−1
p + q−2

p

,

which implies

L(1, 1Fp)
1

(1+ q−1
p )2

6N0(N0)≤6N(N0)

≤ L(1, 1Fp)
1

(1− q−1
p )2

6N0(N0). (8-16)

Combining the (in)equalities above gives

6N(N)

≤ 22−d13/2
|N0|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η)

(
|p| −

1
1+ 2|p|−1+ |p|−2

)
,

and a similar lower bound, which are precisely the bounds asserted in Theorem 1.4.
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To get an asymptotic, we use a special case of [Feigon and Whitehouse 2009,
Theorem 1.2], which is an asymptotic for

∑
π∈F(N0,2k)

Lp
( 1

2 , πL ⊗�
)

Lp(1, π,Ad)
=

∏
v|∞

(
2kv − 2

kv −mv − 1

)−1
6N(N0)

L S(N0)(2, 1F )

as |N0| → ∞. (Note Lp
(1

2 , πL ⊗�
)
= L

( 1
2 , πL ⊗�

)
since � is ramified at p.)

Specifically, [Feigon and Whitehouse 2009, Theorem 1.2] tells us

6N(N0)∼ 22−d13/2
|N0|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η) (8-17)

as |N0|→∞ along a sequence of squarefree ideals N0 coprime to C satisfying our
parity and ramification assumptions. Consequently, we have

6N(N)∼ 22−d13/2
|N0|L(1, 1Fp)L S(N0)(1, η)L

S(C0)(1, η)(|p| − 1).

This gives the asymptotic asserted in the theorem. �

8E. Nonvanishing mod p. Let π ∈ F(N, 2k), and let f be the corresponding
normalized Hilbert modular newform of weight 2k and level N over F. As before,
� is a unitary character of A×L /L×A×F such that, for all v | ∞, �v(z)= (z/z̄)±mv

with 0≤ mv < kv . Put m = (m1, . . . ,md). Then � gives rise to a Hilbert modular
form g over F of weight m + 1 = (m1 + 1, . . . ,md + 1); see [Shimura 1978,
Section 5]. Assume m1 ≡ m2 ≡ · · · ≡ md mod 2. This implies � is algebraic, so
that the field of rationality Q(g)⊂Q [Shimura 1978, Proposition 2.8].

Put k0 =maxv|∞ kv and m0 =maxv|∞mv. Then Shimura [1978, Theorem 4.1]
proved

D(s0, f, g)
√
1π2|k|( f, f )

∈Q(g)=Q

for any s0 ∈ Z such that 1
2(2k0+m0− 1) < s0 <

1
2(2k0+m0+ 2kv −mv) for all

v | ∞. Here D(s, f, g) is the Dirichlet series defined in [Shimura 1978], ( f, f )
is the Petersson norm defined as in [Hida 1991], and |k| =

∑
v|∞ kv. Assume that

m0 ≡ 0 mod 2. Then, for s0 =
1
2(2k0+m0), this means

Lalg( 1
2 , πL ⊗�

)
:=

1
L(1, η)

Lfin
(1

2 , πL ⊗�
)

√
1π2|k|( f, f )

∈Q. (8-18)

(Note that we normalize the algebraic part of the L-value in a different way than
other authors.) Recall the archimedean L-factors are given by

Lv
( 1

2 , πL ⊗�
)
= (2π)−2kv40(kv +mv)0(kv −mv), v | ∞.
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From [Hida and Tilouine 1993, Theorem 7.1; Hida 1991, (7.2c)] (cf. [Getz and
Goresky 2012, Theorem 5.16]), we have

L(1, π,Ad)=
22|k|−1

12hF |N|
( f, f ). (8-19)

Thus,

L
( 1

2 , πL ⊗�
)

L(1, π,Ad)

= 22d+1−4|k|15/2hF |N|L(1, η)Lalg( 1
2 , πL ⊗�

)∏
v|∞

0(kv +mv)0(kv −mv).

Hence we can rewrite the average value formula from Theorem 1.3 as

23d−4|k|−11hF

∏
v

(2kv − 2)!
∑

π∈F(N,2k)

Lalg( 1
2 , πL ⊗�

)
=

1
L S(�)(1, η)

. (8-20)

This immediately implies Theorem 1.5.
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A generalization
of Kato’s local 3-conjecture

for (ϕ,
L
)-modules over the Robba ring

Kentaro Nakamura

We generalize Kato’s (commutative) p-adic local ε-conjecture for families of
(ϕ, 0)-modules over the Robba rings. In particular, we prove the essential parts of
the generalized local ε-conjecture for families of trianguline (ϕ, 0)-modules. The
key ingredients are the author’s previous work on the Bloch–Kato exponential
map for (ϕ, 0)-modules and the recent results of Kedlaya, Pottharst and Xiao on
the finiteness of cohomology of (ϕ, 0)-modules.
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1. Introduction

1A. Introduction. Since the works of Kisin [2003], Colmez [2008], and Bellaïche
and Chenevier [2009], among others, the theory of (ϕ, 0)-modules over the (relative)
Robba ring has become one of the main focuses in the theory of p-adic Galois
representations. In particular, the trianguline representation, which is a class of
p-adic Galois representations defined using (ϕ, 0)-modules over the Robba ring,
is important since the rigid analytic families of p-adic Galois representations
associated to Coleman–Mazur eigencurves (or more general eigenvarieties) turn
out to be trianguline.

The recent works of Pottharst [2013] and Kedlaya, Pottharst and Xiao [Kedlaya
et al. 2014] established the fundamental theorems (comparison with Galois coho-
mology, finiteness, base change property, Tate duality, Euler–Poincaré formula) in
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the theory of the cohomology of (ϕ, 0)-modules over the relative Robba ring over
Qp-affinoid algebras. As is suggested and actually given in [Kedlaya et al. 2014;
Pottharst 2012], their results are expected to have many applications in number
theory (e.g., eigenvarieties, nonordinary case of Iwasawa theory; see Remarks 1.6
and 1.7 below).

On the other hand, in [Nakamura 2014a], we generalized the theory of Bloch–
Kato exponential maps and Perrin-Riou’s exponential maps in the framework of
(ϕ, 0)-modules over the Robba ring. Since these maps are very important tools in
Iwasawa theory, we expect that the results of [Nakamura 2014a] also have many
applications.

As an application of both theories, the purpose of this article is to generalize
Kato’s p-adic local ε-conjecture [1993b] in the framework of (ϕ, 0)-modules over
the relative Robba ring over Qp-affinoid algebras, and prove the essential parts of
its generalized version of the conjecture for rigid analytic families of trianguline
(ϕ, 0)-modules.

In this introduction, we briefly explain these conjectures; see Section 3 for the
precise definitions. Let GQp be the absolute Galois group of Qp. The main objects
of Kato’s local ε-conjecture are the pairs (3, T ), where 3 is a semilocal ring such
that 3/m3 is a finite ring of order a power of p (where m3 is the Jacobson radical
of 3) and T is a 3-representation of GQp , i.e., a finite projective 3-module with a
continuous 3-linear GQp -action. Let C •cont(GQp , T ) be the complex of continuous
cochains of GQp with values in T. By the classical theory of Galois cohomology
of GQp , this complex is a perfect complex of 3-modules which satisfies the base
change property, Tate duality, and other properties. This fact enables us to define
the determinant

Det3(C •cont(GQp , T )),

which is a (graded) invertible 3-module. Modifying this module by multiplying a
kind of det3(T ), one can canonically define a graded invertible 3-module

13(T ),

called the fundamental line of the pair (3, T ), which is compatible with base change
and Tate duality.

Our main objects are the pairs (A,M), where A is a Qp-affinoid and M is a
(ϕ, 0)-module over the relative Robba ring RA over A. By the results of [Kedlaya
et al. 2014], we can similarly attach a graded invertible A-module

1A(M),

called the fundamental line for (A,M), which is also compatible with base change
and Tate duality. For a pair (3, T ) as in the previous paragraph and a continuous
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homomorphism f :3→ A, there exists a canonical comparison isomorphism

13(T )⊗3 A −→∼ 1A(Drig(T ⊗3 A))

by the result of [Pottharst 2013]. The following conjecture is Kato’s conjecture if
(B, N )= (3, T ), and our new conjecture if (B, N )= (A,M).

Conjecture 1.1. (See Conjecture 3.8 for the precise formulation.) We can uniquely
define a B-linear isomorphism

εB,ζ (N ) : 1B −→
∼ 1B(N ),

for each pair (B, N ) of type (3, T ) or (A,M) and for each Zp-basis ζ of Zp(1),
which is compatible with any base changes B→ B ′, exact sequences 0→ N1→

N2→ N3→ 0, and Tate duality, and satisfies the following:

(v) For any f :3→ A as above, we have

ε3,ζ (T )⊗ idA = εA,ζ (Drig(T ⊗3 A))

under the canonical isomorphism 13(T )⊗3 A −→∼ 1A(Drig(T ⊗3 A)).

(vi) Let L = A be a finite extension of Qp, and let N be a de Rham representation
of GQp or de Rham (ϕ, 0)-module over RL . Then we have

εL ,ζ (N )= εdR
L ,ζ (N ),

where the isomorphism

εdR
L ,ζ (N ) : 1L −→

∼ 1L(N )

is called the de Rham ε-isomorphism which is defined using the Bloch–Kato
exponential and the dual exponential of N and the local factors (L-factor,
ε-constant) associated to Dpst(N ) and Dpst(N ∗).

Remark 1.2. To define condition (vi) for de Rham (ϕ, 0)-modules, we need to
generalize the Bloch–Kato exponential for (ϕ, 0)-modules, which was one of the
main themes of [Nakamura 2014a].

Roughly speaking, this conjecture says that the local factor which appears in
the functional equation of the L-functions of a motif p-adically interpolate to all
the families of p-adic Galois representations and also rigid-analytically interpolate
to all the families of (ϕ, 0)-modules in a compatible way. In fact, Kato [1993a]
formulated a conjecture, called the generalized Iwasawa main conjecture, which
asserts the existence of a compatible family of the zeta-isomorphisms

z3(Z[1/S], T ) : 13 −→∼ 1
global
3 (T )

for any 3-representation T of GQ,S (S is a finite set of primes) which interpolate
the special values of L-functions of a motif. Kato [1993b] also formulated another
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conjecture, called the global ε-conjecture, which asserts the functional equation
between z3(Z[1/S], T ) and z3(Z[1/S], T ∗), whose local factor at p is ε3,ζ (T |GQp

).
Kato [1993b] (see also [Venjakob 2013]) proved the local (and even the global)
ε-conjecture for the rank-one case. As a generalization of his theorem, the main
theorem of this article is the following.

Theorem 1.3. (See Theorem 3.11 for the precise statement.) Conjecture 1.1 is true
for the rank-one case.

From this theorem, we can immediately obtain some results for the trianguline
case. We say that a (ϕ, 0)-module M over RA is trianguline if M has a filtration
F : 0 :=M0⊆M1⊆ · · · ⊆Mn :=M whose graded quotients Mi/Mi−1 are rank-one
(ϕ, 0)-modules over RA for all 1≤ i ≤ n. We call the filtration F a triangulation
of M. For such a pair (M,F), we obtain the following theorem, a special case (in
particular, the rank-two case) of which will be used in Theorem 3.10 of our next
article, [Nakamura 2015].

Corollary 1.4. (See Corollary 3.12 for the precise statement.) Let M be a trian-
guline (ϕ, 0)-module over RA of rank n with a triangulation F as above. The
isomorphism

εF,A,ζ (M) : 1A
�n

i=1εA,ζ (Mi/Mi−1)
−−−−−−−−−→�n

i=11A(Mi/Mi−1)−→
∼ 1A(M),

defined as the product of the isomorphisms

εA,ζ (Mi/Mi−1) : 1A −→
∼ 1A(Mi/Mi−1),

which are defined in Theorem 1.3, satisfies (many parts of ) Conjecture 1.1; in
particular, it satisfies the following:

(vi)′ Let L = A be a finite extension of Qp, and let M be a de Rham and trianguline
(ϕ, 0)-module over RL . Then, for any triangulation F of M, we have

εF,L ,ζ (M)= εdR
L ,ζ (M).

Remark 1.5. Before this article, the local ε-conjecture was proved only for cyclo-
tomic deformations (or more general twists) of crystalline representations [Benois
and Berger 2008; Loeffler et al. 2015]. Since the (ϕ, 0)-modules associated to any
twists of crystalline representations are trianguline, our Corollary 1.4 essentially
contains all the known results concerning the local ε-conjecture. See Corollary 3.13
for the comparison of our theorem with the previous known results. Moreover,
since any twists of semistable representations are also trianguline, our results also
contain the semistable case, which seems to be unknown before this article.

Remark 1.6. Our method and previous known methods for the construction of local
ε-isomorphisms cannot be applied to the nontrianguline case. That case is much
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more difficult but is much more interesting since the Weil–Deligne representation
Dpst(M) associated to a nontrianguline and de Rham (ϕ, 0)-module M corresponds
to a nonprincipal series representation of GLn(Qp) via the local Langlands cor-
respondence, whose ε-constants are in general difficult to explicitly describe. In
our next article, [Nakamura 2015], we construct ε-isomorphisms for all rank-two
torsion p-adic representations of Gal(Qp/Qp) by using Colmez’s theory [2010] of
p-adic local Langlands correspondence for GL2(Qp). More precisely, we will
show that (a modified version of) the pairing defined in Corollaire VI.6.2 of
[Colmez 2010] essentially gives us ε-isomorphisms for the rank-two case. In
the trianguline case, by using Dospinescu’s result [2014] on the explicit description
of locally analytic vectors of Banach representations of GL2(Qp), we will show
that the ε-isomorphisms constructed in [Nakamura 2015] coincide with those
constructed in this article. More interestingly, for the de Rham and nontrianguline
case, we will show, by using Emerton’s theorem [2006] on the compatibility of
classical and p-adic Langlands correspondence, that the ε-isomorphisms defined
in [Nakamura 2015] satisfy the suitable interpolation property (i.e., condition (vi)
of Conjecture 1.1) for the critical range of Hodge–Tate weights. Moreover, as an
application, we will prove a functional equation of Kato’s Euler systems associated
to Hecke eigen elliptic cusp newforms.

Remark 1.7. Other than the application to Theorem 3.10 of [Nakamura 2015], our
Corollary 1.4 should be applicable to some Iwasawa theoretic studies of Galois
representations over eigenvarieties. For example, the rank-two case of the local
ε-isomorphism constructed in Corollary 1.4 should be the p-th local factor of
the conjectural functional equation satisfied by the conjectural zeta element over
the Coleman–Mazur eigencurve, whose existence is conjectured in (for example)
[Hansen 2016, Conjecture 1.3.3]. Since our article is long enough, we don’t study
this problem in this article, but we hope to study it in future works.

1B. Structure of the paper. In Section 2, we recall the results of [Kedlaya et al.
2014; Pottharst 2013; Nakamura 2014a]. After recalling the definition of (ϕ, 0)-
modules over the relative Robba ring, we recall the main results of [Kedlaya et al.
2014; Pottharst 2013] on the cohomology of (ϕ, 0)-modules, i.e., comparison with
Galois cohomology, finiteness, base change property, Euler–Poincaré formula, Tate
duality, and the classification of rank-one objects, all of which are essential for
the formulation of our conjecture. We next recall the result of [Nakamura 2014a]
on the theory of the Bloch–Kato exponential map of (ϕ, 0)-modules. Since the
result of [Nakamura 2014a] is not sufficient for our purpose, we slightly generalize
the result. In particular, we show the existence of Bloch–Kato fundamental exact
sequences involving Dcris(M) (Lemma 2.20), establishing Bloch–Kato duality for
the finite cohomology of (ϕ, 0)-modules (Proposition 2.24). The explicit formulae
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of our Bloch–Kato exponential maps (Proposition 2.23) are frequently used in
later sections.

In Section 3, using the preliminaries recalled in Section 2, we formulate our
ε-conjecture and state our main theorem of this paper. Since the conjecture is for-
mulated by using the notion of determinant, we first recall this notion in Section 3A.
In Section 3B, using the determinant of cohomology of (ϕ, 0)-modules, we define
a graded invertible A-module 1A(M), called the fundamental line, for any (ϕ, 0)-
module M over RA. In Section 3C, for any de Rham (ϕ, 0)-module M, we define
a trivialization (called a de Rham ε-isomorphism) of the fundamental line using
the Bloch–Kato fundamental exact sequence, Deligne–Langlands–Fontaine–Perrin-
Riou’s ε-constants and the “gamma-factor” associated to Dpst(M). In Section 3D,
we formulate our conjecture and compare our conjecture with Kato’s conjecture, and
state our main theorem of this article, which solves the conjecture for all rank-one
(ϕ, 0)-modules.

Section 4 is the main part of this paper, where we prove the conjecture for the
rank-one case. In Section 4A, using the theory of analytic Iwasawa cohomology
[Kedlaya et al. 2014; Pottharst 2012], and using the standard technique of p-adic
Fourier transform, we construct our ε-isomorphism for all rank-one (ϕ, 0)-modules.
In Section 4B, we show that our ε-isomorphism defined in Section 4A specializes
to the de Rham ε-isomorphism defined in Section 3B at each de Rham point. In
Section 4B1, we first verify this condition (which we call the de Rham condition) for
the “generic” rank-one de Rham (ϕ, 0)-modules by establishing a kind of explicit
reciprocity law (Proposition 4.11, 4.16). In the process of proving this, we prove a
proposition (Proposition 4.13) on the compatibility of our ε-isomorphism with a natu-
ral differential operator. Using the result in the generic case and the density argument,
we prove the compatibility of our ε-isomorphism with Tate duality and compare
our ε-isomorphism with Kato’s ε-isomorphism. In Section 4B2, we verify the de
Rham condition via explicit calculations for the exceptional case which includes the
case of R, R(1) (the (ϕ, 0)-modules corresponding to Qp, Qp(1), respectively).

In the Appendix, we explicitly calculate the cohomologies Hi
ϕ,γ (R(1)) and

Hi
ϕ,γ (R), which will be used in Section 4B2. Finally, we remark that, in our proof,

we don’t use any previous known results (e.g., [Kato 1993b; Benois and Berger 2008;
Loeffler et al. 2015]) on the local ε-conjecture. Our proof essentially follows from
the results in Section 2 of this article and those of [Nakamura 2014a] on the explicit
definition of the exponential and the dual exponential maps for (ϕ, 0)-modules. We
believe that our proof is the most simple and the most natural one.

1C. Notation. Throughout this paper, we fix a prime number p. The letter A will
always denote a Qp-affinoid algebra; we use Max(A) to denote the associated
rigid analytic space. We fix an algebraic closure Qp of Qp and consider any finite
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extension K of Qp inside Qp. Let |−| :Q×p →Q>0 be the absolute value such that
|p| = p−1. For n ≥ 0, let us denote by µpn the set of pn-th power roots of unity
in Qp, and put µp∞ :=

⋃
n≥1 µpn . For a finite extension K of Qp, put Kn := K (µpn )

for∞≥ n ≥ 0. Let us denote by χ : 0Qp :=Gal(Qp,∞/Qp)−→
∼ Z×p the cyclotomic

character given by γ (ζ ) = ζ χ(γ ) for γ ∈ 0 and ζ ∈ µp∞ . Set GK := Gal(Qp/K ),
HK := Gal(Qp/K∞), and 0K := Gal(K∞/K ).

We let k be the residue field of K, with F :=W (k)[1/p]. Put Zp(1) := lim
←−−n≥0 µpn .

For k ∈ Z, define Zp(k) := Zp(1)⊗k equipped with a natural action of 0K . For a
Zp[GK ]-module N, let us define N (k) := N ⊗Zp Zp(k). When we fix a generator
ζ = {ζpn }n≥0 ∈ Zp(1), we put e1 := ζ and ek := e⊗k

1 ∈ Z. For a continuous
GK -module N, let us denote by C •cont(GK , N ) the complex of continuous cochains
of GK with values in N. Define Hi (K , N ) := Hi (C •cont(GK , N )). For a group G,
denote by G tor the subgroup of G consisting of all torsion elements in G. If G is a
finite group, let |G| be the order of G.

For a commutative ring R, let us denote by Pfg(R) the category of finitely
generated projective R-modules. For N ∈ Pfg(R), denote by rkR N the rank of N
and let N∨ :=HomR(N , R). Let [− ,−] : N1×N2→ R be a perfect pairing. Then
we always identify N2 with N∨1 by the isomorphism N2−→

∼ N∨1 : x 7→ (y 7→ [y, x]).
Let us denote by D−(R) the derived category of bounded-below complexes of
R-modules. For a1 ≤ a2 ∈ Z, let us denote by D[a1,a2]

perf (R) (resp. Db
perf(R)) the

full subcategory of D−(R) consisting of the complexes of R-modules which are
quasi-isomorphic to a complex P• of Pfg(R) concentrated in degrees in [a1, a2]

(resp. bounded degree). There exists a duality functor

R HomR(−, R) : D[a1,a2]
perf (R)→ D[−a2,−a1]

perf (R)

characterized by R HomR(P•, R) := HomR(P−•, R) for any bounded complex
P• of Pfg(R). Define the notion χR(−) of Euler characteristic for any objects of
Db

perf(R), which is characterized by

χR(P•) :=
∑
i∈Z

(−1)i rkR P i
∈Map(Spec(R),Z)

for any bounded complex P• of Pfg(R).

2. Cohomology and Bloch–Kato exponential of (ϕ, 0)-modules

2A. Cohomology of (ϕ, 0)-modules. In this subsection, we recall the definition
of (families of) (ϕ, 0)-modules and the definition of their cohomologies following
[Kedlaya et al. 2014], and then recall the results of their article on the finiteness of
the cohomology.



326 Kentaro Nakamura

Put ω := p−1/(p−1)
∈ R>0. For r ∈ Q>0, define the r-Gauss norm |− |r on

Qp[T±] by the formula
∣∣∑

i ai T i
∣∣
r := maxi {|ai |ω

ir
}. For 0 < s ≤ r ∈ Q>0, we

write A1
[s, r ] for the rigid analytic annulus defined over Qp in the variable T

with radii |T | ∈ [ωr , ωs
]; its ring of analytic functions, denoted by R[s,r ], is the

completion of Qp[T±] with respect to the norm | · |[s,r ] := max{| · |r , | · |s}. We
also allow r (but not s) to be∞, in which case A1

[s, r ] is interpreted as the rigid
analytic disc in the variable T with radii |T | ≤ ωs ; its ring of analytic functions
R[s,r ] = R[s,∞] is the completion of Qp[T ] with respect to | · |s . Let A be a
Qp-affinoid algebra. Denote by R[s,r ]A the ring of rigid analytic functions on the
relative annulus (or disc if r =∞) Max(A)× A1

[s, r ]; its ring of analytic functions
is R[s,r ]A :=R[s,r ] ⊗̂Qp A. Put

Rr
A :=

⋂
0<s≤r

R[s,r ]A and RA :=
⋃
0<r

Rr
A.

Let k ′ be the residue field of K∞, with F ′ :=W (k ′)[1/p]. Put ẽK := [K∞ : F ′∞].
For 0< s ≤ r , we let R[s,r ](πK ) be the formal substitution of T by πK in the ring

R[s/ẽK ,r/ẽK ]

F ′ ; we set R[s,r ]A (πK ) := R[s,r ](πK ) ⊗̂Qp A. We define Rr
A(πK ), RA(πK )

similarly; the latter is referred to as the relative Robba ring over A for K.
By the theory of fields of norms, there exists a constant C(K ) > 0 such that, for

any 0< r ≤ C(K ), we can equip Rr
A(πK ) with a finite étale Rr

A(πQp) algebra free
of rank [K∞ :Qp,∞] with the Galois group HQp/HK . More generally, for any finite
extensions L ⊇ K ⊇Qp, we can naturally equip Rr

A(πL) with a structure of finite
étale Rr

A(πK )-algebra free of rank [L∞ : K∞] with the Galois group HK /HL for
any 0< r ≤min{C(K ),C(L)}.

There are commuting A-linear actions of 0K on R[s,r ]A (πK ) and of an operator

ϕ :R[s,r ]A (πK )→R[s/p,r/p]
A (πK )

for 0< s ≤ r ≤ C(K ). The actions on the coefficients F ′ are the natural ones, i.e.,
0K through its quotient Gal(F ′/F) and ϕ by the canonical lift of the p-th Frobenius
on k ′. For 0< s≤ r ≤C(K ), ϕ makes R[s/p,r/p]

A (πK ) into a free R[s,r ]A (πK )-module
of rank p, and we obtain a 0K -equivariant left inverse

ψ :R[s/p,r/p]
A (πK )→R[s,r ]A (πK )

by the formula
1
pϕ
−1
◦TrR[s/p,r/p]

A (πK )/ϕ(R[s,r ]A (πK ))
.

The map ψ naturally extends to the maps Rr/p
A (πK )→Rr

A(πK ) for 0< r ≤ C(K )
and RA(πK )→RA(πK ).

Remark 2.1. In fact, these rings are constructed using Fontaine’s rings of p-adic
periods. We don’t have any canonical choice of the parameter πK for general K,



A generalization of Kato’s local 3-conjecture 327

but the ring RA(πK ) and the actions of ϕ, 0K don’t depend on the choice of πK .
More precisely, R(πK ) is defined as a subring of the ring B̃†

rig of p-adic periods
defined in [Berger 2002], and this subring does not depend on the choice of πK ,
and the actions of ϕ, 0K are induced by the natural actions of ϕ, GK on B̃†

rig.
However, for unramified K, once we fix a Zp-basis ζ := {ζpn }n≥0 of Zp(1) :=

lim
←−−n≥0 µpn , we have a natural choice of πK as follows. Let Zp be the integral
closure of Zp in Qp, let Ẽ+ := lim

←−−n≥0 Zp/pZp be the projective limit with respect
to the p-th power map, and let [−] : Ẽ+→ W (̃E+) be the Teichmüller lift to the
ring W (̃E+) of Witt vectors. Under the fixed ζ, we can choose

πK = πQp = πζ := [(ζ̄pn )n≥0] − 1 ∈W (̃E+)⊆ B̃†
rig,

and then ϕ and 0Qp act by ϕ(πζ ) = (1+ πζ )p
− 1 and γ (πζ ) = (1+ πζ )χ(γ )− 1

for γ ∈ 0Qp .

Notation 2.2. From Section 3, we will concentrate on the case K =Qp and fix ζ :=
{ζpn }n≥0 as above. Then we use the notation 0 :=0Qp , π :=πζ and omit (πQp) from
the notation of Robba rings by writing, for example, R[s,r ]A instead of R[s,r ]A (πQp). In
this case, R[s/p,r/p]

A =
⊕

0≤i≤p−1(1+π)
iϕ(R[s,r ]A ), so if f =

∑p−1
i=0 (1+π)

iϕ( fi )

then ψ( f ) = f0. We define the special element t = log(1+ π) ∈ R∞A . We have
ϕ(t)= pt and γ (t)= χ(γ )t for γ ∈ 0.

We first recall the definitions of ϕ-modules over RA(πK ) following [Kedlaya
et al. 2014, Definition 2.2.5].

Definition 2.3. Choose 0 < r0 ≤ C(K ). A ϕ-module over Rr0
A (πK ) is a finite

projective Rr0
A (πK )-module Mr0 equipped with a Rr0/p

A (πK )-linear isomorphism
ϕ∗Mr0 −→∼ Mr0 ⊗Rr0

A (πK )
Rr0/p

A (πK ). A ϕ-module M over RA(πK ) is a base change
to RA(πK ) of a ϕ-module over some Rr0

A (πK ).

For a ϕ-module Mr0 over Rr0
A (πK ) and for 0< s ≤ r ≤ r0, we set

M [s,r ] = Mr0 ⊗Rr0
A (πK )

R[s,r ]A (πK ) and M s
= Mr0 ⊗Rr0

A (πK )
Rs

A(πK ).

For 0<s≤r0, the given isomorphism ϕ∗(Mr0)−→∼ Mr0/p induces a ϕ-semilinear map

ϕ :M s
→ϕ∗M s

−→∼ ϕ∗Mr0⊗Rr0/p
A (πK )

Rs/p
A (πK )−→

∼ Mr0/p
⊗Rr0/p

A (πK )
Rs/p

A (πK )=M s/p,

where the first map, M s ↪→ ϕ∗M s , is given by

x 7→ x ⊗ 1 ∈ M s
⊗Rs

A(πK ),ϕ R
s/p
A (πK )=: ϕ

∗M s,

the second isomorphism is just the associativity of tensor products, and the third
isomorphism is the base change of the given isomorphism ϕ∗Mr0 −→∼ Mr0/p. This
map ϕ also induces an A-linear homomorphism

ψ : M s/p
= ϕ(M s)⊗ϕ(Rs

A(πK ))R
s/p
A (πK )→ M s
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given by ψ(ϕ(m)⊗ f )=m⊗ψ( f ) for m ∈M s and f ∈Rs/p
A (πK ). For a ϕ-module

M over RA(πK ), the maps ϕ : M s
→ M s/p and ψ : M s/p

→ M s naturally extend
to ϕ : M→ M and ψ : M→ M.

We recall the definition of (ϕ, 0)-modules over RA(πK ) following [Kedlaya et al.
2014, Definition 2.2.12].

Definition 2.4. Choose 0 < r0 ≤ C(K ). A (ϕ, 0)-module over Rr0
A (πK ) is a

ϕ-module over Rr0
A (πK ) equipped with a commuting semilinear continuous action

of 0K . A (ϕ, 0)-module over RA(πK ) is a base change of a (ϕ, 0)-module over
Rr0

A (πK ) for some 0< r0 ≤ C(K ).

We can generalize these notions for general rigid analytic space as in [Kedlaya
et al. 2014, Definition 6.1.1]

Definition 2.5. Let X be a rigid analytic space over Qp. A (ϕ, 0)-module over
RX (πK ) is a compatible family of (ϕ, 0)-modules over RA(πK ) for each affinoid
Max(A) of X.

For (ϕ, 0)-modules M, N over RX (πK ), we define M ⊗ N := M ⊗RX (πK ) N to
be the tensor product equipped with the diagonal action of (ϕ, 0K ). We also define
M∨ := HomRX (πK )(M,RX (πK )) to be the dual (ϕ, 0)-module.

For a (ϕ, 0)-module M over RA(πK ), we define

rM := rkRA(πK ) M ∈Map(Spec(RA(πK )),Z≥0)

to be the rank of M, where Map(−,−) is the set of continuous maps and Z≥0

is equipped with the discrete topology. We will see later (in Remark 2.16) that
rM is in fact in Map(Spec(A),Z≥0), i.e., we have rM = pr ◦ fM for unique fM ∈

Map(Spec(A),Z≥0), where pr :Spec(RA(πK ))→Spec(A) is the natural projection.
We also let rM := fM .

The importance of (ϕ, 0)-modules follows from the next theorem.

Theorem 2.6 [Kedlaya and Liu 2010, Theorem 3.11]. Let V be a vector bundle
over X equipped with a continuous OX -linear action of GK . Then there is functori-
ally associated to V a (ϕ, 0)-module Drig(V ) over RX (πK ). The rule V 7→ Drig(V )
is fully faithful and exact, and it commutes with base change in X.

For example, we have a canonical isomorphism Drig(A(k)) = RA(πK )(k) for
k ∈ Z.

From Section 3, we will concentrate on the case where K = Qp and M is a
rank-one (ϕ, 0)-module over RX . Here, we recall the result of [Kedlaya et al. 2014]
concerning the classification of rank-one (ϕ, 0)-modules. Actually, they obtained a
similar result for general K, but we don’t recall it since we don’t use it.
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Definition 2.7. For a continuous homomorphism δ :Q×p → 0(X,OX )
×, we define

RX (δ) to be the rank-one (ϕ, 0)-module RX · eδ over RX with ϕ(eδ)= δ(p)eδ and
γ (eδ)= δ(χ(γ ))eδ for γ ∈ 0.

Theorem 2.8 [Kedlaya et al. 2014, Theorem 6.1.10]. Let M be a rank-one (ϕ, 0)-
module over RX . Then there exist a continuous homomorphism δ :Q×p →0(X,OX )

×

and an invertible sheaf L on X, the pair of which is unique up to isomorphism, such
that M −→∼ RX (δ)⊗OX L.

Notation 2.9. (i) For δ, δ′ :Q×p → 0(X,OX )
×, we fix isomorphisms

RX (δ)⊗RX (δ
′)−→∼ RX (δδ

′) by eδ ⊗ eδ′ 7→ eδδ′,

RX (δ)
∨
−→∼ RX (δ

−1) by e∨δ 7→ eδ−1 .

(ii) For k ∈ Z, we define a continuous homomorphism xk
: Q×p → 0(X,OX )

×
:

y 7→ yk. Define |x | : Q×p → 0(X,OX )
×
: p 7→ p−1, a 7→ 1 for a ∈ Z×p .

Then the homomorphism x |x | corresponds to the Tate twist, i.e., we have an
isomorphism RX (1) −→∼ RX (x |x |). When we fix a generator ζ ∈ Zp(1), we
identify RX (1)=RX (x |x |) by e1 7→ ex |x |.

We next recall some cohomology theories concerning (ϕ, 0)-modules. Denote
by 1 the largest p-power torsion subgroup of 0K . Fix γ ∈ 0K , whose image
in 0K /1 is a topological generator. For a 1-module M, put M1

= {m ∈ M |
σ(m)= m for all σ ∈1}.

Definition 2.10. For a (ϕ, 0)-module M over RA(πK ), we define the complexes
C •ϕ,γ (M) and C •ψ,γ (M) of A-modules concentrated in degree [0, 2], and define a
morphism 9M between them as follows:

C •ϕ,γ (M)=
[
M1 (γ−1,ϕ−1)
−−−−−−→ M1

⊕M1 (ϕ−1)⊕(1−γ )
−−−−−−−→ M1

]
9M

y yid

yid⊕−ψ
y−ψ

C •ψ,γ (M)=
[
M1 (γ−1,ψ−1)
−−−−−−→ M1

⊕M1 (ψ−1)⊕(1−γ )
−−−−−−−−→ M1

] (1)

The map 9M is a quasi-isomorphism by Proposition 2.3.4 of [Kedlaya et al. 2014].

For i ∈ Z≥0, define Hi
ϕ,γ (M) for the i-th cohomology of C •ϕ,γ (M), called the

(ϕ, 0)-cohomology of M. We similarly define Hi
ψ,γ (M) to be the i-th cohomol-

ogy of C •ψ,γ (M), called the (ψ, 0)-cohomology of M. In this article, we freely
identify C •ϕ,γ (M) (resp. Hi

ϕ,γ (M)) with C •ψ,γ (M) (resp. Hi
ψ,γ (M)) via the quasi-

isomorphism 9M .
More generally, for h = ϕ,ψ and any module N with commuting actions of h

and 0, we similarly define the complexes C •h,γ (N ) and denote the resulting cohomol-
ogy by Hi

h,γ (N ). We denote by [x, y] ∈H1
h,γ (N ) (resp. [z] ∈H2

h,γ (N )) the element
represented by a 1-cocycle (x, y) ∈ N1

⊕ N1 (resp. by z ∈ N1). The functor
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N 7→ C •h,γ (N ) from the category of topological A-modules which are Hausdorff
with commuting continuous actions of h, 0K to the category of complexes of
A-modules is independent of the choice of γ up to canonical isomorphism; i.e., for
another choice γ ′ ∈ 0K , we have a canonical isomorphism

C •h,γ (N ) =
[
N1 (γ−1,h−1)
−−−−−−→ N1

⊕ N1 (h−1)⊕(1−γ )
−−−−−−−→ N1

]
ιγ,γ ′

y yid

y γ ′−1
γ−1 ⊕id

y γ ′−1
γ−1

C •h,γ ′(N )=
[
N1 (γ ′−1,h−1)
−−−−−−→ N1

⊕ N1 (h−1)⊕(1−γ ′)
−−−−−−−−→ N1

] (2)

For a commutative ring R, let us denote by D−(R) the derived category of
bounded-below complexes of R-modules. We use the same notation, C •h,γ (N ) ∈
D−(A), for the object represented by this complex.

Let V be a finite projective A-module with a continuous A-linear action of GK .
Let us denote by C •cont(GK , V ) the complex of continuous GK -cochains with values
in V, and let Hi (K , V ) be the cohomology. By Theorem 2.8 of [Pottharst 2013],
we have a functorial isomorphism

C •cont(GK , V )−→∼ C •ϕ,γ (Drig(V ))

in D−(A) and a functorial A-linear isomorphism

Hi (K , V )−→∼ Hi
ϕ,γ (Drig(V )).

Definition 2.11. For (ϕ, 0)-modules M, N over RA(πK ), we have a natural A-
bilinear cup product morphism

C •ϕ,γ (M)×C •ϕ,γ (N )→ C •ϕ,γ (M ⊗ N );

see Definition 2.3.11 of [Kedlaya et al. 2014]. This induces an A-bilinear graded
commutative cup product pairing

∪ : Hi
ϕ,γ (M)×H j

ϕ,γ (N )→ Hi+ j
ϕ,γ (M ⊗ N ).

For example, this is defined by the formulae

x ∪ [y] := [x ⊗ y] for i = 0, j = 2,

[x1, y1] ∪ [x2, y2] := [x1⊗ γ (y2)− y1⊗ϕ(x2)] for i = j = 1.

Remark 2.12. The definition of the cup product for H1
ϕ,γ (−)×H1

ϕ,γ (−)→H2
ϕ,γ (−),

given in our previous paper, [Nakamura 2014a], is (−1) times the above definition.
The above one seems to be the standard one in the literature. All the results of [Naka-
mura 2014a] hold without any changes when we use the above definition, except
Lemmas 2.13 and 2.14, where we need to multiply by (−1) for the commutative
diagrams there to be commutative.
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Definition 2.13. Let us denote by M∗ := M∨(1) the Tate dual of M. Using the
cup product, the evaluation map ev : M∗⊗M→RA(πK )(1) : f ⊗ x 7→ f (x), the
comparison isomorphism H2(K , A(1))−→∼ H2

ϕ,γ (RA(πK )(1)) and Tate’s trace map
H2(K , A(1))−→∼ A, one gets the Tate duality pairings

C •ϕ,γ (M
∗)×C •ϕ,γ (M)→ C •ϕ,γ (M

∗
⊗M)→ C •ϕ,γ (RA(πK )(1)))

→H2
ϕ,γ (RA(πK )(1))[−2] −→∼ H2(K , A(1))[−2] −→∼ A[−2]

and

〈−,−〉 : Hi
ϕ,γ (M

∗)×H2−i
ϕ,γ (M)→ A.

Remark 2.14. In the Appendix, we explicitly describe the isomorphism

H2
ϕ,γ (RA(1))−→∼ H2(GQp , A(1))−→∼ A

using the residue map; see Proposition 5.2.

One of the main results of [Kedlaya et al. 2014] which is crucial to formulating
our conjecture is the following.

Theorem 2.15 [Kedlaya et al. 2014, Theorems 4.4.3, 4.4.4]. Let M be a (ϕ, 0)-
module over RA(πK ).

(1) C •ϕ,γ (M)∈ D[0,2]perf (A). In particular, the cohomology groups Hi
ϕ,γ (M) are finite

A-modules.

(2) Let A→ A′ be a continuous morphism of Qp-affinoid algebras. Then the
canonical morphism C •ϕ,γ (M)⊗

L
A A′→C •ϕ,γ (M ⊗̂A A′) is a quasi-isomorphism.

In particular, if A′ is flat over A, we have Hi
ϕ,γ (M)⊗A A′ −→∼ Hi

ϕ,γ (M ⊗̂A A′).

(3) (Euler–Poincaré characteristic formula) We have χA(C •ϕ,γ (M))=−[K :Qp]·rM .

(4) (Tate duality) The Tate duality pairing defined in Definition 2.13 induces a
quasi-isomorphism

C •ϕ,γ (M)−→∼ R HomA(C •ϕ,γ (M
∗), A)[−2].

Remark 2.16. By the equality of (3), the rank rM ∈Map(Spec(RA(πK )),Z≥0) is
contained in Map(Spec(A),Z≥0).

Let X be a rigid analytic space over Qp and let M be a (ϕ, 0)-module over
RX (πK ). By (1) and (2) of the above theorem, the correspondence U 7→Hi

ϕ,γ (M |U )
for each affinoid open U in X defines a coherent OX -module for each i ∈ [0, 2],
which we also denote by Hi

ϕ,γ (M).
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2B. Bloch–Kato exponential for (ϕ, 0)-modules. For any Qp-representation V
of GK , Bloch and Kato [1990] defined the diagram with exact rows

0−→ H0(K , V )
x 7→x
−−→ DK

cris(V )
ϕ=1 x 7→x̄
−−→ tV (K )

expV
−−→ H1

e(K , V ) −→ 0yid

yx 7→x
yx 7→(0,x)

yx 7→x

0−→ H0(K , V )
x 7→x
−−→ DK

cris(V )
f
−→

DK
cris(V )
⊕ tV (K )

g
−→ H1

f (K , V )−→ 0

(3)

with
f (x, y)= ((1−ϕ)x, x̄) and g = exp f,V ⊕ expV ,

which is associated to the tensor product of V (over Qp) with the Bloch–Kato
fundamental exact sequences

0−→Qp
x 7→(x,x)
−−−−→ Bϕ=1

cris ⊕ B+dR
(x,y) 7→x−y
−−−−−−→ BdR −→ 0yid

y(x,y) 7→(x,y) yx 7→(0,x)

0−→Qp
x 7→(x,x)
−−−−→ Bcris⊕ B+dR

(x,y) 7→((1−ϕ)x,x−y)
−−−−−−−−−−−−→ Bcris⊕ BdR −→ 0

in which Bcris and BdR are Fontaine’s rings of p-adic periods. We set DK
cris(V ) :=

(Bcris⊗Qp V )GK, tV (K ) := (BdR⊗Qp V )GK /(B+dR⊗Qp V )GK,

H1
e(K , V ) := Im(expV : tV (K )→ H1(K , V ))

and

H1
f (K , V ) := Im(exp f,V ⊕ expV : DK

cris(V )⊕ tV (K )→ H1(K , V )).

The boundary map
expV : tV (K )→ H1

e(K , V )

is called the Bloch–Kato exponential, and its definition is generalized to (ϕ, 0)-
modules over the Robba ring in [Nakamura 2014a]. To formulate the local ε-
conjecture, we also need another boundary map,

exp f,V : DK
cris(V )→ H1

f (K , V ),

which is not studied in [Nakamura 2014a].
The aim of this subsection is to define the map exp f,M for all the (ϕ, 0)-

modules M over the Robba ring purely in terms of (ϕ, 0)-modules (Proposi-
tions 2.21 and 2.23), to prove Bloch–Kato duality for them (Proposition 2.24),
to compare our maps expM and exp f,M with the Bloch–Kato maps for the étale
case (Proposition 2.26), all of which we need in order to generalize the local
ε-conjecture for (ϕ, 0)-modules. The explicit formulae for the maps expM and
exp f,M (Proposition 2.23) is especially important in the proof of our main theorem
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(Theorem 1.3). We apologize to the readers that the arguments are slightly longer
than §2 of [Nakamura 2014a], but we think that these arguments are needed. This
is because, to define the map exp f,M , we need some additional arguments (Lemmas
2.17, 2.18 and 2.20), and, to obtain the precise explicit formulae for the maps expM
and exp f,M , it seems to be safer not to omit any steps of the proofs.

Define n(K )≥1 to be the minimal integer n such that 1/pn−1
≤ ẽK C(K ), and put

R(n)
A (πK )=R1/(pn−1ẽK )

A (πK )

for n ≥ n(K ). For n ≥ n(K ), one has a 0K -equivariant A-algebra homomorphism

ιn :R(n)
A (πK )→ (Kn ⊗Qp A)[[t]]

such that

ιn(π)= ζpn · exp
( t

pn

)
− 1 and ιn(a)= ϕ−n(a) (a ∈ F ′).

For n ≥ n(K ), we have the commutative diagrams

R(n)
A (πK )

ιn
−→ (Kn ⊗Qp A)[[t]]yϕ ycan

R(n+1)
A (πK )

ιn+1
−−→ (Kn+1⊗Qp A)[[t]]

and
R(n+1)

A (πK )
ιn+1
−−→ (Kn+1⊗Qp A)[[t]]yψ y 1

p ·TrKn+1/Kn

R(n)
A (πK )

ιn
−→ (Kn ⊗Qp A)[[t]]

in which can is the canonical injection and 1
p ·TrKn+1/Kn is defined by∑

k≥0

ak tk
7→

∑
k≥0

1
p
·TrKn+1/Kn (ak)tk .

Let M be a (ϕ, 0)-module over RA(πK ) obtained as a base change of a (ϕ, 0)-
module Mr0 over Rr0

A (πK ) for some 0< r0≤ c(K ). Define n(M)∈Z≥n(K ) to be the
minimal integer such that 1/pn−1

≤ ẽK r0. Put M (n)
= M1/(pn−1ẽK ) for n ≥ n(M).

Then ϕ and ψ induce ϕ : M (n)
→ M (n+1) and ψ : M (n+1)

→ M (n), respectively.
Define

D+dif,n(M)=M (n)
⊗R(n)

A (πK ),ιn
(Kn⊗Qp A)[[t]]

(
resp. Ddif,n(M)= D+dif,n(M)[1/t]

)
,

which is a finite projective (Kn ⊗Qp A)[[t]]-module (resp. (Kn ⊗Qp A)((t))-module)
with a semilinear action of 0K . We also let ιn : M (n)

→ D+dif,n(M) be the map
defined by x 7→ x ⊗ 1.
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Using the base change of the Frobenius structure ϕ∗M (n)
−→∼ M (n+1) by the

map ιn+1, we obtain a 0K -equivariant (Kn+1⊗Qp A)[[t]]-linear isomorphism

D+dif,n(M)⊗(Kn⊗Qp A)[[t]] (Kn+1⊗Qp A)[[t]]

−→∼ ϕ∗(M (n))⊗R(n+1)
A (πK ),ιn+1

(Kn+1⊗Qp A)[[t]]

−→∼ M (n+1)
⊗R(n+1)

A (πK ),ιn+1
(Kn+1⊗Qp A)[[t]] = D+dif,n+1(M).

Using this isomorphism, we obtain 0K -equivariant (Kn⊗Qp A)[[t]]-linear morphisms

can : D+dif,n(M)
x 7→x⊗1
−−−−→D+dif,n(M)⊗(Kn⊗Qp A)[[t]] (Kn+1⊗Qp A)[[t]] −→∼ D+dif,n+1(M)

and
1
p
·TrKn+1/Kn : D+dif,n+1(M)−→

∼ D+dif,n(M)⊗(Kn⊗Qp A)[[t]] (Kn+1⊗Qp A)[[t]]

x⊗ f 7→ 1
p ·TrKn+1/Kn ( f )x

−−−−−−−−−−−−→D+dif,n(M).

These naturally induce can : Ddif,n(M) → Ddif,n+1(M) and 1
p · TrKn+1/Kn :

Ddif,n+1(M)→ Ddif,n(M), and we have the commutative diagrams

M (n) ιn
−→ D+dif,n(M)yϕ ycan

M (n+1) ιn+1
−−→ D+dif,n+1(M)

and
M (n+1) ιn+1

−−→ D+dif,n+1(M)yψ y 1
p ·TrKn+1/Kn

M (n) ιn
−→ D+dif,n(M)

Put D(+)
dif (M) := lim

−−→n≥n(M) D(+)
dif,n(M), where the transition map is can : D(+)

dif,n(M)→
D(+)

dif,n+1(M). Then we have

D(+)
dif (M)= D(+)

dif,n(M)⊗(Kn⊗Qp A)[[t]] (K∞⊗Qp A)[[t]]

for any n ≥ n(M), where we define (K∞⊗Qp A)[[t]] =
⋃

m≥1(Km ⊗Qp A)[[t]].
For an A[0K ]-module N, we define a complex of A-modules concentrated in

degree [0, 1] by
C •γ (N )=

[
N1 γ−1
−−→ N1

]
and denote by Hi

γ (N ) the cohomology of C •γ (N ). If N is a topological Hausdorff
A-module with a continuous action of 0K , the complex C •γ (N ) is also independent
of the choice of γ up to canonical isomorphism.
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Let M be a (ϕ, 0)-module over RA(πK ). For n ≥ n(M) and M0 = M,M[1/t],
we define a complex C̃ •ϕ,γ (M

(n)
0 ) concentrated in degree [0, 2] by

C̃ •ϕ,γ (M
(n)
0 ) :=

[
M (n),1

0
(γ−1)⊕(ϕ−1)
−−−−−−−→M (n),1

0 ⊕M (n+1),1
0

(ϕ−1)⊕(1−γ )
−−−−−−−→M (n+1),1

0

]
.

Of course, we have lim
−−→n C̃ •ϕ,γ (M

(n)
0 )= C •ϕ,γ (M0), where the transition map is the

natural one induced by the canonical inclusion M (n)
0 ↪→ M (n+1)

0 . We define another
complex

C (ϕ),•
ϕ,γ (M0) := lim

−−→
n,ϕ

C̃ •ϕ,γ (M
(n)
0 ),

where the transition map is the natural one induced by ϕ : M (n)
0 → M (n+1)

0 . We
similarly define

C (ϕ),•
γ (M0) := lim

−−→
n,ϕ

C •γ (M
(n)
0 )

and denote by H(ϕ),i
ϕ,γ (M0) (resp. H(ϕ),i

γ (M0)) the cohomology of C (ϕ),•
ϕ,γ (M0) (resp.

C (ϕ),•
γ (M0)). For n ≥ n(M), we equip C •γ (M

(n)
0 ) with a structure of a complex of

F-vector spaces by ax := ϕn(a)x for a ∈ F, x ∈ C •γ (M
(n)
0 ). Then C (ϕ),•

γ (M0) (resp.
H(ϕ),i
γ (M0)) is also naturally equipped with a structure of a complex of F-vector

spaces (resp. an F-vector space).
By the compatibility of ϕ : M (n) ↪→ M (n+1) and can : D+dif,n(M) ↪→ D+dif,n+1(M)

with respect to the map ιn : M (n)
→ D+dif,n(M), the map ιn induces canonical maps

ι : C (ϕ),•
γ (M)→ C •γ (D

+

dif(M)) and ι : C (ϕ),•
γ (M[1/t])→ C •γ (Ddif(M)),

which are (F ⊗Qp A)-linear.

Lemma 2.17. For n ≥ n(M), the natural maps

C •γ (D
(+)
dif,n(M))→ C •γ (D

(+)
dif,n+1(M)), C •γ (M

(n)
0 )→ C •γ (M

(n+1)
0 )

and
C̃ •ϕ,γ (M

(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )

for M0 = M,M[1/t], which are induced by ϕ, are quasi-isomorphism. Similarly,
the maps

C •γ (D
(+)
dif,n(M))→ C •γ (D

(+)
dif (M)), C •γ (M

(n)
0 )→ C (ϕ),•

γ (M0)

and
C̃ •ϕ,γ (M

(n)
0 )→ C (ϕ),•

ϕ,γ (M0)

for M0 = M,M[1/t] are quasi-isomorphism.

Proof. The latter statement is trivial if we can prove the first statement. Let’s
prove the first statement. We first note that γ − 1 : (M (n)

0 )ψ=0
→ (M (n)

0 )ψ=0 is an
isomorphism for n≥ n(M)+1 by Theorem 3.1.1 of [Kedlaya et al. 2014] (precisely,
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this fact for M0 = M[1/t] follows from the proof of this theorem). Taking the base
change of this isomorphism by the map ιn :R(n)

A (πK )→ (Kn ⊗Qp A)[[t]], we also
have that

γ − 1 : (D(+)
dif,n(M))

1
p ·TrKn/Kn−1=0

→ (D(+)
dif,n(M))

1
p ·TrKn/Kn−1=0

is an isomorphism for n ≥ n(M)+ 1. Using these facts, we prove the lemma as
follows. Here, we only prove that the map C •γ (M

(n)
0 )→ C •γ (M

(n+1)
0 ) induced by

ϕ : M (n)
0 → M (n+1)

0 is an quasi-isomorphism for n ≥ n(M) since the other cases
can be proved in the same way. Since we have a 0K -equivariant decomposition
M (n+1)

0 = ϕ(M (n)
0 )⊕ (M (n+1)

0 )ψ=0, we obtain a decomposition

C •γ (M
(n+1)
0 )= ϕ(C •γ (M

(n)
0 ))⊕C •γ ((M

(n+1)
0 )ψ=0).

Since the complex C •γ ((M
(n+1)
0 )ψ=0) is acyclic by the above remark and ϕ :M (n)

0 →

M (n+1)
0 is an injection, the map ϕ :C •γ (M

(n)
0 )→C •γ (M

(n+1)
0 ) is a quasi-isomorphism.

�

For another canonical map, C •γ (M
(n)
0 ) → C •γ (M0), which is induced by the

canonical inclusion M (n) ↪→ M, we can show the following lemma.

Lemma 2.18. For n ≥ n(M) and M0 = M,M[1/t], the inclusion

H0
γ (M

(n)
0 ) ↪→ H0

γ (M0)

induced by the canonical inclusion M (n)
0 ↪→ M0 is an isomorphism.

Proof. It suffices to show that H0
γ (M

(n)
0 ) ↪→H0

γ (M
(n+1)
0 ) is an isomorphism for each

n ≥ n(M). We first prove this claim when A is a finite Qp-algebra. In this case, we
may assume A=Qp. Since we have an inclusion ιn :H0

γ (M
(n)
0 ) ↪→H0

γ (Ddif(M)) and
the latter is a finite-dimensional Qp-vector space, H0

γ(M
(n)
0 ) is also finite-dimensional.

Since ϕ : C •γ (M
(n)
0 )→ C •γ (M

(n+1)
0 ) is a quasi-isomorphism for n ≥ n(M) by the

above lemma, we get an isomorphism ϕ : H0
γ (M

(n)
0 )−→∼ H0

γ (M
(n+1)
0 ). In particular,

the dimension of H0
γ (M

(n)
0 ) is independent of n ≥ n(M). Hence, the canonical

inclusion H0
γ (M

(n)
0 ) ↪→ H0

γ (M
(n+1)
0 ) is an isomorphism.

We next prove the claim for general A. By Lemma 6.4 of [Kedlaya and Liu 2010],
there exists a strict inclusion A ↪→

∏k
i=1 Ai of topological rings, in which each Ai

is a finite algebra over a complete discretely valued field. If we similarly define the
rings R(n)

Ai
(πK ), RAi (πK ), we can generalize the notions concerning (ϕ, 0)-modules

for RAi (πK ). In particular, the above claim holds for M0,i := M0 ⊗̂A Ai for each i .
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Consider the following canonical diagram with exact rows:

0−→ M (n)
0 −→ M (n+1)

0 −→ M (n+1)
0 /M (n)

0 −→ 0y y y
0−→

∏k
i=1 M (n)

0,i −→
∏k

i=1 M (n+1)
0,i −→

∏k
i=1 M (n+1)

0,i /M (n)
0,i −→ 0

If we can show that the right vertical arrow is an injection, then the claim for A
follows from the claim for each Ai by a simple diagram chase. To show that the
right vertical arrow is an injection, we may assume that M =RA(πK ) since M (n) is
finite projective over R(n)

A (πK ) for each n. Then the natural map

R(n+1)
A (πK )[1/t]/R(n)

A (πK )[1/t] →
k∏

i=1

R(n+1)
Ai

(πK )[1/t]/R(n)
Ai
(πK )[1/t]

is an injection since the inclusion A ↪→
∏k

i=1 Ai is strict, which proves the claim
for general A, hence proves the lemma. �

Remark 2.19. We don’t know whether the natural map H1
γ (M

(n)
0 ) → H1

γ (M0)

induced by the canonical inclusion M (n)
0 ↪→ M0 is an isomorphism or not.

For the (ϕ, 0)-cohomology, we can prove the following lemma.

Lemma 2.20. (1) For n ≥ n(M) and for M0 = M,M[1/t], the map

C̃ •ϕ,γ (M
(n)
0 )→ C •ϕ,γ (M0)

induced by the canonical inclusion M (n)
0 ↪→ M0 is a quasi-isomorphism.

(2) In D−(A), the isomorphism

C •ϕ,γ (M0)−→
∼ C (ϕ),•

ϕ,γ (M0),

which is obtained as the composition of the inverse of the isomorphism in (1),
C̃ •ϕ,γ (M

(n)
0 ) −→∼ C •ϕ,γ (M0), with the isomorphism C̃ •ϕ,γ (M

(n)
0 ) −→∼ C (ϕ),•

ϕ,γ (M0)

in Lemma 2.17, is independent of the choice of n ≥ n(M).

Proof. For n ≥ n(M), we define a map f• : C̃ •ϕ,γ (M
(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )[+1] by

f1 : M
(n),1
0 ⊕M (n+1),1

0 → M (n+1),1
0 : (x, y) 7→ y,

f2 : M
(n+1),1
0 → M (n+1),1

0 ⊕M (n+2),1
0 : x 7→ (x, 0).

This gives a homotopy between

ϕ : C̃ •ϕ,γ (M
(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )

and
can : C̃ •ϕ,γ (M

(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )
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induced by the canonical inclusion M (n)
0 ↪→ M (n+1)

0 . Hence, can : C̃ •ϕ,γ (M
(n)
0 )→

C̃ •ϕ,γ (M
(n+1)
0 ) is also an isomorphism by Lemma 2.17, and, by taking the limit, the

map C̃ •ϕ,γ (M
(n)
0 )→ C •ϕ,γ (M0) is also an isomorphism, which proves (1).

In a similar way, we can show that the map can :C (ϕ),•
ϕ,γ (M0)→C (ϕ),•

ϕ,γ (M0) induced
by the canonical inclusions can :M (n)

0 ↪→M (n+1)
0 for any n≥ n(M) is homotopic to

the identity map. Hence, we obtain the following commutative diagram in D−(A)
for any n ≥ n(M):

C̃ •ϕ,γ (M
(n)
0 ) −→ C (ϕ),•

ϕ,γ (M0)ycan
yid

C̃ •ϕ,γ (M
(n+1)
0 )−→ C (ϕ),•

ϕ,γ (M0)

From this we obtain the second statement in the lemma. �

We define a morphism

f : C •ϕ,γ (M0)→ C (ϕ),•
γ (M0)

in D−(A) as the composition of the isomorphism C •ϕ,γ (M0) −→
∼ C (ϕ),•

ϕ,γ (M0) in
Lemma 2.20(2) with the map C (ϕ),•

ϕ,γ (M0)→ C (ϕ),•
γ (M0), which is induced by

C̃ •ϕ,γ (M
(n)
0 )=

[
M (n),1

0
(γ−1)⊕(ϕ−1)
−−−−−−−→ M (n),1

0 ⊕M (n+1),1
0

(ϕ−1)⊕(1−γ )
−−−−−−−→ M (n+1),1

0

]y yid

y(x,y) 7→x

C •γ (M
(n)
0 ) =

[
M (n),1

0
γ−1
−−→ M (n),1

0

]
We define

g : C •ϕ,γ (M)
f
→C (ϕ),•

γ (M) ι
→C •γ (D

+

dif(M))

and let
can : C (ϕ),•

γ (M0)→ C (ϕ),•
γ (M0)

be the map induced by the canonical inclusion can : M (n)
0 → M (n+1)

0 for each
n ≥ n(M). Under this notation, we prove the following proposition, which is a
modified version of Theorem 2.8 of [Nakamura 2014a].

Proposition 2.21. We have a functorial map between the two distinguished triangles

C •ϕ,γ (M)
d1
−→

C •ϕ,γ (M[1/t])
⊕C •γ (D

+

dif(M))
d2
−→ C •γ (Ddif(M))

[+1]
−−→yid

y f⊕id
yx 7→(0,x)

C •ϕ,γ (M)
d3
−→

C (ϕ),•
γ (M[1/t])
⊕C •γ (D

+

dif(M))
d4
−→

C (ϕ),•
γ (M[1/t])
⊕C •γ (Ddif(M))

[+1]
−−→

(4)
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with
d1(x)= (x, g(x)), d2(x, y)= g(x)− y,

d3(x)= ( f (x), g(x)), d4(x, y)= ((can− 1)x, g(x)− y).

Remark 2.22. In §2 of [Nakamura 2014a], we (essentially) proved that the top
horizontal line in the proposition is a distinguished triangle. For the application to
the local ε-conjecture, we also need the bottom triangle, which involves DK

cris(M) :=
H0
γ (M[1/t]).

Proof of Proposition 2.21. We first show that the top horizontal line is a distinguished
triangle. Actually, this is the content of Theorem 2.8 of [Nakamura 2014a], but
we briefly recall the proof since we also use it to prove that the bottom line is a
distinguished triangle. In this proof, we assume 1= {1} for simplicity; the general
case follows by just taking the 1-fixed parts.

For n ≥ n(M), we have the exact sequence of A-modules

0→ M (n) c1
−→M (n)

[1/t]⊕
∏
m≥n

D+dif,m(M)
c2
−→

⋃
k≥0

∏
m≥n

1
tk D+dif,m(M)→ 0 (5)

with

c1(x)= (x, (ιm(x))m≥n) and c2(x, (ym)m≥n)= (ιm(x)− ym)m≥n

by Lemma 2.9 of [Nakamura 2014a] (precisely, we proved it when A is a finite
Qp-algebra, but we can prove it for general A in the same way). For n ≥ n(M) and
k ≥ 0, we define a complex C̃ •ϕ,γ

( 1
tk D+dif,n(M)

)
concentrated in degree in [0, 2] by[∏

m≥n

1
tk D+dif,m(M)

b0
−→

∏
m≥n

1
tk D+dif,m(M) ⊕

∏
m≥n+1

1
tk D+dif,m(M)

b1
−→

∏
m≥n+1

1
tk D+dif,m(M)

]
(6)

with

b0((xm)m≥n)=
(
((γ − 1)xm)m≥n, (xm−1− xm)m≥n+1

)
and

b1((xm)m≥n, (ym)m≥n+1)= ((xm−1− xm)− (γ − 1)ym)m≥n+1.

Put C̃ •ϕ,γ (Ddif,n(M)) =
⋃

k≥0 C̃ •ϕ,γ
( 1

tk D+dif,n(M)
)
. By the exact sequence (5), we

obtain the following exact sequence of complexes of A-modules:

0→ C̃ •ϕ,γ (M
(n))→ C̃ •ϕ,γ (M

(n)
[1/t])⊕ C̃ •ϕ,γ (D

+

dif,n(M))

→ C̃ •ϕ,γ (Ddif,n(M))→ 0. (7)



340 Kentaro Nakamura

Moreover, the map C •γ (D
+

dif,n(M))→ C̃ •ϕ,γ (D
+

dif,n(M)), which is defined by

D+dif,n(M)
γ−1
−−→ D+dif,n(M)yx 7→(x)m≥n

yx 7→((x)m≥n,0)∏
m≥n D+dif,m(M) −→

∏
m≥n D+dif,m(M)
⊕
∏

m≥n+1 D+dif,m(M)
−→

∏
m≥n+1 D+dif,m(M)

(8)

and the similar map C •γ (Ddif,n(M))→ C̃ •ϕ,γ (Ddif,n(M)) are easily seen to be quasi-
isomorphisms since we have the exact sequence

0→ D(+)
dif,n(M)

x 7→(x)m≥n
−−−−−→

∏
m≥n

D(+)
dif,m(M)

(xm)m≥n 7→(xm−1−xm)m≥n+1
−−−−−−−−−−−−−−→

∏
m≥n+1

D(+)
dif,m(M)→ 0. (9)

Put C̃ •ϕ,γ (D
(+)
dif (M)) := lim

−−→n,a• C̃ •ϕ,γ (D
(+)
dif,n(M)), where the transition map

a• : C̃ •ϕ,γ (D
(+)
dif,n(M))→ C̃ •ϕ,γ (D

(+)
dif,n+1(M))

is defined by

a0((xm)m≥n)= (xm)m≥n+1,

a1((xm)m≥n, (ym)m≥n+1)= ((xm)m≥n+1, (ym)m≥n+2),

a2((xm)m≥n+1)= (xm)m≥n+2.

We also define C̃ (ϕ),•
ϕ,γ (D(+)

dif (M)) := lim
−−→n,(a′)• C̃ •ϕ,γ (D

(+)
dif,n(M)), where the transition

map (a′)• is defined by

(a′)0((xm)m≥n)= (xm−1)m≥n+1,

(a′)1((xm)m≥n, (ym)m≥n+1)= ((xm−1)m≥n+1, (ym−1)m≥n+2),

(a′)2((xm)m≥n+1)= (xm−1)m≥n+2.

Then it is easy to see that the quasi-isomorphism C •γ (D
(+)
dif,n(M))−→

∼ C̃ •ϕ,γ (D
(+)
dif,n(M))

defined in (8) is compatible with the transition maps a•, (a′)• and C •γ (D
(+)
dif,n(M)) ↪→

C •γ (D
(+)
dif,n+1(M)), hence induces quasi-isomorphisms

C •γ (D
(+)
dif (M))−→

∼ C̃ •ϕ,γ (D
(+)
dif (M)), C •γ (D

(+)
dif (M))−→

∼ C̃ (ϕ),•
ϕ,γ (D

(+)
dif (M)). (10)

For C̃ (ϕ),•
ϕ,γ (D(+)

dif (M)), we also have a left inverse

C̃ (ϕ),•
ϕ,γ (D

(+)
dif (M))→ C •γ (D

(+)
dif (M)) (11)
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of the quasi-isomorphism C •γ (D
(+)
dif (M))→ C̃ (ϕ),•

ϕ,γ (D(+)
dif (M)), which is obtained as

the limit of the map

∏
m≥n D+dif,m(M) −→

∏
m≥n D+dif,m(M)
⊕
∏

m≥n+1 D+dif,m(M)
−→

∏
m≥n+1 D+dif,m(M)y(xm)m≥n 7→xn

y((xm)m≥n,(ym)m≥n+1) 7→xn

D+dif,n(M)
γ−1
−−→ D+dif,n(M)

Taking the limits of the map C̃ •ϕ,γ (M
(n))→ C̃ •ϕ,γ (D

+

dif,n(M)) : x 7→ (ιm(x))m≥n0

(n0 = n, n+ 1), we obtain the maps

C •ϕ,γ (M)→ C̃ •ϕ,γ (D
+

dif(M)) and C (ϕ),•
ϕ,γ (M)→ C̃ (ϕ),•

ϕ,γ (D
+

dif(M)). (12)

Taking the limit of the exact sequence (7) with respect to the transition map
induced by the canonical inclusion M (n)

0 ↪→ M (n+1)
0 and a•, and taking the quasi-

isomorphism C •γ (D
(+)
dif (M))−→

∼ C̃ •ϕ,γ (D
(+)
dif (M)) in (10), we obtain the following

exact triangle, which is the top horizontal line in the proposition:

C •ϕ,γ (M)
d1
−→C •ϕ,γ (M[1/t])⊕C •γ (D

+

dif(M))
d2
−→C •γ (Ddif(M))

[+1]
−−→ .

On the other hand, since we have

C •ϕ,γ (M
(n)
[1/t])= Cone

(
1−ϕ : C •γ (M

(n)
[1/t])→ C •γ (M

(n+1)
[1/t])

)
[−1]

for n ≥ n(M) (where we define Cone( f : M •
→ N •)[−1]n = Mn

⊕ N n−1 and
d : Mn

⊕ N n−1
→ Mn+1

⊕ N n
: (x, y) 7→ (dM(x),− f (x)− dN (y))), taking the

limit of the exact sequence (7) with respect to the transition map induced by a′
•

and
ϕ : M (n)

0 ↪→ M (n+1)
0 , and taking the left inverse C̃ (ϕ),•

ϕ,γ (D(+)
dif (M))→ C •γ (D

(+)
dif (M))

in (11), and identifying C •ϕ,γ (M)−→∼ C (ϕ),•
ϕ,γ (M) by Lemma 2.20(2), we obtain the

following exact triangle, which is the bottom horizontal line in the proposition:

C •ϕ,γ (M)
d3
−→C (ϕ),•

γ (M[1/t])⊕C •γ (D
+

dif(M))
d4
−→C (ϕ),•

γ (M[1/t])⊕C •γ (Ddif(M))
[+1]
−−→ .

Here d3(x)= ( f (x), g(x)) and d4(x, y)= ((can− 1)(x), g(x)− y), which proves
the proposition. �

We next recall some notions concerning p-adic Hodge theory for (ϕ, 0)-modules
over the Robba ring. For a (ϕ, 0)-module M over RA(πK ), let us define

DK
dR(M) := H0

γ (Ddif(M)) and DK
dR(M)

i
:= DK

dR(M)∩ t i D+dif(M)

for i ∈ Z, and
DK

cris(M) := H0
γ (M[1/t]).
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By Lemma 2.17, ϕ : C •γ (M[1/t])→ C •γ (M[1/t]) induces a ϕ-semilinear automor-
phism

ϕ : DK
cris(M)−→∼ DK

cris(M).

More precisely, by Lemma 2.18, we have Dcris(M)=H0
γ (M

(n)
[1/t]), and ϕ induces

an automorphism ϕ : H0
γ (M

(n)
[1/t]) ϕ

→ H0
γ (M

(n+1)
[1/t]) = H0

γ (M
(n)
[1/t]) for

n ≥ n(M). Using these facts, we define an isomorphism

j1 : DK
cris(M)= H0

γ (M
(n)
[1/t]) ϕ

n
→H0

γ (M
(n)
[1/t])−→∼ H(ϕ),0

γ (M[1/t]),

which does not depend on the choice of n. Then the map ι : C (ϕ),•
γ (M[1/t])→

C •γ (Ddif(M)) induces an (F ⊗Qp A)-linear injection

ι : DK
cris(M)

j1
−→H(ϕ),0

γ (M[1/t]) ι
→ DK

dR(M).

We define another isomorphism

j2 : DK
cris(M)

j1
−→H(ϕ),0

γ (M[1/t]) can
−→H(ϕ),0

γ (M[1/t]),

where H(ϕ),0
γ (M[1/t]) can

−→H(ϕ),0
γ (M[1/t]) is the map induced by

can : C (ϕ),•
γ (M[1/t])→ C (ϕ),•

γ (M[1/t]),

which is an isomorphism by Lemma 2.20. Then we obtain the commutative diagram

DK
cris(M)

1−ϕ
−−→ DK

cris(M)y j1

y j2

H(ϕ),0
γ (M[1/t])

can−id
−−−→ H(ϕ),0

γ (M[1/t])

Let us denote by

expM : D
K
dR(M)→H1

ϕ,γ (M), exp f,M : D
K
cris(M)

j2
−→H(ϕ),0

γ (M[1/t])→H1
ϕ,γ (M)

the boundary maps obtained by taking the cohomology of the exact triangles in
Proposition 2.21. We define

H1
ϕ,γ (M)e = Im

(
DK

dR(M)
expM
−−→H1

ϕ,γ (M)
)

and

H1
ϕ,γ (M) f = Im

(
DK

cris(M)⊕ DK
dR(M)

exp f,M ⊕ expM
−−−−−−−→H1

ϕ,γ (M)
)
.
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We call the latter group the finite cohomology. Put tM(K ) := DK
dR(M)/DK

dR(M)
0.

By Proposition 2.21, we obtain the diagram with exact rows

0−→ H0
ϕ,γ (M)

x 7→x
−−→ DK

cris(M)
ϕ=1 x 7→ι(x)
−−−−→ tM(K )

expM
−−→ H1

ϕ,γ (M)e −→ 0yid

yx 7→x
yx 7→(0,x)

yx 7→x

0−→ H0
ϕ,γ (M)

x 7→x
−−→ DK

cris(M)
d5
−→

DK
cris(M)
⊕ tM(K )

d6
−→ H1

ϕ,γ (M) f −→ 0

(13)

with
d5(x, y)= ((1−ϕ)x, ι(x)) and d6 = exp f,M ⊕ expM ,

where we also define expM : tM(K )→ H1
ϕ,γ (M), which is naturally induced by

expM : DK
dR(M)→ H1

ϕ,γ (M).
By the proof of Proposition 2.21, we obtain the following explicit formulae

for expM and exp f,M , which are very important in the proof of our main theorem
(Theorem 1.3).

Proposition 2.23. (1) For x ∈ DK
dR(M), take x̃ ∈M (n)

[1/t]1 (n≥n(M)) such that

ιm(x̃)− x ∈ D+dif,m(M)

for any m ≥ n (such an x̃ exists by the exact sequence (5) in the proof of
Proposition 2.21). Then we have

expM(x)= [(γ − 1)x̃, (ϕ− 1)x̃] ∈ H1
ϕ,γ (M).

(2) For x ∈ DK
cris(M), take x̃ ∈ M (n)

[1/t]1 (n ≥ n(M)) such that

ιn(x̃) ∈ D+dif,n(M)

and

ιn+k(x̃)−
k∑

l=1

ιn+l(ϕ
n(x)) ∈ D+dif,n+k(M)

for any k ≥ 1 (we remark that we have ϕn(x) ∈ M (n)
[1/t] by Lemma 2.18 and

that such an x̃ exists by the exact sequence (5)). Then we have

exp f,M(x)= [(γ − 1)x̃, (ϕ− 1)x̃ +ϕn(x)] ∈ H1
ϕ,γ (M).

Proof. These formulae directly follow from simple but a little bit long diagram
chases in the proof of Proposition 2.21. For the convenience of the reader, we give
a proof of these formulae.

We first prove formula (1). By the proof of Proposition 2.21, the above exact
triangle in this proposition is obtained by taking the limit of the composition of the
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quasi-isomorphism

C̃ •ϕ,γ (M
(n))

−→∼ Cone
(
C̃ •ϕ,γ (M

(n)
[1/t])⊕ C̃ •ϕ,γ (D

+

dif,n(M))→ C̃ •ϕ,γ (Ddif,n(M))
)
[−1] := C •1

(obtained by the exact sequence (7)) with the inverse of the quasi-isomorphism

C •2 := Cone
(
C̃ •ϕ,γ (M

(n)
[1/t])⊕C •γ (D

+

dif,n(M))→ C •γ (Ddif,n(M))
)
[−1] −→∼ C •1

induced by the quasi-isomorphism C •γ (D
(+)
dif,n(M))→ C̃ •ϕ,γ (D

(+)
dif,n(M)) : x 7→ (x)m≥n

of (10).
By definition of expM(−), for x ∈ H0

γ (Ddif,n(M)), these quasi-isomorphisms
send expM(x)

(
which we see as an element of H1(C̃ •ϕ,γ (M

(n)))
)

to the element
[0, 0, x] ∈ H1(C •2) represented by

(0, 0, x) ∈ C̃1
ϕ,γ (M

(n)
[1/t])⊕C1

γ (D
+

dif,n(M))⊕C0
γ (Ddif,n(M)).

Take x̃ ∈ M (n)
[1/t]1 satisfying the condition in (1). Then it suffices to show that

[(γ −1)x̃, (ϕ−1)x̃] ∈H1(C̃ •ϕ,γ (M
(n))) and [0, 0, x] ∈H1(C •2) are the same element

in H1(C •1). By definition, [(γ − 1)x̃, (ϕ− 1)x̃] is sent to[
((γ − 1)x̃, (ϕ− 1)x̃),

(
(ιm((γ − 1)x̃))m≥n, (ιm((ϕ− 1)x̃))m≥n+1

)
, 0
]

and [0, 0, x] is sent to

[0, 0, (−x)m≥n]

in H1(C •1). Both are represented by elements of

C̃1
ϕ,γ (M

(n)
[1/t])⊕ C̃1

ϕ,γ (D
+

dif,n(M))⊕ C̃0
ϕ,γ (Ddif,n(M))

(we note the sign; for f : C •→ D•, we define D•−1
→ Cone(C •→ D•)[−1] by

x 7→ (−x, 0) and Cone(C •→ D•)[−1] → C • by (x, y) 7→ y). Then it is easy to
check that the difference of these two elements is the coboundary of the element

(x̃, (ιm(x̃)− x)m≥n) ∈ C0
1 = M (n)

[1/t]1⊕
∏
m≥n

D+dif,m(M)
1,

which proves (1).
We next prove (2). The bottom exact triangle in Proposition 2.21 is obtained by

taking the limit of the composition of the quasi-isomorphism C̃ •ϕ,γ (M
(n))−→∼ C •1

defined above with the quasi-isomorphism

C •1 −→∼ Cone
(
C̃ •ϕ,γ (M

(n)
[1/t])⊕C •γ (D

+

dif,n(M))→ C •γ (Ddif,n(M))
)
[−1] := C •3
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induced by the map
∏

m≥n D+dif,m(M) → D+dif,n(M) : (xm)m≥n → xn , with the
inverse of the quasi-isomorphism

C •3 −→∼ Cone
(
C •γ (M

(n)
[1/t])⊕C •γ (D

+

dif,n(M))

→ C •γ (M
(n+1)
[1/t])⊕C •γ (Ddif,n(M))

)
[−1] := C •4,

which is naturally obtained by the identity

C̃ •ϕ,γ (M
(n)
[1/t]))= Cone

(
C •γ (M

(n)
[1/t]) 1−ϕ

−−→C •γ (M
(n+1)
[1/t])

)
[−1].

For x ′ ∈ H0
γ (M

(n+1)
[1/t]), the image of x ′ by the first boundary map of the

cone C •4 is equal to [0, 0, x ′, 0] ∈ H1(C •4), which is represented by the element

(0, 0, x ′, 0)∈C1
γ(M

(n)
[1/t])⊕C1

γ(D
+

dif,n(M))⊕C0
γ(M

(n+1)
[1/t])⊕C0

γ(Ddif,n(M)).

Take x̃ ′ ∈ M (n)
[1/t]1 such that

ιn(x̃ ′)∈ D+dif,n(M) and ιn+k(x̃ ′)−
k∑

l=1

ιn+l(x ′)∈ D+dif,n+k(M) for any k≥1.

Then, by definition of the map j2 : DK
cris(M)−→

∼ H(ϕ),0
γ (M[1/t]) and exp f,M , it suf-

fices to show that the element [(γ−1)x̃ ′, (ϕ−1)x̃ ′+x ′] ∈H1(C̃ •ϕ,γ (M
(n))) is sent to

[0, 0, x ′, 0] ∈ H1(C •4) by the above quasi-isomorphisms. By definition, the element
[(γ − 1)x̃ ′, (ϕ− 1)x̃ ′+ x ′] is sent to

[(γ − 1)x̃ ′, ιn((γ − 1)x̃ ′), (ϕ− 1)x̃ ′+ x ′, 0] ∈ H1(C •4)

by the above quasi-isomorphism. Then it is easy to check that the difference of this
element with [0, 0, x ′, 0] is the coboundary of the element

(x̃ ′, ιn(x̃ ′)) ∈ C0
4 = M (n)

[1/t]1⊕ D+dif,n(M)
1,

which proves formula (2). �

We next generalize the Bloch–Kato duality concerning the finite cohomology for
(ϕ, 0)-modules. Let L= A be a finite extension of Qp, and let M be a (ϕ, 0)-module
over RL(πK ). We say that M is de Rham if the equality dimK DK

dR(M)=[L :Qp]·rM

holds. When M is de Rham, we have a natural L-bilinear perfect pairing

[−,−]dR : DK
dR(M

∗)× DK
dR(M)

( f,x) 7→ f (x)
−−−−−−→ DK

dR(RL(1))

= L ⊗Qp K
1
t

e1

a
t e1 7→

1
[K :Qp ]

(id⊗ trK/Qp )(a)
−−−−−−−−−−−−−−→ L , (14)

which induces natural isomorphisms

DK
dR(M)−→∼ DK

dR(M
∗)∨ and DK

dR(M)
0
−→∼ tM∗(K )∨.
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We remark that, as in the étale case, we have

H1
ϕ,γ (M)e = Ker(H1

ϕ,γ (M)→ H1
ϕ,γ (M[1/t]))

and

H1
ϕ,γ (M) f = Ker(H1

ϕ,γ (M)→ H(ϕ),1
γ (M[1/t]))

under the assumption that M is de Rham.

Proposition 2.24. Let L = A be a finite extension of Qp, and let M be a de Rham
(ϕ, 0)-module over RL(πK ). Then H1

ϕ,γ (M) f is the orthogonal complement of
H1
ϕ,γ (M

∗) f with respect to the Tate duality pairing

〈−,−〉 : H1
ϕ,γ (M

∗)×H1
ϕ,γ (M)→ L .

Proof. We remark that we have dimL H1
ϕ,γ (M) f = dimL(tM(K ))+ dimL H0

ϕ,γ (M)
by the bottom exact sequence of (13). Using this formula for M, M∗, it is easy to
check that we have dimL H1

ϕ,γ (M) f +dimL H1
ϕ,γ (M

∗) f = dimL H1
ϕ,γ (M) under the

assumption that M is de Rham. Hence, it suffices to show that we have 〈x, y〉=0 for
any x ∈H1

ϕ,γ (M
∗) f and y ∈H1

ϕ,γ (M) f by comparing the dimensions. By definition
of H1

ϕ,γ (−) f , this claim follows from Lemma 2.25 below. �

Let M be a (ϕ, 0)-module over RA(πK ) (we don’t need to assume that M is
de Rham). Using the isomorphism j2 : DK

cris(M
∗)−→∼ H(ϕ),0

γ (M∗[1/t]), define an
A-bilinear pairing

h(−,−) : (DK
cris(M

∗)⊕ DK
dR(M

∗))× (H(ϕ),1
γ (M[1/t])⊕H1

γ (D
+

dif(M)))

→ H(ϕ),1
γ (M∗⊗M[1/t])⊕H1

γ (Ddif(M∗⊗M))

by

h((x, y), ([z], [w])) := ([ j2(x)⊗ z], [y⊗w]).

Lemma 2.25. For (x, y) ∈ DK
cris(M

∗)⊕ DK
dR(M

∗) and z ∈ H1
ϕ,γ (M), we have

f2(h((x, y), g(z)))= (exp f,M∗(x)+ expM∗(y))∪ z ∈ H2
ϕ,γ (M

∗
⊗M),

where

g : H1
ϕ,γ (M)→ H(ϕ),1

γ (M)⊕H1
γ (D

+

dR(M))

is induced by d3 and

f2 : H(ϕ),1
γ (M∗⊗M[1/t])⊕H1

γ (Ddif(M∗⊗M))→ H2
ϕ,γ (M

∗
⊗M)

is the second boundary map of the bottom exact triangle of Proposition 2.21.
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Proof. The equality expM∗(y)∪z= f2(h((0, y), g(z))), y∈ DK
dR(M

∗), z∈H1
ϕ,γ (M),

is proved in Lemma 2.13 of [Nakamura 2014a]. Hence, it suffices to show the
equality

exp f,M∗(x)∪ z = f2(h((x, 0), g(z)))

for x ∈ DK
cris(M

∗), whose proof is also just a diagram chase similar to the proof of
Proposition 2.23, hence we omit the proof. �

Finally, we compare our exponential map with the Bloch–Kato exponential map
for p-adic representations V. Here, we assume that A =Qp for simplicity. We can
do the same things for any L = A a finite Qp-algebra.

We want to compare the diagram (3) for V with the diagram (13) for M= Drig(V ).
More generally, as in §2.4 of [Nakamura 2014a], we compare a similar diagram
defined below for a B-pair W = (We,W+dR) with the diagram (13) for the associated
(ϕ, 0)-module Drig(W ). For the definitions of B-pairs and the definition of the
functor W 7→ Drig(W ), which gives an equivalence between the category of B-pairs
and that of (ϕ, 0)-modules over R(πK ), see [Nakamura 2014a, §2.5; Berger 2008a].

Let W = (We,W+dR) be a B-pair for K. Put Wcris := Bcris ⊗Be We, which is
naturally equipped with an action of ϕ. Since we have an exact sequence

0→ Bϕ=1
cris → Bcris

1−ϕ
−−→ Bcris→ 0,

we have a natural quasi-isomorphism (the vertical arrows) between the following
two complexes of GK -modules concentrated in degree [0, 1]:[

We⊕W+dR
(x,y) 7→x−y
−−−−−−→ WdR

]y(x,y) 7→(x,y) yx 7→(0,x)[
Wcris⊕W+dR

(x,y) 7→((1−ϕ)x,x−y)
−−−−−−−−−−−−→ Wcris⊕WdR

]
Put

C •cont(GK ,W ) := Cone
(
C •cont(GK ,We)⊕C •cont(GK ,W+dR)→ C •cont(GK ,WdR)

)
[−1]

and

C •cont(GK ,W )′ := Cone
(
C •cont(GK ,Wcris)⊕C •cont(GK ,W+dR)

→ C •cont(GK ,Wcris)⊕C •cont(GK ,WdR)
)
[−1].

We identify

Hi (K ,W ) := Hi (C •cont(GK ,W ))= Hi (C •cont(GK ,W )′)

by the above quasi-isomorphism. Put DK
cris(W ) := H0(K ,Wcris), DK

dR(W ) :=

H0(K ,WdR), and DK
dR(W )i := DK

dR(W )∩ t i W+dR for i ∈ Z. Taking the cohomology
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of the mapping cones, we obtain the similar diagram with exact rows

0−→ H0(K ,W )
x 7→x
−−→ DK

cris(W )ϕ=1 x 7→x̄
−−→ tW (K )

expW
−−→ H1

e(K ,W ) −→ 0yid

yx 7→x
yx 7→(0,x)

yx 7→x

0−→ H0(K ,W )
x 7→x
−−→ DK

cris(W )
f
−→

DK
cris(W )
⊕ tW (K )

g
−→ H1

f (K ,W )−→ 0

(15)

with
f (x, y)= ((1−ϕ)x, x̄) and g = exp f,W ⊕ expW .

By definition, it is clear that the diagram (15) for the associated B-pair W (V ) :=
(Be⊗Qp V, B+dR⊗Qp V ) is canonically isomorphic to the diagram (3) for V defined
by Bloch–Kato.

Our comparison result is the following.

Proposition 2.26. (1) We have the following functorial isomorphisms:

(i) Hi (K ,W )−→∼ Hi
ϕ,γ (Drig(W )),

(ii) DK
dR(W ) j

−→∼ DK
dR(Drig(W )) j for j ∈ Z,

(iii) DK
cris(W )−→∼ DK

cris(Drig(W )).

(2) The isomorphisms in (1) induce an isomorphism from the diagram (15) for W
to the diagram (13) for Drig(W ).

Proof. We have already proved (i), (ii) of (1) and the comparison of the top
exact sequence in (15) for W with that in (13) for Drig(W ); see Theorem 2.21 of
[Nakamura 2014a] or the references in the proof of this theorem.

Moreover, the isomorphism (iii) may be well known to the experts, but we give
a proof of it since we couldn’t find suitable references. In this proof, we freely use
the notation in §2.5 of [Nakamura 2014a] or in [Berger 2008a]; please see these ref-
erences. We first note that the inclusion (B̃+rig[1/t]⊗Be We)

GK ↪→ DK
cris(W ) induced

by the natural inclusion B̃+rig :=
⋂

n≥0 ϕ
n(B+cris) ↪→ B+cris is an isomorphism since

DK
cris(W ) is a finite-dimensional Qp-vector space on which ϕ acts as an automor-

phism. Moreover, in the same way as the proof of Proposition 3.4 of [Berger 2002],
we can show that the natural inclusion (B̃+rig[1/t]⊗Be We)

GK ↪→ (B̃†
rig[1/t]⊗Be We)

GK

is also an isomorphism. Since we have

B̃†
rig[1/t]⊗Be We = B̃†

rig[1/t]⊗R(πK )[1/t] Drig(W )[1/t]

by definition of Drig(W ), it suffices to show that the natural inclusion

DK
cris(Drig(W )) ↪→

(
B̃†

rig[1/t]⊗R(πK )[1/t] Drig(W )[1/t]
)GK
=: D0

is an isomorphism. Moreover, it suffices to show that D0 ⊆ Drig(W )[1/t]. This
claim is proved as follows. Define R(πK ) ⊗F D0 ⊆ B̃†

rig ⊗F D0, which are
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(ϕ, 0)-modules over R(πK ) (resp. (ϕ,GK )-modules over B̃†
rig). Then, by Théorème

1.2 of [Berger 2009], the natural map

B̃†
rig⊗F D0→ B̃†

rig[1/t]⊗R(πK )[1/t] Drig(W )[1/t] : a⊗ x 7→ a · x

(which is actually an inclusion) of (ϕ,GK )-modules factors through R(πK )⊗F D0→

Drig(W )[1/t]. In particular we have D0 ⊆ Drig(W )[1/t], which proves the claim.
We next prove that the bottom exact sequence in (15) for W is isomorphic to that

in (13) for Drig(W ) by the isomorphisms in (1) of this proposition. Since the other
commutativities are clear, or were already proved in Theorem 2.21 of [Nakamura
2014a], it suffices to show that the following diagram commutes:

DK
cris(Drig(W ))

exp f,Drig(W )

−−−−−−→ H1
ϕ,γ (Drig(W ))y∼ y∼

DK
cris(W )

exp f,W
−−−→ H1(K ,W )

(16)

In the same way as the proof of Theorem 2.21 of [Nakamura 2014a], we assume
that 1= {1}, and using the canonical identifications

H1(K ,W )−→∼ Ext1(B,W ), H1
ϕ,γ (Drig(W ))−→∼ Ext1(R(πK ), Drig(W ))

(where we denote by B = (Be, B+dR) the trivial B-pair). It suffices to show that,
for a ∈ DK

cris(Drig(W )), the extension corresponding to exp f,Drig(W )(a) is sent
to the extension corresponding to exp f,W (a) by the inverse functor W (−) of
Drig(−). We prove this claim as follows. Take n ≥ 1 sufficiently large such
that a ∈ (D(n)

rig (W )[1/t])0K. Take ã ∈ D(n)
rig [1/t] satisfying the condition in (2) of

Proposition 2.23. Then, by (2) of Proposition 2.23, the extension Da corresponding
to exp f,Drig(W )(a) is written by[

0→ Drig(W )
x 7→(x,0)
−−−−→ Drig(W )⊕R(πK )e

(x,ye)7→y
−−−−→R(πK )→ 0

]
such that

ϕ((x, ye))= (ϕ(x)+ϕ(y)((ϕ− 1)ã+ϕn(a)), ϕ(y)e)
and

γ ((x, ye))= (γ (x)+ γ (y)(γ − 1)ã, γ (y)e).

(Here, we remark that there is a mistake in [Nakamura 2014a]; in the proof of
Theorem 2.21 of [Nakamura 2014a], Da should be defined by

ϕ((x, ye))= (ϕ(x)+ϕ(y)(ϕ− 1)ã, ϕ(y)e)
and

γ ((x, ye))= (γ (x)+ γ (y)(γ − 1)ã, γ (y)e).)
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On the other hand, by definition of exp f,W , the extension

Wa :=
(
We,a,W+dR,a :=W+dR⊕ B+dRedR

)
corresponding to exp f,W (a) is defined by

g(x, yedR)= (g(x), g(y)edR)

for x ∈W+dR, y ∈ B+dR, g ∈ GK , and We,a is defined as the kernel of the surjection

Wcris,a :=Wcris⊕Bcrisecris→Wcris,a : (x, yecris) 7→ ((ϕ−1)x+ϕ(y)a, (ϕ−1)yecris)

on which GK acts by g(ecris) = ecris (actually, this is equal to the kernel of the
surjection

Wrig,a :=Wrig⊕B̃+rig[1/t]ecris→Wrig,a :(x,yecris) 7→((ϕ−1)x+ϕ(y)a,(ϕ−1)yecris),

where we define Wrig := B̃+rig[1/t]⊗Be We), and the isomorphism BdR⊗Be We,a −→
∼

BdR⊗B+dR
W+dR is defined by

BdR⊗Be We,a = BdR⊗Bcris Wcris,a
(x,yecris) 7→(x,yedR)
−−−−−−−−−→ BdR⊗B+dR

W+dR.

Then, by definition of the functor Drig(−) in §2.2 of [Berger 2008a] (where the
notation D(−) is used), B̃†,rn

rig ⊗R(n)(πK )
D(n)

rig (Wa) is equal to{
x ∈ B̃†,rn

rig [1/t]⊗Be We,a | ιm(x) ∈W+dR,a for any m ≥ n
}
. (17)

Since we have

B̃†,rn
rig [1/t]⊗Be We,a = B̃†,rn

rig [1/t]⊗B̃+rig[1/t]Wrig,a,

and ϕ−m(ecris)= ecris−
∑m

k=1 ϕ
−k(a) for m ≥ 1 and we have ιn+k ◦ϕ

n
= ϕ−k, it is

easy to see that the group (17) is equal to

B̃†,rn
rig ⊗R(n)(πK )

D(n)
rig (W )⊕ B̃†,rn

rig (ã+ϕ
n(ecris)),

which is easily seen to be isomorphic to B̃†,rn
rig ⊗R(n)(πK )

D(n)
a as a (ϕ,GK )-module.

Therefore, we obtain the isomorphism

Drig(Wa)−→
∼ Da

as an extension by Théorème 1.2 of [Berger 2009], which proves the proposition. �

3. Local ε-conjecture for (ϕ, 0)-modules over the Robba ring

From now on, we assume that K =Qp, and we freely omit the notation Qp, i.e.,
we use the notation 0, RA, DdR(M), Dcris(M), tM , . . . instead of 0Qp , RA(πQp),
DQp

dR (M), DQp
cris(M), tM(Qp), . . . . Moreover, since Kato’s and our conjectures are
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formulated after fixing a Zp-basis ζ = {ζpn }n≥0 of Zp(1), we also fix a parameter
π := πζ of RA and let t = log(1+π) as in Notation 2.2.

In this section, we formulate a conjecture which is a natural generalization of
Kato’s (p-adic) local ε-conjecture, where the main objects were p-adic or torsion
representations of GQp , for (ϕ, 0)-modules over the relative Robba ring RA. Since
the article [Kato 1993b], in which the conjecture was stated, remains unpublished,
and since the compatibility of our conjecture with his conjecture is an important
part of our conjecture, here we also recall his original conjecture.

3A. Determinant functor. Kato’s and our conjectures are formulated using the
theory of the determinant functor. In this subsection, we briefly recall this theory
following [Knudsen and Mumford 1976] and §2.1 of [Kato 1993a].

Let R be a commutative ring. We define a category PR whose objects are
pairs (L , r), where L is an invertible R-module and r : Spec(R)→ Z is a locally
constant function, and whose morphisms are defined by MorPR ((L , r), (M, s)) :=
IsomR(L ,M) if r = s, and empty otherwise. We call the objects of this category
graded invertible R-modules. The category PR is equipped with the structure of
a (tensor) product defined by (L , r)� (M, s) := (L ⊗R M, r + s) with the natural
associativity constraint and the commutativity constraint

(L , r)� (M, s)−→∼ (M, s)� (L , r) : l⊗m 7→ (−1)rsm⊗ l.

From now on, we always identify (L , r)�(M, s)= (M, s)�(L , r) by this constraint
isomorphism. The unit object for the product is 1R := (R, 0). For each (L , r), set
L∨ := HomR(L , R). Then (L , r)−1

:= (L∨,−r) becomes an inverse of (L , r) by
the isomorphism i(L ,r) : (L , r)� (L∨,−r)−→∼ 1R induced by the evaluation map
L ⊗R HomR(L , R) −→∼ R : x ⊗ f 7→ f (x). We remark that we have i(L ,r)−1 =

(−1)r i(L ,r). For a ring homomorphism f : R→ R′, one has a base change functor
(−)⊗R R′ : PR → PR′ defined by (L , r) 7→ (L , r)⊗R R′ := (L ⊗R R′, r ◦ f ∗),
where f ∗ : Spec(R′)→ Spec(R).

For a category C, denote by (C, is) the category whose objects are the same as C
and whose morphisms are all isomorphisms in C. Define a functor

DetR : (Pfg(R), is)→ PR : P 7→ (detR P, rkR P),

where rkR : Pfg(R)→ Z≥0 is the R-rank of P and detR P :=
∧rkR P

R P. Note that
DetR(0)= 1R is the unit object. For a short exact sequence 0→ P1→ P2→ P3→ 0
in Pfg(R), we always identify DetR(P1)�DetR(P3)with DetR(P2) by the functorial
isomorphism (put ri := rkR Pi )

DetR(P1)�DetR(P3)−→
∼ DetR(P2) (18)
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induced by

(x1 ∧ · · · ∧ xr1)⊗ (xr1+1 ∧ · · · ∧ xr2) 7→ x1 ∧ · · · ∧ xr1 ∧ xr1+1 ∧ · · · ∧ xr2,

where x1, . . . , xr1 (resp. xr1+1, . . . , xr2) are local sections of P1 (resp. P3) and
xi ∈ P2 (r1+ 1≤ i ≤ r2) is a lift of xi ∈ P3.

For a bounded complex P• in Pfg(R), define DetR(P•) ∈ PR by

DetR(P•) :=�i∈Z DetR(P i )(−1)i .

For a short exact sequence 0→ P•1 → P•2 → P•3 → 0 of bounded complexes in
Pfg(R), we define a canonical isomorphism

DetR(P•1)�DetR(P•3)−→∼ DetR(P•2) (19)

by applying the isomorphism (18) to each exact sequence 0→ P i
1→ P i

2→ P i
3→ 0.

Moreover, if P• is an acyclic bounded complex in Pfg(R), we can define a canonical
isomorphism

hP• : DetR(P•)−→∼ 1R, (20)

which is characterized by the following properties: when P• :=
[
P i f
→ P i+1

]
is

concentrated in degree [i, i + 1], we define it as the composite

DetR(P•)= DetR(P i )�DetR(P i+1)−1

Det( f )�id
−−−−−→DetR(P i+1)�DetR(P i+1)−1 δDetR (Pi+1)

−−−−−→ 1R

when i is even (when i is odd, we similarly define it using f −1
: P i+1

−→∼ P i ), and
for a short exact sequence 0→ P•1→ P•2→ P•3→ 0 of acyclic bounded complexes
of Pfg(R), we have the commutative diagram

DetR(P•1)�DetR(P•3)
∼
−→ DetR(P•2)yhP•1

�hP•3

yhP•2

1R � 1R
=
−→ 1R

The theory of determinants of [Knudsen and Mumford 1976] enables us to uniquely
(up to canonical isomorphism) extend DetR(−) to a functor

DetR : (Db
perf(R), is)→ PR

such that the isomorphism (19) extends to the following situation: for any exact
sequence 0→ P•1 → P•2 → P•3 → 0 of complexes of R-modules such that each
P•i is quasi-isomorphic to a bounded complex in Pfg(R), there exists a canonical
isomorphism

DetR(P•1)�DetR(P•3)−→∼ DetR(P•2). (21)



A generalization of Kato’s local 3-conjecture 353

By this property, if P• ∈ Db
perf(R) satisfies Hi (P•)[0] ∈ Db

perf(R) for any i , there
exists a canonical isomorphism

DetR(P•)−→∼ �i∈Z DetR(Hi (P•)[0])(−1)i .

For (L , r)∈PR , define (L , r)∨ := (L∨, r)∈PR , which induces an antiequivalence
(−)∨ :PR−→

∼ PR . For P ∈ Pfg(R), we have a canonical isomorphism DetR(P∨)−→∼

DetR(P)∨ defined by the isomorphism

detR(P∨)−→∼ (detR P)∨ :

f1 ∧ · · · ∧ fr 7→

[
x1 ∧ · · · ∧ xr 7→

∑
σ∈Sr

sgn(σ ) f1(xσ(1)) · · · fr (xσ(r))
]
.

This naturally extends to (Db
perf(R), is), i.e., for any P• ∈ Db

perf(R), there exists a
canonical isomorphism

DetR(R HomR(P•, R))−→∼ DetR(P•)∨. (22)

3B. Fundamental lines. Both Kato’s conjecture and ours concern the existence of
a compatible family of canonical trivializations of some graded invertible modules
defined by using the determinants of the Galois cohomologies of Galois representa-
tions or (ϕ, 0)-modules. We call these graded invertible modules the fundamental
lines, which we explain in this subsection.

Kato’s conjecture concerns pairs (3, T ) such that:

(i) 3 is a noetherian semilocal ring which is complete with respect to the m3-adic
topology (where m3 is the Jacobson radial of 3) such that 3/m3 is a finite
ring with order a power of p.

(ii) T is a 3-representation of GQp , i.e., a finite projective 3-module equipped
with a continuous 3-linear action of GQp .

Our conjecture concerns pairs (A,M) such that:

(i) A is a Qp-affinoid algebra.

(ii) M is a (ϕ, 0)-module over RA.

For each pair (B, N )= (3, T ) or (A,M) as above, we’ll define graded invertible
3-modules 1B,i (N ) ∈ PB for i = 1, 2 as below, and the fundamental line will be
defined as 1B(N ) :=1B,1(N )�1B,2(N ) ∈ PB .

We first define 13,i (T ) for (3, T ). Denote by C •cont(GQp , T ) the complex of
continuous cochains of GQp with values in T. It is known that C •cont(GQp , T ) ∈
D−(3) is contained in Db

perf(3) and that it satisfies properties similar to (1), (2),
(3), (4) in Theorem 2.15. In particular, we can define a graded invertible 3-module

13,1(T ) := Det3(C •cont(GQp , T ))
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(whose degree is −rT := −rk3 T by the Euler–Poincaré formula) which satisfies
the following properties:

(i) For each continuous homomorphism f : 3→ 3′, there exists a canonical
3′-linear isomorphism

13,1(T )⊗33′ −→∼ 13′,1(T ⊗33′).

(ii) For each exact sequence 0→ T1→ T2→ T3→ 0 of 3-representations of GQp ,
there exists a canonical 3-linear isomorphism

13,1(T1)�13,1(T3)−→
∼ 13,1(T2).

(iii) The Tate duality C •cont(GQp , T )−→∼ R Hom3(C •cont(GQp , T ∗),3)[−2] and the
isomorphism (22) induce a canonical 3-linear isomorphism

13,1(T )−→∼ 13,1(T ∗)∨.

We next define 13,2(T ) as follows. For a ∈3×, we define

3a :=
{

x ∈W (Fp) ⊗̂Zp 3 | (ϕ⊗ id3)(x)= (1⊗ a)x
}
,

which is an invertible 3-module. In the same way as in Theorem 2.8, for any rank-
one 3-representation T0, there exists a unique (up to isomorphism) pair (δT0,LT0),
where δT0 : Q×p → 3× is a continuous homomorphism and LT0 is an invertible
3-module such that T0 −→

∼ 3(δ̃T0)⊗3 LT0 , where we denote by δ̃T0 : G
ab
Qp
→ 3×

the continuous character which satisfies δ̃T0 ◦ recQp = δT0 . Under these definitions,
we define a(T ) := δdet3 T (p) ∈3×, an invertible 3-module

L3(T ) :=3a(T )⊗3 det3 T

and a graded invertible 3-module

13,2(T ) := (L3(T ), rT ).

Since we have a canonical isomorphism 3a1 ⊗33a2 −→
∼ 3a1a2 : x ⊗ y 7→ xy for

any a1, a2 ∈3, 13,2(T ) also satisfies the following similar properties:

(i) For f :3→3′, there exists a canonical isomorphism

13,2(T )⊗33′ −→∼ 13,2(T ⊗33′).

(ii) For 0→ T1→ T2→ T3→ 0, there exists a canonical isomorphism

13,2(T1)�13,2(T3)−→
∼ 13,2(T2).

(iii) Let rT be the rank of T. Then there exists a canonical isomorphism

13,2(T )−→∼ 13,2(T ∗)∨� (3(rT ), 0)
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which is induced by the product of the isomorphisms

3δdet3 T (p) −→
∼ (3δdet3 T∗ (p))

∨
: x 7→ [y 7→ y⊗ x]

(note that we have

3δdet3 T∗ (p)⊗3δdet3 T (p) −→
∼ 3 : y⊗ x 7→ yx

since we have δdet3 T (p) = δdet3 T ∗(p)−1) and the isomorphism det3 T −→∼

det3(T ∗)∨⊗33(rT ) induced by the canonical isomorphism T −→∼ (T ∗)∨(1) :
x 7→ [y 7→ y(x)⊗ e−1]⊗ e1.

Finally, we define

13(T ) :=13,1(T )�13,2(T ) ∈ PB .

Then 13(T ) also satisfies properties similar to (i), (ii) for 13,i (T ) and

(iii) there exists a canonical isomorphism

13(T )−→∼ 13(T ∗)∨� (3(rT ), 0).

Next, we define the fundamental line 1A(M) for (ϕ, 0)-modules M over RA.
Let A be a Qp-affinoid algebra, and let M be a (ϕ, 0)-module over RA. By
our Theorem 2.15 (Kedlaya–Pottharst–Xiao), we can define a graded invertible
A-module

1A,1(M) := DetA C •ϕ,γ (M) ∈ PA

which satisfies properties similar to (i), (ii), (iii) for 13,1(T ). We next define
3A,2(M) as follows. By our Theorem 2.8 (Kedlaya–Pottharst–Xiao), there exists a
unique (up to isomorphism) pair (δdetRA M ,LdetRA M), where δdetRA M :Q

×
p → A×

is a continuous homomorphism and LdetRA M is an invertible A-module such that
detRA M −→∼ RA(δdetRA M)⊗RA LdetRA M . Then we define an A-module

LA(M) :=
{

x ∈ detRA M |ϕ(x)= δdetRA M(p)x, γ (x)= δdetRA M(χ(γ ))x (γ ∈0)
}
,

which is an invertible A-module since it is isomorphic to LdetRA M , and we define a
graded invertible A-module

1A,2(M) := (LA(M), rM) ∈ PA.

By definition, it is easy to check that 1A,2(M) satisfies properties similar to (i), (ii),
(iii) for 13,2(T ). Finally, we define a graded invertible A-module 1A(M), which
we call the fundamental line, by

1A(M) :=1A,1(M)�1A,2(M) ∈ PA,

which also satisfies properties similar to (i), (ii), (iii) for 13(T ).
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More generally, let X be a rigid analytic space over Qp, and let M be a (ϕ, 0)-
module over RX . By the base change property (i) of1A(M), we can also functorially
define a graded invertible OX -module

1X (M) ∈ POX

on X (we can naturally generalize the notion of graded invertible modules in this
setting) such that there exists a canonical isomorphism

0(Max(A),1X (M))−→∼ 1A(M |Max(A))

for any affinoid open subset Max(A)⊆ X.
We next compare Kato’s fundamental line 13(T ) with our fundamental line

1A(M). Let f : 3 → A be a continuous ring homomorphism, where 3 is
equipped with m3-adic topology and A is equipped with p-adic topology. Let
T be a 3-representation of GQp . Let us denote by M := Drig(T ⊗3 A) the
(ϕ, 0)-module over RA associated to the A-representation T ⊗3 A of GQp . By
Theorem 2.8 of [Pottharst 2013], there exists a canonical quasi-isomorphism
C •cont(GQp , T )⊗L

3 A −→∼ C •ϕ,γ (M), and this induces an A-linear isomorphism

13,1(T )⊗3 A −→∼ 1A,1(M).

We also have the following isomorphism.

Lemma 3.1. In the above situation, there exists a canonical A-linear isomorphism

13,2(T )⊗3 A −→∼ 1A,2(M).

Proof. By definition, it suffices to show the lemma when T is of rank one. Hence, we
may assume that T =3(δ̃)⊗3L for a continuous homomorphism δ :Q×p →3× and
an invertible 3-module L (where δ̃ is the character of Gab

Qp
such that δ̃ ◦ recQp = δ).

Moreover, since we have a canonical isomorphism

Drig((3(δ̃)⊗3 L)⊗3 A)−→∼ Drig(3(δ̃)⊗3 A)⊗A (L⊗3 A)

by the exactness of Drig(−), it suffices to show the lemma when L=3.
Since the image of HQ := Gal(Qp/Qp,∞) in Gab

Qp
is the closed subgroup which

is topologically generated by recQp(p), we have

Drig(3(δ̃)⊗3 A)= (W (Fp) ⊗̂Zp 3(δ̃))
recQp (p)=1

⊗3RA,

by definition of Drig(−), and the right-hand side is isomorphic to RA( f ◦δ). Hence,
we obtain

LA(M)=
(
(W (Fp) ⊗̂Zp 3(δ̃))

recQp (p)=1
⊗3RA

)ϕ= f (δ(p)),0= f ◦δ◦χ

=
(
W (Fp) ⊗̂Zp 3(δ̃)

)recQp (p)=1
⊗3 A = L3(T )⊗3 A,
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which proves the lemma. �

Taking the products of these two canonical isomorphisms, we obtain the following
corollary.

Corollary 3.2. In the above situation, there exists a canonical isomorphism

13(T )⊗3 A −→∼ 1A(M).

Example 3.3. The typical example of the above base change property is the follow-
ing. For 3 as above, let us denote by X the associated rigid analytic space. More
precisely, X is the union of affinoids Max(An) for n≥1, where An is the Qp-affinoid
algebra defined by An :=3[m

n
3/p]∧ [1/p] (for a ring R, denote by R∧ the p-adic

completion). Let T be a 3-representation of GQp , and let Mn := Drig(T ⊗3 An).
Since Mn is compatible with the base change with respect to the canonical map
An → An+1 for any n, {Mn}n≥1 defines a (ϕ, 0)-module M over RX . Then the
canonical isomorphism 13(T )⊗3 An −→

∼ 1An (Mn) defined in the above corollary
glues to an isomorphism

13(T )⊗3OX −→
∼ 1X (M).

Moreover, using the terminology of coadmissible modules [Schneider and Teitel-
baum 2003], we can define this comparison isomorphism without using sheaves. Let
us define A∞ := 0(X,OX ) and 1A∞(M∞) := lim

←−−n 1An (Mn). Taking the limit of
the isomorphism 13(T )⊗3 An −→

∼ 1An (Mn) we obtain an A∞-linear isomorphism

13(T )⊗3 A∞ −→∼ 1A∞(M∞).

Then the theory of coadmissible modules [Schneider and Teitelbaum 2003, Corol-
lary 3.3] says that to consider the isomorphism 13(T )⊗3OX −→

∼ 1X (M) is the
same as to consider the isomorphism 13(T )⊗3 A∞ −→∼ 1A∞(M∞). In fact, we
will frequently use the latter object 1A∞(M∞) in Section 4.

3C. de Rham ε-isomorphism. In this subsection, we assume that L = A is a finite
extension of Qp. We define a trivialization

εdR
L ,ζ (M) : 1L −→

∼ 1L(M),

which we call the de Rham ε-isomorphism, for each de Rham (ϕ, 0)-module M
over RL and for each Zp-basis ζ = {ζpn }n≥0 of Zp(1).

Let M be a de Rham (ϕ, 0)-module over RL . We first recall the definition of
Deligne and Langlands’ [Deligne 1973] and Fontaine and Perrin-Riou’s [1994]
ε-constant associated to M.
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We first briefly recall the theory of ε-constants of Deligne and Langlands [Deligne
1973]. Let WQp ⊆ GQp be the Weil group of Qp. Let E be a field of character-
istic zero, and let V = (V, ρ) be an E-representation of WQp , i.e., V is a finite-
dimensional E-vector space equipped with a smooth E-linear action ρ of WQp .
Let us denote by V∨ the dual (HomE(V, E), ρ∨) of V. Denote by E(|x |) the
rank-one E-representation of WQp corresponding to the continuous homomorphism
|x | : Q×p → E× : p 7→ 1/p, a 7→ 1(a ∈ Z×p ) via the local class field theory. Put
V∨(|x |) := V∨⊗E E(|x |). Assume that E is a field which contains Q(ζp∞). The
definition of the ε-constants depends on the choice of an additive character of Qp

and a Haar measure on Qp. In this article, we fix the Haar measure dx on Qp for
which Zp has measure 1. For each Zp-basis ζ = {ζpn }n≥0 of Zp(1), we define an
additive character ψζ :Qp→ E× such that ψζ (1/pn) := ζpn for n≥ 1. In this article,
we don’t recall the precise definition of ε-constants, but we recall here some of their
basic properties under the fixed additive character ψζ and the fixed Haar measure dx .
We can attach a constant ε(V, ψζ , dx) ∈ E× for each V as above which satisfies
the following properties (we let ε(V, ζ ) := ε(V, ψζ , dx) for simplicity):

(1) For each exact sequence 0 → V1 → V2 → V3 → 0 of finite-dimensional
E-vector spaces with continuous actions of WQp , we have

ε(V2, ζ )= ε(V1, ζ )ε(V3, ζ ).

(2) For each a ∈ Z×p , we define ζ a
:= {ζ a

pn }n≥1. Then we have

ε(V, ζ a)= detE V (recQp(a))ε(V, ζ ).

(3) ε(V, ζ )ε(V∨(|x |), ζ−1)= 1.

(4) ε(V, ζ )= 1 if V is unramified.

(5) If dimE V equals 1 and corresponds to a locally constant homomorphism
δ :Q×p → E× via the local class field theory, then

ε(V, ζ )= δ(p)n(δ)
( ∑

i∈(Z/pn(δ)Z)×

δ(i)−1ζ i
pn(δ)

)
,

where n(δ)≥ 0 is the conductor of δ, i.e., the minimal integer n ≥ 0 such that
δ|(1+pnZp)∩Z×p

= 1 (then δ|Z×p factors through (Z/pn(δ)Z)×).

For a Weil–Deligne representation W = (V, ρ, N ) of WQp defined over E , we set

ε(W, ζ ) := ε((V, ρ), ζ ) · detE
(
−Frp | V L p/(V N=0)Ip

)
,

which also satisfies
ε(W, ζ ) · ε(W∨(|x |), ζ−1)= 1.
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Next, we define the ε-constant for each de Rham (ϕ, 0)-module over RL fol-
lowing Fontaine and Perrin-Riou [1994]. Let M be a de Rham (ϕ, 0)-module
over RL . Then M is potentially semistable by the result of Berger (for exam-
ple, see Théorème III.2.4 of [Berger 2008b]) based on Crew’s conjecture, which
was proved by André, Mebkhout, and Kedlaya. Hence, we can define a filtered
(ϕ, N ,GQp)-module Dpst(M) :=

⋃
K⊆Qp

DK
st (M |K ) which is a free (Qur

p ⊗Qp L)-
module whose rank is rM , where K runs through all the finite extensions of Qp

and we define DK
st (M |K ) := (RL(πK )[log(π), 1/t] ⊗RL M)0K=1. Set Dst(M) :=

DQp
st (M). Following Fontaine, one can define a Weil–Deligne representation

W (M) := (Dpst(M), ρ, N ) of WQp defined over Qur
p ⊗Qp L such that N is the

natural one and ρ(g)(x) := ϕv(g)(g · x) for g ∈ WQp and x ∈ W (M), where we
denote by g · x the natural action of GQp on W (M) and

v :WQp � W ab
Qp

rec−1
Qp

−−→Q×p
vp
−→Z.

Taking the base change of W (M) by the natural inclusion Qur
p ⊗Qp L ↪→Qab

p ⊗Qp L ,
and decomposing Qab

p ⊗Qp L −→∼
∏
τ Lτ into a finite product of fields Lτ , we obtain

a Weil–Deligne representation W (M)τ of WQp defined over Lτ for each τ . Hence,
we can define the ε-constant ε(W (M)τ , τ (ζ )) ∈ L×τ , where τ(ζ ) is the image of ζ
in Lτ by the projection Qab

p ⊗Qp L→ Lτ . Then the product

εL(W (M), ζ ) := (ε(W (M)τ , τ (ζ )))τ ∈
∏
τ

L×τ

is contained in L×
∞
:= (Qp(ζp∞)⊗Qp L)× ⊆ (Qp(ζp∞)⊗Qp Qur

p ⊗Qp L)× since it is
easy to check that εL(W (M), ζ ) is fixed by 1⊗ϕ⊗ 1.

Using this definition, for each de Rham (ϕ, 0)-module M over RL , we construct
a trivialization εdR

L ,ζ (M) : 1L −→
∼ 1L(M) as follows. We will first define two

isomorphisms
θL(M) : 1L −→

∼ 1L ,1(M)�DetL(DdR(M))

and
θdR,L(M, ζ ) : DetL(DdR(M))−→∼ 1L ,2(M)

(we remark that θdR,L(M, ζ ) depends on the choice of ζ ), and then define εdR
L ,ξ (M)

as the composite

εdR
L ,ξ (M) : 1L

0L (M)·θL (M)
−−−−−−→1L ,1(M)�DetL(DdR(M))

id�θdR,L (M,ζ )
−−−−−−−→1L ,1(M)�1L ,2(M)=1L(M),

where 0L(M) ∈Q× is defined by

0L(M) :=
∏
r∈Z

0∗(r)−dimL gr−r DdR(M),
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where we set

0∗(r) :=
{
(r − 1)! (r ≥ 1),
(−1)r/(−r)! (r ≤ 0).

We first define θL(M) : 1L −→
∼ 1L ,1(M) � DetL(DdR(M)). By the result of

Section 2B, we have the exact sequence of L-vector spaces

0→ H0
ϕ,γ (M0)→ Dcris(M0)1

x 7→((1−ϕ)x,x̄)
−−−−−−−→ Dcris(M0)2⊕ tM0

exp f,M0
⊕ expM0

−−−−−−−−→H1
ϕ,γ (M0) f → 0 (23)

for M0 = M,M∗, where we let Dcris(M0)i = Dcris(M0) for i = 1, 2.
Using Tate duality, the de Rham duality

DdR(M)0 −→∼ t∨M∗ : x 7→ [ȳ 7→ [y, x]dR]

(here y ∈ DdR(M∗) is a lift of ȳ) and Proposition 2.24, we define a map

exp∗M∗ : H
1
ϕ,γ (M)/ f := H1

ϕ,γ (M)/H
1
ϕ,γ (M) f

x 7→[y 7→〈y,x〉]
−−−−−−−→H1

ϕ,γ (M
∗)∨f

exp∨M∗
−−→t∨M∗ −→∼ DdR(M)0

which is called the dual exponential map and was studied in §2.4 of [Nakamura
2014a]. Using this map, as the dual of the exact sequence (23) for M0 = M∗, we
obtain an exact sequence

0→ H1
ϕ,γ (M)/ f

exp∨f,M∗ ⊕ exp∗M∗
−−−−−−−−→ Dcris(M∗)∨2 ⊕ DdR(M)0

(∗)
−→Dcris(M∗)∨1 → H2

ϕ,γ (M)→ 0, (24)

where the map Dcris(M∗)∨2 → Dcris(M∗)∨1 in (∗) is the dual of (1−ϕ). Therefore,
as the composite of the exact sequences (23) for M0 = M and (24), we obtain the
exact sequence

0→ H0
ϕ,γ (M)→ Dcris(M)1

x 7→((1−ϕ)x,x̄)
−−−−−−−→ Dcris(M)2⊕ tM → H1

ϕ,γ (M)

→ Dcris(M∗)∨2 ⊕ DdR(M)0→ Dcris(M∗)∨1 → H2
ϕ,γ (M)→ 0. (25)

Applying the trivialization (20) to this exact sequence and using the canonical
isomorphisms

iDetL (Dcris(M)1) : DetL(Dcris(M)2)�DetL(Dcris(M)1)−1
−→∼ 1L ,

iDetL (Dcris(M∗)∨1 ) : DetL(Dcris(M∗)∨2)�DetL(Dcris(M∗)∨1)
−1
−→∼ 1L ,

and
DetL(D0

dR(M))�DetL(tM)−→
∼ DetL(DdR(M)),
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we obtain a canonical isomorphism

θL(M) : 1L −→
∼ 1L ,1(M)�DetL(DdR(M)).

Next, we define an isomorphism θdR,L(M, ζ ) :DetL(DdR(M))−→∼ 1L ,2(M). To
define this, we show the following lemma.

Lemma 3.4. Let {h1, h2, . . . , hrM } be the set of Hodge–Tate weights of M (with
multiplicity). Put hM :=

∑rM
i=1 hi . For any n ≥ n(M) such that εL(W (M), ζ ) ∈

Ln :=Qp(ζpn )⊗Qp L , the map

LL(M)→ Ddif,n(detRL M)= Ln((t))⊗ιn,R(n)
L
(detRL M)(n) :

x 7→
1

εL(W (M), ζ )
·

1
thM
⊗ϕn(x)

induces an isomorphism

fM,ζ : LL(M)−→∼ DdR(detRL M),

and doesn’t depend on the choice of n.

Proof. The independence of n follows from the definition of the transition map
Ddif,n(−) ↪→ Ddif,n+1(−).

We show that fM,ζ is an isomorphism. Comparing the dimensions, it suffices
to show that the image of the map in the lemma is contained in DdR(detRL M),
i.e., is fixed by the action of 0. Since we have εL(W (M), ζ )/εL(W (detRL M), ζ ) ∈
L×(⊆ L×

∞
), it suffices to show the claim when M is of rank one. We assume that

M is of rank one. By the classification of rank-one de Rham (ϕ, 0)-modules, there
exists a locally constant homomorphism δ̃ :Q×p → L× such that M −→∼ RL(δ̃ · xhM ).
The corresponding representation W (M) of WQp is given by the homomorphism
δ̃·|x |hM :Q×p → L× via the local class field theory. By the property (2) of ε-constants,
we have γ (εL(Dpst(M), ζ )) = δ̃(χ(γ ))εL(W (M), ζ ) for γ ∈ 0, which proves the
claim since we have γ (ϕn(x)) = δ̃(χ(γ ))χ(γ )hMϕn(x) for x ∈ LL(M), γ ∈ 0,
by definition. �

Since we have a canonical isomorphism DdR(detRL M) −→∼ detL DdR(M), the
isomorphism fM,ζ induces an isomorphism fM,ζ : 1L ,2(M) −→∼ DetL(DdR(M)).
We define the isomorphism θdR,L(M, ζ ) as the inverse

θdR,L(M, ζ ) := f −1
M,ζ : DetL(DdR(M))−→∼ 1L ,2(M).

Remark 3.5. The isomorphism fM,ζ , and hence the isomorphism θdR,L(M, ζ ),
depends on the choice of ζ. If we choose another Zp-basis of Zp(1) which can
be written as ζ a

:= {ζ a
pn }n≥0 for unique a ∈ Z×p , then fM,ζ a is defined using

εL(W (M), ζ a) and the parameter πζ a (see Remark 2.1) and ta := log(1+πζ a ). Since
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we have εL(W (M), ζ a)=det W (M)(recQp(a))εL(W (M), ζ ) and πζ a = (1+π)a−1
and ta = at , we have fM,ζ a = fM,ζ/δdetRL M(a), and hence we also have

θdR,L(M, ζ a)= δdetRL M(a) · θdR,L(M, ζ ),

and obtain
εdR

L ,ζ a (M)= δdetRL M(a) · εdR
L ,ζ (M).

Remark 3.6. Kato [1993b] and Fukaya and Kato [2006] defined their de Rham
ε-isomorphism εdR

L ,ζ (V )
′
: 1L −→

∼ 1L(V ) (using a different notation) for each
de Rham L-representation V of GQp using the original Bloch–Kato exponential
map. Using Proposition 2.26, we can compare our εdR

L ,ζ (Drig(V ))with their εdR
L ,ζ (V )

′

under the canonical isomorphism 1L(V )−→∼ 1L(Drig(V )) defined in Corollary 3.2.
We remark that ours and theirs are different since they used (in our notation) the
ε-constant εL((Dpst(V ), ρ), ζ ) associated to the representation (Dpst(V ), ρ) of WQp

instead of W (V ). Since one has

εL(W (V ), ζ )= εL((Dpst(V ), ρ), ζ ) · detL(−ϕ | Dst(V )/Dcris(V )),

the correct relation between ours and theirs is

εdR
L ,ζ (Drig(V ))= detL(−ϕ | Dst(V )/Dcris(V )) · εdR

L ,ζ (V )
′. (26)

Moreover, we insist that ours is the correct one, since we show in Lemma 3.7 below
that our εdR

L ,ζ (M) is compatible with exact sequences (but εdR
L ,ζ (V )

′ may not satisfy
this compatibility).

Finally in this subsection, we prove a lemma on the compatibility of the de Rham
ε-isomorphism with exact sequences and the Tate duality.

Lemma 3.7. (1) For any exact sequence 0→ M1→ M2→ M3→ 0, we have

εdR
L ,ζ (M2)= ε

dR
L ,ζ (M1)� ε

dR
L ,ζ (M3)

under the canonical isomorphism 1L(M2)−→
∼ 1L(M1)�1L(M3).

(2) One has the following commutative diagram of isomorphisms

1L(M)
can
−→1L(M∗)∨� (L(rM), 0)

εdR
L ,ζ−1 (M)

x yεdR
L ,ζ (M

∗)∨�[erM 7→1]

1L
can
−→ 1L � 1L

Proof. We first prove (1). The proof is identical to that of Proposition 3.3.8 of
[Fukaya and Kato 2006], but we give a proof for convenience of the readers. We
first remark that we have

0L(M) ·0L(M∗)= (−1)hM+dimL tM (27)
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since we have

0∗(r) ·0∗(1− r)=
{
(−1)r−1 (r ≥ 1),
(−1)r (r ≤ 0).

We next remark that one has the commutative diagram

1L
θL (M)
−−−→ 1L ,1(M)�DetL(M)

(−1)dimL tM

y ycan

1L
θL (M∗)∨
←−−−−1L ,1(M∗)∨�DetL(M∗)∨

(28)

in which the right vertical arrow is induced by the Tate duality, since one has the
commutative diagram

tM
−expM
−−−→ H1

ϕ,γ (M)
exp∗M∗
−−−→ DdR(M)0

x̄ 7→[y,7→[y,x]dR]

y x 7→[y 7→〈y,x〉]
y yx 7→[ȳ 7→[y,x]dR]

DdR(M∗)∨
(exp∗M )

∨

−−−−→ H1
ϕ,γ (M

∗)∨
(expM∗ )

∨

−−−−−→ (tM∗)
∨

Finally, we remark that one has the commutative diagram

DetL(M)
θdR,L (M,ζ−1)
−−−−−−−→ 1L ,2(M)

(−1)hM ·can

y ycan

DetL(M∗)∨

=DetL(M∗)∨�1L

θdR,L (M∗,ζ )∨�[erM 7→1]
←−−−−−−−−−−−−−1L ,2(M∗)∨� (L(rM), 0)

(29)

in which the vertical maps can are also defined by the duality, since we have

εL(W (V ), ζ−1) · εL(W (V ∗), ζ )= 1.

Then (1) follows from the commutative diagrams (27), (28) and (29).
We next prove (1). We first define an isomorphism

θL(M)′ : 1L −→
∼ 1L ,1(M)�DetL(DdR(M))

in the same way as θL(M) using the exact sequence

0→ H0
ϕ,γ (M)→ Dcris(M)1

x 7→((1−ϕ−1)x,x̄)
−−−−−−−−→ Dcris(M)2⊕ tM

exp f,M ⊕ expM
−−−−−−−→H1

ϕ,γ (M) f → 0 (30)

(we use ϕ−1 instead of ϕ) and (24), and define

θdR,L(M, ζ )′ : DetL(DdR(M))−→∼ 1L ,2(M)
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in the same way as θdR,L(M, ζ )′ using the constant

εL(W (M), ζ ) · detL(−ϕ | Dcris(M))= εL((Dpst(M), ρ), ζ ) · detL(−ϕ | Dst(M))

instead of εL(W (V ), ζ ). Since we have θL(M)′ = θL(M) · detL(−ϕ
−1
| Dcris(M)),

εdR
L ,ζ (M) can be defined using the triple (0L(M), θL(M)′, θdR,L(M, ζ )′) instead of
(0L(M), θL(M), θdR,L(M, ζ )).

Let 0→ M1→ M2→ M3→ 0 be an exact sequence as in (1). Since one has
0(M2) = 0(M1) · 0(M3), it suffices to show that both θL(−)

′ and θdR,L(−)
′ are

compatible with the exact sequence.
Since we have

εL((Dpst(M2), ρ), ζ )= εL((Dpst(M1), ρ), ζ ) · εL((Dpst(M3), ρ), ζ )

and

detL(−ϕ | Dst(M2))= detL(−ϕ | Dst(M1)) · detL(−ϕ | Dst(M3))

(since Dpst(−) and Dst(−) are exact for de Rham (ϕ, 0)-modules), the isomorphism
θdR,L(−)

′ is compatible with the exact sequence.
We remark that the functor Dcris(−) is not exact (in general) for de Rham (ϕ, 0)-

modules, but we have the exact sequence

0→ Dcris(M1)→ Dcris(M2)→ Dcris(M3)
(∗)
−→Dcris(M∗1 )

∨
→ Dcris(M∗2 )

∨
→ Dcris(M∗3 )

∨
→ 0

such that the boundary map (∗) satisfies the commutative diagram

Dcris(M3)
(∗)
−→ Dcris(M∗1 )

∨yϕ−1

yϕ∨
Dcris(M3)

(∗)
−→ Dcris(M∗1 )

∨

from which the compatibility of θL(−)
′ with the exact sequence follows, which

finishes the proof of the lemma. �

3D. Formulation of the local ε-conjecture. In this subsection, using the defini-
tions in the previous subsections, we formulate the following conjecture, which
we call the local ε-conjecture. This conjecture is a combination of Kato’s original
ε-conjecture for (3, T ) with our conjecture for (A,M). To state both situations at
the same time, we use the notation (B, N ) for (3, T ) or (A,M), and f : B→ B ′

for f :3→3′ or f : A→ A′.

Conjecture 3.8. We can uniquely define a B-linear isomorphism

εB,ζ (N ) : 1B −→
∼ 1B(N )
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for each pair (B, N ) as above and for each Zp-basis ζ of Zp(1) satisfying the
following conditions:

(i) Let f : B→ B ′ be a continuous homomorphism. Then we have

εB,ζ (N )⊗ idB ′ = εB ′,ζ (N ⊗B B ′)

under the canonical isomorphism 1B(N )⊗B B ′ −→∼ 1B ′(N ⊗B B ′).

(ii) Let 0→ N1→ N2→ N3→ 0 be an exact sequence. Then we have

εB,ζ (N1)� εB,ζ (N3)= εB,ζ (N2)

under the canonical isomorphism 1B(N1)�1B(N3)−→
∼ 1B(N2).

(iii) For any a ∈ Z×p , we have

εB,ζ a (N )= δdetB(N )(a) · εB,ζ (N ).

(iv) One has the following commutative diagram of isomorphisms:

1B(N )
can
−→1B(N ∗)∨� (L(rN ), 0)

εB,ζ−1 (N )
x yεB,ζ (N∗)∨�[erN 7→1]

1B
can
−→ 1B � 1B

(v) Let f :3→ A be a continuous homomorphism, and let M := Drig(T ⊗3 A) be
the associated (ϕ, 0)-module obtained by the base change of T with respect
to f . Then we have

ε3,ζ (T )⊗ idA = εA,ζ (M)

under the canonical isomorphism 13(T )⊗3 A −→∼ 1A(M) of Corollary 3.2.

(vi) Let L = A be a finite extension of Qp, and let M be a de Rham (ϕ, 0)-module
over RL . Then we have

εL ,ζ (M)= εdR
L ,ζ (M).

Remark 3.9. Kato’s original conjecture [1993b] is the restriction of Conjecture 3.8
to the pairs (3, T ). As explained in Remark 3.6, we insist that condition (v) should
be stated using εdR

L ,ζ (Drig(V ))
(
or εdR

L ,ζ (V ) :=ε
dR
L ,ζ (V )

′
·detL(−ϕ | Dst(V )/Dcris(V ))

)
instead of εdR

L ,ζ (V )
′.

Remark 3.10. In Kato’s conjecture, the uniqueness of the ε-isomorphism was not
explicitly predicted. Recently, it has been shown that the de Rham points (even crys-
talline points) are Zariski dense in “universal” families of p-adic representations, or
(ϕ, 0)-modules in many cases ([Colmez 2008; Kisin 2010] for the two-dimensional
case, [Chenevier 2013; Nakamura 2014b] for general case), hence we add the
uniqueness assertion in our conjecture.
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Kato [1993b] proved his conjecture for the rank-one case (note that one has
Dst(V )= Dcris(V ) for the rank-one case, hence one also has εdR

L ,ζ (V )
′
= εdR

L ,ζ (V )).
As a generalization of his theorem, our main theorem of this article is the following,
whose proof is given in the next section.

Theorem 3.11. Conjecture 3.8 is true for the rank-one case. More precisely, we
can uniquely define a B-linear isomorphism εB,ζ (N ) : 1B −→

∼ 1B(N ) for each pair
(B, N ) such that N is of rank one and for each Zp-basis ζ of Zp(1) satisfying the
conditions (i), (iii), (iv), (v), (vi).

Before passing to the proof of this theorem in the next section, we prove two
easy corollaries concerning the trianguline case. We say that a (ϕ, 0)-module M
over RA is trianguline if M has a filtration F : 0 := M0 ⊆ M1 ⊆ · · · ⊆ Mn := M
whose graded quotients Mi/Mi−1 are rank-one (ϕ, 0)-modules over RA for all
1≤ i ≤ n. We call the filtration F a triangulation of M.

Corollary 3.12. Let M be a trianguline (ϕ, 0)-module over RA of rank n with a
triangulation F as above. The isomorphism

εF,A,ζ (M) : 1A
�n

i=1εA,ζ (Mi/Mi−1)
−−−−−−−−−→�n

i=11A(Mi/Mi−1)−→
∼ 1A(M)

defined as the product of the isomorphisms εA,ζ (Mi/Mi−1) : 1A −→
∼ 1A(Mi/Mi−1),

which are defined in Theorem 3.11, satisfies the following properties:

(i)′ For any f : A→ A′, we have

εF,A,ζ (M)⊗ idA′ = εF ′,A′,ζ (M ⊗A A′),

where F ′ is the base change of the triangulation F by f .

(iii)′ For any a ∈ Z×p , we have

εF,A,ζ a (M)= δdetA(M)(a) · εF,A,ζ (M).

(iv)′ One has the commutative diagram of isomorphisms

1A(M)
can
−→1A(M∗)∨� (A(rM), 0)

εF,A,ζ (M)
x yεF∗,A,ζ (M∗)∨�[erM 7→(−1)rM ]

1A
can
−→ 1A � 1A

in which F∗ is the Tate dual of the triangulation F .

(vi)′ Let L = A be a finite extension of Qp, and let M be a de Rham and trianguline
(ϕ, 0)-module over RL . Then, for any triangulation F of M, we have

εF,L ,ζ (M)= εdR
L ,ζ (M).

In particular, in this case, εF,L ,ζ (M) does not depend on F .
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Proof. This corollary immediately follows from Theorem 3.11 since εdR
L ,ζ (M) is

multiplicative with respect to exact sequences by (1) of Lemma 3.7. �

Finally, we compare Corollary 3.12 with the previous known results on Kato’s
ε-conjecture for the cyclotomic deformations of crystalline ones. Let F be a finite
unramified extension of Qp. Let V be a crystalline L-representation of GF , and let
T ⊆ V be a GF -stable OL -lattice of V. In [Benois and Berger 2008] and [Loeffler
et al. 2015], they defined ε-isomorphisms for some twists of T. Here, for simplicity,
we only recall the result of [Benois and Berger 2008] under the additional assumption
that F = Qp, since other cases can be proven in the same way. Let OL [[0]] be
the Iwasawa algebra with coefficients in OL . We define an OL [[0]]-representation
Dfm(T ) := T ⊗OL OL [[0]] on which GQp acts by g(x ⊗ y) := g(x)⊗ [ḡ]−1 y for
any g ∈ GQp , x ∈ T , y ∈ OL [[0]]. In [Benois and Berger 2008], by studying the
associated Wach modules very carefully, they essentially showed that Perrin-Riou’s
big exponential map induces an ε-isomorphism, which we denote by

εBB
OL [[0]],ζ

(Dfm(T )) : 1OL [[0]] −→
∼ 1OL [[0]](Dfm(T )),

satisfying the conditions in Conjecture 3.8. Let Drig(V ) be the (ϕ, 0)-module
over RL associated to V. Then, applying Example 3.3 to (3, T ) = (OL [[0]], T ),
we obtain a canonical isomorphism

1OL [[0]](Dfm(T ))⊗OL [[0]]R
∞

L (0)−→
∼ 1R∞(0)(Dfm(Drig(V ))) (31)

(see the next section for the definitions of R∞L (0) and Dfm(Drig(V ))). Since
Drig(V ) is crystalline, after extending scalars, we may assume that it is trianguline
with a triangulation F . Then Dfm(Drig(V )) is also trianguline with a triangulation
F ′ := Dfm(F). Hence, by Corollary 3.12, we obtain an isomorphism

εF ′,R∞L (0),ζ (Dfm(Drig(V ))) : 1R∞L (0) −→
∼ 1R∞(0)(Dfm(Drig(V ))).

Under this situation, we easily obtain the following corollary.

Corollary 3.13. Under the isomorphism (31), we have

εBB
OL [[0]],ζ

(Dfm(T ))⊗ idR∞L (0) = εF ′,R
∞

L (0),ζ
(Dfm(Drig(V ))).

In particular, the isomorphism εF ′,R∞L (0),ζ (Dfm(Drig(V ))) does not depend on F .

Proof. By [Benois and Berger 2008] and Theorem 3.11, the base changes of both
sides in Corollary 3.13 by the continuous L-algebra morphism fδ :R∞L (0)→ L :
[γ ]→ δ(γ )−1 are equal to εdR

L ,ζ (Drig(V (δ))) for any potentially crystalline character
δ : 0→ L×. Since the points corresponding to such characters are Zariski dense
in the rigid analytic space associated to Spf(OL [[0]]), we obtain the equality in
the corollary. �
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4. Rank-one case

Kato [1993b] proved his ε-conjecture using the theory of Coleman homomorphism,
which interpolates the exponential maps and the dual exponential maps of rank-
one de Rham p-adic representations of GQp . In particular, the so-called explicit
reciprocity law, which is the explicit formula of its interpolation property, was very
important in his proof.

In this final section, we first construct the ε-isomorphism

εA,ζ (M) : 1A −→
∼ 1A(M)

for any rank-one (ϕ, 0)-module M by interpreting the theory of Coleman homo-
morphism in terms of p-adic Fourier transforms (e.g., Amice transforms, Colmez
transforms), which seems to be standard for experts of the theory of (ϕ, 0)-modules.
Then we prove that this isomorphism satisfies the de Rham condition (vi) by
establishing the “explicit reciprocity law” of our Coleman homomorphism using
our theory of Bloch–Kato exponential maps developed in Section 2B.

4A. Construction of the ε-isomorphism. We first recall the theory of analytic
Iwasawa cohomology of (ϕ, 0)-modules over the Robba ring after [Pottharst 2012;
Kedlaya et al. 2014]. Let 3(0) := Zp[[0]] be the Iwasawa algebra of 0 with
coefficients in Zp, and let m be the Jacobson radical of 3(0). For each n ≥ 1,
define a Qp-affinoid algebra R[1/pn,∞](0) := (3(0)[mn/p])∧ [1/p], where, for any
ring R, we denote by R∧ the p-adic completion of R. Let Xn :=Max(R[1/pn,∞](0))

be the associated affinoid. Define X :=
⋃

n≥1 Xn , which is a disjoint union of open
unit discs. For n ≥ 1, consider the rank-one (ϕ, 0)-module

Dfmn :=R[1/pn,∞](0) ⊗̂Qp Re=RR[1/pn ,∞](0)e
with

ϕ(1 ⊗̂ e)= 1 ⊗̂ e and γ (1 ⊗̂ e)= [γ ]−1
⊗̂ e for γ ∈ 0.

Put Dfm := lim
←−−n Dfmn; this is a (ϕ, 0)-module over the relative Robba ring over X.

For M a (ϕ, 0)-module over RA, we define the cyclotomic deformation of M by

Dfm(M) := lim
←−−

n
Dfmn(M)

with
Dfmn(M) := M ⊗̂R Dfmn −→

∼ M ⊗̂A R[1/pn,∞]

A (0)e,

which is a (ϕ, 0)-module over the relative Robba ring over Max(A)× X. This
(ϕ, 0)-module is the universal cyclotomic deformation of M in the sense that, for
each continuous homomorphism δ0 : 0→ A×, we have a natural isomorphism

Dfm(M)⊗R∞A (0), fδ0
A −→∼ M(δ0) : (x ⊗̂ ηe)⊗ a 7→ fδ0(η)axeδ0
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for x ∈ M , ηe ∈R∞A (0)e and a ∈ A, where

fδ0 :R
∞

A (0)→ A

is the continuous A-algebra homomorphism defined by

fδ0([γ ]) := δ0(γ )
−1

for γ ∈ 0 (and recall that M(δ0) := M ⊗A Aeδ0 = Meδ0 is defined by ϕ(xeδ0) =

ϕ(x)eδ0 and γ (xeδ0) := δ0(γ )γ (x)eδ0 for x ∈ M and γ ∈ 0).
By Theorem 4.4.8 of [Kedlaya et al. 2014], we have a natural quasi-isomorphism

of R∞A (0)-modules

gγ : C •ψ,γ (Dfm(M))−→∼ C •ψ(M) :=
[
M1 ψ−1
−−→M1

]
,

where the latter complex is concentrated in degree [1, 2]. This quasi-isomorphism
is obtained as a composite of (a system of) quasi-isomorphisms

C •ψ,γ (Dfmn(M))−→∼ C •ψ(M) ⊗̂R∞A (0)R
[1/pn,∞]

A (0),

which are naturally induced by the following diagrams of R[1/pn,∞]

A (0)-modules
for n ≥ 1 with exact rows:

0−→ Dfmn(M)1
γ−1
−−→ Dfmn(M)1

fγ
−→ M ⊗̂R∞A (0)R

[1/pn,∞]

A (0)−→ 0

ψ−1
y ψ−1

y ψ−1
y

0−→ Dfmn(M)1
γ−1
−−→ Dfmn(M)1

fγ
−→ M ⊗̂R∞A (0)R

[1/pn,∞]

A (0)−→ 0

(32)

Here

fγ

(∑
i

xi ⊗̂ ηi e
)
:=

1
|0tor| log0(χ(γ ))

∑
i

xi ⊗̂ ηi

for xi ∈ M , ηi e ∈R
[1/pn,∞]

A (0)e, with the inverse of the natural quasi-isomorphism

C •ψ(M)−→∼ lim
←−−

n
C •ψ
(
M⊗R∞A (0)R

[1/pn,∞]

A (0)
)
−→∼ lim
←−−

n
C •ψ
(
M ⊗̂R∞A (0)R

[1/pn,∞]

A (0)
)

(see Theorem 4.4.8 of [Kedlaya et al. 2014] and Theorem 2.8(3) of [Pottharst 2012]
for the proof). This quasi-isomorphism is canonical in the sense that, for another
γ ′ ∈ 0 whose image in 0/1 is a topological generator, we have the commutative
diagram

C •ψ,γ (Dfm(M))
gγ
−→ C •ψ(M)

ιγ,γ ′

y id

y
C •ψ,γ ′(Dfm(M))

gγ ′
−→ C •ψ(M)

(33)
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For δ0 :0→ A×, using the natural isomorphism Dfm(M)⊗R∞A (0), fδ0
A−→∼ M(δ0)

and the quasi-isomorphism gγ , we obtain the quasi-isomorphism

gγ,δ0 : C
•

ψ,γ (M(δ0))−→
∼ C •ψ,γ (Dfm(M)⊗R∞A (0), fδ0

A)

−→∼ C •ψ,γ (Dfm(M))⊗L
R∞A (0), fδ0

A −→∼ C •ψ(M)⊗
L
R∞A (0), fδ0

A, (34)

where the second isomorphism follows from the fact that any (ϕ, 0)-module M0

over RA0 is flat over A0 for any A0 (see Corollary 2.1.7 of [Kedlaya et al. 2014]).
This quasi-isomorphism can be written in a more explicit way as follows. To recall
this, we see A as an R∞A (0)-module by the map fδ0 . Then we can take the projective
resolution of A

0→R∞A (0) · pδ0

d1,γ
−→R∞A (0) · pδ0

d2,γ
−→ A→ 0,

where

pδ0 :=
1
|1|

∑
σ∈1

δ−1
0 (σ )[σ ] ∈R∞A (0)

(this is an idempotent) and

d1,γ (η) := (δ0(γ )[γ ] − 1)η and d2,γ (η) :=
1

|0tor| log0(χ(γ ))
fδ0(η).

This resolution induces a canonical isomorphism

C •ψ(M)⊗R∞A (0)
[
R∞A (0) · pδ0

d1,γ
−→R∞A (0) · pδ0

]
−→∼ C •ψ(M)⊗

L
R∞A (0), fδ0

A.

Moreover, using the isomorphism

M ⊗R∞A (0)R
∞

A (0) · pδ0 −→
∼ M(δ)1 : m⊗ λpδ0 7→ λpδ0(meδ0),

we obtain a natural isomorphism

C •ψ(M)⊗R∞A (0)
[
R∞A (0) · pδ0

d1,γ
−→R∞A (0) · pδ0

]
−→∼ C •ψ,γ (M(δ0)).

Composing both, we obtain a natural quasi-isomorphism

C •ψ(M)⊗
L
R∞A (0), fδ0

A −→∼ C •ψ,γ (M(δ0)),

which is easily seen to be equal to gγ,δ0 .
Using the theory of analytic Iwasawa cohomology recalled as above, we can de-

scribe the fundamental line 1R∞A (0)(Dfm(M)) as follows. The quasi-isomorphism
gγ : C •ψ,γ (Dfm(M)) −→∼ C •ψ(M) and the quasi-isomorphism C •ϕ,γ (Dfm(M)) −→∼
C •ψ,γ (Dfm(M)) induce a natural isomorphism in PR∞A (0)

1R∞A (0),1(Dfm(M))−→∼ DetR∞A (0)(C
•

ψ,γ (Dfm(M)))−→∼ DetR∞A (0)(C
•

ψ(M)).
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Moreover, since we have

1R∞A (0),2(Dfm(M))= lim
←−−

n
1R[1/pn ,∞]

A (0),2(Dfmn(M))

−→∼ lim
←−−

n

(
1A,2(M)⊗A R[1/pn,∞]

A (0)e⊗rM
)

=1A,2(M)e⊗rM ⊗A R∞A (0)−→∼ 1A,2(M)⊗A R∞A (0),

where the last isomorphism is just the division by e⊗rM, we obtain a canonical
isomorphism

1R∞A (0)(Dfm(M))−→∼ DetR∞A (0)(C
•

ψ(M))� (1A,2(M)⊗A R∞A (0)). (35)

Under this canonical isomorphism, we will first define an isomorphism

θζ (M) : DetR∞A (0)(C
•

ψ(M))
−1
−→∼ (1A,2(M)⊗A R∞A (0)),

and then define εR∞A (0),ζ (Dfm(M)) as the composite

εR∞A (0),ζ (Dfm(M)) : 1R∞A (0)
can
−→DetR∞A (0)(C

•

ψ(M))�DetR∞A (0)(C
•

ψ(M))
−1

id�θζ (M)
−−−−→DetR∞A (0)(C

•

ψ(M))� (1A,2(M)⊗AR∞A (0))

−→∼ 1R∞A (0)(Dfm(M))

for the following special rank-one (ϕ, 0)-modules M.
For λ ∈ A×, define the “unramified” continuous homomorphism δλ :Q

×
p → A×

by δλ(p) := λ and δλ|Z×p := 1. We define an isomorphism θζ (M) for M =RA(δλ)

by the following steps, which are based on the reinterpretation of the theory of the
Coleman homomorphism in terms of the p-adic Fourier transform.

Let LA(Zp, A) be the set of A-valued locally analytic functions on Zp, and define
the action of (ϕ, ψ, 0) on it by

ϕ( f )|Z×p := 0, ϕ( f )(y) := f
(

y
p

)
(y ∈ pZp),

ψ( f )(y) := f (py), γ ( f )(y) :=
1

χ(γ )
f
(

y
χ(γ )

)
(γ ∈ 0).

One has a (ϕ, ψ, 0)-equivariant A-linear surjection, which we call the Colmez
transform,

Col :RA→ LA(Zp, A) (36)

defined by

Col( f (π))(y) := Res0

(
(1+π)y f (π)

dπ
(1+π)

)
,
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where Res0 :RA→ A is defined by Res0
(∑

n∈Z anπ
n
)
:=a−1 (note that Col depends

on the choice of the parameter π , i.e., the choice of ζ ). By this map, we obtain the
short exact sequence

0→R∞A →RA
Col
−→LA(Zp, A)→ 0. (37)

Twisting the action of (ϕ, ψ, 0) by δλ, we obtain the (ϕ, ψ, 0)-equivariant exact
sequence

0→R∞A (δλ)→RA(δλ)
Col⊗eδλ
−−−−→LA(Zp, A)(δλ)→ 0,

from which we obtain the exact sequence of complexes of R∞A (0)-modules

0→ C •ψ(R
∞

A (δλ))→ C •ψ(RA(δλ))→ C •ψ(LA(Zp, A)(δλ))→ 0. (38)

For each k ≥ 0, we define the algebraic function

yk
: Zp→ A : a 7→ ak .

Then Ayk eδλ ⊆ LA(Zp, A)(δλ) is a ψ-stable sub-R∞A (0)-module. By Lemme 2.9
of [Chenevier 2013], the natural inclusion

C •ψ

( N⊕
0=k

Ayk eδλ

)
↪→ C •ψ(LA(Zp, A)(δλ)) (39)

is a quasi-isomorphism for sufficiently large N.
Set Pk

i := Ayk eδλ for i = 1, 2. Since we have Ayk eδλ[0] ∈ D[−1,0]
perf (R∞A (0)) for

any k ≥ 0, the natural exact sequence

0→ Pk
1 [−1] → C •ψ(Ayk eδλ)→ Pk

2 [−2] → 0

induces a canonical isomorphism

gk : DetR∞A (0)(C
•

ψ(Ayk eδλ))−→∼ DetR∞A (0)(P
k
2 )�DetR∞A (0)(P

k
1 )
−1

iDetR∞A (0)
(Pk

1 )

−−−−−−→1R∞A (0).

We remark that, if the complex C •ψ(Ayk eδλ) is acyclic, then the composite of this
isomorphism with the inverse of the canonical trivialization isomorphism

hDetR∞A (0)(C
•

ψ (Ayk eδλ ))
: DetR∞A (0)(C

•

ψ(Ayk eδλ))−→∼ 1R∞A (0)

is the identity map. Hence, if we define the isomorphism

gN
:=�N

0=k gk : DetR∞A (0)

(
C •ψ

( N⊕
k=0

Ayk eδλ

))
−→∼ 1R∞A (0), (40)
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then, by (39) and (40) (for sufficiently large N ), we obtain an isomorphism

ι0 : DetR∞A (0)(C
•

ψ(LA(Zp, A)(δλ)))−→∼ 1R∞A (0), (41)

which is independent of the choice of (sufficiently large) N.
Since C •ψ(LA(Zp, A)(δλ)), C •ψ(RA(δλ)) are both perfect complexes, we also have

C •ψ(R
∞

A (0)) ∈ Db
perf(R

∞

A (0))

by the exact sequence (38), and then we obtain an isomorphism

ι1 : DetR∞A (0)(C
•

ψ(RA(δλ)))

−→∼ DetR∞A (0)(C
•

ψ(R
∞

A (δλ)))�DetR∞A (0)(C
•

ψ(LA(Zp, A)(δλ)))
id�ι0
−−→DetR∞A (0)(C

•

ψ(R
∞

A (δλ)))−→
∼ DetR∞A (0)(R

∞

A (δλ)
ψ=1
[0])−1, (42)

where the last isomorphism is the one naturally induced by the exact sequence

0→R∞A (δλ)
ψ=1
→R∞A (δλ)

ψ−1
−−→R∞A (δλ)→ 0

(where the surjectivity is proved in Lemme 2.9(v) of [Chenevier 2013]).
We next consider the complex C •ψ(R

∞

A (δλ)). For a R∞A (0)-module M with linear
actions of ϕ and ψ , define a complex

C •
ψ̃
(M) :=

[
M ψ
→M

]
∈ D[1,2](R∞A (0)),

and define a map of complexes αM : C •ψ(M)→ C •
ψ̃
(M) by

C •ψ(M) :
[
M

ψ−1
−−→ M

]yαM

y1−ϕ
yidM

C •
ψ̃
(M) :

[
M

ψ
−→ M

] (43)

For N ≥ 0, set DN :=
⊕

0≤k≤N Atk eδλ . Since Atk eδλ[0] ∈ D[−1,0]
perf (R∞A (0)), we

can define a canonical isomorphism

DetR∞A (0)(C
•

ψ(DN ))−→
∼ 1R∞A (0) (44)

in the same way as the isomorphism (40). Then the natural exact sequence
0→ C •ψ(DN )→ C •ψ(R

∞

A (δλ))→ C •ψ(R
∞

A (δλ)/DN )→ 0 induces a canonical iso-
morphism

DetR∞A (0)(C
•

ψ(R
∞

A (δλ)))

−→∼ DetR∞A (0)(C
•

ψ(DN ))�DetR∞A (0)(C
•

ψ(R
∞

A (δλ)/DN ))

−→∼ DetR∞A (0)(C
•

ψ(R
∞

A (δλ)/DN )), (45)

where the last isomorphism is induced by the isomorphism (44).
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Since the map 1 − ϕ : R∞A (δλ)/DN → R∞A (δλ)/DN is an isomorphism for
sufficiently large N by Lemme 2.9(ii) of [Chenevier 2013], the map α(R∞A (δλ)/DN )

is also an isomorphism for sufficiently large N. Hence, for sufficiently large N, we
obtain a canonical isomorphism

DetR∞A (0)(C
•

ψ(R
∞

A (δλ)/DN ))−→
∼ DetR∞A (0)(C

•

ψ̃
(R∞A (δλ)/DN )). (46)

Since the complex C •
ψ̃
(DN ) is acyclic (since ψ : Atk eδλ→ Atk eδλ is an isomorphism

for any k ≥ 0), the natural exact sequence 0 → C •
ψ̃
(DN ) → C •

ψ̃
(R∞A (δλ)) →

C •
ψ̃
(R∞A (δλ)/DN )→ 0 induces a canonical isomorphism

DetR∞A (0)(C
•

ψ̃
(R∞A (δλ)/DN ))

−→∼ DetR∞A (0)(C
•

ψ̃
(DN ))�DetR∞A (0)(C

•

ψ̃
(R∞A (δλ)/DN ))

−→∼ DetR∞A (0)(C
•

ψ̃
(R∞A (δλ))), (47)

where the first isomorphism is induced by the inverse of the isomorphism

hC•
ψ̃
(DN ) : DetR∞A (0)(C

•

ψ̃
(DN ))−→

∼ 1R∞A (0).

Moreover, the exact sequence 0→R∞A (δλ)
ψ=0
→R∞A (δλ)

ψ
→R∞A (δλ)→ 0 and

the isomorphism

R∞A (0)eδλ −→∼ R∞A (δλ)
ψ=0
: λeδλ 7→ (λ · (1+π)−1)eδλ (48)

(note that this isomorphism depends on the choice of ζ ) naturally induces the
isomorphism

DetR∞A (0)(C
•

ψ̃
(R∞A (δλ)))

−1
−→∼ DetR∞A (0)(R

∞

A (δλ)
ψ=0)−→∼ (R∞A (0)eδλ, 1). (49)

Finally, as the composites of the inverses of the isomorphisms (42), (45), (46),
(47), and the isomorphism (49), we define the desired isomorphism

θζ (RA(δλ)) : DetR∞A (0)(C
•

ψ(RA(δλ)))
−1

−→∼ (R∞A (0)eδλ, 1)=1A,2(RA(δλ))⊗A R∞A (0).

Definition 4.1. Using the isomorphism (35), for M = RA(δλ), we define the ε-
isomorphism by

εR∞A (0),ζ (Dfm(M)) : 1R∞A (0)
can
−→DetR∞A (0)(C

•

ψ(M))�DetR∞A (0)(C
•

ψ(M))
−1

id�θζ (M)
−−−−→DetR∞A (0)(C

•

ψ(M))� (1A,2(M)⊗AR∞A (0))

−→∼ 1R∞A (0)(Dfm(M)).

Before defining the ε-isomorphism for the general rank-one case, we check that
the isomorphism εR∞A (0),ζ (Dfm(RA(δλ))) defined above satisfies the properties (i)
and (iii) in Conjecture 3.8



A generalization of Kato’s local 3-conjecture 375

For the property (i), it is clear that, for each continuous homomorphism f : A→ A′

(and set λ′ = f (λ)), we have

εR∞A (0),ζ (Dfm(RA(δλ)))⊗ idA′ = εR∞A′ (0),ζ (Dfm(RA′(δλ′)))

under the canonical isomorphism

1R∞A (0)(Dfm(RA(δλ)))⊗A A′ −→∼ 1R∞A′ (0)(Dfm(RA(δλ) ⊗̂A A′))

−→∼ 1R∞A′ (0)(Dfm(RA′(δλ′))),

where the last isomorphism is induced by the isomorphism

RA(δλ) ⊗̂A A′ −→∼ RA′(δλ′) : g(π)eδλ ⊗̂ a 7→ ag f(π)eδλ′ ;

here we define

g f(π) :=
∑
n∈Z

f (an)π
n
∈RA′ for g(π)=

∑
n∈Z

anπ
n
∈RA.

The property (iii) easily follows from (48) since one has (1+πζ a )= (1+πζ )a =
[σa] · (1+πζ ) for a ∈ Z×p .

Next, we consider a rank-one (ϕ, 0)-module over RA of the form RA(δ) for a
general continuous homomorphism δ :Q×p → A×. Set

λ := δ(p) and δ0 := δ|Z×p ,

which we freely see as a homomorphism δ0 : 0→ A× by identifying χ : 0 −→∼ Z×p .
We define the continuous A-algebra homomorphism

fδ0 :R
∞

A (0)→ A,

which is uniquely characterized by fδ0([γ ]) = δ0(γ )
−1 for any γ ∈ 0. Then we

have a canonical isomorphism

Dfm(RA(δλ))⊗R∞A (0), fδ0
A −→∼ RA(δ)

defined by
( f (π)eδλ ⊗̂ ηe)⊗ a := a fδ0(η) f (π)eδ

for f (π) ∈RA, η ∈R∞A (0), a ∈ A, which also induces a canonical isomorphism

1R∞A (0)(Dfm(RA(δλ)))⊗R∞A (0), fδ0
A −→∼ 1A(RA(δ)).

Definition 4.2. We define the isomorphism

εA,ζ (RA(δ)) : 1A −→
∼ 1A(RA(δ))

by
εA,ζ (RA(δ)) := εR∞A (0),ζ (Dfm(RA(δλ)))⊗ idA
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under the above isomorphism.

Next, we consider a rank-one (ϕ, 0)-module of the form RA(δ)⊗A L for an
invertible A-module L.

Lemma 4.3. Let M be a (ϕ, 0)-module over RA (of any rank), and let L be an
invertible A-module. Then there exist a canonical A-linear isomorphism

1A(M ⊗A L)−→∼ 1A(M).

Proof. The natural isomorphism C •ϕ,γ (M ⊗A L) −→∼ C •ϕ,γ (M) ⊗A L induces an
isomorphism

1A,1(M ⊗A L)−→∼ 1A,1(M)� (L⊗−rM , 0).

Since we also have a natural isomorphism LA(M ⊗A L)−→∼ LA(M)⊗A L⊗rM, we
obtain a natural isomorphism

1A,2(M ⊗A L)−→∼ 1A,2(M)� (L⊗rM , 0).

Then the isomorphism in the lemma is obtained by taking the products of these iso-
morphisms with the canonical isomorphism i(L⊗rM ,0) : (L⊗rM , 0)�(L⊗−rM , 0)−→∼ 1A.

�

Definition 4.4. We define the isomorphism

εA,ζ (RA(δ)⊗A L) : 1A −→
∼ 1A(RA(δ)⊗A L)

by
εA,ζ (RA(δ)⊗A L) := εA,ζ (RA(δ))

under the above isomorphism 1A(M ⊗A L)−→∼ 1A(M).

Finally, let M be a general rank-one (ϕ, 0)-module over RA. By Theorem 2.8,
there exists a unique pair (δ,L) such that g : M −→∼ R(δ)⊗A L. This isomorphism
induces an isomorphism g∗ :1A(M)−→∼ 1A(RA(δ)⊗A L).

Definition 4.5. Under the above situation, we define

εA,ζ (M) := εA,ζ (RA(δ)⊗A L) ◦ g∗ : 1A −→
∼ 1A(M).

Lemma 4.6. The isomorphism εA,ζ (M) is well defined, i.e., does not depend on g.

Proof. Since we have Aut(RA(δ) ⊗A L) = A× (where Aut(M) is the group of
automorphisms of M as (ϕ, 0)-modules over RA), it suffices to show the following
lemma. �

Lemma 4.7. Let M be a (ϕ, 0)-module over RA. For a ∈ A×, let us define ga :

M −→∼ M : x 7→ ax. Then we have

(ga)∗ = id1A(M) .
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Proof. This lemma immediately follows from the fact that ga induces 11,A(M)−→∼

1A,1(M) : x 7→ a−rM x (by the Euler–Poincaré formula) and1A,2(M)−→∼ 1A,2(M) :
x 7→ arM x by definition. �

Remark 4.8. By definition, it is clear that εA,ζ (M), constructed above, satisfies the
conditions (i) and (iii) in Conjecture 3.8. It also seems to be easy to directly prove
the conditions (iv), (v) of Conjecture 3.8. However, in the next subsection, we prove
the conditions (iv) and (v) using density arguments in the process of verifying the
condition (vi).

Remark 4.9. Define OE :=
{∑

n∈Z anπ
n
| an ∈Zp, a−n→ 0 (n→+∞)

}
, OE+ :=

Zp[[π ]], and OE+,3 := OE+ ⊗̂Zp 3. Define C0(Zp,3) to be the 3-modules of
3-valued continuous functions on Zp. Using the exact sequence

0→OE+,3→OE,3
Col
−→ C0(Zp,3)→ 0,

which is the continuous function analogue of the exact sequence (37), and using the
equivalence between the category of 3-representations of GQp with that of étale
(ϕ, 0)-modules over OE,3 [Dee 2001], it seems possible to define an ε-isomorphism
ε3,ζ (3(δ̃)) for any δ̃ : Gab

Qp
→3× in the same way as the definition of εA,ζ (RA(δ)).

Using this ε-isomorphism, it is clear that our ε-isomorphism εA,ζ (RA(δ)) satisfies
the condition (v) in Conjecture 3.8. Moreover, it is easy to compare the isomorphism
ε3,ζ (3(δ̃)) with the one Kato defined [1993b].

4B. Verification of the conditions (iv), (v), (vi). In this final subsection, we prove
that our ε-isomorphism εA,ζ (M), constructed in the previous subsection, satisfies
the conditions (iv), (v), (vi) of Conjecture 3.8. Of course, the essential part is to
prove the condition (vi); the other conditions follow from it using density arguments.

Therefore, in this subsection, we mainly concentrate on the case where A = L
is a finite extension of Qp. Before verifying the condition (vi), we describe the
isomorphism εL ,ζ (RL(δ)) : 1L −→

∼ 1L(RL(δ)) for any continuous homomorphism
δ = δλδ0 :Q

×
p → L× in a more explicit way.

For an R∞L (0)-module N, define a 0-module N (δ0) := N eδ0 by γ (xeδ0) =

δ0(γ )([γ ] · x)eδ0 for any γ ∈ 0. Then we have a natural quasi-isomorphism

N [−1]⊗L
R∞L (0), fδ0

L −→∼ N ⊗R∞L (0)
[
R∞L (0)pδ0

d1,γ
−→R∞L (0)pδ0

]
−→∼ C •γ (N (δ0)).

Hence, if N [0] ∈ Db
perf(R

∞

L (0)), then we obtain a natural isomorphism

DetL(N [−1])⊗R∞L (0), fδ0
L −→∼ DetL(C •γ (N (δ0)))

−→∼ �i=0,1 DetL(Hi
γ (N (δ0)))

(−1)i .
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Moreover, if N is also equipped with a commuting linear action of ψ such that
C •ψ(M) ∈ Db

perf(R
∞

L (0)), then we obtain a natural isomorphism

DetL(C •ψ(N ))⊗R∞L (0), fδ0
L −→∼ DetL(C •ψ,γ (N (δ0)))

−→∼ �2
i=0 DetL(Hi

ψ,γ (N (δ0)))
(−1)i .

In particular, the isomorphism θ̄ζ (RL(δ)) := θζ (RL(δλ))⊗R∞L (0), fδ0
idL can be seen

as the isomorphism

θ̄ζ (RL(δ)) :�2
i=0 DetL(Hi

ψ,γ (RL(δ)))
(−1)i+1

−→∼ (R∞L (0)eδλ, 1)⊗R∞L (0), fδ0
L −→∼ (Leδ, 1), (50)

where the last isomorphism is induced by the isomorphism

R∞L (0)eδλ ⊗R∞L (0), fδ0
L −→∼ Leδ : (ηeδλ)⊗ a 7→ a fδ0(η)eδ.

Therefore, to verify the condition (vi) when RL(δ) is de Rham, we need to relate
the map θ̄ζ (RL(δ)) with the Bloch–Kato exponential map or the dual exponential
map.

To do so, we divide into the following three cases:

(1) δ 6= x−k, xk+1
|x | for any k ∈ Z≥0 (which we call the generic case).

(2) δ = x−k for k ≥ 0.

(3) δ = xk+1
|x | for k ≥ 0.

We will first verify the condition (vi) in the generic case by establishing a kind of
explicit reciprocity law (see Propositions 4.11 and 4.16). Then we will verify the
conditions (iv) and (v) using the generic case by density argument. Finally, we
will prove the condition (vi) in the case (2) via direct calculations, and reduce the
case (3) to the case (2) using the duality condition (iv).

In the remaining parts, we freely use the results of Colmez and Chenevier
concerning the calculations of cohomologies

Hi
ψ,γ (RL(δ)), Hi

ψ,γ (R
∞

L (δ)) and Hi
ψ,γ (LA(Zp, L)(δ));

see Proposition 2.1 and Théorème 2.9 of [Colmez 2008] and Lemme 2.9 and
Corollaire 2.11 of [Chenevier 2013].

4B1. Verification of the condition (vi) in the generic case. In this subsection, we
assume that δ is generic. Then we have

Hi
ψ,γ (Ltk eδ)= Hi

ψ,γ (Lyk eδ)= Hi
ψ,γ (LA(Zp, L)(δ))= 0

for any k ∈ Z≥0 and i ∈ {0, 1, 2}, and

Hi
ψ,γ (RL(δ))= Hi

ψ,γ (R
∞

L (δ))= 0
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for i = 0, 2, and

dimL H1
ψ,γ (RL(δ))= dimL H1

ψ,γ (R
∞

L (δ))= 1.

Then ι1,δ := ι1⊗R∞L (0), fδ0
idL (see (42)) is the isomorphism

(H1
ψ,γ (RL(δ)), 1)−1

−→∼ (H1
γ (R

∞

L (δ)
ψ=1), 1)−1 (51)

in PL induced by the isomorphism

H1
γ (R

∞

L (δ)
ψ=1)−→∼ H1

ψ,γ (RL(δ)) : [x] 7→ [x, 0].

Then the base change by fδ0 of the isomorphism

DetR∞L (0)(C
•

ψ(R
∞

L (δλ)))
−1
−→∼ DetR∞L (0)(R

∞

L (δλ)
ψ=0
[0])−→∼ (R∞L (0)eδλ, 1),

which is induced by (45), (46), (47) and (49), becomes the isomorphism

(H1
γ (R

∞

L (δ)
ψ=1), 1) [x]7→[(1−ϕ)x]−−−−−−−→ (H1

γ (R
∞

L (δ)
ψ=0), 1)−→∼ (Leδ, 1), (52)

where the last isomorphism is explicitly defined as follows. For an explicit definition
of this isomorphism, it is useful to use the Amice transform. Let D(Zp, L) :=
Homcont

L (LA(Zp, L), L) be the algebra of L-valued distributions on Zp, where the
multiplication is defined by the convolution. By the theorem of Amice, we have an
isomorphism of topological L-algebras

D(Zp, L)−→∼ R∞L : µ 7→ fµ(π) :=
∑
n≥0

µ

((
y
n

))
πn

(which depends on the choice of π , i.e., the choice of ζ ), where(
y
n

)
:=

y(y− 1) · · · (y− n+ 1)
n!

.

Then the action of (ϕ, 0,ψ) on R∞L induces the action on D(Zp, L) by∫
Zp

f (y)ϕ(µ)(y) :=
∫

Zp

f (py)µ(y),
∫

Zp

f (y)ψ(µ)(y) :=
∫

pZp

f
(

y
p

)
µ(y)

and ∫
Zp

f (y)σa(µ)(y) :=
∫

Zp

f (ay)µ(y),

where, for a ∈ Z×p , we define σa ∈ 0 such that χ(σa)= a.
Using this notion, it is easy to see that the second isomorphism in (52) is defined

by

H1
γ (R

∞

L (δ)
ψ=0)−→∼ Leδ : [ fµeδ] 7→

δ(−1)
|0tor| log0(χ(γ ))

·

∫
Z×p

δ−1(y)µ(y)eδ,
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where we note that we have an isomorphism

D(Z×p , L)eδ −→∼ R∞L (δ)
ψ=0
: µeδ 7→ fµeδ,

since one has

fδ0(λ)=

∫
Z×p

δ−1
0 (y)µγ (y)

for any λ ∈R∞L (0) and any continuous homomorphism δ0 : Z
×
p → L×, where we

define µγ ∈ D(Z×p , L) by fµγ (π)= λ · (1+π).
For a 0-module N, we define H1(0, N ) := N/N0, where N0 is the submodule

generated by the set {(γ − 1)n | γ ∈ 0, n ∈ N }. Then we have the canonical
isomorphism

H1(0,R∞L (δ)
ψ=1)−→∼ H1

γ (R
∞

L (δ)
ψ=1) : [ f eδ] 7→ [|0tor| log0(χ(γ ))p1( f eδ)]

(where “canonical” means that this is independent of γ , i.e., is compatible with the
isomorphisms ιγ,γ ′ for any γ ′ ∈ 0). Composing this with the isomorphism (52), we
obtain an isomorphism

(H1(0,RL(δ)
ψ=1), 1)−→∼ (Leδ, 1) (53)

in PL . Concerning the explicit description of this isomorphism, we obtain the
following lemma.

Lemma 4.10. The isomorphism (53) is induced by the isomorphism

ιδ : H1(0,R∞L (δ)
ψ=1)−→∼ Leδ : [ fµeδ] 7→ δ(−1) ·

∫
Z×p

δ−1(y)µ(y).

Proof. For fµeδ ∈ R∞L (δ)
ψ=1, we have (1− ϕ)( fµeδ) = ((1− ϕψ) fµ) · eδ. Then

the lemma follows from the formula∫
Zp

f (x)(1−ϕψ)µ(x)=
∫

Z×p

f (x)µ(x) for µ ∈ D(Zp, L). �

Next, we furthermore assume that RL(δ) is de Rham. By the classification, it is
equivalent to δ= δ̃xk for k ∈Z and a locally constant homomorphism δ̃ :Q×p → L×.
In the generic case, we have the following isomorphisms of one-dimensional
L-vector spaces:

(1) exp∗RL (δ)∗
: H1

ψ,γ (RL(δ))−→
∼ DdR(RL(δ)) if k ≤ 0.

(2) expRL (δ)
: DdR(RL(δ))−→

∼ H1
ψ,γ (RL(δ)) if k ≥ 1.

Let us define n(δ) ∈ Z≥0 as the minimal integer such that δ̃|(1+pnZp)∩Z×p
is trivial.

Then:

(1) n(δ)= 0 if and only if RL(δ) is crystalline.
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(2) εL(W (RL(δ)), ζ )= 1 if n(δ)= 0.

(3) εL(W (RL(δ)), ζ )= δ̃(p)n(δ)
∑

i∈(Z/pn(δ)Z)× δ̃(i)
−1ζ i

pn(δ) if n(δ)≥ 1.

(4) εL(W (RL(δ)), ζ ) · εL(W (RL(δ)
∗), ζ )= δ̃(−1).

By definition of εL ,ζ (RL(δ)) and εdR
L ,ζ (RL(δ)), and by Lemma 4.10, to verify the

condition (vi), it suffices to show the following two propositions (Proposition 4.11
for k ≤ 0 and Proposition 4.16 for k ≥ 1), which can be seen as a kind of explicit
reciprocity law.

Proposition 4.11. If k ≤ 0, then the map

H1(0,R∞L (δ)
ψ=1)−→∼ H1

ψ,γ (RL(δ))
exp∗RL (δ)∗
−−−−→ DdR(RL(δ))=

(
1
tk L∞eδ

)0
(where the first isomorphism is defined by [ f eδ] 7→ [|0for| log0(χ(γ ))p1( f eδ), 0])
sends each element [ fµeδ] ∈ H1(0,R∞L (δ)

ψ=1) to

(1)
(−1)k

(−k)!
·

δ(−1)
εL(W (RL(δ)), ζ )

·
1
tk ·

∫
Z×p

δ−1(y)µ(y)eδ if n(δ) 6= 0,

(2)
(−1)k

(−k)!
·

detL(1−ϕ | Dcris(RL(δ)
∗))

detL(1−ϕ | Dcris(RL(δ)))
·
δ(−1)

tk ·

∫
Z×p

δ−1(y)µ(y)eδ if n(δ)= 0.

Proof. Here, we prove the proposition only when k= 0, i.e., δ= δ̃ is locally constant.
We will prove it for general k ≤ 0 after some preparations on the differential
operator ∂ (the proof for general k will be given after Remark 4.15).

Hence, we assume that k = 0. For such δ, we define a map

gRL (δ) : DdR(RL(δ))→ H1
γ (Ddif(RL(δ))) : x 7→ [log(χ(γ ))x],

which is easily seen to be an isomorphism. By Proposition 2.16 of [Nakamura
2014a], one has the commutative diagram

H1
ψ,γ (RL(δ))

exp∗RL (δ)∗

−−−−−→ DdR(RL(δ))

id

y gRL (δ)

y
H1
ψ,γ (RL(δ))

can
−→ H1

γ (Ddif(R(δ)))

(54)

Set n0 := max{n(δ), 1} if p 6= 2, and set n0 := max{n(δ), 2} if p = 2. Then
the image of [ fµeδ] ∈ H1(0,R∞L (δ)

ψ=1) −→∼ H1
ψ,γ (RL(δ)) by the canonical map

can : H1
ψ,γ (RL(δ))→ H1

γ (Ddif(R(δ))) is equal to

[|0tor| log0(χ(γ ))p1(ιn0( fµeδ))] ∈ H1
γ (Ddif(R(δ))).
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Hence, it suffices to calculate g−1
RL (δ)

([|0tor| log0(χ(γ ))p1(ιn0( fµeδ))]). By defini-
tion of gRL (δ), it is easy to check that we have

g−1
RL (δ)

([|0tor| log0(χ(γ ))p1(ιn0( fµeδ))])

=
|0tor| log0(χ(γ ))

log(χ(γ ))
1

[Qp(ζpn0 ) :Qp]

∑
i∈(Z/pn0 Z)×

σi (ιn0( fµeδ)|t=0)=: (∗).

Concerning the right-hand side, when n(δ) ≥ 1 if p 6= 2, or n(δ) ≥ 2 if p = 2,
one has the following equalities, from which the equality (1) follows in this case:

(∗)=
|0tor| log0(χ(γ ))

log(χ(γ ))
1

[Qp(ζpn(δ)) :Qp]

∑
i∈(Z/pn(δ)Z)×

σi (ιn(δ)( fµeδ)|t=0)

=
|0tor| log0(χ(γ ))

log(χ(γ ))
p

(p− 1)
1

pn(δ)

∑
i∈(Z/pn(δ)Z)×

σi

(
1

δ(p)n(δ)

∫
Zp

ζ
y
pn(δ)µ(y)eδ

)

=
1

(pδ(p))n(δ)
∑

i∈(Z/pn(δ)Z)×

δ(i)
∫

Zp

ζ
iy
pn(δ)µ(y)eδ

=
1

(pδ(p))n(δ)
∑

i∈(Z/pn(δ)Z)×

δ(i)
( ∑

j∈Z/pn(δ)Z

ζ
i j
pn(δ)

∫
j+pn(δ)Zp

µ(y)
)

eδ

=
1

(pδ(p))n(δ)
∑

j∈Z/pn(δ)Z

( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i j
pn(δ)

)∫
j+pn(δ)Zp

µ(y)eδ

=
1

(pδ(p))n(δ)
∑

j∈(Z/pn(δ)Z)×

( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i j
pn(δ)

)∫
j+pn(δ)Zp

µ(y)eδ

=
1

(pδ(p))n(δ)

( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i
pn(δ)

) ∑
j∈(Z/pn(δ)Z)×

δ( j)−1
∫

j+pn(δ)Zp

µ(y)eδ

= εL(W (RL(δ)
∗), ζ )

∫
Z×p

δ−1(y)µ(y)eδ

=
δ(−1)

εL(W (RL(δ)), ζ )

∫
Z×p

δ−1(y)µ(y)eδ.

Here the second equality follows from

ιn(δ)( fµ)|t=0 = fµ(ζpn(δ) − 1)=
∫

Zp

ζ
y
pn(δ)µ(y),

the third equality follows from

|0for| log0(χ(γ ))

log(χ(γ ))
p

p− 1
= 1
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(for any p), the sixth equality follows from the fact that( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i j
pn(δ)

)
= 0

if p | j, and the seventh and eighth follow from the property (4) of ε-constants listed
before this proposition.

When n(δ)= 0, one has n0 = 1 if p 6= 2 and n0 = 2 if p = 2. Then one has the
following equalities:

(∗)=
1

pn0

∑
i∈(Z/pn0 Z)×

σi (ιn0( fµeδ)|t=0)

=
1

pn0

∑
i∈(Z/pn0 Z)×

σi

(
1

δ(p)n0

∫
Zp

ζ
y
pn0µ(y)eδ

)

=
1

(pδ(p))n0

∑
i∈(Z/pn0 Z)×

∫
Zp

ζ
iy
pn0µ(y)eδ

=
1

(pδ(p))n0

∑
i∈(Z/pn0 Z)×

( ∑
j∈Z/pn0 Z

ζ
i j
pn0

∫
j+pn0 Zp

µ(y)
)

eδ

=
1

(pδ(p))n0

∑
j∈Z/pn0 Z

( ∑
i∈(Z/pn0 Z)×

ζ
i j
pn0

)∫
j+pn0 Zp

µ(y)eδ.

Here the first equality follows from

|0tor| log0(χ(γ ))

log(χ(γ ))
1

[Qp(ζpn0 ) :Qp]
=

1
pn0

for any p.
When p 6= 2, the last term is equal to

1
pδ(p)

(
(p− 1)

∫
pZp

µ(y)−
∫

Z×p

µ(y)
)

eδ

since
∑

i∈(Z/pZ)× ζ
i j
p = p− 1 if p | j and

∑
i∈(Z/pZ)× ζ

i j
p =−1 if p - j.

Since fµeδ ∈R∞(δ)ψ=1, we have ψ( fµ)= δ(p) fµ, hence we have∫
pZp

µ(y)=
∫

Zp

ψ(µ)(y)= δ(p)
∫

Zp

µ(y)= δ(p)
(∫

Z×p

µ(y)+
∫

pZp

µ(y)
)
,

and we have ∫
pZp

µ(y)=
δ(p)

1− δ(p)

∫
Z×p

µ(y)

since we have δ(p) 6= 1 by the generic assumption on δ.
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Therefore, we have

1
pδ(p)

(
(p−1)

∫
pZp

µ(y)−
∫

Z×p

µ(y)
)

eδ =
1

pδ(p)

(
(p−1)

δ(p)
1− δ(p)

−1
)∫

Z×p

µ(y)eδ

=
1

pδ(p)
pδ(p)− 1
1− δ(p)

∫
Z×p

µ(y)eδ

=

1− 1
pδ(p)

1− δ(p))

∫
Z×p

µ(y)eδ,

from which we obtain the equality (2) for p 6= 2.
When p = 2, then the last term is equal to

1
(pδ(p))2

(
2
∫

4Z2

µ(y)− 2
∫

2+4Z2

µ(y)
)

eδ =
1

pδ(p)2

(∫
4Z2

µ(y)−
∫

2Z2

µ(y)
)

eδ

since
∑

i∈(Z/4Z)× ζ
i j
4 is equal to 2 if j ≡ 0 (mod 4), is equal to 0 if j ≡ 1, 3 (mod 4),

and is equal to −2 if j ≡ 2 (mod 4). Since we have ψ( fµ)= δ(p) fµ, we have∫
4Zp

µ(y)=
∫

2Z2

ψ(µ)(y)= δ(p)
∫

2Z2

µ(y)= δ(p)
δ(p)

1− δ(p)

∫
Z×2

µ(y),

where the last equality follows from the same argument for p 6= 2.
Therefore, we have

1
pδ(p)2

(∫
4Z2

µ(y)−
∫

2Z2

µ(y)
)

eδ=
1

pδ(p)2

(
δ(p)

δ(p)
1− δ(p)

−
δ(p)

1− δ(p)

)∫
Z×p

µ(y)eδ

=
1

pδ(p)2
2δ(p)2− δ(p)

1− δ(p)

∫
Z×2

µ(y)eδ

=

1− 1
pδ(p)

1− δ(p)

∫
Z×2

µ(y)eδ,

from which we obtain the equality (2) for p = 2. �

To prove the above proposition for general k ≤ 0, we need to recall and prove
some facts on the differential operator ∂ defined in §2.4 of [Colmez 2008], which
will be used to reduce the verification of the condition (vi) for general k to that for
k = 0, 1 (even for the nongeneric case).

Let A be a Qp-affinoid algebra. We define an A-linear differential operator
∂ :RA→RA : f (π) 7→ (1+π) d f (π)

dπ . Let δ :Q×p → A× be a continuous homomor-
phism. Then ∂ naturally induces an A-linear and (ϕ, 0)-equivariant morphism

∂ :RA(δ)→RA(δx) : f (π)eδ 7→ ∂( f (π))eδx ,
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which sits in the exact sequence

0→ A(δ) aeδ 7→aeδ
−−−−→RA(δ)

∂
→RA(δx)

f eδx 7→Res0
(

f dπ
1+π

)
e
δ|x |−1

−−−−−−−−−−−−−→ A(δ|x |−1)→ 0. (55)

By this exact sequence, when A = L is a finite extension of Qp, we immediately
obtain the following lemma.

Lemma 4.12. ∂ : C •ϕ,γ (RL(δ))→ C •ϕ,γ (RL(δx)) is a quasi-isomorphism except
when δ = 1, |x |.

For the general case, the exact sequence (55) induces the canonical isomorphism

DetA(C •ϕ,γ (A(δ)))�1A,1(RA(δ))
−1 �1A,1(RA(δx))

�DetA(C •ϕ,γ (A(δ|x |
−1)))−1

−→∼ 1A. (56)

For δ′ = δ, δ|x |−1, since A(δ′) is a free A-module, the complex

C •ϕ,γ (A(δ
′)) :

[
A(δ′)11

(γ−1)⊕(ϕ−1)
−−−−−−−→ A(δ′)12 ⊕ A(δ′)13

(ϕ−1)⊕(1−γ )
−−−−−−−→ A(δ′)14

]
(where A(δ′)i = A(δ′) for i = 1, . . . , 4) induces the canonical isomorphism

DetA(C •ϕ,γ (A(δ
′)))

=
(
DetA(A(δ′)11 )�DetA(A(δ′)13 )

−1)� (DetA(A(δ′)14 )�DetA(A(δ′)12 )
−1)

iDetA(A(δ′)11 )
�iDetA(A(δ′)14 )

−−−−−−−−−−−−−→1A.

Applying this isomorphism, the isomorphism (56) becomes the isomorphism
1A,1(RA(δ))

−1 �1A,1(RA(δx))−→∼ 1A, and then, multiplying by 1A,1(RA(δ)) on
both sides, we obtain the following isomorphism, which we also denote by ∂:

∂ :1A,1(RA(δ))−→
∼ 1A,1(RA(δ))�

(
1A,1(RA(δ))

−1 �1A,1(RA(δx))
)

i
1A,1(RA(δ))−1
−−−−−−→1A,1(RA(δx)).

Taking the product of this isomorphism with the isomorphism

1A,2(RA(δ))−→
∼ 1A,2(RA(δx)) : aeδ 7→ −aeδx ,

we obtain the isomorphism

∂ :1A(RA(δ))−→
∼ 1A(RA(δx)).

By definition, it is clear that this isomorphism is compatible with any base change
A→ A′.

Concerning this isomorphism, we prove the following proposition.

Proposition 4.13. εA,ζ (RA(δx))= ∂ ◦ εA,ζ (RA(δ)).
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Proof. The proof of this proposition is a typical density argument, which will be
used several times later.

Define the unramified homomorphism δY :Q
×
p → 0(Gan

m ,OGan
m
)× by δY (p) := Y

(where Y is the parameter of Gan
m ). Then RA(δ) is obtained as a base change of the

“universal” rank-one (ϕ, 0)-module Dfm(RGan
m
(δY )) over RX×Gan

m
(X is the rigid

analytic space associated to Zp[[0]]). Since the isomorphism ∂ : 1A(RA(δ)) −→
∼

1A(RA(δx)) is compatible with any base change, it suffices to show the proposition
for Dfm(RGan

m
(δY )). Since X ×Gan

m is reduced, it suffices to show it for the Zariski
dense subset S0 of X ×Gan

m defined by

S0 :={(δ0, λ)∈ X (L)×Gan
m (L) | L is a finite extension of Qp, δ :=δλδ0 is generic}.

For any (δ0, λ) in S0(L), εL ,ζ (RL(δ)) corresponds to the isomorphism

ιδ : H1(0,R∞L (δ)
ψ=1)−→∼ Leδ : [ fµeδ] 7→ δ(−1) ·

∫
Z×p

δ−1(y)µ(y)eδ

by Lemma 4.10 and by the arguments before this lemma. Then the equality
εL ,ζ (RL(δx))= ∂ ◦ εL ,ζ (RL(δ)) is equivalent to the commutativity of the diagram

H1(0,R∞L (δ)
ψ=1)

ιδ
−→ Leδ

∂

y yeδ 7→−eδx

H1(0,R∞L (δx)ψ=1)
ιδx
−→ Leδx

Finally, this commutativity follows from the formula∫
Zp

f (y)∂(µ)(y)=
∫

Zp

y f (y)µ(y)

for any f (y) ∈ LA(Zp, L), which finally proves the proposition. �

We next prove the compatibility of ∂ with the de Rham ε-isomorphism εdR
L ,ζ(RL(δ))

for de Rham rank-one (ϕ, 0)-modules RL(δ) under a condition on the Hodge–Tate
weight of RL(δ) as below.

Lemma 4.14. Let RL(δ) be a de Rham (ϕ, 0)-module (here we don’t assume that
δ is generic). If the Hodge–Tate weight of RL(δ) is not zero, i.e., we have δ = δ̃xk

such that k 6= 0, then we have the equality

εdR
L ,ζ (RL(δx))= ∂ ◦ εdR

L ,ζ (RL(δ)).

Proof. Since one has DdR(RL(δ)) =
(
L∞ 1

tk eδ
)0 and ∂(g(t)) = dg(t)

dt for g(t) ∈
L∞((t)), the differential operator ∂ naturally induces an isomorphism

∂ : DdR(RL(δ))→ DdR(RL(δx)) :
a
tk eδ 7→ (−k)

a
tk+1 eδx
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under the condition k 6= 0. Hence, by definition of εdR
L ,ζ (M) using the isomorphisms

θL(M) and θdR,L(M, ζ ) and the constant 0L(M) in Section 3B, it suffices to show
the following two equalities:

(1) θL(RL(δx))= ∂ ◦ θL(RL(δ)).

(2) 0L(RL(δ)) · ∂ ◦ θdR,L(RL(δ), ζ )= 0L(RL(δx)) · θdR,L(RL(δx), ζ ) ◦ ∂ .

We first prove the equality (2). Since one has0L(RL(δ))=0
∗(k) and 0L(RL(δx))=

0∗(k+ 1), it suffices to show that the diagram

LL(RL(δ))= Leδ
0∗(k)· fRL (δ),ζ
−−−−−−−→ DdR(RL(δ))yeδ 7→−eδx

y∂
LL(RL(δx))= Leδx

0∗(k+1)· fRL (δx),ζ
−−−−−−−−−−→ DdR(RL(δx))

is commutative, where the map fRL (δ′),ζ (for δ′ = δ, δx) is defined in Lemma 3.4.
This commutativity is obvious by definition of fRL (δ0),ζ since one has

εL(W (RL(δ)), ζ )= εL(W (RL(δx)), ζ )(
this is because one has a natural isomorphism Dpst(RL(δ)) −→

∼ Dpst(RL(δx)) :
a
tk eδ 7→ a

tk+1 eδx
)

and k ·0∗(k)=0∗(k+1) for k 6= 0. We next show the equality (1).
Under the assumption that k 6= 0, it is easy to see that ∂ induces the isomorphisms

DdR(RL(δ))−→
∼ DdR(RL(δx)), DdR(RL(δ))

0
−→∼ DdR(RL(δx))0

and

Dcris(RL(δ))−→
∼ Dcris(RL(δx)), Hi

ϕ,γ (RL(δ))−→
∼ Hi

ϕ,γ (RL(δx))

for any i = 0, 1, 2 by Lemma 4.12. Hence, by definition of θ ′L(RL(δ)), it suffices
to show that the following two diagrams are commutative for M =RL(δ):

H0
ϕ,γ (M) −→ Dcris(M) −→ Dcris(M)⊕ tM −→ H1

ϕ,γ (M)y∂ y∂ y∂ y∂
H0
ϕ,γ (M(x))−→ Dcris(M(x))−→ Dcris(M(x))⊕ tM(x) −→ H1

ϕ,γ (M(x))

(57)

and

H1
ϕ,γ (M) −→

Dcris(M∗)∨
⊕DdR(M)0

−→ Dcris(M)∨ −→ H2
ϕ,γ (M)y∂ y(−∂∨)⊕∂ y−∂∨ y∂

H1
ϕ,γ (M(x))−→

Dcris(M(x)∗)∨
⊕ DdR(M(x))0

−→ Dcris(M(x)∗)∨ −→ H2
ϕ,γ (M(x))

(58)
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Here ∂∨ is the dual of

∂ : Dcris(M(x)∗)= Dcris(RL(δ
−1
|x |))−→∼ Dcris(RL(δ

−1x |x |))= Dcris(M∗).

For the commutativity of the diagram (57), the only nontrivial part is the commuta-
tivity of the diagram

Dcris(M)⊕ tM
expM, f ⊕ expM
−−−−−−−−→ H1

ϕ,γ (M)

∂

y ∂

y
Dcris(M(x))⊕ tM(x)

expM(x), f ⊕ expM(x)
−−−−−−−−−−→ H1

ϕ,γ (M(x))

but this commutativity easily follows from Proposition 2.23. Using the commuta-
tivity of (57) for M =RL(δ

−1
|x |), to prove the commutativity of (58), it suffices

to show the commutativities of the following diagrams:

DdR(M) −→ DdR(M∗)∨

∂

y −∂∨

y
DdR(M(x))−→ DdR(M(x)∗)∨

(59)

and
Hi
ϕ,γ (M) −→ H2−i

ϕ,γ (M
∗)∨

∂

y −∂∨

y
Hi
ϕ,γ (M(x))−→ H2−i

ϕ,γ (M(x)
∗)∨

(60)

Here the horizontal arrows are isomorphisms obtained by (Tate) duality. Since
the commutativity of (59) is easy to check, here we only prove the commutativity
of (60). Moreover, we only prove it for i = 2 since other cases are proved in the
same way. For i = 2, it suffices to show the equality

[∂( f )ge1] = −[ f ∂(g)e1] ∈ H2
ϕ,γ (RL(1))

for any [ f eδ] ∈ H2
ϕ,γ (RL(δ)) and geδ−1|x | ∈ H0

ϕ,γ (RL(δ
−1
|x |)). Since we have

∂( f g)=∂( f )g+ f ∂(g), the equality follows from the fact that we have [∂(h)e1]=0
in H2

ϕ,γ (RL(1)) for any h ∈RL . �

Remark 4.15. Proposition 4.13 and Lemma 4.14 and the following proof of
Proposition 4.11 should be generalizable to a more general setting. Let M be
a de Rham (ϕ, 0)-module over RL of any rank. In §3 of [Nakamura 2014a], we
developed the theory of Perrin-Riou’s big exponential map for a de Rham (ϕ, 0)-
module, which is an R∞L (0)-linear map H1

ψ,γ (Dfm(M))→ H1
ψ,γ (Dfm(Nrig(M))),

where Nrig(M) ⊆ M[1/t] is a de Rham (ϕ, 0)-module equipped with a natural
action of the differential operator ∂M defined by Berger. This big exponential map
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is defined using the operator ∂M . Our generalization of Perrin-Riou’s δ(V )-theorem
[Nakamura 2014a, Theorem 3.21] states that this map gives an isomorphism

ExpM :1R∞L (0)(Dfm(M))−→∼ 1R∞L (0)(Dfm(Nrig(M))).

Therefore, as a generalization of Proposition 4.13, it seems to be natural to conjecture
that the conjectural ε-isomorphisms should satisfy

εR∞L (0),ζ (Dfm(Nrig(M)))= ExpM ◦ εR∞L (0),ζ (Dfm(M)),

which we want to study in future works.

Using these results, we prove Proposition 4.11 for general k ≤ 0 as follows.

Proof of Proposition 4.11 for general k≤0. Let δ= δ̃xk be a generic homomorphism
such that k ≤ 0. By the arguments before Proposition 4.11, it suffices to show
the equality εL ,ζ (RL(δ))= ε

dR
L ,ζ (RL(δ)). This equality follows from the equality

εL ,ζ (RL(δ̃))= ε
dR
L ,ζ (RL(δ̃)) proved in Proposition 4.11 for k = 0, since we have

εL ,ζ (RL(δ))= ∂
k
◦ εL ,ζ (RL(δ̃)) and εdR

L ,ζ (RL(δ))= ∂
k
◦ εdR

L ,ζ (RL(δ̃))

by Proposition 4.13 and Lemma 4.14. �

We next consider the case where k ≥ 1. To verify the condition (vi), it suffices
to show the following proposition.

Proposition 4.16. If k ≥ 1, then the map

H1(0,R∞L (δ)
ψ=1)−→∼ H1

ψ,γ (RL(δ))
exp−1

RL (δ)
−−−→ DdR(RL(δ))

sends each element [ fµeδ] ∈ H1(0,R∞L (δ)
ψ=1) to

(1) (k− 1)! ·
δ(−1)

εL(W (RL(δ)), ζ )
·

1
tk ·

∫
Z×p

δ−1(y)µ(y)eδ when n(δ) 6= 0,

(2) (k−1)!·
detL(1−ϕ | Dcris(RL(δ)

∗))

detL(1−ϕ | Dcris(RL(δ)))
·
δ(−1)

tk ·

∫
Z×p

δ−1(y)µ(y)eδ when n(δ)=0.

Proof. In the same way as the proof of Proposition 4.11, it suffices to show the
proposition for k = 1 (i.e., δ = δ̃x) using Proposition 4.13 and Lemma 4.14.

Hence, we assume k = 1. Then, in a similar way as the proof of Proposition 4.11
(for k = 0), we have the commutative diagram

H1
ψ,γ (RL(δ̃))←− H1(0,R∞L (δ̃)

ψ=1)
ιδ̃
−→ Leδ̃y∂ y∂ yeδ̃ 7→−eδ

H1
ψ,γ (RL(δ))←− H1(0,R∞L (δ)

ψ=1)
ιδ
−→ Leδ

(61)
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such that all the arrows are isomorphisms by Lemma 4.12. Hence, reducing to the
case of k = 0, it suffices to show that the following diagram is commutative:

H1(0,R∞L (δ̃)
ψ=1)−→ H1

ψ,γ (RL(δ̃))
exp∗

RL (δ̃−1x |x |)
−−−−−−−→ DdR(RL(δ̃))= (L∞eδ̃)

0

∂

y ∂

y yaeδ̃ 7→
a
t eδ

H1(0,R∞L (δ)
ψ=1)−→ H1

ψ,γ (RL(δ))
expRL (δ)
←−−−− DdR(RL(δ))=

(
L∞ 1

t eδ
)0

(62)

The following proof of this commutativity is very similar to that of Theorem 3.10
of [Nakamura 2014a]. Take [ f eδ̃] ∈ H1(0,R∞L (δ̃)

ψ=1). If we define

αeδ̃ :=exp∗RL (δ̃
−1x |x |)([|0tor| log0(χ(γ ))p1( f eδ̃), 0])∈ DdR(RL(δ̃))⊆ Ddif(RL(δ̃)),

then it suffices to show the equality

expRL (δ)

(
α

t
eδ
)
= |0tor| log0(χ(γ ))[p1(∂( f )eδ), 0].

We prove this equality as follows. First, we have an equality

|0tor| log0(χ(γ ))

log(χ(γ ))
[ιn(p1( f eδ̃))] = [αeδ̃] ∈ H1

ψ,γ (D
+

dif(RL(δ̃)))

for large enough n ≥ 1 by the explicit definition of exp∗RL (δ̃
−1x |x |) [Nakamura 2014a,

Proposition 2.16]. This equality means that for some yn ∈ D+dif,n(RL(δ̃))
1 we have

|0tor| log0(χ(γ ))

log(χ(γ ))
ιn(p1( f eδ̃))−αeδ̃ = (γ − 1)yn.

If we set ∇0 := log([γ ])/log(χ(γ )) ∈R∞L (0) and define

∇0

γ − 1
:=

1
log(χ(γ ))

∞∑
m≥1

(−1)m−1([γ ] − 1)m−1

m
∈R∞L (0),

then we obtain the equality

ιn

(
|0tor| log0(χ(γ ))

log(χ(γ ))
∇0

γ − 1
(p1( f eδ̃))

)
=

1
log(χ(γ ))

αeδ̃ +∇0(yn) ∈
1

log(χ(γ ))
αeδ̃ + t D+dif,n(RL(δ̃)). (63)

Since we have f eδ̃ ∈RL(δ̃)
ψ=1, we have

(1−ϕ)(p1( f eδ̃)) ∈RL(δ̃)
1,ψ=0.

Hence, there exists β ∈RL(δ̃)
1,ψ=0 such that

(1−ϕ)(p1( f eδ̃))= (γ − 1)β
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by (for example) Theorem 3.1.1 of [Kedlaya et al. 2014]. Then, for any m ≥ n+ 1,
we obtain

ιm

(
∇0

γ − 1
(p1( f eδ̃))

)
− ιm−1

(
∇0

γ − 1
(p1( f eδ̃))

)
= ιm

(
(1−ϕ)

(
∇0

γ − 1
(p1( f eδ̃))

))
= ιm

(
∇0

γ − 1
((1−ϕ)(p1( f eδ̃)))

)
= ιm

(
∇0

γ − 1
((γ − 1)β)

)
= ιm(∇0(β)) ∈ t D+dif,m(RL(δ̃))

since we have ∇0(RL(δ̃))⊆ tRL(δ̃). In particular, we obtain

ιm

(
∇0

γ − 1
(p1( f eδ̃))

)
− ιn

(
∇0

γ − 1
(p1( f eδ̃))

)
∈ t D+dif,m(RL(δ̃)) (64)

for any m ≥ n+ 1 by induction.
Since the map RL(δ̃) −→

∼ 1
t RL(δ) : geδ̃ 7→

g
t eδ is an isomorphism of (ϕ, 0)-

modules, the facts (63), (64) and the explicit definition of the exponential map
(Proposition 2.23(1)) induce the equality

expRL (δ)

(
α

t
eδ
)

= |0tor| log0(χ(γ ))
[
(γ − 1) ∇0

γ−1

(
p1
( f

t
eδ
))
, (ψ − 1) ∇0

γ−1

(
p1
( f

t
eδ
))]

= |0tor| log0(χ(γ ))
[
∇0

(
p1
( f

t
eδ
))
, 0
]

= |0tor| log0(χ(γ ))[p1(∂( f )eδ), 0],

where the last equality follows from the equality ∇0
( f

t eδ
)
= ∂( f )eδ since we have

∇0
( 1

t eδ
)
= 0 by the assumption k= 1, from which the commutativity of the diagram

(62) follows. �

As a corollary of Propositions 4.11 and 4.16, we verify the conditions (iv), (v)
by the density argument as follows.

Corollary 4.17. Let M be a rank-one (ϕ, 0)-module over RA. Then the isomor-
phism εA,ζ (M) : 1A −→

∼ 1A(M), which is defined in Section 4A, satisfies the condi-
tions (iv) and (v) of Conjecture 3.8.

Proof. We first verify the conditions (iv). By the definition of εA,ζ (RA(δ)⊗A L), it
suffices to do this for (ϕ, 0)-modules of the form M =RA(δ) (i.e., L= A) since
the general case immediately follows from this case by Lemma 4.6. Then, in the
same way as the proof of Proposition 4.13, it suffices to verify these conditions for
any δ = δλδ0 :Q

×
p → L× such that the point (δ0, λ) ∈ X ×Gan

m is contained in the
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Zariski dense subset S1 of X ×Gan
m defined by

S1 := {(δ0, λ) ∈ X (L)×Gan
m (L) | [L :Qp]<∞, δ is generic, RL(δ) is de Rham}.

For such δ, the conditions (iv) follow from Lemma 3.7 since we have εL ,ζ (RL(δ))=

εdR
L ,ζ (RL(δ)) by Propositions 4.11 and 4.16.

We next verify the condition (v). Let (3, T ) be as in Conjecture 3.8(v). We
recall that we defined a canonical isomorphism

13(T )⊗3 A∞ −→∼ 1A∞(M∞)

(see Example 3.3 for definition and notation). Since any continuous map 3→ A
factors through 3→ A∞→ A, it suffices to show the equality

ε3,ζ (T )⊗ idA∞ = εA∞,ζ (M∞)
(
:= lim
←−−

n
εAn,ζ (Mn)

)
. (65)

Since condition (v) is local for Spf(3), it suffices to verify it for3-representations
of the form 3(δ̃) for some δ̃ : Gab

Qp
→ 3×. Let us decompose δ = δ̃ ◦ recQp into

δ= δλδ0. Since 3/m3 is a finite ring, there exists k ≥ 1 such that λk
≡ 1 (mod m3).

Then we can define a continuous Zp-algebra homomorphism

3k := lim
←−−

n
Zp[Y ]/(p, (Y k

− 1))n→3 : Y 7→ λ.

Hence, the 3-representation 3(δ̃) is obtained by a base change of the “universal”
Zp[[0]] ⊗̂Zp 3k-representation T univ

k , which corresponds to the homomorphism

δuniv
k :Q×p → (Zp[[0]] ⊗̂Zp 3k)

×
: p 7→ 1 ⊗̂ Y, a 7→ [σ−1

a ] ⊗̂ 1

for a ∈ Z×p . Hence, it suffices to verify the equality (65) for this universal one. In
this case, since the associated rigid space is an admissible open of X ×Gan

m defined
by

Zk := {(δ0, λ) ∈ X ×Gan
m | |λ

k
− 1|< 1},

and the associated (ϕ, 0)-module is isomorphic to the restriction of the universal
one Dfm(RGan

m
(δY )) defined in the proof of Proposition 4.13, it suffices to show the

equality

εZp[[0]]⊗̂Zp3k ,ζ (T
univ

k )⊗ id0(Zk ,OZk )
= ε0(Zk ,OZk ),ζ

(Dfm(RGan
m
(δY ))|Zk ).

Since both sides satisfy the condition (vi) for any point (δ0, λ) ∈ Zk ∩ S1 by Kato’s
theorem [1993b] and by Propositions 4.11 and 4.16, and since the set Zk ∩ S1 is
Zariski dense in Zk , the equality above follows by the density argument. �
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4B2. Verification of the condition (vi): the exceptional case. Finally, we verify the
condition (vi) in the exceptional case, i.e., δ = x−k or δ = xk+1

|x | for k ∈ Z≥0.
We first reduce all the exceptional cases to the case δ = x |x |.

Lemma 4.18. We assume that the equality

εL ,ζ (RL(x |x |))= εdR
L ,ζ (RL(x |x |))

holds. Then the other equalities

εL ,ζ (RL(δ))= ε
dR
L ,ζ (RL(δ))

also hold for all δ = xk+1
|x |, x−k for k ≥ 0.

Proof. The equality for δ = x0 follows from that for δ = x |x | by the compatibility
of εdR

L ,ζ (−) and εL ,ζ (−) with the Tate duality, which is proved in Lemma 3.7 and
Corollary 4.17. Then the equality for δ = xk+1

|x | (resp. δ = x−k) follows from
that for δ = x |x | (resp. δ = x0) by the compatibility of εdR

L ,ζ (−) and εL ,ζ (−) with ∂ ,
which is proved in Lemma 4.14 and Proposition 4.13. �

Finally, it remains to show the equality

εL ,ζ (RL(1))= εdR
L ,ζ (RL(1))

(we identify RL(x |x |) = RL(1) : f ex |x | 7→ f e1). Since RL(1) is étale, this
equality immediately follows from Kato’s result since we have εL ,ζ (RL(1)) =
εOL ,ζ (OL(1))⊗ idL under the canonical isomorphism

1L(RL(1))−→∼ 1OL (OL(1))⊗OL L

by Corollary 4.17. However, here we give another proof of this equality only using
the framework of (ϕ, 0)-modules.

In the remaining part of this section, we prove this equality by explicit calculations.
First, it is easy to see that the inclusion

C •ψ,γ (L · 1Zp e1) ↪→ C •ψ,γ (LA(Zp, L)(1))

induced by the natural inclusion L · 1Zp e1 ↪→ LA(Zp, L)(1) (here, 1Zp is the
constant function on Zp with the constant value 1) is quasi-isomorphism. This
quasi-isomorphism and the quasi-isomorphism

C •γ (R
∞

L (1)
ψ=1)−→∼ C •ψ,γ (R

∞

L (1)),

and the long exact sequence associated to the short exact sequence

0→R∞L (1)→RL(1)→ LA(Zp, L)(1)→ 0
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induce the isomorphisms

α0 : H0
ψ,γ (L · 1Zp e1)−→

∼ H1(0,R∞L (1)
ψ=1),

α1 : H1
ψ,γ (RL(1))−→∼ H1

ψ,γ (L · 1Zp e1) :

[ f1e1, f2e2] 7→

(
Res0

(
f1

dπ
1+π

)
· 1Zp e1,Res0

(
f2

dπ
1+π

)
· 1Zp e1

)
,

α2 : H2
ψ,γ (RL(1))−→∼ H2

ψ,γ (L · 1Zp e1) : [ f e1] 7→ Res0

(
f

dπ
1+π

)
· 1Zp e1.

Therefore, the isomorphism

θ̄ζ (RL(1)) :�2
i=1 DetL(Hi

ψ,γ (RL(1)))(−1)i+1
−→∼ (L(1), 1),

defined in (50), is the composition of the isomorphisms β0, β1 and ιx |x |:

�2
i=1 DetL(Hi

ψ,γ (RL(1)))(−1)i+1

β0
−→�2

i=0 DetL(Hi
ψ,γ (L · 1Zp e1))

(−1)i+1
� (H1(0,R∞L (1)

ψ=1), 1)
β1
−→(H1(0,R∞L (1)

ψ=1), 1) ιx |x |−→ (L(1), 1).

Here β0 is induced by αi (i = 0, 1, 2), and β1 is induced by the canonical isomor-
phism

β1 :�2
i=0 DetL(Hi

ψ,γ (L · 1Zp e1))
(−1)i−1

−→∼ 1L ,

which is the base change by fx |x | :R∞L (0)→ L : [γ ] 7→χ(γ )−1 of the isomorphism
(40) for M =RL .

By definition, the isomorphism β1 is explicitly described as in the following
lemma, which easily follows from the definition (hence, we omit the proof).

Lemma 4.19. If we define f̃0 := 1Zp e1 (resp. f̃1,1 := (1Zp e1, 0), f̃1,2 := (0, 1Zp e1),
resp. f̃2 := 1Zp e1) for the basis of H0

ψ,γ (L · 1Zp e1) (resp. H1
ψ,γ (L · 1Zp e1), resp.

H2
ψ,γ (L · 1Zp e1)), then the canonical trivialization

β1 : (H0
ψ,γ (L ·1Zp e1), 1)−1�(detL H1

ψ,γ (L ·1Zp e1), 2)�(H2
ψ,γ (L ·1Zp e1), 1)−1

−→∼ 1L

satisfies the equality

β1( f̃ ∨0 ⊗ ( f̃1,1 ∧ f̃1,2)⊗ f̃ ∨2 )= 1.

Lemma 4.20. The isomorphism

H0
ψ,γ (L · 1Zp e1)

α0
−→H1(0,R∞L (1)

ψ=1)
ιx |x |
−→ Le1

sends the element f̃0 to −e1 ∈ L(1).
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Proof. Since we have Col
( 1+π
π

)
= 1Zp and ψ

( 1+π
π

e1
)
=

1+π
π

e1, we have

α0( f̃0)=

[
1

|0tor| log0(χ(γ ))
(γ − 1)

(
1+π
π

e1

)]
by definition of the boundary map.

Since we have

(γ − 1)
(

1+π
π

e1

)
= ∂

(
log
(
γ (π)

π

))
e1 and log

(
γ (π)

π

)
e|x | ∈R∞L (|x |)

ψ=1,

and have the commutative diagram

H1(0,R∞L (|x |)
ψ=1)

ι|x |
−→ Le|x |y∂ ye|x | 7→−e1

H1(0,R∞L (1)
ψ=1)

ιx |x |
−−→ Le1

(66)

we obtain an equality

ιx |x |(α0( f̃0))=
1

|0tor| log0(χ(γ ))
ιx |x |

([
∂

(
log
(
γ (π)

π

))
e1

])
=−

1
|0tor| log0(χ(γ ))

∫
Z×p

µγ (y)e1

by Lemma 4.10, where we define µγ ∈D(Zp, L) such that fµγ (π)= log(γ (π)/π).
We calculate

∫
Z×p
µγ (y) as follows. Since we have ψ(µγ )= 1

pµγ , we obtain∫
pZp

µγ (y)=
∫

Zp

ψ(µγ )(y)=
1
p

∫
Zp

µγ (y).

Hence, we obtain∫
Z×p

µγ (y)=
∫

Zp

µγ (y)−
∫

pZp

µγ (y)=
∫

Zp

µγ (y)−
1
p

∫
Zp

µγ (y)

=
p− 1

p

∫
Zp

µγ (y)=
p− 1

p
log
(
γ (π)

π

)
|π=0 =

p− 1
p

log(χ(γ )).

Hence,

ιx |x |(α0( f̃0))=−
log(χ(γ ))

|0for| log0(χ(γ ))

p− 1
p

e1 =−e1

(for any prime p), which proves the lemma. �

In the Appendix, we define a canonical basis { f1,1, f1,2} of H1
ψ,γ (RL(1)), f2 ∈

H2
ψ,γ (RL(1)), e0 ∈ H0

ψ,γ (RL) and {e1,1, e1,2} of H1
ψ,γ (RL); see the Appendix for

the definition.
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Corollary 4.21. The isomorphism

θ̄ζ (RL(1)) : (detL H1
ψ,γ (RL(1)), 2)� (H2

ψ,γ (RL(1)), 1)−1
−→∼ (Le1, 1)

sends the element ( f1,1 ∧ f1,2)⊗ f ∨2 to − p−1
p e1.

Proof. By definition, we have

α1( f1,1)=
p− 1

p
log(χ(γ )) f̃1,1,

α1( f1,2)=
p− 1

p
f̃1,2,

α2( f2)=
p− 1

p
log(χ(γ )) f̃2.

Then the corollary follows from the previous lemmas. �

Finally, since one has 0L(RL(1)) = 1 and θdR,L(RL(1), ζ ) corresponds to the
isomorphism

LL(RL(1))= Le1 −→
∼ DdR(RL(1))=

1
t

Le1 : ae1 7→
a
t

e1,

it suffices to show the following lemma.

Lemma 4.22. The isomorphism

θL(RL(1)) : (detL H1
ψ,γ (RL(1)), 2)� (H2

ψ,γ (RL(1)), 1)−1

−→∼ (DdR(RL(1)), 1)=
(

L
1
t

e1, 1
)

sends the element ( f1,1 ∧ f1,2)⊗ f ∨2 to − p−1
pt e1.

Proof. By definition, the above isomorphism is the one which is naturally induced
by the exact sequence

0→ Dcris(RL(1))
(1−ϕ)⊕can
−−−−−→ Dcris(RL(1))⊕ DdR(RL(1))

exp f,RL (1)
⊕ expRL (1)

−−−−−−−−−−−→H1
ψ,γ (RL(1)) f → 0

and the isomorphisms

exp∨f,RL
: H1

ψ,γ (RL(1))/H1
ψ,γ (RL(1)) f −→

∼ Dcris(RL)
∨

and
Dcris(RL)

∨
−→∼ H2

ψ,γ (RL(1)),

which is the dual of the natural isomorphism H0
ψ,γ (RL)−→

∼ Dcris(RL).
We have expRL (1)

(1
t e1
)
= f1,2 by the proof of Lemma 5.1. Since we have

exp f,RL
(1)= e1,2



A generalization of Kato’s local 3-conjecture 397

for d0 := 1 ∈ L = Dcris(RL) by the explicit definition of exp f (Proposition 2.23(2)),
and since we have 〈 f1,1, e1,2〉 = 1 by Lemma 5.4, we obtain

exp∨f,RL
( f1,1)=−d∨0 ∈ Dcris(RL)

∨

(we should be careful with the sign). Since the natural isomorphism H0
ψ,γ (RL)−→

∼

Dcris(RL) sends e0 to d0 ∈ L = Dcris(RL), we obtain

Dcris(RL)
∨
→ H2

ψ,γ (RL(1)) : d∨0 7→ f2

by Lemma 5.4. The lemma follows from these calculations and a diagram chase. �

Appendix: Explicit calculations of Hi
ϕ,γ (RL) and Hi

ϕ,γ (RL(1))

In this appendix, we compare Hi (Qp, L(k))with Hi
ϕ,γ (RL(k)) explicitly for k=0, 1,

and define a canonical basis of Hi
ϕ,γ (RL(k)), which is used to compare εL ,ζ (RL(1))

with εdR
L ,ζ (RL(1)) in Corollary 4.21 and Lemma 4.22. All the results in this appendix

seem to be known (see for example [Benois 2000]), but here we give another proof
of these results in the framework of (ϕ, 0)-modules over the Robba ring. Of course,
we may assume that L =Qp by base change.

We first consider Hi
ϕ,γ (RQp). If we identify by

H1(Qp,Qp)= Homcont(Gab
Qp
,Qp)−→

∼ Homcont(Q
×

p ,Qp) : τ 7→ τ ◦ recQp ,

then this has a basis {[ordp], [log]} defined by

ordp :Q
×

p →Qp : p 7→ 1, a 7→ 0 for a ∈ Z×p ,

log :Q×p →Qp : p 7→ 0, a 7→ log(a) for a ∈ Z×p .

We define a basis e0 of H0
ϕ,γ (RQp) and {e1,1, e1,2} of H1

ϕ,γ (RQp) by

e0 = 1 ∈RQp , e1,1 := [log(χ(γ )), 0], e1,2 := [0, 1].

The basis is independent of the choice of γ , i.e., is compatible with the com-
parison isomorphism ιγ,γ ′ . We can easily check that the canonical isomorphism
H1(Qp,Qp)−→

∼ H1
ϕ,γ (RQp) sends [log] to e1,1 and [ordp] to e1,2.

We next consider H1
ϕ,γ (RQp(1)). Let us denote by

κ :Q×p → H1(Qp,Qp(1))

the Kummer map. Composing this with the canonical isomorphism

H1(Qp,Qp(1))−→∼ H1
ϕ,γ (RQp(1)),

we obtain a homomorphism

κ0 :Q
×

p → H1
ϕ,γ (RQp(1)).
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We define a homomorphism

H1
ϕ,γ (RQp(1))→Qp⊕Qp :

[ f1e1, f2e1] 7→

(
p

p− 1
·

1
log(χ(γ ))

·Res0

(
f1

dπ
1+π

)
,−

p
p− 1

·Res0

(
f2

dπ
1+π

))
(we note that p−1

p · log(χ(γ ))= |0tor| · log0(χ(γ ))), which is also independent of
the choice of γ , and is an isomorphism. Using this isomorphism, we define a basis
{ f1,1, f1,2} of H1

ϕ,γ (RQp(1)) such that f1,1 (resp. f1,2) corresponds to (1, 0)∈ L⊕L
(resp. (0, 1)) by this isomorphism. We want to explicitly describe the map κ0 using
this basis. For this, we first prove the following lemma.

Lemma 5.1. For each a ∈ Z×p , we have κ0(a)= log(a) · f1,2.

Proof. By the classical explicit calculation of the exponential map, we have

κ(a)= expQp(1)

(
log(a)

t
e1

)
.

Since we have the commutative diagram

DdR(Qp(1))
expQp (1)
−−−−→ H1(Qp,Qp(1))

∼

y ∼

y
DdR(RQp(1))

expRQp (1)

−−−−−→ H1
ϕ,γ (RQp(1))

by Proposition 2.26, it suffices to show that

expRQp (1)

(1
t

e1

)
= f1,2.

We show this equality as follows. We first take some f ∈ (R∞
Qp
)1 such that

f (ζpn − 1)= 1/pn for any n ≥ 0, which is possible since we have an isomorphism
R∞

Qp
/t −→∼

∏
n≥0 Qp(ζpn ) : f̄ 7→ ( f (ζpn−1))n≥0 by Lazard’s theorem [1962]. Then

the element f
t e1 ∈

( 1
t RQp(1)

)1 satisfies

ιn

( f
t

e1

)
−

1
t

e1 ∈ D+dif,n(RQp(1))

for any n ≥ 1, since we have

ιn

( f
t

e1

)
≡ pn

·
f (ζpn − 1)

t
e1 =

1
t

e1 (mod D+dif,n(RQp(1))).
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By the explicit definition of expRQp (1)
(Proposition 2.23(1)), we have

expRQp (1)

(1
t

e1

)
=

[
(γ − 1)

( f
t

e1

)
, (ϕ− 1)

( f
t

e1

)]
∈ H1

ϕ,γ (RQp(1)).

Hence, it suffices to show that

Res0

(
γ ( f )− f

t
·

dπ
1+π

)
= 0

and

Res0

((
ϕ( f )

p
− f

)
·

1
t
·

dπ
1+π

)
=−

p− 1
p

.

Here, we only calculate

Res0

((
ϕ( f )

p
− f

)
·

1
t
·

dπ
1+π

)
(the calculation of

Res0

(
γ ( f )− f

t
·

dπ
1+π

)
is similar). By definition of f , we have

ϕ( f )(ζpn − 1)
p

− f (ζpn − 1)=
f (ζpn−1 − 1)

p
− f (ζpn − 1)=

1
p
·

1
pn−1 −

1
pn = 0

for each n ≥ 1. Hence, we have(
ϕ( f )

p
− f

)
∈

( ∞∏
n≥1

Qn(π)

p

)
R∞Qp

by the theorem of Lazard [1962], where we define Qn(π) := ϕ
n−1
(
ϕ(π)/π

)
for

each n ≥ 1. Since we have t = π
∏

n≥1
(
Qn(π)/p

)
, we obtain the equality

Res0

((
ϕ( f )

p
− f

)
·

1
t
·

dπ
1+π

)
=

((
ϕ( f )

p
− f

)
·

1∏
∞

n≥1
Qn(π)

p

·
1

1+π

)∣∣∣∣
π=0

=

(
ϕ( f )

p
− f

)∣∣∣∣
π=0
=

f (0)
p
− f (0)=−

p− 1
p

,

where the second equality follows from the fact that Qn(0)
p
= 1 for n ≥ 1, which

proves the lemma. �

Before calculating κ0(p) ∈ H1
ϕ,γ (RQp(1)), we explicitly describe Tate’s trace

map in terms of (ϕ, 0)-modules. We note that we normalize Tate’s trace map

H2(Qp,Qp(1))−→∼ Qp
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so that the cup product pairing

〈−,−〉 : H1(Qp,Qp(1))×H1(Qp,Qp)
∪
→H2(Qp,Qp(1))−→∼ Qp

satisfies

〈κ(a), [τ ]〉 = τ(a)

for a ∈Q×p and [τ ] ∈Hom(Q×p ,Qp)=H1(Qp,Qp) (we remark that this normaliza-
tion coincides with the one used in §2.4 of [Nakamura 2014a] and with −1 times
the one in [Kato 1993a, Chapter II, §1.4]).

Proposition 5.2. The map ιγ : H2
ϕ,γ (RQp(1))−→∼ H2(Qp,Qp(1))−→∼ Qp, which is

the composition of the canonical isomorphism H2
ϕ,γ (RQp(1))−→∼ H2(Qp,Qp(1))

with Tate’s trace map is explicitly defined by

ιγ ([ f e1])=
p

p− 1
·

1
log(χ(γ ))

Res0

(
f

dπ
1+π

)
.

Proof. Since the map

ι : H2
ϕ,γ (RQp(1))−→∼ Qp : [ f e1] 7→ Res0

(
f

dπ
1+π

)
is a well-defined isomorphism, there exists a unique α ∈ Q×p such that ιγ = α · ι.
We calculate α as follows.

We recall that the element [log(χ(γ )), 0] ∈ H1
ϕ,γ (RQp) is the image of [log] ∈

H1(Qp,Qp) by the comparison isomorphism. By the proof of Lemma 5.1, for each
a ∈ Z×p , we have

κ0(a)= log(a)
[
(γ − 1)

( f
t

e1

)
, (ϕ− 1)

( f
t

e1

)]
∈ H1

ϕ,γ (RQp(1)),

where f ∈ R∞
Qp

is an element defined in the proof of Lemma 5.1. Since the cup
products are compatible with the comparison isomorphism (see Remark 2.12),
we have

ιγ
(
κ0(a)∪ [log(χ(γ )), 0]

)
= 〈κ(a), [log]〉 = log(a). (67)

By definition of the cup product, we have

κ0(a)∪ [log(χ(γ )), 0] = log(a)
[
(ϕ− 1)

(
f
t

e1

)
⊗ϕ(log(χ(γ )))

]
=−log(a) log(χ(γ ))

[
(ϕ− 1)

(
f
t

e1

)]
∈ H2

ϕ,γ (RQp(1)).
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Since Res0

(
(ϕ− 1)

( f
t

)
·

dπ
1+π

)
=−

p−1
p

by the proof of Lemma 5.1, we obtain

ιγ
(
κ0(a)∪ [log(χ(γ )), 0]

)
= α · ι

(
κ0(a)∪ [log(χ(γ )), 0]

)
=−α · log(χ(γ )) · log(a) · ι

([
(ϕ− 1)

( f
t

e1

)])
= α · log(χ(γ )) · log(a) ·

p− 1
p

.

Comparing this equality with the equality (67), we obtain

α =
p

p− 1
·

1
log(χ(γ ))

,

which proves the proposition. �

Finally, we prove the following lemma, which completes the calculation of the
map κ0 :Q

×
p →Qp⊕Qp.

Lemma 5.3. κ0(p)= f1,1.

Proof. Take f1,1 = [ f1e1, f2e1] ∈ H1
ϕ,γ (RQp(1)) to be a representative of f1,1. By

definition of the cup product, we have

ιγ ( f1,1 ∪ e1,1)= ιγ
(

f1,1 ∪ [log(χ(γ )), 0]
)

=−ιγ
(
[ f2e1⊗ϕ(log(χ(γ )))]

)
=−

p
p− 1

Res0

(
f2

dπ
1+π

)
= 0,

and

ιγ ( f1,1 ∪ e1,2)= ιγ ( f1,1 ∪ [0, 1])

= ιγ ([ f1e1⊗ γ (1)])=
p

p− 1
·

1
log(χ(γ ))

·Res0

(
f1

dπ
1+π

)
= 1

by Proposition 5.2. Since κ(p) ∈ H1(Qp,Qp(1)) satisfies the similar formulae

〈κ(p), [ordp]〉 = 1, 〈κ(p), [log]〉 = 0,

we obtain the equality
κ0(p)= f1,1. �

Using these lemmas, we obtain the following result. We define the basis f2 of
H2
ϕ,γ (RL(1)) by f2 := ι

−1
γ (1).

Lemma 5.4. Tate’s duality pairings

〈−,−〉 : H1
ϕ,γ (RL(1))×H1

ϕ,γ (RL)
∪
→H2

ϕ,γ (RL(1))
ιγ
−→ L

and
〈−,−〉 : H2

ϕ,γ (RL(1))×H0
ϕ,γ (RL)

∪
→H2

ϕ,γ (RL(1))
ιγ
−→ L
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satisfy
〈 f1,1, e1,1〉 = 0, 〈 f1,1, e1,2〉 = 1

〈 f1,2, e1,1〉 = 1, 〈 f1,2, e1,2〉 = 0,

〈 f2, e0〉 = 1.

Proof. That we have 〈 f1,1, e1,1〉= 0 and 〈 f1,1, e1,2〉= 1 is proved in Lemma 5.3. We
prove the formula for f1,2. By Lemma 5.1, we have an equality f1,2= κ0(a)/log(a)
for any nontorsion a ∈ Z×p . Hence, we obtain

〈 f1,2, e1,1〉 =
1

log(a)
〈κ(a), [log]〉 = 1,

〈 f1,2, e1,2〉 =
1

log(a)
〈κ(a), [ordp]〉 = 0

by the compatibility of the cup products. Finally, that 〈 f2, e0〉 = 1 is trivial by
definition. �
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1. Introduction

Breuil [2004] constructed some Banach representations of GL2(Qp), which con-
jecturally should be nonzero and admissible and correspond to 2-dimensional
semistable, noncrystalline representations of GQp under the p-adic local Langlands
correspondence. Here GQp = Gal(Qp/Qp), where Qp is some fixed algebraic
closure of Qp. Later on Colmez [2004] found the relationship between these Ba-
nach representations and (φ,0)-modules and proved their admissibility. Breuil and
Mézard [2010] also proved the admissibility in some cases by explicitly computing
the mod p reductions of these Banach representations. The aim of this paper is
to generalize Breuil’s work to some 2-dimensional tamely ramified, potentially
Barsotti–Tate representations of GQp.

First we recall some of Breuil’s [2004] construction. Let E be a finite extension
of Qp and k an integer greater than 2. Up to a twist by some character, all 2-
dimensional semistable, noncrystalline E-representations of GQp with Hodge–Tate
weights (0, k− 1) are classified by the “L-invariant” [Breuil 2004, exemple 1.3.5].
We use V(k,L) to denote this Galois representation. Here L is an element in E
and basically tells you the position of the Hodge filtration on the Weil–Deligne
representation associated to V(k,L). Notice that this Weil–Deligne representation
does not depend on L. So via the classical local Langlands correspondence, all
V(k,L) correspond to the same smooth representation of GL2(Qp), which is a twist
of St, the usual Steinberg representation.

Breuil’s idea is that for each L, there should exist a GL2(Qp)-invariant norm on
Symk−2 E2

⊗St; here Symk−2 E2 is a twist of the algebraic representation Symk−2 E2.
Different L should give different noncommensurable unit balls of Symk−2 E2

⊗St.
If we take the completion, we get a Banach representation B(k,L) of GL2(Qp)

for each L. Moreover, we hope this representation is admissible in the sense of
[Schneider and Teitelbaum 2002] and the correspondence between V(k,L) and
B(k,L) is compatible with the mod p correspondence defined by Breuil [2003].

So how to construct these B(k,L)? For simplicity, I assume E = Qp and k
is even. The strategy of Breuil is to realize the unit ball O(k,L)U of the dual
representation of B(k,L) in O(k)= 0(�,O(k)), where O(k) is a coherent sheaf
on the Drinfel’d upper half-plane � over Qp. Concretely, O(2) is the sheaf of rigid
differential forms and O(2n)=O(2)⊗n . Here � is considered as a rigid analytic
space and GL2(Qp) acts on everything. We note that the de Rham cohomology of
� is nothing but St∨, the algebraic dual representation of St [Schneider and Stuhler
1991, Theorem 1]. The construction of O(k,L)U , as far as I understand, has the
following two important properties:

(1) O(k,L)U is “globally bounded” and hence compact. In other words, it is
contained in 0(�̂, ω⊗k/2), where �̂ is a semistable model of � and ω is an
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integral structure of O(2). This guarantees that the dual of O(k,L)U is indeed
a Banach representation (after inverting p).

(2) If f ∈ O(k) comes from a modular form of weight k (see [Breuil 2004,
section 5] for the precise meaning), then f ∈ O(k,L0)

U if and only the
L-invariant of f is L0.

Now consider the case where the Galois representation is tamely ramified. We
will see later that the situation is very similar. Fix E a finite extension of Qp large
enough and let OE be its ring of integers. This time we need to work on the first
covering of Drinfel’d upper half-plane. According to Drinfel’d, there is a universal
p-divisible group X over �̂⊗̂Ẑnr

p and OD acts on it, where OD is the ring of integers
inside the quaternion algebra D over Qp. Fix a uniformizer 5 ∈ OD and define Xn

as the generic fiber of X [5n
]. The first covering 61 = X1−X0, also carries the

action of GL2(Qp) and O×D . It was shown by Drinfel’d [1976] that the action of
O×D can be extended to D×. This is a left action and we will keep this convention
in this paper unless explicitly inverting it. One remark is that the actions of Q×p
inside D× and GL2(Qp) become the same once we invert the action of D×.

First we note that the (E-coefficient) de Rham cohomology H 1
dR(61, E) def

=

H 1
dR(61)⊗Qp E of 61 has the following decomposition. Let ψ :Q×p → O×E be a

unitary character of level 0 in the sense that 1+ pZp is contained in the kernel
of ψ . We will view it as a character of Q×p ⊂ D×. In the following theorem, we
invert the action of D× so that it acts on the cohomology on the left. We denote the
ψ-isotypic component of H 1

dR(61, E) by H 1
dR(61, E)ψ .

Theorem 1.1. As a representation of D××GL2(Qp),

H 1
dR(61, E)ψ '

⊕
π∈A0(D×)(ψ∨)0

(π ⊗ JL(π))∨⊗E Dπ ,

where ·∨ denotes the algebraic dual representation, A0(D×)(ψ∨)0 is the space of
admissible irreducible representations of D× of level 0 over E that are not charac-
ters and with central character ψ∨ (see [Bushnell and Henniart 2006, Chapter 13]),
JL(π) is the representation of GL2(Qp) associated to π by the Jacquet–Langlands
correspondence, and Dπ is a two-dimensional vector space over E.

Remark 1.2. In fact, we can define more structures on Dπ . Roughly speaking, we
may find a finite extension F of Qp such that

F ⊗Qp Dπ ' F ⊗F0 Dcrys,π ,

where F0 is the maximal unramified extension of Qp inside F and Dcrys,π is
a (ϕ, N , F/Qp, E)-module (see Section 13 for the notation here). Then up to
some unramified character, the Weil–Deligne representation associated to Dcrys,π
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corresponds to JL(π) under the classical local Langlands correspondence. See
Theorem 1.10 below.

Explicitly, any π ∈A0(D×)(ψ∨)0 is an induced representation

π ' IndD×
O×D Q×p

4,

where 4 : O×D Q×p → O×E is a character which extends ψ∨ and is trivial on 1+5OD .
It is clear that π has an integral structure π0 over OE .

As we noted before, we need to construct a GL2(Qp)×D×-equivariant formal
model 6̂nr

1 of 61. This will be done by using Raynaud’s theory of F-vector space
schemes. As Breuil did in the case of the Drinfel’d upper half-plane, we can define
a GL2(Qp)×D×-equivariant integral model ω1 of �1

61
on this formal model, where

�1
61

is the sheaf of differential forms (see Remark 14.2). Consider the composition
of the following maps:

H 0(6̂nr
1 , ω

1)→ H 0(61, �
1
61
)→ H 1

dR(61).

We will show that this map is injective (Proposition 14.6), so that H 0(6̂nr
1 , ω

1)

can be viewed as a subspace in the de Rham cohomology. Rewrite Theorem 1.1 as

H 1
dR(61, E)(π∨)= H 1

dR(61, E)ψ(π∨)' JL(π)∨⊗ Dπ ,

where ( · )(π∨) = HomE[D×](π
∨, · ). For any line L inside Dπ (the L-invariant

in our case), we may view JL(π)∨ ⊗ L as a subspace inside H 1
dR(61, E)(π∨)

by the above isomorphism. We can now define the (dual) of our Banach space
representations:

Definition 1.3. M(π,L) def
=
(
H 0(6̂nr

1 , ω
1)⊗Zp OE

)
(π∨0 )∩

(
JL(π)∨⊗L

)
.

Recall that π0 is some integral structure of π . Notice that M(π,L) is contained
in
(
H 0(6̂nr

1 , ω
1)⊗Zp OE

)
(π∨), a natural subspace of

(
H 0(61, �

1
61
)⊗Qp E

)
(π∨).

This last space has a natural Fréchet space structure over E . The induced topology on
M(π,L) makes it into a compact topological space, and thus allows us to introduce:

Definition 1.4. B(π,L)= Homcont
OE
(M(π,L), E).

This is a unitary representation of GL2(Qp).

Remark 1.5. The argument of [Breuil 2004, lemme 4.1.1] shows that H 0(6̂nr
1 , ω

1)

and H 0(6̂nr
1 , ω

′1) are commensurable, where ω′1 is any other GL2(Qp)×D×-
equivariant integral model of �1

61
. Hence B(π,L) is independent of the choice

of ω1.

Now we can state the main result of this paper. Assume p is an odd prime.

Theorem 1.6. (1) B(π,L) is nonzero and admissible as a representation of
GL2(Qp). In fact, its mod p reduction can be computed explicitly.
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(2) B(π,L) is a unitary completion of JL(π).

The computation will give us an interesting GL2(Qp)-equivariant short exact
sequence (Corollaries 16.28 and 17.5):

Corollary 1.7. The sequence

0→ ĴL(π)→ H 0(6̂nr
1 , ω

1)dE(π)→ B(π,L)→ 0,

is exact, where ĴL(π) is the universal unitary completion of JL(π) (see [Emerton
2005]), and

H 0(6̂nr
1 , ω

1)dE = Homcont
Zp

(
H 0(6̂nr

1 , ω
1), E

)
.

Note that the kernel and the middle term are independent of L while the map
between them depends on L.

Remark 1.8. Unfortunately, we have to assume p ≥ 3 in the proof of Theorem 1.6
(for example in the proof of Lemma 16.4). However Theorem 1.1 is also true for
p = 2.

Now we explain the strategy of proving Theorem 1.1. By twisting with some
unramified unitary characters, it suffices to deal with the case where the central
character ψ satisfies ψ(p) = 1. This suggests we descend 61 from Q̂nr

p to Qp2 ,
the unramified quadratic extension of Qp, by taking the “p-invariant” of 61 (see
Section 7). We use 6 p

1 to denote this rigid analytic space. One warning here: even
though 6 p

1 has a structure map to Qp2 , I will view it as a rigid space over Qp. A
semistable model of 6 p

1 is very helpful (see Theorem 8.4):

Theorem 1.9. 6 p
1 ×Qp F has an explicit D××GL2(Qp)-equivariant semistable

model 6̂(0)1,OF
over OF , where F 'Qp2[(−p)1/(p

2
−1)
].

Similar results have been obtained before by Teitelbaum [1990].
Denote the generic fiber of this semistable model by 6(0)1,F =6

p
1 ×Qp F . With the

help of the semistable model, we can compute its de Rham cohomology. Let χ(E)
be the character group of O×D /(1+5OD) with values in E×. Recall that O×D acts
on 6(0)1,F . We have the following result (see Section 12, especially Corollary 12.10
and Remark 12.11):

Theorem 1.10. For any χ ∈χ(E) such that χ 6=χ p, we have a Gal(F/Qp)×O×D×
GL2(Qp)-equivariant isomorphism:

F ⊗F0 Dcrys,χ ⊗E
(
c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1

)∨
−→∼

(
H 1

dR(6
(0)
1,F )⊗Qp E

)χ
,

where F0 ' Qp2 , c-Ind is the induction with compact support, ·∨ means the al-
gebraic dual, ρχ−1 is a cuspidal representation of GL2(Fp) over E defined via
Deligne–Lusztig theory, and Dcrys,χ is a free F0⊗E-module of rank 2 with an
action of Gal(F/Qp). In addition, we can define a Frobenius operator ϕ acting on
it. It is explicitly described in Proposition 12.8.
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Take π = IndD×
O×D Q×p

χ , where χ is viewed as a character of O×D Q×p that is trivial
on p. Then JL(π) ' c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 . Theorem 1.1 follows from the above

theorem by taking the Gal(F/Qp)-invariants. There is some inverse involved since
we invert the action of D× in Theorem 1.1.

It is clear from the theorem that Dcrys,χ is a (ϕ, N , F/Qp, E)-module. A line
L inside Dπ , or equivalently, a Gal(F/Qp)-invariant “line” inside F ⊗F0 Dcrys,χ ,
essentially gives a filtration and makes Dcrys,χ into a filtered (ϕ, N , F/Qp, E)-
module. See Section 13 for more details.

After fixing some basis for Dcrys,χ (see Proposition 12.8), any line L can be
identified with an element b inside E or∞. Assume b ∈ OE for the moment. We
will write

M(χ, [1, b])= M(IndD×
O×D Q×p

χ,L),

and similarly B(χ, [1, b])= B(IndD×
O×D Q×p

χ,L).
Some notation here: Fix a Zp-linear embedding of W (Fp2), the Witt vector of

Fp2 into OD . Then any χ ∈ χ(E) can be viewed as a character of F
×

p2 by composing
this embedding with the Teichmüller character. Also fix an embedding τ of W (Fp2)

into E . Similarly the Teichmüller character gives us a character χτ : F
×

p2 → E×.

Definition 1.11. We define m as the unique integer in {0, . . . , p2
− 2} such that

χ = χ−m
τ : F

×

p2 → O×E .

We will write m = i + (p + 1) j , where i ∈ {0, . . . , p}, j ∈ {0, . . . , p − 2} and
[−mp] as the unique integer in {0, . . . , p2

− 2} congruent to −mp modulo p2
− 1.

Let σi ( j) be the following representation of GL2(Qp):

σi ( j)= IndGL2(Qp)
GL2(Zp)Q

×
p
(Symi F2

p)⊗ OE/p⊗ det j ,

where Symi F2
p is the i-th symmetric power of the natural representation of GL2(Fp)

on the canonical basis of F2
p , viewed as a representation of GL2(Zp)Q

×
p trivial

on pZ.
Using our explicit semistable model, we can compute the mod p reduction of

M(χ, [1, b]) (Corollary 16.29, Remark 16.30, Corollary 17.6).

Theorem 1.12. Let T be the usual Hecke operator (defined in [Breuil 2007]) and
let c(χ, b)= (−1) j+1τ(w−i

1 )b ∈ OE/p, where τ(w1) satisfies τ(w1)
p+1
=−1 and

is independent of χ,L.

(1) Assume p2
− 1 − m ≥ [−mp], i ∈ {2, . . . , p − 1}. As a representation of

GL2(Qp),

0→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ 0.
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(2) Assume p2
− 1−m ≤ [−mp], i ∈ {2, . . . , p− 1}.

0→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ 0.

(3) Assume i = p. Then

M(χ, [1, b])/p '
{

X ∈ σp−2( j + 1) | −c(χ, b)X + T (X)− c(χ, b)T 2(X)= 0
}
.

(4) Assume i = 1. Then

M(χ, [1, b])/p ' {X ∈ σp−2( j + 1), X + c(χ, b)T (X)+ T 2(X)= 0}.

Thus in any case, B(χ, [1, b]) is nonzero and admissible.

Remark 1.13. In a recent paper Gabriel Dospinescu and Arthur-César Le Bras
[Dospinescu and Le Bras 2015] independently use a very similar method to construct
some locally analytic representations of GL2(Qp) and verify the compatibilities
with the p-adic local Langlands correspondence, and thus generalize Breuil’s [2004]
work in this direction. Their method works for all the coverings of the Drinfel’d
upper half-plane and relies on the previous work of Colmez on the relationship
between Banach space representations and (φ,0)-modules. Combining their results
with some known results of p-adic local Langlands correspondence, they can also
prove Theorem 1.1 and Theorem 1.6. However, it seems that Corollary 1.7 does
not follow directly from their work.

We give a brief outline of this paper. The goal of the next eight sections (Sec-
tions 2–9) is to explicitly write down a semistable model of 61. Our strategy
is to apply Raynaud’s [1974] theory of F-vector spaces schemes to X1. We will
collect some basic facts about the Drinfel’d upper half-plane in Section 2 and review
Raynaud’s theory in Section 3. To compute the data in Raynaud’s theory, we need
the existence of some “polarization” of X1 (Proposition 5.1), which comes from
a formal polarization of X (Section 4). Using this, a formal model is obtained in
Section 5. By comparing the invariant differential forms of X1 computed in two
different ways, we write down the local equation of this formal model in Section 6.
From this, it’s not too hard to work out a semistable model in Section 8 and make
clear how GL2(Zp), O×D , and Gal(F/Qp) act on it in Section 9.

In Sections 10–12 we compute the de Rham cohomology of 6(0)1,F . Using our
semistable models, this can be expressed by the crystalline cohomology of the
irreducible components of the special fiber, which is well-understood via Deligne–
Lusztig theory. The main result is Corollary 12.10, which describes the structure of
the de Rham cohomology.

In Section 13 we classify all possible filtrations on Dcrys,χ with Hodge–Tate
weights (0, 1). We use this result to define M(χ, [1, b]) in Section 14.
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Sections 15, 16, and 17 contain the computation of M(χ, [1, b])/p. In Section 15,
we compute H 0(6̂nr

1 , ω
1)/p (not exactly this space, see the precise statement there).

Roughly speaking, the method is by carefully studying the shape of differential
forms on each irreducible component of the special fiber. The main result is
Proposition 15.13 which says that this space is an extension of two inductions.
Sections 16 and 17 treat different cases of computations of M(χ, [1, b])/p according
to the value of i , but their strategies are the same: First we interpret M(χ, [1, b])
as the kernel of a map θb from (H 0(6̂nr

1 , ω
1)⊗ OE/p)χ to a space J2. Then we

compute the mod p reduction θ̄b of this map explicitly and show that θ̄b is in fact
surjective. Hence θb has to be surjective as well since both H 0(6̂nr

1 , ω
1) and J2 are

p-adically complete. Therefore M(χ, [1, b]) is just the kernel of θ̄b.

Notation. Throughout this paper, fix an odd prime number p.
Let Qnr

p be the maximal unramified extension of Qp and Q̂nr
p be its p-adic

completion. We will write Zp2 = W (Fp2), the ring of Witt vectors of Fp2 and fix
an embedding of it into Qnr

p . Denote the fractional field of Zp2 by Qp2 . We use
F0 to denote the unique unramified quadratic extension of Qp. Hence the fixed
embedding of Qp2 into Qnr

p gives us an isomorphism between F0 and Qp2 . Later
on, F0 will appear as some intermediate field extension when we try to compute a
semistable model. Let OF0 be the ring of integers inside F0. Frequently we will
identify F0 with Qp2 by this fixed isomorphism.

We denote by D the quaternion algebra of Qp and fix a uniformizer 5 ∈ D such
that 52

= p. We will also fix a Zp-linear embedding of Zp2 into OD, hence an
isomorphism:

OD/5OD ' Fp2 .

Let E be a finite extension of Qp such that HomQp(F0, E) 6= 0. We use τ, τ̄ to
denote the embeddings of F0 into E and OE to denote its ring of integers. For any
OF0-module A, we denote A⊗OF0 ,τ

OE by Aτ and A⊗OF0 ,τ̄
OE by Aτ̄ .

For K = E, F0, we use χ(K ) to denote the character group of O×D /(1+5OD)=

(OD/5)
× with values in K×.

For any integer n, we will use [n] to denote the unique integer in {0, 1, . . . , p2
−2}

congruent to n modulo p2
− 1.

For any ring A and integer n, we use µn(A) to denote {a ∈ A | an
= 1}.

For any abelian group M , we denote the p-adic completion of M by M̂.
We use Symi F2

p to denote the i-th symmetric power of the natural representation
of GL2(Fp) on the canonical basis of F2

p for i nonnegative. Explicitly, we can
identify Symi F2

p with
⊕i

r=0 Fpxr yi−r , where the action is given by(
a b
c d

)
x i yi−r

= (ax + cy)r (bx + dy)i−r .
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Sometimes we will also view it as a representation of GL2(Zp) by abuse of notation.
Also, we define an induced representation of GL2(Qp):

σi = IndGL2(Qp)
GL2(Zp)Q

×
p
(Symi F2

p)⊗ OE/p,

where the induction has no restriction on the support and we view Symi F2
p as a

representation of GL2(Zp)Q
×
p trivial on pZ. We define σ−1 as 0 and

σi ( j)= IndGL2(Qp)
GL2(Zp)Q

×
p
(Symi F2

p)⊗ OE/p⊗ det j ,

where det is the determinant map.
We recall the definition of Hecke operator T here. See Section 3.2 of [Breuil

2007] for more details. Let σ = Symr F2
p ⊗ detm , 0≤ r ≤ p− 2 be an irreducible

representation of GL2(Fp) over Fp. I would like to view it as a representation of
GL2(Zp)Q

×
p with p acting trivially. We use Vσ to denote the underlying represen-

tation space. Hence,

IndGL2(Qp)
GL2(Zp)Q

×
p
σ =

{
f : GL2(Qp)→ Vσ | f (hg)= σ(h)( f (g)), h ∈ GL2(Zp)Q

×

p
}
.

Note that we put no restriction on the support. Following [Breuil 2007], denote by

[g, v] : GL2(Qp)→ Vσ

the following element of IndGL2(Qp)
GL2(Zp)Q

×
p
σ :

[g, v](g′)=
{
σ(g′g)v if g′ ∈ GL2(Zp)Q

×
p g−1,

0 if g′ /∈ GL2(Zp)Q
×
p g−1.

We have g([g′, v]) = [gg′, v] and [gh, v] = [g, σ (h)v] if h ∈ GL2(Zp)Q
×
p . It is

clear that every element in IndGL2(Qp)
GL2(Zp)Q

×
p
σ can be written uniquely as an infinite sum

of [gi , vi ] such that no two gi are within the same coset GL2(Qp)/GL2(Zp)Q
×
p .

Identify Vσ with
⊕r

k=0 Fpxk yr−k . We define ϕr : GL2(Qp)→ EndFp(Vσ , Vσ ) as
follows:

ϕr (g)= 0 if g /∈ GL2(Zp)Q
×

p

(
1 0
0 p−1

)
GL2(Zp),

ϕr

((
1 0
0 p−1

))
(xk yr−k)= 0 if k 6= 0,

ϕr

((
1 0
0 p−1

))
(yr )= yr ,

ϕr (h1gh2)= σ(h1) ◦ϕr (g) ◦ σ(h2), h1, h2 ∈ GL2(Zp)Q
×

p .

The Hecke operator Tϕr (or T for simplicity) is defined as:

T ([g, v])=
∑

g′ GL2(Zp)Q
×
p ∈GL2(Qp)/(GL2(Zp)Q

×
p )

[gg′, ϕr (g′−1)(v)].
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2. Some facts about the Drinfel’d upper half-plane

Let � be the p-adic upper half-plane (or Drinfel’d upper half plane) over Qp. It
is a rigid analytic space over Qp and its Cp-points are Cp −Qp, where Cp is the
completion of an algebraic closure of Qp. There is a right action of GL2(Qp) on
�. On the set of Cp-points, it is given by

z 7→ z|g =
az+ c
bz+ d

for g =
(

a b
c d

)
∈ GL2(Qp).

� has a GL2(Qp)-invariant formal model �̂ over Zp, which is described in
detail in [Boutot and Carayol 1991]. One warning here: in this paper, the action of
GL2(Qp) on � is a right action rather than a left action used in Drinfel’d’s original
paper [1976] and in [Boutot and Carayol 1991]. Our action is the inverse of their
action. I apologize here if this causes any confusion.

Let me recall some facts we need to use later. There exists an open covering
{�̂e}e on �̂ indexed by the set of edges of the Bruhat–Tits tree I of PGL2(Qp).
Two different �̂e and �̂e′ have nonempty intersection if and only e and e′ share a
vertex s. When this happens, �̂e ∩ �̂e′ only depends on the vertex s. We call it
�̂s . For two adjacent vertices s, s ′, we denote the unique edge connecting them by
[s, s ′]. Explicitly, (̂ is for p-adic completion)

�̂s′ ' Spf Oη
def
= Spf Zp

[
η,

1
η−ηp

]̂ (1)

�̂s ' Spf Oζ
def
= Spf Zp

[
ζ,

1
ζ−ζ p

]̂ (2)

�̂[s,s′] ' Spf Oζ,η
def
= Spf

Zp[ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]
.̂ (3)

The inclusion from �̂s (resp. �̂s′) to �̂[s,s′] under these isomorphisms is just ζ (resp.
η) goes to p/η (resp. p/ζ ).

The set of vertices of the tree is in bijection with GL2(Zp)Q
×
p \GL2(Qp). Clearly

there is a right action of GL2(Qp) on this set and it extends to an action on the
set of edges. In fact, this action can be identified with the action on the open
covering {�̂e}e. When s is the vertex that corresponds to the coset GL2(Zp)Q

×
p ,

which I call the central vertex s ′0, we can choose the isomorphism (1) such that the
action of GL2(Zp) on it is given by

η 7→
aη+ c
bη+ d

for g =
(

a b
c d

)
∈ GL2(Zp).

From the explicit description of �̂[s,s′] and �̂s above, it is clear the special fiber
of �̂ is a tree of rational curves over Fp intersecting at all Fp-rational points. The set
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of irreducible components (singular points) is nothing but the set of vertices (edges)
of the tree. The dual graph of the special fiber of �̂ is just the Bruhat–Tits tree.

In [Drinfel’d 1976], it was shown that there exists a universal family of formal
groups X of height 4 over �̂ ⊗̂ Ẑnr

p , where Ẑnr
p is the p-adic completion of the ring

of integers inside the maximal unramified extension Qnr
p of Qp. We denote by D

the “unique” quaternion algebra over Qp, and OD the ring of integers inside D.
Then from Drinfel’d’s construction, we know that OD acts on the universal formal
group on the left.

Fix a uniformizer 5 inside OD such that 52
= p. Define Xn = X [5n

]. They
are finite formal group schemes over X0 = �̂ ⊗̂ Ẑnr

p . Let Xn be the rigid space
associated to Xn , or equivalently, Xn is the generic fiber of Xn . These Xn are étale
coverings of X0 = � ⊗̂ Q̂nr

p . Then OD/(5
n) acts on it and we have equivariant

inclusions Xn−1 ↪→ Xn . Now define

6n = Xn −Xn−1.

It can be shown that 6n is a finite étale Galois covering over X0 with Galois
group (OD/(5

n))×.
It is important that all the spaces (Xn,Xn, 6n) we construct here have a natural

GL2(Qp) action and all the maps here are GL2(Qp)-equivariant. On X0 =� ⊗̂ Ẑnrp ,
GL2(Qp) acts on �̂ as we described before and acts on Ẑnr

p via F̃rvp(det(g)), where F̃r
is the (lift of the) arithmetic Frobenius and vp is the usual p-adic valuation on Qp.
One can show that the action of Z×p in GL2(Qp) on 6n is inverse to the action of
Z×p in O×D .

Now we want to describe the action of 5 on the tangent space T of X . It is easy
to see from the construction that T is a rank 2 vector bundle on �̂ ⊗̂ Ẑnr

p . Moreover,
T splits canonically into a direct sum of two line bundles T0, T1 by considering
the action of Zp2 inside OD (recall that we fix such an embedding in the previous
section). Each eigenspace of this action is a line bundle because X is “special” in
the sense of Drinfel’d. 5 interchanges T0, T1 and under the isomorphisms (1)–(3),
we can write it down explicitly. But before doing that, I must introduce the notion
of odd and even vertices.

Definition 2.1. A class [g] in GL2(Zp)Q
×
p \GL2(Qp) is called odd (resp. even) if

vp(det(g)) is odd (resp. even).

Notice that this is well defined. And we will call a vertex in the tree (or an
irreducible component of the special fiber of �̂) even or odd according to the
corresponding class.

Back to the discussion of the tangent space. I should mention that all T0, T1, 5
descend naturally to �̂, and I still call them T0, T1, 5 by abuse of notation. Suppose
s is an odd vertex and s ′ is adjacent to s, and so must be even. On �̂[s,s′], both
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T0, and T1 are trivial. If we choose appropriate bases e0, e1 of them, then under the
isomorphisms (1)–(3), 5 becomes

50 : T0→ T1, e0 7→ ζe1, (4)

51 : T1→ T0, e1 7→ ηe0. (5)

Identify 50,51 with global sections of T ∗0 ⊗ T1 and T ∗1 ⊗ T0, where T ∗i denotes
the dual of Ti , i = 0, 1 (the cotangent space). Then the explicit description of 5
tells us that on an odd component of the special fiber, 50 has a simple zero at
each intersection point with other irreducible components. Since each irreducible
component is a rational curve over Fp and intersects other components at Fp-rational
points, 50 corresponds to the divisor that is the sum of all points of P1(Fp). On
the other hand, 51 is zero on an odd component because η = p/ζ = 0 (we are
working over the special fiber, so already modulo p). On an even component, a
similar argument shows that 50 is zero and 51 is the sum of all points of P1(Fp)

as a divisor.
Restricting everything to the central vertex s ′0, we have an isomorphism �̂s′0 '

Spf Ẑp[η, 1/(η− ηp)]̂, and GL2(Zp) acts on it via

η 7→
aη+ c
bη+ d

for g =
(

a b
c d

)
∈ GL2(Zp).

The action of GL2(Zp) on T ∗0 is easier to describe than the action on T0. Using the
same basis as in the last paragraph and denoting the dual basis element of e0 by e∗0 ,
we have

g :T ∗0 →T ∗0 , f (η)e∗0 7→
1

bη+d
f
(aη+c

bη+d

)
e∗0 for g=

(
a b
c d

)
∈GL2(Zp). (6)

Most details here can be found in [Boutot and Carayol 1991], especially the
first chapter about Deligne’s functor (and notice the action of GL2(Qp) here is the
inverse of the action there).

3. Raynaud’s theory of F-vector space schemes

We want to write down the equation defining X1. Recall that there exists an action
of OD/(5) on X1. But F

def
= OD/(5) is a finite field which is isomorphic to Fp2 . So

X1 is an “F-vector space scheme” in the sense of Raynaud. Let’s recall Raynaud’s
theory of F-vector space schemes in our situation. The reference is the first section
of [Raynaud 1974].

Definition 3.1. Let S be a scheme and F a finite field. An F-vector space scheme
is a group scheme G over S with an embedding of F into the endomorphism ring
of G (over S).
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Although the definition here is different from Raynaud’s original definition, it’s
clear that they are equivalent. Now let G be an F-vector space scheme; we also use
G to denote the group scheme in the definition by abuse of notation. The action
of λ ∈ F is denoted by [λ]. Following Raynaud, we assume G is finite, flat and of
finite presentation over S.

Let A be the bialgebra of G and I be the augmentation ideal. Then F× acts on
A and I. In Raynaud’s paper, he defined a ring “D”. Since we already use D for
the quaternion algebra, I will use DR for Raynaud’s “D”. In our case, we can think
of DR as Zp2 , the quadratic extension of Zp in Znr

p . Although this ring is much
bigger than DR , both of them give the same result here. Under the hypothesis (∗) in
Raynaud’s paper and fixing a map S→Spec DR , we have a canonical decomposition
of I:

I =
⊕
χ∈M

Iχ ,

where M is the set of characters of F× with value in D×R , and Iχ is defined as the
“χ -isotypic component”. More precisely, for every open set V on S, H 0(V, Iχ ) is
the set of elements a ∈ H 0(V, I), such that [λ]a = χ(λ)a for any λ ∈ F×.

Definition 3.2. Let χ1, χ2 be the characters of F× = (OD/5)
× with values in

D×R = Z×p2 such that the composition

F
×

p2 ' (OD/5)
× χi−→Z×p2

is the Teichmüller character if i = 1 and its Galois twist if i = 2. Here, the first
isomorphism is the one we fixed in the beginning. They are the fundamental
characters defined in Raynaud’s paper.

It is clear that χ p
1 = χ2 and χ p

2 = χ1. Every character χ in M can be written
uniquely as

χ = χ
n1
1 χ

n2
2 , 0≤ n1, n2 ≤ p− 1, (n1, n2) 6= (0, 0).

Now, it is easy see to that given two characters χ, χ ′ in M , we have two OS-linear
maps {

cχ,χ ′ : Iχχ ′→ Iχ ⊗ Iχ ′,
dχ,χ ′ : Iχ ⊗ Iχ ′→ Iχχ ′

coming from the comultiplication and multiplication structure of A. A slight
generalization of this (or equivalently iterate this p− 1 times) gives us{

ci : Iχi+1 → I⊗p
χi ,

di : I
⊗p
χi → Iχi+1

for i = 1, 2, and we identify χ3 as χ1.
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Under the hypothesis (∗∗) in Raynaud’s paper, which says that each Iχ is an
invertible sheaf on S, we have the following classification theorem of F-vector space
schemes.

Theorem 3.3 [Raynaud 1974]. Let S be a DR-scheme. The map

G 7→
(
Iχi , ci : Iχi+1 → I⊗p

χi
, di : I⊗p

χi
→ Iχi+1

)
i=1,2

defines a bijection between the isomorphism classes of F-vector space schemes over
S satisfying (∗∗) and the isomorphism classes of (L1,L2, c1, c2, d1, d2), where:

(1) Li is an invertible sheaf on S for any i = 1, 2.

(2) The ci and di are OS-linear maps{
ci : Lχi+1 → L⊗p

χi

di : L
⊗p
χi → Lχi+1

such that di ◦ ci = w IdLi+1 . Here w is a constant in DR that only depends on
F and can be expressed using Gauss sums. More precisely, if we identify DR

with Zp2 , then w ∈ Zp ⊂ Zp2 with p-adic valuation 1. And if we write w= pu,
then u ≡−1(mod p).

The inverse map in the theorem is as follows: we define

A=
⊕

0≤ai≤p−1

(L⊗a1
1 ⊗L⊗a2

2 )

and equip it with the multiplication and comultiplication structure using di , ci . A is
now a bialgebra and thus defines a group scheme over S. The action of F× is defined
as the character χi on Li and more generally as the character χa1

1 χ
a2
2 on L⊗a1

1 ⊗L
⊗a2
2 .

We now define the action of 0 in F to be trivial on A. The properties of ci and di

guarantee that we indeed get a F-vector space scheme. As a corollary, we have a
description of the invariant differential forms of G:

Corollary 3.4. ωG/S ' I/I2
= (L1/d2(L

⊗p
2 ))⊕ (L2/d1(L

⊗p
1 )).

Remark 3.5. When S is an affine scheme, say Spec(A), and Li is free over S for
all i , we have an explicit description of A. Suppose xi is a basis of Li . Under
such basis, di becomes an element vi inside A, namely di (x⊗p

i )= vi xi+1. Then the
bialgebra A is isomorphic to A[x1, x2]/(x

p
1 − v1x2, x p

2 − v2x1) as an A-algebra.

Remark 3.6. The Cartier dual of an F-vector space scheme is also an F-vector
space scheme by the dual action of F. On the level of bialgebra, the action of
F is given by its transpose. If G corresponds to (Li , ci , di ), the Cartier dual G∗

corresponds to (L∗i , d∗i , c∗i ), where L∗i = HomOS (Li ,OS) and d∗i (resp. c∗i ) is the
transpose of di (resp. ci ).
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4. Some results about the formal polarization

We want to apply Raynaud’s theory to our situation. Although our base scheme is a
formal scheme, the argument of Raynaud can be extended naturally to this situation.
As we remarked in the beginning of the previous section, X1 = X [5] is a F-vector
space scheme over X0 = �̂ ⊗̂ Q̂nr

p , where F= OD/(5). Using that its generic fiber
X1 is étale over � ⊗̂ Ẑnr

p and applying Proposition 1.2.2. in Raynaud’s paper, we
know that X1 satisfies hypothesis (∗∗). So the classification theorem tells us there
exist 2 invertible sheaves L1,L2, and maps

c1 : L2 7→ L⊗p
1 , c2 : L1 7→ L⊗p

2 , (7)

d1 : L
⊗p
1 7→ L2, d2 : L

⊗p
2 7→ L1, (8)

such that d1 ◦ c1 = w IdL2 , and d2 ◦ c2 = w IdL1 .
In order to determine ci , di , we need the existence of “formal ∗-polarization” of

the universal formal group X , which is a lemma in the proof of Proposition 4.3. of
[Drinfel’d 1976], and proved in detail in [Boutot and Carayol 1991, chapitre III
lemma 4.2.]. I would like to recall it here without proof.

Lemma 4.1. Suppose t ∈ D such that t2
∈ pO×D . There exists a symmetric iso-

mophism λ : X→ X∗, where X∗ is the Cartier dual of X , such that the diagram

X λ
//

t−1d̄t
��

X∗

d∗
��

X λ
// X∗

commutes for any d ∈ OD , where d̄ is the canonical involution of d in D, and d∗ is
the dual morphism of the endomorphism d. Here symmetric means λ= λ∗ under
the canonical identification between X and X∗∗.

Remark 4.2. This isomorphism is not unique, but is unique up to Z×p -action. From
now on, we will fix one such isomorphism λ that is defined in [Drinfel’d 1976] and
[Boutot and Carayol 1991]. So we also fix such a t .

How does this isomorphism behave under the action GL2(Qp)? Recall that
X0 = �̂ ⊗̂ Ẑnr

p .

Lemma 4.3. Suppose g ∈ GL2(Qp) and det(g) ∈ pZ; then g “commutes” with λ.
More precisely, by abuse of notation, let g : X0→ X0 be the automorphism of X0

induced by g. Then there exists a natural isomorphism µg : X → g∗X over X0,
where g∗X is the pull-back of X under g : X0 → X0 by the equivariance of the
GL2(Qp) action. Denote by µ∗g the dual morphism of µg. We have the following
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commutative diagram:

X∗ (g∗X)∗ ' g∗X∗
µ∗g
oo // X∗

X

λ

OO

��

µg
// g∗X

g∗λ

OO

��

// X

λ

OO

��

X0 X0
g

// X0

In general, for any g ∈ GL2(Qp), we have the same diagram but replace the upper
left square by

X∗ g∗X∗
µ∗g

oo

X

λ

OO

µg·pn/det(g)
// g∗X

g∗λ

OO

where n = vp(det(g)). Notice that this makes sense since Z×p has trivial action on
X0, so g∗X = (g · pn/det(g))∗X.

Proof. Since I will use some formulas in [Drinfel’d 1976] and [Boutot and Carayol
1991], I think it’s better not to translate their left action of GL2(Qp) to right action
here. Hence I will follow their convention in this proof.

It’s clear that we only need to prove the general case. Thanks to Drinfel’d’s
lemma (the lemma on strictness for p-divisible groups in the appendix of [Drinfel’d
1976]), it suffices to verify this commutative diagram after we reduce modulo p.
But by Drinfel’d’s construction of the universal p-divisible group, X × Fp is quasi-
isogenous of degree 0 to a constant p-divisible group 8X0×Fp over X0× Fp. Here,
recall that 8 is a p-divisible group defined over Fp, and 8X0×Fp

def
= 8 ×Fp

X0.
GL2(Qp) acts on 8 as quasi-isogenies. A detailed description of 8 can be found
in [Boutot and Carayol 1991, chapitre III 4.3] or the proof of Proposition 4.3. of
[Drinfel’d 1976]. Besides, the construction of the “formal polarization” λ tells us
that λ actually comes from a “formal polarization” λ0 of8 that makes the following
diagram commutative:

X × Fp
λ̄
//

ρ

��

X∗× Fp

8X0×Fp

λ0,X0×Fp
// 8∗X0×Fp

ρ∗

OO

where λ̄ def
= λ(mod p), ρ is the quasi-isogeny and ρ∗ is its dual. From the definition

of the action of GL2(Qp), we know how ρ changes under this action (basically
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the action of GL2(Qp) on 8 with some twist of Frobenius, see [Drinfel’d 1976,
Section 2] or [Boutot and Carayol 1991, chapitre II section 9]). Thus we can
translate the diagram of X into a diagram of 8. It turns out that it suffices to verify
that the following diagram is commutative:

8∗ (Fr−n)∗8∗
(Frob−n

8 ◦g)
∗

oo

8

λ0

OO

Frob−n
8 ◦(g·p

n/det(g))
// (Fr−n)∗8

(Fr−n)∗λ0

OO

Here Fr :Spec(Fp)→Spec(Fp) is the arithmetic Frobenius and Frob8 : (Fr−1)∗8→8

is the Frobenius morphism over Spec(Fp). I would like to decompose the diagram
as the following diagram (and invert the arrow on the bottom line):

8∗ 8∗
g∗(det(g))−1

oo (Fr−n)∗8∗
(det(g)Frob−n

8 )∗

oo

8

λ0

OO

8

λ0

OO

g−1

oo (Fr−n)∗8

(Fr−n)∗λ0

OO

(det(g)/pn)Frobn
8

oo

First we look at the right square:

(det(g)Frob−n
8 )∗=

(det(g)
pn

)
(pn Frob−n

8 )∗=
(det(g)

pn

)
(Vern

8)
∗
=

(det(g)
pn

)
Frobn

8∗,

where Ver8∗ is the Verschiebung morphism. Now it is easy to see the diagram
commutes from the basic property of the Frobenius morphism.

As for the left square, the commutativity in fact comes from our explicit choice
of 8, λ0 and the action of GL2(Qp). See the remarque in [Boutot and Carayol
1991, chapitre III 4.3] which says the Rosati involution associated to λ0 is nothing
but the canonical involution on M2(Qp). �

Remark 4.4. When g ∈ SL2(Qp), the calculation above is essentially given in
[Boutot and Carayol 1991, chapitre III 4.5].

5. Structure of X1 and a formal model of 61

Now let’s see how the discussion above helps us study ci , di in (7), (8). The main
result is the following:

Proposition 5.1. There exists an isomorphism λ1 from X1 = X [5] to X [5]∗, the
Cartier dual of X [5], such that:
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(1) The following diagram commutes for any d ∈ O×D :

X [5]
λ1
//

d̄
��

X [5]∗

d∗
��

X [5]
λ1
// X [5]∗

Recall that d̄ is the canonical involution of d in D.

(2) λ∗1 = λ1 ◦ [−1] = [−1]∗ ◦ λ1, where [−1] denotes the action of −1 ∈ OD .

Proof. We can take t =5 in Lemma 4.1. Then if we restrict to the p torsion points
of X , we certainly get an isomophism:

λp : X [p] = X [5−1 p̄5] → X∗[p∗] = X∗[p].

Notice that X∗[p] is canonically isomorphic to (X [p])∗, the Cartier dual of X [p].
The inclusion of X [5] into X [p] induces a canonical isomorphism

j : X∗[p]/X∗[5∗]= X∗[p]/((X∗[p])[5∗])−→∼ (X [p])∗/((X [p])∗[5∗])−→∼ X [5]∗.

Since 52
= p, the map 5∗ : X∗[p] → X∗[p] gives us an isomorphism

h : X∗[p]/X∗[5∗]
∼
−→ X∗[5∗].

Finally, we restrict λ to the 5 torsion points of X and get an isomorphism

λ5 : X [5] = X [5−155] → X∗[5∗].

Now, we define λ1 = j ◦ h−1
◦ λ5 : X [5] → X [5]∗.

What is the Rosati involution associated to λ1? I claim the following diagram
commutes:

X [5]
λ5
//

5−1d̄5
��

X∗[5∗]

d∗

��

X∗[p]/X∗[5∗]h
oo

(5d5−1)∗

��

j
// X [5]∗

(5d5−1)∗

��

X [5]
λ5
// X∗[5∗] X∗[p]/X∗[5∗]h

oo
j
// X [5]∗

The left-most square is commutative because we have a similar diagram for λ and
λ5 is a restriction of λ. The right-most diagram is commutative because j comes
from the canonical quotient map X∗[p] ' (X [p])∗ → X [5]∗ and this certainly
commutes with the dual endomorphism of OD. As for the middle square, notice
that h is induced by the map 5∗ : X∗[p] → X∗[p] and everything is clear.

Since 5−1d̄5 ≡ d (mod5OD) and everything in the diagram above is killed
by 5 or 5∗, we can replace 5−1d̄5 by d and (5d5−1)∗ by d̄∗, and hence get the
desired commutative diagram in part (1).
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As for part (2), we use G,H to denote X [p], X [5] respectively. Then G∗=X∗[p].
We can decompose −5 : G→ G as

G q
−→G/H

h−5
−→ H i

−→G,

where i (resp. q) is the canonical inclusion of H to G (resp. canonical quotient
map of G to G/H ). The induced isomorphism is h−5.

Notice that5−15̄5=−5 and G is killed by p. We have the following diagram,
which is a restriction of the diagram of Lemma 4.1 to G with d =5:

G
−5

//

λp

��

G

λp

��

G∗ 5∗
// G∗

Similarly we can decompose 5∗ as we did for −5 and have the commutative
diagram

G
q

//

λp

��

G/H
h−5

//

λG/H

��

H i
//

λH

��

G

λp

��

G∗ i∗
// H∗

h5∗
// (G/H)∗

q∗
// G∗

such that the composition of all three maps in the bottom line is 5∗. The map
h5∗ is induced from 5∗. Thus it’s easy to see ([−1] ◦ h−5)∗ = h5∗ and its dual
h∗5∗ = [−1] ◦ h−5.

Since λ is symmetric, so is λp and we certainly have λ∗G/H = λH . Now it’s not
hard to see that our λ1 is nothing but h−1

5∗ ◦ λH . So,

λ∗1 = (h
−1
5∗ ◦ λH )

∗
= λ∗H ◦ (h

−1
5∗)
∗
= λG/H ◦ (h∗5∗)

−1

= λG/H ◦ ([−1] ◦ h−5)−1
= λG/H ◦ h−1

−5 ◦ [−1]−1
= λ1 ◦ [−1].

The last identity comes from the middle square of the diagram above. �

Corollary 5.2. The isomorphism λ1 induces isomorphisms

λL1 : L
∗

2 −→
∼ L1, λL2 : L

∗

1 −→
∼ L2.

Moreover, λL1 =−λ
∗
L2

if p is odd and λL1 = λ
∗
L2

if p = 2.

Proof. Using Theorem 3.3, we can identify X1= X [5] with (L1,L2, c1, c2, d1, d2),
and the final remark there tells us we can identify X [5]∗ with (L∗1,L

∗

2,d
∗

1 ,d
∗

2 ,c
∗

1,c
∗

2).
Now λ1 gives us an isomorphism from X [5] to X [5]∗ but this is not F=OD/(5)-

equivariant. For a character χ of F×, considered as a character of O×D , we have

χ(d̄)= χ(d p)= χ p(d)
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for any d ∈ O×D . This is because when we restrict the canonical involution to a
quadratic unramified extension of Zp inside OD, it is nothing but the nontrivial
Galois action. So modulo the uniformizer, it becomes the Frobenius automorphism.

Take χ =χ1, one of the fundamental characters; then χ p
1 =χ2, so χ1(d̄)=χ2(d).

Similarly, we have χ2(d̄) = χ1(d). From these identities and the commutative
diagram in Proposition 5.1, it is easy to see λ1 really induces isomorphisms

λL1 : L
∗

2 −→
∼ L1, λL2 : L

∗

1 −→
∼ L2.

The last identity comes from the consideration that the difference between λ1 and
λ∗1 is the action of −1. And we know χ1(−1) = χ2(−1) = −1 if p is odd and 1
otherwise. �

From now on, I will assume p is odd.

Corollary 5.3. Under the isomorphism λL1 , we have −d1 = c∗2 . More precisely, we
have the following commutative diagram:

L⊗p
1

−d1
// L2

(L∗2)
⊗p

c∗2
//

λ
⊗p
L1

OO

L∗1

λ∗L1

OO

Proof. It is easy to see λ1 induces a similar diagram by replacing −d1 with d1 and
λ∗L1

with λL2 . Now the corollary follows from λL1 =−λ
∗
L2

. �

Corollary 5.4. Under the isomorphism λL1 , we can identify d1 : L
⊗p
1 → L2 with

a global section of L⊗−p−1
1 . Similarly, we can identify d2 with a global section

of L⊗p+1
1 . The canonical pairing

H 0(X0,L
⊗−p−1
1 )× H 0(X0,L

⊗p+1
1 )→ H 0(X0,OX0)

sends (d1, d2) to the constant −w =−pu, where w is the constant in Theorem 3.3,
and u is w/p.

Proof. Recall that d2◦c2=w IdλL1
. Then everything follows from Corollary 5.3. �

Corollary 5.5. Recall that the bialgebra of X1 is isomorphic as an OX0-module to⊕
0≤i, j≤p−1 L

⊗i
1 ⊗L⊗ j

2 . The isomorphism λL1 gives a global section λ̃L1 of L1⊗L2.
Then as a global section of X1, we have

λ̃L1

p
=−wλ̃L1,

where everything is computed inside the bialgebra of X1.
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Proof. We only need to verify this locally. Suppose L1,L2 are free over an open set
U and generated by x1, x2 such that x1⊗ x2 = λ̃L1 , or equivalently they are dual to
each other under λL1 . Now d1, d2 are given by two elements v1, v2 ∈ H 0(U,OX0).
So x p

1 = v1x2, and x p
2 = v2x1 (see Remark 3.5). But from the last corollary, we

have v1v2 =−w. Thus the product of these two equations is just what we want. �

Remark 5.6. Perhaps it is better to remark here that L1,L2 are nontrivial on the
formal model but we’ll see later that they become trivial on the generic fiber
(Lemma 10.1).

Now we can describe a formal model of 61. Recall that 61 = X1−X0, where
X1,X0 are the rigid analytic spaces associated to X1, X0.

Proposition 5.7. Let A =
⊕

0≤i, j≤p−1 L
⊗i
1 ⊗ L⊗ j

2 be the bialgebra of X1. Then
A/(λ̃L1

p−1
+w) (the closed subscheme defined by the ideal sheaf (λ̃L1

p−1
+w)) is a

formal model of 61. We will use 6̂nr
1 to denote this formal model.

Proof. It suffices to check this locally on X0, so we can assume L1,L2 are free.
A point x on 61 gives a morphism x : A→ Cp. If it does not factor through
A/(λ̃L1

p−1
+w), x(λ̃L1) has to be 0 because last corollary tells us (λ̃L1

p−1
+w)λ̃L1=0.

But
x p+1

1 = x p
1 x1 = v1x2x1 = v1λ̃L1,

so x(x1) = 0 and x(x2) = 0 by the same argument. Therefore x factors through
A modulo the ideal sheaf generated by x1, x2 which is the augmentation ideal.
Therefore x is in X0. The converse is trivial. �

It’s easy to see its underlying algebra of 6̂nr
1 is just⊕

0≤i, j≤p−1,
(i, j) 6=(p−1,p−1)

L⊗i
1 ⊗L⊗ j

2 .

Remark 5.8. There exist natural actions of GL2(Qp) and O×D on 6̂nr
1 . The action

of O×D is clear. To see the action of GL2(Qp), notice that λ̃L1 is a global section of
a trivial line bundle on X0, but H 0(X0,OX0) is canonically isomorphic to Ẑnr

p (I
will prove this later; see Lemma 14.7). So GL2(Qp) acts on λ̃L1 as a scalar. Recall
that λ̃L1

p
+wλ̃L1 = 0. This implies λ̃L1

p−1
+w is GL2(Qp)-invariant. The same

argument shows that the action of O×D can be extended to D×.

But how does GL2(Qp) act on λ̃L1? Here is a direct consequence of Lemma 4.3:

Proposition 5.9. With g ∈ GL2(Qp) and n = vp(det(g)),

g(λ̃L1)= χ1(det(g)/pn)−1λ̃L1 .
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6. Local equation of X1 and 6̂nr
1

In order to get a semistable model of 6̂nr
1 , we need to know the local equation

defining it. Recall that in Section 2, we described an open covering {�̂e ⊗̂ Ẑnr
p }e of

X0 such that

�̂e ⊗̂ Ẑnr
p ' Spf

Ẑnr
p [ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]
.̂

We try to write down the equation of 6̂nr
1 above each �̂e ⊗̂ Ẑnr

p . Our first
observation is:

Lemma 6.1. Any line bundle L over

�̂e ⊗̂ Ẑnr
p ' Spf

Ẑnr
p [ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]̂
is trivial.

Proof. Recall (see (3))

Oζ,η =
Ẑnr

p [ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]
.̂

The special fiber of Spf Oζ,η is Spec Fp[ζ, η, 1/(1− ζ p−1), 1/(1− ηp−1)]/(ζη).
I claim every line bundle L̄ over it is trivial. Let L̄ be H 0(Spec Oζ,η/p, L̄). Then
we have the exact sequence

0→ L̄→ L̄/(ζ L̄)⊕ L̄/(ηL̄) −→ L̄/(ζ L̄ + ηL̄)→ 0,

where the inclusion is the canonical morphism and − is defined by taking their
difference. This sequence is exact because L̄ is locally free and thus flat over
Oζ,η/p. Notice that L̄/(ζ L̄) defines a line bundle on

Spec Oζ,η/(p, ζ )= Spec Fp

[
η,

1
1−ηp−1

]
,

and hence has to be trivial. The same result holds for L̄/(ηL̄). Also L̄/(ζ L̄ + ηL̄)
is nothing but Fp. Using these, it’s not hard to find an element that generates L̄ . So
L̄ is trivial.

Now we can find an element in H 0(Spf Oζ,η,L) that generates L/p. But
H 0(Spf Oζ,η,L) is p-adically complete, so this element actually generates the
whole H 0(Spf Oζ,η,L). Therefore L is trivial. (Here we use the fact that a surjective
map between two line bundles has to be an isomorphism.) �

Thanks to this lemma, the restriction of L1 on �̂e ⊗̂ Ẑnr
p is trivial. We fix

an isomorphism between �̂e ⊗̂ Ẑnr
p and Spf Oζ,η. Suppose x1 is a generator of
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H 0(�̂e ⊗̂ Ẑnr
p ,L1), and x2 ∈ H 0(�̂e ⊗̂ Ẑnr

p ,L2) is the dual basis under the isomor-
phism λL1 defined in the previous section. Let v1, v2 be the elements given by
d1, d2 under the basis x1, x2. Then we know that locally X1 is defined by x p

1 = v1x2,
x p

2 = v2x1.
How to determine v1, v2? Our strategy is to compare the invariant differential

forms of X1 computed in two different ways. First recall that the tangent space
T of the universal formal group over X0 is a rank 2 vector bundle over X0 that
naturally splits into a direct sum of two line bundles T0, T1. So the sheaf of invariant
differential forms is its dual, namely T ∗0 ⊕ T ∗1 . The action of 5 on T0 sends T0

(resp. T1) into T1 (resp. T0), which we denoted by 50 (resp. 51) in Section 2. Thus
5∗0 (resp. 5∗1) sends T ∗1 (resp. T ∗0 ) to T ∗0 (resp. T ∗1 ) and the sheaf of invariant forms
ωX1/X0 of X1 = X [5] is

T ∗0 /5
∗

0T ∗1 ⊕ T ∗1 /5
∗

1T ∗0 .

On the other hand, using Corollary 3.4, we know that this is also

L1/d2(L
⊗p
2 )⊕L2/d1(L

⊗p
1 ).

It is natural to guess:

Lemma 6.2. T ∗0 /5
∗

0T ∗1 ' L1/d2(L
⊗p
2 ), T ∗1 /5

∗

1T ∗0 ' L2/d1(L
⊗p
1 ).

Proof. If we restrict the action of OD to Zp2 , it acts by identity on T0 and by
conjugation on T1. Recall that we fix an embedding of Zp2 into OD in the beginning.
This is just the definition of X being “special”. Now our desired identification
follows from a simple comparison of the action of Z×p2 in both ways. �

Recall that all irreducible components of the special fiber of X0 are isomorphic
to P

1
Fp such that the singular points are exactly P1(Fp). From the explicit description

(4), (5) of50,51 and the discussion in Section 2, we know that on an odd component
of the special fiber s, T ∗0 /5

∗

0T ∗1 is isomorphic to
⊕

P∈ssing
iP∗Fp, where ssing is the

set of singular points of the special fiber on s, and iP : P→ s is the embedding.
Restrict L1, L2, d2 : L

⊗p
2 → L1 to s. From

L1/d2(L
⊗p
2 )' T ∗0 /5

∗

0T ∗1 '
⊕

P∈ssing

iP∗Fp (on s), (9)

it’s easy to see deg(L1|s)− deg(L⊗p
2 |s)= p+ 1. But L2 ' L∗1, so

deg(L2|s)=− deg(L1|s). (10)

This implies:

Lemma 6.3. For any odd component s, deg(L1|s) = 1. Similarly, deg(L2|s′) = 1
for any even component s ′.
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Now we would like to choose some good basis of L1 so that v1, v2 have a good
form. Using the isomorphism �̂e ' Spf Oζ,η, we can identify two irreducible
components of its special fiber with Spec Oζ,η/(ζ ) and Spec Oζ,η/(η). Assume
the second one is odd and we use s to denote the corresponding component in the
special fiber of X0 and use s ′ for the other component. Moreover Spec Oζ,η/(η)=

Spec Fp[ζ, 1/(1− ζ p−1)] hence has an obvious embedding into P1
Fp

which can be
identified as the embedding into s.

Choose a global section x̃1 of L1|s such that it has a simple zero at infinity under
the identification above. It is a basis of H 0(Spec Oζ,η/(η),L1). Then under this
basis,

d2 : L
⊗p
2 ' L∗1

⊗p
→ L1, x̃1

∗ ⊗p
7→ c(ζ p

− ζ )x̃1

for some constant c ∈ Fp
×, where x̃1

∗ is the dual basis of x̃1
∗.

Notice that x̃1 is only defined up to a constant. If we replace x̃1 by dx̃1, then
the constant c is replaced by d−p−1c. We can choose d = c1/(p+1) to eliminate c.
More precisely, we can choose a section, which I still call x̃1 by abuse of notation,
such that under this basis, d2 is just multiplication by ζ p

− ζ .
We can do a similar thing for s ′, which means we can choose a basis x̃2 of

L2|Spec Oζ,η/(ζ ) such that under this basis, d1 is multiplication by c′(ηp
− η). Here

we choose x̃2 so that x̃1, x̃2
∗ can glue to a global basis x1 of L1|Spec Oζ,η/(p) (see the

proof of Lemma 6.1). A priori we know nothing about the constant c′.
Now we can lift x1 to a global basis x1 of L1|Spec Oζ,η

, so it determines a basis x2 of
L2|Spec Oζ,η

under the isomorphism λL1 . And d1, d2 are given by two numbers v1, v2.
The explicit description (4), (5) and Lemma 6.2 imply that

v2 = ζu2, v1 = ηu1 (11)

for some units u1, u2 ∈ O×ζ,η. Note that u1u2 =−u because v1v2 =−w=−pu, by
Corollary 5.4, and ηζ = p. From our choice of x1, x2, we have

v2 ≡ ζ
p
− ζ(mod η), v1 ≡ η

p
− η(mod ζ ), (12)

so

u2 ≡ ζ
p−1
− 1 (mod η), (13)

u1 ≡ c′(ηp−1
− 1) (mod ζ ). (14)

This is because (ζ, η) is a regular sequence in Oζ,η. In fact Oζ,η is normal. When
we take the product of the identities above considered in Oζ,η/(ζ, η) ' Fp, the
left-hand side is u1u2 = −u, which is 1 modulo p (see Theorem 3.3), while the
right-hand side is just c′. Therefore:

Lemma 6.4. c′ = 1.
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Notice that u2 ≡ u−1
1 (mod p), and (ζ )∩ (η)= (p) in Oζ,η. It’s not hard to see

that:

Lemma 6.5. u1 ≡−
ηp−1
− 1

ζ p−1− 1
(mod p), u2 ≡−

ζ p−1
− 1

ηp−1− 1
(mod p).

Now if we replace our x1 by r x1 for some unit r ∈ O×ζ,η, then x2 is replaced by
r−1x2 and u1 (resp. u2) is replaced by r p+1u1 (resp. r−p−1u2). Write

u1 =−
ηp−1
−1

ζ p−1−1
r1;

then r1 ≡ 1(mod p). Thus r1/(p+1)
1 exists in Oζ,η. Hence we can modify our x1 to

make u1 =−(η
p−1
− 1)/(ζ p−1

− 1). In summary:

Proposition 6.6. We can choose appropriate bases x1, x2 of L1,L2 over

�̂e ⊗̂ Ẑnr
p ' Spf Oζ,η

such that they are dual to each other under λL1 , and under these bases,

d1 : L
⊗p
1 → L2, x⊗p

1 7→ −
ηp
− η

ζ p−1− 1
x2, (15)

d2 : L
⊗p
2 → L1, x⊗p

2 7→ u
ζ p
− ζ

ηp−1− 1
x1. (16)

Corollary 6.7. The restriction of X1 to �̂e ⊗̂ Ẑnr
p ' Spf Oζ,η is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
−η

ζ p−1−1
x2, x p

2 − u ζ p
−ζ

ηp−1−1
x1

)
. (17)

Similarly, the restriction of 6̂nr
1 to �̂e ⊗̂ Ẑnr

p is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
−η

ζ p−1−1
x2, x p

2 − u ζ p
−ζ

ηp−1−1
x1, (x1x2)

p−1
+ pu

)
. (18)

Proof. The first statement follows from the above discussion. As for 6̂nr
1 , notice

that x1x2 is just λ̃L1 defined in Corollary 5.5. So this is the definition of 6̂nr
1 . �

Fix a ũ1 = (−u)1/(p
2
−1) in Zp. If we replace x1 by ũ1x1, and x2 by ũ p

1 x2,
then our new x1, x2 are dual to each other under ũ−p−1

1 λL1 . Under this basis,
x1x2 = ũ−p−1

1 λ̃L1 .

Corollary 6.8. The restriction of X1 to �̂e ⊗̂ Ẑnr
p ' Spf Oζ,η is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
−η

ζ p−1−1
x2, x p

2 +
ζ p
−ζ

ηp−1−1
x1

)
.

Similarly, the restriction of 6̂nr
1 to �̂e ⊗̂ Ẑnr

p is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
− η

ζ p−1− 1
x2, x p

2 +
ζ p
− ζ

ηp−1− 1
x1, (x1x2)

p−1
− p

)
.



430 Lue Pan

Suppose e = [s, s ′] and we have (1), (2), and (3). Then �̂s′ ⊗̂ Ẑnr
p is obtained by

inverting η in Oζ,η and taking the p-adic completion. Therefore, we have:

Corollary 6.9. The restriction of X1 to �̂s′ ⊗̂ Ẑnr
p ' Spf Ẑnr

p [η, 1/(ηp
− η)]̂ is

defined by

Spf Ẑnr
p

[
η,

1
ηp−η

]̂
[x1, x2]

/(
x p

1 +
ηp
−η

(p/η)p−1−1
x2, x p

2 +
(p/η)p

−(p/η)
ηp−1−1

x1

)
.

Similarly, the restriction of 6̂nr
1 to �̂s′ ⊗̂ Ẑnr

p is defined by

Spf Ẑnr
p

[
η,

1
ηp − η

]̂
[x1, x2]/(

x p
1 +

ηp
−η

(p/η)p−1−1
x2, x p

2 +
(p/η)p

−(p/η)
ηp−1−1

x1, (x1x2)
p−1
− p

)
.

7. The action of GL2(Q p) on 6̂nr
1 and a descent 6̂1 to Z p2

Recall that we fix an embedding Zp2 ↪→ Ẑnr
p . In this section, I want to describe

the action of GL2(Qp) on 6̂nr
1 . As a corollary, we can descend the formal model

from Ẑnr
p to Zp2 by taking the “p-invariants”, where p is considered as an element

in GL2(Qp). This descent is not quite canonical. On the other hand, as we explained
in the introduction, it suffices to prove Theorem 1.1 when the central character is
trivial on p, and this is exactly the descent we are considering here.

Denote the canonical morphism 6̂nr
1 → X0 by π and π−1(�̂e ⊗̂ Ẑnr

p ) by 6̂nr
1,e,

π−1(�̂s ⊗̂ Ẑnr
p ) by 6̂nr

1,s , for edge e and vertex s. Then {6̂nr
1,e}e is an open covering

of 6̂nr
1 , such that each open set has a nice description as in the previous section.

Then the action of GL2(Qp) on this covering can be identified with the action on
the Bruhat–Tits tree.

Now let s ′0 be the central vertex defined in Section 2. Then, GL2(Zp) acts
on 6̂nr

1,s′0
. I want to write down explicitly this action under the identification in

Corollary 6.9. Since π is GL2(Zp)-equivariant, we only need to describe the action
on x1, x2. However it’s clear from the equation in Corollary 6.9 that x2 can be
expressed using x1 because ηp

−η is invertible. So it suffices to describe the action
on x1.

We first observe that T ∗0 /(5
∗

0T ∗1 )' L1/d2(L
⊗p
2 ) is a free Oη/p-module of rank

one with a basis x1. Recall Oη = Ẑnr
p [η, 1/(ηp

− η)]̂. In Section 2, we gave an
explicit description (6) of the action of GL2(Zp) on T ∗0 , which is given by

f (η)e∗0 7→
1

bη+d
f
(aη+c

bη+d

)
e∗0, g =

(
a b
c d

)
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for some basis e∗o . So if we write x1 = f (η)e∗0 , for some f (η) ∈ (Oη/p)×, then the
action of GL2(Zp) on x1 in Oη/p is

g(x1)=
1

bη+d
f
(aη+c

bη+d

)
f (η)−1x1. (19)

Notice that on 6̂nr
1,s ,

x p+1
1 ≡ (ηp

− η)x1x2 = (η
p
− η)(−u)−1/(p−1)λ̃L1 (mod p).

Thanks to Proposition 5.9, we know how g =
(

a b
c d

)
acts on the right-hand side:

g
(
(ηp
− η)(−u)−1/(p+1)λ̃L1

)
=

((aη+c
bη+d

)p
−

aη+ c
bη+ d

)
(−u)−1/(p−1)(ad − bc)−1λ̃L1 .

Here we use the fact χ1(det(g)) ≡ det(g) (mod p). An easy computation shows
this is just (1/(bη+ d))p+1(ηp

− η)(−u)−1/(p−1)λ̃L1 .
But from (19),

g(x1)
p+1
=

( 1
bη+d

)p+1(
f
(aη+c

bη+d

)
f (η)−1

)p+1
x p+1

1 .

Comparing both expressions, we have

f
(aη+c

bη+d

)p+1
= f (η)p+1 for any g =

(
a b
c d

)
∈ GL2(Zp).

Since f (η) ∈ (Oη/p)× = Fp[η, 1/(ηp
− η)]×, it can only have poles and zeros

at Fp-rational points. Now GL2(Zp) acts transitively on these points, so f (η) has
to be a constant. In other words:

Proposition 7.1. The action of GL2(Zp) on the special fiber of 6̂nr
1,s′0

is given by

g(x1)≡
1

bη+ d
x1 (mod p), g =

(
a b
c d

)
∈ GL2(Zp).

Corollary 7.2. This action factors through GL2(Fp).

What’s the action of GL2(Zp) on 6̂nr
1,s′0

? Using Proposition 7.1 we can write

g(x1)
p+1
=

( 1
bη+d

)p+1
x p+1

1 (1+ ph(η))

for some h(η) ∈ Oη which only depends on g. Then:

Proposition 7.3. g(x1)=
1

bη+ d
x1(1+ ph(η))1/(p+1),

where (1+ ph(η))1/(p+1)
= 1+ 1

p+1 ph(η)+ · · · is the binomial expansion.
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Now let e0 be the edge that connects the central vertex s ′0 and the vertex s0 that
corresponds to GL2(Zp)Q

×
p ·w, where w =

( 0 −1
p 0

)
. Then w acts on 6̂nr

1,e0
. What

is it?
We fix an isomorphism of 6̂nr

1,e0
with the explicit formal scheme described above.

On �̂e0 ⊗̂ Ẑnr
p ' Spf Oζ,η, the action of w is given by

η 7→
p
−η
=−ζ, ζ 7→

p
−ζ
=−η,

and acts as the (lift) of arithmetic Frobenius on Ẑnr
p . Notice that w interchanges L1

and L2 because it acts semilinearly (over Ẑnr
p ). Using this, it’s not hard to see w

has the form
x1 7→ w1x2, x2 7→ w2x1,

where w1, w2 ∈ O×ζ,η.
An easy computation shows that w1, w2 must satisfy the following relation:

w
p
1 =−w2. (20)

Since w ∈ {g ∈ GL2(Qp) | det(g) ∈ pZ
}, we can apply Proposition 5.9, which

tells us x1x2 = λ̃L1 is invariant by w. So,

w1w2 = 1. (21)

Combining these together, we get:

Lemma 7.4. The action of w =
( 0 −1

p 0
)

on 6̂nr
1,e0

is given by

x1 7→ w1x2, x2 7→ w−1
1 x1,

where w1 ∈ Z×p2 satisfies w p+1
1 =−1.

Now we are ready to prove the main result of this section:

Proposition 7.5. 6̂nr
1 can be descended to a formal scheme 6̂1 over Zp2 . In fact,

6̂1= 6̂
nr
1

p, the formal scheme defined by the p∈GL2(Qp)-invariant sections of 6̂nr
1 .

Proof. It suffices to prove this locally, so we only need to work on 6̂nr
1,e. Since

GL2(Qp) acts transitively on this covering, and p is in the center of GL2(Qp),
we can just work with 6̂nr

1,e0
. �̂e0 ⊗̂ Ẑnr

p certainly descends to Zp2 . The question
is whether the descents of L1,L2, d1, d2 are effective. We show this by explicit
computations.

Choose c ∈ Znr
p such that cp+1

= v1w
−1
1 , where v1 is a choice of (p−1)-th root

of −1, then c is a root of unity, and F̃r(c) = cp. Define e = cx1, e′ = c−1x2. We
have

w2(e)= w(F̃r(c)w1x2)= w(cpw1x2)= cp2
w

p
1w
−1
1 x1 = cp2

−1w
p−1
1 e =−e.
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Similarly, w2(e′)=−e′. Notice that p=−w2 and−1 acts on x1 as χ1(−1)−1
=−1

(the action of Z×p in GL2(Qp) is the inverse of the action of it in O×D ). So e and e′

are invariant by p, and L1, L2 can be descended to Zp2 .
What about d1, d2? Now

d1 : e⊗p
7→ −cp+1 ηp

−η

ζ p−1−1
e′.

Since cp+1
= (−1)1/(p−1)w−1

1 ∈ Zp2 , d1 is defined over Zp2 . A similar argument
works for d2. �

Remark 7.6. Sometimes e also denotes an edge of a graph. I hope that it is clear
from the context whether e refers to an edge or a section of L1 (locally).

Corollary 7.7. (1) The action of GL2(Qp) can also be defined over 6̂1.

(2) 6̂1 has an open covering {6̂1,e}e indexed by the edges of the Bruhat–Tits tree,
such that this identification is GL2(Qp)-equivariant.

(3) 6̂1,e is isomorphic to

Spf Oe,e′ = Spf
Zp2

[
ζ, η,

1
1−ζ p−1

,
1

1−ηp−1
, e, e′

]̂
(

ep
+ v1w

−1
1

ηp
−η

ζ p−1−1
e′, e′p + v−1

1 w1
ζ p
−ζ

ηp−1−1
e, (ee′)p−1

− p, ηζ − p
) ,

where w1 = (−1)1/(p+1) is a (p2
−1)-th root of unity, and v1 is a choice of

(p−1)-th root of −1.

(4) The action of w on 6̂1,e0 is given by

e 7→ v1e′, e′ 7→ v−1
1 e.

Remark 7.8. The reason that everything can be defined over Zp2 , I believe, is
that the universal formal group can be defined over Zp2 . This is because when
we formulate the moduli functor it represents, the “unique” 2-dimensional special
formal group of height 4 and all endomorphisms can be defined over Fp2 .

8. A semistable model of 6̂1

In this section, our goal is to work out a semistable model of 6̂1 as a formal scheme
over Zp (not Zp2!). Notice that 6̂1 has a structural map to Spec Zp2 . Hence if we
change our base from Zp to OF0 , then

6̂1×Spec Zp Spec OF0 ' 6̂1 t 6̂
′

1. (22)

Here 6̂′1 is the same scheme 6̂1 but with twisted map to OF0 . Recall that F0 is the
unique unramified quadratic extension of Qp, and we fix an isomorphism between it
and Qp2 in the beginning. Hence we may identify 6̂1 as a formal scheme over OF0 .
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Therefore we only need to work over the scheme 6̂1 as a scheme over Spec Zp2 ,
and use the equation above to translate everything into the Zp-scheme 6̂1. I hope
this won’t cause too much confusion.

I say a formal scheme X is a semistable curve over Spec R, where R is a complete
discrete valuation ring, if:

(1) The generic fiber of X is smooth over the generic fiber of Spec R.

(2) The special fiber of X is reduced.

(3) Each irreducible component of the special fiber of X is a divisor on X .

(4) Each singular point has an étale neighborhood that is étale over

Spec R[x, y]/(xy−πR),

where πR is a uniformizer of R.

Back to our situation; we first work locally on 6̂1, so we just work with 6̂1,e.
Moreover we can assume e = e0 defined in the previous section and use the results
there.

First notice that in Oe,e′ (see the notation in Corollary 7.7), ee′ = ũ−p−1
1 λ̃L1 (see

the equation before Corollary 6.8 and recall in the proof of Proposition 7.5, x1x2 =

ee′), so it is a globally defined section on 6̂1, and satisfies (ee′)p−1
− p. Now if we

do base change from Zp2 to Zp2[p1/(p−1)
], the generic fiber of Spf Oe,e′[p1/(p−1)

]

will split into p−1 connected components. Each connected component corresponds
to a choice of (p−1)-th root of p. Adjoining ee′/p1(p−1)

= ũ−p−1
1 λ̃L1/p1(p−1) into

Oe,e′[p1/(p−1)
], which I would like to call O1

e,e′ , the formal scheme also splits into
p−1 connected components, namely,

O1
e,e′ =

∏
$

p−1
1 =p

O1
e,e′,$1

.

Explicitly, O1
e,e′,$1

is

Zp2 [p1/(p−1)
]

[
η, ζ, e, e′, 1

ηp−1−1
,

1
ζ p−1−1

]̂
(

ep
+ v1w

−1
1

ηp
−η

ζ p−1−1
e′, e′p + v−1

1 w1
ζ p
−ζ

ηp−1−1
e, ee′−$1

) .
Now, we have (write $1 as p1/(p−1))

ep+1
= ep
· e =−v1w

−1
1

ηp
− η

ζ p−1− 1
e′e =−w−1

1
ηp
− η

ζ p−1− 1
v1 p1/(p−1)

=−w−1
1

ηp
− η

ζ p−1− 1
(−p)1/(p−1).
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Recall v1 is a (p−1)-th root of−1. This clearly shows that if we adjoin a (p2
−1)-th

root of −p, then the normalization of this ring contains e/((−p)1/(p−1))1/(p+1)
=

e/(−p)1/(p
2
−1). Similarly, e′/(−p)1/(p

2
−1) is also contained in the normalization.

Definition 8.1. Let $ be a fixed choice of (−p)1/(p
2
−1). Define F = F0[$ ], and

OF as the ring of integers inside F .

We change our base from Spec Zp2 to Spec OF via the fixed identification between
Qp2 and F0, and take the normalization of Oe,e′,$1[$ ] (it’s not hard to verify it’s
integral). Denote the normalization by Õe,e′,$1[$ ]. I claim basically this is just
adjoining e/$, e′/$ .

Lemma 8.2. Õe,e′,$1[$ ] =

OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
,

e
$
,

e′

$

]̂
(( e
$

)p+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
,
( e′

$

)p+1
+ v−1

1 w1ξ
ζ p
−ζ

ηp−1−1
,

e
$

e′

$
− ξ$ p−1

) ,
where ξ = $1

$ p+1 is a (p−1)-th root of −1.

Proof. It’s clear both sides become the same after inverting p and certainly the
right-hand side is contained in the left-hand side. Thus it suffices to prove the
right-hand side is normal. First, since the generic fiber is smooth, there is no
singular point on the generic fiber. Now if we modulo $ , the uniformizer, it’s
easy to see the only singular point is the maximal ideal (e/$, e′/$,$). We only
need to show (e/$, e′/$) is a regular sequence. Simple calculations indicate that
the right-hand side is p-torsion free, so e/$ is not a zero divisor. In fact this
already proves that the right-hand side is integral. Modulo e/$ , the right-hand
side becomes Zp2[$ ]/($ p−1)[ζ, e′/$ ]/((e′/$)p+1

+a(ζ p
−ζ )) for some unit a.

The element e′/$ is clearly neither a zero divisor, nor a unit. So we’re done. �

Remark 8.3. The special fiber of Õe,e′,$1[$ ] has two irreducible components,
defined by e/$ = 0 and e′/$ = 0. Each one maps to an irreducible component of
the special fiber of �̂e0 ×Spec Zp Spec OF , and has the form

Fp2

[
x, y, 1

y p−1−1

]/
(y p
− y− cx p+1),

where c is some root of unity. So each irreducible component is smooth and is
an open set of an Artin–Schreier curve. In fact, if we do not split these connected
components, then the special fiber is isomorphic to

Fp2

[
x, y,

1
y p−1− 1

]/(
(y p
− y)p−1

+w−2
1 x p2

−1),
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which is an open set of a twist of Deligne–Lusztig variety of GL2(Fp) (see [Deligne
and Lusztig 1976, Section 2]). More precisely, if we invert x and define X = 1/x ,
Y = y/x , this curve now has the form (XY p

− Y X p)p−1
=−w−2

1 .

Notice that Õe,e′,$1[$ ] is not semistable, because locally the singular point is
defined by (e/$)(e′/$)−$ p−1ξ , where ξ is some unit. To get a semistable
model, keep blowing up the singular points until our scheme becomes regular. In
fact, we need to blow up [(p − 1)/2] times. On the level of special fiber, this
singular point will be replaced by p− 2 rational curves in this process. After this,
we finally get our desired semistable model of 6̂1,e0 ×Spec Zp2 Spec OF .

So far we have been working locally on 6̂1, but our construction above can be
done globally. First, we change the base to Spec OF and adjoin u−p−1

1 λ̃L1/$
p−1

(equivalently, λ̃L1/$
p−1). Here, since the difference between$ p−1 and a (p−1)-th

root of p is a (p− 1)-th root of −1, it doesn’t matter which one we use. Then our
formal scheme will split into p− 1 connected components, indexed by (p−1)-th
roots of −1. Now take the normalization of each connected component. Call the
total space 6̃1,OF . For each component, it is clear from the above explicit local
description that the dual graph of its special fiber is the same as �̂’s, which is
nothing but the Bruhat–Tits tree. Finally, blow up each singular point to get rid of
singularities and we end up with a semistable model of 6̂1×Spec Zp2 Spec OF .

Theorem 8.4. 6̂1 (over Spec Zp2) has a semistable model 6̂1,OF over OF , such
that:

(1) 6̂1,OF has (p− 1) connected components, indexed by (p−1)-th roots of −1.

(2) The dual graph of the special fiber of each connected component is the graph
adding p− 2 vertices to each edge of the Bruhat–Tits tree.

(3) Vertices that come from the Bruhat–Tits tree correspond to some Artin–Schreier
curves (y p+1

= c(x p
− x) in P2, where c ∈ F

×

p2). Singular points are points
with y = 0. If we put the p− 1 connected components together, then a dense
open set of it is isomorphic to the Deligne–Lusztig variety of GL2(Fp) over
any algebraically closed field.

(4) Other vertices correspond to rational curves. Singular points are zero and
infinity.

Proof. We only need to prove our assertion for the special fiber. In the previous
discussion, we already know the dual graph of the special fiber of each connected
component of 6̃1,OF is the Bruhat–Tits tree. Since blow-ups replace each singular
point by p− 2 rational curves, everything is clear. �

Let π̂ and π̃ be the canonical maps from 6̂1,OF and 6̃1,OF to �̂×Spec Zp Spec OF .
For each edge e of the Bruhat–Tits tree, we can define 6̂1,OF ,e and 6̃1,OF ,e as
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π̂−1(�̂e×Spec Zp Spec OF ) and π̃−1(�̂e×Spec Zp Spec OF ), respectively. Similarly
we can define 6̂1,OF ,s = 6̃1,OF ,s for each vertex s. Define 6̂1,OF ,e,ξ , 6̂1,OF ,s,ξ ,
6̃1,OF ,e,ξ , 6̃1,OF ,s,ξ , where ξ is a (p−1)-th root of −1, as the corresponding con-
nected component of 6̂1,OF ,e, 6̂1,OF ,s , 6̃1,OF ,e, 6̃1,OF ,s . Note that in the notation
of Lemma 8.2, 6̃1,OF ,e,ξ = Spf Õe,e′,$ p+1ξ [$ ].

In Lemma 8.2, we have an explicit description of 6̃1,OF ,e. To simplify notation, I
will use ẽ, ẽ′ for e/$ , e′/$ . Now let s ′ be an even vertex (for example, the central
vertex s ′0). It’s not hard to see that

6̂1,OF ,s′,ξ = 6̃1,OF ,s′,ξ ' Spf OF

[
η,

1
ηp−η

, ẽ
]/(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

(p/η)p−1−1

)
,

(23)

6̂1,OF ,s′ = 6̃1,OF ,s′ ' Spf OF

[
η,

1
ηp−η

, ẽ
]/(

ẽp2
−1
+w2

1

(
ηp
−η

(p/η)p−1−1

)p−1)
.

(24)

If s is an odd vertex, then similarly we have

6̂1,OF ,s,ξ = 6̃1,OF ,s,ξ ' Spf OF

[
ζ,

1
ζ p−ζ

, ẽ′
]/(

ẽ′p+1
+ v−1

1 w1ξ
ζ p
− ζ

(p/ζ )p−1− 1

)
,

(25)

6̂1,OF ,s = 6̃1,OF ,s ' Spf OF

[
ζ,

1
ζ p−ζ

, ẽ′
]/(

ẽ′p
2
−1
+w−2

1

(
ζ p
−ζ

(p/ζ )p−1−1

)p−1)
.

(26)

Remark 8.5. If we view 6̂1 as a Zp-scheme, then 6̂1 ×Spec Zp Spec OF has a
semistable model over Spec OF , which I call 6̂(0)1,OF

. It is canonically isomorphic
to 6̂1,OF t 6̂

′

1,OF
, where 6̂′1,OF

is isomorphic with 6̂1,OF as a scheme, but the
structure morphism to Spec OF is twisted: OF → OF is the unique automorphism
that fixes $ and acts as Frobenius on OF0 . We use gϕ to denote it as an element
in Gal(F/Qp).

From now on, I will use the exponent (0) for everything that is base changed
from Zp to OF . For example, we can define 6̂(0)1,OF ,s , 6̂(0)1,OF ,s,ξ , . . . . Also we use
the exponent ′ for things with same underlying scheme but with twisted structure
morphism to OF . For example 6̂′1,OF ,s , 6̂′1,OF ,s,ξ , . . . . Under this notation, we have
6̂(0)1,OF ,s = 6̂1,OF ,s t 6̂

′

1,OF ,s, . . . .

9. The action of GL2(Z p), Gal(F/F0), O×D on 6̃1,OF and 6̂1,OF

By acting on the first factor, we have an action of GL2(Qp) on 6̂1×Spec Zp Spec OF

which extends naturally to our semistable 6̂(0)1,OF
. Since GL2(Qp) will interchange

6̂1,OF and 6̂′1,OF , it does not act on 6̂1,OF . The reason is that g ∈GL2(Qp) acts on
Zp2 by F̃rvp(det(g)). However, GL2(Zp) acts on 6̂1,OF .
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So how does GL2(Zp) act on the central component 6̂1,OF,s′0 of 6̂1,OF ? We have
an explicit description above (23), (24). We will fix this identification from now on.

6̂1,OF ,s′0,ξ = Spf OF0[$ ]
[
η,

1
ηp−η

, ẽ
]/(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

(p/η)p−1−1

)
, (27)

6̂1,OF ,s′0 = Spf OF0[$ ]
[
η,

1
ηp − η

, ẽ
]/(

ẽp2
−1
+w2

1(
ηp
− η

(p/η)p−1− 1
)p−1

)
. (28)

Proposition 9.1. (1) The action of GL2(Zp) on 6̃1,OF ,s′0 = 6̂1,OF ,s′0 is given by

g(ẽ)≡
1

bη+ d
ẽ (mod p), g =

(
a b
c d

)
∈ GL2(Zp). (29)

So it factors through GL2(Fp) when acting on the special fiber.

(2) g ∈ GL2(Zp) maps 6̃1,OF ,s′0,ξ to 6̃1,OF ,s′0,ξχ1(det(g)).

Proof. Since ẽ = e/$ , we can apply Proposition 7.1 here and everything is clear
except for the claim that how it interchanges connected components. Notice that
the “ξ” component is defined by ũ−p−1

1 λ̃L1 −$
p+1ξ . So our claim follows from

Proposition 5.9. �

Corollary 9.2. The identification of the special fiber of 6̃1,OF ,s′0 with a Deligne–
Lusztig variety is GL2(Fp)-equivariant.

We will come back to this point later when we review Deligne–Lusztig theory.
For 6̂1,OF , since we change our base from OF0 to OF , there is a natural action

of Gal(F/F0).

Definition 9.3. ω̃2 : Gal(F/F0)→ O×F0
is the character given by ω̃2(g)=

g($)
$

.

Any other character is a multiple of ω̃2.

Remark 9.4. Another equivalent definition of ω̃2 is as follows: By local class field
theory, it suffices to give a character of F×0 . This character is trivial on pZ, and on
O×F0

it is given by first reducing modulo p, then taking the inverse of the Teichmüller
character. Our convention on the local Artin map is that uniformizers correspond to
arithmetic Frobenius elements.

Remark 9.5. Recall that we defined two characters χ1, χ2 of (OD/5)
× (see

Definition 3.2). Using the above remark, the relation of χ1 and ω̃2 can be described
in the following diagram:

Z×p2 ' O×F0

��

ArtF0
// Gal(F0/F0)

ab

ω̃−1
2
��

O×D
χ1

// Z×p2 ' O×F0
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where the left arrow is our fixed embedding of Zp2 into OD , ArtF0 is the Artin map
in local class field theory, the isomorphism between Z×p2 and O×F0

is the one we
fixed in the beginning.

Under the isomorphisms (23)–(26), we have:

Proposition 9.6. The action of g ∈ Gal(F/F0) is given by

g(ẽ)= ω̃2(g)−1ẽ, g(ẽ′)= ω̃2(g)−1ẽ′. (30)

This is trivial because ẽ = e/$ , and ẽ′ = e′/$ .
The last group action we want to consider here is the action of O×D .

Proposition 9.7. Under the isomorphisms (23)–(26), for d ∈ O×D ,

d(ẽ)= χ1(d)ẽ, d(ẽ′)= χ2(d)ẽ′. (31)

Remark 9.8. The action of O×D on 6̂′1,OF
is a twist of what we considered above:

d(ẽ)= F̃r(χ1(d))ẽ = χ2(d)ẽ = χ1(d)p ẽ, ∀d ∈ O×D . (32)

d(ẽ′)= F̃r(χ2(d))ẽ′ = χ1(d)ẽ′ = χ2(d)p ẽ′, ∀d ∈ O×D . (33)

Here I identify 6̂′1,OF
with 6̂1,OF but with twisted structure morphism. And by

saying χ2(d) I consider it as an element in the “OF ” coming from the structure
map, not the Zp2 coming from the original scheme 6̂1. However, the action of
Gal(F/F0) is the same, not twisted. Another way to see this is using a g ∈GL2(Qp)

with vp(det(g)) odd, then g sends 6̂1,OF ,s to 6̂′1,OF ,sg. Finally, gϕ ∈ Gal(F/Qp)

interchanges 6̂1,OF and 6̂′1,OF
by acting as Frobenius endomorphism on OF0 but

fixes other things under the isomorphisms (23)–(26).

10. Another admissible open covering of the Drinfel’d upper half-plane and
the generic fiber of 6̂1,OF

In this section, we work on the generic fiber of everything we considered before.
The main result of this section is a description of the generic fiber 61,F of 6̂1,OF

(and a similar result for the generic fiber 6(0)1,F of 6̂(0)1,OF
).

Recall that 61 is the generic fiber of 6̂nr
1 . The latter is defined by two line

bundles, L1,L2, and maps

d1 : L
⊗p
1 → L2, d2 : L

⊗p
2 → L1 (34)

(see the beginning of Section 4). Denote by L1,η, L2,η, d1,η, d2,η the restriction of
the corresponding item to 61, the generic fiber.

First we observe:

Lemma 10.1. Any line bundle over X0, the generic fiber of the Drinfel’d upper
half-plane (and base changed to Ẑnr

p ), is trivial.
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To do this we need another admissible open covering of X0, which is described
in [Drinfel’d 1974] (“topological” analog) and in [Schneider and Stuhler 1991] in
detail. Let me recall it now.

Define

Un(Cp)=
{
z ∈ C p | |z| ≤ pn, |z− a| ≥ p−n, ∀a ∈Qp

}
, (35)

where | · | is the canonical norm on Cp such that |p| = p−1. Notice that we only
need finitely many a to define this set, so Un can be identified as an open set of P1

by removing some open discs. Therefore Un is an affinoid space. In fact, we can
identify it as an affinoid subdomain of a closed unit ball.

Remark 10.2. Another way to construct Un is by using the formal model we already
have. We can define a distance of two vertices of the Bruhat–Tits tree by counting
the number of edges on the unique path between these two vertices. For example,
two adjacent vertices have distance 1 and any vertex has distance 0 with itself. Now
define Zn as the set of vertices having distance ≤ n from the central vertex. Let �Un

be the union of �e such that e is an edge between two vertices in Zn and �U0 =�s′0 .
Then Un is the generic fiber of �Un .

It is clear Un ⊂Un+1 and
⋃

Un =�, the Drinfel’d upper half-plane. Also it’s not
hard to verify the open covering {Un} is admissible. Let OUn be the ring of rigid
analytic functions on Un (over Qp). The key property we need is:

Lemma 10.3. The image of the canonical inclusion φn : OUn+1 → OUn is dense
under the canonical topology on OUn .

Proof. Choose a1, . . . , am ∈ Qp such that {B(ai , p−n)}i is an open covering of
p−nZp in Qp, where B(ai , p−n) is the open ball centered at ai of radius p−n in Qp.
Now when we define Un , we can use a1, . . . , am rather than all a ∈Qp. Thus,

OUn

=

{
F(z)=

+∞∑
k=0

b0,k(pnz)k+
m∑

i=1

+∞∑
k=0

bi,k

( pn

z−ai

)k ∣∣∣ bi,k ∈Qp, lim
k→+∞

bi,k = 0,∀i
}
.

We define a norm | · |n on OUn by |F(z)|n = supi,k |bi,k |. This is nothing but the
supremum norm: | f |n = supx∈Spm OUn

| f (x)|. Now the Qp-algebra generated by
z, 1/(z−ai ) (i = 1, . . . ,m) is dense in OUn . But these functions are defined over �
and so live in OUn+1 . �

Remark 10.4. Notice that in fact pnz, pn/(z − ai ) (i = 1, . . . ,m) are affinoid
generators of OUn over Qp in the sense there exists a surjective map from the Tate
algebra Qp〈T0, . . . , Tm〉 to OUn that sends T0 to pnz and other Ti to pn/(z−ai ). If
we restrict pnz or pn/(z−ai ) to Un−1, by definition of Un−1, its norm is less than 1
(in fact ≤ p−1). From this description, it’s easy to see Un−1 is relatively compact
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in Un . See [Bosch 2014, §6.3] for a precise definition. A direct corollary of this
is that the inclusion map OUn → OUn−1 is a strictly completely continuous map in
the sense of [Bosch 2014, §6.4 Definition 1]. Another consequence is that � is a
Stein-space as defined in [Kiehl 1967].

Now we return to the proof of Lemma 10.1. We still need one more lemma:

Lemma 10.5. Any line bundle on Un is trivial.

Proof. It suffices to prove OUn is a principal ideal domain. It’s obvious that OUn is
regular and hence normal. So we only need to show every maximal ideal of OUn is
principal. But we know Un is an affinoid subdomain of a (one dimensional) closed
unit ball by removing several open discs centered at Qp-points, with radius∈ pZ.
Our claim follows from the fact that Qp〈T 〉, the Tate algebra, is a PID [Bosch 2014,
§2.2 Corollary 10]. �

Proof of Lemma 10.1. I learned this argument from [Kiehl 1967, proof of Satz 2.4].
Since {Un}n is an admissible open covering of � and every line bundle on Un is
trivial, a line bundle on � is equivalent with a 1−cocycle: { fi j }i< j , fi j ∈ O×Ui

,
such that

fi jφ j i ( f jk)= fik

for i < j < k, where φ j i is the canonical inclusion from OU j to OUi . It’s easy to
see that f12, f23, . . . determine all fi j . Two cocycles { fi(i+1)}, { f ′i(i+1)} define the
same line bundle if and only if there exists {gi }, gi ∈ O×Ui

, such that

fi(i+1)giφi (gi+1)
−1
= f ′i(i+1), ∀i ≥ 1.

Now let { fi(i+1)} be a fixed cocycle. Define g′1 = 1 ∈ OU1 . Thanks to Lemma 10.3,
we can find g′i+1 ∈ OUi , i ≥ 1 by induction, satisfying

|1− g′i fi(i+1)φi (g′i+1)
−1
|i <

1
2i .

This implies, after modifying our cocycle, we can assume |1 − fi(i+1)|i <
1
2i .

Now define gi =
∏
∞

j=i φ j i ( f j ( j+1))
−1. Here φi i is the identity map. Notice that

| f | j ≥ |φ j i ( f )|i for f ∈ OU j ; see Remark 10.4. So the infinite product makes sense
by our assumption. But now fi(i+1)giφi (gi+1)

−1
= 1. Therefore it corresponds to

a trivial line bundle. �

Although our proof is working over the base field Qp, the argument still works
if we change the base to other fields.

Corollary 10.6. L1,η and L2,η are trivial line bundles.
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Now let E1 be a basis of L1,η and E∗1 the dual basis of E1 under the isomor-
phism λL1 . Then d1, d2 become two elements U1,U2 in H 0(X0,OX0) such that X1

is now defined by

OX0[E1, E∗1 ]/(E
p
1 −U1 E∗1 , (E

∗

1)
p
−U2 E1).

We know E1 E∗1 = λ̃L1 , so U1U2 =−w (see Corollary 5.5). 61 is

OX0[E1, E∗1 ]/
(
E p

1 −U1 E∗1 , (E
∗

1)
p
−U2 E1, (E1 E∗1)

p−1
+w

)
.

Since w is invertible on the generic fiber, so is U1. We can write E∗1 = E p
1 U−1

1 .

Proposition 10.7. 61 =OX0[E1]/(E
p2
−1

1 +U p−1
1 w).

In other words, 61 is X0 adjoined with a (p2
−1)-th root of a rigid analytic function

on X0.

Remark 10.8. If we are careful enough in the beginning and take E1 to be p ∈
GL2(Qp)-invariant, we can descend our description to OF0 . This means we have
the same description of the generic fiber 61,F of 6̂1,OF .

Corollary 10.9. 61,F is a Stein-space.

Proof. As we remarked before (Remark 10.4), Un is relatively compact in Un+1. It’s
easy to see the open set of 61,F above Un , which we denote by Vn,F is an affinoid
space and relatively compact in Vn+1,F . �

11. De Rham cohomology of 61,F and 6(0)1,F

Let�1
61,F

be the sheaf of holomorphic differential forms on61,F and�0
61,F
=O61,F .

Then we can consider the de Rham complex:

0→�0
61,F

d
−→�1

61,F
, (36)

where d is the usual derivation. Define the de Rham cohomology:

Definition 11.1. H i
dR(61,F )

def
= i-th hypercohomology of the de Rham complex.

Remark 11.2. In a pair of papers Große-Klönne [2000; 2004] introduced a theory
of de Rham cohomology for rigid analytic spaces. His approach uses the over-
convergent de Rham complex rather than the usual De Rham complex. However
in our case, they are the same since �61,F is a Stein space [Große-Klönne 2000,
Theorem 3.2].

Thanks to Kiehl [1967, Satz 2.4.2], we know that all higher cohomology groups
of �0

61,F
, �1

61,F
vanish:
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Proposition 11.3 (de Rham cohomology).

H 0
dR(61,F )= ker(H 0(61,F , �

0
61,F

) d
−→ H 0(61,F , �

1
61,F

))= F, (37)

H 1
dR(61,F )= coker(H 0(61,F , �

0
61,F

) d
−→ H 0(61,F , �

1
61,F

)), (38)

H i
dR(61,F )= 0, ∀i ≥ 2. (39)

We can put a certain topology on H 1
dR(61,F ). This is done by writing:

H 0(61,F , �
i
61,F

)= lim
←−−

n
H 0(Vn,F , �

i
61,F

) for i = 0, 1.

See the proof of Corollary 10.9 for the notation. Since each H 0(Vn,F , �
i
61,F

) is a
Banach space and has a canonical topology, we can equip H 0(61,F , �

i
61,F

) with the
projective limit topology. Now Vn,F is relatively compact in Vn+1,F . As we observed
in Remark 10.4, the transition map from H 0(Vn+1,F , �

i
61,F

) to H 0(Vn,F , �
i
61,F

) is
completely continuous. Using Corollary 16.6 of [Schneider 2002], we have (notice
that a completely continuous map between two Banach spaces is compact; see
Proposition 18.11 of [Schneider 2002]):

Proposition 11.4. H 0(61,F , �
i
61,F

), i = 0, 1 is a reflexive Fréchet space.

See page 55 of [Schneider 2002] for the definition of reflexive.

Proposition 11.5 [Große-Klönne 2004, Corollary 3.2]. The image of the derivation
map d : H 0(61,F , �

0
61,F

)→ H 0(61,F , �
1
61,F

) is closed.

Corollary 11.6. H 1
dR(61,F ) is a Fréchet space.

But how to compute de Rham cohomology? We need our semistable 6̂1,OF

constructed in Section 8. Let E(6̂1,OF ) (resp. V(6̂1,OF )) be the set of singular
points (resp. irreducible components) of the special fiber of 6̂1,OF . By definition,
we can identify them as the set of edges (resp. vertices) of the dual graph of the
special fiber. Now fix an orientation for each edge e ∈ E(6̂1,OF ), and we use v+(e)
(resp. v−(e)) to denote the target (resp. source) vertex of the orientation.

Definition 11.7. Let Ue (resp. Uv) be the tubular neighborhood of the singular
point indexed by e (resp. irreducible component indexed by v).

It is clear that {Uv}v is an admissible open covering of 61,OF . Hence:

Lemma 11.8. We have a long exact sequence of de Rham cohomologies:

0→ H 0
dR(61,F )−→

∏
v∈V(6̂1,OF )

H 0
dR(Uv)

a
−→

∏
e∈E(6̂1,OF )

H 0
dR(Ue)

∂
−→ H 1

dR(61,F )

−→

∏
v∈V(6̂1,OF )

H 1
dR(Uv)

b
−→

∏
e∈E(6̂1,OF )

H 1
dR(Ue),
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where the arrows without labels are canonical restriction maps, and a, b are the
canonical restriction maps to v+(e) minus the restriction map to v−(e) for an
element indexed by e.

Here the de Rham cohomologies of Ue,Uv are defined by the same method as
above. We note that they are not affinoid but Stein spaces.

We first look at Ue, the tubular neighborhood of a singular point. It’s not
hard to see from the explicit description in Lemma 8.2 that Ue is an annulus
{T | |$ |< |T |< 1}. So its de Rham cohomology is: H 0

dR(Ue)= F , generated by
the constant function; H 1

dR(Ue)' F , generated by dT/T , where T is a coordinate
of Ue.

In Lemma 8.2, although we haven’t resolved the singularities there, dẽ/ẽ still
makes sense on the generic fiber, and it generates all of H 1

dR(Ue) for any singular
point e above the singularity there. In fact, the process of resolving the singularities
xy−$ n is just “dividing” the annulus into several small annuli. For example, the
tubular neighborhood of xy−$ n can be thought as the annulus {T | |$ |n < T < 1}.
For any e above this singular point, Ue can be identified as {T | |$ |l+1 < T < |$ |l}
for some l < n.

Recall that O×D acts as characters on ẽ, so acts trivially on H 0
dR(Ue), H 1

dR(Ue).
What about Uv? There are two possibilities. One is that v corresponds to a

rational curve. Uv is an annulus and the result is the same as Ue. In particular O×D
acts trivially on their de Rham cohomologies.

The other one is more interesting. We will compute it in the next section. Some
notation here: recall that every such vertex can be indexed by (s, ξ), where s is a
vertex of the Bruhat–Tits tree and ξ satisfies ξ p−1

=−1.

Definition 11.9. From now on we will use (s, ξ) to denote these vertices.

Definition 11.10. Denote the irreducible component indexed by (s, ξ) by Us,ξ and
its generic fiber by Us,ξ . We also denote the smooth loci of Us,ξ by U 0

s,ξ (viewed
as a subscheme in the special fiber of 6̂1,OF ). Notice that this is nothing but the
special fiber of 6̂1,OF ,s,ξ = 6̃1,OF ,s,ξ . Define

Us =
⋃

ξ p−1=−1

Us,ξ ,

and U 0
s similarly.

Recall that in the beginning, we fix a finite extension E of Qp that is large enough
and define χ(E) as the set of characters of (OD/5)

× with values in E×.
O×D acts naturally on H 1

dR(61,F )⊗Qp E by acting on the first factor. Since
the action of O×D on 61,F factors through O×D /(1+5OD), we can decompose
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H 1
dR(61,F )⊗Qp E as

H 1
dR(61,F )⊗Qp E =

⊕
χ∈χ(E)

(H 1
dR(61,F )⊗Qp E)χ , (40)

where (H 1
dR(61,F )⊗Qp E)χ = {a | d(a)= (1⊗χ(d))a, ∀d ∈ O×D } is the χ -isotypic

component.
Now tensor everything in the long exact sequence of Lemma 11.8 with E , and

take the χ -isotypic component for a nontrivial character χ ∈χ(E). As we explained
above, O×D acts trivially on the cohomology of any annulus, so only the de Rham
cohomology of Us contributes. In other words:

Lemma 11.11. For a nontrivial character χ ,

(H 1
dR(61,F )⊗Qp E)χ '

∏
s

(H 1
dR(Us)⊗Qp E)χ ,

(H 1
dR(6

(0)
1,F )⊗Qp E)χ '

∏
s

(H 1
dR(U

(0)
s )⊗Qp E)χ

=

∏
s

(
(H 1

dR(Us)⊕ H 1
dR(U

′

s))⊗Qp E
)χ
,

where s takes value in the set of vertices of the Bruhat–Tits tree.

It’s clear that GL2(Qp) preserves (H 1
dR(6

(0)
1,F )⊗Qp E)χ because the action of

GL2(Qp) commutes with O×D . Also g ∈ GL2(Qp) induces an isomorphism from
U (0)

s to U (0)
sg , hence an isomorphism from H 1

dR(U
(0)
sg ) to H 1

dR(U
(0)
s ). Note that the

set of vertices of the Bruhat–Tits tree is nothing but GL2(Zp)Q
×
p \GL2(Qp). Thus

we have:

Proposition 11.12. As a representation of GL2(Qp) over E , we have

(H 1
dR(6

(0)
1,F )⊗Qp E)χ ' IndGL2(Qp)

GL2(Zp)Q
×
p
(H 1

dR(U
(0)
s′0
)⊗Qp E)χ

for any nontrivial character χ ∈ χ(E). Recall that s ′0 is the central vertex. Here the
induction has no restriction on the support.

12. An F0-structure of (H1
dR(6

(0)
1,F)⊗Q p E)χ and the computation of H1

dR(Us′0)

Recall that F0 is the maximal unramified extension of Qp inside F and we fixed an
isomorphism between it and Qp2 in the beginning.

Following Coleman and Iovita [1999], we can define an F0 /Frobenius structure
on the de Rham cohomology H 1

dR(6
(0)
1,F ). This means we can find an F0-linear

subspace HF0 equipped with a F̃r-linear Frobenius morphism, such that HF0⊗F0 F'
H 1

dR(6
(0)
1,F ). Let’s recall their construction in our situation now.

By Lemma 11.11, we only need to define an F0 /Frobenius structure on each
(H 1

dR(U
(0)
s )⊗Qp E)χ , in fact, each (H 1

dR(Us,ξ )⊗Qp E)χ (using the notation from
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Definition 11.7). Theorem C of [Große-Klönne 2002] tells us we have a natural
isomorphism between H 1

dR(Us,ξ ) and H 1
rig(U

0
s,ξ/F), the rigid cohomology of U 0

s,ξ

with coefficients in F defined in [Berthelot 1986]. Recall that U 0
s,ξ is an open

set of Us,ξ by removing (p+ 1) Fp-rational points (each corresponds to an edge
connecting s). Then we have the following exact sequence:

0→ H 1
rig(Us,ξ/F)→ H 1

rig(U
0
s,ξ/F)→ F⊕p+1

→ F→ 0. (41)

Explicitly, we can construct an isomorphism ψs,ξ :Us,ξ → F1,ξ , where F1,ξ is
defined as{
(x, y) ∈A2

F

∣∣ y p+1
= v−1

1 w1ξ(x p
− x), |x− k|> p−1/(p−1), k = 0, 1, . . . , p−1,

|x |< p1/(p−1)}
for an odd vertex s (even case is similar). If we restrict this isomorphism to the
generic fiber of 6̂1,OF ,s,ξ and use the description in (25), it is given by

x 7→ ζ, y 7→ ẽ′(1− (p/ζ )p−1)1/(p+1),

where (1 − (p/ζ )p−1)1/(p+1)
= 1 − 1/(p + 1)(p/ζ )p−1

+ · · · is the binomial
expansion. The rigid space F1,ξ is clearly an open set of a projective curve D1,ξ

in P2
F defined by y p+1

= v−1
1 w1ξ(x p

− x). We note that D1,ξ − F1,ξ is a union of
p+ 1 closed discs. Each disc is centered at a point with zero y-coordinate. We
denote these points by C0, . . . ,C p. Then, we have

0→ H 1
dR(D1,ξ )−→ H 1

dR(F1,ξ )
Res
−−→

p⊕
i=0

F sum
−−→ F→ 0, (42)

where Res is the residue map to each Ci , and sum is taking the sum. A proof of this
can be found in Section IV of [Coleman 1989]. Notice that D1,ξ has an obvious
formal model over OF (in fact over OF0!), and its special fiber is nothing but U1,ξ .
So we have a natural isomorphism between H 1

dR(D1,ξ ) and H 1
rig(U1,ξ ). Using these

isomorphisms, we can identify the two exact sequences (41), (42) with each other.
It is not hard to see O×D acts trivially on the residues. For example, near x = y= 0,

t = y/(1− x p−1)1/(p+1) is a local coordinate. O×D acts as a character on y and
acts trivially on x , hence acts trivially on dt/t . Therefore if we tensor the exact
sequence (41) with E and take the χ -isotypic component, we obtain:

Lemma 12.1. (H 1
dR(Us)⊗Qp E)χ ' (H 1

rig(Us/F)⊗Qp E)χ .

Since we have a natural isomorphism H 1
rig(Us/F)' H 1

crys(Us/F0)⊗F0 F , there is
an F0 /Frobenius structure on (H 1

rig(Us/F)⊗Qp E)χ and thus on (H 1
dR(Us)⊗Qp E)χ.

Here H 1
crys(Us/F0) is the first crystalline cohomology of Us tensored with Qp.

Explicitly, as we mentioned above, D1,ξ can be defined over F0 and its formal
model D̂1,OF0 ,ξ

over OF0 is a smooth lifting of Us,ξ . So the de Rham cohomology



First covering of the Drinfel’d upper half-plane 447

of D̂1,OF0 ,ξ
can be identified with the crystalline cohomology of Us,ξ . Thus we

obtain an F0-linear subspace inside H 1
dR(D1,ξ ). But to get a Frobenius operator, we

need to identify it with the crystalline cohomology.

Remark 12.2. For an even vertex s ′, we can define similar objects:

ψs′,ξ :Us′,ξ → F0,ξ , D0,ξ , D̂0,OF0 ,ξ
, . . . .

In summary, combining the above results with Proposition 11.12, we have:

Proposition 12.3. (H 1
dR(6

(0)
1,F )⊗Qp E)χ has an F0 /Frobenius structure that comes

from the crystalline cohomology of the special fiber of 6̂(0)1,OF
. More precisely, under

the identification of (H 1
dR(6

(0)
1,F )⊗Qp E)χ with

IndGL2(Qp)
GL2(Zp)Q

×
p
(H 1

dR(U
(0)
s′0
)⊗Qp E)χ ,

the F0-subspace is

IndGL2(Qp)
GL2(Zp)Q

×
p
(H 1

crys(U
(0)
s′0
/F0)⊗Qp E)χ ,

and the Frobenius operator is defined in the obvious way.

Remark 12.4. We can also define a monodromy operator, but for any χ such that
χ 6= χ p it is zero on (H 1

dR(6
(0)
1,F )⊗Qp E)χ . The reason is that the definition of

monodromy operator uses the cohomologies of the tubes of the singular points,
which do not contribute to the cohomology we are interested in. See [Coleman and
Iovita 1999] for the precise definition of monodromy operator.

As we remarked before, Us′0 has a close relation with the Deligne–Lusztig variety
of GL2(Fp) (Corollary 9.2), which we call DL. In fact, the open set

U 0
s′0
' Spec Fp2

[
η, ẽ, 1

ẽ

]/
(ẽp2

−1
+w2

1(η
p
− η)p−1)

is GL2(Zp)-equivariantly isomorphic with DL over the algebraically closed field
(or up to taking a transpose of GL2(Fp)). So we can apply Deligne–Lusztig theory
(established in [Deligne and Lusztig 1976]). Although Deligne and Lusztig [1976]
use l-adic cohomology, their results can be applied directly to crystalline cohomol-
ogy thanks to Katz and Messing [1974] and Gillet and Messing [1987]. Notice that
the action of O×D on U 0

s′0
, which factors through O×D /(1+5OD), can be identified

with the inverse of the action of a nonsplit torus (T(w)F in [Deligne and Lusztig
1976]) of GL2(Fp).

Theorem 12.5. Let χ(F0) be the character group of O×D /(1+5OD) with values
in F0 (it’s generated by χ1; see Definition 3.2). We can decompose

H 1
crys(Us′0/F0)=

⊕
χ ′∈χ(F0)

H 1
crys(Us′0/F0)

χ ′
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into the sum of different χ ′-isotypic components. Each component has a natural
action of GL2(Fp). Then:

(1) H 1
crys(Us′0/F0)

χ ′
= 0 if and only if χ ′ = (χ ′)p.

(2) If H 1
crys(Us′0/F0)

χ ′
6= 0, it’s an irreducible representation of GL2(Fp).

(3) H 1
crys(Us′0/F0)

χ ′
' H 1

crys(Us′0/F0)
(χ ′)p

and these are the only isomorphisms
among these nonzero representations.

Definition 12.6. Define ρχ as the representation (H 1
crys(Us′0/F0)⊗F0 E)χ of GL2(Fp),

for any χ ∈χ(E). The theorem above guarantees that different choices of embedding
F0→ E give the same representation.

Remark 12.7. Gal(F/F0) also acts on H 1
crys(Us′0/F0)

χ ′ . By the results in Section 9,
we have

H 1
crys(Us′0/F0)

χ ′
= H 1

crys(Us′0/F0)
ω̃

i(χ ′)
2 ,

the ω̃i(χ ′)
2 -isotypic space for Gal(F/F0), where i(χ ′) ∈ {0, . . . , p2

−2} is defined
as the unique integer such that χ−i(χ ′)

1 = χ ′. Using results in Remark 9.5, another
equivalent definition is that ω̃i(χ ′)

2 is the unique character making the following
diagram commutative:

Z×p2 ' O×F0

��

ArtF0
// Gal(F0/F0)

ab

ω̃
i(χ ′)
2

��

O×D
χ ′

// Z×p2 ' O×F0

Recall that ω̃2 is defined in Remark 9.5.

Now I want to translate the theorem above to our situation. Fix an embedding
τ : F0→ E , and use τ̄ to denote the conjugate embedding. Let χ ′ ∈ χ(F0) be the
unique character that satisfies τ ◦χ ′= χ . Recall that gϕ ∈Gal(F/Qp) is the unique
element that fixes $ but acts as Frobenius on F0.

Proposition 12.8. Dcrys,χ
def
= HomGL2(Fp)

(
ρχ ′, (H 1

crys(U
(0)
s′0
/F0)⊗Qp E)χ

)
is a free

F0⊗Qp E-module of rank 2. Gal(F/Qp) and the Frobenius operator ϕ act on it
naturally. In fact, Dcrys,χ is of the form

Dcrys,χ = (F0⊗Qp E) · e1⊕ (F0⊗Qp E) · e2,

ϕ(e1)= e2, ϕ(e2)= (1⊗ cx)e1,

g · e1 = (ω̃2(g)m ⊗ 1)e1, g · e2 = (ω̃2(g)pm
⊗ 1)e2, ∀g ∈ Gal(F/F0),

gϕ · e1 = e1, gϕ · e2 = e2,

with cx ∈ E and vp(cx)= 1, m = i(χ ′) defined in Remark 12.7.
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Proof. We can write (using the fact U (0)
s′0
=Us′0 tU ′s′0

)

(H 1
crys(U

(0)
s′0
/F0)⊗Qp E)χ = (H 1

crys(Us′0/F0)⊗Qp E)χ ⊕ (H 1
crys(U

′

s′0
/F0)⊗Qp E)χ

= H 1
crys(Us′0/F0)

χ ′
⊗F0,τ E ⊕ H 1

crys(Us′0/F0)
χ ′
⊗F0,τ̄ E

⊕ H 1
crys(U

′

s′0
/F0)

χ ′
⊗F0,τ E ⊕ H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E,

where χ ′ = (χ ′)p, the conjugate character, satisfies τ̄ ◦χ ′ = χ .
Recall that we can identify Us′0 with U ′s′0

but with different structure map to
Spec Fp2 . Using Remark 9.8, such an identification induces an isomorphism between
H 1

crys(Us′0/F0)
χ ′ and H 1

crys(U
′

s′0
/F0)

χ ′ . By definition,

HomGL2(Fp)

(
ρχ ′, H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E

)
' F0⊗F0,τ E

and similar results for other factors of (H 1
crys(U

(0)
s′0
/F0)⊗Qp E)χ follow from Deligne–

Lusztig theory. It’s easy to see Dcrys,χ ' F0⊗Qp E⊕2 from these descriptions.
By Remarks 12.7 and 9.8, Gal(F/F0) acts via ω̃m

2 (as an F0-vector space) on
H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E , and H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E and acts as ω̃pm

2 on the other
two factors since i(χ ′)= i((χ ′)p)= pi(χ ′). Remark 9.8 also tells us that gϕ induces
an isomorphism between H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E and H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E .

Now, choose a generator f1 of

HomGL2(Fp)

(
ρχ ′, H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E

)
,

and define
e1 = f1+ gϕ · f1, e2 = ϕ(e1),

where ϕ is the Frobenius operator coming from the crystalline cohomology. We
need to verify our claim in the proposition.

First it’s easy to see e1 is indeed a generator of

HomGL2(Fp)

(
ρχ ′, H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E ⊕ H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E

)
as a free F0⊗Qp E-module and satisfies g · e1 = (ω̃2(g)m ⊗ 1)e1, g ∈ Gal(F/F0).
Next we verify the desired property of the Frobenius operator ϕ. It’s induced by
the Frobenius endomorphism on Us′0 , which is nothing but raising anything to its
p-th power. So it sends H 1

crys(Us′0/F0)
χ ′ to H 1

crys(Us′0/F0)
(χ ′)p
= H 1

crys(Us′0/F0)
χ ′ .

Therefore everything is clear except our claim for ϕ(e2). This can be shown by
explicit computations. See the next lemma. �

Lemma 12.9. cx =−pτ(w−2i
1 ).

Proof. This can be done using Gauss sums. Since H 1
crys(Us′0/F0)

χ ′ is an irreducible
representation of GL2(Fp), ϕ2 acts as a scalar c̃x on it. It’s easy to see cx = τ(c̃x).
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To compute c̃x , we only need to restrict to one component. So let ξ be a
root of ξ p−1

= −1. Then Us′0,ξ can be identified as the curve in P2
Fp2

defined by
y p+1
= v1w

−1
1 ξ(x p

− x). There is an action of

µp+1(Fp2)= {a ∈ F
×

p2 | a p+1
= 1}

on it given by
a · x = x, a · y = ay, a ∈ µp+1(F

×

p2).

Let χ̃ : µp+1(Fp2)→ F×0 be the Teichmüller character. It’s obvious that

H 1
crys(Us′0/F0)

χ ′
' H 1

crys(Us′0,ξ/F0)
χ̃−i
,

the χ̃−i -isotypical component. Here i ∈ {1, . . . , p} is the unique number satisfying
i ≡ m mod p+1.

On the other hand, Fp also acts on Us′0,ξ , which comes from the action of an
unipotent subgroup of GL2(Fp):

b · x = x + 1, b · y = y, b ∈ Fp.

This action commutes with the action of µp+1(Fp2). It’s easy to see F0 contains all
p-th roots of unity. Let ψp : Fp→ F×0 be a nontrivial additive character. We view
ρ̃ = χ̃−i

×ψp as a one dimensional representation of G̃ def
= µp+1(Fp2)× Fp.

Using Lemma 1.1. of [Katz 1981], we know that the eigenvalue of ϕ2 on
(H 1

crys(Us′0,ξ/F0)⊗F0 F)ρ̃ is (we will see later that this lemma indeed can be applied
to our situation)

−S(Us′0,ξ/Fp2, ρ̃, 1) def
= −

1

#G̃

∑
g∈G̃

tr(ρ̃(g)) #Fix(Fp2 g−1),

where Fp2 is the Frobenius endomorphism of Us′0,ξ relative to Fp2 and Fix(Fp2 g−1)

is the subset of Us′0,ξ (Fp2) fixed by Fp2 g−1. Following the strategy of lemma 2.1.
of [Katz 1981], we can express S(Us′0,ξ/Fp2, ρ̃, 1) as the Gauss sum:

S(Us′0,ξ/Fp2, ρ̃, 1)= (v1w
−1
1 ξ)−i(p−1)

∑
x∈F×

p2

ψp2(x)x−i(p−1),

where ψp2
def
= ψp(trFp2/Fp

(x))= ψp(x p
+ x). Notice that for any x ∈ F×p2 ,∑

a∈F×p

ψp2(ax)=
∑
a∈F×p

ψp(a(x p
+ x))=

{
−1 if x p

+ x 6= 0,
p− 1 if x p

+ x = 0.

From this, it’s easy to see S(Us′0,ξ/Fp2, ρ̃, 1) = wi(p−1)
1 p(−1)i = w−2i

1 p (recall
v

p−1
1 = w

p+1
1 = ξ p−1

=−1). Hence

cx =−pτ(w−2i
1 ). �
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Corollary 12.10. We have a Gal(F/Qp)×O×D×GL2(Qp)-equivariant isomorphism:

F ⊗F0 Dcrys,χ ⊗E IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ −→

∼ (H 1
dR(6

(0)
1,F )⊗Qp E)χ , (43)

where Gal(F/Qp) acts on the first two components, O×D acts on the second, and
GL2(Qp) acts on the third. Moreover, Dcrys,χ ⊗E IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ maps to the F0

subspace we constructed in Proposition 12.3.

Here we extend ρχ to a representation of GL2(Zp)Q
×
p by p acting trivially and

GL2(Zp) acting through GL2(Fp).

Remark 12.11. It’s easy to see the dual representation of ρχ is ρχ−1 , we use 〈 · , · 〉
to denote the pairing of them. Then we can construct a pairing:

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 × IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ → E

( f1, f2) 7→6
[g]∈GL2(Zp)Q

×
p \GL2(Qp)

〈 f1(g), f2(g)〉,

where is the compact induction. More precisely,

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1

=

{
f : GL2(Qp)→ ρχ−1

∣∣ f has compact support mod GL2(Zp)Q
×

p ,

f (kg)= ρχ−1(k) f (g), k ∈ GL2(Zp)Q
×

p , g ∈ GL2(Qp)
}
,

and IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ is defined similarly without any restrictions on the support.

The sum makes sense because it only has finitely many nonzero terms.
This pairing induces an isomorphism IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ ' (c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1)∨,

the algebraic dual representation. We can rewrite the result in Corollary 12.10 as a
Gal(F/Qp)×O×D×GL2(Qp)-equivariant isomorphism (Theorem 1.10):

F ⊗F0 Dcrys,χ ⊗E (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨ −→∼ (H 1

dR(6
(0)
1,F )⊗Qp E)χ . (44)

By Corollary 11.6, there is a natural Fréchet space structure on the right-hand side
of the above map. In fact, we can describe this topology directly on the left-hand
side. Choosing a family of representatives of GL2(Zp)Q

×
p \GL2(Qp), we have a

noncanonical isomorphism between IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ and

∏
GL2(Zp)Q

×
p \GL2(Qp)

ρχ as
E-vector spaces. The topology is nothing but the weakest topology on this product
such that each projection to ρχ is continuous under the canonical (Banach space)
topology on ρχ .

13. Some considerations from Galois representations

Let’s recall what we have on Dcrys,χ (see Proposition 12.8 for more details):

• Frobenius operator ϕ: an F0-semilinear, E-linear automorphism;
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• monodromy operator N , which is zero here;

• an action of Gal(F/Qp), which is F0-semilinear, E-linear commuting with ϕ
and N .

So if we have a decreasing filtration on DF = F ⊗F0 Dcrys,χ , such that Fili DF is
zero if i� 0 and is equal to DF if i� 0 and preserved by the action of Gal(F/Qp),
Dcrys,χ is called a filtered (ϕ, N , F/Qp, E)-module of rank 2. Moreover, if the
underlying (ϕ, N , F, E)-module is weakly admissible, Dcrys,χ is called weakly
admissible. See Definitions 2.7 and 2.8 of [Savitt 2005] for the precise definition.
The importance of this kind of module is that we have the following result (see
[Savitt 2005, Corollary 2.10]).

Theorem 13.1. The category of E-representations of GQp which become semistable
when restricted to GF and the category of weakly admissible (ϕ, N , F/Qp, E)-
modules are equivalent. Here GQp (resp. GF ) is the absolute Galois group of Qp

(resp. F).

Now I want to classify all two dimensional potentially semistable E-representa-
tions of GQp that

• have Hodge–Tate weights (0, 1), and

• correspond to Dcrys,χ if we forget about the filtration.

Proposition 13.2 [Savitt 2005, Proposition 2.18]. Any such weakly admissible
(ϕ, N , F/Qp, E)-module is of the form

Filn(DF )=


DF , n ≤ 0,
(F ⊗Qp E)

(
($ (p−1)i

⊗ a)e1+ (1⊗ b)e2
)
, n = 1,

0, n ≥ 2,

where (a, b) 6= (0, 0) ∈ E2, and i, j are defined as follows: write m = i + (p+ 1) j
with i ∈ {1, . . . , p} and j ∈ {0, . . . , p− 2}.

We denote the filtered module in the above proposition by Dχ,[a,b]. It’s not hard
to see

Dχ,[a,b] ' Dχ p,[bcx/p,−a] and Dχ,[a,b] = Dχ,[ca,cb].

So we may assume a= 1 and vp(b)≥ 0 (recall that cx is defined in Proposition 12.8).
We use Vχ,[1,b] to denote the Galois representation it corresponds to in Theorem 13.1.

Now suppose we have an element f in DF = F ⊗F0 Dcrys,χ . How do we
check whether or not f is in Fil1(F ⊗F0 Dχ,[1,b]) for a given b? First assume
f ∈Fil1(F⊗F0 Dχ,[1,b]). Write f = f1+ f2, f1∈ (F⊗Qp E)·e1, f2∈ (F⊗Qp E)·e2.
Then we must have

f1 =

(∑
ak ⊗ bk

)
($ (p−1)i

⊗ 1)e1, f2 =

(∑
ak ⊗ bk

)
(1⊗ b)e2,
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for some ak ∈ F , bk ∈ E . Notice that gϕ⊗ϕ is well-defined on F⊗F0 Dcrys,χ since
gϕ acts as Frobenius on F0. Here gϕ is considered only acting on F , not on Dcrys,χ :

(gϕ ⊗ϕ)( f1)=

(∑
gϕ(ak)⊗ bk

)
($ (p−1)i

⊗ 1)e2.

On the other hand, gϕ( f2)= (6gϕ(ak)⊗ bk)(1⊗ b)e2. Therefore,

(1⊗ b)(gϕ ⊗ϕ)( f1)= ($
(p−1)i

⊗ 1)gϕ( f2).

A simple dimension counting shows that this condition is even sufficient. Hence:

Proposition 13.3. Suppose f ∈ F ⊗F0 Dcrys,χ . Write

f = f1+ f2, f1 ∈ (F ⊗Qp E) · e1, f2 ∈ (F ⊗Qp E) · e2.

Then f ∈ Fil1(F ⊗F0 Dχ,[1,b]) if and only if

(1⊗ b)(gϕ ⊗ϕ)( f1)= ($
(p−1)i

⊗ 1)gϕ( f2).

Remark 13.4. In practice, we will assume f is fixed by gϕ; then the condition
above is simplified to (1⊗ b)(gϕ ⊗ϕ)( f1)= ($

(p−1)i
⊗ 1) f2.

14. Construction of Banach space representations of GL2(Q p)

In this section, I want to construct some Banach space representations B(χ, [1, b])
that should correspond to V∨χ,[1,b] (up to a twist by some character) under the p-adic
local Langlands correspondence.

First we define an integral structure ω1 of �1
61,F

, the sheaf of holomorphic
differential forms, on 6̃1,OF defined in Section 8. Recall that 6̃1,OF is a formal
model of �1

61,F
which is not semistable, but only has some mild singularities

(xy−$ p−1). From now on, I will do all computations on this formal model rather
than the semistable model.

View �1
61,F

as a sheaf on 6̃1,OF . The coherent sheaf ω1 will be a subsheaf of
it. Recall that there is an open covering {6̃1,OF ,e,ξ }e,ξ of 6̃1,OF , where e takes
value in the set of edges of the Bruhat–Tits tree and ξ p−1

=−1. Using the explicit
description of Lemma 8.2, we define ω1 on each 6̃1,OF ,e,ξ as the trivial line bundle
with a basis dẽ/ẽ =−dẽ′/ẽ′ (recall that ẽ = e/$, ẽ′ = e′/$ ). It’s easy to see that
this really defines a line bundle 6̃1,OF ,e,ξ which becomes �1

61,F
if we restrict this

line bundle to the generic fiber.

Remark 14.1. We can do exactly the same thing on the semistable model 6̂1,OF ,
but this won’t give us any extra sections: the sections on 6̃1,OF ,e and 6̂1,OF ,e will
be the same. This can be checked locally around the singularities. So I can do all
the computations on 6̃1,OF ,e.
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Remark 14.2. We note that ω1 in fact has an “F0-structure”. In other words, we
can define it on 6̂1. Using the explicit description in Corollary 7.7, locally on 6̂1,e,
it is defined as the trivial line bundle generated by de/e. Notice that de/e = dẽ/ẽ
since e = ẽ$ . Hence its pull-back to 6̃1,OF is ω1.

Similarly, we can define the same thing on 6̃′1,OF
, 6̃(0)1,OF

, which we still denote
by ω1, by abuse of notation. Now if we restrict ω1 to the special fiber, it becomes
the dualizing sheaf (over Spec Fp2). So there is an action of GL2(Qp) on it. In
fact, GL2(Qp) even acts on ω1. This can be seen using the explicit description in
Section 9. Also, it’s clear from the definition that O×D and Gal(F/Qp) act on the
global sections of ω1.

Consider the following maps:

H 0(6̃(0)1,OF
, ω1)⊗Zp OE ↪→ H 0(6(0)1,F , �

1
6(0)1,F

)⊗Qp E→ H 1
dR(6

(0)
1,F )⊗Qp E .

Both maps are GL2(Qp), O×D ,Gal(F/Qp)-equivariant. Take the χ-isotypic com-
ponent, where χ ∈ χ(E) (see Section 11). We get a map (use Corollary 12.10):

fχ :
(
H 0(6̃(0)1,OF

, ω1)⊗Zp OE
)χ
→ (H 1

dR(6
(0)
1,F )⊗Qp E)χ

' F ⊗F0 Dcrys,χ ⊗E IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ .

Now for each two dimensional Galois representation Vχ,[1,b] of GQp defined in
the previous section, we have a free F⊗Qp E-module Fil1(F ⊗F0 Dχ,[1,b]) inside
F ⊗F0 Dcrys,χ . We note that Gal(F/Qp) acts on this Fil1(F ⊗F0 Dχ,[1,b]). Define

M(χ, [1, b])=
(

f −1
χ (Fil1(F ⊗F0 Dχ,[1,b])⊗E IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ )

)Gal(F/Qp)

= f −1
χ ((Fil1(F ⊗F0 Dχ,[1,b]))

Gal(F/Qp)⊗E IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ .

Schneider and Teitelbaum [2002] introduced a category Modfl
comp(OE) whose ob-

jects are all torsion-free and compact, Hausdorff linear-topological OE -modules, and
morphisms are all continuous OE -linear maps. Our first result about M(χ, [1, b]) is:

Proposition 14.3. M(χ, [1, b]) with the topology induced from

H 0(6(0)1,F , �
1
6(0)1,F

)⊗Qp E

is an object in Modfl
comp(OE).

Proof. I learned this argument from Proposition 4.2.1 of [Breuil 2004]. It is clear
that M(χ, [1, b]) is torsion free and Hausdorff. To prove compactness, we use
Proposition 15.3(iii) of [Schneider 2002] (c-compactness is equivalent with com-
pactness here since OE is locally compact [Perez-Garcia and Schikhof 2010, Corol-
lary 6.1.14]). Proposition 11.4 already shows that H 0(6(0)1,F , �

1
6(0)1,F

)⊗Qp E is a re-
flexive Fréchet space, so it suffices to show M(χ, [1, b]) is closed and bounded (see
[Schneider 2002] for the definition of boundedness). In fact it’s easy to see we only
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need to prove closedness and boundedness for H 0(6̃1,OF , ω
1) in H 0(6(0)1,F , �

1
6(0)1,F

).
Recall the topology on H 0(6(0)1,F , �

1
6(0)1,F

) is defined in Section 11 by:

H 0(61,F , �
1
61,F

)= lim
←−−

n
H 0(Vn,F , �

i
61,F

),

where {Vn,F }n is an admissible open covering of 61,F and each Vn,F is affinoid and
contained in Vn+1,F . Now {6̃1,OF ,e}e is another admissible open covering. Thus
we have:

• Each 6̃1,OF ,e is contained in some Vn,F .

• Each Vn,F is covered by finitely many generic fibers of 6̃1,OF ,e.

Then closedness follows from the first claim above and boundedness follows from
the second. �

Suppose M is an object in Modfl
comp(OE), following [Schneider and Teitel-

baum 2002], the E-vector space Md def
= Homcont

OE
(M, E) with the norm ‖ f ‖ =

maxm∈M | f (m)|E is a Banach space.

Definition 14.4. B(χ, [1, b]) def
= (M(χ, [1, b]))d = Homcont

OE
(M(χ, [1, b]), E).

It’s clear from the definition that this is a Banach space representation of GL2(Qp).

Remark 14.5. The relation between B(χ, [1, b]) and the Banach representation
B(π,L) defined in the introduction (see Definitions 1.3 and 1.4) is as follows:
Take π = IndD×

O×D Q×p
χ , where χ is viewed as a character of O×D Q×p trivial on p.

Also Fil1(Dχ,[1,b] ⊗ F) essentially gives a line “Lb” in Definition 1.3 by taking
Gal(F/Qp)-invariants. Then B(χ, [1, b])= B(π,Lb).

Back to the definition of M(χ, [1, b]). By Remark 12.11, we can replace the
induced representation by the dual representation of the compact induction. Also
by Galois descent, we have (Fil1(F ⊗F0 Dχ,[1,b]))

Gal(F/Qp) ' E . Under these
isomorphisms, fχ induces a GL2(Qp)-equivariant map,

fχ,[1,b] : M(χ, [1, b])→ (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨.

It is natural to ask whether such a map is injective or not. The answer is positive.

Proposition 14.6. The composition

H 0(6̃(0)1,OF
, ω1)χ

′

↪→ H 0(61,F , �
1
61,F

)χ
′

→ H 1
dR(61,F )

χ ′,

for a character χ ′ ∈ χ(F) such that χ ′ 6= χ ′p, is injective.

Proof. Since χ ′ 6=χ ′p, the kernel of the second map is H 0(61,F ,O61,F )
χ ′ . Consider

the intersection of H 0(6̃(0)1,OF
, ω1)χ

′

and H 0(61,F , �
0
61,F

)χ
′

in H 0(61,F , �
1
61,F

)χ
′

.
It can be viewed as a subset in H 0(61,F , �

0
61,F

)χ
′

and we denote it by H . On the
other hand, we use J to denote the same set but viewed in H 0(61,F , �

1
61,F

)χ
′

. The
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induced topology on H and J can be different. Proposition 14.3 tells us that J is
compact since H 0(61,F , �

0
61,F

)χ
′

is closed in H 0(61,F , �
1
61,F

)χ
′

(Proposition 11.5).
Clearly SL2(Qp) preserves both H and J .

Let’s recall some notation here: For each connected component of 6̃1,OF , the
dual graph of its special fiber is the Bruhat–Tits tree (see Section 8), and Us,ξ is the
tubular neighborhood of Us,ξ , the irreducible component indexed by (s, ξ) in the
special fiber (see Definition 11.10).

Similar to what we did in the beginning of Section 12, we can prove Us′0,ξ is
isomorphic with{
z=(x, y)∈A2

F

∣∣ y p+1
=v1w

−1
1 ξ(x p

−x), |x−k|> p−1, k=0, . . . , p−1, |x |< p
}
,

and its de Rham cohomology is of finite dimension. Since Us′0,ξ is a Stein space,
H 1

dR(Us′0,ξ )= H 0(Us′0,ξ , �
1)/H 0(Us′0,ξ , �

0) (we use �i for �i
61,F

for simplicity).
Fix a ξ . Under the isomorphism above, we can write Us′0,ξ =

⋃
ρ<p Us′0,ξ,ρ ,

where Us′0,ξ,ρ ⊂ Us′0,ξ is defined by the same equation but with |x − k| ≥ ρ−1,
k = 0, . . . , p − 1, |x | ≤ ρ. Then for each ρ < p, H 0(Us′0,ξ,ρ, �

i ) is a Banach
space, and we have H 0(Us′0,ξ , �

i )= lim
←−−ρ→p H 0(Us′0,ξ,ρ, �

i ). So H 0(Us′0,ξ , �
i ) is

a Fréchet space.
Notice that O×D acts on Us′0 , so H 0(Us′0, �

0)χ
′

↪→ H 0(Us′0, �
1)χ

′

and the quotient
is a finite dimensional space. Thus this inclusion has to be a closed embedding
because both of them are Fréchet spaces.

Now consider the canonical maps H 0(61,F , �
k)χ

′

→ H 0(Us′0, �
k)χ

′

, k = 0, 1.
They’re clearly continuous and we denote the image of H and J by H1 and J1.
Since J is compact, J1 is compact. Hence H1 is also compact in H 0(61,F , �

0)χ
′

because H 0(Us′0, �
0)χ

′

↪→ H 0(Us′0, �
1)χ

′

is a closed embedding. We will show
this cannot happen unless H1 = {0}.

Suppose f is a nonzero rigid function in H . We will prove later that f is
unbounded on 61,F (see the next lemma). For each Us,ξ , the maximum principle
implies that f must obtain its maximum on the boundary annuli which are the
tubes of the singular points on the special fiber. Therefore f is unbounded on⋃

s′ even Us′,ξ . But we know SL2(Qp) acts on 61,F and acts transitively on the set
of even vertices. Hence using the action of SL2(Qp), we can get functions in H
with arbitrary large norms when restricted to Us′0,ξ and H1 cannot be compact. So
there is no such f . �

Lemma 14.7. Any globally bounded function on a connected component of 61,F

must be a constant.

Proof. Fix a connected component ξ . Suppose f is such a function. By multiplying
f by some powers of $ , we may assume f ∈ H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ

). Recall that
the special fiber is connected and each irreducible component is a complete curve.
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Hence,
H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ

/($))= Fp2 .

Using induction on n, we can prove H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ
/($ n))=OF/($

n). Here
we use the fact that O

6̂1,OF ,ξ
is flat over the constant sheaf OF . Now the lemma

follows from

H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ
)= lim
←−−

n
H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ

/($ n))= OF . �

Remark 14.8. The proposition is also true if χ ′ 6=χ ′p. In this case, it is equivalent to
the same result on the Drinfel’d upper half-plane. See Proposition 19 of [Teitelbaum
1993] for a proof.

So we have an injective GL2(Qp)-equivariant map:

fχ,[1,b] : M(χ, [1, b])→ (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨.

A simple consideration of the topology (see Remark 12.11) shows that this induces
a map

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 → B(χ, [1, b]).

It is GL2(Qp)-equivariant and has to be injective if B(χ, [1, b]) is nonzero since
the left-hand side is an irreducible representation of GL2(Qp). If B(χ, [1, b]) is
nonzero, or equivalently if M(χ, [1, b]) is nonzero, we can define a lattice inside
c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 :

2(χ, [1, b])

=
{

X ∈ c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 | 〈X, fχ,[1,b](Y )〉 ∈ OE ,∀Y ∈ M(χ, [1, b])

}
,

where
〈 · , · 〉 : c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 × (c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1)∨→ OE

denotes the canonical pairing. This is equivalent to the intersection of the unit ball
of B(χ, [1, b]) with c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 .

Proposition 14.9. B(χ, [1, b]) is the completion of c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 with re-

spect to the lattice 2(χ, [1, b]) if M(χ, [1, b]) 6= 0.

Proof. The argument of Proposition 4.3.5 of [Breuil 2004] works here. I would like
to recall it here. By [Schneider and Teitelbaum 2002, Theorem 1.2.], it suffices
to prove that the natural map M(χ, [1, b])→ HomOE (2(χ, [1, b]), OE) is a topo-
logical isomorphism. The topology on the right hand side is defined by pointwise
convergence. Notice that c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 can be viewed as the continuous dual

space of (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨ with the topology described in Remark 12.11 and

M(χ, [1, b]) is closed in (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨ since it’s already compact. We can
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apply Corollary 13.5 of [Schneider 2002] and get the desired isomorphism. It’s
also clear from the definition that this is a topological isomorphism. �

So if we can show M(χ, [1, b]) is nonzero and moreover admissible as defined
in [Schneider and Teitelbaum 2002], we indeed get an admissible Banach space
representation of GL2(Qp), which is a completion of the smooth representation
c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 . This is the goal of the rest of the paper.

15. Computation of (H0(6̃(0)1,OF
, ω1)⊗Z p OE)

χ,Gal(F/Q p)/ p

Our ultimate goal is to prove M(χ, [1, b]) is nonzero and admissible. The method is
by explicit computation of its mod p representation. First we review some notation
defined in the previous sections that will be used frequently from now on.

Let χ ∈ χ(E) be a character of (OD/5)
× such that χ p

6= χ . Since we fix an
embedding τ : F0 → E , we may write χ = τ ◦ χ ′, where χ ′ is a character of
(OD/5)

× with values in F×0 . Then χ ′ = χ−m
1 , where χ1 is one of the fundamental

characters (Definition 3.2) and m ∈ {1, . . . , p2
− 2}. Write m = i + (p+ 1) j with

i ∈ {1, . . . , p} and j ∈ {0, . . . , p − 2}. Finally, gϕ ∈ Gal(F/Qp) is the unique
element that fixes $ and acts as Frobenius on F0.

Also recall that for any integer n, we use [n] to denote the unique integer in
{0, 1, . . . , p2

−2} congruent to n modulo p2
−1. For any OF0-module A, we denote

A⊗OF0,τ
OE by Aτ and A⊗OF0,τ̄

OE by Aτ̄ .
Recall that

6̃(0)1,OF
= 6̃1,OF t 6̃

′

1,OF
,

and gϕ interchanges (H 0(6̃1,OF , ω
1) ⊗Zp OE)

χ and (H 0(6̃′1,OF
, ω1) ⊗Zp OE)

χ .
Hence a gϕ-invariant element in (H 0(6̃(0)1,OF

, ω1)⊗Zp OE)
χ is determined by its

(H 0(6̃1,OF , ω
1)⊗Zp OE)

χ component. By definition, M(χ, [1, b]) is gϕ-invariant.
Hence it suffices to work on 6̃1,OF . This means that we may identify H 0(6̃1,OF , ω

1)

as the gϕ-invariant sections of H 0(6̃(0)1,OF
, ω1). Hence there is a natural action of

GL2(Qp) on it: this is nothing but gvp(det(g))
ϕ ◦g.

Definition 15.1. For any χ ∈ χ(E), χ ′ ∈ χ(F0), we define (see Section 8 for the
definition of these formal schemes)

H (0),χ,Qp = (H 0(6̃(0)1,OF
, ω1/p)⊗Zp OE)

χ,Gal(F/Qp),

Hχ,F0
∗
= (H 0(6̃1,OF ,∗, ω

1/p)⊗Zp OE)
χ,Gal(F/F0),

Hχ ′,F0
∗
= H 0(6̃1,OF ,∗, ω

1/p)χ
′,Gal(F/F0),

Hχ ′,F0
∗,? = Hχ ′,F0

∗
⊗OF0 ,? OE = H 0(6̃1,OF ,∗, ω

1/p)χ
′,Gal(F/F0)⊗OF0 ,? OE ,

where ∗ is either a vertex s or an edge e of the Bruhat–Tits tree or nothing, and
?= τ, τ̄ .
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It is clear from the definition that if χ = τ ◦χ ′, then

Hχ,F0
∗
' Hχ ′,F0

∗,τ ⊕ H (χ ′)p,F0
∗,τ̄ . (45)

Also, the discussion above shows that we have a canonical isomorphism:

H (0),χ,Qp ' Hχ,F0.

Definition 15.2. For a vertex s in the Bruhat–Tits tree, we use A(s) to denote the
set of vertices adjacent to s.

Now fix ξ p−1
=−1. We can do all the computation on one ξ -component 6̃1,OF ,ξ .

This is because O×D acts transitively on all connected components.
The goal of this section is to compute (H 0(6̃(0)1,OF

, ω1)⊗Zp OE)
χ,Gal(F/Qp)/p.

The next lemma implies that this is nothing but H (0),χ,Qp .

Lemma 15.3. H 0(6̃1,OF , ω
1)/$ n

= H 0(6̃1,OF , ω
1/$ n).

Proof. Clearly there is an injection from the left-hand side to the right-hand side.
Since we have

H 0(6̃1,OF , ω
1)= lim

←−−
n

H 0(6̃1,OF , ω
1/$ n),

we only need to prove the canonical map

H 0(6̃1,OF , ω
1/$ n)→ H 0(6̃1,OF , ω

1/$m), n > m

is surjective. Notice that ω1 is flat over the constant sheaf OF . It suffices to prove
H 1(6̃1,OF , ω

1/$ n) = 0 for all n ∈ N+. Do induction on n and use the flatness
again. It turns out that it’s enough to show H 1(6̃1,OF , ω

1/$)= 0. However, the
construction of ω1 tells us ω1/$ is the dualizing sheaf on the special fiber. This
means that if we restrict ω1/$ to each irreducible component V of the special fiber,
it is �1

V (Dsing), where �1
V is the usual sheaf of differential forms on V, Dsing is

the sum of singular points of D (considered in the whole special fiber) as a divisor.
Also, we have the following exact sequence of sheaves:

0→ ω1/$ →
∏

V

iV∗(�
1
V (Dsing))→

∏
E

iE∗(Fp2)→ 0,

where E (resp. V ) runs through all singular points (resp. irreducible components)
of the special fiber, and iE (resp. iV ) is the corresponding inclusion. Take the long
exact sequence of cohomologies of this sequence. H 0 of the third map is surjective
since the dual graph of the special fiber of each connected component is a tree. H 1

of the middle term in the exact sequence above vanishes by Riemann–Roch. So we
indeed get the vanishing of H 1(6̃1,OF , ω

1). �
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Hence we only need to compute

H (0),χ,Qp ' Hχ,F0 ' Hχ ′,F0
τ ⊕ H (χ ′)p,F0

τ̄ . (46)

It’s not hard to see that we have an injection:

Hχ ′,F0 ↪→
∏

s

Hχ ′,F0
s ,

where s takes values in the set of vertices of the Bruhat–Tits tree. Similarly, we
have the same injection for H (χ ′)p,F0 . Notice that by identifying the sections on
6̃1,OF as the gϕ-invariant sections on 6̃(0)1,OF

, we have an action of GL2(Qp) on∏
s

(Hχ ′,F0
s ⊕ H (χ ′)p,F0

s )

(see the beginning of this section). Explicitly, g sends Hχ ′,F0
s to Hχ ′,F0

sg if vp(det(g))
(g ∈ GL2(Qp)) is even and to H (χ ′)p,F0

sg if it is odd. From this description, we have
an obvious GL2(Qp)-equivariant isomorphism (recall s ′0 is the central vertex):∏

s

(Hχ ′,F0
s ⊕ H (χ ′)p,F0

s )' IndGL2(Qp)
GL2(Zp)Q

×
p

Hχ ′,F0
s′0
⊕ IndGL2(Qp)

GL2(Zp)Q
×
p

H (χ ′)p,F0
s′0

⊗Fp2 ,F̃r Fp2 .

The following lemma basically says that we may identify Hχ ′,F0
s with sections

of ω1/$ on U 0
s introduced in Definition 11.10. Notice that ω1/$ is the dualizing

sheaf of the special fiber.

Lemma 15.4. For each vertex s of the Bruhat–Tits tree, we have natural isomor-
phisms:

9s,χ ′ : Hχ ′,F0
s −→∼ H 0(6̃1,OF ,s, ω

1/$)χ
′

= H 0(U 0
s , ω

1/$)χ
′

,

9s,(χ ′)p : H (χ ′)p,F0
s −→∼ H 0(6̃1,OF ,s, ω

1/$)(χ
′)p
= H 0(U 0

s , ω
1/$)(χ

′)p
,

such that their product∏
s

(9s,χ ′, 9s,(χ ′)p) :∏
s

Hχ ′,F0
s ⊕ H (χ ′)p,F0

s →

∏
s

H 0(U 0
s , ω

1/$)χ
′

⊕

∏
s

H 0(U 0
s , ω

1/$)(χ
′)p

is GL2(Qp)-equivariant. As usual, s takes its value in the set of vertices of Bruhat–
Tits tree.
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Proof. First let’s see what happens when s = s ′0. Recall that we have a concrete
description ((23), (24)) of 6̃1,OF ,s′0,ξ , 6̃1,OF ,s′0 from Section 8:

6̃1,OF ,s′0,ξ ' Spf OF0[$ ]
[
η,

1
ηp−η

, ẽ
]/(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

(p/η)p−1−1

)
,

6̃1,OF ,s′0 ' Spf OF0[$ ]
[
η,

1
ηp−η

, ẽ
]/(

ẽp2
−1
−w2

1

(
ηp
−η

(p/η)p−1−1

)p−1)
.

An element of H 0(6̃1,OF ,s′0, ω
1)χ

′

is determined by its restriction to 6̃1,OF ,s′0,ξ . It’s
easy to see (using the results in Section 9) it must have the form

P(η)ẽp+1−i dẽ
ẽ
,

where P(η)∈ OF [η, 1/(ηp−1
−1)]̂. Recall (Proposition 13.2) that χ ′= χ−m

1 , and
m = i + (p+ 1) j , i ∈ {1, . . . , p}, j ∈ {0, . . . , p− 2}. It is Gal(F/F0)-invariant if
and only if

P(η)=$ p2
−1−m F1(η),

where F1(η)∈ OF0[η, 1/(ηp−1
−1)]̂. Similarly, a section of H 0(6̃1,OF ,s′0, ω

1)(χ
′)p

fixed by Gal(F/F0) must have the form

$ [−mp]F2(η)ẽi dẽ
ẽ
,

where F2(η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, and [−mp] is defined in the beginning of

this section.
Thus any element F̄ of H 0(6̃1,OF ,s′0, ω

1/p)χ
′,Gal(F/F0) = Hχ ′,F0

s can be written
uniquely as

$ p2
−1−m F̄1(η)ẽp+1−i dẽ

ẽ

on ξ -components, where F̄1(η) ∈ Fp2[η, 1/(ηp−1
− 1)]. Now define 9s′0,χ

′(F̄) =
F̄1(η)ẽp+1−i dẽ/ẽ. Equivalently, it is “multiplication” by $−(p

2
−1−m). It’s trivial

to see this is indeed an isomorphism. We can define 9s′0,(χ
′)p in exactly the same

way.
Note that 9s′0,χ

′ , 9s′0,(χ
′)p are GL2(Zp)-equivariant; we can extend both isomor-

phisms to any vertex s using the action of GL2(Qp). Concretely, for an even vertex
s ′, 9s′,χ ′ is “multiplication” by $−(p

2
−1−m) and 9s′,(χ ′)p is “multiplication” by

$−[−mp]. For an odd vertex s, 9s,χ ′ is “multiplication” by $−[−mp] and 9s,(χ ′)p

is “multiplication” by $−(p
2
−1−m). �

By abuse of notation, I will identify H 0(U 0
s , ω

1/$)χ
′

, H 0(U 0
s , ω

1/$)
χ ′

τ with
Hχ ′,F0

s , Hχ ′,F0
s,τ via the isomorphisms in Lemma 15.4. Notice that ω1/$ is the sheaf

of differential forms on U 0
s , thus we may view elements in Hχ ′,F0

s as meromorphic
differential forms on Us .
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From now on, I would like to describe an element of Hχ,F0 via its image
in
∏

s Hχ ′,F0
s,τ ⊕

∏
s H (χ ′)p,F0

s,τ̄ . In other words, using Lemma 15.4, any element
h= (h1, h2) in Hχ,F0 ' Hχ ′,F0

τ ⊕H (χ ′)p,F0
τ̄ corresponds to a family of meromorphic

differential forms

{(ωs,τ , ωs,τ̄ )}s,

where ωs,τ = h1|6̃1,OF ,s
∈ Hχ ′,F0

s,τ and ωs,τ̄ = h2|6̃1,OF ,s
∈ H (χ ′)p,F0

s,τ̄ .

To further determine Hχ,F0 , we need to know when such a {(ωs,τ , ωs,τ̄ )}s comes
from a global section. We will give a necessary condition in Proposition 15.8 and a
sufficient condition in Proposition 15.11. To this end, it is crucial to understand
the local structure of ω1 on 6̃1,OF ,ξ . Recall that 6̃1,OF ,ξ has an open covering
{6̃1,OF ,e,ξ }e and an explicit description of 6̃1,OF ,e,ξ (Lemma 8.2) is:

Spf OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
, ẽ, ẽ′

]̂
(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
, ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

ηp−1−1
, ẽẽ′−$ p−1ξ

) .
Note that e/$, e′/$ in Lemma 8.2 is ẽ, ẽ′ here. Suppose e = [s, s ′], where s ′

(resp. s) is an even (resp. odd) vertex and corresponds to η (resp. ζ ). It’s not too
hard to see:

Lemma 15.5. Any element h of H 0(6̃1,OF ,[s,s′], ω
1)χ

′,Gal(F/F0), when restricted to
6̃1,OF ,[s,s′],ξ , can be written in the following form:

h =$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,

where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂.

Proof. It suffices to verify this after reducing modulo p. Equivalently, we need to
show that any h ∈ Hχ ′,F0

e has the form

$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,

where f (η) ∈ Fp2[η, 1/(1− ηp−1)], g(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)] when restricted
to 6̃1,OF ,[s,s′],ξ .

Recall that ω1 is free over 6̃1,OF ,[s,s′],ξ with a basis dẽ/ẽ = −dẽ′/ẽ′ (see the
beginning of the previous section). Hence any element h in H 0(6̃1,OF ,[s,s′],ξ , ω

1/p)
can be written as

p∑
k=0

f1,k(η, ζ )ẽk dẽ
ẽ
+

p∑
k=0

g1,k(η, ζ )ẽ′k
dẽ′

ẽ′
,



First covering of the Drinfel’d upper half-plane 463

where f1,k(η, ζ ), g1,k(η, ζ )∈OF/(p)
[
η, ζ, 1/(1−ηp−1), 1/(1−ζ p−1)

]
/(ηζ ). This

is because using the explicit description of 6̃1,OF ,[s,s′],ξ above, we see that ẽp+1,
ẽ′p+1, and ẽẽ′ can each be written as an element only containing η, ζ .

Using the results in Section 9, we see that such an element comes from an element
in the χ ′-isotypic component of H 0(6̃1,OF ,[s,s′], ω

1/p) if and only the coefficients
of ẽk (resp. ẽ′k) are zero unless k = p+ 1− i (resp. k = i). Hence we may write it
as

h = f1,p+1−i (η, ζ )ẽp+1−i dẽ
ẽ
+ g1,i (η, ζ )ẽ′i

dẽ′

ẽ′
, (47)

Next consider the action of Gal(F/F0). Using the results in Section 9 once again,
it’s not hard to see that such an element comes from a Galois-invariant section if
and only if

f1,p+1−i (η, ζ )=$
p2
−1−m f2(η, ζ ), g1,i (η, ζ )=$

[−mp]g2(η, ζ ), (48)

where f2(η, ζ ), g2(η, ζ ) ∈ Fp2
[
η, ζ, 1/(1− ηp−1), 1/(1− ζ p−1)

]
/(ηζ ).

Now in order to prove the lemma, we need to “eliminate” the ζ in f2(η, ζ ) and
η in g2(η, ζ ). We will prove this under the following assumption:

p2
− 1−m ≥ [−mp].

Equivalently, this means p2
−1−m = [−mp]+ i(p−1). The other case is similar.

First we eliminate the η in g2(η, ζ ): We can write

g2(η, ζ )= f3(η)+ g3(ζ ),

such that g3(η) ∈ Fp2[η, 1/(1− ηp−1)] and g3(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)]. This is
because we can think g2(η, ζ ) as a regular function on a union of two irreducible
smooth affine curves crossing transversally. Such a decomposition is obtained by
restricting this function on each irreducible component (with some modification by
some constants).

Notice that f3(0) makes sense here. Replacing f3(η) with f3(η)− f3(0), we
may assume

f3(η)= η f4(η),

where f4(η) ∈ Fp2[η, 1/(1− ηp−1)]. Now in O
6̃1,OF ,[s,s′],ξ

, we have

η = Cẽp+1, where C =−v1w1ξ
−1 ζ

p−1
−1

ηp−1−1
.



464 Lue Pan

Plug this into (47) and use (48):

h =$ p2
−1−m f2(η, ζ )ẽp+1−i dẽ

ẽ
+$ [−mp](η f4(η)+ g3(ζ ))ẽ′i

dẽ′

ẽ′

=$ p2
−1−m f2(η, ζ )ẽp+1−i dẽ

ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′
+ f4(η)$

[−mp]Cẽp+1ẽ′i dẽ′

ẽ′
.

Since ẽẽ′ =$ p−1ξ , the last term in the above equation is

f4(η)C$ [−mp]$ i(p−1)ξ i ẽp+1−i dẽ′

ẽ′
= f4(η)C$ p2

−1−mξ i ẽp+1−i dẽ′

ẽ′

=−$ p2
−1−mC f4(η)ξ

i ẽp+1−i dẽ
ẽ
,

by our assumption. In other words,

h =$ p2
−1−m( f2(η, ζ )−C f4(η)ξ

i)ẽp+1−i dẽ
ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′
.

Hence in (47), we may assume

g1,i (η, ζ )=$
[−mp]g3(ζ ), where g3(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)].

Now we are going to eliminate the ζ in f2(η, ζ ). As before, write f2(η, ζ ) =

f5(η)+ ζg5(ζ ) and notice that in O
6̃1,OF ,[s,s′],ξ

, we can write ζ = C ′ẽ′p+1. Plug this
into (47):

h =$ p2
−1−m( f5(η)+ ζg5(ζ ))ẽp+1−i dẽ

ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′

=$ p2
−1−m f5(η)ẽp+1−i dẽ

ẽ
+$ p2

−1−m g5(ζ )C ′ẽ′p+1ẽp+1−i dẽ
ẽ

+$ [−mp]g3(ζ )ẽ′i
dẽ′

ẽ′
.

Here comes the difference between this case and the former case. The middle term
actually vanishes:

$ p2
−1−mg5(ζ )C ′ẽ′p+1ẽp+1−i dẽ

ẽ
=$ p2

−1−mg5(ζ )C ′$ (p+1−i)(p−1)ξ p+1−i ẽ′i dẽ
ẽ

= 0,

since $ p2
−1−m+(p+1−i)(p−1)

= $ [−mp]+(p+1)(p−1)
= −p · $−[mp]

= 0 by our
assumption. Hence we may write

h =$ p2
−1−m f5(η)ẽp+1−i dẽ

ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′
,

which is exactly what we want. �

Now suppose h ∈ Hχ ′,F0
e . We may assume it has the form

$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,
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where f (η) ∈ Fp2[η, 1/(1−ηp−1)], g(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)] when restricted to
6̃1,OF ,[s,s′],ξ . What’s its restriction to 6̃1,OF ,s′,ξ? Algebraically, this means that we
replace ζ by p/η= 0 and ẽ′ by$ p−1ξ/ẽ. So we have (notice that dẽ/ẽ=−dẽ′/ẽ′):

h|
6̃1,OF ,s′,ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
−$ [−mp]g(0)$ i(p−1)ξ i ẽ−i dẽ

ẽ
.

We make the following assumption in the rest of this section:

p2
− 1−m ≥ [−mp]. (49)

Equivalently, this means p2
− 1−m = [−mp] + i(p− 1).

On 6̃1,OF ,s′,ξ , we have

ẽ−i
=

ẽp+1−i

ẽp+1 =−
(p/η)p−1

−1
v1w

−1
1 ξ(ηp−η)

ẽp+1−i
≡

1
v1w

−1
1 ξ(ηp−η)

ẽp+1−i (mod p).

Hence,

h|
6̃1,OF ,s′,ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ

−$ p2
−1−m g(0)ξ i 1

v1w
−1
1 ξ(ηp−η)

ẽp+1−i dẽ
ẽ

=$ p2
−1−m

(
f (η)+g(0)ξ i−1v−1

1 w1

(1
η
−

ηp−2

ηp−1−1

))
ẽp+1−i dẽ

ẽ
. (50)

Write F(η)= f (η)− g(0)ξ i−1v−1
1 w1

ηp−2

ηp−1−1 , C1 = g(0)ξ i−1v−1
1 w1.

Lemma 15.6. Under the assumption p2
− 1−m ≥ [−mp],

h|
6̃1,OF ,s′,ξ

=$ p2
−1−mC1

ẽp+1−i

η

dẽ
ẽ
+$ p2

−1−m F(η)ẽp+1−i dẽ
ẽ
, (51)

where F(η) ∈ Fp2[η, 1/(1− ηp−1)], C1 ∈ Fp2 .

Now if we view h|6̃1,OF ,s′,ξ
as a differential form on U 0

s′,ξ , or what’s the same, a
meromorphic differential form on Us′,ξ with poles at the singular points (Us′,ξ is
viewed as a subvariety in the special fiber of 6̃1,OF ,ξ ), the order of the pole at the
intersection point of Us′,ξ and Us,ξ must be i + 1 (if there is a pole) since 1/η has
order p+ 1 at this point (η = ẽ = 0) and ẽ is a uniformizer of this point.

Now restrict h to 6̃1,OF ,s,ξ . This time we replace η by p/ζ =0 and ẽ by$ p−1ξ/ẽ′.

h|
6̃1,OF ,s,ξ

=−$ p2
−1−m f (0)$ (p+1−i)(p−1)ξ p+1−i ẽ′−(p+1−i) dẽ′

ẽ′

+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′

=$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
. (52)
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The first term is zero since$ p2
−1−m+(p+1−i)(p−1)

=−p·$−[mp] by our assumption.

Lemma 15.7. Under the assumption p2
− 1−m ≥ [−mp],

h|
6̃1,OF ,s,ξ

=$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,

where g(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)].

Thus if we view h|
6̃1,OF ,s,ξ

as a meromorphic differential form on Us,ξ , it is
holomorphic at the intersection point of Us,ξ and Us′,ξ . In summary,

Proposition 15.8. Assume p2
− 1 − m ≥ [−mp]. Under the identification in

Lemma 15.4, an element h of Hχ ′,F0 = H 0(6̃1,OF , ω
1/p)χ

′,Gal(F/F0) has the follow-
ing description:

(1) If s is odd, then h|
6̃1,OF ,s,ξ

is a holomorphic differential form on Us,ξ .

(2) If s ′ is even, then h|
6̃1,OF ,s′,ξ

can have poles at the intersection points of Us′,ξ

with adjacent components. If there are poles, their order must be i+1. More-
over, as an element of the space of meromorphic differential forms on Us′,ξ

modulo holomorphic differential forms, h|
6̃1,OF ,s′,ξ

is uniquely determined by
the restriction of h to the components adjacent to s ′. In other words, h|

6̃1,OF ,s′,ξ

is holomorphic on Us′,ξ if the restriction of h to the components adjacent to s ′

is zero.

Proof. The first part is a direct consequence of Lemma 15.7. The assertion for
the order of poles follows from Lemma 15.6. As for the last assertion, using the
notation before Lemma 15.6, we know that the pole of h|6̃1,OF ,s′,ξ

at the intersection
point of Us′,ξ and Us,ξ is determined by g(0) (in fact this pole is given by

g(0)ξ i−1v−1
1 w1

ẽp+1−i

η

dẽ
ẽ

modulo holomorphic terms). However, g(0) is indeed determined by h|
6̃1,OF ,s,ξ

since h|
6̃1,OF ,s,ξ

=$ [−mp]g(ζ )ẽ′i dẽ′/ẽ′. �

Remark 15.9. Under the assumption p2
− 1− m ≥ [−mp], we have a similar

description for elements in H (χ ′)p,F0 while interchanging the descriptions for odd
and even vertices. This is obvious if one uses the action of GL2(Qp).

If we assume p2
− 1−m ≤ [−mp], an element h of Hχ ′,F0 has the following

similar description:

(1) If s ′ is even, then h|
6̃1,OF ,s′,ξ

is a holomorphic differential form on Us′,ξ .

(2) If s is odd, then h|
6̃1,OF ,s,ξ

can have poles at the intersection points of Us,ξ

with adjacent components. The order of these poles, if they exist, must be
p+2−i . Moreover, h|

6̃1,OF ,s,ξ
is holomorphic on Us,ξ if the restriction of h to

the components adjacent to s is zero.
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To get a converse result, we need one more lemma to see when we can glue
sections on 6̃1,OF ,s, 6̃1,OF ,s′ to a section on 6̃1,OF ,[s,s′].

Lemma 15.10. Assume p2
−1−m ≥ [−mp], and s ′ is an even vertex and s ∈ A(s ′).

Given hs′ ∈ Hχ ′,F0
s′ , hs ∈ Hχ ′,F0

s such that they have the forms in Lemmas 15.6
and 15.7 (under the explicit description in Lemma 8.2):

hs′ |6̃1,OF ,s′,ξ
=$ p2

−1−mC1
ẽp+1−i

η

dẽ
ẽ
+$ p2

−1−m F(η)ẽp+1−i dẽ
ẽ
, (53)

hs |6̃1,OF ,s,ξ
=$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
, (54)

where F(η)∈Fp2[η, 1/(1−ηp−1)], C1∈Fp2 , g(ζ )∈Fp2[ζ, 1/(1−ζ p−1)]. Moreover
assume

C1 = g(0)ξ i−1v−1
1 w1. (55)

Then we can find a (unique) section h ∈ Hχ ′,F0
[s,s′] such that

h|
6̃1,OF ,s′

= hs′, h|
6̃1,OF ,s

= hs .

Proof. It is direct to see that the following section hξ on 6̃1,OF ,[s,s′],ξ can be extended
to an element in Hχ ′,F0

[s,s′] and satisfies all the conditions:

hξ =$ p2
−1−m

(
F(η)+C1

ηp−2

ηp−1−1

)
ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
. �

Proposition 15.11. Assume p2
− 1−m ≥ [−mp].

(1) Given hs ∈ Hχ ′,F0
s for each odd vertex s that corresponds to a holomorphic

differential form on Us,ξ , we can find an element h in Hχ ′,F0 such that for any
odd vertices s,

h|
6̃1,OF ,s

= hs .

(2) Moreover, we have the following freedom of choosing h: given fs′ ∈ Hχ ′,F0
s′

for each even vertex s ′ that corresponds to a holomorphic differential form on
Us′,ξ , we may find a (unique) element f in Hχ ′,F0 such that

f |
6̃1,OF ,s′

= fs′ for any even vertices s ′,

f |
6̃1,OF ,s

= 0 for any odd vertices s.

Proof. Both are local questions. The second part is a direct consequence of
Lemma 15.10: For any even vertex s ′ and s ∈ A(s ′), applying Lemma 15.10 with
hs = 0, hs′ = fs′ (in this case, C1 = 0), we can glue to a section on 6̃1,OF ,[s,s′]

whose restriction to 6̃1,OF ,s′ (resp. 6̃1,OF ,s) is fs′ (resp. zero). Hence we can glue
to a global section on 6̃1,OF .
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As for the first part, our strategy is similar. For any even vertex s ′, we will find a
section hs′ ∈ Hχ ′,F0

s′ such that for any vertex s ∈ A(s ′), we can use Lemma 15.10 to
glue hs, hs′ to a section on 6̃1,OF ,[s,s′] and obtain a global section on 6̃1,OF .

By Lemma 15.4, we may identify elements in Hχ ′,F0
s′ with differential forms

on U 0
s′ . Since (OD/5)

×
' F
×

p2 acts transitively on the connected components of U 0
s′ ,

it is easy to see µp+1(Fp2) = {a ∈ Fp2 | a p+1
= 1} fixes U 0

s′,ξ . As we noted in the
proof of Lemma 12.9,

H 0(U 0
s′, ω

1/$)χ
′

' H 0(U 0
s′,ξ , ω

1/$)Id
−i
,

where we view Id : µp+1(Fp2) → F
×

p2 as a character of µp+1(Fp2), and Id−i is
its (−i)-th power. We denote the intersection point of Us′,ξ with Us,ξ , by Ps for
s ∈ A(s ′).

Now using Lemma 15.10, finding such an hs′ ∈ Hχ ′,F0
s′ is equivalent to finding a

meromorphic differential form ωs′ ∈ H 0(U 0
s′,ξ , ω

1/$)Id
−i

such that:

• It can only have poles at Ps, s ∈ A(s ′) with order at most i + 1 (in fact, it has
to be i + 1 if there is a pole, by considering the action of µp+1(Fp2)).

• The “leading coefficient” of the pole at Ps is prescribed by hs for all s ∈ A(s ′).

More precisely, using the explicit description in Lemma 8.2, the first condition
allows us to write ωs′ into the form (53). Also our condition in the proposition
allows us to write hs into the form (54). Then C1 in (53) is the leading coefficient
in this case and we want it to satisfy (55).

The existence of such a meromorphic differential form follows from:

Lemma 15.12. Let C be a smooth geometrically connected curve over Fp2 and
{Pk}k be a nonempty finite subset of C(Fp2). Then for n ≥ 2, the restriction map

H 0(C, �1
C(nD))→

⊕
k

H 0(Pk, �
1
C(nD)|Pk

)

is surjective, where D is the divisor
∑

k Pk .

Assume this lemma for the moment. In our case, let C = Us′,ξ , {Pk} = {Ps}

and n = i + 1. The prescribed leading coefficients become a family of elements
cs ∈ H 0(Ps, �

1
C(nD)|Ps ), s ∈ A(s ′). Notice that the uniformizer for Ps is either ẽ

or ẽ/η, hence µp+1(Fp2) acts on

H 0
(

Ps, �
1
C

(∑
k

(i + 1)Pk

)∣∣∣∣
Ps

)
= H 0(Ps, �

1
C((i + 1)D)|Ps

)

via Id−i . So taking the Id−i -isotypic component of the map in the lemma (which
remains surjective since p + 1 is coprime to p), we may find an element in
H 0
(
Us′,ξ , �

1
(∑

s(i + 1)Ps
))Id−i

having the correct leading coefficient at each Ps

and that’s exactly what we want. �
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Proof of Lemma 15.12. Consider the following short exact sequence of sheaves:

0→�1
C((n− 1)D)→�1

C(nD)→
⊕

k

�1
C(nD)|Pk

→ 0.

It suffices to show H 1(C, �1
C((n− 1)D)) vanishes. However by Serre duality, this

space is dual to H 0(C,OC(−(n− 1)D)), which is zero since we assume n ≥ 2. �

Now, we can prove the main proposition of this section.

Proposition 15.13. Assume p2
− 1−m ≥ [−mp]. There exists a GL2(Qp)-equi-

variant short exact sequence:

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ → H (0),χ,Qp → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → 0.

Proof. Write
∏

s Hχ,F0
s =

∏
s(H

χ ′,F0
s,τ ⊕ H (χ ′)p,F0

s,τ̄ ), where as usual, s runs over the
vertices of the Bruhat–Tits tree. Define

H1 =
∏

s′ even

Hχ ′,F0
s′,τ ⊕

∏
s odd

H (χ ′)p,F0
s,τ̄ ,

H2 =
∏
s odd

Hχ ′,F0
s,τ ⊕

∏
s′ even

H (χ ′)p,F0
s′,τ̄ .

Notice that GL2(Qp) actually acts on H1, H2. Then we have a GL2(Qp)-equivariant
(split) short exact sequence:

0→ H1→
∏

s

Hχ,F0
s → H2→ 0.

Recall that we have an injection of H (0),χ,Qp ' Hχ,F0 into
∏

s Hχ,F0
s . So this

short exact sequence induces another short exact sequence:

0→ K → Hχ,F0 → C→ 0.

It remains to determine K , and C .
Let f be an element of Hχ,F0 . We will write f = fτ+ fτ̄ under the decomposition

Hχ,F0 ' Hχ ′,F0
τ ⊕ H (χ ′)p,F0

τ̄ (see (46)).
Suppose f is in K . This means for any odd vertex s and even vertex s ′,

fτ |6̃1,OF ,s
= 0 and fτ̄ |6̃1,OF ,s′

= 0.

By the second part of Proposition 15.8, we know that fτ |6̃1,OF ,s′
corresponds to a

holomorphic differential form on Us′,ξ for any even vertex s ′ (tensored with OE ).
However the second part of Proposition 15.11 indicates that fτ |6̃1,OF ,s′

can be any
holomorphic differential form inside H 0(Us′, �

1
Us′
)
χ ′

τ . Similarly fτ̄ |6̃1,OF ,s
can be

any holomorphic differential form inside H 0(Us, �
1
Us
)
χ ′

τ , where s is an odd vertex.
This certainly implies that

K ' IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)χ
′

τ .
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By the first part of Proposition 15.8, we know that C is inside∏
s: odd

H 0(Us, �
1
Us
)χ
′

τ ⊕

∏
s′: even

H 0(Us′, �
1
Us′
)
(χ ′)p

τ̄ ,

as a subset of H2. However the first part of Proposition 15.11 tells us that in fact C
is equal to this set. Clearly this is nothing but IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ . �

Remark 15.14. See the beginning of the paper for the notation here: Under the iso-
morphism (27), an element of H 0(Us′0, �

1
Us′0
)χ
′

must have the form f (η)ẽp+1−i dẽ/ẽ
on Us′0,ξ , where f (η) is a polynomial of η of degree at most i−2. Using the results
in Section 9, it’s not hard to construct a GL2(Fp)-equivariant isomorphism:

H 0(Us′0, �
1
Us′0
)χ
′

→ (Symi−2 F
2
p2)⊗ det j+1, (56)

ηr ẽp+1−i dẽ
ẽ
7→ xr yi−2−r , (57)

where Symi−2 F
2
p2 is the (i−2)-th symmetric power of the natural representation of

GL2(Fp) on the canonical basis of F
2
p2 .

Similarly, we can identify H 0(Us′0, �
1
Us′0
)(χ
′)p

with (Symp−1−i F
2
p2) ⊗ deti+ j .

Then we can rewrite the exact sequence in Proposition 15.13 as

0→ σi−2( j + 1)→ H (0),χ,Qp → σp−1−i (i + j)→ 0.

Remark 15.15. If we assume p2
−1−m≤[−mp], then we have the exact sequence

of the opposite direction:

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → H (0),χ,Qp → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ → 0.

16. Computation of M(χ, [1, b])/ p, I: 2≤ i ≤ p− 1

In this section, we compute M(χ, [1, b])/p as a representation of GL2(Qp) when
i ∈ {2, . . . , p − 1}. The strategy is as follows. We first identify the crystalline
cohomology with the de Rham cohomology of some formal scheme. Then Hχ,F0

will map to some meromorphic differential forms on this formal scheme. Now
any cohomology class of the de Rham cohomology can be expressed using 1-
hypercocycles and any meromorphic differential form can be naturally viewed as a
1-hypercocycle. The question becomes how to write this 1-hypercocycle into some
“good form”. This will be done by explicit calculations. We keep the notation from
the last section.

Consider the composite of the following maps, which we denote by ι,

Hχ ′,F0 → H 0(61,F , �
1)χ
′

→ H 1
dR(61,F )

χ ′
'

∏
s

H 1
dR(Us)

χ ′
'

∏
s

H 1
crys(Us/F0)

χ ′
⊗F0 F.
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See Sections 11 and 12 for the notation. Our first result is about the image of ι. We
denote the first crystalline cohomology of Us (over Spec Fp2) by H 1

crys(Us/OF0). It
is not hard to see that this is a lattice inside H 1

crys(Us/F0)= H 1
crys(Us/OF0)⊗OF0

F0.

Proposition 16.1. ι(Hχ ′,F0)⊂
∏

s

H 1
crys(Us/OF0)

χ ′
⊗OF0

OF .

Proof. We only deal with the even case, that is to say, for an even vertex s ′, we
will prove that the image of Hχ ′,F0 in H 1

crys(Us′/F0)
χ ′
⊗F0 F is actually inside

H 1
crys(Us′/OF0)⊗OF0

OF . The odd case is similar.
First we recall some results from Section 12; see the discussion below Lemma 12.1.

We constructed an isomorphism ψs′,ξ :Us′,ξ → F0,ξ (recall that Us′,ξ is the tubular
neighborhood of Us′,ξ in 61,F ), where

F0,ξ
def
=

{
(x, y)∈A2

F

∣∣ y p+1
=v1w

−1
1 ξ(x p

−x), |x−k|> p−1/(p−1), k=0, . . . , p−1,

|x |< p1/(p−1)
}
.

Cleary F0,ξ is an open set in a projective curve D0,ξ in P2
F defined by y p+1

=

v1w
−1
1 ξ(x p

− x). The curve D0,ξ has an obvious formal model D̂0,OF0 ,ξ
over OF0 .

Its special fiber can be canonically identified with Us′,ξ . Hence we can identify
H 1

crys(Us′,ξ/OF0) with H 1
dR(D̂0,OF0 ,ξ

).

Definition 16.2. For s ∈ A(s ′), let Vs,ξ be the affine open formal subscheme of
D̂0,OF0 ,ξ

whose underlying space is the union of U 0
s′,ξ and the intersection point of

Us′,ξ and Us,ξ . Also we define Vc,ξ =
⋂

sv∈A(s′)Vsv,ξ (it is equal to Vs1,ξ ∩ Vs2,ξ for
any s1 6= s2 ∈ A(s ′)).

Hence C = {Vs,ξ }s∈A(s′) is an open covering of D̂0,OF0 ,ξ
. Any element in

H 1
dR(D̂0,OF0 ,ξ

) can be represented as a 1-hypercocycle ({ωs}s∈A(s′), { fs1,s2}s1,s2∈A(s)),
where ωs ∈ H 0(Vs,ξ , �

1
Vs,ξ
), and fs1,s2 ∈ H 0(Vs1,ξ ∩ Vs2,ξ ,OVs1,ξ∩Vs2,ξ

), such that

d fs1,s2 = ωs1 |Vs1∩Vs2
−ωs2 |Vs1∩Vs2

.

Two 1-hypercocycles ({ωs}, { fs1,s2}), ({ω
′
s}, { f ′s1,s2

}) represent the same cohomology
class if and only there exists a family of functions {gs}s∈A(s), gs ∈ H 0(Vs,ξ ,OVs,ξ ),
such that

ωs −ω
′

s = dgs, fs1,s2 − f ′s1,s2
= gs1 |Vs1∩Vs2

− gs2 |Vs1∩Vs2
.

Given a differential form ω on F0,ξ , we view it as a cohomology class in
H 1

dR(F0,ξ ). How do we relate it, as above, with a 1-hypercocycle in

H 1
dR(D0,ξ )= H 1

dR(D̂0,OF0 ,ξ
)⊗F0 F?

Definition 16.3. Since the generic fiber of D̂0,OF0 ,ξ
becomes D0,ξ when tensored

with F , the generic fiber of Vs,ξ corresponds to an open rigid subspace of D0,ξ ,
which we denote by Ws,ξ . We also define Zs,ξ =Ws,ξ ∩ F0,ξ .
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If ω is in the χ ′-isotypic component and χ ′ 6= χ ′p, we will see later that we can
find a rigid analytic function fs on Zs,ξ for each s ∈ A(s ′) such that ω|Zs,ξ − d fs

can be extended to a holomorphic differential form ωs on Ws,ξ . Define

fs1,s2 = fs2 |Ws1,ξ∩Ws2,ξ
− fs1 |Ws1,ξ∩Ws2,ξ

. (58)

Then ({ωs}, { fs1,s2}) is an element in H 1
dR(D0,ξ ), whose image in H 1

dR(F0,ξ ) is ω.
Roughly speaking, what we did above is to “remove” the poles of ω so that ω

can be extended to a hypercocycle on D0,ξ .
Now apply the above abstract discussion to our situation. Let s ′ be an even vertex

and s ∈ A(s ′). Then, under the isomorphism in Lemma 8.2,

Ws,ξ =
{
(x, y) ∈ D0,ξ

∣∣ |x − k| = 1, k = 1, . . . , p− 1, |x | ≤ 1
}
,

Zs,ξ =
{
(x, y) ∈Ws,ξ

∣∣ |x |> p−1/(p−1)}.
Recall that in Lemma 15.5, we showed that a section ω of H 0(6̃1,OF , ω

1)χ
′

has the
following form when restricted to 6̃1,OF ,[s,s′],ξ :

ω|
6̃1,OF ,[s,s′],ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
, (59)

where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂.
Hence if we restrict it to 6̃1,OF ,s′,ξ (replace ζ by p/η and ẽ′ by $ p−1ξ/ẽ):

ω|
6̃1,OF ,s′,ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
−$ [−mp]g

( p
η

)
$ i(p−1)ξ i ẽ−i dẽ

ẽ
, (60)

where

f (η) ∈ OF0

[
η,

1
ηp−1−1

]
,̂ g

( p
η

)
∈ OF0

[ p
η
,

1
(p/η)p−1−1

]
⊂̂ OF0

[[ p
η

]]
.

Notice that the restriction of ψ0,ξ to the generic fiber of 6̃1,OF ,s′,ξ has the form

x 7→ η, y 7→ ẽ(1− (p/η)p−1)1/(p+1). (61)

Lemma 16.4. Under the isomorphism ψ0,ξ , the 1-form ω has the following form
on Zs,ξ

$ p2
−1−m

(
F(x)y p+1−i

+G
(

p
x

)
y−i
)

dy
y
, (62)

where F(x)∈ OF0[x, 1/(x p−1
−1)]̂ and G(p/x)=

∑
+∞

n=0 an(p/x)n with an ∈ OF0

for all n. Moreover, using (60):

(1) f (x)≡ F(x)mod pOF0[x, 1/(x p−1
− 1)]̂.

(2) a0≡−ξ
i g(0)mod pOF0 if p2

−1−m≥[−mp] and a0≡0 mod pOF0 otherwise.
When i = p, a0/p ≡−ξ i g(0)mod pOF0 .
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Assume this lemma for the moment. Hence we can write ω on Zs,ξ as

$ p2
−1−m

(
F(x)y p+1−i

+G
( p

x

)
y−i
) dy

y
,

where F(x) ∈ OF0[x, 1/(x p−1
− 1)]̂, G(p/x) =

∑
+∞

n=0 an(p/x)n ∈ OF0[[p/x]].
Certainly F(x)y p+1−i dy/y extends to Ws,ξ , so we only need to “remove” the poles
of the other term (essentially the pole at x= y=0). On Z0

s,ξ
def
={(x, y)∈ Zs,ξ | |x |<1},

we can write

x =
+∞∑
n=1

cn y(p+1)n,

where cn ∈ OF0 , c1 = v
−1
1 w1ξ

−1
∈ O×F0

. Thus a simple computation shows:

Lemma 16.5. On Z0
s,ξ ,

+∞∑
n=0

an

(
p
x

)n

y−i dy
y
=

+∞∑
n=−∞

bn y−n(p+1)−i−1 dy,

where bn ∈ OF0,∀n ∈ Z and for n ≥ 0, vp(bn)≥ n. Moreover b0 ≡ a0 mod p.

Now define

fs =$
p2
−1−m

+∞∑
n=0

bn

−n(p+ 1)− i
y−n(p+1)−i . (63)

It can be viewed as a rigid analytic function on Zs,ξ . Also, it is clear from the
above computation that ω − d fs can be extended to a holomorphic differential
form ωs on Ws,ξ . Do the same thing for each s ∈ A(s ′); we can define ωs, fs1,s2

as explained before. Then ({ωs}, { fs1,s2}) is the 1-hypercocycle in H 1
dR(D0,ξ ) '

H 1
dR(D̂0,OF0 ,ξ

)⊗OF0
F that represents ω.

Notice that for i ∈ {1, . . . , p−1}, vp(bn/(−n(p+1)− i))≥ 0 since vp(bn)≥ n.
When i = p, b0 ≡ a0 ≡ 0 mod p since we are in the case p2

−1−m ≤ [−mp]. We
still have vp(bn/(−n(p+1)−i))≥ 0. In fact, equality only can happen when n= 0.
Therefore all the coefficients appearing in ωs , fs1,s2 will be integral. In other words,

({ωs}, { fs1,s2}) ∈ H 1
dR(D̂0,OF0 ,ξ

)⊗OF0
OF . �

Proof of Lemma 16.4. We only give a sketch of the computations here. Using
the notation in (60), it suffices to deal with the case g(p/η) = 0 and f (η) = 0
separately.

(1) Assume g(p/η)= 0. Plug (61) into (60). A direct computation shows that ω
has the form

$ p2
−1−m f (x)

(
1+

( p
x

)p−1
G1(x)

)
y p+1−i dy

y
,

where G1(x) ∈ OF0

[
x, 1

x p−1−1

] [̂[ p
x

]]
.
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Let G2(x) ∈ OF0[x, 1/(x p−1
− 1)]̂[[p/x]] be

G2(x)= v1w
−1
1 ξ(x p−1

− 1)G1(x) f (x)
( p

x

)p−2
.

Clearly we can decompose G2(x) as

G2(x)= F3(x)+G3(
p
x
),

where F3(x) ∈ OF0[x, 1/(x p−1
− 1)]̂, G3(p/x) ∈ OF0[[p/x]]. Replacing F3(x)

by F3(x)− F3(0), we may assume F3(x) ∈ x OF0[x, 1/(x p−1
−1)]̂. Since there is

a (p/x)p−2 in the definition of G2(x), it is easy to see (for example, expand G2(x)
as an element in F0[[x, 1/x]]) that the constant term of G3(p/x) is divisible by p
(in fact, by p p−2). Recall that we assume p is odd; hence at least 3.

Now $−(p
2
−1−m)ω can be written as

f (x)y p+1−i dy
y
+ p

(F3(x)
x

)( 1
(x p−1−1)v1w

−1
1 ξ

)
y p+1−i dy

y

+ p G3(p/x)
(x p−x)v1w

−1
1 ξ

y p+1−i dy
y
.

Notice that y p+1
= v1w

−1
1 ξ(x p

− x). The last term is nothing but

pG3

( p
x

)
y−i dy

y
.

Now let

F(x)= f (x)+ p
(F3(x)

x

)( 1
(x p−1−1)v1w

−1
1 ξ

)
, G

( p
x

)
= pG3

( p
x

)
.

It is clear they satisfy all the conditions in the lemma. So we’re done in this case.

(2) Assume f (η)= 0. When p2
− 1−m ≥ [−mp], we can write $−(p

2
−1−m)ω as

−g
( p

x

)
ξ i
(

1+
( p

x

)p−1
H(x)

)
y−i dy

y
,

where H(x) ∈ OF0[x, 1/(x p−1
− 1)]̂[[p/x]]. Make the decomposition

−g
( p

x

)
ξ i H(x)

( p
x

)p−2
= F1(x)x2

+ Ax + H1

( p
x

)
,

where F1(x) ∈ OF0[x, 1/(x p−1
− 1)]̂, A ∈ pOF0 , H1(p/x) ∈ OF0[[p/x]]. No-

tice that A is divisible by p since there is a (p/x)p−2 in the expression. Then
$−(p

2
−1−m)ω is

−g
( p

x

)
ξ i y−i dy

y
+ px F1(x)y−i dy

y
+ p Ay−i dy

y
+

p
x

H1

( p
x

)
y−i dy

y
.
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Using y p+1
= v1w

−1
1 ξ(x p

− x), the second term is

pF1(x)
1

v1w
−1
1 ξ(x p−1−1)

y p+1−i dy
y
.

It’s easy to see the following F(x), G(p/x) actually work:

F(x)= pF1(x)
1

v1w
−1
1 ξ(x p−1−1)

, G
( p

x

)
=−g

( p
x

)
ξ i
+ p A+ p

x
H1

( p
x

)
.

When p2
− 1−m ≥ [−mp] does not hold, then

ω =−$ [−mp]g
( p
η

)
$ i(p−1)ξ i ẽ−i dẽ

ẽ
= p$ p2

−1−m g
( p
η

)
ξ ẽ−i dẽ

ẽ
.

Repeat the previous argument and it’s direct to see the claim in the lemma is true. �

In the previous proposition, we showed how to turn a differential form ω∈ Hχ ′,F0 ,
when restricted to Us′ , into a 1-hypercocycle ({ωs}, { fs1,s2}) inside the de Rham
cohomology H 1

dR(D̂0,OF0 ,ξ
)⊗OF0

OF (via the isomorphism ψs′,ξ ). It is crucial to
understand the mod p properties of this hypercocycle. Essentially, we need to
understand fs in (63) modulo p (recall that fs1,s2 = fs2 − fs1 ; see (58)).

Fix an even vertex s ′ and s ∈ A(s ′). Recall that Vc,ξ =
⋂

sv∈A(s′) Vsv,ξ . It is clear
from our definition that $−(p

2
−1−m) fs ∈ H 0(Vc,ξ ,OVc,ξ ).

Lemma 16.6. (Using notation from the proof of Proposition 16.1.)

(1) When i = p,

$−(p
2
−1−m) fs ≡

b0 y−p

−p
≡

a0 y−p

−p
≡ ξ pg(0)y−p mod pH 0(Vc,ξ ,OVc,ξ ).

(2) When i ∈ {1, . . . , p− 1} and p2
− 1−m ≤ [−mp],

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ ).

(3) When p2
− 1−m ≥ [−mp], we have

$−(p
2
−1−m) fs ≡

b0 y−i

−i
≡

a0 y−i

−i
≡
ξ i g(0)y−i

i
mod pH 0(Vc,ξ ,OVc,ξ ),

except the case i = p − 1 and the case p = 3, i = 1. I claim that in these
exceptional cases, we can find another 1-hypercocycle ({ω′sv }, { f ′s1,s2

}) in the
same cohomology class as ({ωsv }, { fs1,s2}) such that we can write f ′s1,s2

=

f ′s2
− f ′s1

for any s1, s2 ∈ A(s ′) and

$−(p
2
−1−m) f ′s ≡

b0 y−i

−i
mod pH 0(Vc,ξ ,OVc,ξ ),

f ′sv = fs for any sv 6= s.
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Proof of Lemma 16.6. Everything is clear by Lemma 16.5 and the definition of fs

in (63), except for the exceptional cases. First we assume i = p− 1, then

$−(p
2
−1−m) fs ≡

b0 y−(p−1)

−(p− 1)
+

b1 y−2p

−2p
mod pH 0(Vc,ξ ,OVc,ξ ).

This makes sense since vp(b1)≥ 1. Now define gsv ∈ H 0(Vsv,ξ ,OVsv ,ξ
), sv ∈ A(s ′)

as:

gsv =


−

b1

−2pv2
1w
−2
1 ξ 2

(x2p−4
− 2x p−3)y2

(x p−1− 1)2
if sv = s,

−
b1

−2pv2
1w
−2
1 ξ 2

y2

x2 if sv 6= s.

Hence define ω′sv = ωsv +$
p2
−1−mdgsv , f ′s1,s2

= fs1,s2 +$
p2
−1−m(gs1 − gs2);

the hypercocycle ({ωsv }, { fs1,s2}) and ({ω′sv }, { f ′s1,s2
}) are in the same cohomology

class. A simple computation shows the following identity in H 0(Vc,ξ ,OVc,ξ ):

−
b1

−2pv2
1w
−2
1 ξ 2

(x2p−4
− 2x p−3)y2

(x p−1− 1)2
+

b1

−2pv2
1w
−2
1 ξ 2

y2

x2 =
b1 y−2p

−2p
.

Thus if we define f ′s = fs − b1 y−2p/(−2p), f ′sv = fsv , sv 6= s, they satisfy

f ′s1,s2
= f ′s2

− f ′s1
,

and clearly have the property we want.
The case i = 1, p = 3 can be done by the same method. This time

$−(p
2
−1−m) fs ≡ b0 y−1

+
b2

−9
y−9

≡ b0 y−1
+

b2

−9v3
1w
−3
1 ξ 3

(
x3 y3

(x2− 1)3
−

y3

x3

)
mod 3H 0(Vc,ξ ,OVc,ξ ).

We can define gsv similarly. I omit the details here. �

Remark 16.7. In the odd case, things are similar. We only restrict ourselves to
the case p2

− 1−m ≥ [−mp]. Let s be an odd vertex. We also have ψs,ξ (see the
beginning of Section 12). Let ω be an element of Hχ ′,F0 . Similarly to Lemma 16.4,
ω has the form (using (52)):

$ [−mp]
(

F(x)yi
+ pG

( p
x

)
y−p−1+i

) dy
y
, (64)

where F(x)∈OF0[x, 1/(x p−1
−1)]̂, G(p/x)=

∑
+∞

n=0 an(p/x)n , an ∈OF0 ∀n. All
the above arguments work here and we can define a 1-hypercocycle ({ωs′}, { fs′1,s

′

2
})

that represents ω. Notice that there is a “p” in front of G(p/x) in (64). Thus when
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2≤ i ≤ p (resp. i = 1),

$−[−mp] fs′ ∈ pH 0(Vc,ξ ,OVc,ξ ) (resp. H 0(Vc,ξ ,OVc,ξ )),

$−[−mp] fs′1,s
′

2
∈ pH 0(Vs′1,ξ∩Vs′2,ξ ,OVs′1,ξ

∩Vs′2,ξ
) (resp. H 0(Vs′1,ξ∩Vs′2,ξ ,OVs′1,ξ

∩Vs′2,ξ
)).

Here Vs′,ξ , s ′ ∈ A(s) is defined similarly.

Before stating the main result of this section, we still need to do some extra work.
Most results here can be found in [Haastert and Jantzen 1990]. Since D̂0,OF0 ,ξ

is a
curve in P2, the Hodge–de Rham spectral sequence gives us the following exact
sequence:

0→ H 0(D̂0,OF0 ,ξ
, �1

D̂0,OF0
,ξ

)→ H 1
dR(D̂0,OF0 ,ξ

)→ H 1(D̂0,OF0 ,ξ
,OD̂0,OF0

,ξ
)→ 0. (65)

And each group in this exact sequence is a finite free OF0-module. If we use a
1-hypercocycle ({ωs}, { fs1,s2}) to represent a cohomology class in H 1

dR(D̂0,OF0 ,ξ
),

then every element in H 0(D̂0,OF0 ,ξ
, �1

D̂0,OF0
,ξ
) can be identified as the hypercocycle

with all fs1,s2 = 0. And the map to H 1(D̂0,OF0 ,ξ
,OD̂0,OF0 ,ξ

) is just mapping the
hypercocycle to { fs1,s2}, which is considered as a 1-cocycle. Similarly, we have

0→ H 0(Us′0,ξ , �
1
Us′0,ξ

)→ H 1
dR(Us′0,ξ )→ H 1(Us′0,ξ ,OUs′0,ξ

)→ 0,

which can be identified with the reduction mod p of the previous exact sequence.
Recall that the de Rham cohomology of D̂0,OF0 ,ξ

can be identified as the crys-
talline cohomology of Us′0,ξ . It is equipped with a Frobenius operator ϕ. It is
important to understand the relationship between ϕ and the above exact sequence.
Denote

⋃
ξ p−1=−1 D̂0,OF0 ,ξ

by D̂0,OF0
.

Lemma 16.8. Under the isomorphism between H 1
dR(D̂0,OF0 ,ξ

) and H 1
crys(Us′0,ξ/OF0),

(1) ϕ(H 1
dR(D̂0,OF0

)χ
′

)⊂ H 1
dR(D̂0,OF0

)(χ
′)p

.

(2) ϕ(H 1
dR(D̂0,OF0

)χ
′

)⊂ H 0(D̂0,OF0
, �1

D̂0,OF0

)(χ
′)p
+ pH 1

dR(D̂0,OF0
)(χ
′)p

.

(3) The above inclusion is in fact an equality and ϕ induces an isomorphism
between H 1(Us′0,OUs′0

)χ
′

and H 0(Us′0, �
1
Us′0
)(χ
′)p

.

Proof. See Section 3 of [Haastert and Jantzen 1990], especially Proposition 3.5.
Although our curve is slightly different from the curve in that paper, all arguments
in their paper work here. �

Remark 16.9. A variant of Lemma 16.8 is that ϕ induces an isomorphism

H 0(D̂0,OF0
, �1

D̂0,OF0

)χ
′

+ pH 1
dR(D̂0,OF0

)χ
′

−→∼ pH 1
dR(D̂0,OF0

)(χ
′)p
.
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This follows from the fact that ϕ2 is a scalar cx on these spaces and vp(cx) = 1;
see Proposition 12.8. A direct corollary is that ϕ induces an isomorphism between(

H 0(D̂0,OF0
, �1

D̂0,OF0

)χ
′

+ pH 1
dR(D̂0,OF0

)χ
′)/

pH 1
dR(D̂0,OF0

)χ
′

and

pH 1
dR(D̂0,OF0

)(χ
′)p/(

pH 0(D̂0,OF0
, �1

D̂0,OF0

)(χ
′)p
+ p2 H 1

dR(D̂0,OF0
)(χ
′)p)
,

which can be viewed as an isomorphism H 0(Us′0, �
1
Us′0
)χ
′

−→∼ H 1(Us′0,OUs′0
)(χ
′)p

.

In fact, we can write down the isomorphism between H 1(Us′0,OUs′0
)χ
′

and
H 0(Us′0, �

1
Us′0
)(χ
′)p

explicitly (Lemma 16.13 below). Some notation here: as
before (see (27)), we may identify Us′0,ξ with the projective curve defined by
ẽp+1
= v1w

−1
1 ξ(ηp

− η) and the singular points of Us′0 (considered in the special
fiber of 6̃1,OF ,ξ ) are those points with ẽ = 0.

Definition 16.10. We write A(s ′0)={s0, . . . , sp−1, s∞}, where for k= 0, . . . , p−1,
sk is the vertex that corresponds to η = k, ẽ = 0 in Us′0,ξ and s∞ corresponds to the
point η =∞, ẽ = 0 (equivalently, if we use projective coordinates [η, ẽ, 1], then
this point is [1, 0, 0]).

Definition 16.11. Let V0 be the open set of Us′0,ξ that is the complement of the
point η =∞, ẽ = 0. We also define V∞ as the complement of η = ẽ = 0.

Using the notation from Definition 16.2, it is clear that set theoretically, V0

is the union of Vs0,ξ , . . . , Vsp−1,ξ and V∞ is the union of Vs1,ξ , . . . , Vsp−1,ξ , Vs∞,ξ .
By abuse of notation, we also view V0, V∞ as open affine formal subschemes
of D̂0,OF0 ,ξ

.
Notice that V0, V∞ is an open covering of D̂0,OF0 ,ξ

. Hence every cohomology
class of H 1

dR(D̂0,OF0 ,ξ
) can be represented by a 1-hypercocycle (ω0, ω∞, f0,∞) as

before. Every element of H 1(Us′0,ξ ,OUs′0,ξ
) can be represented by an element in

H 0(V0 ∩ V∞,OV0∩V∞), viewed as a 1-cocycle. The next lemma is easy to see.

Lemma 16.12. H 1(Us′0,OUs′0
)χ
′

has a basis, when restricted to Us′0,ξ , given by

ẽp+1−i

ηk , k = 1, . . . , p− i.

If i = p, then H 1(Us′0,OUs′0
)χ
′

= 0.

Hence we may view ẽp+1−i/ηk as an element in H 1(Us′0,OUs′0
)χ
′

. Then, as a 1-
hypercocycle, ϕ(ẽp+1−i/ηk) is (0, 0, ẽ(p+1−i)p/ηpk). A direct computation shows:

Lemma 16.13. ϕ(ẽp+1−i/ηk) is the same as the holomorphic differential form

(v1w
−1
1 ξ)p−i (−1)p−i−kk

( p−i
k

)
ηp−i−k ẽi−1 dẽ.
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Remark 16.14. We will need to translate a 1-cocycle inside H 1(Us′0,ξ ,OUs′0,ξ
) using

the open covering {Vs,ξ }s∈A(s′0) to a 1-cocycle using the open covering {V0, V∞}.
This is done as follows. If we start with a 1-cocycle { f ′s,s′′}, we can find another
1-cocycle { fs,s′′} that represents the same cohomology class and fs0,s∞ can be
extended to a section in H 0(V0 ∩ V∞,OV0∩V∞). Then fs0,s∞ can be viewed as a
1-cocycle of the covering {V0, V∞}. In fact, this is just what we want.

Example 16.15. Let’s compute one example here. Consider the 1-cocycle { f ′s,s′′}:

f ′s,s′′ = f ′s′′ − f ′s , where f ′s0
= ẽ−i , f ′s = 0 for s 6= s0.

Then clearly f ′s0,s∞ has poles on V0 ∩ V∞. But we can modify this cocycle a little
bit: define

gs0 =
ηp−2ẽp+1−i

v1w
−1
1 ξ(ηp−1− 1)

∈ H 0(Vs0,ξ ,OVs0,ξ
), gs = 0 for s 6= s0,

and let
fs,s′′ = f ′s,s′′ − gs′′ + gs .

Then { fs,s′′} and { f ′s,s′′} represent the same cohomology class. Moreover,

fs0,s∞ = f ′s0,s∞ + gs0 =− fs0 + gs0 =−ẽ−i
+

ηp−2ẽp+1−i

v1w
−1
1 ξ(ηp−1− 1)

=
ẽp+1−i

v1w
−1
1 ξη

(using ẽp+1
= v1w

−1
1 ξ(ηp

− η)) clearly extends to V0 ∩ V∞. Hence,

ẽp+1−i

v1w
−1
1 ξη

,

viewed as a 1-cocycle of the covering {V0, V∞}, represents the same cohomology
class as { f ′s.s′′}.

A combination of Remark 16.7 and the Lemma 16.8 gives:

Lemma 16.16. Assume p2
−1−m ≥ [−mp] and i 6= 1. Let s be an odd vertex and

ω ∈ Hχ ′,F0 .

(1) Using the method in the proof of Proposition 16.1, we may view $−[−mp]ω as
a cohomology class inside H 1

crys(Us/OF0)
χ ′ . Then

ϕ($−[−mp]ω) ∈ pH 1
crys(Us/OF0)

(χ ′)p
,

or equivalently (using Remark 16.9),

$−[−mp]ω ∈ ϕ(H 1
crys(Us/OF0)

(χ ′)p
).
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(2) In fact, Proposition 15.8 shows that $−[−mp]ω modulo p is a holomorphic
differential form inside

H 0(Us, �
1
Us
)= ϕ(H 1

dR(Us)),

which is nothing but $−[−mp]ω considered as a cohomology class in H 1
dR(Us).

In particular, if
ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1),

then the cohomology class of $−[−mp]ω is inside pH 1
crys(Us/OF0).

Proof. Following Remark 16.7, let ({ωs′}, { fs′1,s
′

2
}) be the 1-hypercocycle that

represents ω in F ⊗F0 H 1
crys(Us/F0)

χ ′ (by identifying the crystalline cohomology
of Us with the de Rham cohomology of D̂0,OF0

). Since

$−[−mp] fs′1,s
′

2
∈ pH 0(Vs′1,ξ ∩ Vs′2,ξ ,OVs′1,ξ

∩Vs′2,ξ
),

all these $−[−mp] fs′1,s
′

2 vanish if we reduce modulo p. This means that the image
of $−[−mp]ω in H 1

dR(Us) actually lies inside H 0(Us, �
1
Us
). Now our first claim is

a direct consequence of Lemma 16.8. Referring again to Remark 16.7, the rest of
the lemma follows from

$−[−mp] fs′ ∈ pH 0(Vc,ξ ,OVc,ξ ).

Thus when we restrict everything to the special fiber of Vc,ξ (equivalently, U 0
s,ξ ),

$ [−mp]ωs′ =$
−[−mp]ω− d fs′ ≡$

−[−mp]ω mod pH 0(Vc,ξ , �
1
Vc,ξ
).

This indicates that the cohomology class of$−[−mp]ω is just the 1-form$−[−mp]ω

after reducing modulo p. �

Remark 16.17. Using the action of GL2(Qp), it’s not hard to see that if we replace
s by an even vertex s ′ and ω ∈ Hχ ′,F0 by ω ∈ H (χ ′)p,F0 , we have a similar result:

$−[−mp]ω ∈ ϕ(H 1
crys(Us′/OF0)

χ ′),

and exactly the same statement for the second part.

Similarly, by combining Lemmas 16.6 and 16.8, we obtain:

Lemma 16.18. Let ω∈ H 0(6̃1,OF , ω
1)χ

′,Gal(F/F0) and s ′ be an even vertex. Assume

ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1)χ

′,Gal(F/F0) (66)

for any s ∈ A(s ′).
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(1) The image of $−(p
2
−1−m)ω in H 1

crys(Us′/OF0)
χ ′ is actually inside

ϕ(H 1
crys(Us/OF0)

(χ ′)p
).

Equivalently, if we view $−(p
2
−1−m)ω as an element inside H 1

crys(Us′/OF0)
χ ′ ,

ϕ($−(p
2
−1−m)ω) ∈ pH 1

crys(Us/OF0)
(χ ′)p

.

(2) Assume i 6= p. Proposition 15.8 shows that in this case$−(p
2
−1−m)ω modulo p

is a holomorphic differential form inside

H 0(Us′, �
1
Us
)= ϕ(H 1

dR(Us′)),

and we may identify it with the cohomology class of$−(p
2
−1−m)ω in H 1

dR(Us′).
In particular, if

ω|
6̃1,OF ,s′

∈ pH 0(6̃1,OF ,s′, ω
1),

then the cohomology class of $−(p
2
−1−m)ω is inside pH 1

crys(Us′/OF0).

(3) Assume i = p. We have a slightly weaker result: assume

ω|
6̃1,OF ,s′

∈ pH 0(6̃1,OF ,s′, ω
1); (67)

then the cohomology class of $−(p
2
−1−m)ω is inside pH 1

crys(Us′/OF0).

Proof. First we prove the first two parts. If i = p, we know that (Lemma 16.12)

H 1(Us′,OUs′
)χ
′

= H 0(Us′, �
1
Us′
)(χ
′)p
= 0.

Hence Lemma 16.8 tells us that

ϕ(H 1
crys(Us/OF0)

(χ ′)p
)= H 1

crys(Us′/OF0)
χ ′ .

So in this case, the first part is trivially true.
Now assume i 6= p. We need to use some results from Lemma 16.6; see the

notation there. We can represent ω|
6̃1,OF ,s′

as a 1-hypercocycle ({ωs}, { fs1,s2}) and
for s ∈ A(s ′), there exists

fs ∈$
p2
−1−m H 0(Vc,ξ ,OVc,ξ ),

such that fs1,s2 = fs2 − fs1 . Hence, as in the proof of Lemma 16.16, it suffices to
prove

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ ).

If p2
− 1−m ≤ [−mp] and i 6= p, this already follows from the second part of

Lemma 16.6. So we only need to treat the case p2
−1−m≥[−mp]. Then the desired

result follows from our condition that ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1)χ

′,Gal(F/F0).
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More precisely, using the notation from the proof of Proposition 16.1 (espe-
cially (59)), we can write

ω|
6̃1,OF ,[s,s′],ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
. (68)

Notice that Lemma 16.6 tells us that

$−(p
2
−1−m) fs ≡

ξ i g(0)y−i

i
mod pH 0(Vc,ξ ,OVc,ξ ).

It suffices to show g(0) ∈ pOF0 . But by Lemma 15.7,

g(ζ ) ∈ pOF0

[
ζ,

1
ζ p−1−1

]
,̂

since we assume ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1)χ

′,Gal(F/F0). So we’re done for the
first two parts.

As for the last claim, we keep using the notation ({ωs}, { fs1,s2}) and { fs} as
above. Notice that we already assume ω|

6̃1,OF ,s′
∈ pH 0(6̃1,OF ,s′, ω

1). Hence if we
can show

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ ), (69)

then we would know that both ωs and fs1,s2 are divisible by p. Thus it suffices to
prove (69).

But using the notation (68) above and Lemma 16.6, which says that

$−(p
2
−1−m) fs ≡ ξ

pg(0)y−p mod pH 0(Vc,ξ ,OVc,ξ ),

we only need to show g(0) is divisible by p. But by our assumption (67),

f (η) ∈ pOF0

[
η,

1
ηp−1− 1

]
.̂

Since we also assume ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1),

g(ζ ) ∈ pOF0

[
ζ,

1
ζ p−1− 1

]
.̂

See the computations around Lemma 15.6. Therefore g(0) ∈ pOF0 . �

Remark 16.19. Using the action of GL2(Qp), we can get a variant of the previous
lemma. Let ω ∈ H 0(6̃1,OF , ω

1)(χ
′)p,Gal(F/F0) and s be an odd vertex. Assume

ω|
6̃1,OF ,s′

∈ pH 0(6̃1,OF ,s′, ω
1)(χ

′)p,Gal(F/F0)

for any s ′∈ A(s). Then the cohomology class of$−(p
2
−1−m)ω in H 1

crys(Us′/OF0)
(χ ′)p

is inside ϕ(H 1
crys(Us/OF0)

χ ′). And we have a similar result for the last two parts: if
we assume

ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1),

then the cohomology class of $−(p
2
−1−m)ω is inside pH 1

crys(Us/OF0).
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Remark 16.20. When i = p, we will see in Section 17 that the second part of the
lemma is actually still true (Lemma 17.12).

Now let’s recall the construction of M(χ, [1, b]) in Section 14. First we write∏
s

(F ⊗F0 H 1
crys(Us/F0)⊗Qp E)χ = F1⊕ F2,

where

F1
def
=

∏
s′ even

F ⊗F0 H 1
crys(Us′/F0)

χ ′

τ ⊕

∏
s odd

F ⊗F0 H 1
crys(Us/F0)

(χ ′)p

τ̄ ,

F2
def
=

∏
s′ even

F ⊗F0 H 1
crys(Us′/F0)

(χ ′)p

τ̄ ⊕

∏
s odd

F ⊗F0 H 1
crys(Us/F0)

χ ′

τ .
(70)

It is clear from Lemma 16.18 that gϕ⊗ϕ⊗IdE sends F1 to F2. Let f be an element
of (H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0). By Proposition 14.6, we have an injective

map (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) into
∏

s

(
F ⊗F0 H 1

crys(Us/F0)⊗Qp E
)χ . Let

( f1, f2) be the decomposition of the image of f into F1⊕ F2. Then:

Lemma 16.21. M(χ, [1, b])={
f ∈(H 0(6̃1,OF , ω

1)⊗OE)
χ,Gal(F/F0)

∣∣(1⊗b)(gϕ⊗ϕ⊗IdE)( f1)=($
(p−1)i

⊗1) f2
}
.

Here 1⊗ b and $ (p−1)i
⊗ 1 are viewed as elements in F⊗

Qp
E.

Proof. Considering

(H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) = (H 0(6̃(0)1,OF
, ω1)⊗ OE)

χ,Gal(F/Qp), (71)

the lemma follows from Proposition 13.3 and the remark below it. �

Thus we can rewrite M(χ, [1, b]) as the kernel of θb, which is defined as the
composite of the following maps:

(H 0(6̃1,OF , ω
1)⊗OE)

χ,Gal(F/F0)→

∏
s

(
F⊗F0 H 1

crys(Us/F0)⊗Qp E
)χ Lb
−→F2, (72)

where Lb : F1⊕ F2→ F2 is defined as

( f1, f2) 7→ −(1⊗ b)(gϕ ⊗ϕ⊗ IdE)( f1)+ ($
(p−1)i

⊗ 1) f2.

To understand the image of θb, we introduce:

Definition 16.22.

J1
def
=

∏
s′ even

H 1
crys(Us′/OF0)

χ ′

τ ⊕

∏
s odd

H 1
crys(Us/OF0)

(χ ′)p

τ̄ ⊂ F1, (73)

J2
def
= ($ p2

−1−m gϕ ⊗ϕ⊗ IdOE )(J1)⊂ F2. (74)



484 Lue Pan

Lemma 16.23. Under the assumption p2
− 1−m ≥ [−mp] and 2≤ i ≤ p− 1, we

have
θb
(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)
⊂ J2.

Remark 16.24. In the next section we show that the lemma also holds for i = 1, p.

Proof. Let ω be an element in (H 0(6̃1,OF , ω
1)⊗OE)

χ,Gal(F/F0). Write ω= (ω1, ω2)

as the decomposition into F1⊕ F2. By Proposition 16.1, we have ω1 ∈$
p2
−1−m J1.

Hence
Lb((ω1, 0))=−(gϕ ⊗ϕ⊗ b(ω1)) ∈ J2.

It remains to prove that Lb((0, ω2)) ∈ J2, or equivalently, ($ (p−1)i
⊗ 1)ω2 ∈ J2.

Using the action of GL2(Qp), we only need to check this for one odd vertex. In
other words, it suffices to show

($ (p−1)i
⊗ 1)ω2,s ∈ ($

p2
−1−m gϕ ⊗ϕ⊗ IdOE )(H

1
crys(Us/OF0)

(χ ′)p

τ̄ ),

where s is an odd vertex and ω2,s is the image of ω inside F ⊗F0 H 1
crys(Us/F0)

χ ′

τ .
But this is nothing but the first part of Lemma 16.16. �

By abuse of notation, we use θb to denote the map

(H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2.

Also we use θ̄b to denote the modulo p map of θb, that is:

θ̄b : Hχ,F0 = (H 0(6̃1,OF , ω
1)⊗ OE/p)χ,Gal(F/F0)→ J2/p.

Recall that we have an exact sequence (Proposition 15.13):

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ → Hχ,F0 → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → 0.

As for J2/p, it’s obvious that

J2/p ' IndGL2(Qp)
GL2(Zp)Q

×
p
ϕ(H 1

crys(Us′0/OF0)
χ ′

τ )/p.

Using Lemma 16.8, the filtration

pϕ(H 1
crys(Us′0/OF0)

χ ′)⊂ pH 1
crys(Us′0/OF0)

(χ ′)p
⊂ ϕ(H 1

crys(Us′0/OF0)
χ ′)

induces the following exact sequence:

0→ H 1(Us′0,OUs′0
)(χ
′)p
→ ϕ(H 1

crys(Us′0/OF0)
χ ′)/p→ H 0(Us′0, �

1
Us′0
)(χ
′)p
→ 0.

Another way to see this is that J2/p is canonically isomorphic with J1/p, and J1/p
has the usual exact sequence for de Rham cohomology. In other words, we have:

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 1(Us′0
,OUs′0

)
(χ ′)p

τ̄ → J2/p→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → 0.
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Lemma 16.25. Assume p2
− 1− m ≥ [−mp] and i ∈ {2, . . . , p − 1}. Then θ̄b

induces the following commutative diagram:

IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ
//

θ̄b,1
��

Hχ,F0 //

θ̄b

��

IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄

θ̄b,2
��

IndGL2(Qp)
GL2(Zp)Q

×
p

H 1(Us′0
,OUs′0

)
(χ ′)p

τ̄
// J2/p // IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄

Proof. Let ω be an element of (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) whose mod p
reduction lies in IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0, �
1
Us′0
)
χ ′

τ . We need to show that

θb(ω) ∈$
p2
−1−mIndGL2(Qp)

GL2(Zp)Q
×
p

pH 1
crys(Us′0/OF0)

(χ ′)p

τ̄ ⊂ J2.

Write ω = ωτ +ωτ̄ as in the decomposition(
H 0(6̃1,OF , ω

1)⊗Qp OE
)χ,Gal(F/F0)

= H 0(6̃1,OF , ω
1)χ

′,Gal(F/F0)
τ ⊕ H 0(6̃1,OF , ω

1)
(χ ′)p,Gal(F/F0)
τ̄ .

It is clear from the construction in the proof of Proposition 15.13 that ω is in H1

modulo p (see the notation there). This means that

ωτ |6̃1,OF ,s
∈ pH 0(6̃1,OF ,s, ω

1)χ
′

τ and ωτ̄ |6̃1,OF ,s′
∈ pH 0(6̃1,OF ,s′, ω

1)
(χ ′)p

τ̄ (75)

for any odd vertex s and even vertex s ′. Then, by Lemma 16.16, we know that the
image of $−[−mp]ωτ in H 1

crys(Us/OF0)
χ ′

τ actually lies in pH 1
crys(Us/OF0)

χ ′

τ for any
odd vertex s. Similarly the image of $−[−mp]ωτ̄ will be in pH 1

crys(Us′/OF0)
(χ ′)p

τ̄

for any even vertex s ′. Let ω = (ω1, ω2) be the decomposition of ω into F1⊕ F2.
Then the discussion before indicates that

($ (p−1)i
⊗ 1)ω2 ∈$

p2
−1−mIndGL2(Qp)

GL2(Zp)Q
×
p

pH 1
crys(Us′0/OF0)

(χ ′)p

τ̄ ⊂ J2.

It remains to prove that

(gϕ ⊗ϕ⊗ IdE)(ω1) ∈$
p2
−1−mIndGL2(Qp)

GL2(Zp)Q
×
p

pH 1
crys(Us′0/OF0)

(χ ′)p

τ̄ ⊂ J2.

This follows from Lemma 16.18 (the condition in that lemma is satisfied since we
have (75)). �

Now we can state the main theorem of this paper.

Theorem 16.26. The maps θ̄b,1, θ̄b,2 are surjective. More precisely, if we identify
H 0(Us′0, �

1
Us′0
)
(χ ′)p

τ̄ with (Symp−1−i (OE/p)2)⊗ deti+ j (see Remark 15.14), and
identify

H 0(Us′0, �
1
Us′0
)χ
′

τ ' H 1(Us′0,OUs′0
)
(χ ′)p

τ̄
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with (Symi−2(OE/p)2) ⊗ det j+1, where the isomorphism is induced by ϕ (see
Remark 16.9), then θ̄b,1, θ̄b,2 are given by

θ̄b,1 : σi−2( j + 1)→ σi−2( j + 1), X 7→ −bX + ((−1) j+1τ(wi
1))T (X),

θ̄b,2 : σp−1−i (i + j)→ σp−1−i (i + j), X 7→ X − ((−1) j+1τ(w−i
1 )b)T (X),

where T is the Hecke operator (defined in [Breuil 2007]). See the beginning of the
paper for its definition.

We list some direct consequences of this theorem.

Corollary 16.27. θ̄b is surjective.

Corollary 16.28. θb : (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2 is surjective and we
have the following exact sequence:

0→ M(χ, [1, b])→ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2→ 0. (76)

Applying the functor M 7→ Md
= Homcont

OE
(M, E) defined in Section 14, we get

0→ J d
2 →

(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)d
→ B(χ, [1, b])→ 0. (77)

Notice that the kernel and the middle term of this exact sequence do not depend
on b. In fact, the unitary representation J d

2 is the completion of c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1

with respect to the lattice c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρo
χ−1 , where ρo

χ−1 ⊂ ρχ−1 is an OE -lattice.
It is the universal unitary completion of c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 .

Proof. Recall that B(χ, [1, b]) = (M(χ, [1, b]))d defined in Section 14. The
surjectivity of θb follows from the surjectivity of θ̄b and the fact that J2 and
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0) are p-adically complete. The explicit description

of J d
2 follows from the obvious isomorphism between J2 and J1, which is clearly

isomorphic to IndGL2(Qp)
GL2(Zp)Q

×
p

H 1
crys(Us′0/OF0)

χ ′−1

τ . It is easy to verify that it satisfies
the universal property. �

Corollary 16.29. Under the assumption p2
− 1−m ≥ [−mp], i ∈ {2, . . . , p− 1},

as a representation of GL2(Qp),

0→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ 0,

where c(χ, b) = (−1) j+1τ(w−i
1 )b ∈ OE/p. Thus B(χ, [1, b]) is nonzero and

admissible.

Remark 16.30. If we assume p2
− 1−m ≤ [−mp], i ∈ {2, . . . , p− 1}, the same

proof will yield a similar exact sequence:

0→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ 0.
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Proof of Theorem 16.26. First we introduce some notation.

Definition 16.31. Let ω ∈ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0). Then

(1) ωτ +ωτ̄ will be the decomposition of ω in

(H 0(6̃1,OF , ω
1)⊗ OE)

χ
= H 0(6̃1,OF , ω

1)χ
′

τ ⊕ H 0(6̃1,OF , ω
1)
(χ ′)p

τ̄ .

We will use ωτ,s,ξ (resp. ωτ̄ ,s,ξ ) to denote the restriction of ωτ (resp. ωτ̄ ) to 6̃1,OF ,s,ξ ,
where s is a vertex of the Bruhat–Tits tree and ξ p−1

=−1.

(2) ω = ω1 +ω2 will be its decomposition into F1⊕ F2 (see (70)). For an even
vertex s ′ and odd vertex s, we define ω1,s′ and ω1,s as the images of ω inside
F ⊗F0 H 1

crys(Us′/F0)
χ ′

τ and F ⊗F0 H 1
crys(Us/F0)

(χ ′)p

τ̄ , respectively. It is clear that
ω2,s′ , ω2,s can be defined similarly. We also use ω1,s,ξ to denote the image of ω in
F ⊗F0 H 1

crys(Us,ξ/F0)
(χ ′)p

τ̄ and define ω1,s′,ξ , ω2,s,ξ , and ω2,s′,ξ similarly.

In fact, Proposition 16.1 tells us that for an even vertex s ′ and odd vertex s,

ω1,s′ ∈$
p2
−1−m H 1

crys(Us′/OF0)
χ ′

τ , ω1,s ∈$
p2
−1−m H 1

crys(Us/OF0)
(χ ′)p

τ̄ ,

and

ω2,s′ ∈$
[−mp]H 1

crys(Us′/OF0)
(χ ′)p

τ̄ , ω2,s ∈$
[−mp]H 1

crys(Us/OF0)
χ ′

τ ).

Now we start to prove the surjectivity of

θ̄b,2 : IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

Consider [Id, xk y p−1−i−k
] in (See the beginning of the paper for the notation

here)

IndGL2(Qp)
GL2(Zp)Q

×
p
(Symp−1−i (OE/p)2)⊗ deti+ j

' IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

Let ω̄ ∈ Hχ,F0 be a lift of [Id, xk y p−1−i−k
] in the first row of Lemma 16.25 and

let ω ∈ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) be a lift of ω̄.
It is clear that we may assume ωτ = 0. Then our choice of ω implies:

Lemma 16.32. Under the identification in (27),

ωτ̄ ,s′0,ξ ≡$
[−mp]ηk ẽi dẽ

ẽ
mod pH 0(6̃1,OF ,s′0,ξ , ω

1)τ̄ , (78)

ωτ̄ ,s′,ξ ∈ pH 0(6̃1,OF ,s,ξ , ω
1)τ̄ for any even vertex s ′ 6= s ′0. (79)

Using this and Remark 16.17, we know that for any even vertex s ′ 6= s0,

$ (p−1)iω2,s′ ∈$
p2
−1−m pH 1

crys(Us′/OF0)
(χ ′)p

τ̄ ,
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and considered as elements in H 0(Us′0, �
1
Us′0
)⊂ H 1

dR(Us′0),

$−[−mp]ω2,s′0,ξ ≡ η
k ẽi dẽ

ẽ
mod pH 1

crys(Us′0/OF0)
(χ ′)p

τ̄ .

Similarly, Remark 16.19 tells us that for any odd vertex s /∈ A(s ′0),

ϕ($−(p
2
−1−m)ω2,s) ∈ pH 1

crys(Us/OF0)
(χ ′)p

τ̄ .

Hence it is clear from the definition of θb that we have:

Lemma 16.33. θ̄b,2([Id, xk y p−1−i−k
])= [Id, vs′0] +

∑
s∈A(s′0)

[g−1
s , vs],

where gs is a chosen representative in the coset defined by s. Recall that we identify
the set of vertices of the Bruhat–Tits tree with GL2(Zp)Q

×
p \GL2(Qp).

Since ω1,s′0 = 0, it follows from (78) that vs′0 = xk y p−1−i−k .
To determine other terms, we recall some results in Section 7. Recall that s0 is the

vertex that corresponds to η = ẽ = 0. As a coset, it corresponds to GL2(Zp)Q
×
p ·w,

where

w =

(
0 −1
p 0

)
. (80)

Then 6̃1,OF ,[s′0,s0],ξ is isomorphic to

Spf
OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
, ẽ, ẽ′

]̂
(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
, ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

ηp−1−1
, ẽẽ′−$ p−1ξ

)
in such a way that the following lemma is true.

Lemma 16.34. The action of w sends 6̃1,OF ,[s′0,s0],ξ to

6̃1,OF ,[s′0,s0],ξ p = 6̃1,OF ,[s′0,s0],−ξ .

Explicitly, it is given by (see Corollary 7.7; recall that ẽ = e/$ ):

η 7→ −ζ, ζ 7→ −η, ẽ 7→ v1ẽ′, ẽ′ 7→ v−1
1 ẽ.

Now we come back to our situation. Using Lemma 15.5, the restriction of ωτ̄ to
6̃1,OF ,[s′0,s0] can be written as

ω|
6̃1,OF ,[s

′
0,s0],ξ
=$ [−mp] f (η)ẽi dẽ

ẽ
+$ p2

−1−m g(ζ )ẽ′p+1−i dẽ′

ẽ′
,
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where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂. Since ω is
in the (χ ′)p-isotypic component, we must have (using results in Section 9):

ω|
6̃1,OF ,[s

′
0,s0],−ξ

=$ [−mp] f (η)ẽi (−1)−(i+ j) dẽ
ẽ
+$ p2

−1−m g(ζ )ẽ′p+1−i (−1)−( j+1) dẽ′

ẽ′
.

By our construction of ω,

ωτ̄ ,s′0,ξ = ωτ̄ |6̃1,OF ,s
′
0,ξ
≡$ [−mp]ηk ẽi dẽ

ẽ
mod pH 0(6̃1,OF ,s′0,ξ , ω

1).

Hence:

Lemma 16.35. f (η)≡ ηk mod pOF0

[
η,

1
ηp−1−1

]
.̂

I would like do all the computations on the central component, so we define

hs0 = (w
−1)∗(ωτ̄ ) ∈ H 0(6̃1,OF , ω

1)τ . (81)

Then (notice that w maps the (−ξ)-component to the ξ -component) a direct conse-
quence of Lemma 16.34 is:

Lemma 16.36. hs0 |6̃1,OF ,s
′
0,ξ
= (w−1)∗(ωτ̄ ,s0,−ξ ) has the form

$ p2
−1−m g̃(−η)ẽp+1−i (−v−1

1 )p+1−i (−1) j+1 dẽ
ẽ

+$ [−mp] f̃ (−ζ )ẽ′i (−v1)
i (−1)i+ j dẽ′

ẽ′
,

where f̃ (−ζ )= F̃r( f (−ζ )), applying Frobenius operator on the coefficients, and
g̃(−η) is defined similarly.

In fact, by Lemma 16.35, we know that

f̃ (−ζ )≡ (−ζ )k mod pOF0

[
ζ,

1
ζ p−1−1

]
.̂

We need to compute the cohomology class of$−(p
2
−1−m)hs0 in H 1

crys(Us′0/OF0)τ

(modulo p). Following the strategy in the proof of Proposition 16.1 (see the notation
there), we may use a 1-hypercocycle ({ωs}, { fs1,s2}) to represent hs0 . Also recall
that fs1,s2 = fs2 − fs1 (all considered as elements in $ p2

−1−m H 0(Vc,ξ ,OVc,ξ )). By
definition of θ̄b,2, we only need to know the image of ϕ($−(p

2
−1−m)hs0) in

H 1
dR(Us′0)τ̄ = H 1

crys(Us′0/OF0)τ̄/pH 1
crys(Us′0/OF0)τ̄ .

Hence Lemma 16.8 tells us that we only need to know the image of $−(p
2
−1−m)hs0

inside
H 1(Us′0,OUs′0

)τ .
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In other words, we are only concerned with the mod p properties of fs .
Since w interchanges s ′0 and s0, w(s) 6= s ′0 for any odd vertex s 6= s0. Then it

follows from Lemma 16.32 that for any s ∈ A(s ′0), s 6= s0,

hs0 |6̃1,OF ,s
∈ pH 0(6̃1,OF ,s, ω

1)τ .

Therefore the proof of Lemma 16.18 implies that for any s ∈ A(s ′0), s 6= s0,

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ )τ .

Moreover, Lemma 16.6 tells us that (compare Lemma 16.36 with (59) and notice
that g(ζ ) there is f̃ (−ζ )(−v1)

i (−1)i+ j here)

$−(p
2
−1−m) fs0 ≡

ξ i f̃ (0)(−v1)
i (−1)i+ j y−i

i
mod pH 0(Vc,ξ ,OVc,ξ )τ .

Recall that the identification of Us′0,ξ and the special fiber of D̂0,OF0 ,ξ
is given by

x 7→ η, y 7→ ẽ.

Lemma 16.37. The image of $−(p
2
−1−m)hs0 in H 1(Us′0,ξ ,OUs′0,ξ

)τ is the following
1-cocycle { f ′s,s′′} if we use the open covering {Vs,ξ }s :

f ′s,s′′ = f ′s′′− f ′s , where f ′s0
= ξ i f̃ (0)(−v1)

i (−1)i+ j i−1ẽ−i , f ′s = 0 for s 6= s0.

Now we want to write this cohomology class as a 1-cocycle f0,∞ of the open cov-
ering {V0, V∞} (Definition 16.11). But this is already computed in Example 16.15:

Lemma 16.38. The image of $−(p
2
−1−m)hs0 in H 1(Us′0,ξ ,OUs′0,ξ

)τ is the following
1-cocycle { f0,∞} if we use the open covering {V0, V∞}:

f0,∞ = f̃ (0)(−1) j i−1w1(v1ξ)
i−1 ẽp+1−i

η
.

Thanks to Lemma 16.13, a simple computation shows:

Lemma 16.39. The image of ϕ($−(p
2
−1−m)hs0) in H 1

dR(Us′0,ξ )τ̄ is

ϕ
(

f̃ (0)(−1) j i−1w1(v1ξ)
i−1 ẽp+1−i

η

)
= f (0)(−1)i+ j+1wi

1η
p−1−i ẽi dẽ

ẽ
∈ H 0(Us′0,ξ , �

1
Us′0,ξ

)τ̄ .

Recall that in the isomorphism

H 0(Us′0, �
1
Us′0
)(χ
′)p
→ (Symp−1−i F

2
p2)⊗ deti+ j ,
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ηp−1−i ẽi dẽ/ẽ is identified with x p−1−i . By Lemma 16.35, f (0) = 1 if k = 0
and f (0)= 0 otherwise. Hence, considering the definition of θ̄b,2, Lemma 16.39
implies:

Lemma 16.40. [w, v[w−1]] =

{
[w, (−1) j+1τ(w−i

1 )bx p−1−i
] if k = 0,

0 otherwise.

Now we compute the same term of T ([Id, xk y p−1−i−k
]) (see the beginning of

the paper for the notation here):

[w, ϕr (w
−1)(xk y p−1−i−k)] =

[
w,

(
0 1
−1 0

)
◦ϕr

((
1 0
0 p−1

))
(xk y p−1−i−k)

]
,

which is nonzero if and only if k = 0. When k = 0,

[w, ϕr (w
−1)(y p−1−i )] =

[
w,

(
0 1
−1 0

)
◦ϕr

((
1 0
0 p−1

))
(y p−1−i )

]
=

[
w,

(
0 1
−1 0

)
(y p−1−i )

]
= [w, x p−1−i

].

Lemma 16.41. T ([Id, xk y p−1−i−k
])=

{
[w, x p−1−i

] + other terms, k = 0,
[w, 0] + other terms, k 6= 0.

Since GL2(Zp) acts transitively on A(s ′0), the above computation implies

θ̄b,2([Id, xk y p−1−i−k
])

= [Id, xk y p−1−i−k
] − ((−1) j+1τ(w−i

1 )b)T ([Id, xk y p−1−i−k
]).

Notice that θ̄b,2 is GL2(Qp)-equivariant. Therefore,

θ̄b,2 = Id−((−1) j+1τ(w−i
1 )b)T .

As for θ̄b,1, the computation is almost the same. I omit the details here. �

17. Computation of M(χ, [1, b])/ p, II: i = 1, p

In this section, we deal with the case i = 1, p. We keep the notation used in the
last two sections. Now Proposition 15.13 becomes:

Proposition 17.1. (1) If i = 1, there exists a GL2(Qp)-equivariant isomorphism

Hχ,F0 −→∼ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

(2) If i = p,
Hχ,F0 −→∼ IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0, �
1
Us′0
)χ
′

τ .

Proof. Notice that when i = 1, H 0(Us′0, �
1
Us′0
)χ
′

= 0. So everything follows from
Proposition 15.13 and Remark 15.15. �
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In fact, we can see the above isomorphisms in the following way. If i = p, for
any h̄ ∈ Hχ,F0 , the restriction of h̄τ (resp. h̄ τ̄ ) to 6̃1,OF ,s′ (resp. 6̃1,OF ,s) for an odd
(resp. even) vertex s ′ (resp. s) corresponds to a holomorphic differential form on
Us′ (resp. Us) under the isomorphism in Lemma 15.4. Hence we can define the
above map. The case i = 1 is similar.

As we promised earlier, we have:

Lemma 17.2. Assume i = 1 or p. Then

θb
(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)
⊂ J2.

Proof. See (73), (74) for the definitions of J1, J2. First we assume i = p. Then by
Lemma 16.8, we have

ϕ(H 1
crys(Us′/OF0)

χ ′)= pH 1
crys(Us′/OF0)

(χ ′)p
.

Thus we may identify J2= ($
p2
−1−m
⊗ϕ⊗IdOE )(J1)with (recall F2 is an F⊗Qp E-

module)

($ p2
−1−m

⊗ 1)
( ∏

s′ even

pH 1
crys(Us′/OF0)

χ ′

τ̄ ⊕

∏
s odd

pH 1
crys(Us′/OF0)

(χ ′)p

τ

)
⊂ F2.

Let ω ∈ (H 0(6̃1,OF , ω
1)⊗OE)

χ,Gal(F/F0) and ω=ω1+ω2 be the decomposition
of ω into F1⊕ F2. By definition ϕ(ω1) ∈ J2. Since

[−mp] + i(p− 1)= (p2
− 1)+ p2

− 1−m

in this case, Proposition 16.1 implies that $ i(p−1)ω2 ∈ J2. Hence θb(ω) ∈ J2.
Now assume i = 1; then ϕ(H 1

crys(Us′/OF0)
χ ′)= pH 1

crys(Us′/OF0)
(χ ′)p

. Hence

J2 =$
p2
−1−m

( ∏
s′ even

H 1
crys(Us′/OF0)

χ ′

τ̄ ⊕

∏
s odd

H 1
crys(Us′/OF0)

(χ ′)p

τ

)
.

So the lemma follows directly from Proposition 16.1. �

Let θ̄b : Hχ,F0 → J2/p be the mod p map of θb. It is clear that

J2/p ' IndGL2(Qp)
GL2(Zp)Q

×
p

H 1
dR(Us′0)

(χ ′)p

τ̄ '

{
IndGL2(Qp)

GL2(Zp)Q
×
p

H 1(Us′0,OUs′0
)
(χ ′)p

τ̄ , i = p,

IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ , i = 1.

We can now state our main results of this section.

Theorem 17.3. θ̄b is surjective. More precisely:

(1) Assume i = p. If we consider the following isomorphism induced by ϕ
(Remark 16.9):

H 0(Us′0, �
1
Us′0
)χ
′

τ ' H 1(Us′0,OUs′0
)
(χ ′)p

τ̄ ,
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and use Remark 15.14 to make the identification

H 0(Us′0, �
1
Us′0
)χ
′

τ ' (Symp−2(OE/p)2)⊗ det j+1,

then θ̄b is given by

θ̄b : σp−2( j + 1)→ σp−2( j + 1),

X 7→ −bX + (−1) j+1τ(w
p
1 )T (X)− bT 2(X).

(2) Assume i = 1. If we use Remark 15.14 to make the identification

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ ' (Symp−2(OE/p)2)⊗ det j+1,

then θ̄b is given by

θ̄b : σp−2( j + 1)→ σp−2( j + 1)

X 7→ X + (−1) j+1bτ(w−1
1 )T (X)+ T 2(X).

Just like the previous section, we list some corollaries first.

Corollary 17.4. θ̄b is surjective.

Corollary 17.5. θb : (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2 is surjective and we
have the following exact sequence:

0→ M(χ, [1, b])→ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2→ 0. (82)

Applying the functor M 7→ Md
= Homcont

OE
(M, E), we get

0→ J d
2 →

(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)d
→ B(χ, [1, b])→ 0. (83)

The kernel and the middle term of this exact sequence are independent of b.
The kernel J d

2 is the completion of c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 with respect to the lattice

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρo
χ−1 , where ρo

χ−1 ⊂ ρχ−1 is an OE -lattice. It is the universal unitary
completion of c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 .

Corollary 17.6. Assume i = p. As a representation of GL2(Qp),

M(χ, [1, b])/p'
{

X ∈ σp−2( j+1)
∣∣−bX+(−1) j+1τ(w

p
1 )T (X)−bT 2(X)= 0

}
.

When i = 1,

M(χ, [1, b])/p '
{

X ∈ σp−2( j + 1)
∣∣ X + (−1) j+1bτ(w−1

1 )T (X)+ T 2(X)= 0
}
.

Thus in any case, B(χ, [1, b]) is nonzero and admissible.

Proof of Theorem 17.3. We only deal with the case i = 1. The case where i = p
can be treated in almost the same way.
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Consider [Id, xk y p−2−k
] as an element in

IndGL2(Qp)
GL2(Zp)Q

×
p
(Symp−2(OE/p)2)⊗ det j+1

' IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

Let ω ∈ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) be a lift of [Id, xk y p−2−k
]. As before,

we may assume ωτ = 0. It is clear from our construction that for any even vertex
s ′ 6= s ′0,

ωτ̄ ,s′,ξ ∈ pH 0(6̃1,OF ,s′,ξ , ω
1)τ̄ . (84)

Hence for any odd vertex s /∈ A(s ′0),

ωτ̄ ,s,ξ ∈ pH 0(6̃1,OF ,s,ξ , ω
1)τ̄ . (85)

This follows from Remark 15.9 and the fact H 0(Us, �
1
Us
)(χ
′)p
= 0. Thus using

Lemma 16.18 and Remark 16.19, we know that θ̄b([Id, xk y p−2−k
]) must be of the

following form:

Lemma 17.7. θ̄b([Id, xk y p−2−k
])=[Id, us′0] +

∑
s∈A(s′0)

[g−1
s , us] +

∑
s′∈A2(s′0)

[g−1
s′ , us′],

where A2(s ′0)= {s
′
∈ A(s) | s ∈ A(s ′0), s ′ 6= s ′0}.

First we compute [Id, us′0]. It suffices to compute the image of $−[−pm]ωτ̄ in

H 1
dR(Us′0)

(χ ′)p

τ̄ = H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

As before, on 6̃1,OF ,[s′0,s0],ξ , we can write (use a variant of Lemma 15.5 and notice
that ωτ̄ is in the (χ ′)p-isotypic component)

ωτ̄ |6̃1,OF ,[s
′
0,s0],ξ
=$ [−mp] f (η)ẽ dẽ

ẽ
+$ p2

−1−m g(ζ )ẽ′p dẽ′

ẽ′
,

where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂. As usual,
we identify 6̃1,OF ,[s′0,s0],ξ with

Spf
OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
, ẽ, ẽ′

]̂
(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
, ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

ηp−1−1
, ẽẽ′−$ p−1ξ

) .
Our choice of ω implies:

Lemma 17.8. f (η)≡ ηk mod pOF0

[
η,

1
ηp−1−1

]̂
.

Now restricted to 6̃1,OF ,s0,ξ ,

ωτ,s0,ξ = ωτ |6̃1,OF ,s0,ξ
=$ p2

−1−m
(
−ξ ẽ′−2 f

( p
ζ

)
dẽ′+ g(ζ )ẽ′p−1 dẽ′

)
.

By (84), we know that for any s ′ ∈ A(s0) that is not s ′0,

ωτ̄ ,s′,ξ ∈ pH 0(6̃1,OF ,s′,ξ , ω
1)τ̄ .
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Then Remark 15.9 implies that the reduction of $−(p
2
−1−m)ωτ̄ ,s0,ξ modulo p, as a

meromorphic differential form on Us0,ξ , can only have poles at ζ = ẽ′ = 0. Here
we identify Us0,ξ with the projective curve in P2

Fp2
defined by

ẽ′p+1
= v−1w1ξ(ζ

p
− ζ ).

Therefore the only possible pole must come from −ξ f (p/ζ ) dẽ′/ẽ′2. Notice that
by Lemma 17.8, this term is nonzero modulo p if and only if k = 0. Thus when
k 6= 0, the reduction of ωτ̄ ,s0,ξ is a holomorphic differential form on Us0,ξ . But

H 0(Us0, �
1
Us0
)(χ
′)p
= 0,

hence g(ζ ) has to be zero modulo p in this case. Therefore we have proved:

Lemma 17.9. If k 6= 0, then g(ζ ) ∈ pOF0[ζ, 1/(ζ p−1
− 1)]̂, and

ωτ̄ ,s0,ξ ∈ pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄ .

When k = 0. Rewrite

ẽ′−2 f
( p
ζ

)
≡

1
ẽ′2
=

ẽ′p−1

ẽ′p+1 ≡
ẽ′p−1

v−1
1 w1ξ(ζ p−ζ )

≡−
ẽ′p−1

v−1
1 w1ξζ

+
ẽ′p−1ζ p−2

v−1
1 w1ξ(ζ p−1−1)(

mod pOF0

[
ẽ′, ζ, 1

ζ p−ζ

]̂/(ẽ′p+1
+ v−1

1 w1ξ
ζ p
−ζ

(p/ζ )p−1−1

))
.

Thus

$−(p
2
−1−m)ωτ̄ ,s0,ξ

≡
ẽ′p−1 dẽ′

v−1
1 w1ζ

+

(
−

ẽ′p−1ζ p−2

v−1
1 w1(ζ p−1−1)

+g(ζ )ẽ′p−1
)

dẽ′ mod pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄ .

Notice that the first term, ẽ′p−1 dẽ′/(v−1
1 w1ζ ), only has a pole at ẽ′ = ζ = 0 and the

second term is holomorphic at this point. Therefore the second term (modulo p)
is a holomorphic differential form on Us0 , which has to be zero since it is in
H 0(Us0, �

1
Us0
)(χ
′)p
= 0. Hence:

Lemma 17.10. When k = 0,

ωτ̄ ,s0,ξ ≡$
p2
−1−m ẽ′p−1dẽ′

v−1
1 w1ζ

mod pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄

g(ζ )≡ ζ p−2

v−1
1 w1(ζ p−1−1)

mod pOF0

[
ζ,

1
ζ p−1−1

]̂
.

A direct corollary of Lemma 17.9 and Lemma 17.10 is:
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Lemma 17.11. For any k, we always have g(0) ∈ pOF0 .

Now we try to compute the image of ω inside$ p2
−1−m H 1

crys(Us′0/OF0)τ̄ (mod p).
As we did in the previous section, we can use a 1-hypercocycle ({ωs}, { fs1,s2})

to represent this cohomology class. Moreover, there exists { fs}s∈A(s′0), where
fs ∈$

p2
−1−m H 0(Vc,ξ ,OVc,ξ ) such that fs1,s2 = fs2 − fs1 and ωs = ω− d fs . See

the proof of Proposition 16.1 for the notation here.
From Lemma 17.11, we know that g(0) is divisible by p. Therefore Lemma 16.6

tells us that
$−(p

2
−1−m) fs0 ∈ pH 0(Vc,ξ ,OVc,ξ ).

Using the action of GL2(Zp), it is easy to see that the above inclusion is also
true for other vertex s ∈ A(s ′0). Hence all fs1,s2 are divisible by p and all ωs are
congruent to ω modulo p. This certainly implies that the image of $−(p

2
−1−m)ω

in H 1
dR(Us′0)

(χ ′)p

τ̄ = H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ is

$−(p
2
−1−m)ω ≡ ηk dẽ,

considered as a differential form using Lemma 15.4. In other words:

Lemma 17.12. us′0 = xk y p−2−k .

Next we compute us0 . As we did in the previous section, we define

h′s0
= (w−1

1 )∗(ωτ̄ ) ∈ H 0(6̃1,OF ,s′0,ξ , ω
1)χ

′

τ . (86)

Hence Lemma 16.36 tells us that

h′s0
|
6̃1,OF ,s

′
0,ξ

=$ p2
−1−m g̃(−η)ẽp(−v−1

1 )p(−1) j+1 dẽ
ẽ
−$ [−mp] f̃ (−ζ )ẽ′v1(−1) j+1 dẽ′

ẽ′
,

where f̃ (−ζ )= F̃r( f (−ζ )), and g̃(−η) is defined similarly.
We need to compute the image of $−(p

2
−1−m)h′s0

in

H 1
dR(Us′0)

χ ′

τ = H 1(Us′0,OUs′0
)χ
′

τ .

Now the argument becomes exactly the same as the proof of Theorem 16.26:
By abuse of notation, we use a 1-hypercocycle ({ωs}, { fs1,s2}) to represent the
cohomology class of h′s0

∈$ p2
−1−m H 1

crys(Us′0/OF0)
χ ′

τ . Also there exists { fs} such
that fs2,s1 = fs2 − fs1 . By (84) and Lemma 16.18, we know that all fs are divisible
by p for s 6= s0. As for fs0 , we can compute it using Lemma 16.6 and Lemma 17.8.
We omit all the details here but just refer to the arguments from Lemma 16.36 to
Lemma 16.38 in the proof of Theorem 16.26.
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Lemma 17.13. us0 = u[w−1] =

{
(− 1) j+1bτ(w−1

1 )x p−2, k = 0,
0, k 6= 0.

Finally we come to the case s ′∈A2(s ′0), which does not exist when i∈{2, . . . , p−1}.

Definition 17.14. We define s ′′0 ∈ A(s0) as the vertex that corresponds to the coset

GL2(Zp)Q
×

p

(
1 1/p
0 1

)−1

∈ GL2(Zp)Q
×

p \GL2(Qp).

When k 6= 0, Lemma 17.9 tells us that ωτ̄ ,s0,ξ ∈ pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄ . Therefore

by Lemma 16.18, the cohomology class of$−[−mp]ωτ̄ in H 1
crys(Us′′0 /OF0)τ̄ is inside

pH 1
crys(Us′′0 /OF0)τ̄ .

Lemma 17.15. When k 6= 0, us′′0 = 0.

So we assume k = 0 from now on.
Notice that (

0 −1
p 0

)−1 (
1 1/p
0 1

)
=

(
1 0
−1 1

)(
0 −1
p 0

)−1

.

Hence the (right) action of
( 1 1/p

0 1

)
fixes the vertex s0 and sends s ′′0 to s ′0. This

clearly implies that
( 1 1/p

0 1

)
sends the edge [s ′′0 , s0] to [s ′0, s0]. In other words, we

get an isomorphism

9s′0,s
′′

0
: 6̃1,OF ,[s′′0 ,s0] −→

∼ 6̃1,OF ,[s′0,s0].

Restrict 9s′0,s
′′

0 to 6̃1,OF ,s0 , we thus get an automorphism of 6̃1,OF ,s0 . As usual, we
identify 6̃1,OF ,s0,ξ with

Spf OF

[
ζ, ẽ′, 1

ζ p−ζ

]/(
ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

(p/ζ )p−1−1

)
.̂

To see 9s′0,s
′′

0
explicitly on it, we use

( 0 −1
p 0

)
to send 6̃1,OF ,s0,−ξ to 6̃1,OF ,s′0,ξ and

then apply the results in Section 9. An easy computation shows:

Lemma 17.16. 9s′0,s
′′

0
|
6̃1,OF ,s0,ξ

is

ζ 7→ ζ+1, ẽ′ 7→ ẽ′mod pOF

[
ζ, ẽ′, 1

ζ p−ζ

]/(
ẽ′p+1
+v−1

1 w1ξ
ζ p
−ζ

(p/ζ )p−1−1

)̂
.

Now consider

hs′′0
def
=

((
1 1/p
0 1

)−1)∗
(ωτ̄ ) ∈ H 0(6̃1,OF , ω

1)
(χ ′)p

τ̄ . (87)

On 6̃1,OF ,[s′0,s0],ξ , it can be written as

hs′′0 |6̃1,OF ,[s
′
0,s0],ξ
=$ [−mp] f1(η)ẽ

dẽ
ẽ
+$ p2

−1−m g1(ζ )ẽ′p
dẽ′

ẽ′
.
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By our construction (see (84)), ωτ̄ ,s′′0 ,ξ ∈ pH 0(6̃1,OF ,s′′0 ,ξ , ω
1)τ̄ . Hence,

hs′′0 |6̃1,OF ,s
′
0,ξ
∈ pH 0(6̃1,OF ,s′0,ξ , ω

1)τ̄ .

This implies:

Lemma 17.17. f1(η) ∈ pOF0

[
η,

1
ηp−1−1

]
.̂

Restrict hs′′0 to 6̃1,OF ,s0,ξ . Then we have

hs′′0 |6̃1,OF ,s0,ξ
≡$ p2

−1−m g1(ζ )ẽ′p
dẽ′

ẽ′
mod pH 0(6̃1,OF ,s0,ξ , ω

1)τ̄ .

By definition,

hs′′0 =

((
1 1/p
0 1

)−1)∗
(ωτ̄ ).

Hence 9s′0,s
′′

0
maps ωτ̄ |6̃1,OF ,s0,ξ

to hs′′0 |6̃1,OF ,s0,ξ
. Thanks to Lemma 17.16, we can

write down this map explicitly (after reducing modulo p). Recall that an explicit ex-
pression of ωτ̄ |6̃1,OF ,s0,ξ

is given in Lemma 17.10. Thus a simple computation gives:

Lemma 17.18. When k = 0,

g1(ζ )≡
1

v−1
1 w1(ζ−1)

mod OF0

[
ζ,

1
ζ p−1−1

]̂
.

With this lemma in hand, we can compute the image of $−(p
2
−1−m)hs′′0 in

H 1
dR(Us′0)

(χ ′)p

τ̄ = H 0(Us′0,OUs′0
)
(χ ′)p

τ̄ . We note that hs′′0 |6̃1,OF ,s
∈ H 0(6̃1,OF ,s, ω

1)τ̄

for any s ∈ A(s ′0) that is not s0. So the computation is exactly the same as the case
where we computed us0 . I omit the details here. The final result is:

Lemma 17.19. When k = 0, us′′0 =−x p−2.

We need to compute the same term of T 2([Id, xk y p−2−k
]). Assume k = 0. When

k 6= 0, it’s easy to see this term is zero. We already computed that

T ([Id, y p−2
])=

[(
0 −1
p 0

)
, x p−2

]
+ other terms.

Since (
1 1/p
0 1

)
=

(
0 −1
p 0

)(
0 p−1

−1 −p−1

)
,

by definition we have,

T
([(

0 −1
p 0

)
, x p−2

])
=

[(
1 1/p
0 1

)
, ϕp−2

((
0 p−1

−1 p−1

)−1)
(x p−2)

]
.
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Write (
0 p−1

−1 −p−1

)−1

= p
(

0 −1
1 0

)(
1 0
0 p−1

)(
1 0
1 1

)
.

Then

ϕp−2

((
0 p−1

−1 p−1

)−1)
(x p−2)= ϕp−2

((
0 −1
1 0

)(
1 0
0 p−1

))
((x + y)p−2)

= ϕp−2

((
0 −1
1 0

))
(y p−2)

=−x p−2.

Hence:

Lemma 17.20. T 2([Id, y p−2
])=


[(

1 1/p
0 1

)
,−x p−2

]
+ other terms, k = 0,[(

1 1/p
0 1

)
, 0
]
+ other terms, k 6= 0.

Combining the results of Lemmas 17.12, 17.13, 17.15, and 17.19 together with
Lemmas 16.41 and 17.20:

θ̄b(X)= X + (−1) j+1bτ(w−1
1 )T (X)+ T 2(X). �

18. A conjecture on B(χ, [1, b])

In the previous two sections, we have proved the admissibility of B(χ, [1, b]) and
explicitly compute its residue representation (see Corollaries 16.29 and 17.6, and
Remark 16.30). Recall that for each data (χ, [1, b]), we associate a two dimensional
Galois representation Vχ,[1,b] (Proposition 13.2) and prove that B(χ, [1, b]) is a
completion of the smooth representation c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 with respect to the

lattice2(χ, [1, b]) (Proposition 14.9). Up to some twist, this smooth representation,
via the classical local Langlands correspondence for GL2, corresponds to the Weil–
Deligne representation associated to V∨χ,[1,b] in [Fontaine 1994]. It is natural to
make the following:

Conjecture 18.1. Up to a twist of some character, B(χ, [1, b]) is isomorphic to
5(V∨χ,[1,b]) as a Banach space representation of GL2(Qp), where 5(V∨χ,[1,b]) is
defined via the p-adic local Langlands correspondence for GL2(Qp) (see [Colmez
2010; Colmez et al. 2014]).

The evidence for this conjecture is that we can verify it modulo $E , the uni-
formizer of E , namely:

Theorem 18.2. Via the semisimple modulo-p Langlands correspondence defined
by Breuil ([2003] or [2007]), up to a twist by some character and semisimplification,
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2(χ, [1, b])/$E corresponds to the residue representation of V∨χ,[1,b] with respect
to some lattice inside.

Proof. The residue representation of Vχ,[1,b] is computed in Theorem 6.12 of
[Savitt 2005]. I almost follow his notation except that his w there is my ux

here. 2(χ, [1, b])/$E2(χ, [1, b]) is computed in Corollaries 16.29 and 17.6,
and Remark 16.30. A direct computation shows that they indeed match via Breuil’s
dictionary. I omit the details here. �

Remark 18.3. There is some duality involved in the conjecture. The reason is that
we are using de Rham cohomology rather than its dual, de Rham cohomology with
compact support.

Remark 18.4. It seems that this conjecture follows from the work of Dospinescu
and Le Bras [2015] by taking the universal unitary completion in their construction.
The interested reader is referred to their paper.
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correspondence for GL2(Qp)”, Camb. J. Math. 2:1 (2014), 1–47. MR Zbl

[Deligne and Lusztig 1976] P. Deligne and G. Lusztig, “Representations of reductive groups over
finite fields”, Ann. of Math. (2) 103:1 (1976), 103–161. MR Zbl

[Dospinescu and Le Bras 2015] G. Dospinescu and A.-C. Le Bras, “Revêtements du demi-plan de
Drinfeld et correspondance de Langlands p-adique”, preprint, 2015. arXiv

[Drinfel’d 1974] V. G. Drinfel’d, “Elliptic modules”, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656.
In Russian; translated in Math. USSR-Sb. 23:4 (1974), 561–592. MR

[Drinfel’d 1976] V. G. Drinfel’d, “Coverings of p-adic symmetric domains”, Funkcional. Anal. i
Priložen. 10:2 (1976), 29–40. In Russian; translated in Funct. Anal. Appl. 10:2 (1976), 107–115.
MR

[Emerton 2005] M. Emerton, “p-adic L-functions and unitary completions of representations of
p-adic reductive groups”, Duke Math. J. 130:2 (2005), 353–392. MR Zbl

[Fontaine 1994] J.-M. Fontaine, “Représentations l-adiques potentiellement semi-stables”, pp. 321–
347 in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de
France, Paris, 1994. MR Zbl

[Gillet and Messing 1987] H. Gillet and W. Messing, “Cycle classes and Riemann–Roch for crystalline
cohomology”, Duke Math. J. 55:3 (1987), 501–538. MR Zbl

[Große-Klönne 2000] E. Große-Klönne, “Rigid analytic spaces with overconvergent structure sheaf”,
J. Reine Angew. Math. 519 (2000), 73–95. MR Zbl

[Große-Klönne 2002] E. Große-Klönne, “Finiteness of de Rham cohomology in rigid analysis”, Duke
Math. J. 113:1 (2002), 57–91. MR Zbl

[Große-Klönne 2004] E. Große-Klönne, “De Rham cohomology of rigid spaces”, Math. Z. 247:2
(2004), 223–240. MR Zbl

[Haastert and Jantzen 1990] B. Haastert and J. C. Jantzen, “Filtrations of the discrete series of SL2(q)
via crystalline cohomology”, J. Algebra 132:1 (1990), 77–103. MR Zbl

[Katz 1981] N. M. Katz, “Crystalline cohomology, Dieudonné modules, and Jacobi sums”, pp. 165–
246 in Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund.
Res. Studies in Math. 10, Tata Inst. Fundamental Res., Bombay, 1981. MR Zbl

[Katz and Messing 1974] N. M. Katz and W. Messing, “Some consequences of the Riemann hypothe-
sis for varieties over finite fields”, Invent. Math. 23 (1974), 73–77. MR Zbl

[Kiehl 1967] R. Kiehl, “Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie”,
Invent. Math. 2 (1967), 256–273. MR Zbl

[Perez-Garcia and Schikhof 2010] C. Perez-Garcia and W. H. Schikhof, Locally convex spaces over
non-Archimedean valued fields, Cambridge Studies in Advanced Mathematics 119, Cambridge
University Press, 2010. MR Zbl

[Raynaud 1974] M. Raynaud, “Schémas en groupes de type (p, . . . , p)”, Bull. Soc. Math. France
102 (1974), 241–280. MR Zbl

[Savitt 2005] D. Savitt, “On a conjecture of Conrad, Diamond, and Taylor”, Duke Math. J. 128:1
(2005), 141–197. MR Zbl

[Schneider 2002] P. Schneider, Nonarchimedean functional analysis, Springer, Berlin, 2002. MR
Zbl

[Schneider and Stuhler 1991] P. Schneider and U. Stuhler, “The cohomology of p-adic symmetric
spaces”, Invent. Math. 105:1 (1991), 47–122. MR Zbl

http://dx.doi.org/10.4310/CJM.2014.v2.n1.a1
http://dx.doi.org/10.4310/CJM.2014.v2.n1.a1
http://msp.org/idx/mr/3272011
http://msp.org/idx/zbl/1312.11090
http://dx.doi.org/10.2307/1971021
http://dx.doi.org/10.2307/1971021
http://msp.org/idx/mr/0393266
http://msp.org/idx/zbl/0336.20029
http://msp.org/idx/arx/1509.00606
http://dx.doi.org/10.1070/SM1974v023n04ABEH001731
http://msp.org/idx/mr/0384707
http://dx.doi.org/10.1007/BF01077936
http://msp.org/idx/mr/0422290
http://msp.org/idx/mr/2181093
http://msp.org/idx/zbl/1092.11024
http://msp.org/idx/mr/1293977
http://msp.org/idx/zbl/0873.14020
http://dx.doi.org/10.1215/S0012-7094-87-05527-X
http://dx.doi.org/10.1215/S0012-7094-87-05527-X
http://msp.org/idx/mr/904940
http://msp.org/idx/zbl/0651.14014
http://dx.doi.org/10.1515/crll.2000.018
http://msp.org/idx/mr/1739729
http://msp.org/idx/zbl/0945.14013
http://dx.doi.org/10.1215/S0012-7094-02-11312-X
http://msp.org/idx/mr/1905392
http://msp.org/idx/zbl/1057.14023
http://dx.doi.org/10.1007/s00209-003-0544-9
http://msp.org/idx/mr/2064051
http://msp.org/idx/zbl/1078.14026
http://dx.doi.org/10.1016/0021-8693(90)90253-K
http://dx.doi.org/10.1016/0021-8693(90)90253-K
http://msp.org/idx/mr/1060833
http://msp.org/idx/zbl/0724.20030
http://msp.org/idx/mr/633662
http://msp.org/idx/zbl/0502.14007
http://dx.doi.org/10.1007/BF01405203
http://dx.doi.org/10.1007/BF01405203
http://msp.org/idx/mr/0332791
http://msp.org/idx/zbl/0275.14011
http://dx.doi.org/10.1007/BF01425404
http://msp.org/idx/mr/0210949
http://msp.org/idx/zbl/0202.20201
http://dx.doi.org/10.1017/CBO9780511729959
http://dx.doi.org/10.1017/CBO9780511729959
http://msp.org/idx/mr/2598517
http://msp.org/idx/zbl/1193.46001
http://www.numdam.org/item?id=BSMF_1974__102__241_0
http://msp.org/idx/mr/0419467
http://msp.org/idx/zbl/0325.14020
http://dx.doi.org/10.1215/S0012-7094-04-12816-7
http://msp.org/idx/mr/2137952
http://msp.org/idx/zbl/1101.11017
http://dx.doi.org/10.1007/978-3-662-04728-6
http://msp.org/idx/mr/1869547
http://msp.org/idx/zbl/0998.46044
http://dx.doi.org/10.1007/BF01232257
http://dx.doi.org/10.1007/BF01232257
http://msp.org/idx/mr/1109620
http://msp.org/idx/zbl/0751.14016


First covering of the Drinfel’d upper half-plane 503

[Schneider and Teitelbaum 2002] P. Schneider and J. Teitelbaum, “Banach space representations and
Iwasawa theory”, Israel J. Math. 127 (2002), 359–380. MR Zbl

[Teitelbaum 1990] J. Teitelbaum, “Geometry of an étale covering of the p-adic upper half plane”,
Ann. Inst. Fourier (Grenoble) 40:1 (1990), 68–78. MR Zbl

[Teitelbaum 1993] J. T. Teitelbaum, “Modular representations of PGL2 and automorphic forms for
Shimura curves”, Invent. Math. 113:3 (1993), 561–580. MR Zbl

Communicated by Marie-France Vignéras
Received 2015-10-12 Revised 2016-06-17 Accepted 2016-11-18

lpan@math.princeton.edu Department of Mathematics, Princeton University, Fine Hall,
Washington Road, Princeton, NJ 08540, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF02784538
http://dx.doi.org/10.1007/BF02784538
http://msp.org/idx/mr/1900706
http://msp.org/idx/zbl/1006.46053
http://www.numdam.org/item?id=AIF_1990__40_1_68_0
http://msp.org/idx/mr/1056774
http://msp.org/idx/zbl/0687.14019
http://dx.doi.org/10.1007/BF01244318
http://dx.doi.org/10.1007/BF01244318
http://msp.org/idx/mr/1231837
http://msp.org/idx/zbl/0806.11027
mailto:lpan@math.princeton.edu
http://msp.org




Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
the ANT website.

Originality. Submission of a manuscript acknowledges that the manuscript is orig-
inal and and is not, in whole or in part, published or under consideration for pub-
lication elsewhere. It is understood also that the manuscript will not be submitted
elsewhere while under consideration for publication in this journal.

Language. Articles in ANT are usually in English, but articles written in other
languages are welcome.

Length There is no a priori limit on the length of an ANT article, but ANT con-
siders long articles only if the significance-to-length ratio is appropriate. Very long
manuscripts might be more suitable elsewhere as a memoir instead of a journal
article.

Required items. A brief abstract of about 150 words or less must be included.
It should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and sub-
ject classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties
of TEX, and exceptionally in other formats, are acceptable. Initial uploads should
be in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article titles
and page ranges. All references in the bibliography should be cited in the text. The
use of BibTEX is preferred but not required. Tags will be converted to the house
format, however, for submission you may use the format of your choice. Links will
be provided to all literature with known web locations and authors are encouraged
to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need
to submit the original source files in vector graphics format for all diagrams in your
manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure that
what you are saving is vector graphics and not a bitmap. If you need help, please
write to graphics@msp.org with details about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corre-
sponding author) at a Web site in PDF format. Failure to acknowledge the receipt of
proofs or to return corrections within the requested deadline may cause publication
to be postponed.

http://dx.doi.org/10.2140/ant
mailto:graphics@msp.org


Algebra & Number Theory
Volume 11 No. 2 2017

253Test vectors and central L-values for GL(2)

DANIEL FILE, KIMBALL MARTIN and AMEYA PITALE

319A generalization of Kato’s local ε-conjecture for (ϕ, 0)-modules over the Robba ring
KENTARO NAKAMURA

405First covering of the Drinfel’d upper half-plane and Banach representations of GL2(Qp)

LUE PAN

1937-0652(2017)11:2;1-J

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.2


	 vol. 11, no. 2, 2017
	Masthead and Copyright
	Daniel File and Kimball Martin and Ameya Pitale
	1. Introduction
	1A. Global results
	1B. Local results
	1B1. The split case
	1B2. The field case
	1B3. Relation to test vectors of Gross–Prasad

	1C. Outline

	2. Local setup
	2A. Subgroups and representations of GL2
	2B. The degree-two extension
	2C. The torus
	2D. The Waldspurger model

	3. Zeta integrals and test vectors for split Waldspurger models
	4. Nonsupercuspidal representations
	4A. Irreducible principal series representation
	4B. Steinberg representation

	5. Supercuspidal representations
	5A. Chain orders and strata
	5B. Construction of minimal supercuspidals
	5B1. A=M, ()=2r+1
	5B2. A=J, ()=2r+12
	5B3. A=M, ()=2r >0
	5B4. Depth zero supercuspidals

	5C. Remarks on minimal supercuspidals
	5D. Mackey theory
	5E. Test vectors for minimal supercuspidal representations
	5F. Nonminimal representations

	6. Local spectral distributions
	7. A central-value formula
	7A. Choice of test vector
	7B. Archimedean factors
	7C. Proof of 0=lemma.71=Theorem 1.1

	8. An average-value formula
	8A. The trace formula
	8B. Spectral calculations
	8C. Geometric calculations
	8D. Proofs
	8E. Nonvanishing mod p

	Acknowledgements
	References

	Kentaro Nakamura
	1. Introduction
	1A. Introduction
	1B. Structure of the paper
	1C. Notation

	2. Cohomology and Bloch–Kato exponential of (,)-modules
	2A. Cohomology of (,)-modules
	2B. Bloch–Kato exponential for (,)-modules

	3. Local -conjecture for (,)-modules over the Robba ring
	3A. Determinant functor
	3B. Fundamental lines
	3C. de Rham -isomorphism
	3D. Formulation of the local -conjecture

	4. Rank-one case
	4A. Construction of the -isomorphism
	4B. Verification of the conditions (iv), (v), (vi)
	4B1. Verification of the condition (vi) in the generic case
	4B2. Verification of the condition (vi): the exceptional case


	Appendix: Explicit calculations of Hi,(RL) and Hi,(RL(1))
	Acknowledgements
	References

	Lue Pan
	1. Introduction
	2. Some facts about the Drinfel'd upper half-plane
	3. Raynaud's theory of -vector space schemes
	4. Some results about the formal polarization
	5. Structure of  and a formal model of 
	6. Local equation of  and 
	7. The action of  on  and a descent  to 
	8. A semistable model of 1mu-1mu 1-1mu"0362-1mu 1-1mu1mu
	9. The action of GL2(Zp),  `39`42`"613A``45`47`"603AGal(F/F0),  O``D on 2mu-2mu to 6pt1,O``F-6mu"0365-2mu to 6pt1,O``F-6mu6mu and 2mu-2mu to 6.5pt1,O``F-6mu"0362-2mu to 6.5pt1,O``F-6mu6mu
	10. Another admissible open covering of the Drinfel'd upper half-plane and the generic fiber of 2mu-2mu to 6.5pt1,O``F-6mu"0362-2mu to 6.5pt1,O``F-6mu6mu
	11. De Rham cohomology of  and 
	12. An -structure of  and the computation of 
	13. Some considerations from Galois representations
	14. Construction of Banach space representations of 
	15. Computation of (H0(4mu-4mu to 7.5pt `1,O``F(0)-4mu"0365-4mu to 7.5pt `1,O``F(0)-4mu4mu,1)ZpO``E),`39`42`"613A``45`47`"603AGal(F/Qp)/p
	16. Computation of , : 
	17. Computation of , : 
	18. A conjecture on 
	List of symbols
	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

