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For an odd prime p, we construct some admissible Banach representations of
GL2(Qp) that conjecturally should correspond to some 2-dimensional tamely
ramified, potentially Barsotti–Tate representations of Gal(Qp/Qp) via the p-adic
local Langlands correspondence. To achieve this, we generalize Breuil’s work
in the semistable case and work on the first covering of the Drinfel’d upper
half-plane. Our main tool is an explicit semistable model of the first covering.
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1. Introduction

Breuil [2004] constructed some Banach representations of GL2(Qp), which con-
jecturally should be nonzero and admissible and correspond to 2-dimensional
semistable, noncrystalline representations of GQp under the p-adic local Langlands
correspondence. Here GQp = Gal(Qp/Qp), where Qp is some fixed algebraic
closure of Qp. Later on Colmez [2004] found the relationship between these Ba-
nach representations and (φ,0)-modules and proved their admissibility. Breuil and
Mézard [2010] also proved the admissibility in some cases by explicitly computing
the mod p reductions of these Banach representations. The aim of this paper is
to generalize Breuil’s work to some 2-dimensional tamely ramified, potentially
Barsotti–Tate representations of GQp.

First we recall some of Breuil’s [2004] construction. Let E be a finite extension
of Qp and k an integer greater than 2. Up to a twist by some character, all 2-
dimensional semistable, noncrystalline E-representations of GQp with Hodge–Tate
weights (0, k− 1) are classified by the “L-invariant” [Breuil 2004, exemple 1.3.5].
We use V(k,L) to denote this Galois representation. Here L is an element in E
and basically tells you the position of the Hodge filtration on the Weil–Deligne
representation associated to V(k,L). Notice that this Weil–Deligne representation
does not depend on L. So via the classical local Langlands correspondence, all
V(k,L) correspond to the same smooth representation of GL2(Qp), which is a twist
of St, the usual Steinberg representation.

Breuil’s idea is that for each L, there should exist a GL2(Qp)-invariant norm on
Symk−2 E2

⊗St; here Symk−2 E2 is a twist of the algebraic representation Symk−2 E2.
Different L should give different noncommensurable unit balls of Symk−2 E2

⊗St.
If we take the completion, we get a Banach representation B(k,L) of GL2(Qp)

for each L. Moreover, we hope this representation is admissible in the sense of
[Schneider and Teitelbaum 2002] and the correspondence between V(k,L) and
B(k,L) is compatible with the mod p correspondence defined by Breuil [2003].

So how to construct these B(k,L)? For simplicity, I assume E = Qp and k
is even. The strategy of Breuil is to realize the unit ball O(k,L)U of the dual
representation of B(k,L) in O(k)= 0(�,O(k)), where O(k) is a coherent sheaf
on the Drinfel’d upper half-plane � over Qp. Concretely, O(2) is the sheaf of rigid
differential forms and O(2n)=O(2)⊗n . Here � is considered as a rigid analytic
space and GL2(Qp) acts on everything. We note that the de Rham cohomology of
� is nothing but St∨, the algebraic dual representation of St [Schneider and Stuhler
1991, Theorem 1]. The construction of O(k,L)U , as far as I understand, has the
following two important properties:

(1) O(k,L)U is “globally bounded” and hence compact. In other words, it is
contained in 0(�̂, ω⊗k/2), where �̂ is a semistable model of � and ω is an
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integral structure of O(2). This guarantees that the dual of O(k,L)U is indeed
a Banach representation (after inverting p).

(2) If f ∈ O(k) comes from a modular form of weight k (see [Breuil 2004,
section 5] for the precise meaning), then f ∈ O(k,L0)

U if and only the
L-invariant of f is L0.

Now consider the case where the Galois representation is tamely ramified. We
will see later that the situation is very similar. Fix E a finite extension of Qp large
enough and let OE be its ring of integers. This time we need to work on the first
covering of Drinfel’d upper half-plane. According to Drinfel’d, there is a universal
p-divisible group X over �̂⊗̂Ẑnr

p and OD acts on it, where OD is the ring of integers
inside the quaternion algebra D over Qp. Fix a uniformizer 5 ∈ OD and define Xn

as the generic fiber of X [5n
]. The first covering 61 = X1−X0, also carries the

action of GL2(Qp) and O×D . It was shown by Drinfel’d [1976] that the action of
O×D can be extended to D×. This is a left action and we will keep this convention
in this paper unless explicitly inverting it. One remark is that the actions of Q×p
inside D× and GL2(Qp) become the same once we invert the action of D×.

First we note that the (E-coefficient) de Rham cohomology H 1
dR(61, E) def

=

H 1
dR(61)⊗Qp E of 61 has the following decomposition. Let ψ :Q×p → O×E be a

unitary character of level 0 in the sense that 1+ pZp is contained in the kernel
of ψ . We will view it as a character of Q×p ⊂ D×. In the following theorem, we
invert the action of D× so that it acts on the cohomology on the left. We denote the
ψ-isotypic component of H 1

dR(61, E) by H 1
dR(61, E)ψ .

Theorem 1.1. As a representation of D××GL2(Qp),

H 1
dR(61, E)ψ '

⊕
π∈A0(D×)(ψ∨)0

(π ⊗ JL(π))∨⊗E Dπ ,

where ·∨ denotes the algebraic dual representation, A0(D×)(ψ∨)0 is the space of
admissible irreducible representations of D× of level 0 over E that are not charac-
ters and with central character ψ∨ (see [Bushnell and Henniart 2006, Chapter 13]),
JL(π) is the representation of GL2(Qp) associated to π by the Jacquet–Langlands
correspondence, and Dπ is a two-dimensional vector space over E.

Remark 1.2. In fact, we can define more structures on Dπ . Roughly speaking, we
may find a finite extension F of Qp such that

F ⊗Qp Dπ ' F ⊗F0 Dcrys,π ,

where F0 is the maximal unramified extension of Qp inside F and Dcrys,π is
a (ϕ, N , F/Qp, E)-module (see Section 13 for the notation here). Then up to
some unramified character, the Weil–Deligne representation associated to Dcrys,π
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corresponds to JL(π) under the classical local Langlands correspondence. See
Theorem 1.10 below.

Explicitly, any π ∈A0(D×)(ψ∨)0 is an induced representation

π ' IndD×
O×D Q×p

4,

where 4 : O×D Q×p → O×E is a character which extends ψ∨ and is trivial on 1+5OD .
It is clear that π has an integral structure π0 over OE .

As we noted before, we need to construct a GL2(Qp)×D×-equivariant formal
model 6̂nr

1 of 61. This will be done by using Raynaud’s theory of F-vector space
schemes. As Breuil did in the case of the Drinfel’d upper half-plane, we can define
a GL2(Qp)×D×-equivariant integral model ω1 of �1

61
on this formal model, where

�1
61

is the sheaf of differential forms (see Remark 14.2). Consider the composition
of the following maps:

H 0(6̂nr
1 , ω

1)→ H 0(61, �
1
61
)→ H 1

dR(61).

We will show that this map is injective (Proposition 14.6), so that H 0(6̂nr
1 , ω

1)

can be viewed as a subspace in the de Rham cohomology. Rewrite Theorem 1.1 as

H 1
dR(61, E)(π∨)= H 1

dR(61, E)ψ(π∨)' JL(π)∨⊗ Dπ ,

where ( · )(π∨) = HomE[D×](π
∨, · ). For any line L inside Dπ (the L-invariant

in our case), we may view JL(π)∨ ⊗ L as a subspace inside H 1
dR(61, E)(π∨)

by the above isomorphism. We can now define the (dual) of our Banach space
representations:

Definition 1.3. M(π,L) def
=
(
H 0(6̂nr

1 , ω
1)⊗Zp OE

)
(π∨0 )∩

(
JL(π)∨⊗L

)
.

Recall that π0 is some integral structure of π . Notice that M(π,L) is contained
in
(
H 0(6̂nr

1 , ω
1)⊗Zp OE

)
(π∨), a natural subspace of

(
H 0(61, �

1
61
)⊗Qp E

)
(π∨).

This last space has a natural Fréchet space structure over E . The induced topology on
M(π,L) makes it into a compact topological space, and thus allows us to introduce:

Definition 1.4. B(π,L)= Homcont
OE
(M(π,L), E).

This is a unitary representation of GL2(Qp).

Remark 1.5. The argument of [Breuil 2004, lemme 4.1.1] shows that H 0(6̂nr
1 , ω

1)

and H 0(6̂nr
1 , ω

′1) are commensurable, where ω′1 is any other GL2(Qp)×D×-
equivariant integral model of �1

61
. Hence B(π,L) is independent of the choice

of ω1.

Now we can state the main result of this paper. Assume p is an odd prime.

Theorem 1.6. (1) B(π,L) is nonzero and admissible as a representation of
GL2(Qp). In fact, its mod p reduction can be computed explicitly.
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(2) B(π,L) is a unitary completion of JL(π).

The computation will give us an interesting GL2(Qp)-equivariant short exact
sequence (Corollaries 16.28 and 17.5):

Corollary 1.7. The sequence

0→ ĴL(π)→ H 0(6̂nr
1 , ω

1)dE(π)→ B(π,L)→ 0,

is exact, where ĴL(π) is the universal unitary completion of JL(π) (see [Emerton
2005]), and

H 0(6̂nr
1 , ω

1)dE = Homcont
Zp

(
H 0(6̂nr

1 , ω
1), E

)
.

Note that the kernel and the middle term are independent of L while the map
between them depends on L.

Remark 1.8. Unfortunately, we have to assume p ≥ 3 in the proof of Theorem 1.6
(for example in the proof of Lemma 16.4). However Theorem 1.1 is also true for
p = 2.

Now we explain the strategy of proving Theorem 1.1. By twisting with some
unramified unitary characters, it suffices to deal with the case where the central
character ψ satisfies ψ(p) = 1. This suggests we descend 61 from Q̂nr

p to Qp2 ,
the unramified quadratic extension of Qp, by taking the “p-invariant” of 61 (see
Section 7). We use 6 p

1 to denote this rigid analytic space. One warning here: even
though 6 p

1 has a structure map to Qp2 , I will view it as a rigid space over Qp. A
semistable model of 6 p

1 is very helpful (see Theorem 8.4):

Theorem 1.9. 6 p
1 ×Qp F has an explicit D××GL2(Qp)-equivariant semistable

model 6̂(0)1,OF
over OF , where F 'Qp2[(−p)1/(p

2
−1)
].

Similar results have been obtained before by Teitelbaum [1990].
Denote the generic fiber of this semistable model by 6(0)1,F =6

p
1 ×Qp F . With the

help of the semistable model, we can compute its de Rham cohomology. Let χ(E)
be the character group of O×D /(1+5OD) with values in E×. Recall that O×D acts
on 6(0)1,F . We have the following result (see Section 12, especially Corollary 12.10
and Remark 12.11):

Theorem 1.10. For any χ ∈χ(E) such that χ 6=χ p, we have a Gal(F/Qp)×O×D×
GL2(Qp)-equivariant isomorphism:

F ⊗F0 Dcrys,χ ⊗E
(
c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1

)∨
−→∼

(
H 1

dR(6
(0)
1,F )⊗Qp E

)χ
,

where F0 ' Qp2 , c-Ind is the induction with compact support, ·∨ means the al-
gebraic dual, ρχ−1 is a cuspidal representation of GL2(Fp) over E defined via
Deligne–Lusztig theory, and Dcrys,χ is a free F0⊗E-module of rank 2 with an
action of Gal(F/Qp). In addition, we can define a Frobenius operator ϕ acting on
it. It is explicitly described in Proposition 12.8.
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Take π = IndD×
O×D Q×p

χ , where χ is viewed as a character of O×D Q×p that is trivial
on p. Then JL(π) ' c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 . Theorem 1.1 follows from the above

theorem by taking the Gal(F/Qp)-invariants. There is some inverse involved since
we invert the action of D× in Theorem 1.1.

It is clear from the theorem that Dcrys,χ is a (ϕ, N , F/Qp, E)-module. A line
L inside Dπ , or equivalently, a Gal(F/Qp)-invariant “line” inside F ⊗F0 Dcrys,χ ,
essentially gives a filtration and makes Dcrys,χ into a filtered (ϕ, N , F/Qp, E)-
module. See Section 13 for more details.

After fixing some basis for Dcrys,χ (see Proposition 12.8), any line L can be
identified with an element b inside E or∞. Assume b ∈ OE for the moment. We
will write

M(χ, [1, b])= M(IndD×
O×D Q×p

χ,L),

and similarly B(χ, [1, b])= B(IndD×
O×D Q×p

χ,L).
Some notation here: Fix a Zp-linear embedding of W (Fp2), the Witt vector of

Fp2 into OD . Then any χ ∈ χ(E) can be viewed as a character of F
×

p2 by composing
this embedding with the Teichmüller character. Also fix an embedding τ of W (Fp2)

into E . Similarly the Teichmüller character gives us a character χτ : F
×

p2 → E×.

Definition 1.11. We define m as the unique integer in {0, . . . , p2
− 2} such that

χ = χ−m
τ : F

×

p2 → O×E .

We will write m = i + (p + 1) j , where i ∈ {0, . . . , p}, j ∈ {0, . . . , p − 2} and
[−mp] as the unique integer in {0, . . . , p2

− 2} congruent to −mp modulo p2
− 1.

Let σi ( j) be the following representation of GL2(Qp):

σi ( j)= IndGL2(Qp)
GL2(Zp)Q

×
p
(Symi F2

p)⊗ OE/p⊗ det j ,

where Symi F2
p is the i-th symmetric power of the natural representation of GL2(Fp)

on the canonical basis of F2
p , viewed as a representation of GL2(Zp)Q

×
p trivial

on pZ.
Using our explicit semistable model, we can compute the mod p reduction of

M(χ, [1, b]) (Corollary 16.29, Remark 16.30, Corollary 17.6).

Theorem 1.12. Let T be the usual Hecke operator (defined in [Breuil 2007]) and
let c(χ, b)= (−1) j+1τ(w−i

1 )b ∈ OE/p, where τ(w1) satisfies τ(w1)
p+1
=−1 and

is independent of χ,L.

(1) Assume p2
− 1 − m ≥ [−mp], i ∈ {2, . . . , p − 1}. As a representation of

GL2(Qp),

0→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ 0.
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(2) Assume p2
− 1−m ≤ [−mp], i ∈ {2, . . . , p− 1}.

0→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ 0.

(3) Assume i = p. Then

M(χ, [1, b])/p '
{

X ∈ σp−2( j + 1) | −c(χ, b)X + T (X)− c(χ, b)T 2(X)= 0
}
.

(4) Assume i = 1. Then

M(χ, [1, b])/p ' {X ∈ σp−2( j + 1), X + c(χ, b)T (X)+ T 2(X)= 0}.

Thus in any case, B(χ, [1, b]) is nonzero and admissible.

Remark 1.13. In a recent paper Gabriel Dospinescu and Arthur-César Le Bras
[Dospinescu and Le Bras 2015] independently use a very similar method to construct
some locally analytic representations of GL2(Qp) and verify the compatibilities
with the p-adic local Langlands correspondence, and thus generalize Breuil’s [2004]
work in this direction. Their method works for all the coverings of the Drinfel’d
upper half-plane and relies on the previous work of Colmez on the relationship
between Banach space representations and (φ,0)-modules. Combining their results
with some known results of p-adic local Langlands correspondence, they can also
prove Theorem 1.1 and Theorem 1.6. However, it seems that Corollary 1.7 does
not follow directly from their work.

We give a brief outline of this paper. The goal of the next eight sections (Sec-
tions 2–9) is to explicitly write down a semistable model of 61. Our strategy
is to apply Raynaud’s [1974] theory of F-vector spaces schemes to X1. We will
collect some basic facts about the Drinfel’d upper half-plane in Section 2 and review
Raynaud’s theory in Section 3. To compute the data in Raynaud’s theory, we need
the existence of some “polarization” of X1 (Proposition 5.1), which comes from
a formal polarization of X (Section 4). Using this, a formal model is obtained in
Section 5. By comparing the invariant differential forms of X1 computed in two
different ways, we write down the local equation of this formal model in Section 6.
From this, it’s not too hard to work out a semistable model in Section 8 and make
clear how GL2(Zp), O×D , and Gal(F/Qp) act on it in Section 9.

In Sections 10–12 we compute the de Rham cohomology of 6(0)1,F . Using our
semistable models, this can be expressed by the crystalline cohomology of the
irreducible components of the special fiber, which is well-understood via Deligne–
Lusztig theory. The main result is Corollary 12.10, which describes the structure of
the de Rham cohomology.

In Section 13 we classify all possible filtrations on Dcrys,χ with Hodge–Tate
weights (0, 1). We use this result to define M(χ, [1, b]) in Section 14.
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Sections 15, 16, and 17 contain the computation of M(χ, [1, b])/p. In Section 15,
we compute H 0(6̂nr

1 , ω
1)/p (not exactly this space, see the precise statement there).

Roughly speaking, the method is by carefully studying the shape of differential
forms on each irreducible component of the special fiber. The main result is
Proposition 15.13 which says that this space is an extension of two inductions.
Sections 16 and 17 treat different cases of computations of M(χ, [1, b])/p according
to the value of i , but their strategies are the same: First we interpret M(χ, [1, b])
as the kernel of a map θb from (H 0(6̂nr

1 , ω
1)⊗ OE/p)χ to a space J2. Then we

compute the mod p reduction θ̄b of this map explicitly and show that θ̄b is in fact
surjective. Hence θb has to be surjective as well since both H 0(6̂nr

1 , ω
1) and J2 are

p-adically complete. Therefore M(χ, [1, b]) is just the kernel of θ̄b.

Notation. Throughout this paper, fix an odd prime number p.
Let Qnr

p be the maximal unramified extension of Qp and Q̂nr
p be its p-adic

completion. We will write Zp2 = W (Fp2), the ring of Witt vectors of Fp2 and fix
an embedding of it into Qnr

p . Denote the fractional field of Zp2 by Qp2 . We use
F0 to denote the unique unramified quadratic extension of Qp. Hence the fixed
embedding of Qp2 into Qnr

p gives us an isomorphism between F0 and Qp2 . Later
on, F0 will appear as some intermediate field extension when we try to compute a
semistable model. Let OF0 be the ring of integers inside F0. Frequently we will
identify F0 with Qp2 by this fixed isomorphism.

We denote by D the quaternion algebra of Qp and fix a uniformizer 5 ∈ D such
that 52

= p. We will also fix a Zp-linear embedding of Zp2 into OD, hence an
isomorphism:

OD/5OD ' Fp2 .

Let E be a finite extension of Qp such that HomQp(F0, E) 6= 0. We use τ, τ̄ to
denote the embeddings of F0 into E and OE to denote its ring of integers. For any
OF0-module A, we denote A⊗OF0 ,τ

OE by Aτ and A⊗OF0 ,τ̄
OE by Aτ̄ .

For K = E, F0, we use χ(K ) to denote the character group of O×D /(1+5OD)=

(OD/5)
× with values in K×.

For any integer n, we will use [n] to denote the unique integer in {0, 1, . . . , p2
−2}

congruent to n modulo p2
− 1.

For any ring A and integer n, we use µn(A) to denote {a ∈ A | an
= 1}.

For any abelian group M , we denote the p-adic completion of M by M̂.
We use Symi F2

p to denote the i-th symmetric power of the natural representation
of GL2(Fp) on the canonical basis of F2

p for i nonnegative. Explicitly, we can
identify Symi F2

p with
⊕i

r=0 Fpxr yi−r , where the action is given by(
a b
c d

)
x i yi−r

= (ax + cy)r (bx + dy)i−r .
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Sometimes we will also view it as a representation of GL2(Zp) by abuse of notation.
Also, we define an induced representation of GL2(Qp):

σi = IndGL2(Qp)
GL2(Zp)Q

×
p
(Symi F2

p)⊗ OE/p,

where the induction has no restriction on the support and we view Symi F2
p as a

representation of GL2(Zp)Q
×
p trivial on pZ. We define σ−1 as 0 and

σi ( j)= IndGL2(Qp)
GL2(Zp)Q

×
p
(Symi F2

p)⊗ OE/p⊗ det j ,

where det is the determinant map.
We recall the definition of Hecke operator T here. See Section 3.2 of [Breuil

2007] for more details. Let σ = Symr F2
p ⊗ detm , 0≤ r ≤ p− 2 be an irreducible

representation of GL2(Fp) over Fp. I would like to view it as a representation of
GL2(Zp)Q

×
p with p acting trivially. We use Vσ to denote the underlying represen-

tation space. Hence,

IndGL2(Qp)
GL2(Zp)Q

×
p
σ =

{
f : GL2(Qp)→ Vσ | f (hg)= σ(h)( f (g)), h ∈ GL2(Zp)Q

×

p
}
.

Note that we put no restriction on the support. Following [Breuil 2007], denote by

[g, v] : GL2(Qp)→ Vσ

the following element of IndGL2(Qp)
GL2(Zp)Q

×
p
σ :

[g, v](g′)=
{
σ(g′g)v if g′ ∈ GL2(Zp)Q

×
p g−1,

0 if g′ /∈ GL2(Zp)Q
×
p g−1.

We have g([g′, v]) = [gg′, v] and [gh, v] = [g, σ (h)v] if h ∈ GL2(Zp)Q
×
p . It is

clear that every element in IndGL2(Qp)
GL2(Zp)Q

×
p
σ can be written uniquely as an infinite sum

of [gi , vi ] such that no two gi are within the same coset GL2(Qp)/GL2(Zp)Q
×
p .

Identify Vσ with
⊕r

k=0 Fpxk yr−k . We define ϕr : GL2(Qp)→ EndFp(Vσ , Vσ ) as
follows:

ϕr (g)= 0 if g /∈ GL2(Zp)Q
×

p

(
1 0
0 p−1

)
GL2(Zp),

ϕr

((
1 0
0 p−1

))
(xk yr−k)= 0 if k 6= 0,

ϕr

((
1 0
0 p−1

))
(yr )= yr ,

ϕr (h1gh2)= σ(h1) ◦ϕr (g) ◦ σ(h2), h1, h2 ∈ GL2(Zp)Q
×

p .

The Hecke operator Tϕr (or T for simplicity) is defined as:

T ([g, v])=
∑

g′ GL2(Zp)Q
×
p ∈GL2(Qp)/(GL2(Zp)Q

×
p )

[gg′, ϕr (g′−1)(v)].
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2. Some facts about the Drinfel’d upper half-plane

Let � be the p-adic upper half-plane (or Drinfel’d upper half plane) over Qp. It
is a rigid analytic space over Qp and its Cp-points are Cp −Qp, where Cp is the
completion of an algebraic closure of Qp. There is a right action of GL2(Qp) on
�. On the set of Cp-points, it is given by

z 7→ z|g =
az+ c
bz+ d

for g =
(

a b
c d

)
∈ GL2(Qp).

� has a GL2(Qp)-invariant formal model �̂ over Zp, which is described in
detail in [Boutot and Carayol 1991]. One warning here: in this paper, the action of
GL2(Qp) on � is a right action rather than a left action used in Drinfel’d’s original
paper [1976] and in [Boutot and Carayol 1991]. Our action is the inverse of their
action. I apologize here if this causes any confusion.

Let me recall some facts we need to use later. There exists an open covering
{�̂e}e on �̂ indexed by the set of edges of the Bruhat–Tits tree I of PGL2(Qp).
Two different �̂e and �̂e′ have nonempty intersection if and only e and e′ share a
vertex s. When this happens, �̂e ∩ �̂e′ only depends on the vertex s. We call it
�̂s . For two adjacent vertices s, s ′, we denote the unique edge connecting them by
[s, s ′]. Explicitly, (̂ is for p-adic completion)

�̂s′ ' Spf Oη
def
= Spf Zp

[
η,

1
η−ηp

]̂ (1)

�̂s ' Spf Oζ
def
= Spf Zp

[
ζ,

1
ζ−ζ p

]̂ (2)

�̂[s,s′] ' Spf Oζ,η
def
= Spf

Zp[ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]
.̂ (3)

The inclusion from �̂s (resp. �̂s′) to �̂[s,s′] under these isomorphisms is just ζ (resp.
η) goes to p/η (resp. p/ζ ).

The set of vertices of the tree is in bijection with GL2(Zp)Q
×
p \GL2(Qp). Clearly

there is a right action of GL2(Qp) on this set and it extends to an action on the
set of edges. In fact, this action can be identified with the action on the open
covering {�̂e}e. When s is the vertex that corresponds to the coset GL2(Zp)Q

×
p ,

which I call the central vertex s ′0, we can choose the isomorphism (1) such that the
action of GL2(Zp) on it is given by

η 7→
aη+ c
bη+ d

for g =
(

a b
c d

)
∈ GL2(Zp).

From the explicit description of �̂[s,s′] and �̂s above, it is clear the special fiber
of �̂ is a tree of rational curves over Fp intersecting at all Fp-rational points. The set
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of irreducible components (singular points) is nothing but the set of vertices (edges)
of the tree. The dual graph of the special fiber of �̂ is just the Bruhat–Tits tree.

In [Drinfel’d 1976], it was shown that there exists a universal family of formal
groups X of height 4 over �̂ ⊗̂ Ẑnr

p , where Ẑnr
p is the p-adic completion of the ring

of integers inside the maximal unramified extension Qnr
p of Qp. We denote by D

the “unique” quaternion algebra over Qp, and OD the ring of integers inside D.
Then from Drinfel’d’s construction, we know that OD acts on the universal formal
group on the left.

Fix a uniformizer 5 inside OD such that 52
= p. Define Xn = X [5n

]. They
are finite formal group schemes over X0 = �̂ ⊗̂ Ẑnr

p . Let Xn be the rigid space
associated to Xn , or equivalently, Xn is the generic fiber of Xn . These Xn are étale
coverings of X0 = � ⊗̂ Q̂nr

p . Then OD/(5
n) acts on it and we have equivariant

inclusions Xn−1 ↪→ Xn . Now define

6n = Xn −Xn−1.

It can be shown that 6n is a finite étale Galois covering over X0 with Galois
group (OD/(5

n))×.
It is important that all the spaces (Xn,Xn, 6n) we construct here have a natural

GL2(Qp) action and all the maps here are GL2(Qp)-equivariant. On X0 =� ⊗̂ Ẑnrp ,
GL2(Qp) acts on �̂ as we described before and acts on Ẑnr

p via F̃rvp(det(g)), where F̃r
is the (lift of the) arithmetic Frobenius and vp is the usual p-adic valuation on Qp.
One can show that the action of Z×p in GL2(Qp) on 6n is inverse to the action of
Z×p in O×D .

Now we want to describe the action of 5 on the tangent space T of X . It is easy
to see from the construction that T is a rank 2 vector bundle on �̂ ⊗̂ Ẑnr

p . Moreover,
T splits canonically into a direct sum of two line bundles T0, T1 by considering
the action of Zp2 inside OD (recall that we fix such an embedding in the previous
section). Each eigenspace of this action is a line bundle because X is “special” in
the sense of Drinfel’d. 5 interchanges T0, T1 and under the isomorphisms (1)–(3),
we can write it down explicitly. But before doing that, I must introduce the notion
of odd and even vertices.

Definition 2.1. A class [g] in GL2(Zp)Q
×
p \GL2(Qp) is called odd (resp. even) if

vp(det(g)) is odd (resp. even).

Notice that this is well defined. And we will call a vertex in the tree (or an
irreducible component of the special fiber of �̂) even or odd according to the
corresponding class.

Back to the discussion of the tangent space. I should mention that all T0, T1, 5
descend naturally to �̂, and I still call them T0, T1, 5 by abuse of notation. Suppose
s is an odd vertex and s ′ is adjacent to s, and so must be even. On �̂[s,s′], both
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T0, and T1 are trivial. If we choose appropriate bases e0, e1 of them, then under the
isomorphisms (1)–(3), 5 becomes

50 : T0→ T1, e0 7→ ζe1, (4)

51 : T1→ T0, e1 7→ ηe0. (5)

Identify 50,51 with global sections of T ∗0 ⊗ T1 and T ∗1 ⊗ T0, where T ∗i denotes
the dual of Ti , i = 0, 1 (the cotangent space). Then the explicit description of 5
tells us that on an odd component of the special fiber, 50 has a simple zero at
each intersection point with other irreducible components. Since each irreducible
component is a rational curve over Fp and intersects other components at Fp-rational
points, 50 corresponds to the divisor that is the sum of all points of P1(Fp). On
the other hand, 51 is zero on an odd component because η = p/ζ = 0 (we are
working over the special fiber, so already modulo p). On an even component, a
similar argument shows that 50 is zero and 51 is the sum of all points of P1(Fp)

as a divisor.
Restricting everything to the central vertex s ′0, we have an isomorphism �̂s′0 '

Spf Ẑp[η, 1/(η− ηp)]̂, and GL2(Zp) acts on it via

η 7→
aη+ c
bη+ d

for g =
(

a b
c d

)
∈ GL2(Zp).

The action of GL2(Zp) on T ∗0 is easier to describe than the action on T0. Using the
same basis as in the last paragraph and denoting the dual basis element of e0 by e∗0 ,
we have

g :T ∗0 →T ∗0 , f (η)e∗0 7→
1

bη+d
f
(aη+c

bη+d

)
e∗0 for g=

(
a b
c d

)
∈GL2(Zp). (6)

Most details here can be found in [Boutot and Carayol 1991], especially the
first chapter about Deligne’s functor (and notice the action of GL2(Qp) here is the
inverse of the action there).

3. Raynaud’s theory of F-vector space schemes

We want to write down the equation defining X1. Recall that there exists an action
of OD/(5) on X1. But F

def
= OD/(5) is a finite field which is isomorphic to Fp2 . So

X1 is an “F-vector space scheme” in the sense of Raynaud. Let’s recall Raynaud’s
theory of F-vector space schemes in our situation. The reference is the first section
of [Raynaud 1974].

Definition 3.1. Let S be a scheme and F a finite field. An F-vector space scheme
is a group scheme G over S with an embedding of F into the endomorphism ring
of G (over S).
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Although the definition here is different from Raynaud’s original definition, it’s
clear that they are equivalent. Now let G be an F-vector space scheme; we also use
G to denote the group scheme in the definition by abuse of notation. The action
of λ ∈ F is denoted by [λ]. Following Raynaud, we assume G is finite, flat and of
finite presentation over S.

Let A be the bialgebra of G and I be the augmentation ideal. Then F× acts on
A and I. In Raynaud’s paper, he defined a ring “D”. Since we already use D for
the quaternion algebra, I will use DR for Raynaud’s “D”. In our case, we can think
of DR as Zp2 , the quadratic extension of Zp in Znr

p . Although this ring is much
bigger than DR , both of them give the same result here. Under the hypothesis (∗) in
Raynaud’s paper and fixing a map S→Spec DR , we have a canonical decomposition
of I:

I =
⊕
χ∈M

Iχ ,

where M is the set of characters of F× with value in D×R , and Iχ is defined as the
“χ -isotypic component”. More precisely, for every open set V on S, H 0(V, Iχ ) is
the set of elements a ∈ H 0(V, I), such that [λ]a = χ(λ)a for any λ ∈ F×.

Definition 3.2. Let χ1, χ2 be the characters of F× = (OD/5)
× with values in

D×R = Z×p2 such that the composition

F
×

p2 ' (OD/5)
× χi−→Z×p2

is the Teichmüller character if i = 1 and its Galois twist if i = 2. Here, the first
isomorphism is the one we fixed in the beginning. They are the fundamental
characters defined in Raynaud’s paper.

It is clear that χ p
1 = χ2 and χ p

2 = χ1. Every character χ in M can be written
uniquely as

χ = χ
n1
1 χ

n2
2 , 0≤ n1, n2 ≤ p− 1, (n1, n2) 6= (0, 0).

Now, it is easy see to that given two characters χ, χ ′ in M , we have two OS-linear
maps {

cχ,χ ′ : Iχχ ′→ Iχ ⊗ Iχ ′,
dχ,χ ′ : Iχ ⊗ Iχ ′→ Iχχ ′

coming from the comultiplication and multiplication structure of A. A slight
generalization of this (or equivalently iterate this p− 1 times) gives us{

ci : Iχi+1 → I⊗p
χi ,

di : I
⊗p
χi → Iχi+1

for i = 1, 2, and we identify χ3 as χ1.
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Under the hypothesis (∗∗) in Raynaud’s paper, which says that each Iχ is an
invertible sheaf on S, we have the following classification theorem of F-vector space
schemes.

Theorem 3.3 [Raynaud 1974]. Let S be a DR-scheme. The map

G 7→
(
Iχi , ci : Iχi+1 → I⊗p

χi
, di : I⊗p

χi
→ Iχi+1

)
i=1,2

defines a bijection between the isomorphism classes of F-vector space schemes over
S satisfying (∗∗) and the isomorphism classes of (L1,L2, c1, c2, d1, d2), where:

(1) Li is an invertible sheaf on S for any i = 1, 2.

(2) The ci and di are OS-linear maps{
ci : Lχi+1 → L⊗p

χi

di : L
⊗p
χi → Lχi+1

such that di ◦ ci = w IdLi+1 . Here w is a constant in DR that only depends on
F and can be expressed using Gauss sums. More precisely, if we identify DR

with Zp2 , then w ∈ Zp ⊂ Zp2 with p-adic valuation 1. And if we write w= pu,
then u ≡−1(mod p).

The inverse map in the theorem is as follows: we define

A=
⊕

0≤ai≤p−1

(L⊗a1
1 ⊗L⊗a2

2 )

and equip it with the multiplication and comultiplication structure using di , ci . A is
now a bialgebra and thus defines a group scheme over S. The action of F× is defined
as the character χi on Li and more generally as the character χa1

1 χ
a2
2 on L⊗a1

1 ⊗L
⊗a2
2 .

We now define the action of 0 in F to be trivial on A. The properties of ci and di

guarantee that we indeed get a F-vector space scheme. As a corollary, we have a
description of the invariant differential forms of G:

Corollary 3.4. ωG/S ' I/I2
= (L1/d2(L

⊗p
2 ))⊕ (L2/d1(L

⊗p
1 )).

Remark 3.5. When S is an affine scheme, say Spec(A), and Li is free over S for
all i , we have an explicit description of A. Suppose xi is a basis of Li . Under
such basis, di becomes an element vi inside A, namely di (x⊗p

i )= vi xi+1. Then the
bialgebra A is isomorphic to A[x1, x2]/(x

p
1 − v1x2, x p

2 − v2x1) as an A-algebra.

Remark 3.6. The Cartier dual of an F-vector space scheme is also an F-vector
space scheme by the dual action of F. On the level of bialgebra, the action of
F is given by its transpose. If G corresponds to (Li , ci , di ), the Cartier dual G∗

corresponds to (L∗i , d∗i , c∗i ), where L∗i = HomOS (Li ,OS) and d∗i (resp. c∗i ) is the
transpose of di (resp. ci ).



First covering of the Drinfel’d upper half-plane 419

4. Some results about the formal polarization

We want to apply Raynaud’s theory to our situation. Although our base scheme is a
formal scheme, the argument of Raynaud can be extended naturally to this situation.
As we remarked in the beginning of the previous section, X1 = X [5] is a F-vector
space scheme over X0 = �̂ ⊗̂ Q̂nr

p , where F= OD/(5). Using that its generic fiber
X1 is étale over � ⊗̂ Ẑnr

p and applying Proposition 1.2.2. in Raynaud’s paper, we
know that X1 satisfies hypothesis (∗∗). So the classification theorem tells us there
exist 2 invertible sheaves L1,L2, and maps

c1 : L2 7→ L⊗p
1 , c2 : L1 7→ L⊗p

2 , (7)

d1 : L
⊗p
1 7→ L2, d2 : L

⊗p
2 7→ L1, (8)

such that d1 ◦ c1 = w IdL2 , and d2 ◦ c2 = w IdL1 .
In order to determine ci , di , we need the existence of “formal ∗-polarization” of

the universal formal group X , which is a lemma in the proof of Proposition 4.3. of
[Drinfel’d 1976], and proved in detail in [Boutot and Carayol 1991, chapitre III
lemma 4.2.]. I would like to recall it here without proof.

Lemma 4.1. Suppose t ∈ D such that t2
∈ pO×D . There exists a symmetric iso-

mophism λ : X→ X∗, where X∗ is the Cartier dual of X , such that the diagram

X λ
//

t−1d̄t
��

X∗

d∗
��

X λ
// X∗

commutes for any d ∈ OD , where d̄ is the canonical involution of d in D, and d∗ is
the dual morphism of the endomorphism d. Here symmetric means λ= λ∗ under
the canonical identification between X and X∗∗.

Remark 4.2. This isomorphism is not unique, but is unique up to Z×p -action. From
now on, we will fix one such isomorphism λ that is defined in [Drinfel’d 1976] and
[Boutot and Carayol 1991]. So we also fix such a t .

How does this isomorphism behave under the action GL2(Qp)? Recall that
X0 = �̂ ⊗̂ Ẑnr

p .

Lemma 4.3. Suppose g ∈ GL2(Qp) and det(g) ∈ pZ; then g “commutes” with λ.
More precisely, by abuse of notation, let g : X0→ X0 be the automorphism of X0

induced by g. Then there exists a natural isomorphism µg : X → g∗X over X0,
where g∗X is the pull-back of X under g : X0 → X0 by the equivariance of the
GL2(Qp) action. Denote by µ∗g the dual morphism of µg. We have the following
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commutative diagram:

X∗ (g∗X)∗ ' g∗X∗
µ∗g
oo // X∗

X

λ

OO

��

µg
// g∗X

g∗λ

OO

��

// X

λ

OO

��

X0 X0
g

// X0

In general, for any g ∈ GL2(Qp), we have the same diagram but replace the upper
left square by

X∗ g∗X∗
µ∗g

oo

X

λ

OO

µg·pn/det(g)
// g∗X

g∗λ

OO

where n = vp(det(g)). Notice that this makes sense since Z×p has trivial action on
X0, so g∗X = (g · pn/det(g))∗X.

Proof. Since I will use some formulas in [Drinfel’d 1976] and [Boutot and Carayol
1991], I think it’s better not to translate their left action of GL2(Qp) to right action
here. Hence I will follow their convention in this proof.

It’s clear that we only need to prove the general case. Thanks to Drinfel’d’s
lemma (the lemma on strictness for p-divisible groups in the appendix of [Drinfel’d
1976]), it suffices to verify this commutative diagram after we reduce modulo p.
But by Drinfel’d’s construction of the universal p-divisible group, X × Fp is quasi-
isogenous of degree 0 to a constant p-divisible group 8X0×Fp over X0× Fp. Here,
recall that 8 is a p-divisible group defined over Fp, and 8X0×Fp

def
= 8 ×Fp

X0.
GL2(Qp) acts on 8 as quasi-isogenies. A detailed description of 8 can be found
in [Boutot and Carayol 1991, chapitre III 4.3] or the proof of Proposition 4.3. of
[Drinfel’d 1976]. Besides, the construction of the “formal polarization” λ tells us
that λ actually comes from a “formal polarization” λ0 of8 that makes the following
diagram commutative:

X × Fp
λ̄
//

ρ

��

X∗× Fp

8X0×Fp

λ0,X0×Fp
// 8∗X0×Fp

ρ∗

OO

where λ̄ def
= λ(mod p), ρ is the quasi-isogeny and ρ∗ is its dual. From the definition

of the action of GL2(Qp), we know how ρ changes under this action (basically
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the action of GL2(Qp) on 8 with some twist of Frobenius, see [Drinfel’d 1976,
Section 2] or [Boutot and Carayol 1991, chapitre II section 9]). Thus we can
translate the diagram of X into a diagram of 8. It turns out that it suffices to verify
that the following diagram is commutative:

8∗ (Fr−n)∗8∗
(Frob−n

8 ◦g)
∗

oo

8

λ0

OO

Frob−n
8 ◦(g·p

n/det(g))
// (Fr−n)∗8

(Fr−n)∗λ0

OO

Here Fr :Spec(Fp)→Spec(Fp) is the arithmetic Frobenius and Frob8 : (Fr−1)∗8→8

is the Frobenius morphism over Spec(Fp). I would like to decompose the diagram
as the following diagram (and invert the arrow on the bottom line):

8∗ 8∗
g∗(det(g))−1

oo (Fr−n)∗8∗
(det(g)Frob−n

8 )∗

oo

8

λ0

OO

8

λ0

OO

g−1

oo (Fr−n)∗8

(Fr−n)∗λ0

OO

(det(g)/pn)Frobn
8

oo

First we look at the right square:

(det(g)Frob−n
8 )∗=

(det(g)
pn

)
(pn Frob−n

8 )∗=
(det(g)

pn

)
(Vern

8)
∗
=

(det(g)
pn

)
Frobn

8∗,

where Ver8∗ is the Verschiebung morphism. Now it is easy to see the diagram
commutes from the basic property of the Frobenius morphism.

As for the left square, the commutativity in fact comes from our explicit choice
of 8, λ0 and the action of GL2(Qp). See the remarque in [Boutot and Carayol
1991, chapitre III 4.3] which says the Rosati involution associated to λ0 is nothing
but the canonical involution on M2(Qp). �

Remark 4.4. When g ∈ SL2(Qp), the calculation above is essentially given in
[Boutot and Carayol 1991, chapitre III 4.5].

5. Structure of X1 and a formal model of 61

Now let’s see how the discussion above helps us study ci , di in (7), (8). The main
result is the following:

Proposition 5.1. There exists an isomorphism λ1 from X1 = X [5] to X [5]∗, the
Cartier dual of X [5], such that:
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(1) The following diagram commutes for any d ∈ O×D :

X [5]
λ1
//

d̄
��

X [5]∗

d∗
��

X [5]
λ1
// X [5]∗

Recall that d̄ is the canonical involution of d in D.

(2) λ∗1 = λ1 ◦ [−1] = [−1]∗ ◦ λ1, where [−1] denotes the action of −1 ∈ OD .

Proof. We can take t =5 in Lemma 4.1. Then if we restrict to the p torsion points
of X , we certainly get an isomophism:

λp : X [p] = X [5−1 p̄5] → X∗[p∗] = X∗[p].

Notice that X∗[p] is canonically isomorphic to (X [p])∗, the Cartier dual of X [p].
The inclusion of X [5] into X [p] induces a canonical isomorphism

j : X∗[p]/X∗[5∗]= X∗[p]/((X∗[p])[5∗])−→∼ (X [p])∗/((X [p])∗[5∗])−→∼ X [5]∗.

Since 52
= p, the map 5∗ : X∗[p] → X∗[p] gives us an isomorphism

h : X∗[p]/X∗[5∗]
∼
−→ X∗[5∗].

Finally, we restrict λ to the 5 torsion points of X and get an isomorphism

λ5 : X [5] = X [5−155] → X∗[5∗].

Now, we define λ1 = j ◦ h−1
◦ λ5 : X [5] → X [5]∗.

What is the Rosati involution associated to λ1? I claim the following diagram
commutes:

X [5]
λ5
//

5−1d̄5
��

X∗[5∗]

d∗

��

X∗[p]/X∗[5∗]h
oo

(5d5−1)∗

��

j
// X [5]∗

(5d5−1)∗

��

X [5]
λ5
// X∗[5∗] X∗[p]/X∗[5∗]h

oo
j
// X [5]∗

The left-most square is commutative because we have a similar diagram for λ and
λ5 is a restriction of λ. The right-most diagram is commutative because j comes
from the canonical quotient map X∗[p] ' (X [p])∗ → X [5]∗ and this certainly
commutes with the dual endomorphism of OD. As for the middle square, notice
that h is induced by the map 5∗ : X∗[p] → X∗[p] and everything is clear.

Since 5−1d̄5 ≡ d (mod5OD) and everything in the diagram above is killed
by 5 or 5∗, we can replace 5−1d̄5 by d and (5d5−1)∗ by d̄∗, and hence get the
desired commutative diagram in part (1).
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As for part (2), we use G,H to denote X [p], X [5] respectively. Then G∗=X∗[p].
We can decompose −5 : G→ G as

G q
−→G/H

h−5
−→ H i

−→G,

where i (resp. q) is the canonical inclusion of H to G (resp. canonical quotient
map of G to G/H ). The induced isomorphism is h−5.

Notice that5−15̄5=−5 and G is killed by p. We have the following diagram,
which is a restriction of the diagram of Lemma 4.1 to G with d =5:

G
−5

//

λp

��

G

λp

��

G∗ 5∗
// G∗

Similarly we can decompose 5∗ as we did for −5 and have the commutative
diagram

G
q

//

λp

��

G/H
h−5

//

λG/H

��

H i
//

λH

��

G

λp

��

G∗ i∗
// H∗

h5∗
// (G/H)∗

q∗
// G∗

such that the composition of all three maps in the bottom line is 5∗. The map
h5∗ is induced from 5∗. Thus it’s easy to see ([−1] ◦ h−5)∗ = h5∗ and its dual
h∗5∗ = [−1] ◦ h−5.

Since λ is symmetric, so is λp and we certainly have λ∗G/H = λH . Now it’s not
hard to see that our λ1 is nothing but h−1

5∗ ◦ λH . So,

λ∗1 = (h
−1
5∗ ◦ λH )

∗
= λ∗H ◦ (h

−1
5∗)
∗
= λG/H ◦ (h∗5∗)

−1

= λG/H ◦ ([−1] ◦ h−5)−1
= λG/H ◦ h−1

−5 ◦ [−1]−1
= λ1 ◦ [−1].

The last identity comes from the middle square of the diagram above. �

Corollary 5.2. The isomorphism λ1 induces isomorphisms

λL1 : L
∗

2 −→
∼ L1, λL2 : L

∗

1 −→
∼ L2.

Moreover, λL1 =−λ
∗
L2

if p is odd and λL1 = λ
∗
L2

if p = 2.

Proof. Using Theorem 3.3, we can identify X1= X [5] with (L1,L2, c1, c2, d1, d2),
and the final remark there tells us we can identify X [5]∗ with (L∗1,L

∗

2,d
∗

1 ,d
∗

2 ,c
∗

1,c
∗

2).
Now λ1 gives us an isomorphism from X [5] to X [5]∗ but this is not F=OD/(5)-

equivariant. For a character χ of F×, considered as a character of O×D , we have

χ(d̄)= χ(d p)= χ p(d)
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for any d ∈ O×D . This is because when we restrict the canonical involution to a
quadratic unramified extension of Zp inside OD, it is nothing but the nontrivial
Galois action. So modulo the uniformizer, it becomes the Frobenius automorphism.

Take χ =χ1, one of the fundamental characters; then χ p
1 =χ2, so χ1(d̄)=χ2(d).

Similarly, we have χ2(d̄) = χ1(d). From these identities and the commutative
diagram in Proposition 5.1, it is easy to see λ1 really induces isomorphisms

λL1 : L
∗

2 −→
∼ L1, λL2 : L

∗

1 −→
∼ L2.

The last identity comes from the consideration that the difference between λ1 and
λ∗1 is the action of −1. And we know χ1(−1) = χ2(−1) = −1 if p is odd and 1
otherwise. �

From now on, I will assume p is odd.

Corollary 5.3. Under the isomorphism λL1 , we have −d1 = c∗2 . More precisely, we
have the following commutative diagram:

L⊗p
1

−d1
// L2

(L∗2)
⊗p

c∗2
//

λ
⊗p
L1

OO

L∗1

λ∗L1

OO

Proof. It is easy to see λ1 induces a similar diagram by replacing −d1 with d1 and
λ∗L1

with λL2 . Now the corollary follows from λL1 =−λ
∗
L2

. �

Corollary 5.4. Under the isomorphism λL1 , we can identify d1 : L
⊗p
1 → L2 with

a global section of L⊗−p−1
1 . Similarly, we can identify d2 with a global section

of L⊗p+1
1 . The canonical pairing

H 0(X0,L
⊗−p−1
1 )× H 0(X0,L

⊗p+1
1 )→ H 0(X0,OX0)

sends (d1, d2) to the constant −w =−pu, where w is the constant in Theorem 3.3,
and u is w/p.

Proof. Recall that d2◦c2=w IdλL1
. Then everything follows from Corollary 5.3. �

Corollary 5.5. Recall that the bialgebra of X1 is isomorphic as an OX0-module to⊕
0≤i, j≤p−1 L

⊗i
1 ⊗L⊗ j

2 . The isomorphism λL1 gives a global section λ̃L1 of L1⊗L2.
Then as a global section of X1, we have

λ̃L1

p
=−wλ̃L1,

where everything is computed inside the bialgebra of X1.
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Proof. We only need to verify this locally. Suppose L1,L2 are free over an open set
U and generated by x1, x2 such that x1⊗ x2 = λ̃L1 , or equivalently they are dual to
each other under λL1 . Now d1, d2 are given by two elements v1, v2 ∈ H 0(U,OX0).
So x p

1 = v1x2, and x p
2 = v2x1 (see Remark 3.5). But from the last corollary, we

have v1v2 =−w. Thus the product of these two equations is just what we want. �

Remark 5.6. Perhaps it is better to remark here that L1,L2 are nontrivial on the
formal model but we’ll see later that they become trivial on the generic fiber
(Lemma 10.1).

Now we can describe a formal model of 61. Recall that 61 = X1−X0, where
X1,X0 are the rigid analytic spaces associated to X1, X0.

Proposition 5.7. Let A =
⊕

0≤i, j≤p−1 L
⊗i
1 ⊗ L⊗ j

2 be the bialgebra of X1. Then
A/(λ̃L1

p−1
+w) (the closed subscheme defined by the ideal sheaf (λ̃L1

p−1
+w)) is a

formal model of 61. We will use 6̂nr
1 to denote this formal model.

Proof. It suffices to check this locally on X0, so we can assume L1,L2 are free.
A point x on 61 gives a morphism x : A→ Cp. If it does not factor through
A/(λ̃L1

p−1
+w), x(λ̃L1) has to be 0 because last corollary tells us (λ̃L1

p−1
+w)λ̃L1=0.

But
x p+1

1 = x p
1 x1 = v1x2x1 = v1λ̃L1,

so x(x1) = 0 and x(x2) = 0 by the same argument. Therefore x factors through
A modulo the ideal sheaf generated by x1, x2 which is the augmentation ideal.
Therefore x is in X0. The converse is trivial. �

It’s easy to see its underlying algebra of 6̂nr
1 is just⊕

0≤i, j≤p−1,
(i, j) 6=(p−1,p−1)

L⊗i
1 ⊗L⊗ j

2 .

Remark 5.8. There exist natural actions of GL2(Qp) and O×D on 6̂nr
1 . The action

of O×D is clear. To see the action of GL2(Qp), notice that λ̃L1 is a global section of
a trivial line bundle on X0, but H 0(X0,OX0) is canonically isomorphic to Ẑnr

p (I
will prove this later; see Lemma 14.7). So GL2(Qp) acts on λ̃L1 as a scalar. Recall
that λ̃L1

p
+wλ̃L1 = 0. This implies λ̃L1

p−1
+w is GL2(Qp)-invariant. The same

argument shows that the action of O×D can be extended to D×.

But how does GL2(Qp) act on λ̃L1? Here is a direct consequence of Lemma 4.3:

Proposition 5.9. With g ∈ GL2(Qp) and n = vp(det(g)),

g(λ̃L1)= χ1(det(g)/pn)−1λ̃L1 .
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6. Local equation of X1 and 6̂nr
1

In order to get a semistable model of 6̂nr
1 , we need to know the local equation

defining it. Recall that in Section 2, we described an open covering {�̂e ⊗̂ Ẑnr
p }e of

X0 such that

�̂e ⊗̂ Ẑnr
p ' Spf

Ẑnr
p [ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]
.̂

We try to write down the equation of 6̂nr
1 above each �̂e ⊗̂ Ẑnr

p . Our first
observation is:

Lemma 6.1. Any line bundle L over

�̂e ⊗̂ Ẑnr
p ' Spf

Ẑnr
p [ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]̂
is trivial.

Proof. Recall (see (3))

Oζ,η =
Ẑnr

p [ζ, η]

ζη− p

[ 1
1−ζ p−1 ,

1
1−ηp−1

]
.̂

The special fiber of Spf Oζ,η is Spec Fp[ζ, η, 1/(1− ζ p−1), 1/(1− ηp−1)]/(ζη).
I claim every line bundle L̄ over it is trivial. Let L̄ be H 0(Spec Oζ,η/p, L̄). Then
we have the exact sequence

0→ L̄→ L̄/(ζ L̄)⊕ L̄/(ηL̄) −→ L̄/(ζ L̄ + ηL̄)→ 0,

where the inclusion is the canonical morphism and − is defined by taking their
difference. This sequence is exact because L̄ is locally free and thus flat over
Oζ,η/p. Notice that L̄/(ζ L̄) defines a line bundle on

Spec Oζ,η/(p, ζ )= Spec Fp

[
η,

1
1−ηp−1

]
,

and hence has to be trivial. The same result holds for L̄/(ηL̄). Also L̄/(ζ L̄ + ηL̄)
is nothing but Fp. Using these, it’s not hard to find an element that generates L̄ . So
L̄ is trivial.

Now we can find an element in H 0(Spf Oζ,η,L) that generates L/p. But
H 0(Spf Oζ,η,L) is p-adically complete, so this element actually generates the
whole H 0(Spf Oζ,η,L). Therefore L is trivial. (Here we use the fact that a surjective
map between two line bundles has to be an isomorphism.) �

Thanks to this lemma, the restriction of L1 on �̂e ⊗̂ Ẑnr
p is trivial. We fix

an isomorphism between �̂e ⊗̂ Ẑnr
p and Spf Oζ,η. Suppose x1 is a generator of
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H 0(�̂e ⊗̂ Ẑnr
p ,L1), and x2 ∈ H 0(�̂e ⊗̂ Ẑnr

p ,L2) is the dual basis under the isomor-
phism λL1 defined in the previous section. Let v1, v2 be the elements given by
d1, d2 under the basis x1, x2. Then we know that locally X1 is defined by x p

1 = v1x2,
x p

2 = v2x1.
How to determine v1, v2? Our strategy is to compare the invariant differential

forms of X1 computed in two different ways. First recall that the tangent space
T of the universal formal group over X0 is a rank 2 vector bundle over X0 that
naturally splits into a direct sum of two line bundles T0, T1. So the sheaf of invariant
differential forms is its dual, namely T ∗0 ⊕ T ∗1 . The action of 5 on T0 sends T0

(resp. T1) into T1 (resp. T0), which we denoted by 50 (resp. 51) in Section 2. Thus
5∗0 (resp. 5∗1) sends T ∗1 (resp. T ∗0 ) to T ∗0 (resp. T ∗1 ) and the sheaf of invariant forms
ωX1/X0 of X1 = X [5] is

T ∗0 /5
∗

0T ∗1 ⊕ T ∗1 /5
∗

1T ∗0 .

On the other hand, using Corollary 3.4, we know that this is also

L1/d2(L
⊗p
2 )⊕L2/d1(L

⊗p
1 ).

It is natural to guess:

Lemma 6.2. T ∗0 /5
∗

0T ∗1 ' L1/d2(L
⊗p
2 ), T ∗1 /5

∗

1T ∗0 ' L2/d1(L
⊗p
1 ).

Proof. If we restrict the action of OD to Zp2 , it acts by identity on T0 and by
conjugation on T1. Recall that we fix an embedding of Zp2 into OD in the beginning.
This is just the definition of X being “special”. Now our desired identification
follows from a simple comparison of the action of Z×p2 in both ways. �

Recall that all irreducible components of the special fiber of X0 are isomorphic
to P

1
Fp such that the singular points are exactly P1(Fp). From the explicit description

(4), (5) of50,51 and the discussion in Section 2, we know that on an odd component
of the special fiber s, T ∗0 /5

∗

0T ∗1 is isomorphic to
⊕

P∈ssing
iP∗Fp, where ssing is the

set of singular points of the special fiber on s, and iP : P→ s is the embedding.
Restrict L1, L2, d2 : L

⊗p
2 → L1 to s. From

L1/d2(L
⊗p
2 )' T ∗0 /5

∗

0T ∗1 '
⊕

P∈ssing

iP∗Fp (on s), (9)

it’s easy to see deg(L1|s)− deg(L⊗p
2 |s)= p+ 1. But L2 ' L∗1, so

deg(L2|s)=− deg(L1|s). (10)

This implies:

Lemma 6.3. For any odd component s, deg(L1|s) = 1. Similarly, deg(L2|s′) = 1
for any even component s ′.
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Now we would like to choose some good basis of L1 so that v1, v2 have a good
form. Using the isomorphism �̂e ' Spf Oζ,η, we can identify two irreducible
components of its special fiber with Spec Oζ,η/(ζ ) and Spec Oζ,η/(η). Assume
the second one is odd and we use s to denote the corresponding component in the
special fiber of X0 and use s ′ for the other component. Moreover Spec Oζ,η/(η)=

Spec Fp[ζ, 1/(1− ζ p−1)] hence has an obvious embedding into P1
Fp

which can be
identified as the embedding into s.

Choose a global section x̃1 of L1|s such that it has a simple zero at infinity under
the identification above. It is a basis of H 0(Spec Oζ,η/(η),L1). Then under this
basis,

d2 : L
⊗p
2 ' L∗1

⊗p
→ L1, x̃1

∗ ⊗p
7→ c(ζ p

− ζ )x̃1

for some constant c ∈ Fp
×, where x̃1

∗ is the dual basis of x̃1
∗.

Notice that x̃1 is only defined up to a constant. If we replace x̃1 by dx̃1, then
the constant c is replaced by d−p−1c. We can choose d = c1/(p+1) to eliminate c.
More precisely, we can choose a section, which I still call x̃1 by abuse of notation,
such that under this basis, d2 is just multiplication by ζ p

− ζ .
We can do a similar thing for s ′, which means we can choose a basis x̃2 of

L2|Spec Oζ,η/(ζ ) such that under this basis, d1 is multiplication by c′(ηp
− η). Here

we choose x̃2 so that x̃1, x̃2
∗ can glue to a global basis x1 of L1|Spec Oζ,η/(p) (see the

proof of Lemma 6.1). A priori we know nothing about the constant c′.
Now we can lift x1 to a global basis x1 of L1|Spec Oζ,η

, so it determines a basis x2 of
L2|Spec Oζ,η

under the isomorphism λL1 . And d1, d2 are given by two numbers v1, v2.
The explicit description (4), (5) and Lemma 6.2 imply that

v2 = ζu2, v1 = ηu1 (11)

for some units u1, u2 ∈ O×ζ,η. Note that u1u2 =−u because v1v2 =−w=−pu, by
Corollary 5.4, and ηζ = p. From our choice of x1, x2, we have

v2 ≡ ζ
p
− ζ(mod η), v1 ≡ η

p
− η(mod ζ ), (12)

so

u2 ≡ ζ
p−1
− 1 (mod η), (13)

u1 ≡ c′(ηp−1
− 1) (mod ζ ). (14)

This is because (ζ, η) is a regular sequence in Oζ,η. In fact Oζ,η is normal. When
we take the product of the identities above considered in Oζ,η/(ζ, η) ' Fp, the
left-hand side is u1u2 = −u, which is 1 modulo p (see Theorem 3.3), while the
right-hand side is just c′. Therefore:

Lemma 6.4. c′ = 1.
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Notice that u2 ≡ u−1
1 (mod p), and (ζ )∩ (η)= (p) in Oζ,η. It’s not hard to see

that:

Lemma 6.5. u1 ≡−
ηp−1
− 1

ζ p−1− 1
(mod p), u2 ≡−

ζ p−1
− 1

ηp−1− 1
(mod p).

Now if we replace our x1 by r x1 for some unit r ∈ O×ζ,η, then x2 is replaced by
r−1x2 and u1 (resp. u2) is replaced by r p+1u1 (resp. r−p−1u2). Write

u1 =−
ηp−1
−1

ζ p−1−1
r1;

then r1 ≡ 1(mod p). Thus r1/(p+1)
1 exists in Oζ,η. Hence we can modify our x1 to

make u1 =−(η
p−1
− 1)/(ζ p−1

− 1). In summary:

Proposition 6.6. We can choose appropriate bases x1, x2 of L1,L2 over

�̂e ⊗̂ Ẑnr
p ' Spf Oζ,η

such that they are dual to each other under λL1 , and under these bases,

d1 : L
⊗p
1 → L2, x⊗p

1 7→ −
ηp
− η

ζ p−1− 1
x2, (15)

d2 : L
⊗p
2 → L1, x⊗p

2 7→ u
ζ p
− ζ

ηp−1− 1
x1. (16)

Corollary 6.7. The restriction of X1 to �̂e ⊗̂ Ẑnr
p ' Spf Oζ,η is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
−η

ζ p−1−1
x2, x p

2 − u ζ p
−ζ

ηp−1−1
x1

)
. (17)

Similarly, the restriction of 6̂nr
1 to �̂e ⊗̂ Ẑnr

p is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
−η

ζ p−1−1
x2, x p

2 − u ζ p
−ζ

ηp−1−1
x1, (x1x2)

p−1
+ pu

)
. (18)

Proof. The first statement follows from the above discussion. As for 6̂nr
1 , notice

that x1x2 is just λ̃L1 defined in Corollary 5.5. So this is the definition of 6̂nr
1 . �

Fix a ũ1 = (−u)1/(p
2
−1) in Zp. If we replace x1 by ũ1x1, and x2 by ũ p

1 x2,
then our new x1, x2 are dual to each other under ũ−p−1

1 λL1 . Under this basis,
x1x2 = ũ−p−1

1 λ̃L1 .

Corollary 6.8. The restriction of X1 to �̂e ⊗̂ Ẑnr
p ' Spf Oζ,η is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
−η

ζ p−1−1
x2, x p

2 +
ζ p
−ζ

ηp−1−1
x1

)
.

Similarly, the restriction of 6̂nr
1 to �̂e ⊗̂ Ẑnr

p is defined by

Spf Oζ,η[x1, x2]
/(

x p
1 +

ηp
− η

ζ p−1− 1
x2, x p

2 +
ζ p
− ζ

ηp−1− 1
x1, (x1x2)

p−1
− p

)
.
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Suppose e = [s, s ′] and we have (1), (2), and (3). Then �̂s′ ⊗̂ Ẑnr
p is obtained by

inverting η in Oζ,η and taking the p-adic completion. Therefore, we have:

Corollary 6.9. The restriction of X1 to �̂s′ ⊗̂ Ẑnr
p ' Spf Ẑnr

p [η, 1/(ηp
− η)]̂ is

defined by

Spf Ẑnr
p

[
η,

1
ηp−η

]̂
[x1, x2]

/(
x p

1 +
ηp
−η

(p/η)p−1−1
x2, x p

2 +
(p/η)p

−(p/η)
ηp−1−1

x1

)
.

Similarly, the restriction of 6̂nr
1 to �̂s′ ⊗̂ Ẑnr

p is defined by

Spf Ẑnr
p

[
η,

1
ηp − η

]̂
[x1, x2]/(

x p
1 +

ηp
−η

(p/η)p−1−1
x2, x p

2 +
(p/η)p

−(p/η)
ηp−1−1

x1, (x1x2)
p−1
− p

)
.

7. The action of GL2(Q p) on 6̂nr
1 and a descent 6̂1 to Z p2

Recall that we fix an embedding Zp2 ↪→ Ẑnr
p . In this section, I want to describe

the action of GL2(Qp) on 6̂nr
1 . As a corollary, we can descend the formal model

from Ẑnr
p to Zp2 by taking the “p-invariants”, where p is considered as an element

in GL2(Qp). This descent is not quite canonical. On the other hand, as we explained
in the introduction, it suffices to prove Theorem 1.1 when the central character is
trivial on p, and this is exactly the descent we are considering here.

Denote the canonical morphism 6̂nr
1 → X0 by π and π−1(�̂e ⊗̂ Ẑnr

p ) by 6̂nr
1,e,

π−1(�̂s ⊗̂ Ẑnr
p ) by 6̂nr

1,s , for edge e and vertex s. Then {6̂nr
1,e}e is an open covering

of 6̂nr
1 , such that each open set has a nice description as in the previous section.

Then the action of GL2(Qp) on this covering can be identified with the action on
the Bruhat–Tits tree.

Now let s ′0 be the central vertex defined in Section 2. Then, GL2(Zp) acts
on 6̂nr

1,s′0
. I want to write down explicitly this action under the identification in

Corollary 6.9. Since π is GL2(Zp)-equivariant, we only need to describe the action
on x1, x2. However it’s clear from the equation in Corollary 6.9 that x2 can be
expressed using x1 because ηp

−η is invertible. So it suffices to describe the action
on x1.

We first observe that T ∗0 /(5
∗

0T ∗1 )' L1/d2(L
⊗p
2 ) is a free Oη/p-module of rank

one with a basis x1. Recall Oη = Ẑnr
p [η, 1/(ηp

− η)]̂. In Section 2, we gave an
explicit description (6) of the action of GL2(Zp) on T ∗0 , which is given by

f (η)e∗0 7→
1

bη+d
f
(aη+c

bη+d

)
e∗0, g =

(
a b
c d

)
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for some basis e∗o . So if we write x1 = f (η)e∗0 , for some f (η) ∈ (Oη/p)×, then the
action of GL2(Zp) on x1 in Oη/p is

g(x1)=
1

bη+d
f
(aη+c

bη+d

)
f (η)−1x1. (19)

Notice that on 6̂nr
1,s ,

x p+1
1 ≡ (ηp

− η)x1x2 = (η
p
− η)(−u)−1/(p−1)λ̃L1 (mod p).

Thanks to Proposition 5.9, we know how g =
(

a b
c d

)
acts on the right-hand side:

g
(
(ηp
− η)(−u)−1/(p+1)λ̃L1

)
=

((aη+c
bη+d

)p
−

aη+ c
bη+ d

)
(−u)−1/(p−1)(ad − bc)−1λ̃L1 .

Here we use the fact χ1(det(g)) ≡ det(g) (mod p). An easy computation shows
this is just (1/(bη+ d))p+1(ηp

− η)(−u)−1/(p−1)λ̃L1 .
But from (19),

g(x1)
p+1
=

( 1
bη+d

)p+1(
f
(aη+c

bη+d

)
f (η)−1

)p+1
x p+1

1 .

Comparing both expressions, we have

f
(aη+c

bη+d

)p+1
= f (η)p+1 for any g =

(
a b
c d

)
∈ GL2(Zp).

Since f (η) ∈ (Oη/p)× = Fp[η, 1/(ηp
− η)]×, it can only have poles and zeros

at Fp-rational points. Now GL2(Zp) acts transitively on these points, so f (η) has
to be a constant. In other words:

Proposition 7.1. The action of GL2(Zp) on the special fiber of 6̂nr
1,s′0

is given by

g(x1)≡
1

bη+ d
x1 (mod p), g =

(
a b
c d

)
∈ GL2(Zp).

Corollary 7.2. This action factors through GL2(Fp).

What’s the action of GL2(Zp) on 6̂nr
1,s′0

? Using Proposition 7.1 we can write

g(x1)
p+1
=

( 1
bη+d

)p+1
x p+1

1 (1+ ph(η))

for some h(η) ∈ Oη which only depends on g. Then:

Proposition 7.3. g(x1)=
1

bη+ d
x1(1+ ph(η))1/(p+1),

where (1+ ph(η))1/(p+1)
= 1+ 1

p+1 ph(η)+ · · · is the binomial expansion.
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Now let e0 be the edge that connects the central vertex s ′0 and the vertex s0 that
corresponds to GL2(Zp)Q

×
p ·w, where w =

( 0 −1
p 0

)
. Then w acts on 6̂nr

1,e0
. What

is it?
We fix an isomorphism of 6̂nr

1,e0
with the explicit formal scheme described above.

On �̂e0 ⊗̂ Ẑnr
p ' Spf Oζ,η, the action of w is given by

η 7→
p
−η
=−ζ, ζ 7→

p
−ζ
=−η,

and acts as the (lift) of arithmetic Frobenius on Ẑnr
p . Notice that w interchanges L1

and L2 because it acts semilinearly (over Ẑnr
p ). Using this, it’s not hard to see w

has the form
x1 7→ w1x2, x2 7→ w2x1,

where w1, w2 ∈ O×ζ,η.
An easy computation shows that w1, w2 must satisfy the following relation:

w
p
1 =−w2. (20)

Since w ∈ {g ∈ GL2(Qp) | det(g) ∈ pZ
}, we can apply Proposition 5.9, which

tells us x1x2 = λ̃L1 is invariant by w. So,

w1w2 = 1. (21)

Combining these together, we get:

Lemma 7.4. The action of w =
( 0 −1

p 0
)

on 6̂nr
1,e0

is given by

x1 7→ w1x2, x2 7→ w−1
1 x1,

where w1 ∈ Z×p2 satisfies w p+1
1 =−1.

Now we are ready to prove the main result of this section:

Proposition 7.5. 6̂nr
1 can be descended to a formal scheme 6̂1 over Zp2 . In fact,

6̂1= 6̂
nr
1

p, the formal scheme defined by the p∈GL2(Qp)-invariant sections of 6̂nr
1 .

Proof. It suffices to prove this locally, so we only need to work on 6̂nr
1,e. Since

GL2(Qp) acts transitively on this covering, and p is in the center of GL2(Qp),
we can just work with 6̂nr

1,e0
. �̂e0 ⊗̂ Ẑnr

p certainly descends to Zp2 . The question
is whether the descents of L1,L2, d1, d2 are effective. We show this by explicit
computations.

Choose c ∈ Znr
p such that cp+1

= v1w
−1
1 , where v1 is a choice of (p−1)-th root

of −1, then c is a root of unity, and F̃r(c) = cp. Define e = cx1, e′ = c−1x2. We
have

w2(e)= w(F̃r(c)w1x2)= w(cpw1x2)= cp2
w

p
1w
−1
1 x1 = cp2

−1w
p−1
1 e =−e.
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Similarly, w2(e′)=−e′. Notice that p=−w2 and−1 acts on x1 as χ1(−1)−1
=−1

(the action of Z×p in GL2(Qp) is the inverse of the action of it in O×D ). So e and e′

are invariant by p, and L1, L2 can be descended to Zp2 .
What about d1, d2? Now

d1 : e⊗p
7→ −cp+1 ηp

−η

ζ p−1−1
e′.

Since cp+1
= (−1)1/(p−1)w−1

1 ∈ Zp2 , d1 is defined over Zp2 . A similar argument
works for d2. �

Remark 7.6. Sometimes e also denotes an edge of a graph. I hope that it is clear
from the context whether e refers to an edge or a section of L1 (locally).

Corollary 7.7. (1) The action of GL2(Qp) can also be defined over 6̂1.

(2) 6̂1 has an open covering {6̂1,e}e indexed by the edges of the Bruhat–Tits tree,
such that this identification is GL2(Qp)-equivariant.

(3) 6̂1,e is isomorphic to

Spf Oe,e′ = Spf
Zp2

[
ζ, η,

1
1−ζ p−1

,
1

1−ηp−1
, e, e′

]̂
(

ep
+ v1w

−1
1

ηp
−η

ζ p−1−1
e′, e′p + v−1

1 w1
ζ p
−ζ

ηp−1−1
e, (ee′)p−1

− p, ηζ − p
) ,

where w1 = (−1)1/(p+1) is a (p2
−1)-th root of unity, and v1 is a choice of

(p−1)-th root of −1.

(4) The action of w on 6̂1,e0 is given by

e 7→ v1e′, e′ 7→ v−1
1 e.

Remark 7.8. The reason that everything can be defined over Zp2 , I believe, is
that the universal formal group can be defined over Zp2 . This is because when
we formulate the moduli functor it represents, the “unique” 2-dimensional special
formal group of height 4 and all endomorphisms can be defined over Fp2 .

8. A semistable model of 6̂1

In this section, our goal is to work out a semistable model of 6̂1 as a formal scheme
over Zp (not Zp2!). Notice that 6̂1 has a structural map to Spec Zp2 . Hence if we
change our base from Zp to OF0 , then

6̂1×Spec Zp Spec OF0 ' 6̂1 t 6̂
′

1. (22)

Here 6̂′1 is the same scheme 6̂1 but with twisted map to OF0 . Recall that F0 is the
unique unramified quadratic extension of Qp, and we fix an isomorphism between it
and Qp2 in the beginning. Hence we may identify 6̂1 as a formal scheme over OF0 .
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Therefore we only need to work over the scheme 6̂1 as a scheme over Spec Zp2 ,
and use the equation above to translate everything into the Zp-scheme 6̂1. I hope
this won’t cause too much confusion.

I say a formal scheme X is a semistable curve over Spec R, where R is a complete
discrete valuation ring, if:

(1) The generic fiber of X is smooth over the generic fiber of Spec R.

(2) The special fiber of X is reduced.

(3) Each irreducible component of the special fiber of X is a divisor on X .

(4) Each singular point has an étale neighborhood that is étale over

Spec R[x, y]/(xy−πR),

where πR is a uniformizer of R.

Back to our situation; we first work locally on 6̂1, so we just work with 6̂1,e.
Moreover we can assume e = e0 defined in the previous section and use the results
there.

First notice that in Oe,e′ (see the notation in Corollary 7.7), ee′ = ũ−p−1
1 λ̃L1 (see

the equation before Corollary 6.8 and recall in the proof of Proposition 7.5, x1x2 =

ee′), so it is a globally defined section on 6̂1, and satisfies (ee′)p−1
− p. Now if we

do base change from Zp2 to Zp2[p1/(p−1)
], the generic fiber of Spf Oe,e′[p1/(p−1)

]

will split into p−1 connected components. Each connected component corresponds
to a choice of (p−1)-th root of p. Adjoining ee′/p1(p−1)

= ũ−p−1
1 λ̃L1/p1(p−1) into

Oe,e′[p1/(p−1)
], which I would like to call O1

e,e′ , the formal scheme also splits into
p−1 connected components, namely,

O1
e,e′ =

∏
$

p−1
1 =p

O1
e,e′,$1

.

Explicitly, O1
e,e′,$1

is

Zp2 [p1/(p−1)
]

[
η, ζ, e, e′, 1

ηp−1−1
,

1
ζ p−1−1

]̂
(

ep
+ v1w

−1
1

ηp
−η

ζ p−1−1
e′, e′p + v−1

1 w1
ζ p
−ζ

ηp−1−1
e, ee′−$1

) .
Now, we have (write $1 as p1/(p−1))

ep+1
= ep
· e =−v1w

−1
1

ηp
− η

ζ p−1− 1
e′e =−w−1

1
ηp
− η

ζ p−1− 1
v1 p1/(p−1)

=−w−1
1

ηp
− η

ζ p−1− 1
(−p)1/(p−1).
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Recall v1 is a (p−1)-th root of−1. This clearly shows that if we adjoin a (p2
−1)-th

root of −p, then the normalization of this ring contains e/((−p)1/(p−1))1/(p+1)
=

e/(−p)1/(p
2
−1). Similarly, e′/(−p)1/(p

2
−1) is also contained in the normalization.

Definition 8.1. Let $ be a fixed choice of (−p)1/(p
2
−1). Define F = F0[$ ], and

OF as the ring of integers inside F .

We change our base from Spec Zp2 to Spec OF via the fixed identification between
Qp2 and F0, and take the normalization of Oe,e′,$1[$ ] (it’s not hard to verify it’s
integral). Denote the normalization by Õe,e′,$1[$ ]. I claim basically this is just
adjoining e/$, e′/$ .

Lemma 8.2. Õe,e′,$1[$ ] =

OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
,

e
$
,

e′

$

]̂
(( e
$

)p+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
,
( e′

$

)p+1
+ v−1

1 w1ξ
ζ p
−ζ

ηp−1−1
,

e
$

e′

$
− ξ$ p−1

) ,
where ξ = $1

$ p+1 is a (p−1)-th root of −1.

Proof. It’s clear both sides become the same after inverting p and certainly the
right-hand side is contained in the left-hand side. Thus it suffices to prove the
right-hand side is normal. First, since the generic fiber is smooth, there is no
singular point on the generic fiber. Now if we modulo $ , the uniformizer, it’s
easy to see the only singular point is the maximal ideal (e/$, e′/$,$). We only
need to show (e/$, e′/$) is a regular sequence. Simple calculations indicate that
the right-hand side is p-torsion free, so e/$ is not a zero divisor. In fact this
already proves that the right-hand side is integral. Modulo e/$ , the right-hand
side becomes Zp2[$ ]/($ p−1)[ζ, e′/$ ]/((e′/$)p+1

+a(ζ p
−ζ )) for some unit a.

The element e′/$ is clearly neither a zero divisor, nor a unit. So we’re done. �

Remark 8.3. The special fiber of Õe,e′,$1[$ ] has two irreducible components,
defined by e/$ = 0 and e′/$ = 0. Each one maps to an irreducible component of
the special fiber of �̂e0 ×Spec Zp Spec OF , and has the form

Fp2

[
x, y, 1

y p−1−1

]/
(y p
− y− cx p+1),

where c is some root of unity. So each irreducible component is smooth and is
an open set of an Artin–Schreier curve. In fact, if we do not split these connected
components, then the special fiber is isomorphic to

Fp2

[
x, y,

1
y p−1− 1

]/(
(y p
− y)p−1

+w−2
1 x p2

−1),
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which is an open set of a twist of Deligne–Lusztig variety of GL2(Fp) (see [Deligne
and Lusztig 1976, Section 2]). More precisely, if we invert x and define X = 1/x ,
Y = y/x , this curve now has the form (XY p

− Y X p)p−1
=−w−2

1 .

Notice that Õe,e′,$1[$ ] is not semistable, because locally the singular point is
defined by (e/$)(e′/$)−$ p−1ξ , where ξ is some unit. To get a semistable
model, keep blowing up the singular points until our scheme becomes regular. In
fact, we need to blow up [(p − 1)/2] times. On the level of special fiber, this
singular point will be replaced by p− 2 rational curves in this process. After this,
we finally get our desired semistable model of 6̂1,e0 ×Spec Zp2 Spec OF .

So far we have been working locally on 6̂1, but our construction above can be
done globally. First, we change the base to Spec OF and adjoin u−p−1

1 λ̃L1/$
p−1

(equivalently, λ̃L1/$
p−1). Here, since the difference between$ p−1 and a (p−1)-th

root of p is a (p− 1)-th root of −1, it doesn’t matter which one we use. Then our
formal scheme will split into p− 1 connected components, indexed by (p−1)-th
roots of −1. Now take the normalization of each connected component. Call the
total space 6̃1,OF . For each component, it is clear from the above explicit local
description that the dual graph of its special fiber is the same as �̂’s, which is
nothing but the Bruhat–Tits tree. Finally, blow up each singular point to get rid of
singularities and we end up with a semistable model of 6̂1×Spec Zp2 Spec OF .

Theorem 8.4. 6̂1 (over Spec Zp2) has a semistable model 6̂1,OF over OF , such
that:

(1) 6̂1,OF has (p− 1) connected components, indexed by (p−1)-th roots of −1.

(2) The dual graph of the special fiber of each connected component is the graph
adding p− 2 vertices to each edge of the Bruhat–Tits tree.

(3) Vertices that come from the Bruhat–Tits tree correspond to some Artin–Schreier
curves (y p+1

= c(x p
− x) in P2, where c ∈ F

×

p2). Singular points are points
with y = 0. If we put the p− 1 connected components together, then a dense
open set of it is isomorphic to the Deligne–Lusztig variety of GL2(Fp) over
any algebraically closed field.

(4) Other vertices correspond to rational curves. Singular points are zero and
infinity.

Proof. We only need to prove our assertion for the special fiber. In the previous
discussion, we already know the dual graph of the special fiber of each connected
component of 6̃1,OF is the Bruhat–Tits tree. Since blow-ups replace each singular
point by p− 2 rational curves, everything is clear. �

Let π̂ and π̃ be the canonical maps from 6̂1,OF and 6̃1,OF to �̂×Spec Zp Spec OF .
For each edge e of the Bruhat–Tits tree, we can define 6̂1,OF ,e and 6̃1,OF ,e as
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π̂−1(�̂e×Spec Zp Spec OF ) and π̃−1(�̂e×Spec Zp Spec OF ), respectively. Similarly
we can define 6̂1,OF ,s = 6̃1,OF ,s for each vertex s. Define 6̂1,OF ,e,ξ , 6̂1,OF ,s,ξ ,
6̃1,OF ,e,ξ , 6̃1,OF ,s,ξ , where ξ is a (p−1)-th root of −1, as the corresponding con-
nected component of 6̂1,OF ,e, 6̂1,OF ,s , 6̃1,OF ,e, 6̃1,OF ,s . Note that in the notation
of Lemma 8.2, 6̃1,OF ,e,ξ = Spf Õe,e′,$ p+1ξ [$ ].

In Lemma 8.2, we have an explicit description of 6̃1,OF ,e. To simplify notation, I
will use ẽ, ẽ′ for e/$ , e′/$ . Now let s ′ be an even vertex (for example, the central
vertex s ′0). It’s not hard to see that

6̂1,OF ,s′,ξ = 6̃1,OF ,s′,ξ ' Spf OF

[
η,

1
ηp−η

, ẽ
]/(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

(p/η)p−1−1

)
,

(23)

6̂1,OF ,s′ = 6̃1,OF ,s′ ' Spf OF

[
η,

1
ηp−η

, ẽ
]/(

ẽp2
−1
+w2

1

(
ηp
−η

(p/η)p−1−1

)p−1)
.

(24)

If s is an odd vertex, then similarly we have

6̂1,OF ,s,ξ = 6̃1,OF ,s,ξ ' Spf OF

[
ζ,

1
ζ p−ζ

, ẽ′
]/(

ẽ′p+1
+ v−1

1 w1ξ
ζ p
− ζ

(p/ζ )p−1− 1

)
,

(25)

6̂1,OF ,s = 6̃1,OF ,s ' Spf OF

[
ζ,

1
ζ p−ζ

, ẽ′
]/(

ẽ′p
2
−1
+w−2

1

(
ζ p
−ζ

(p/ζ )p−1−1

)p−1)
.

(26)

Remark 8.5. If we view 6̂1 as a Zp-scheme, then 6̂1 ×Spec Zp Spec OF has a
semistable model over Spec OF , which I call 6̂(0)1,OF

. It is canonically isomorphic
to 6̂1,OF t 6̂

′

1,OF
, where 6̂′1,OF

is isomorphic with 6̂1,OF as a scheme, but the
structure morphism to Spec OF is twisted: OF → OF is the unique automorphism
that fixes $ and acts as Frobenius on OF0 . We use gϕ to denote it as an element
in Gal(F/Qp).

From now on, I will use the exponent (0) for everything that is base changed
from Zp to OF . For example, we can define 6̂(0)1,OF ,s , 6̂(0)1,OF ,s,ξ , . . . . Also we use
the exponent ′ for things with same underlying scheme but with twisted structure
morphism to OF . For example 6̂′1,OF ,s , 6̂′1,OF ,s,ξ , . . . . Under this notation, we have
6̂(0)1,OF ,s = 6̂1,OF ,s t 6̂

′

1,OF ,s, . . . .

9. The action of GL2(Z p), Gal(F/F0), O×D on 6̃1,OF and 6̂1,OF

By acting on the first factor, we have an action of GL2(Qp) on 6̂1×Spec Zp Spec OF

which extends naturally to our semistable 6̂(0)1,OF
. Since GL2(Qp) will interchange

6̂1,OF and 6̂′1,OF , it does not act on 6̂1,OF . The reason is that g ∈GL2(Qp) acts on
Zp2 by F̃rvp(det(g)). However, GL2(Zp) acts on 6̂1,OF .
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So how does GL2(Zp) act on the central component 6̂1,OF,s′0 of 6̂1,OF ? We have
an explicit description above (23), (24). We will fix this identification from now on.

6̂1,OF ,s′0,ξ = Spf OF0[$ ]
[
η,

1
ηp−η

, ẽ
]/(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

(p/η)p−1−1

)
, (27)

6̂1,OF ,s′0 = Spf OF0[$ ]
[
η,

1
ηp − η

, ẽ
]/(

ẽp2
−1
+w2

1(
ηp
− η

(p/η)p−1− 1
)p−1

)
. (28)

Proposition 9.1. (1) The action of GL2(Zp) on 6̃1,OF ,s′0 = 6̂1,OF ,s′0 is given by

g(ẽ)≡
1

bη+ d
ẽ (mod p), g =

(
a b
c d

)
∈ GL2(Zp). (29)

So it factors through GL2(Fp) when acting on the special fiber.

(2) g ∈ GL2(Zp) maps 6̃1,OF ,s′0,ξ to 6̃1,OF ,s′0,ξχ1(det(g)).

Proof. Since ẽ = e/$ , we can apply Proposition 7.1 here and everything is clear
except for the claim that how it interchanges connected components. Notice that
the “ξ” component is defined by ũ−p−1

1 λ̃L1 −$
p+1ξ . So our claim follows from

Proposition 5.9. �

Corollary 9.2. The identification of the special fiber of 6̃1,OF ,s′0 with a Deligne–
Lusztig variety is GL2(Fp)-equivariant.

We will come back to this point later when we review Deligne–Lusztig theory.
For 6̂1,OF , since we change our base from OF0 to OF , there is a natural action

of Gal(F/F0).

Definition 9.3. ω̃2 : Gal(F/F0)→ O×F0
is the character given by ω̃2(g)=

g($)
$

.

Any other character is a multiple of ω̃2.

Remark 9.4. Another equivalent definition of ω̃2 is as follows: By local class field
theory, it suffices to give a character of F×0 . This character is trivial on pZ, and on
O×F0

it is given by first reducing modulo p, then taking the inverse of the Teichmüller
character. Our convention on the local Artin map is that uniformizers correspond to
arithmetic Frobenius elements.

Remark 9.5. Recall that we defined two characters χ1, χ2 of (OD/5)
× (see

Definition 3.2). Using the above remark, the relation of χ1 and ω̃2 can be described
in the following diagram:

Z×p2 ' O×F0

��

ArtF0
// Gal(F0/F0)

ab

ω̃−1
2
��

O×D
χ1

// Z×p2 ' O×F0
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where the left arrow is our fixed embedding of Zp2 into OD , ArtF0 is the Artin map
in local class field theory, the isomorphism between Z×p2 and O×F0

is the one we
fixed in the beginning.

Under the isomorphisms (23)–(26), we have:

Proposition 9.6. The action of g ∈ Gal(F/F0) is given by

g(ẽ)= ω̃2(g)−1ẽ, g(ẽ′)= ω̃2(g)−1ẽ′. (30)

This is trivial because ẽ = e/$ , and ẽ′ = e′/$ .
The last group action we want to consider here is the action of O×D .

Proposition 9.7. Under the isomorphisms (23)–(26), for d ∈ O×D ,

d(ẽ)= χ1(d)ẽ, d(ẽ′)= χ2(d)ẽ′. (31)

Remark 9.8. The action of O×D on 6̂′1,OF
is a twist of what we considered above:

d(ẽ)= F̃r(χ1(d))ẽ = χ2(d)ẽ = χ1(d)p ẽ, ∀d ∈ O×D . (32)

d(ẽ′)= F̃r(χ2(d))ẽ′ = χ1(d)ẽ′ = χ2(d)p ẽ′, ∀d ∈ O×D . (33)

Here I identify 6̂′1,OF
with 6̂1,OF but with twisted structure morphism. And by

saying χ2(d) I consider it as an element in the “OF ” coming from the structure
map, not the Zp2 coming from the original scheme 6̂1. However, the action of
Gal(F/F0) is the same, not twisted. Another way to see this is using a g ∈GL2(Qp)

with vp(det(g)) odd, then g sends 6̂1,OF ,s to 6̂′1,OF ,sg. Finally, gϕ ∈ Gal(F/Qp)

interchanges 6̂1,OF and 6̂′1,OF
by acting as Frobenius endomorphism on OF0 but

fixes other things under the isomorphisms (23)–(26).

10. Another admissible open covering of the Drinfel’d upper half-plane and
the generic fiber of 6̂1,OF

In this section, we work on the generic fiber of everything we considered before.
The main result of this section is a description of the generic fiber 61,F of 6̂1,OF

(and a similar result for the generic fiber 6(0)1,F of 6̂(0)1,OF
).

Recall that 61 is the generic fiber of 6̂nr
1 . The latter is defined by two line

bundles, L1,L2, and maps

d1 : L
⊗p
1 → L2, d2 : L

⊗p
2 → L1 (34)

(see the beginning of Section 4). Denote by L1,η, L2,η, d1,η, d2,η the restriction of
the corresponding item to 61, the generic fiber.

First we observe:

Lemma 10.1. Any line bundle over X0, the generic fiber of the Drinfel’d upper
half-plane (and base changed to Ẑnr

p ), is trivial.
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To do this we need another admissible open covering of X0, which is described
in [Drinfel’d 1974] (“topological” analog) and in [Schneider and Stuhler 1991] in
detail. Let me recall it now.

Define

Un(Cp)=
{
z ∈ C p | |z| ≤ pn, |z− a| ≥ p−n, ∀a ∈Qp

}
, (35)

where | · | is the canonical norm on Cp such that |p| = p−1. Notice that we only
need finitely many a to define this set, so Un can be identified as an open set of P1

by removing some open discs. Therefore Un is an affinoid space. In fact, we can
identify it as an affinoid subdomain of a closed unit ball.

Remark 10.2. Another way to construct Un is by using the formal model we already
have. We can define a distance of two vertices of the Bruhat–Tits tree by counting
the number of edges on the unique path between these two vertices. For example,
two adjacent vertices have distance 1 and any vertex has distance 0 with itself. Now
define Zn as the set of vertices having distance ≤ n from the central vertex. Let �Un

be the union of �e such that e is an edge between two vertices in Zn and �U0 =�s′0 .
Then Un is the generic fiber of �Un .

It is clear Un ⊂Un+1 and
⋃

Un =�, the Drinfel’d upper half-plane. Also it’s not
hard to verify the open covering {Un} is admissible. Let OUn be the ring of rigid
analytic functions on Un (over Qp). The key property we need is:

Lemma 10.3. The image of the canonical inclusion φn : OUn+1 → OUn is dense
under the canonical topology on OUn .

Proof. Choose a1, . . . , am ∈ Qp such that {B(ai , p−n)}i is an open covering of
p−nZp in Qp, where B(ai , p−n) is the open ball centered at ai of radius p−n in Qp.
Now when we define Un , we can use a1, . . . , am rather than all a ∈Qp. Thus,

OUn

=

{
F(z)=

+∞∑
k=0

b0,k(pnz)k+
m∑

i=1

+∞∑
k=0

bi,k

( pn

z−ai

)k ∣∣∣ bi,k ∈Qp, lim
k→+∞

bi,k = 0,∀i
}
.

We define a norm | · |n on OUn by |F(z)|n = supi,k |bi,k |. This is nothing but the
supremum norm: | f |n = supx∈Spm OUn

| f (x)|. Now the Qp-algebra generated by
z, 1/(z−ai ) (i = 1, . . . ,m) is dense in OUn . But these functions are defined over �
and so live in OUn+1 . �

Remark 10.4. Notice that in fact pnz, pn/(z − ai ) (i = 1, . . . ,m) are affinoid
generators of OUn over Qp in the sense there exists a surjective map from the Tate
algebra Qp〈T0, . . . , Tm〉 to OUn that sends T0 to pnz and other Ti to pn/(z−ai ). If
we restrict pnz or pn/(z−ai ) to Un−1, by definition of Un−1, its norm is less than 1
(in fact ≤ p−1). From this description, it’s easy to see Un−1 is relatively compact
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in Un . See [Bosch 2014, §6.3] for a precise definition. A direct corollary of this
is that the inclusion map OUn → OUn−1 is a strictly completely continuous map in
the sense of [Bosch 2014, §6.4 Definition 1]. Another consequence is that � is a
Stein-space as defined in [Kiehl 1967].

Now we return to the proof of Lemma 10.1. We still need one more lemma:

Lemma 10.5. Any line bundle on Un is trivial.

Proof. It suffices to prove OUn is a principal ideal domain. It’s obvious that OUn is
regular and hence normal. So we only need to show every maximal ideal of OUn is
principal. But we know Un is an affinoid subdomain of a (one dimensional) closed
unit ball by removing several open discs centered at Qp-points, with radius∈ pZ.
Our claim follows from the fact that Qp〈T 〉, the Tate algebra, is a PID [Bosch 2014,
§2.2 Corollary 10]. �

Proof of Lemma 10.1. I learned this argument from [Kiehl 1967, proof of Satz 2.4].
Since {Un}n is an admissible open covering of � and every line bundle on Un is
trivial, a line bundle on � is equivalent with a 1−cocycle: { fi j }i< j , fi j ∈ O×Ui

,
such that

fi jφ j i ( f jk)= fik

for i < j < k, where φ j i is the canonical inclusion from OU j to OUi . It’s easy to
see that f12, f23, . . . determine all fi j . Two cocycles { fi(i+1)}, { f ′i(i+1)} define the
same line bundle if and only if there exists {gi }, gi ∈ O×Ui

, such that

fi(i+1)giφi (gi+1)
−1
= f ′i(i+1), ∀i ≥ 1.

Now let { fi(i+1)} be a fixed cocycle. Define g′1 = 1 ∈ OU1 . Thanks to Lemma 10.3,
we can find g′i+1 ∈ OUi , i ≥ 1 by induction, satisfying

|1− g′i fi(i+1)φi (g′i+1)
−1
|i <

1
2i .

This implies, after modifying our cocycle, we can assume |1 − fi(i+1)|i <
1
2i .

Now define gi =
∏
∞

j=i φ j i ( f j ( j+1))
−1. Here φi i is the identity map. Notice that

| f | j ≥ |φ j i ( f )|i for f ∈ OU j ; see Remark 10.4. So the infinite product makes sense
by our assumption. But now fi(i+1)giφi (gi+1)

−1
= 1. Therefore it corresponds to

a trivial line bundle. �

Although our proof is working over the base field Qp, the argument still works
if we change the base to other fields.

Corollary 10.6. L1,η and L2,η are trivial line bundles.
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Now let E1 be a basis of L1,η and E∗1 the dual basis of E1 under the isomor-
phism λL1 . Then d1, d2 become two elements U1,U2 in H 0(X0,OX0) such that X1

is now defined by

OX0[E1, E∗1 ]/(E
p
1 −U1 E∗1 , (E

∗

1)
p
−U2 E1).

We know E1 E∗1 = λ̃L1 , so U1U2 =−w (see Corollary 5.5). 61 is

OX0[E1, E∗1 ]/
(
E p

1 −U1 E∗1 , (E
∗

1)
p
−U2 E1, (E1 E∗1)

p−1
+w

)
.

Since w is invertible on the generic fiber, so is U1. We can write E∗1 = E p
1 U−1

1 .

Proposition 10.7. 61 =OX0[E1]/(E
p2
−1

1 +U p−1
1 w).

In other words, 61 is X0 adjoined with a (p2
−1)-th root of a rigid analytic function

on X0.

Remark 10.8. If we are careful enough in the beginning and take E1 to be p ∈
GL2(Qp)-invariant, we can descend our description to OF0 . This means we have
the same description of the generic fiber 61,F of 6̂1,OF .

Corollary 10.9. 61,F is a Stein-space.

Proof. As we remarked before (Remark 10.4), Un is relatively compact in Un+1. It’s
easy to see the open set of 61,F above Un , which we denote by Vn,F is an affinoid
space and relatively compact in Vn+1,F . �

11. De Rham cohomology of 61,F and 6(0)1,F

Let�1
61,F

be the sheaf of holomorphic differential forms on61,F and�0
61,F
=O61,F .

Then we can consider the de Rham complex:

0→�0
61,F

d
−→�1

61,F
, (36)

where d is the usual derivation. Define the de Rham cohomology:

Definition 11.1. H i
dR(61,F )

def
= i-th hypercohomology of the de Rham complex.

Remark 11.2. In a pair of papers Große-Klönne [2000; 2004] introduced a theory
of de Rham cohomology for rigid analytic spaces. His approach uses the over-
convergent de Rham complex rather than the usual De Rham complex. However
in our case, they are the same since �61,F is a Stein space [Große-Klönne 2000,
Theorem 3.2].

Thanks to Kiehl [1967, Satz 2.4.2], we know that all higher cohomology groups
of �0

61,F
, �1

61,F
vanish:
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Proposition 11.3 (de Rham cohomology).

H 0
dR(61,F )= ker(H 0(61,F , �

0
61,F

) d
−→ H 0(61,F , �

1
61,F

))= F, (37)

H 1
dR(61,F )= coker(H 0(61,F , �

0
61,F

) d
−→ H 0(61,F , �

1
61,F

)), (38)

H i
dR(61,F )= 0, ∀i ≥ 2. (39)

We can put a certain topology on H 1
dR(61,F ). This is done by writing:

H 0(61,F , �
i
61,F

)= lim
←−−

n
H 0(Vn,F , �

i
61,F

) for i = 0, 1.

See the proof of Corollary 10.9 for the notation. Since each H 0(Vn,F , �
i
61,F

) is a
Banach space and has a canonical topology, we can equip H 0(61,F , �

i
61,F

) with the
projective limit topology. Now Vn,F is relatively compact in Vn+1,F . As we observed
in Remark 10.4, the transition map from H 0(Vn+1,F , �

i
61,F

) to H 0(Vn,F , �
i
61,F

) is
completely continuous. Using Corollary 16.6 of [Schneider 2002], we have (notice
that a completely continuous map between two Banach spaces is compact; see
Proposition 18.11 of [Schneider 2002]):

Proposition 11.4. H 0(61,F , �
i
61,F

), i = 0, 1 is a reflexive Fréchet space.

See page 55 of [Schneider 2002] for the definition of reflexive.

Proposition 11.5 [Große-Klönne 2004, Corollary 3.2]. The image of the derivation
map d : H 0(61,F , �

0
61,F

)→ H 0(61,F , �
1
61,F

) is closed.

Corollary 11.6. H 1
dR(61,F ) is a Fréchet space.

But how to compute de Rham cohomology? We need our semistable 6̂1,OF

constructed in Section 8. Let E(6̂1,OF ) (resp. V(6̂1,OF )) be the set of singular
points (resp. irreducible components) of the special fiber of 6̂1,OF . By definition,
we can identify them as the set of edges (resp. vertices) of the dual graph of the
special fiber. Now fix an orientation for each edge e ∈ E(6̂1,OF ), and we use v+(e)
(resp. v−(e)) to denote the target (resp. source) vertex of the orientation.

Definition 11.7. Let Ue (resp. Uv) be the tubular neighborhood of the singular
point indexed by e (resp. irreducible component indexed by v).

It is clear that {Uv}v is an admissible open covering of 61,OF . Hence:

Lemma 11.8. We have a long exact sequence of de Rham cohomologies:

0→ H 0
dR(61,F )−→

∏
v∈V(6̂1,OF )

H 0
dR(Uv)

a
−→

∏
e∈E(6̂1,OF )

H 0
dR(Ue)

∂
−→ H 1

dR(61,F )

−→

∏
v∈V(6̂1,OF )

H 1
dR(Uv)

b
−→

∏
e∈E(6̂1,OF )

H 1
dR(Ue),
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where the arrows without labels are canonical restriction maps, and a, b are the
canonical restriction maps to v+(e) minus the restriction map to v−(e) for an
element indexed by e.

Here the de Rham cohomologies of Ue,Uv are defined by the same method as
above. We note that they are not affinoid but Stein spaces.

We first look at Ue, the tubular neighborhood of a singular point. It’s not
hard to see from the explicit description in Lemma 8.2 that Ue is an annulus
{T | |$ |< |T |< 1}. So its de Rham cohomology is: H 0

dR(Ue)= F , generated by
the constant function; H 1

dR(Ue)' F , generated by dT/T , where T is a coordinate
of Ue.

In Lemma 8.2, although we haven’t resolved the singularities there, dẽ/ẽ still
makes sense on the generic fiber, and it generates all of H 1

dR(Ue) for any singular
point e above the singularity there. In fact, the process of resolving the singularities
xy−$ n is just “dividing” the annulus into several small annuli. For example, the
tubular neighborhood of xy−$ n can be thought as the annulus {T | |$ |n < T < 1}.
For any e above this singular point, Ue can be identified as {T | |$ |l+1 < T < |$ |l}
for some l < n.

Recall that O×D acts as characters on ẽ, so acts trivially on H 0
dR(Ue), H 1

dR(Ue).
What about Uv? There are two possibilities. One is that v corresponds to a

rational curve. Uv is an annulus and the result is the same as Ue. In particular O×D
acts trivially on their de Rham cohomologies.

The other one is more interesting. We will compute it in the next section. Some
notation here: recall that every such vertex can be indexed by (s, ξ), where s is a
vertex of the Bruhat–Tits tree and ξ satisfies ξ p−1

=−1.

Definition 11.9. From now on we will use (s, ξ) to denote these vertices.

Definition 11.10. Denote the irreducible component indexed by (s, ξ) by Us,ξ and
its generic fiber by Us,ξ . We also denote the smooth loci of Us,ξ by U 0

s,ξ (viewed
as a subscheme in the special fiber of 6̂1,OF ). Notice that this is nothing but the
special fiber of 6̂1,OF ,s,ξ = 6̃1,OF ,s,ξ . Define

Us =
⋃

ξ p−1=−1

Us,ξ ,

and U 0
s similarly.

Recall that in the beginning, we fix a finite extension E of Qp that is large enough
and define χ(E) as the set of characters of (OD/5)

× with values in E×.
O×D acts naturally on H 1

dR(61,F )⊗Qp E by acting on the first factor. Since
the action of O×D on 61,F factors through O×D /(1+5OD), we can decompose
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H 1
dR(61,F )⊗Qp E as

H 1
dR(61,F )⊗Qp E =

⊕
χ∈χ(E)

(H 1
dR(61,F )⊗Qp E)χ , (40)

where (H 1
dR(61,F )⊗Qp E)χ = {a | d(a)= (1⊗χ(d))a, ∀d ∈ O×D } is the χ -isotypic

component.
Now tensor everything in the long exact sequence of Lemma 11.8 with E , and

take the χ -isotypic component for a nontrivial character χ ∈χ(E). As we explained
above, O×D acts trivially on the cohomology of any annulus, so only the de Rham
cohomology of Us contributes. In other words:

Lemma 11.11. For a nontrivial character χ ,

(H 1
dR(61,F )⊗Qp E)χ '

∏
s

(H 1
dR(Us)⊗Qp E)χ ,

(H 1
dR(6

(0)
1,F )⊗Qp E)χ '

∏
s

(H 1
dR(U

(0)
s )⊗Qp E)χ

=

∏
s

(
(H 1

dR(Us)⊕ H 1
dR(U

′

s))⊗Qp E
)χ
,

where s takes value in the set of vertices of the Bruhat–Tits tree.

It’s clear that GL2(Qp) preserves (H 1
dR(6

(0)
1,F )⊗Qp E)χ because the action of

GL2(Qp) commutes with O×D . Also g ∈ GL2(Qp) induces an isomorphism from
U (0)

s to U (0)
sg , hence an isomorphism from H 1

dR(U
(0)
sg ) to H 1

dR(U
(0)
s ). Note that the

set of vertices of the Bruhat–Tits tree is nothing but GL2(Zp)Q
×
p \GL2(Qp). Thus

we have:

Proposition 11.12. As a representation of GL2(Qp) over E , we have

(H 1
dR(6

(0)
1,F )⊗Qp E)χ ' IndGL2(Qp)

GL2(Zp)Q
×
p
(H 1

dR(U
(0)
s′0
)⊗Qp E)χ

for any nontrivial character χ ∈ χ(E). Recall that s ′0 is the central vertex. Here the
induction has no restriction on the support.

12. An F0-structure of (H1
dR(6

(0)
1,F)⊗Q p E)χ and the computation of H1

dR(Us′0)

Recall that F0 is the maximal unramified extension of Qp inside F and we fixed an
isomorphism between it and Qp2 in the beginning.

Following Coleman and Iovita [1999], we can define an F0 /Frobenius structure
on the de Rham cohomology H 1

dR(6
(0)
1,F ). This means we can find an F0-linear

subspace HF0 equipped with a F̃r-linear Frobenius morphism, such that HF0⊗F0 F'
H 1

dR(6
(0)
1,F ). Let’s recall their construction in our situation now.

By Lemma 11.11, we only need to define an F0 /Frobenius structure on each
(H 1

dR(U
(0)
s )⊗Qp E)χ , in fact, each (H 1

dR(Us,ξ )⊗Qp E)χ (using the notation from
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Definition 11.7). Theorem C of [Große-Klönne 2002] tells us we have a natural
isomorphism between H 1

dR(Us,ξ ) and H 1
rig(U

0
s,ξ/F), the rigid cohomology of U 0

s,ξ

with coefficients in F defined in [Berthelot 1986]. Recall that U 0
s,ξ is an open

set of Us,ξ by removing (p+ 1) Fp-rational points (each corresponds to an edge
connecting s). Then we have the following exact sequence:

0→ H 1
rig(Us,ξ/F)→ H 1

rig(U
0
s,ξ/F)→ F⊕p+1

→ F→ 0. (41)

Explicitly, we can construct an isomorphism ψs,ξ :Us,ξ → F1,ξ , where F1,ξ is
defined as{
(x, y) ∈A2

F

∣∣ y p+1
= v−1

1 w1ξ(x p
− x), |x− k|> p−1/(p−1), k = 0, 1, . . . , p−1,

|x |< p1/(p−1)}
for an odd vertex s (even case is similar). If we restrict this isomorphism to the
generic fiber of 6̂1,OF ,s,ξ and use the description in (25), it is given by

x 7→ ζ, y 7→ ẽ′(1− (p/ζ )p−1)1/(p+1),

where (1 − (p/ζ )p−1)1/(p+1)
= 1 − 1/(p + 1)(p/ζ )p−1

+ · · · is the binomial
expansion. The rigid space F1,ξ is clearly an open set of a projective curve D1,ξ

in P2
F defined by y p+1

= v−1
1 w1ξ(x p

− x). We note that D1,ξ − F1,ξ is a union of
p+ 1 closed discs. Each disc is centered at a point with zero y-coordinate. We
denote these points by C0, . . . ,C p. Then, we have

0→ H 1
dR(D1,ξ )−→ H 1

dR(F1,ξ )
Res
−−→

p⊕
i=0

F sum
−−→ F→ 0, (42)

where Res is the residue map to each Ci , and sum is taking the sum. A proof of this
can be found in Section IV of [Coleman 1989]. Notice that D1,ξ has an obvious
formal model over OF (in fact over OF0!), and its special fiber is nothing but U1,ξ .
So we have a natural isomorphism between H 1

dR(D1,ξ ) and H 1
rig(U1,ξ ). Using these

isomorphisms, we can identify the two exact sequences (41), (42) with each other.
It is not hard to see O×D acts trivially on the residues. For example, near x = y= 0,

t = y/(1− x p−1)1/(p+1) is a local coordinate. O×D acts as a character on y and
acts trivially on x , hence acts trivially on dt/t . Therefore if we tensor the exact
sequence (41) with E and take the χ -isotypic component, we obtain:

Lemma 12.1. (H 1
dR(Us)⊗Qp E)χ ' (H 1

rig(Us/F)⊗Qp E)χ .

Since we have a natural isomorphism H 1
rig(Us/F)' H 1

crys(Us/F0)⊗F0 F , there is
an F0 /Frobenius structure on (H 1

rig(Us/F)⊗Qp E)χ and thus on (H 1
dR(Us)⊗Qp E)χ.

Here H 1
crys(Us/F0) is the first crystalline cohomology of Us tensored with Qp.

Explicitly, as we mentioned above, D1,ξ can be defined over F0 and its formal
model D̂1,OF0 ,ξ

over OF0 is a smooth lifting of Us,ξ . So the de Rham cohomology
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of D̂1,OF0 ,ξ
can be identified with the crystalline cohomology of Us,ξ . Thus we

obtain an F0-linear subspace inside H 1
dR(D1,ξ ). But to get a Frobenius operator, we

need to identify it with the crystalline cohomology.

Remark 12.2. For an even vertex s ′, we can define similar objects:

ψs′,ξ :Us′,ξ → F0,ξ , D0,ξ , D̂0,OF0 ,ξ
, . . . .

In summary, combining the above results with Proposition 11.12, we have:

Proposition 12.3. (H 1
dR(6

(0)
1,F )⊗Qp E)χ has an F0 /Frobenius structure that comes

from the crystalline cohomology of the special fiber of 6̂(0)1,OF
. More precisely, under

the identification of (H 1
dR(6

(0)
1,F )⊗Qp E)χ with

IndGL2(Qp)
GL2(Zp)Q

×
p
(H 1

dR(U
(0)
s′0
)⊗Qp E)χ ,

the F0-subspace is

IndGL2(Qp)
GL2(Zp)Q

×
p
(H 1

crys(U
(0)
s′0
/F0)⊗Qp E)χ ,

and the Frobenius operator is defined in the obvious way.

Remark 12.4. We can also define a monodromy operator, but for any χ such that
χ 6= χ p it is zero on (H 1

dR(6
(0)
1,F )⊗Qp E)χ . The reason is that the definition of

monodromy operator uses the cohomologies of the tubes of the singular points,
which do not contribute to the cohomology we are interested in. See [Coleman and
Iovita 1999] for the precise definition of monodromy operator.

As we remarked before, Us′0 has a close relation with the Deligne–Lusztig variety
of GL2(Fp) (Corollary 9.2), which we call DL. In fact, the open set

U 0
s′0
' Spec Fp2

[
η, ẽ, 1

ẽ

]/
(ẽp2

−1
+w2

1(η
p
− η)p−1)

is GL2(Zp)-equivariantly isomorphic with DL over the algebraically closed field
(or up to taking a transpose of GL2(Fp)). So we can apply Deligne–Lusztig theory
(established in [Deligne and Lusztig 1976]). Although Deligne and Lusztig [1976]
use l-adic cohomology, their results can be applied directly to crystalline cohomol-
ogy thanks to Katz and Messing [1974] and Gillet and Messing [1987]. Notice that
the action of O×D on U 0

s′0
, which factors through O×D /(1+5OD), can be identified

with the inverse of the action of a nonsplit torus (T(w)F in [Deligne and Lusztig
1976]) of GL2(Fp).

Theorem 12.5. Let χ(F0) be the character group of O×D /(1+5OD) with values
in F0 (it’s generated by χ1; see Definition 3.2). We can decompose

H 1
crys(Us′0/F0)=

⊕
χ ′∈χ(F0)

H 1
crys(Us′0/F0)

χ ′
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into the sum of different χ ′-isotypic components. Each component has a natural
action of GL2(Fp). Then:

(1) H 1
crys(Us′0/F0)

χ ′
= 0 if and only if χ ′ = (χ ′)p.

(2) If H 1
crys(Us′0/F0)

χ ′
6= 0, it’s an irreducible representation of GL2(Fp).

(3) H 1
crys(Us′0/F0)

χ ′
' H 1

crys(Us′0/F0)
(χ ′)p

and these are the only isomorphisms
among these nonzero representations.

Definition 12.6. Define ρχ as the representation (H 1
crys(Us′0/F0)⊗F0 E)χ of GL2(Fp),

for any χ ∈χ(E). The theorem above guarantees that different choices of embedding
F0→ E give the same representation.

Remark 12.7. Gal(F/F0) also acts on H 1
crys(Us′0/F0)

χ ′ . By the results in Section 9,
we have

H 1
crys(Us′0/F0)

χ ′
= H 1

crys(Us′0/F0)
ω̃

i(χ ′)
2 ,

the ω̃i(χ ′)
2 -isotypic space for Gal(F/F0), where i(χ ′) ∈ {0, . . . , p2

−2} is defined
as the unique integer such that χ−i(χ ′)

1 = χ ′. Using results in Remark 9.5, another
equivalent definition is that ω̃i(χ ′)

2 is the unique character making the following
diagram commutative:

Z×p2 ' O×F0

��

ArtF0
// Gal(F0/F0)

ab

ω̃
i(χ ′)
2

��

O×D
χ ′

// Z×p2 ' O×F0

Recall that ω̃2 is defined in Remark 9.5.

Now I want to translate the theorem above to our situation. Fix an embedding
τ : F0→ E , and use τ̄ to denote the conjugate embedding. Let χ ′ ∈ χ(F0) be the
unique character that satisfies τ ◦χ ′= χ . Recall that gϕ ∈Gal(F/Qp) is the unique
element that fixes $ but acts as Frobenius on F0.

Proposition 12.8. Dcrys,χ
def
= HomGL2(Fp)

(
ρχ ′, (H 1

crys(U
(0)
s′0
/F0)⊗Qp E)χ

)
is a free

F0⊗Qp E-module of rank 2. Gal(F/Qp) and the Frobenius operator ϕ act on it
naturally. In fact, Dcrys,χ is of the form

Dcrys,χ = (F0⊗Qp E) · e1⊕ (F0⊗Qp E) · e2,

ϕ(e1)= e2, ϕ(e2)= (1⊗ cx)e1,

g · e1 = (ω̃2(g)m ⊗ 1)e1, g · e2 = (ω̃2(g)pm
⊗ 1)e2, ∀g ∈ Gal(F/F0),

gϕ · e1 = e1, gϕ · e2 = e2,

with cx ∈ E and vp(cx)= 1, m = i(χ ′) defined in Remark 12.7.
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Proof. We can write (using the fact U (0)
s′0
=Us′0 tU ′s′0

)

(H 1
crys(U

(0)
s′0
/F0)⊗Qp E)χ = (H 1

crys(Us′0/F0)⊗Qp E)χ ⊕ (H 1
crys(U

′

s′0
/F0)⊗Qp E)χ

= H 1
crys(Us′0/F0)

χ ′
⊗F0,τ E ⊕ H 1

crys(Us′0/F0)
χ ′
⊗F0,τ̄ E

⊕ H 1
crys(U

′

s′0
/F0)

χ ′
⊗F0,τ E ⊕ H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E,

where χ ′ = (χ ′)p, the conjugate character, satisfies τ̄ ◦χ ′ = χ .
Recall that we can identify Us′0 with U ′s′0

but with different structure map to
Spec Fp2 . Using Remark 9.8, such an identification induces an isomorphism between
H 1

crys(Us′0/F0)
χ ′ and H 1

crys(U
′

s′0
/F0)

χ ′ . By definition,

HomGL2(Fp)

(
ρχ ′, H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E

)
' F0⊗F0,τ E

and similar results for other factors of (H 1
crys(U

(0)
s′0
/F0)⊗Qp E)χ follow from Deligne–

Lusztig theory. It’s easy to see Dcrys,χ ' F0⊗Qp E⊕2 from these descriptions.
By Remarks 12.7 and 9.8, Gal(F/F0) acts via ω̃m

2 (as an F0-vector space) on
H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E , and H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E and acts as ω̃pm

2 on the other
two factors since i(χ ′)= i((χ ′)p)= pi(χ ′). Remark 9.8 also tells us that gϕ induces
an isomorphism between H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E and H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E .

Now, choose a generator f1 of

HomGL2(Fp)

(
ρχ ′, H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E

)
,

and define
e1 = f1+ gϕ · f1, e2 = ϕ(e1),

where ϕ is the Frobenius operator coming from the crystalline cohomology. We
need to verify our claim in the proposition.

First it’s easy to see e1 is indeed a generator of

HomGL2(Fp)

(
ρχ ′, H 1

crys(Us′0/F0)
χ ′
⊗F0,τ E ⊕ H 1

crys(U
′

s′0
/F0)

χ ′
⊗F0,τ̄ E

)
as a free F0⊗Qp E-module and satisfies g · e1 = (ω̃2(g)m ⊗ 1)e1, g ∈ Gal(F/F0).
Next we verify the desired property of the Frobenius operator ϕ. It’s induced by
the Frobenius endomorphism on Us′0 , which is nothing but raising anything to its
p-th power. So it sends H 1

crys(Us′0/F0)
χ ′ to H 1

crys(Us′0/F0)
(χ ′)p
= H 1

crys(Us′0/F0)
χ ′ .

Therefore everything is clear except our claim for ϕ(e2). This can be shown by
explicit computations. See the next lemma. �

Lemma 12.9. cx =−pτ(w−2i
1 ).

Proof. This can be done using Gauss sums. Since H 1
crys(Us′0/F0)

χ ′ is an irreducible
representation of GL2(Fp), ϕ2 acts as a scalar c̃x on it. It’s easy to see cx = τ(c̃x).
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To compute c̃x , we only need to restrict to one component. So let ξ be a
root of ξ p−1

= −1. Then Us′0,ξ can be identified as the curve in P2
Fp2

defined by
y p+1
= v1w

−1
1 ξ(x p

− x). There is an action of

µp+1(Fp2)= {a ∈ F
×

p2 | a p+1
= 1}

on it given by
a · x = x, a · y = ay, a ∈ µp+1(F

×

p2).

Let χ̃ : µp+1(Fp2)→ F×0 be the Teichmüller character. It’s obvious that

H 1
crys(Us′0/F0)

χ ′
' H 1

crys(Us′0,ξ/F0)
χ̃−i
,

the χ̃−i -isotypical component. Here i ∈ {1, . . . , p} is the unique number satisfying
i ≡ m mod p+1.

On the other hand, Fp also acts on Us′0,ξ , which comes from the action of an
unipotent subgroup of GL2(Fp):

b · x = x + 1, b · y = y, b ∈ Fp.

This action commutes with the action of µp+1(Fp2). It’s easy to see F0 contains all
p-th roots of unity. Let ψp : Fp→ F×0 be a nontrivial additive character. We view
ρ̃ = χ̃−i

×ψp as a one dimensional representation of G̃ def
= µp+1(Fp2)× Fp.

Using Lemma 1.1. of [Katz 1981], we know that the eigenvalue of ϕ2 on
(H 1

crys(Us′0,ξ/F0)⊗F0 F)ρ̃ is (we will see later that this lemma indeed can be applied
to our situation)

−S(Us′0,ξ/Fp2, ρ̃, 1) def
= −

1

#G̃

∑
g∈G̃

tr(ρ̃(g)) #Fix(Fp2 g−1),

where Fp2 is the Frobenius endomorphism of Us′0,ξ relative to Fp2 and Fix(Fp2 g−1)

is the subset of Us′0,ξ (Fp2) fixed by Fp2 g−1. Following the strategy of lemma 2.1.
of [Katz 1981], we can express S(Us′0,ξ/Fp2, ρ̃, 1) as the Gauss sum:

S(Us′0,ξ/Fp2, ρ̃, 1)= (v1w
−1
1 ξ)−i(p−1)

∑
x∈F×

p2

ψp2(x)x−i(p−1),

where ψp2
def
= ψp(trFp2/Fp

(x))= ψp(x p
+ x). Notice that for any x ∈ F×p2 ,∑

a∈F×p

ψp2(ax)=
∑
a∈F×p

ψp(a(x p
+ x))=

{
−1 if x p

+ x 6= 0,
p− 1 if x p

+ x = 0.

From this, it’s easy to see S(Us′0,ξ/Fp2, ρ̃, 1) = wi(p−1)
1 p(−1)i = w−2i

1 p (recall
v

p−1
1 = w

p+1
1 = ξ p−1

=−1). Hence

cx =−pτ(w−2i
1 ). �
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Corollary 12.10. We have a Gal(F/Qp)×O×D×GL2(Qp)-equivariant isomorphism:

F ⊗F0 Dcrys,χ ⊗E IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ −→

∼ (H 1
dR(6

(0)
1,F )⊗Qp E)χ , (43)

where Gal(F/Qp) acts on the first two components, O×D acts on the second, and
GL2(Qp) acts on the third. Moreover, Dcrys,χ ⊗E IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ maps to the F0

subspace we constructed in Proposition 12.3.

Here we extend ρχ to a representation of GL2(Zp)Q
×
p by p acting trivially and

GL2(Zp) acting through GL2(Fp).

Remark 12.11. It’s easy to see the dual representation of ρχ is ρχ−1 , we use 〈 · , · 〉
to denote the pairing of them. Then we can construct a pairing:

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 × IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ → E

( f1, f2) 7→6
[g]∈GL2(Zp)Q

×
p \GL2(Qp)

〈 f1(g), f2(g)〉,

where is the compact induction. More precisely,

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1

=

{
f : GL2(Qp)→ ρχ−1

∣∣ f has compact support mod GL2(Zp)Q
×

p ,

f (kg)= ρχ−1(k) f (g), k ∈ GL2(Zp)Q
×

p , g ∈ GL2(Qp)
}
,

and IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ is defined similarly without any restrictions on the support.

The sum makes sense because it only has finitely many nonzero terms.
This pairing induces an isomorphism IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ ' (c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1)∨,

the algebraic dual representation. We can rewrite the result in Corollary 12.10 as a
Gal(F/Qp)×O×D×GL2(Qp)-equivariant isomorphism (Theorem 1.10):

F ⊗F0 Dcrys,χ ⊗E (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨ −→∼ (H 1

dR(6
(0)
1,F )⊗Qp E)χ . (44)

By Corollary 11.6, there is a natural Fréchet space structure on the right-hand side
of the above map. In fact, we can describe this topology directly on the left-hand
side. Choosing a family of representatives of GL2(Zp)Q

×
p \GL2(Qp), we have a

noncanonical isomorphism between IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ and

∏
GL2(Zp)Q

×
p \GL2(Qp)

ρχ as
E-vector spaces. The topology is nothing but the weakest topology on this product
such that each projection to ρχ is continuous under the canonical (Banach space)
topology on ρχ .

13. Some considerations from Galois representations

Let’s recall what we have on Dcrys,χ (see Proposition 12.8 for more details):

• Frobenius operator ϕ: an F0-semilinear, E-linear automorphism;
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• monodromy operator N , which is zero here;

• an action of Gal(F/Qp), which is F0-semilinear, E-linear commuting with ϕ
and N .

So if we have a decreasing filtration on DF = F ⊗F0 Dcrys,χ , such that Fili DF is
zero if i� 0 and is equal to DF if i� 0 and preserved by the action of Gal(F/Qp),
Dcrys,χ is called a filtered (ϕ, N , F/Qp, E)-module of rank 2. Moreover, if the
underlying (ϕ, N , F, E)-module is weakly admissible, Dcrys,χ is called weakly
admissible. See Definitions 2.7 and 2.8 of [Savitt 2005] for the precise definition.
The importance of this kind of module is that we have the following result (see
[Savitt 2005, Corollary 2.10]).

Theorem 13.1. The category of E-representations of GQp which become semistable
when restricted to GF and the category of weakly admissible (ϕ, N , F/Qp, E)-
modules are equivalent. Here GQp (resp. GF ) is the absolute Galois group of Qp

(resp. F).

Now I want to classify all two dimensional potentially semistable E-representa-
tions of GQp that

• have Hodge–Tate weights (0, 1), and

• correspond to Dcrys,χ if we forget about the filtration.

Proposition 13.2 [Savitt 2005, Proposition 2.18]. Any such weakly admissible
(ϕ, N , F/Qp, E)-module is of the form

Filn(DF )=


DF , n ≤ 0,
(F ⊗Qp E)

(
($ (p−1)i

⊗ a)e1+ (1⊗ b)e2
)
, n = 1,

0, n ≥ 2,

where (a, b) 6= (0, 0) ∈ E2, and i, j are defined as follows: write m = i + (p+ 1) j
with i ∈ {1, . . . , p} and j ∈ {0, . . . , p− 2}.

We denote the filtered module in the above proposition by Dχ,[a,b]. It’s not hard
to see

Dχ,[a,b] ' Dχ p,[bcx/p,−a] and Dχ,[a,b] = Dχ,[ca,cb].

So we may assume a= 1 and vp(b)≥ 0 (recall that cx is defined in Proposition 12.8).
We use Vχ,[1,b] to denote the Galois representation it corresponds to in Theorem 13.1.

Now suppose we have an element f in DF = F ⊗F0 Dcrys,χ . How do we
check whether or not f is in Fil1(F ⊗F0 Dχ,[1,b]) for a given b? First assume
f ∈Fil1(F⊗F0 Dχ,[1,b]). Write f = f1+ f2, f1∈ (F⊗Qp E)·e1, f2∈ (F⊗Qp E)·e2.

Then we must have

f1 =

(∑
ak ⊗ bk

)
($ (p−1)i

⊗ 1)e1, f2 =

(∑
ak ⊗ bk

)
(1⊗ b)e2,
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for some ak ∈ F , bk ∈ E . Notice that gϕ⊗ϕ is well-defined on F⊗F0 Dcrys,χ since
gϕ acts as Frobenius on F0. Here gϕ is considered only acting on F , not on Dcrys,χ :

(gϕ ⊗ϕ)( f1)=

(∑
gϕ(ak)⊗ bk

)
($ (p−1)i

⊗ 1)e2.

On the other hand, gϕ( f2)= (6gϕ(ak)⊗ bk)(1⊗ b)e2. Therefore,

(1⊗ b)(gϕ ⊗ϕ)( f1)= ($
(p−1)i

⊗ 1)gϕ( f2).

A simple dimension counting shows that this condition is even sufficient. Hence:

Proposition 13.3. Suppose f ∈ F ⊗F0 Dcrys,χ . Write

f = f1+ f2, f1 ∈ (F ⊗Qp E) · e1, f2 ∈ (F ⊗Qp E) · e2.

Then f ∈ Fil1(F ⊗F0 Dχ,[1,b]) if and only if

(1⊗ b)(gϕ ⊗ϕ)( f1)= ($
(p−1)i

⊗ 1)gϕ( f2).

Remark 13.4. In practice, we will assume f is fixed by gϕ; then the condition
above is simplified to (1⊗ b)(gϕ ⊗ϕ)( f1)= ($

(p−1)i
⊗ 1) f2.

14. Construction of Banach space representations of GL2(Q p)

In this section, I want to construct some Banach space representations B(χ, [1, b])
that should correspond to V∨χ,[1,b] (up to a twist by some character) under the p-adic
local Langlands correspondence.

First we define an integral structure ω1 of �1
61,F

, the sheaf of holomorphic
differential forms, on 6̃1,OF defined in Section 8. Recall that 6̃1,OF is a formal
model of �1

61,F
which is not semistable, but only has some mild singularities

(xy−$ p−1). From now on, I will do all computations on this formal model rather
than the semistable model.

View �1
61,F

as a sheaf on 6̃1,OF . The coherent sheaf ω1 will be a subsheaf of
it. Recall that there is an open covering {6̃1,OF ,e,ξ }e,ξ of 6̃1,OF , where e takes
value in the set of edges of the Bruhat–Tits tree and ξ p−1

=−1. Using the explicit
description of Lemma 8.2, we define ω1 on each 6̃1,OF ,e,ξ as the trivial line bundle
with a basis dẽ/ẽ =−dẽ′/ẽ′ (recall that ẽ = e/$, ẽ′ = e′/$ ). It’s easy to see that
this really defines a line bundle 6̃1,OF ,e,ξ which becomes �1

61,F
if we restrict this

line bundle to the generic fiber.

Remark 14.1. We can do exactly the same thing on the semistable model 6̂1,OF ,
but this won’t give us any extra sections: the sections on 6̃1,OF ,e and 6̂1,OF ,e will
be the same. This can be checked locally around the singularities. So I can do all
the computations on 6̃1,OF ,e.
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Remark 14.2. We note that ω1 in fact has an “F0-structure”. In other words, we
can define it on 6̂1. Using the explicit description in Corollary 7.7, locally on 6̂1,e,
it is defined as the trivial line bundle generated by de/e. Notice that de/e = dẽ/ẽ
since e = ẽ$ . Hence its pull-back to 6̃1,OF is ω1.

Similarly, we can define the same thing on 6̃′1,OF
, 6̃(0)1,OF

, which we still denote
by ω1, by abuse of notation. Now if we restrict ω1 to the special fiber, it becomes
the dualizing sheaf (over Spec Fp2). So there is an action of GL2(Qp) on it. In
fact, GL2(Qp) even acts on ω1. This can be seen using the explicit description in
Section 9. Also, it’s clear from the definition that O×D and Gal(F/Qp) act on the
global sections of ω1.

Consider the following maps:

H 0(6̃(0)1,OF
, ω1)⊗Zp OE ↪→ H 0(6(0)1,F , �

1
6(0)1,F

)⊗Qp E→ H 1
dR(6

(0)
1,F )⊗Qp E .

Both maps are GL2(Qp), O×D ,Gal(F/Qp)-equivariant. Take the χ-isotypic com-
ponent, where χ ∈ χ(E) (see Section 11). We get a map (use Corollary 12.10):

fχ :
(
H 0(6̃(0)1,OF

, ω1)⊗Zp OE
)χ
→ (H 1

dR(6
(0)
1,F )⊗Qp E)χ

' F ⊗F0 Dcrys,χ ⊗E IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ .

Now for each two dimensional Galois representation Vχ,[1,b] of GQp defined in
the previous section, we have a free F⊗Qp E-module Fil1(F ⊗F0 Dχ,[1,b]) inside
F ⊗F0 Dcrys,χ . We note that Gal(F/Qp) acts on this Fil1(F ⊗F0 Dχ,[1,b]). Define

M(χ, [1, b])=
(

f −1
χ (Fil1(F ⊗F0 Dχ,[1,b])⊗E IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ )

)Gal(F/Qp)

= f −1
χ ((Fil1(F ⊗F0 Dχ,[1,b]))

Gal(F/Qp)⊗E IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ .

Schneider and Teitelbaum [2002] introduced a category Modfl
comp(OE) whose ob-

jects are all torsion-free and compact, Hausdorff linear-topological OE -modules, and
morphisms are all continuous OE -linear maps. Our first result about M(χ, [1, b]) is:

Proposition 14.3. M(χ, [1, b]) with the topology induced from

H 0(6(0)1,F , �
1
6(0)1,F

)⊗Qp E

is an object in Modfl
comp(OE).

Proof. I learned this argument from Proposition 4.2.1 of [Breuil 2004]. It is clear
that M(χ, [1, b]) is torsion free and Hausdorff. To prove compactness, we use
Proposition 15.3(iii) of [Schneider 2002] (c-compactness is equivalent with com-
pactness here since OE is locally compact [Perez-Garcia and Schikhof 2010, Corol-
lary 6.1.14]). Proposition 11.4 already shows that H 0(6(0)1,F , �

1
6(0)1,F

)⊗Qp E is a re-
flexive Fréchet space, so it suffices to show M(χ, [1, b]) is closed and bounded (see
[Schneider 2002] for the definition of boundedness). In fact it’s easy to see we only
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need to prove closedness and boundedness for H 0(6̃1,OF , ω
1) in H 0(6(0)1,F , �

1
6(0)1,F

).
Recall the topology on H 0(6(0)1,F , �

1
6(0)1,F

) is defined in Section 11 by:

H 0(61,F , �
1
61,F

)= lim
←−−

n
H 0(Vn,F , �

i
61,F

),

where {Vn,F }n is an admissible open covering of 61,F and each Vn,F is affinoid and
contained in Vn+1,F . Now {6̃1,OF ,e}e is another admissible open covering. Thus
we have:

• Each 6̃1,OF ,e is contained in some Vn,F .

• Each Vn,F is covered by finitely many generic fibers of 6̃1,OF ,e.

Then closedness follows from the first claim above and boundedness follows from
the second. �

Suppose M is an object in Modfl
comp(OE), following [Schneider and Teitel-

baum 2002], the E-vector space Md def
= Homcont

OE
(M, E) with the norm ‖ f ‖ =

maxm∈M | f (m)|E is a Banach space.

Definition 14.4. B(χ, [1, b]) def
= (M(χ, [1, b]))d = Homcont

OE
(M(χ, [1, b]), E).

It’s clear from the definition that this is a Banach space representation of GL2(Qp).

Remark 14.5. The relation between B(χ, [1, b]) and the Banach representation
B(π,L) defined in the introduction (see Definitions 1.3 and 1.4) is as follows:
Take π = IndD×

O×D Q×p
χ , where χ is viewed as a character of O×D Q×p trivial on p.

Also Fil1(Dχ,[1,b] ⊗ F) essentially gives a line “Lb” in Definition 1.3 by taking
Gal(F/Qp)-invariants. Then B(χ, [1, b])= B(π,Lb).

Back to the definition of M(χ, [1, b]). By Remark 12.11, we can replace the
induced representation by the dual representation of the compact induction. Also
by Galois descent, we have (Fil1(F ⊗F0 Dχ,[1,b]))

Gal(F/Qp) ' E . Under these
isomorphisms, fχ induces a GL2(Qp)-equivariant map,

fχ,[1,b] : M(χ, [1, b])→ (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨.

It is natural to ask whether such a map is injective or not. The answer is positive.

Proposition 14.6. The composition

H 0(6̃(0)1,OF
, ω1)χ

′

↪→ H 0(61,F , �
1
61,F

)χ
′

→ H 1
dR(61,F )

χ ′,

for a character χ ′ ∈ χ(F) such that χ ′ 6= χ ′p, is injective.

Proof. Since χ ′ 6=χ ′p, the kernel of the second map is H 0(61,F ,O61,F )
χ ′ . Consider

the intersection of H 0(6̃(0)1,OF
, ω1)χ

′

and H 0(61,F , �
0
61,F

)χ
′

in H 0(61,F , �
1
61,F

)χ
′

.
It can be viewed as a subset in H 0(61,F , �

0
61,F

)χ
′

and we denote it by H . On the
other hand, we use J to denote the same set but viewed in H 0(61,F , �

1
61,F

)χ
′

. The
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induced topology on H and J can be different. Proposition 14.3 tells us that J is
compact since H 0(61,F , �

0
61,F

)χ
′

is closed in H 0(61,F , �
1
61,F

)χ
′

(Proposition 11.5).
Clearly SL2(Qp) preserves both H and J .

Let’s recall some notation here: For each connected component of 6̃1,OF , the
dual graph of its special fiber is the Bruhat–Tits tree (see Section 8), and Us,ξ is the
tubular neighborhood of Us,ξ , the irreducible component indexed by (s, ξ) in the
special fiber (see Definition 11.10).

Similar to what we did in the beginning of Section 12, we can prove Us′0,ξ is
isomorphic with{
z=(x, y)∈A2

F

∣∣ y p+1
=v1w

−1
1 ξ(x p

−x), |x−k|> p−1, k=0, . . . , p−1, |x |< p
}
,

and its de Rham cohomology is of finite dimension. Since Us′0,ξ is a Stein space,
H 1

dR(Us′0,ξ )= H 0(Us′0,ξ , �
1)/H 0(Us′0,ξ , �

0) (we use �i for �i
61,F

for simplicity).
Fix a ξ . Under the isomorphism above, we can write Us′0,ξ =

⋃
ρ<p Us′0,ξ,ρ ,

where Us′0,ξ,ρ ⊂ Us′0,ξ is defined by the same equation but with |x − k| ≥ ρ−1,
k = 0, . . . , p − 1, |x | ≤ ρ. Then for each ρ < p, H 0(Us′0,ξ,ρ, �

i ) is a Banach
space, and we have H 0(Us′0,ξ , �

i )= lim
←−−ρ→p H 0(Us′0,ξ,ρ, �

i ). So H 0(Us′0,ξ , �
i ) is

a Fréchet space.
Notice that O×D acts on Us′0 , so H 0(Us′0, �

0)χ
′

↪→ H 0(Us′0, �
1)χ

′

and the quotient
is a finite dimensional space. Thus this inclusion has to be a closed embedding
because both of them are Fréchet spaces.

Now consider the canonical maps H 0(61,F , �
k)χ

′

→ H 0(Us′0, �
k)χ

′

, k = 0, 1.
They’re clearly continuous and we denote the image of H and J by H1 and J1.
Since J is compact, J1 is compact. Hence H1 is also compact in H 0(61,F , �

0)χ
′

because H 0(Us′0, �
0)χ

′

↪→ H 0(Us′0, �
1)χ

′

is a closed embedding. We will show
this cannot happen unless H1 = {0}.

Suppose f is a nonzero rigid function in H . We will prove later that f is
unbounded on 61,F (see the next lemma). For each Us,ξ , the maximum principle
implies that f must obtain its maximum on the boundary annuli which are the
tubes of the singular points on the special fiber. Therefore f is unbounded on⋃

s′ even Us′,ξ . But we know SL2(Qp) acts on 61,F and acts transitively on the set
of even vertices. Hence using the action of SL2(Qp), we can get functions in H
with arbitrary large norms when restricted to Us′0,ξ and H1 cannot be compact. So
there is no such f . �

Lemma 14.7. Any globally bounded function on a connected component of 61,F

must be a constant.

Proof. Fix a connected component ξ . Suppose f is such a function. By multiplying
f by some powers of $ , we may assume f ∈ H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ

). Recall that
the special fiber is connected and each irreducible component is a complete curve.
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Hence,
H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ

/($))= Fp2 .

Using induction on n, we can prove H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ
/($ n))=OF/($

n). Here
we use the fact that O

6̂1,OF ,ξ
is flat over the constant sheaf OF . Now the lemma

follows from

H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ
)= lim
←−−

n
H 0(6̂1,OF ,ξ ,O6̂1,OF ,ξ

/($ n))= OF . �

Remark 14.8. The proposition is also true if χ ′ 6=χ ′p. In this case, it is equivalent to
the same result on the Drinfel’d upper half-plane. See Proposition 19 of [Teitelbaum
1993] for a proof.

So we have an injective GL2(Qp)-equivariant map:

fχ,[1,b] : M(χ, [1, b])→ (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨.

A simple consideration of the topology (see Remark 12.11) shows that this induces
a map

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 → B(χ, [1, b]).

It is GL2(Qp)-equivariant and has to be injective if B(χ, [1, b]) is nonzero since
the left-hand side is an irreducible representation of GL2(Qp). If B(χ, [1, b]) is
nonzero, or equivalently if M(χ, [1, b]) is nonzero, we can define a lattice inside
c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 :

2(χ, [1, b])

=
{

X ∈ c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 | 〈X, fχ,[1,b](Y )〉 ∈ OE ,∀Y ∈ M(χ, [1, b])

}
,

where
〈 · , · 〉 : c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 × (c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1)∨→ OE

denotes the canonical pairing. This is equivalent to the intersection of the unit ball
of B(χ, [1, b]) with c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 .

Proposition 14.9. B(χ, [1, b]) is the completion of c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 with re-

spect to the lattice 2(χ, [1, b]) if M(χ, [1, b]) 6= 0.

Proof. The argument of Proposition 4.3.5 of [Breuil 2004] works here. I would like
to recall it here. By [Schneider and Teitelbaum 2002, Theorem 1.2.], it suffices
to prove that the natural map M(χ, [1, b])→ HomOE (2(χ, [1, b]), OE) is a topo-
logical isomorphism. The topology on the right hand side is defined by pointwise
convergence. Notice that c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 can be viewed as the continuous dual

space of (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨ with the topology described in Remark 12.11 and

M(χ, [1, b]) is closed in (c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1)∨ since it’s already compact. We can
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apply Corollary 13.5 of [Schneider 2002] and get the desired isomorphism. It’s
also clear from the definition that this is a topological isomorphism. �

So if we can show M(χ, [1, b]) is nonzero and moreover admissible as defined
in [Schneider and Teitelbaum 2002], we indeed get an admissible Banach space
representation of GL2(Qp), which is a completion of the smooth representation
c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 . This is the goal of the rest of the paper.

15. Computation of (H0(6̃(0)1,OF
, ω1)⊗Z p OE)

χ,Gal(F/Q p)/ p

Our ultimate goal is to prove M(χ, [1, b]) is nonzero and admissible. The method is
by explicit computation of its mod p representation. First we review some notation
defined in the previous sections that will be used frequently from now on.

Let χ ∈ χ(E) be a character of (OD/5)
× such that χ p

6= χ . Since we fix an
embedding τ : F0 → E , we may write χ = τ ◦ χ ′, where χ ′ is a character of
(OD/5)

× with values in F×0 . Then χ ′ = χ−m
1 , where χ1 is one of the fundamental

characters (Definition 3.2) and m ∈ {1, . . . , p2
− 2}. Write m = i + (p+ 1) j with

i ∈ {1, . . . , p} and j ∈ {0, . . . , p − 2}. Finally, gϕ ∈ Gal(F/Qp) is the unique
element that fixes $ and acts as Frobenius on F0.

Also recall that for any integer n, we use [n] to denote the unique integer in
{0, 1, . . . , p2

−2} congruent to n modulo p2
−1. For any OF0-module A, we denote

A⊗OF0,τ
OE by Aτ and A⊗OF0,τ̄

OE by Aτ̄ .
Recall that

6̃(0)1,OF
= 6̃1,OF t 6̃

′

1,OF
,

and gϕ interchanges (H 0(6̃1,OF , ω
1) ⊗Zp OE)

χ and (H 0(6̃′1,OF
, ω1) ⊗Zp OE)

χ .
Hence a gϕ-invariant element in (H 0(6̃(0)1,OF

, ω1)⊗Zp OE)
χ is determined by its

(H 0(6̃1,OF , ω
1)⊗Zp OE)

χ component. By definition, M(χ, [1, b]) is gϕ-invariant.
Hence it suffices to work on 6̃1,OF . This means that we may identify H 0(6̃1,OF , ω

1)

as the gϕ-invariant sections of H 0(6̃(0)1,OF
, ω1). Hence there is a natural action of

GL2(Qp) on it: this is nothing but gvp(det(g))
ϕ ◦g.

Definition 15.1. For any χ ∈ χ(E), χ ′ ∈ χ(F0), we define (see Section 8 for the
definition of these formal schemes)

H (0),χ,Qp = (H 0(6̃(0)1,OF
, ω1/p)⊗Zp OE)

χ,Gal(F/Qp),

Hχ,F0
∗
= (H 0(6̃1,OF ,∗, ω

1/p)⊗Zp OE)
χ,Gal(F/F0),

Hχ ′,F0
∗
= H 0(6̃1,OF ,∗, ω

1/p)χ
′,Gal(F/F0),

Hχ ′,F0
∗,? = Hχ ′,F0

∗
⊗OF0 ,? OE = H 0(6̃1,OF ,∗, ω

1/p)χ
′,Gal(F/F0)⊗OF0 ,? OE ,

where ∗ is either a vertex s or an edge e of the Bruhat–Tits tree or nothing, and
?= τ, τ̄ .
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It is clear from the definition that if χ = τ ◦χ ′, then

Hχ,F0
∗
' Hχ ′,F0

∗,τ ⊕ H (χ ′)p,F0
∗,τ̄ . (45)

Also, the discussion above shows that we have a canonical isomorphism:

H (0),χ,Qp ' Hχ,F0.

Definition 15.2. For a vertex s in the Bruhat–Tits tree, we use A(s) to denote the
set of vertices adjacent to s.

Now fix ξ p−1
=−1. We can do all the computation on one ξ -component 6̃1,OF ,ξ .

This is because O×D acts transitively on all connected components.
The goal of this section is to compute (H 0(6̃(0)1,OF

, ω1)⊗Zp OE)
χ,Gal(F/Qp)/p.

The next lemma implies that this is nothing but H (0),χ,Qp .

Lemma 15.3. H 0(6̃1,OF , ω
1)/$ n

= H 0(6̃1,OF , ω
1/$ n).

Proof. Clearly there is an injection from the left-hand side to the right-hand side.
Since we have

H 0(6̃1,OF , ω
1)= lim

←−−
n

H 0(6̃1,OF , ω
1/$ n),

we only need to prove the canonical map

H 0(6̃1,OF , ω
1/$ n)→ H 0(6̃1,OF , ω

1/$m), n > m

is surjective. Notice that ω1 is flat over the constant sheaf OF . It suffices to prove
H 1(6̃1,OF , ω

1/$ n) = 0 for all n ∈ N+. Do induction on n and use the flatness
again. It turns out that it’s enough to show H 1(6̃1,OF , ω

1/$)= 0. However, the
construction of ω1 tells us ω1/$ is the dualizing sheaf on the special fiber. This
means that if we restrict ω1/$ to each irreducible component V of the special fiber,
it is �1

V (Dsing), where �1
V is the usual sheaf of differential forms on V, Dsing is

the sum of singular points of D (considered in the whole special fiber) as a divisor.
Also, we have the following exact sequence of sheaves:

0→ ω1/$ →
∏

V

iV∗(�
1
V (Dsing))→

∏
E

iE∗(Fp2)→ 0,

where E (resp. V ) runs through all singular points (resp. irreducible components)
of the special fiber, and iE (resp. iV ) is the corresponding inclusion. Take the long
exact sequence of cohomologies of this sequence. H 0 of the third map is surjective
since the dual graph of the special fiber of each connected component is a tree. H 1

of the middle term in the exact sequence above vanishes by Riemann–Roch. So we
indeed get the vanishing of H 1(6̃1,OF , ω

1). �
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Hence we only need to compute

H (0),χ,Qp ' Hχ,F0 ' Hχ ′,F0
τ ⊕ H (χ ′)p,F0

τ̄ . (46)

It’s not hard to see that we have an injection:

Hχ ′,F0 ↪→
∏

s

Hχ ′,F0
s ,

where s takes values in the set of vertices of the Bruhat–Tits tree. Similarly, we
have the same injection for H (χ ′)p,F0 . Notice that by identifying the sections on
6̃1,OF as the gϕ-invariant sections on 6̃(0)1,OF

, we have an action of GL2(Qp) on∏
s

(Hχ ′,F0
s ⊕ H (χ ′)p,F0

s )

(see the beginning of this section). Explicitly, g sends Hχ ′,F0
s to Hχ ′,F0

sg if vp(det(g))
(g ∈ GL2(Qp)) is even and to H (χ ′)p,F0

sg if it is odd. From this description, we have
an obvious GL2(Qp)-equivariant isomorphism (recall s ′0 is the central vertex):∏

s

(Hχ ′,F0
s ⊕ H (χ ′)p,F0

s )' IndGL2(Qp)
GL2(Zp)Q

×
p

Hχ ′,F0
s′0
⊕ IndGL2(Qp)

GL2(Zp)Q
×
p

H (χ ′)p,F0
s′0

⊗Fp2 ,F̃r Fp2 .

The following lemma basically says that we may identify Hχ ′,F0
s with sections

of ω1/$ on U 0
s introduced in Definition 11.10. Notice that ω1/$ is the dualizing

sheaf of the special fiber.

Lemma 15.4. For each vertex s of the Bruhat–Tits tree, we have natural isomor-
phisms:

9s,χ ′ : Hχ ′,F0
s −→∼ H 0(6̃1,OF ,s, ω

1/$)χ
′

= H 0(U 0
s , ω

1/$)χ
′

,

9s,(χ ′)p : H (χ ′)p,F0
s −→∼ H 0(6̃1,OF ,s, ω

1/$)(χ
′)p
= H 0(U 0

s , ω
1/$)(χ

′)p
,

such that their product∏
s

(9s,χ ′, 9s,(χ ′)p) :∏
s

Hχ ′,F0
s ⊕ H (χ ′)p,F0

s →

∏
s

H 0(U 0
s , ω

1/$)χ
′

⊕

∏
s

H 0(U 0
s , ω

1/$)(χ
′)p

is GL2(Qp)-equivariant. As usual, s takes its value in the set of vertices of Bruhat–
Tits tree.
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Proof. First let’s see what happens when s = s ′0. Recall that we have a concrete
description ((23), (24)) of 6̃1,OF ,s′0,ξ , 6̃1,OF ,s′0 from Section 8:

6̃1,OF ,s′0,ξ ' Spf OF0[$ ]
[
η,

1
ηp−η

, ẽ
]/(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

(p/η)p−1−1

)
,

6̃1,OF ,s′0 ' Spf OF0[$ ]
[
η,

1
ηp−η

, ẽ
]/(

ẽp2
−1
−w2

1

(
ηp
−η

(p/η)p−1−1

)p−1)
.

An element of H 0(6̃1,OF ,s′0, ω
1)χ

′

is determined by its restriction to 6̃1,OF ,s′0,ξ . It’s
easy to see (using the results in Section 9) it must have the form

P(η)ẽp+1−i dẽ
ẽ
,

where P(η)∈ OF [η, 1/(ηp−1
−1)]̂. Recall (Proposition 13.2) that χ ′= χ−m

1 , and
m = i + (p+ 1) j , i ∈ {1, . . . , p}, j ∈ {0, . . . , p− 2}. It is Gal(F/F0)-invariant if
and only if

P(η)=$ p2
−1−m F1(η),

where F1(η)∈ OF0[η, 1/(ηp−1
−1)]̂. Similarly, a section of H 0(6̃1,OF ,s′0, ω

1)(χ
′)p

fixed by Gal(F/F0) must have the form

$ [−mp]F2(η)ẽi dẽ
ẽ
,

where F2(η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, and [−mp] is defined in the beginning of

this section.
Thus any element F̄ of H 0(6̃1,OF ,s′0, ω

1/p)χ
′,Gal(F/F0) = Hχ ′,F0

s can be written
uniquely as

$ p2
−1−m F̄1(η)ẽp+1−i dẽ

ẽ

on ξ -components, where F̄1(η) ∈ Fp2[η, 1/(ηp−1
− 1)]. Now define 9s′0,χ

′(F̄) =
F̄1(η)ẽp+1−i dẽ/ẽ. Equivalently, it is “multiplication” by $−(p

2
−1−m). It’s trivial

to see this is indeed an isomorphism. We can define 9s′0,(χ
′)p in exactly the same

way.
Note that 9s′0,χ

′ , 9s′0,(χ
′)p are GL2(Zp)-equivariant; we can extend both isomor-

phisms to any vertex s using the action of GL2(Qp). Concretely, for an even vertex
s ′, 9s′,χ ′ is “multiplication” by $−(p

2
−1−m) and 9s′,(χ ′)p is “multiplication” by

$−[−mp]. For an odd vertex s, 9s,χ ′ is “multiplication” by $−[−mp] and 9s,(χ ′)p

is “multiplication” by $−(p
2
−1−m). �

By abuse of notation, I will identify H 0(U 0
s , ω

1/$)χ
′

, H 0(U 0
s , ω

1/$)
χ ′

τ with
Hχ ′,F0

s , Hχ ′,F0
s,τ via the isomorphisms in Lemma 15.4. Notice that ω1/$ is the sheaf

of differential forms on U 0
s , thus we may view elements in Hχ ′,F0

s as meromorphic
differential forms on Us .
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From now on, I would like to describe an element of Hχ,F0 via its image
in
∏

s Hχ ′,F0
s,τ ⊕

∏
s H (χ ′)p,F0

s,τ̄ . In other words, using Lemma 15.4, any element
h= (h1, h2) in Hχ,F0 ' Hχ ′,F0

τ ⊕H (χ ′)p,F0
τ̄ corresponds to a family of meromorphic

differential forms

{(ωs,τ , ωs,τ̄ )}s,

where ωs,τ = h1|6̃1,OF ,s
∈ Hχ ′,F0

s,τ and ωs,τ̄ = h2|6̃1,OF ,s
∈ H (χ ′)p,F0

s,τ̄ .

To further determine Hχ,F0 , we need to know when such a {(ωs,τ , ωs,τ̄ )}s comes
from a global section. We will give a necessary condition in Proposition 15.8 and a
sufficient condition in Proposition 15.11. To this end, it is crucial to understand
the local structure of ω1 on 6̃1,OF ,ξ . Recall that 6̃1,OF ,ξ has an open covering
{6̃1,OF ,e,ξ }e and an explicit description of 6̃1,OF ,e,ξ (Lemma 8.2) is:

Spf OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
, ẽ, ẽ′

]̂
(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
, ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

ηp−1−1
, ẽẽ′−$ p−1ξ

) .
Note that e/$, e′/$ in Lemma 8.2 is ẽ, ẽ′ here. Suppose e = [s, s ′], where s ′

(resp. s) is an even (resp. odd) vertex and corresponds to η (resp. ζ ). It’s not too
hard to see:

Lemma 15.5. Any element h of H 0(6̃1,OF ,[s,s′], ω
1)χ

′,Gal(F/F0), when restricted to
6̃1,OF ,[s,s′],ξ , can be written in the following form:

h =$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,

where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂.

Proof. It suffices to verify this after reducing modulo p. Equivalently, we need to
show that any h ∈ Hχ ′,F0

e has the form

$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,

where f (η) ∈ Fp2[η, 1/(1− ηp−1)], g(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)] when restricted
to 6̃1,OF ,[s,s′],ξ .

Recall that ω1 is free over 6̃1,OF ,[s,s′],ξ with a basis dẽ/ẽ = −dẽ′/ẽ′ (see the
beginning of the previous section). Hence any element h in H 0(6̃1,OF ,[s,s′],ξ , ω

1/p)
can be written as

p∑
k=0

f1,k(η, ζ )ẽk dẽ
ẽ
+

p∑
k=0

g1,k(η, ζ )ẽ′k
dẽ′

ẽ′
,
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where f1,k(η, ζ ), g1,k(η, ζ )∈OF/(p)
[
η, ζ, 1/(1−ηp−1), 1/(1−ζ p−1)

]
/(ηζ ). This

is because using the explicit description of 6̃1,OF ,[s,s′],ξ above, we see that ẽp+1,
ẽ′p+1, and ẽẽ′ can each be written as an element only containing η, ζ .

Using the results in Section 9, we see that such an element comes from an element
in the χ ′-isotypic component of H 0(6̃1,OF ,[s,s′], ω

1/p) if and only the coefficients
of ẽk (resp. ẽ′k) are zero unless k = p+ 1− i (resp. k = i). Hence we may write it
as

h = f1,p+1−i (η, ζ )ẽp+1−i dẽ
ẽ
+ g1,i (η, ζ )ẽ′i

dẽ′

ẽ′
, (47)

Next consider the action of Gal(F/F0). Using the results in Section 9 once again,
it’s not hard to see that such an element comes from a Galois-invariant section if
and only if

f1,p+1−i (η, ζ )=$
p2
−1−m f2(η, ζ ), g1,i (η, ζ )=$

[−mp]g2(η, ζ ), (48)

where f2(η, ζ ), g2(η, ζ ) ∈ Fp2
[
η, ζ, 1/(1− ηp−1), 1/(1− ζ p−1)

]
/(ηζ ).

Now in order to prove the lemma, we need to “eliminate” the ζ in f2(η, ζ ) and
η in g2(η, ζ ). We will prove this under the following assumption:

p2
− 1−m ≥ [−mp].

Equivalently, this means p2
−1−m = [−mp]+ i(p−1). The other case is similar.

First we eliminate the η in g2(η, ζ ): We can write

g2(η, ζ )= f3(η)+ g3(ζ ),

such that g3(η) ∈ Fp2[η, 1/(1− ηp−1)] and g3(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)]. This is
because we can think g2(η, ζ ) as a regular function on a union of two irreducible
smooth affine curves crossing transversally. Such a decomposition is obtained by
restricting this function on each irreducible component (with some modification by
some constants).

Notice that f3(0) makes sense here. Replacing f3(η) with f3(η)− f3(0), we
may assume

f3(η)= η f4(η),

where f4(η) ∈ Fp2[η, 1/(1− ηp−1)]. Now in O
6̃1,OF ,[s,s′],ξ

, we have

η = Cẽp+1, where C =−v1w1ξ
−1 ζ

p−1
−1

ηp−1−1
.
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Plug this into (47) and use (48):

h =$ p2
−1−m f2(η, ζ )ẽp+1−i dẽ

ẽ
+$ [−mp](η f4(η)+ g3(ζ ))ẽ′i

dẽ′

ẽ′

=$ p2
−1−m f2(η, ζ )ẽp+1−i dẽ

ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′
+ f4(η)$

[−mp]Cẽp+1ẽ′i dẽ′

ẽ′
.

Since ẽẽ′ =$ p−1ξ , the last term in the above equation is

f4(η)C$ [−mp]$ i(p−1)ξ i ẽp+1−i dẽ′

ẽ′
= f4(η)C$ p2

−1−mξ i ẽp+1−i dẽ′

ẽ′

=−$ p2
−1−mC f4(η)ξ

i ẽp+1−i dẽ
ẽ
,

by our assumption. In other words,

h =$ p2
−1−m( f2(η, ζ )−C f4(η)ξ

i)ẽp+1−i dẽ
ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′
.

Hence in (47), we may assume

g1,i (η, ζ )=$
[−mp]g3(ζ ), where g3(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)].

Now we are going to eliminate the ζ in f2(η, ζ ). As before, write f2(η, ζ ) =

f5(η)+ ζg5(ζ ) and notice that in O
6̃1,OF ,[s,s′],ξ

, we can write ζ = C ′ẽ′p+1. Plug this
into (47):

h =$ p2
−1−m( f5(η)+ ζg5(ζ ))ẽp+1−i dẽ

ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′

=$ p2
−1−m f5(η)ẽp+1−i dẽ

ẽ
+$ p2

−1−m g5(ζ )C ′ẽ′p+1ẽp+1−i dẽ
ẽ

+$ [−mp]g3(ζ )ẽ′i
dẽ′

ẽ′
.

Here comes the difference between this case and the former case. The middle term
actually vanishes:

$ p2
−1−mg5(ζ )C ′ẽ′p+1ẽp+1−i dẽ

ẽ
=$ p2

−1−mg5(ζ )C ′$ (p+1−i)(p−1)ξ p+1−i ẽ′i dẽ
ẽ

= 0,

since $ p2
−1−m+(p+1−i)(p−1)

= $ [−mp]+(p+1)(p−1)
= −p · $−[mp]

= 0 by our
assumption. Hence we may write

h =$ p2
−1−m f5(η)ẽp+1−i dẽ

ẽ
+$ [−mp]g3(ζ )ẽ′i

dẽ′

ẽ′
,

which is exactly what we want. �

Now suppose h ∈ Hχ ′,F0
e . We may assume it has the form

$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,
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where f (η) ∈ Fp2[η, 1/(1−ηp−1)], g(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)] when restricted to
6̃1,OF ,[s,s′],ξ . What’s its restriction to 6̃1,OF ,s′,ξ? Algebraically, this means that we
replace ζ by p/η= 0 and ẽ′ by$ p−1ξ/ẽ. So we have (notice that dẽ/ẽ=−dẽ′/ẽ′):

h|
6̃1,OF ,s′,ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
−$ [−mp]g(0)$ i(p−1)ξ i ẽ−i dẽ

ẽ
.

We make the following assumption in the rest of this section:

p2
− 1−m ≥ [−mp]. (49)

Equivalently, this means p2
− 1−m = [−mp] + i(p− 1).

On 6̃1,OF ,s′,ξ , we have

ẽ−i
=

ẽp+1−i

ẽp+1 =−
(p/η)p−1

−1
v1w

−1
1 ξ(ηp−η)

ẽp+1−i
≡

1
v1w

−1
1 ξ(ηp−η)

ẽp+1−i (mod p).

Hence,

h|
6̃1,OF ,s′,ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ

−$ p2
−1−m g(0)ξ i 1

v1w
−1
1 ξ(ηp−η)

ẽp+1−i dẽ
ẽ

=$ p2
−1−m

(
f (η)+g(0)ξ i−1v−1

1 w1

(1
η
−

ηp−2

ηp−1−1

))
ẽp+1−i dẽ

ẽ
. (50)

Write F(η)= f (η)− g(0)ξ i−1v−1
1 w1

ηp−2

ηp−1−1 , C1 = g(0)ξ i−1v−1
1 w1.

Lemma 15.6. Under the assumption p2
− 1−m ≥ [−mp],

h|
6̃1,OF ,s′,ξ

=$ p2
−1−mC1

ẽp+1−i

η

dẽ
ẽ
+$ p2

−1−m F(η)ẽp+1−i dẽ
ẽ
, (51)

where F(η) ∈ Fp2[η, 1/(1− ηp−1)], C1 ∈ Fp2 .

Now if we view h|6̃1,OF ,s′,ξ
as a differential form on U 0

s′,ξ , or what’s the same, a
meromorphic differential form on Us′,ξ with poles at the singular points (Us′,ξ is
viewed as a subvariety in the special fiber of 6̃1,OF ,ξ ), the order of the pole at the
intersection point of Us′,ξ and Us,ξ must be i + 1 (if there is a pole) since 1/η has
order p+ 1 at this point (η = ẽ = 0) and ẽ is a uniformizer of this point.

Now restrict h to 6̃1,OF ,s,ξ . This time we replace η by p/ζ =0 and ẽ by$ p−1ξ/ẽ′.

h|
6̃1,OF ,s,ξ

=−$ p2
−1−m f (0)$ (p+1−i)(p−1)ξ p+1−i ẽ′−(p+1−i) dẽ′

ẽ′

+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′

=$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
. (52)
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The first term is zero since$ p2
−1−m+(p+1−i)(p−1)

=−p·$−[mp] by our assumption.

Lemma 15.7. Under the assumption p2
− 1−m ≥ [−mp],

h|
6̃1,OF ,s,ξ

=$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
,

where g(ζ ) ∈ Fp2[ζ, 1/(1− ζ p−1)].

Thus if we view h|
6̃1,OF ,s,ξ

as a meromorphic differential form on Us,ξ , it is
holomorphic at the intersection point of Us,ξ and Us′,ξ . In summary,

Proposition 15.8. Assume p2
− 1 − m ≥ [−mp]. Under the identification in

Lemma 15.4, an element h of Hχ ′,F0 = H 0(6̃1,OF , ω
1/p)χ

′,Gal(F/F0) has the follow-
ing description:

(1) If s is odd, then h|
6̃1,OF ,s,ξ

is a holomorphic differential form on Us,ξ .

(2) If s ′ is even, then h|
6̃1,OF ,s′,ξ

can have poles at the intersection points of Us′,ξ

with adjacent components. If there are poles, their order must be i+1. More-
over, as an element of the space of meromorphic differential forms on Us′,ξ

modulo holomorphic differential forms, h|
6̃1,OF ,s′,ξ

is uniquely determined by
the restriction of h to the components adjacent to s ′. In other words, h|

6̃1,OF ,s′,ξ

is holomorphic on Us′,ξ if the restriction of h to the components adjacent to s ′

is zero.

Proof. The first part is a direct consequence of Lemma 15.7. The assertion for
the order of poles follows from Lemma 15.6. As for the last assertion, using the
notation before Lemma 15.6, we know that the pole of h|6̃1,OF ,s′,ξ

at the intersection
point of Us′,ξ and Us,ξ is determined by g(0) (in fact this pole is given by

g(0)ξ i−1v−1
1 w1

ẽp+1−i

η

dẽ
ẽ

modulo holomorphic terms). However, g(0) is indeed determined by h|
6̃1,OF ,s,ξ

since h|
6̃1,OF ,s,ξ

=$ [−mp]g(ζ )ẽ′i dẽ′/ẽ′. �

Remark 15.9. Under the assumption p2
− 1− m ≥ [−mp], we have a similar

description for elements in H (χ ′)p,F0 while interchanging the descriptions for odd
and even vertices. This is obvious if one uses the action of GL2(Qp).

If we assume p2
− 1−m ≤ [−mp], an element h of Hχ ′,F0 has the following

similar description:

(1) If s ′ is even, then h|
6̃1,OF ,s′,ξ

is a holomorphic differential form on Us′,ξ .

(2) If s is odd, then h|
6̃1,OF ,s,ξ

can have poles at the intersection points of Us,ξ

with adjacent components. The order of these poles, if they exist, must be
p+2−i . Moreover, h|

6̃1,OF ,s,ξ
is holomorphic on Us,ξ if the restriction of h to

the components adjacent to s is zero.
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To get a converse result, we need one more lemma to see when we can glue
sections on 6̃1,OF ,s, 6̃1,OF ,s′ to a section on 6̃1,OF ,[s,s′].

Lemma 15.10. Assume p2
−1−m ≥ [−mp], and s ′ is an even vertex and s ∈ A(s ′).

Given hs′ ∈ Hχ ′,F0
s′ , hs ∈ Hχ ′,F0

s such that they have the forms in Lemmas 15.6
and 15.7 (under the explicit description in Lemma 8.2):

hs′ |6̃1,OF ,s′,ξ
=$ p2

−1−mC1
ẽp+1−i

η

dẽ
ẽ
+$ p2

−1−m F(η)ẽp+1−i dẽ
ẽ
, (53)

hs |6̃1,OF ,s,ξ
=$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
, (54)

where F(η)∈Fp2[η, 1/(1−ηp−1)], C1∈Fp2 , g(ζ )∈Fp2[ζ, 1/(1−ζ p−1)]. Moreover
assume

C1 = g(0)ξ i−1v−1
1 w1. (55)

Then we can find a (unique) section h ∈ Hχ ′,F0
[s,s′] such that

h|
6̃1,OF ,s′

= hs′, h|
6̃1,OF ,s

= hs .

Proof. It is direct to see that the following section hξ on 6̃1,OF ,[s,s′],ξ can be extended
to an element in Hχ ′,F0

[s,s′] and satisfies all the conditions:

hξ =$ p2
−1−m

(
F(η)+C1

ηp−2

ηp−1−1

)
ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
. �

Proposition 15.11. Assume p2
− 1−m ≥ [−mp].

(1) Given hs ∈ Hχ ′,F0
s for each odd vertex s that corresponds to a holomorphic

differential form on Us,ξ , we can find an element h in Hχ ′,F0 such that for any
odd vertices s,

h|
6̃1,OF ,s

= hs .

(2) Moreover, we have the following freedom of choosing h: given fs′ ∈ Hχ ′,F0
s′

for each even vertex s ′ that corresponds to a holomorphic differential form on
Us′,ξ , we may find a (unique) element f in Hχ ′,F0 such that

f |
6̃1,OF ,s′

= fs′ for any even vertices s ′,

f |
6̃1,OF ,s

= 0 for any odd vertices s.

Proof. Both are local questions. The second part is a direct consequence of
Lemma 15.10: For any even vertex s ′ and s ∈ A(s ′), applying Lemma 15.10 with
hs = 0, hs′ = fs′ (in this case, C1 = 0), we can glue to a section on 6̃1,OF ,[s,s′]

whose restriction to 6̃1,OF ,s′ (resp. 6̃1,OF ,s) is fs′ (resp. zero). Hence we can glue
to a global section on 6̃1,OF .
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As for the first part, our strategy is similar. For any even vertex s ′, we will find a
section hs′ ∈ Hχ ′,F0

s′ such that for any vertex s ∈ A(s ′), we can use Lemma 15.10 to
glue hs, hs′ to a section on 6̃1,OF ,[s,s′] and obtain a global section on 6̃1,OF .

By Lemma 15.4, we may identify elements in Hχ ′,F0
s′ with differential forms

on U 0
s′ . Since (OD/5)

×
' F
×

p2 acts transitively on the connected components of U 0
s′ ,

it is easy to see µp+1(Fp2) = {a ∈ Fp2 | a p+1
= 1} fixes U 0

s′,ξ . As we noted in the
proof of Lemma 12.9,

H 0(U 0
s′, ω

1/$)χ
′

' H 0(U 0
s′,ξ , ω

1/$)Id
−i
,

where we view Id : µp+1(Fp2) → F
×

p2 as a character of µp+1(Fp2), and Id−i is
its (−i)-th power. We denote the intersection point of Us′,ξ with Us,ξ , by Ps for
s ∈ A(s ′).

Now using Lemma 15.10, finding such an hs′ ∈ Hχ ′,F0
s′ is equivalent to finding a

meromorphic differential form ωs′ ∈ H 0(U 0
s′,ξ , ω

1/$)Id
−i

such that:

• It can only have poles at Ps, s ∈ A(s ′) with order at most i + 1 (in fact, it has
to be i + 1 if there is a pole, by considering the action of µp+1(Fp2)).

• The “leading coefficient” of the pole at Ps is prescribed by hs for all s ∈ A(s ′).

More precisely, using the explicit description in Lemma 8.2, the first condition
allows us to write ωs′ into the form (53). Also our condition in the proposition
allows us to write hs into the form (54). Then C1 in (53) is the leading coefficient
in this case and we want it to satisfy (55).

The existence of such a meromorphic differential form follows from:

Lemma 15.12. Let C be a smooth geometrically connected curve over Fp2 and
{Pk}k be a nonempty finite subset of C(Fp2). Then for n ≥ 2, the restriction map

H 0(C, �1
C(nD))→

⊕
k

H 0(Pk, �
1
C(nD)|Pk

)

is surjective, where D is the divisor
∑

k Pk .

Assume this lemma for the moment. In our case, let C = Us′,ξ , {Pk} = {Ps}

and n = i + 1. The prescribed leading coefficients become a family of elements
cs ∈ H 0(Ps, �

1
C(nD)|Ps ), s ∈ A(s ′). Notice that the uniformizer for Ps is either ẽ

or ẽ/η, hence µp+1(Fp2) acts on

H 0
(

Ps, �
1
C

(∑
k

(i + 1)Pk

)∣∣∣∣
Ps

)
= H 0(Ps, �

1
C((i + 1)D)|Ps

)

via Id−i . So taking the Id−i -isotypic component of the map in the lemma (which
remains surjective since p + 1 is coprime to p), we may find an element in
H 0
(
Us′,ξ , �

1
(∑

s(i + 1)Ps
))Id−i

having the correct leading coefficient at each Ps

and that’s exactly what we want. �
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Proof of Lemma 15.12. Consider the following short exact sequence of sheaves:

0→�1
C((n− 1)D)→�1

C(nD)→
⊕

k

�1
C(nD)|Pk

→ 0.

It suffices to show H 1(C, �1
C((n− 1)D)) vanishes. However by Serre duality, this

space is dual to H 0(C,OC(−(n− 1)D)), which is zero since we assume n ≥ 2. �

Now, we can prove the main proposition of this section.

Proposition 15.13. Assume p2
− 1−m ≥ [−mp]. There exists a GL2(Qp)-equi-

variant short exact sequence:

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ → H (0),χ,Qp → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → 0.

Proof. Write
∏

s Hχ,F0
s =

∏
s(H

χ ′,F0
s,τ ⊕ H (χ ′)p,F0

s,τ̄ ), where as usual, s runs over the
vertices of the Bruhat–Tits tree. Define

H1 =
∏

s′ even

Hχ ′,F0
s′,τ ⊕

∏
s odd

H (χ ′)p,F0
s,τ̄ ,

H2 =
∏
s odd

Hχ ′,F0
s,τ ⊕

∏
s′ even

H (χ ′)p,F0
s′,τ̄ .

Notice that GL2(Qp) actually acts on H1, H2. Then we have a GL2(Qp)-equivariant
(split) short exact sequence:

0→ H1→
∏

s

Hχ,F0
s → H2→ 0.

Recall that we have an injection of H (0),χ,Qp ' Hχ,F0 into
∏

s Hχ,F0
s . So this

short exact sequence induces another short exact sequence:

0→ K → Hχ,F0 → C→ 0.

It remains to determine K , and C .
Let f be an element of Hχ,F0 . We will write f = fτ+ fτ̄ under the decomposition

Hχ,F0 ' Hχ ′,F0
τ ⊕ H (χ ′)p,F0

τ̄ (see (46)).
Suppose f is in K . This means for any odd vertex s and even vertex s ′,

fτ |6̃1,OF ,s
= 0 and fτ̄ |6̃1,OF ,s′

= 0.

By the second part of Proposition 15.8, we know that fτ |6̃1,OF ,s′
corresponds to a

holomorphic differential form on Us′,ξ for any even vertex s ′ (tensored with OE ).
However the second part of Proposition 15.11 indicates that fτ |6̃1,OF ,s′

can be any
holomorphic differential form inside H 0(Us′, �

1
Us′
)
χ ′

τ . Similarly fτ̄ |6̃1,OF ,s
can be

any holomorphic differential form inside H 0(Us, �
1
Us
)
χ ′

τ , where s is an odd vertex.
This certainly implies that

K ' IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)χ
′

τ .
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By the first part of Proposition 15.8, we know that C is inside∏
s: odd

H 0(Us, �
1
Us
)χ
′

τ ⊕

∏
s′: even

H 0(Us′, �
1
Us′
)
(χ ′)p

τ̄ ,

as a subset of H2. However the first part of Proposition 15.11 tells us that in fact C
is equal to this set. Clearly this is nothing but IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ . �

Remark 15.14. See the beginning of the paper for the notation here: Under the iso-
morphism (27), an element of H 0(Us′0, �

1
Us′0
)χ
′

must have the form f (η)ẽp+1−i dẽ/ẽ
on Us′0,ξ , where f (η) is a polynomial of η of degree at most i−2. Using the results
in Section 9, it’s not hard to construct a GL2(Fp)-equivariant isomorphism:

H 0(Us′0, �
1
Us′0
)χ
′

→ (Symi−2 F
2
p2)⊗ det j+1, (56)

ηr ẽp+1−i dẽ
ẽ
7→ xr yi−2−r , (57)

where Symi−2 F
2
p2 is the (i−2)-th symmetric power of the natural representation of

GL2(Fp) on the canonical basis of F
2
p2 .

Similarly, we can identify H 0(Us′0, �
1
Us′0
)(χ
′)p

with (Symp−1−i F
2
p2) ⊗ deti+ j .

Then we can rewrite the exact sequence in Proposition 15.13 as

0→ σi−2( j + 1)→ H (0),χ,Qp → σp−1−i (i + j)→ 0.

Remark 15.15. If we assume p2
−1−m≤[−mp], then we have the exact sequence

of the opposite direction:

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → H (0),χ,Qp → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ → 0.

16. Computation of M(χ, [1, b])/ p, I: 2≤ i ≤ p− 1

In this section, we compute M(χ, [1, b])/p as a representation of GL2(Qp) when
i ∈ {2, . . . , p − 1}. The strategy is as follows. We first identify the crystalline
cohomology with the de Rham cohomology of some formal scheme. Then Hχ,F0

will map to some meromorphic differential forms on this formal scheme. Now
any cohomology class of the de Rham cohomology can be expressed using 1-
hypercocycles and any meromorphic differential form can be naturally viewed as a
1-hypercocycle. The question becomes how to write this 1-hypercocycle into some
“good form”. This will be done by explicit calculations. We keep the notation from
the last section.

Consider the composite of the following maps, which we denote by ι,

Hχ ′,F0 → H 0(61,F , �
1)χ
′

→ H 1
dR(61,F )

χ ′
'

∏
s

H 1
dR(Us)

χ ′
'

∏
s

H 1
crys(Us/F0)

χ ′
⊗F0 F.
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See Sections 11 and 12 for the notation. Our first result is about the image of ι. We
denote the first crystalline cohomology of Us (over Spec Fp2) by H 1

crys(Us/OF0). It
is not hard to see that this is a lattice inside H 1

crys(Us/F0)= H 1
crys(Us/OF0)⊗OF0

F0.

Proposition 16.1. ι(Hχ ′,F0)⊂
∏

s

H 1
crys(Us/OF0)

χ ′
⊗OF0

OF .

Proof. We only deal with the even case, that is to say, for an even vertex s ′, we
will prove that the image of Hχ ′,F0 in H 1

crys(Us′/F0)
χ ′
⊗F0 F is actually inside

H 1
crys(Us′/OF0)⊗OF0

OF . The odd case is similar.
First we recall some results from Section 12; see the discussion below Lemma 12.1.

We constructed an isomorphism ψs′,ξ :Us′,ξ → F0,ξ (recall that Us′,ξ is the tubular
neighborhood of Us′,ξ in 61,F ), where

F0,ξ
def
=

{
(x, y)∈A2

F

∣∣ y p+1
=v1w

−1
1 ξ(x p

−x), |x−k|> p−1/(p−1), k=0, . . . , p−1,

|x |< p1/(p−1)
}
.

Cleary F0,ξ is an open set in a projective curve D0,ξ in P2
F defined by y p+1

=

v1w
−1
1 ξ(x p

− x). The curve D0,ξ has an obvious formal model D̂0,OF0 ,ξ
over OF0 .

Its special fiber can be canonically identified with Us′,ξ . Hence we can identify
H 1

crys(Us′,ξ/OF0) with H 1
dR(D̂0,OF0 ,ξ

).

Definition 16.2. For s ∈ A(s ′), let Vs,ξ be the affine open formal subscheme of
D̂0,OF0 ,ξ

whose underlying space is the union of U 0
s′,ξ and the intersection point of

Us′,ξ and Us,ξ . Also we define Vc,ξ =
⋂

sv∈A(s′)Vsv,ξ (it is equal to Vs1,ξ ∩ Vs2,ξ for
any s1 6= s2 ∈ A(s ′)).

Hence C = {Vs,ξ }s∈A(s′) is an open covering of D̂0,OF0 ,ξ
. Any element in

H 1
dR(D̂0,OF0 ,ξ

) can be represented as a 1-hypercocycle ({ωs}s∈A(s′), { fs1,s2}s1,s2∈A(s)),
where ωs ∈ H 0(Vs,ξ , �

1
Vs,ξ
), and fs1,s2 ∈ H 0(Vs1,ξ ∩ Vs2,ξ ,OVs1,ξ∩Vs2,ξ

), such that

d fs1,s2 = ωs1 |Vs1∩Vs2
−ωs2 |Vs1∩Vs2

.

Two 1-hypercocycles ({ωs}, { fs1,s2}), ({ω
′
s}, { f ′s1,s2

}) represent the same cohomology
class if and only there exists a family of functions {gs}s∈A(s), gs ∈ H 0(Vs,ξ ,OVs,ξ ),
such that

ωs −ω
′

s = dgs, fs1,s2 − f ′s1,s2
= gs1 |Vs1∩Vs2

− gs2 |Vs1∩Vs2
.

Given a differential form ω on F0,ξ , we view it as a cohomology class in
H 1

dR(F0,ξ ). How do we relate it, as above, with a 1-hypercocycle in

H 1
dR(D0,ξ )= H 1

dR(D̂0,OF0 ,ξ
)⊗F0 F?

Definition 16.3. Since the generic fiber of D̂0,OF0 ,ξ
becomes D0,ξ when tensored

with F , the generic fiber of Vs,ξ corresponds to an open rigid subspace of D0,ξ ,
which we denote by Ws,ξ . We also define Zs,ξ =Ws,ξ ∩ F0,ξ .
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If ω is in the χ ′-isotypic component and χ ′ 6= χ ′p, we will see later that we can
find a rigid analytic function fs on Zs,ξ for each s ∈ A(s ′) such that ω|Zs,ξ − d fs

can be extended to a holomorphic differential form ωs on Ws,ξ . Define

fs1,s2 = fs2 |Ws1,ξ∩Ws2,ξ
− fs1 |Ws1,ξ∩Ws2,ξ

. (58)

Then ({ωs}, { fs1,s2}) is an element in H 1
dR(D0,ξ ), whose image in H 1

dR(F0,ξ ) is ω.
Roughly speaking, what we did above is to “remove” the poles of ω so that ω

can be extended to a hypercocycle on D0,ξ .
Now apply the above abstract discussion to our situation. Let s ′ be an even vertex

and s ∈ A(s ′). Then, under the isomorphism in Lemma 8.2,

Ws,ξ =
{
(x, y) ∈ D0,ξ

∣∣ |x − k| = 1, k = 1, . . . , p− 1, |x | ≤ 1
}
,

Zs,ξ =
{
(x, y) ∈Ws,ξ

∣∣ |x |> p−1/(p−1)}.
Recall that in Lemma 15.5, we showed that a section ω of H 0(6̃1,OF , ω

1)χ
′

has the
following form when restricted to 6̃1,OF ,[s,s′],ξ :

ω|
6̃1,OF ,[s,s′],ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
, (59)

where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂.
Hence if we restrict it to 6̃1,OF ,s′,ξ (replace ζ by p/η and ẽ′ by $ p−1ξ/ẽ):

ω|
6̃1,OF ,s′,ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
−$ [−mp]g

( p
η

)
$ i(p−1)ξ i ẽ−i dẽ

ẽ
, (60)

where

f (η) ∈ OF0

[
η,

1
ηp−1−1

]
,̂ g

( p
η

)
∈ OF0

[ p
η
,

1
(p/η)p−1−1

]
⊂̂ OF0

[[ p
η

]]
.

Notice that the restriction of ψ0,ξ to the generic fiber of 6̃1,OF ,s′,ξ has the form

x 7→ η, y 7→ ẽ(1− (p/η)p−1)1/(p+1). (61)

Lemma 16.4. Under the isomorphism ψ0,ξ , the 1-form ω has the following form
on Zs,ξ

$ p2
−1−m

(
F(x)y p+1−i

+G
(

p
x

)
y−i
)

dy
y
, (62)

where F(x)∈ OF0[x, 1/(x p−1
−1)]̂ and G(p/x)=

∑
+∞

n=0 an(p/x)n with an ∈ OF0

for all n. Moreover, using (60):

(1) f (x)≡ F(x)mod pOF0[x, 1/(x p−1
− 1)]̂.

(2) a0≡−ξ
i g(0)mod pOF0 if p2

−1−m≥[−mp] and a0≡0 mod pOF0 otherwise.
When i = p, a0/p ≡−ξ i g(0)mod pOF0 .
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Assume this lemma for the moment. Hence we can write ω on Zs,ξ as

$ p2
−1−m

(
F(x)y p+1−i

+G
( p

x

)
y−i
) dy

y
,

where F(x) ∈ OF0[x, 1/(x p−1
− 1)]̂, G(p/x) =

∑
+∞

n=0 an(p/x)n ∈ OF0[[p/x]].
Certainly F(x)y p+1−i dy/y extends to Ws,ξ , so we only need to “remove” the poles
of the other term (essentially the pole at x= y=0). On Z0

s,ξ
def
={(x, y)∈ Zs,ξ | |x |<1},

we can write

x =
+∞∑
n=1

cn y(p+1)n,

where cn ∈ OF0 , c1 = v
−1
1 w1ξ

−1
∈ O×F0

. Thus a simple computation shows:

Lemma 16.5. On Z0
s,ξ ,

+∞∑
n=0

an

(
p
x

)n

y−i dy
y
=

+∞∑
n=−∞

bn y−n(p+1)−i−1 dy,

where bn ∈ OF0,∀n ∈ Z and for n ≥ 0, vp(bn)≥ n. Moreover b0 ≡ a0 mod p.

Now define

fs =$
p2
−1−m

+∞∑
n=0

bn

−n(p+ 1)− i
y−n(p+1)−i . (63)

It can be viewed as a rigid analytic function on Zs,ξ . Also, it is clear from the
above computation that ω − d fs can be extended to a holomorphic differential
form ωs on Ws,ξ . Do the same thing for each s ∈ A(s ′); we can define ωs, fs1,s2

as explained before. Then ({ωs}, { fs1,s2}) is the 1-hypercocycle in H 1
dR(D0,ξ ) '

H 1
dR(D̂0,OF0 ,ξ

)⊗OF0
F that represents ω.

Notice that for i ∈ {1, . . . , p−1}, vp(bn/(−n(p+1)− i))≥ 0 since vp(bn)≥ n.
When i = p, b0 ≡ a0 ≡ 0 mod p since we are in the case p2

−1−m ≤ [−mp]. We
still have vp(bn/(−n(p+1)−i))≥ 0. In fact, equality only can happen when n= 0.
Therefore all the coefficients appearing in ωs , fs1,s2 will be integral. In other words,

({ωs}, { fs1,s2}) ∈ H 1
dR(D̂0,OF0 ,ξ

)⊗OF0
OF . �

Proof of Lemma 16.4. We only give a sketch of the computations here. Using
the notation in (60), it suffices to deal with the case g(p/η) = 0 and f (η) = 0
separately.

(1) Assume g(p/η)= 0. Plug (61) into (60). A direct computation shows that ω
has the form

$ p2
−1−m f (x)

(
1+

( p
x

)p−1
G1(x)

)
y p+1−i dy

y
,

where G1(x) ∈ OF0

[
x, 1

x p−1−1

] [̂[ p
x

]]
.
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Let G2(x) ∈ OF0[x, 1/(x p−1
− 1)]̂[[p/x]] be

G2(x)= v1w
−1
1 ξ(x p−1

− 1)G1(x) f (x)
( p

x

)p−2
.

Clearly we can decompose G2(x) as

G2(x)= F3(x)+G3(
p
x
),

where F3(x) ∈ OF0[x, 1/(x p−1
− 1)]̂, G3(p/x) ∈ OF0[[p/x]]. Replacing F3(x)

by F3(x)− F3(0), we may assume F3(x) ∈ x OF0[x, 1/(x p−1
−1)]̂. Since there is

a (p/x)p−2 in the definition of G2(x), it is easy to see (for example, expand G2(x)
as an element in F0[[x, 1/x]]) that the constant term of G3(p/x) is divisible by p
(in fact, by p p−2). Recall that we assume p is odd; hence at least 3.

Now $−(p
2
−1−m)ω can be written as

f (x)y p+1−i dy
y
+ p

(F3(x)
x

)( 1
(x p−1−1)v1w

−1
1 ξ

)
y p+1−i dy

y

+ p G3(p/x)
(x p−x)v1w

−1
1 ξ

y p+1−i dy
y
.

Notice that y p+1
= v1w

−1
1 ξ(x p

− x). The last term is nothing but

pG3

( p
x

)
y−i dy

y
.

Now let

F(x)= f (x)+ p
(F3(x)

x

)( 1
(x p−1−1)v1w

−1
1 ξ

)
, G

( p
x

)
= pG3

( p
x

)
.

It is clear they satisfy all the conditions in the lemma. So we’re done in this case.

(2) Assume f (η)= 0. When p2
− 1−m ≥ [−mp], we can write $−(p

2
−1−m)ω as

−g
( p

x

)
ξ i
(

1+
( p

x

)p−1
H(x)

)
y−i dy

y
,

where H(x) ∈ OF0[x, 1/(x p−1
− 1)]̂[[p/x]]. Make the decomposition

−g
( p

x

)
ξ i H(x)

( p
x

)p−2
= F1(x)x2

+ Ax + H1

( p
x

)
,

where F1(x) ∈ OF0[x, 1/(x p−1
− 1)]̂, A ∈ pOF0 , H1(p/x) ∈ OF0[[p/x]]. No-

tice that A is divisible by p since there is a (p/x)p−2 in the expression. Then
$−(p

2
−1−m)ω is

−g
( p

x

)
ξ i y−i dy

y
+ px F1(x)y−i dy

y
+ p Ay−i dy

y
+

p
x

H1

( p
x

)
y−i dy

y
.
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Using y p+1
= v1w

−1
1 ξ(x p

− x), the second term is

pF1(x)
1

v1w
−1
1 ξ(x p−1−1)

y p+1−i dy
y
.

It’s easy to see the following F(x), G(p/x) actually work:

F(x)= pF1(x)
1

v1w
−1
1 ξ(x p−1−1)

, G
( p

x

)
=−g

( p
x

)
ξ i
+ p A+ p

x
H1

( p
x

)
.

When p2
− 1−m ≥ [−mp] does not hold, then

ω =−$ [−mp]g
( p
η

)
$ i(p−1)ξ i ẽ−i dẽ

ẽ
= p$ p2

−1−m g
( p
η

)
ξ ẽ−i dẽ

ẽ
.

Repeat the previous argument and it’s direct to see the claim in the lemma is true. �

In the previous proposition, we showed how to turn a differential form ω∈ Hχ ′,F0 ,
when restricted to Us′ , into a 1-hypercocycle ({ωs}, { fs1,s2}) inside the de Rham
cohomology H 1

dR(D̂0,OF0 ,ξ
)⊗OF0

OF (via the isomorphism ψs′,ξ ). It is crucial to
understand the mod p properties of this hypercocycle. Essentially, we need to
understand fs in (63) modulo p (recall that fs1,s2 = fs2 − fs1 ; see (58)).

Fix an even vertex s ′ and s ∈ A(s ′). Recall that Vc,ξ =
⋂

sv∈A(s′) Vsv,ξ . It is clear
from our definition that $−(p

2
−1−m) fs ∈ H 0(Vc,ξ ,OVc,ξ ).

Lemma 16.6. (Using notation from the proof of Proposition 16.1.)

(1) When i = p,

$−(p
2
−1−m) fs ≡

b0 y−p

−p
≡

a0 y−p

−p
≡ ξ pg(0)y−p mod pH 0(Vc,ξ ,OVc,ξ ).

(2) When i ∈ {1, . . . , p− 1} and p2
− 1−m ≤ [−mp],

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ ).

(3) When p2
− 1−m ≥ [−mp], we have

$−(p
2
−1−m) fs ≡

b0 y−i

−i
≡

a0 y−i

−i
≡
ξ i g(0)y−i

i
mod pH 0(Vc,ξ ,OVc,ξ ),

except the case i = p − 1 and the case p = 3, i = 1. I claim that in these
exceptional cases, we can find another 1-hypercocycle ({ω′sv }, { f ′s1,s2

}) in the
same cohomology class as ({ωsv }, { fs1,s2}) such that we can write f ′s1,s2

=

f ′s2
− f ′s1

for any s1, s2 ∈ A(s ′) and

$−(p
2
−1−m) f ′s ≡

b0 y−i

−i
mod pH 0(Vc,ξ ,OVc,ξ ),

f ′sv = fs for any sv 6= s.
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Proof of Lemma 16.6. Everything is clear by Lemma 16.5 and the definition of fs

in (63), except for the exceptional cases. First we assume i = p− 1, then

$−(p
2
−1−m) fs ≡

b0 y−(p−1)

−(p− 1)
+

b1 y−2p

−2p
mod pH 0(Vc,ξ ,OVc,ξ ).

This makes sense since vp(b1)≥ 1. Now define gsv ∈ H 0(Vsv,ξ ,OVsv ,ξ
), sv ∈ A(s ′)

as:

gsv =


−

b1

−2pv2
1w
−2
1 ξ 2

(x2p−4
− 2x p−3)y2

(x p−1− 1)2
if sv = s,

−
b1

−2pv2
1w
−2
1 ξ 2

y2

x2 if sv 6= s.

Hence define ω′sv = ωsv +$
p2
−1−mdgsv , f ′s1,s2

= fs1,s2 +$
p2
−1−m(gs1 − gs2);

the hypercocycle ({ωsv }, { fs1,s2}) and ({ω′sv }, { f ′s1,s2
}) are in the same cohomology

class. A simple computation shows the following identity in H 0(Vc,ξ ,OVc,ξ ):

−
b1

−2pv2
1w
−2
1 ξ 2

(x2p−4
− 2x p−3)y2

(x p−1− 1)2
+

b1

−2pv2
1w
−2
1 ξ 2

y2

x2 =
b1 y−2p

−2p
.

Thus if we define f ′s = fs − b1 y−2p/(−2p), f ′sv = fsv , sv 6= s, they satisfy

f ′s1,s2
= f ′s2

− f ′s1
,

and clearly have the property we want.
The case i = 1, p = 3 can be done by the same method. This time

$−(p
2
−1−m) fs ≡ b0 y−1

+
b2

−9
y−9

≡ b0 y−1
+

b2

−9v3
1w
−3
1 ξ 3

(
x3 y3

(x2− 1)3
−

y3

x3

)
mod 3H 0(Vc,ξ ,OVc,ξ ).

We can define gsv similarly. I omit the details here. �

Remark 16.7. In the odd case, things are similar. We only restrict ourselves to
the case p2

− 1−m ≥ [−mp]. Let s be an odd vertex. We also have ψs,ξ (see the
beginning of Section 12). Let ω be an element of Hχ ′,F0 . Similarly to Lemma 16.4,
ω has the form (using (52)):

$ [−mp]
(

F(x)yi
+ pG

( p
x

)
y−p−1+i

) dy
y
, (64)

where F(x)∈OF0[x, 1/(x p−1
−1)]̂, G(p/x)=

∑
+∞

n=0 an(p/x)n , an ∈OF0 ∀n. All
the above arguments work here and we can define a 1-hypercocycle ({ωs′}, { fs′1,s

′

2
})

that represents ω. Notice that there is a “p” in front of G(p/x) in (64). Thus when
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2≤ i ≤ p (resp. i = 1),

$−[−mp] fs′ ∈ pH 0(Vc,ξ ,OVc,ξ ) (resp. H 0(Vc,ξ ,OVc,ξ )),

$−[−mp] fs′1,s
′

2
∈ pH 0(Vs′1,ξ∩Vs′2,ξ ,OVs′1,ξ

∩Vs′2,ξ
) (resp. H 0(Vs′1,ξ∩Vs′2,ξ ,OVs′1,ξ

∩Vs′2,ξ
)).

Here Vs′,ξ , s ′ ∈ A(s) is defined similarly.

Before stating the main result of this section, we still need to do some extra work.
Most results here can be found in [Haastert and Jantzen 1990]. Since D̂0,OF0 ,ξ

is a
curve in P2, the Hodge–de Rham spectral sequence gives us the following exact
sequence:

0→ H 0(D̂0,OF0 ,ξ
, �1

D̂0,OF0
,ξ

)→ H 1
dR(D̂0,OF0 ,ξ

)→ H 1(D̂0,OF0 ,ξ
,OD̂0,OF0

,ξ
)→ 0. (65)

And each group in this exact sequence is a finite free OF0-module. If we use a
1-hypercocycle ({ωs}, { fs1,s2}) to represent a cohomology class in H 1

dR(D̂0,OF0 ,ξ
),

then every element in H 0(D̂0,OF0 ,ξ
, �1

D̂0,OF0
,ξ
) can be identified as the hypercocycle

with all fs1,s2 = 0. And the map to H 1(D̂0,OF0 ,ξ
,OD̂0,OF0 ,ξ

) is just mapping the
hypercocycle to { fs1,s2}, which is considered as a 1-cocycle. Similarly, we have

0→ H 0(Us′0,ξ , �
1
Us′0,ξ

)→ H 1
dR(Us′0,ξ )→ H 1(Us′0,ξ ,OUs′0,ξ

)→ 0,

which can be identified with the reduction mod p of the previous exact sequence.
Recall that the de Rham cohomology of D̂0,OF0 ,ξ

can be identified as the crys-
talline cohomology of Us′0,ξ . It is equipped with a Frobenius operator ϕ. It is
important to understand the relationship between ϕ and the above exact sequence.
Denote

⋃
ξ p−1=−1 D̂0,OF0 ,ξ

by D̂0,OF0
.

Lemma 16.8. Under the isomorphism between H 1
dR(D̂0,OF0 ,ξ

) and H 1
crys(Us′0,ξ/OF0),

(1) ϕ(H 1
dR(D̂0,OF0

)χ
′

)⊂ H 1
dR(D̂0,OF0

)(χ
′)p

.

(2) ϕ(H 1
dR(D̂0,OF0

)χ
′

)⊂ H 0(D̂0,OF0
, �1

D̂0,OF0

)(χ
′)p
+ pH 1

dR(D̂0,OF0
)(χ
′)p

.

(3) The above inclusion is in fact an equality and ϕ induces an isomorphism
between H 1(Us′0,OUs′0

)χ
′

and H 0(Us′0, �
1
Us′0
)(χ
′)p

.

Proof. See Section 3 of [Haastert and Jantzen 1990], especially Proposition 3.5.
Although our curve is slightly different from the curve in that paper, all arguments
in their paper work here. �

Remark 16.9. A variant of Lemma 16.8 is that ϕ induces an isomorphism

H 0(D̂0,OF0
, �1

D̂0,OF0

)χ
′

+ pH 1
dR(D̂0,OF0

)χ
′

−→∼ pH 1
dR(D̂0,OF0

)(χ
′)p
.
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This follows from the fact that ϕ2 is a scalar cx on these spaces and vp(cx) = 1;
see Proposition 12.8. A direct corollary is that ϕ induces an isomorphism between(

H 0(D̂0,OF0
, �1

D̂0,OF0

)χ
′

+ pH 1
dR(D̂0,OF0

)χ
′)/

pH 1
dR(D̂0,OF0

)χ
′

and

pH 1
dR(D̂0,OF0

)(χ
′)p/(

pH 0(D̂0,OF0
, �1

D̂0,OF0

)(χ
′)p
+ p2 H 1

dR(D̂0,OF0
)(χ
′)p)
,

which can be viewed as an isomorphism H 0(Us′0, �
1
Us′0
)χ
′

−→∼ H 1(Us′0,OUs′0
)(χ
′)p

.

In fact, we can write down the isomorphism between H 1(Us′0,OUs′0
)χ
′

and
H 0(Us′0, �

1
Us′0
)(χ
′)p

explicitly (Lemma 16.13 below). Some notation here: as
before (see (27)), we may identify Us′0,ξ with the projective curve defined by
ẽp+1
= v1w

−1
1 ξ(ηp

− η) and the singular points of Us′0 (considered in the special
fiber of 6̃1,OF ,ξ ) are those points with ẽ = 0.

Definition 16.10. We write A(s ′0)={s0, . . . , sp−1, s∞}, where for k= 0, . . . , p−1,
sk is the vertex that corresponds to η = k, ẽ = 0 in Us′0,ξ and s∞ corresponds to the
point η =∞, ẽ = 0 (equivalently, if we use projective coordinates [η, ẽ, 1], then
this point is [1, 0, 0]).

Definition 16.11. Let V0 be the open set of Us′0,ξ that is the complement of the
point η =∞, ẽ = 0. We also define V∞ as the complement of η = ẽ = 0.

Using the notation from Definition 16.2, it is clear that set theoretically, V0

is the union of Vs0,ξ , . . . , Vsp−1,ξ and V∞ is the union of Vs1,ξ , . . . , Vsp−1,ξ , Vs∞,ξ .
By abuse of notation, we also view V0, V∞ as open affine formal subschemes
of D̂0,OF0 ,ξ

.
Notice that V0, V∞ is an open covering of D̂0,OF0 ,ξ

. Hence every cohomology
class of H 1

dR(D̂0,OF0 ,ξ
) can be represented by a 1-hypercocycle (ω0, ω∞, f0,∞) as

before. Every element of H 1(Us′0,ξ ,OUs′0,ξ
) can be represented by an element in

H 0(V0 ∩ V∞,OV0∩V∞), viewed as a 1-cocycle. The next lemma is easy to see.

Lemma 16.12. H 1(Us′0,OUs′0
)χ
′

has a basis, when restricted to Us′0,ξ , given by

ẽp+1−i

ηk , k = 1, . . . , p− i.

If i = p, then H 1(Us′0,OUs′0
)χ
′

= 0.

Hence we may view ẽp+1−i/ηk as an element in H 1(Us′0,OUs′0
)χ
′

. Then, as a 1-
hypercocycle, ϕ(ẽp+1−i/ηk) is (0, 0, ẽ(p+1−i)p/ηpk). A direct computation shows:

Lemma 16.13. ϕ(ẽp+1−i/ηk) is the same as the holomorphic differential form

(v1w
−1
1 ξ)p−i (−1)p−i−kk

( p−i
k

)
ηp−i−k ẽi−1 dẽ.
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Remark 16.14. We will need to translate a 1-cocycle inside H 1(Us′0,ξ ,OUs′0,ξ
) using

the open covering {Vs,ξ }s∈A(s′0) to a 1-cocycle using the open covering {V0, V∞}.
This is done as follows. If we start with a 1-cocycle { f ′s,s′′}, we can find another
1-cocycle { fs,s′′} that represents the same cohomology class and fs0,s∞ can be
extended to a section in H 0(V0 ∩ V∞,OV0∩V∞). Then fs0,s∞ can be viewed as a
1-cocycle of the covering {V0, V∞}. In fact, this is just what we want.

Example 16.15. Let’s compute one example here. Consider the 1-cocycle { f ′s,s′′}:

f ′s,s′′ = f ′s′′ − f ′s , where f ′s0
= ẽ−i , f ′s = 0 for s 6= s0.

Then clearly f ′s0,s∞ has poles on V0 ∩ V∞. But we can modify this cocycle a little
bit: define

gs0 =
ηp−2ẽp+1−i

v1w
−1
1 ξ(ηp−1− 1)

∈ H 0(Vs0,ξ ,OVs0,ξ
), gs = 0 for s 6= s0,

and let
fs,s′′ = f ′s,s′′ − gs′′ + gs .

Then { fs,s′′} and { f ′s,s′′} represent the same cohomology class. Moreover,

fs0,s∞ = f ′s0,s∞ + gs0 =− fs0 + gs0 =−ẽ−i
+

ηp−2ẽp+1−i

v1w
−1
1 ξ(ηp−1− 1)

=
ẽp+1−i

v1w
−1
1 ξη

(using ẽp+1
= v1w

−1
1 ξ(ηp

− η)) clearly extends to V0 ∩ V∞. Hence,

ẽp+1−i

v1w
−1
1 ξη

,

viewed as a 1-cocycle of the covering {V0, V∞}, represents the same cohomology
class as { f ′s.s′′}.

A combination of Remark 16.7 and the Lemma 16.8 gives:

Lemma 16.16. Assume p2
−1−m ≥ [−mp] and i 6= 1. Let s be an odd vertex and

ω ∈ Hχ ′,F0 .

(1) Using the method in the proof of Proposition 16.1, we may view $−[−mp]ω as
a cohomology class inside H 1

crys(Us/OF0)
χ ′ . Then

ϕ($−[−mp]ω) ∈ pH 1
crys(Us/OF0)

(χ ′)p
,

or equivalently (using Remark 16.9),

$−[−mp]ω ∈ ϕ(H 1
crys(Us/OF0)

(χ ′)p
).
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(2) In fact, Proposition 15.8 shows that $−[−mp]ω modulo p is a holomorphic
differential form inside

H 0(Us, �
1
Us
)= ϕ(H 1

dR(Us)),

which is nothing but $−[−mp]ω considered as a cohomology class in H 1
dR(Us).

In particular, if
ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1),

then the cohomology class of $−[−mp]ω is inside pH 1
crys(Us/OF0).

Proof. Following Remark 16.7, let ({ωs′}, { fs′1,s
′

2
}) be the 1-hypercocycle that

represents ω in F ⊗F0 H 1
crys(Us/F0)

χ ′ (by identifying the crystalline cohomology
of Us with the de Rham cohomology of D̂0,OF0

). Since

$−[−mp] fs′1,s
′

2
∈ pH 0(Vs′1,ξ ∩ Vs′2,ξ ,OVs′1,ξ

∩Vs′2,ξ
),

all these $−[−mp] fs′1,s
′

2 vanish if we reduce modulo p. This means that the image
of $−[−mp]ω in H 1

dR(Us) actually lies inside H 0(Us, �
1
Us
). Now our first claim is

a direct consequence of Lemma 16.8. Referring again to Remark 16.7, the rest of
the lemma follows from

$−[−mp] fs′ ∈ pH 0(Vc,ξ ,OVc,ξ ).

Thus when we restrict everything to the special fiber of Vc,ξ (equivalently, U 0
s,ξ ),

$ [−mp]ωs′ =$
−[−mp]ω− d fs′ ≡$

−[−mp]ω mod pH 0(Vc,ξ , �
1
Vc,ξ
).

This indicates that the cohomology class of$−[−mp]ω is just the 1-form$−[−mp]ω

after reducing modulo p. �

Remark 16.17. Using the action of GL2(Qp), it’s not hard to see that if we replace
s by an even vertex s ′ and ω ∈ Hχ ′,F0 by ω ∈ H (χ ′)p,F0 , we have a similar result:

$−[−mp]ω ∈ ϕ(H 1
crys(Us′/OF0)

χ ′),

and exactly the same statement for the second part.

Similarly, by combining Lemmas 16.6 and 16.8, we obtain:

Lemma 16.18. Let ω∈ H 0(6̃1,OF , ω
1)χ

′,Gal(F/F0) and s ′ be an even vertex. Assume

ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1)χ

′,Gal(F/F0) (66)

for any s ∈ A(s ′).
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(1) The image of $−(p
2
−1−m)ω in H 1

crys(Us′/OF0)
χ ′ is actually inside

ϕ(H 1
crys(Us/OF0)

(χ ′)p
).

Equivalently, if we view $−(p
2
−1−m)ω as an element inside H 1

crys(Us′/OF0)
χ ′ ,

ϕ($−(p
2
−1−m)ω) ∈ pH 1

crys(Us/OF0)
(χ ′)p

.

(2) Assume i 6= p. Proposition 15.8 shows that in this case$−(p
2
−1−m)ω modulo p

is a holomorphic differential form inside

H 0(Us′, �
1
Us
)= ϕ(H 1

dR(Us′)),

and we may identify it with the cohomology class of$−(p
2
−1−m)ω in H 1

dR(Us′).
In particular, if

ω|
6̃1,OF ,s′

∈ pH 0(6̃1,OF ,s′, ω
1),

then the cohomology class of $−(p
2
−1−m)ω is inside pH 1

crys(Us′/OF0).

(3) Assume i = p. We have a slightly weaker result: assume

ω|
6̃1,OF ,s′

∈ pH 0(6̃1,OF ,s′, ω
1); (67)

then the cohomology class of $−(p
2
−1−m)ω is inside pH 1

crys(Us′/OF0).

Proof. First we prove the first two parts. If i = p, we know that (Lemma 16.12)

H 1(Us′,OUs′
)χ
′

= H 0(Us′, �
1
Us′
)(χ
′)p
= 0.

Hence Lemma 16.8 tells us that

ϕ(H 1
crys(Us/OF0)

(χ ′)p
)= H 1

crys(Us′/OF0)
χ ′ .

So in this case, the first part is trivially true.
Now assume i 6= p. We need to use some results from Lemma 16.6; see the

notation there. We can represent ω|
6̃1,OF ,s′

as a 1-hypercocycle ({ωs}, { fs1,s2}) and
for s ∈ A(s ′), there exists

fs ∈$
p2
−1−m H 0(Vc,ξ ,OVc,ξ ),

such that fs1,s2 = fs2 − fs1 . Hence, as in the proof of Lemma 16.16, it suffices to
prove

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ ).

If p2
− 1−m ≤ [−mp] and i 6= p, this already follows from the second part of

Lemma 16.6. So we only need to treat the case p2
−1−m≥[−mp]. Then the desired

result follows from our condition that ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1)χ

′,Gal(F/F0).
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More precisely, using the notation from the proof of Proposition 16.1 (espe-
cially (59)), we can write

ω|
6̃1,OF ,[s,s′],ξ

=$ p2
−1−m f (η)ẽp+1−i dẽ

ẽ
+$ [−mp]g(ζ )ẽ′i dẽ′

ẽ′
. (68)

Notice that Lemma 16.6 tells us that

$−(p
2
−1−m) fs ≡

ξ i g(0)y−i

i
mod pH 0(Vc,ξ ,OVc,ξ ).

It suffices to show g(0) ∈ pOF0 . But by Lemma 15.7,

g(ζ ) ∈ pOF0

[
ζ,

1
ζ p−1−1

]
,̂

since we assume ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1)χ

′,Gal(F/F0). So we’re done for the
first two parts.

As for the last claim, we keep using the notation ({ωs}, { fs1,s2}) and { fs} as
above. Notice that we already assume ω|

6̃1,OF ,s′
∈ pH 0(6̃1,OF ,s′, ω

1). Hence if we
can show

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ ), (69)

then we would know that both ωs and fs1,s2 are divisible by p. Thus it suffices to
prove (69).

But using the notation (68) above and Lemma 16.6, which says that

$−(p
2
−1−m) fs ≡ ξ

pg(0)y−p mod pH 0(Vc,ξ ,OVc,ξ ),

we only need to show g(0) is divisible by p. But by our assumption (67),

f (η) ∈ pOF0

[
η,

1
ηp−1− 1

]
.̂

Since we also assume ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1),

g(ζ ) ∈ pOF0

[
ζ,

1
ζ p−1− 1

]
.̂

See the computations around Lemma 15.6. Therefore g(0) ∈ pOF0 . �

Remark 16.19. Using the action of GL2(Qp), we can get a variant of the previous
lemma. Let ω ∈ H 0(6̃1,OF , ω

1)(χ
′)p,Gal(F/F0) and s be an odd vertex. Assume

ω|
6̃1,OF ,s′

∈ pH 0(6̃1,OF ,s′, ω
1)(χ

′)p,Gal(F/F0)

for any s ′∈ A(s). Then the cohomology class of$−(p
2
−1−m)ω in H 1

crys(Us′/OF0)
(χ ′)p

is inside ϕ(H 1
crys(Us/OF0)

χ ′). And we have a similar result for the last two parts: if
we assume

ω|
6̃1,OF ,s

∈ pH 0(6̃1,OF ,s, ω
1),

then the cohomology class of $−(p
2
−1−m)ω is inside pH 1

crys(Us/OF0).
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Remark 16.20. When i = p, we will see in Section 17 that the second part of the
lemma is actually still true (Lemma 17.12).

Now let’s recall the construction of M(χ, [1, b]) in Section 14. First we write∏
s

(F ⊗F0 H 1
crys(Us/F0)⊗Qp E)χ = F1⊕ F2,

where

F1
def
=

∏
s′ even

F ⊗F0 H 1
crys(Us′/F0)

χ ′

τ ⊕

∏
s odd

F ⊗F0 H 1
crys(Us/F0)

(χ ′)p

τ̄ ,

F2
def
=

∏
s′ even

F ⊗F0 H 1
crys(Us′/F0)

(χ ′)p

τ̄ ⊕

∏
s odd

F ⊗F0 H 1
crys(Us/F0)

χ ′

τ .
(70)

It is clear from Lemma 16.18 that gϕ⊗ϕ⊗IdE sends F1 to F2. Let f be an element
of (H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0). By Proposition 14.6, we have an injective

map (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) into
∏

s

(
F ⊗F0 H 1

crys(Us/F0)⊗Qp E
)χ . Let

( f1, f2) be the decomposition of the image of f into F1⊕ F2. Then:

Lemma 16.21. M(χ, [1, b])={
f ∈(H 0(6̃1,OF , ω

1)⊗OE)
χ,Gal(F/F0)

∣∣(1⊗b)(gϕ⊗ϕ⊗IdE)( f1)=($
(p−1)i

⊗1) f2
}
.

Here 1⊗ b and $ (p−1)i
⊗ 1 are viewed as elements in F⊗

Qp
E.

Proof. Considering

(H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) = (H 0(6̃(0)1,OF
, ω1)⊗ OE)

χ,Gal(F/Qp), (71)

the lemma follows from Proposition 13.3 and the remark below it. �

Thus we can rewrite M(χ, [1, b]) as the kernel of θb, which is defined as the
composite of the following maps:

(H 0(6̃1,OF , ω
1)⊗OE)

χ,Gal(F/F0)→

∏
s

(
F⊗F0 H 1

crys(Us/F0)⊗Qp E
)χ Lb
−→F2, (72)

where Lb : F1⊕ F2→ F2 is defined as

( f1, f2) 7→ −(1⊗ b)(gϕ ⊗ϕ⊗ IdE)( f1)+ ($
(p−1)i

⊗ 1) f2.

To understand the image of θb, we introduce:

Definition 16.22.

J1
def
=

∏
s′ even

H 1
crys(Us′/OF0)

χ ′

τ ⊕

∏
s odd

H 1
crys(Us/OF0)

(χ ′)p

τ̄ ⊂ F1, (73)

J2
def
= ($ p2

−1−m gϕ ⊗ϕ⊗ IdOE )(J1)⊂ F2. (74)
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Lemma 16.23. Under the assumption p2
− 1−m ≥ [−mp] and 2≤ i ≤ p− 1, we

have
θb
(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)
⊂ J2.

Remark 16.24. In the next section we show that the lemma also holds for i = 1, p.

Proof. Let ω be an element in (H 0(6̃1,OF , ω
1)⊗OE)

χ,Gal(F/F0). Write ω= (ω1, ω2)

as the decomposition into F1⊕ F2. By Proposition 16.1, we have ω1 ∈$
p2
−1−m J1.

Hence
Lb((ω1, 0))=−(gϕ ⊗ϕ⊗ b(ω1)) ∈ J2.

It remains to prove that Lb((0, ω2)) ∈ J2, or equivalently, ($ (p−1)i
⊗ 1)ω2 ∈ J2.

Using the action of GL2(Qp), we only need to check this for one odd vertex. In
other words, it suffices to show

($ (p−1)i
⊗ 1)ω2,s ∈ ($

p2
−1−m gϕ ⊗ϕ⊗ IdOE )(H

1
crys(Us/OF0)

(χ ′)p

τ̄ ),

where s is an odd vertex and ω2,s is the image of ω inside F ⊗F0 H 1
crys(Us/F0)

χ ′

τ .
But this is nothing but the first part of Lemma 16.16. �

By abuse of notation, we use θb to denote the map

(H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2.

Also we use θ̄b to denote the modulo p map of θb, that is:

θ̄b : Hχ,F0 = (H 0(6̃1,OF , ω
1)⊗ OE/p)χ,Gal(F/F0)→ J2/p.

Recall that we have an exact sequence (Proposition 15.13):

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ → Hχ,F0 → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → 0.

As for J2/p, it’s obvious that

J2/p ' IndGL2(Qp)
GL2(Zp)Q

×
p
ϕ(H 1

crys(Us′0/OF0)
χ ′

τ )/p.

Using Lemma 16.8, the filtration

pϕ(H 1
crys(Us′0/OF0)

χ ′)⊂ pH 1
crys(Us′0/OF0)

(χ ′)p
⊂ ϕ(H 1

crys(Us′0/OF0)
χ ′)

induces the following exact sequence:

0→ H 1(Us′0,OUs′0
)(χ
′)p
→ ϕ(H 1

crys(Us′0/OF0)
χ ′)/p→ H 0(Us′0, �

1
Us′0
)(χ
′)p
→ 0.

Another way to see this is that J2/p is canonically isomorphic with J1/p, and J1/p
has the usual exact sequence for de Rham cohomology. In other words, we have:

0→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 1(Us′0
,OUs′0

)
(χ ′)p

τ̄ → J2/p→ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄ → 0.
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Lemma 16.25. Assume p2
− 1− m ≥ [−mp] and i ∈ {2, . . . , p − 1}. Then θ̄b

induces the following commutative diagram:

IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)χ
′

τ
//

θ̄b,1
��

Hχ,F0 //

θ̄b

��

IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄

θ̄b,2
��

IndGL2(Qp)
GL2(Zp)Q

×
p

H 1(Us′0
,OUs′0

)
(χ ′)p

τ̄
// J2/p // IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0
, �1

Us′0
)
(χ ′)p

τ̄

Proof. Let ω be an element of (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) whose mod p
reduction lies in IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0, �
1
Us′0
)
χ ′

τ . We need to show that

θb(ω) ∈$
p2
−1−mIndGL2(Qp)

GL2(Zp)Q
×
p

pH 1
crys(Us′0/OF0)

(χ ′)p

τ̄ ⊂ J2.

Write ω = ωτ +ωτ̄ as in the decomposition(
H 0(6̃1,OF , ω

1)⊗Qp OE
)χ,Gal(F/F0)

= H 0(6̃1,OF , ω
1)χ

′,Gal(F/F0)
τ ⊕ H 0(6̃1,OF , ω

1)
(χ ′)p,Gal(F/F0)
τ̄ .

It is clear from the construction in the proof of Proposition 15.13 that ω is in H1

modulo p (see the notation there). This means that

ωτ |6̃1,OF ,s
∈ pH 0(6̃1,OF ,s, ω

1)χ
′

τ and ωτ̄ |6̃1,OF ,s′
∈ pH 0(6̃1,OF ,s′, ω

1)
(χ ′)p

τ̄ (75)

for any odd vertex s and even vertex s ′. Then, by Lemma 16.16, we know that the
image of $−[−mp]ωτ in H 1

crys(Us/OF0)
χ ′

τ actually lies in pH 1
crys(Us/OF0)

χ ′

τ for any
odd vertex s. Similarly the image of $−[−mp]ωτ̄ will be in pH 1

crys(Us′/OF0)
(χ ′)p

τ̄

for any even vertex s ′. Let ω = (ω1, ω2) be the decomposition of ω into F1⊕ F2.
Then the discussion before indicates that

($ (p−1)i
⊗ 1)ω2 ∈$

p2
−1−mIndGL2(Qp)

GL2(Zp)Q
×
p

pH 1
crys(Us′0/OF0)

(χ ′)p

τ̄ ⊂ J2.

It remains to prove that

(gϕ ⊗ϕ⊗ IdE)(ω1) ∈$
p2
−1−mIndGL2(Qp)

GL2(Zp)Q
×
p

pH 1
crys(Us′0/OF0)

(χ ′)p

τ̄ ⊂ J2.

This follows from Lemma 16.18 (the condition in that lemma is satisfied since we
have (75)). �

Now we can state the main theorem of this paper.

Theorem 16.26. The maps θ̄b,1, θ̄b,2 are surjective. More precisely, if we identify
H 0(Us′0, �

1
Us′0
)
(χ ′)p

τ̄ with (Symp−1−i (OE/p)2)⊗ deti+ j (see Remark 15.14), and
identify

H 0(Us′0, �
1
Us′0
)χ
′

τ ' H 1(Us′0,OUs′0
)
(χ ′)p

τ̄
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with (Symi−2(OE/p)2) ⊗ det j+1, where the isomorphism is induced by ϕ (see
Remark 16.9), then θ̄b,1, θ̄b,2 are given by

θ̄b,1 : σi−2( j + 1)→ σi−2( j + 1), X 7→ −bX + ((−1) j+1τ(wi
1))T (X),

θ̄b,2 : σp−1−i (i + j)→ σp−1−i (i + j), X 7→ X − ((−1) j+1τ(w−i
1 )b)T (X),

where T is the Hecke operator (defined in [Breuil 2007]). See the beginning of the
paper for its definition.

We list some direct consequences of this theorem.

Corollary 16.27. θ̄b is surjective.

Corollary 16.28. θb : (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2 is surjective and we
have the following exact sequence:

0→ M(χ, [1, b])→ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2→ 0. (76)

Applying the functor M 7→ Md
= Homcont

OE
(M, E) defined in Section 14, we get

0→ J d
2 →

(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)d
→ B(χ, [1, b])→ 0. (77)

Notice that the kernel and the middle term of this exact sequence do not depend
on b. In fact, the unitary representation J d

2 is the completion of c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1

with respect to the lattice c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρo
χ−1 , where ρo

χ−1 ⊂ ρχ−1 is an OE -lattice.
It is the universal unitary completion of c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 .

Proof. Recall that B(χ, [1, b]) = (M(χ, [1, b]))d defined in Section 14. The
surjectivity of θb follows from the surjectivity of θ̄b and the fact that J2 and
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0) are p-adically complete. The explicit description

of J d
2 follows from the obvious isomorphism between J2 and J1, which is clearly

isomorphic to IndGL2(Qp)
GL2(Zp)Q

×
p

H 1
crys(Us′0/OF0)

χ ′−1

τ . It is easy to verify that it satisfies
the universal property. �

Corollary 16.29. Under the assumption p2
− 1−m ≥ [−mp], i ∈ {2, . . . , p− 1},

as a representation of GL2(Qp),

0→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ 0,

where c(χ, b) = (−1) j+1τ(w−i
1 )b ∈ OE/p. Thus B(χ, [1, b]) is nonzero and

admissible.

Remark 16.30. If we assume p2
− 1−m ≤ [−mp], i ∈ {2, . . . , p− 1}, the same

proof will yield a similar exact sequence:

0→
{

X ∈ σp−1−i (i + j) | X = c(χ, b)T (X)
}
→ M(χ, [1, b])/p

→
{

X ∈ σi−2( j + 1) | c(χ, b)X = T (X)
}
→ 0.
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Proof of Theorem 16.26. First we introduce some notation.

Definition 16.31. Let ω ∈ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0). Then

(1) ωτ +ωτ̄ will be the decomposition of ω in

(H 0(6̃1,OF , ω
1)⊗ OE)

χ
= H 0(6̃1,OF , ω

1)χ
′

τ ⊕ H 0(6̃1,OF , ω
1)
(χ ′)p

τ̄ .

We will use ωτ,s,ξ (resp. ωτ̄ ,s,ξ ) to denote the restriction of ωτ (resp. ωτ̄ ) to 6̃1,OF ,s,ξ ,
where s is a vertex of the Bruhat–Tits tree and ξ p−1

=−1.

(2) ω = ω1 +ω2 will be its decomposition into F1⊕ F2 (see (70)). For an even
vertex s ′ and odd vertex s, we define ω1,s′ and ω1,s as the images of ω inside
F ⊗F0 H 1

crys(Us′/F0)
χ ′

τ and F ⊗F0 H 1
crys(Us/F0)

(χ ′)p

τ̄ , respectively. It is clear that
ω2,s′ , ω2,s can be defined similarly. We also use ω1,s,ξ to denote the image of ω in
F ⊗F0 H 1

crys(Us,ξ/F0)
(χ ′)p

τ̄ and define ω1,s′,ξ , ω2,s,ξ , and ω2,s′,ξ similarly.

In fact, Proposition 16.1 tells us that for an even vertex s ′ and odd vertex s,

ω1,s′ ∈$
p2
−1−m H 1

crys(Us′/OF0)
χ ′

τ , ω1,s ∈$
p2
−1−m H 1

crys(Us/OF0)
(χ ′)p

τ̄ ,

and

ω2,s′ ∈$
[−mp]H 1

crys(Us′/OF0)
(χ ′)p

τ̄ , ω2,s ∈$
[−mp]H 1

crys(Us/OF0)
χ ′

τ ).

Now we start to prove the surjectivity of

θ̄b,2 : IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ → IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

Consider [Id, xk y p−1−i−k
] in (See the beginning of the paper for the notation

here)

IndGL2(Qp)
GL2(Zp)Q

×
p
(Symp−1−i (OE/p)2)⊗ deti+ j

' IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

Let ω̄ ∈ Hχ,F0 be a lift of [Id, xk y p−1−i−k
] in the first row of Lemma 16.25 and

let ω ∈ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) be a lift of ω̄.
It is clear that we may assume ωτ = 0. Then our choice of ω implies:

Lemma 16.32. Under the identification in (27),

ωτ̄ ,s′0,ξ ≡$
[−mp]ηk ẽi dẽ

ẽ
mod pH 0(6̃1,OF ,s′0,ξ , ω

1)τ̄ , (78)

ωτ̄ ,s′,ξ ∈ pH 0(6̃1,OF ,s,ξ , ω
1)τ̄ for any even vertex s ′ 6= s ′0. (79)

Using this and Remark 16.17, we know that for any even vertex s ′ 6= s0,

$ (p−1)iω2,s′ ∈$
p2
−1−m pH 1

crys(Us′/OF0)
(χ ′)p

τ̄ ,
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and considered as elements in H 0(Us′0, �
1
Us′0
)⊂ H 1

dR(Us′0),

$−[−mp]ω2,s′0,ξ ≡ η
k ẽi dẽ

ẽ
mod pH 1

crys(Us′0/OF0)
(χ ′)p

τ̄ .

Similarly, Remark 16.19 tells us that for any odd vertex s /∈ A(s ′0),

ϕ($−(p
2
−1−m)ω2,s) ∈ pH 1

crys(Us/OF0)
(χ ′)p

τ̄ .

Hence it is clear from the definition of θb that we have:

Lemma 16.33. θ̄b,2([Id, xk y p−1−i−k
])= [Id, vs′0] +

∑
s∈A(s′0)

[g−1
s , vs],

where gs is a chosen representative in the coset defined by s. Recall that we identify
the set of vertices of the Bruhat–Tits tree with GL2(Zp)Q

×
p \GL2(Qp).

Since ω1,s′0 = 0, it follows from (78) that vs′0 = xk y p−1−i−k .
To determine other terms, we recall some results in Section 7. Recall that s0 is the

vertex that corresponds to η = ẽ = 0. As a coset, it corresponds to GL2(Zp)Q
×
p ·w,

where

w =

(
0 −1
p 0

)
. (80)

Then 6̃1,OF ,[s′0,s0],ξ is isomorphic to

Spf
OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
, ẽ, ẽ′

]̂
(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
, ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

ηp−1−1
, ẽẽ′−$ p−1ξ

)
in such a way that the following lemma is true.

Lemma 16.34. The action of w sends 6̃1,OF ,[s′0,s0],ξ to

6̃1,OF ,[s′0,s0],ξ p = 6̃1,OF ,[s′0,s0],−ξ .

Explicitly, it is given by (see Corollary 7.7; recall that ẽ = e/$ ):

η 7→ −ζ, ζ 7→ −η, ẽ 7→ v1ẽ′, ẽ′ 7→ v−1
1 ẽ.

Now we come back to our situation. Using Lemma 15.5, the restriction of ωτ̄ to
6̃1,OF ,[s′0,s0] can be written as

ω|
6̃1,OF ,[s

′
0,s0],ξ
=$ [−mp] f (η)ẽi dẽ

ẽ
+$ p2

−1−m g(ζ )ẽ′p+1−i dẽ′

ẽ′
,
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where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂. Since ω is
in the (χ ′)p-isotypic component, we must have (using results in Section 9):

ω|
6̃1,OF ,[s

′
0,s0],−ξ

=$ [−mp] f (η)ẽi (−1)−(i+ j) dẽ
ẽ
+$ p2

−1−m g(ζ )ẽ′p+1−i (−1)−( j+1) dẽ′

ẽ′
.

By our construction of ω,

ωτ̄ ,s′0,ξ = ωτ̄ |6̃1,OF ,s
′
0,ξ
≡$ [−mp]ηk ẽi dẽ

ẽ
mod pH 0(6̃1,OF ,s′0,ξ , ω

1).

Hence:

Lemma 16.35. f (η)≡ ηk mod pOF0

[
η,

1
ηp−1−1

]
.̂

I would like do all the computations on the central component, so we define

hs0 = (w
−1)∗(ωτ̄ ) ∈ H 0(6̃1,OF , ω

1)τ . (81)

Then (notice that w maps the (−ξ)-component to the ξ -component) a direct conse-
quence of Lemma 16.34 is:

Lemma 16.36. hs0 |6̃1,OF ,s
′
0,ξ
= (w−1)∗(ωτ̄ ,s0,−ξ ) has the form

$ p2
−1−m g̃(−η)ẽp+1−i (−v−1

1 )p+1−i (−1) j+1 dẽ
ẽ

+$ [−mp] f̃ (−ζ )ẽ′i (−v1)
i (−1)i+ j dẽ′

ẽ′
,

where f̃ (−ζ )= F̃r( f (−ζ )), applying Frobenius operator on the coefficients, and
g̃(−η) is defined similarly.

In fact, by Lemma 16.35, we know that

f̃ (−ζ )≡ (−ζ )k mod pOF0

[
ζ,

1
ζ p−1−1

]
.̂

We need to compute the cohomology class of$−(p
2
−1−m)hs0 in H 1

crys(Us′0/OF0)τ

(modulo p). Following the strategy in the proof of Proposition 16.1 (see the notation
there), we may use a 1-hypercocycle ({ωs}, { fs1,s2}) to represent hs0 . Also recall
that fs1,s2 = fs2 − fs1 (all considered as elements in $ p2

−1−m H 0(Vc,ξ ,OVc,ξ )). By
definition of θ̄b,2, we only need to know the image of ϕ($−(p

2
−1−m)hs0) in

H 1
dR(Us′0)τ̄ = H 1

crys(Us′0/OF0)τ̄/pH 1
crys(Us′0/OF0)τ̄ .

Hence Lemma 16.8 tells us that we only need to know the image of $−(p
2
−1−m)hs0

inside
H 1(Us′0,OUs′0

)τ .
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In other words, we are only concerned with the mod p properties of fs .
Since w interchanges s ′0 and s0, w(s) 6= s ′0 for any odd vertex s 6= s0. Then it

follows from Lemma 16.32 that for any s ∈ A(s ′0), s 6= s0,

hs0 |6̃1,OF ,s
∈ pH 0(6̃1,OF ,s, ω

1)τ .

Therefore the proof of Lemma 16.18 implies that for any s ∈ A(s ′0), s 6= s0,

$−(p
2
−1−m) fs ∈ pH 0(Vc,ξ ,OVc,ξ )τ .

Moreover, Lemma 16.6 tells us that (compare Lemma 16.36 with (59) and notice
that g(ζ ) there is f̃ (−ζ )(−v1)

i (−1)i+ j here)

$−(p
2
−1−m) fs0 ≡

ξ i f̃ (0)(−v1)
i (−1)i+ j y−i

i
mod pH 0(Vc,ξ ,OVc,ξ )τ .

Recall that the identification of Us′0,ξ and the special fiber of D̂0,OF0 ,ξ
is given by

x 7→ η, y 7→ ẽ.

Lemma 16.37. The image of $−(p
2
−1−m)hs0 in H 1(Us′0,ξ ,OUs′0,ξ

)τ is the following
1-cocycle { f ′s,s′′} if we use the open covering {Vs,ξ }s :

f ′s,s′′ = f ′s′′− f ′s , where f ′s0
= ξ i f̃ (0)(−v1)

i (−1)i+ j i−1ẽ−i , f ′s = 0 for s 6= s0.

Now we want to write this cohomology class as a 1-cocycle f0,∞ of the open cov-
ering {V0, V∞} (Definition 16.11). But this is already computed in Example 16.15:

Lemma 16.38. The image of $−(p
2
−1−m)hs0 in H 1(Us′0,ξ ,OUs′0,ξ

)τ is the following
1-cocycle { f0,∞} if we use the open covering {V0, V∞}:

f0,∞ = f̃ (0)(−1) j i−1w1(v1ξ)
i−1 ẽp+1−i

η
.

Thanks to Lemma 16.13, a simple computation shows:

Lemma 16.39. The image of ϕ($−(p
2
−1−m)hs0) in H 1

dR(Us′0,ξ )τ̄ is

ϕ
(

f̃ (0)(−1) j i−1w1(v1ξ)
i−1 ẽp+1−i

η

)
= f (0)(−1)i+ j+1wi

1η
p−1−i ẽi dẽ

ẽ
∈ H 0(Us′0,ξ , �

1
Us′0,ξ

)τ̄ .

Recall that in the isomorphism

H 0(Us′0, �
1
Us′0
)(χ
′)p
→ (Symp−1−i F

2
p2)⊗ deti+ j ,
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ηp−1−i ẽi dẽ/ẽ is identified with x p−1−i . By Lemma 16.35, f (0) = 1 if k = 0
and f (0)= 0 otherwise. Hence, considering the definition of θ̄b,2, Lemma 16.39
implies:

Lemma 16.40. [w, v[w−1]] =

{
[w, (−1) j+1τ(w−i

1 )bx p−1−i
] if k = 0,

0 otherwise.

Now we compute the same term of T ([Id, xk y p−1−i−k
]) (see the beginning of

the paper for the notation here):

[w, ϕr (w
−1)(xk y p−1−i−k)] =

[
w,

(
0 1
−1 0

)
◦ϕr

((
1 0
0 p−1

))
(xk y p−1−i−k)

]
,

which is nonzero if and only if k = 0. When k = 0,

[w, ϕr (w
−1)(y p−1−i )] =

[
w,

(
0 1
−1 0

)
◦ϕr

((
1 0
0 p−1

))
(y p−1−i )

]
=

[
w,

(
0 1
−1 0

)
(y p−1−i )

]
= [w, x p−1−i

].

Lemma 16.41. T ([Id, xk y p−1−i−k
])=

{
[w, x p−1−i

] + other terms, k = 0,
[w, 0] + other terms, k 6= 0.

Since GL2(Zp) acts transitively on A(s ′0), the above computation implies

θ̄b,2([Id, xk y p−1−i−k
])

= [Id, xk y p−1−i−k
] − ((−1) j+1τ(w−i

1 )b)T ([Id, xk y p−1−i−k
]).

Notice that θ̄b,2 is GL2(Qp)-equivariant. Therefore,

θ̄b,2 = Id−((−1) j+1τ(w−i
1 )b)T .

As for θ̄b,1, the computation is almost the same. I omit the details here. �

17. Computation of M(χ, [1, b])/ p, II: i = 1, p

In this section, we deal with the case i = 1, p. We keep the notation used in the
last two sections. Now Proposition 15.13 becomes:

Proposition 17.1. (1) If i = 1, there exists a GL2(Qp)-equivariant isomorphism

Hχ,F0 −→∼ IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

(2) If i = p,
Hχ,F0 −→∼ IndGL2(Qp)

GL2(Zp)Q
×
p

H 0(Us′0, �
1
Us′0
)χ
′

τ .

Proof. Notice that when i = 1, H 0(Us′0, �
1
Us′0
)χ
′

= 0. So everything follows from
Proposition 15.13 and Remark 15.15. �
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In fact, we can see the above isomorphisms in the following way. If i = p, for
any h̄ ∈ Hχ,F0 , the restriction of h̄τ (resp. h̄ τ̄ ) to 6̃1,OF ,s′ (resp. 6̃1,OF ,s) for an odd
(resp. even) vertex s ′ (resp. s) corresponds to a holomorphic differential form on
Us′ (resp. Us) under the isomorphism in Lemma 15.4. Hence we can define the
above map. The case i = 1 is similar.

As we promised earlier, we have:

Lemma 17.2. Assume i = 1 or p. Then

θb
(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)
⊂ J2.

Proof. See (73), (74) for the definitions of J1, J2. First we assume i = p. Then by
Lemma 16.8, we have

ϕ(H 1
crys(Us′/OF0)

χ ′)= pH 1
crys(Us′/OF0)

(χ ′)p
.

Thus we may identify J2= ($
p2
−1−m
⊗ϕ⊗IdOE )(J1)with (recall F2 is an F⊗Qp E-

module)

($ p2
−1−m

⊗ 1)
( ∏

s′ even

pH 1
crys(Us′/OF0)

χ ′

τ̄ ⊕

∏
s odd

pH 1
crys(Us′/OF0)

(χ ′)p

τ

)
⊂ F2.

Let ω ∈ (H 0(6̃1,OF , ω
1)⊗OE)

χ,Gal(F/F0) and ω=ω1+ω2 be the decomposition
of ω into F1⊕ F2. By definition ϕ(ω1) ∈ J2. Since

[−mp] + i(p− 1)= (p2
− 1)+ p2

− 1−m

in this case, Proposition 16.1 implies that $ i(p−1)ω2 ∈ J2. Hence θb(ω) ∈ J2.
Now assume i = 1; then ϕ(H 1

crys(Us′/OF0)
χ ′)= pH 1

crys(Us′/OF0)
(χ ′)p

. Hence

J2 =$
p2
−1−m

( ∏
s′ even

H 1
crys(Us′/OF0)

χ ′

τ̄ ⊕

∏
s odd

H 1
crys(Us′/OF0)

(χ ′)p

τ

)
.

So the lemma follows directly from Proposition 16.1. �

Let θ̄b : Hχ,F0 → J2/p be the mod p map of θb. It is clear that

J2/p ' IndGL2(Qp)
GL2(Zp)Q

×
p

H 1
dR(Us′0)

(χ ′)p

τ̄ '

{
IndGL2(Qp)

GL2(Zp)Q
×
p

H 1(Us′0,OUs′0
)
(χ ′)p

τ̄ , i = p,

IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ , i = 1.

We can now state our main results of this section.

Theorem 17.3. θ̄b is surjective. More precisely:

(1) Assume i = p. If we consider the following isomorphism induced by ϕ
(Remark 16.9):

H 0(Us′0, �
1
Us′0
)χ
′

τ ' H 1(Us′0,OUs′0
)
(χ ′)p

τ̄ ,
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and use Remark 15.14 to make the identification

H 0(Us′0, �
1
Us′0
)χ
′

τ ' (Symp−2(OE/p)2)⊗ det j+1,

then θ̄b is given by

θ̄b : σp−2( j + 1)→ σp−2( j + 1),

X 7→ −bX + (−1) j+1τ(w
p
1 )T (X)− bT 2(X).

(2) Assume i = 1. If we use Remark 15.14 to make the identification

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ ' (Symp−2(OE/p)2)⊗ det j+1,

then θ̄b is given by

θ̄b : σp−2( j + 1)→ σp−2( j + 1)

X 7→ X + (−1) j+1bτ(w−1
1 )T (X)+ T 2(X).

Just like the previous section, we list some corollaries first.

Corollary 17.4. θ̄b is surjective.

Corollary 17.5. θb : (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2 is surjective and we
have the following exact sequence:

0→ M(χ, [1, b])→ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0)→ J2→ 0. (82)

Applying the functor M 7→ Md
= Homcont

OE
(M, E), we get

0→ J d
2 →

(
(H 0(6̃1,OF , ω

1)⊗ OE)
χ,Gal(F/F0)

)d
→ B(χ, [1, b])→ 0. (83)

The kernel and the middle term of this exact sequence are independent of b.
The kernel J d

2 is the completion of c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρχ−1 with respect to the lattice

c-IndGL2(Qp)
GL2(Zp)Q

×
p
ρo
χ−1 , where ρo

χ−1 ⊂ ρχ−1 is an OE -lattice. It is the universal unitary
completion of c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 .

Corollary 17.6. Assume i = p. As a representation of GL2(Qp),

M(χ, [1, b])/p'
{

X ∈ σp−2( j+1)
∣∣−bX+(−1) j+1τ(w

p
1 )T (X)−bT 2(X)= 0

}
.

When i = 1,

M(χ, [1, b])/p '
{

X ∈ σp−2( j + 1)
∣∣ X + (−1) j+1bτ(w−1

1 )T (X)+ T 2(X)= 0
}
.

Thus in any case, B(χ, [1, b]) is nonzero and admissible.

Proof of Theorem 17.3. We only deal with the case i = 1. The case where i = p
can be treated in almost the same way.
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Consider [Id, xk y p−2−k
] as an element in

IndGL2(Qp)
GL2(Zp)Q

×
p
(Symp−2(OE/p)2)⊗ det j+1

' IndGL2(Qp)
GL2(Zp)Q

×
p

H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

Let ω ∈ (H 0(6̃1,OF , ω
1)⊗ OE)

χ,Gal(F/F0) be a lift of [Id, xk y p−2−k
]. As before,

we may assume ωτ = 0. It is clear from our construction that for any even vertex
s ′ 6= s ′0,

ωτ̄ ,s′,ξ ∈ pH 0(6̃1,OF ,s′,ξ , ω
1)τ̄ . (84)

Hence for any odd vertex s /∈ A(s ′0),

ωτ̄ ,s,ξ ∈ pH 0(6̃1,OF ,s,ξ , ω
1)τ̄ . (85)

This follows from Remark 15.9 and the fact H 0(Us, �
1
Us
)(χ
′)p
= 0. Thus using

Lemma 16.18 and Remark 16.19, we know that θ̄b([Id, xk y p−2−k
]) must be of the

following form:

Lemma 17.7. θ̄b([Id, xk y p−2−k
])=[Id, us′0] +

∑
s∈A(s′0)

[g−1
s , us] +

∑
s′∈A2(s′0)

[g−1
s′ , us′],

where A2(s ′0)= {s
′
∈ A(s) | s ∈ A(s ′0), s ′ 6= s ′0}.

First we compute [Id, us′0]. It suffices to compute the image of $−[−pm]ωτ̄ in

H 1
dR(Us′0)

(χ ′)p

τ̄ = H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ .

As before, on 6̃1,OF ,[s′0,s0],ξ , we can write (use a variant of Lemma 15.5 and notice
that ωτ̄ is in the (χ ′)p-isotypic component)

ωτ̄ |6̃1,OF ,[s
′
0,s0],ξ
=$ [−mp] f (η)ẽ dẽ

ẽ
+$ p2

−1−m g(ζ )ẽ′p dẽ′

ẽ′
,

where f (η) ∈ OF0[η, 1/(ηp−1
− 1)]̂, g(ζ ) ∈ OF0[ζ, 1/(ζ p−1

− 1)]̂. As usual,
we identify 6̃1,OF ,[s′0,s0],ξ with

Spf
OF

[
η, ζ,

1
ηp−1−1

,
1

ζ p−1−1
, ẽ, ẽ′

]̂
(

ẽp+1
+ v1w

−1
1 ξ

ηp
−η

ζ p−1−1
, ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

ηp−1−1
, ẽẽ′−$ p−1ξ

) .
Our choice of ω implies:

Lemma 17.8. f (η)≡ ηk mod pOF0

[
η,

1
ηp−1−1

]̂
.

Now restricted to 6̃1,OF ,s0,ξ ,

ωτ,s0,ξ = ωτ |6̃1,OF ,s0,ξ
=$ p2

−1−m
(
−ξ ẽ′−2 f

( p
ζ

)
dẽ′+ g(ζ )ẽ′p−1 dẽ′

)
.

By (84), we know that for any s ′ ∈ A(s0) that is not s ′0,

ωτ̄ ,s′,ξ ∈ pH 0(6̃1,OF ,s′,ξ , ω
1)τ̄ .
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Then Remark 15.9 implies that the reduction of $−(p
2
−1−m)ωτ̄ ,s0,ξ modulo p, as a

meromorphic differential form on Us0,ξ , can only have poles at ζ = ẽ′ = 0. Here
we identify Us0,ξ with the projective curve in P2

Fp2
defined by

ẽ′p+1
= v−1w1ξ(ζ

p
− ζ ).

Therefore the only possible pole must come from −ξ f (p/ζ ) dẽ′/ẽ′2. Notice that
by Lemma 17.8, this term is nonzero modulo p if and only if k = 0. Thus when
k 6= 0, the reduction of ωτ̄ ,s0,ξ is a holomorphic differential form on Us0,ξ . But

H 0(Us0, �
1
Us0
)(χ
′)p
= 0,

hence g(ζ ) has to be zero modulo p in this case. Therefore we have proved:

Lemma 17.9. If k 6= 0, then g(ζ ) ∈ pOF0[ζ, 1/(ζ p−1
− 1)]̂, and

ωτ̄ ,s0,ξ ∈ pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄ .

When k = 0. Rewrite

ẽ′−2 f
( p
ζ

)
≡

1
ẽ′2
=

ẽ′p−1

ẽ′p+1 ≡
ẽ′p−1

v−1
1 w1ξ(ζ p−ζ )

≡−
ẽ′p−1

v−1
1 w1ξζ

+
ẽ′p−1ζ p−2

v−1
1 w1ξ(ζ p−1−1)(

mod pOF0

[
ẽ′, ζ, 1

ζ p−ζ

]̂/(ẽ′p+1
+ v−1

1 w1ξ
ζ p
−ζ

(p/ζ )p−1−1

))
.

Thus

$−(p
2
−1−m)ωτ̄ ,s0,ξ

≡
ẽ′p−1 dẽ′

v−1
1 w1ζ

+

(
−

ẽ′p−1ζ p−2

v−1
1 w1(ζ p−1−1)

+g(ζ )ẽ′p−1
)

dẽ′ mod pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄ .

Notice that the first term, ẽ′p−1 dẽ′/(v−1
1 w1ζ ), only has a pole at ẽ′ = ζ = 0 and the

second term is holomorphic at this point. Therefore the second term (modulo p)
is a holomorphic differential form on Us0 , which has to be zero since it is in
H 0(Us0, �

1
Us0
)(χ
′)p
= 0. Hence:

Lemma 17.10. When k = 0,

ωτ̄ ,s0,ξ ≡$
p2
−1−m ẽ′p−1dẽ′

v−1
1 w1ζ

mod pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄

g(ζ )≡ ζ p−2

v−1
1 w1(ζ p−1−1)

mod pOF0

[
ζ,

1
ζ p−1−1

]̂
.

A direct corollary of Lemma 17.9 and Lemma 17.10 is:



496 Lue Pan

Lemma 17.11. For any k, we always have g(0) ∈ pOF0 .

Now we try to compute the image of ω inside$ p2
−1−m H 1

crys(Us′0/OF0)τ̄ (mod p).
As we did in the previous section, we can use a 1-hypercocycle ({ωs}, { fs1,s2})

to represent this cohomology class. Moreover, there exists { fs}s∈A(s′0), where
fs ∈$

p2
−1−m H 0(Vc,ξ ,OVc,ξ ) such that fs1,s2 = fs2 − fs1 and ωs = ω− d fs . See

the proof of Proposition 16.1 for the notation here.
From Lemma 17.11, we know that g(0) is divisible by p. Therefore Lemma 16.6

tells us that
$−(p

2
−1−m) fs0 ∈ pH 0(Vc,ξ ,OVc,ξ ).

Using the action of GL2(Zp), it is easy to see that the above inclusion is also
true for other vertex s ∈ A(s ′0). Hence all fs1,s2 are divisible by p and all ωs are
congruent to ω modulo p. This certainly implies that the image of $−(p

2
−1−m)ω

in H 1
dR(Us′0)

(χ ′)p

τ̄ = H 0(Us′0, �
1
Us′0
)
(χ ′)p

τ̄ is

$−(p
2
−1−m)ω ≡ ηk dẽ,

considered as a differential form using Lemma 15.4. In other words:

Lemma 17.12. us′0 = xk y p−2−k .

Next we compute us0 . As we did in the previous section, we define

h′s0
= (w−1

1 )∗(ωτ̄ ) ∈ H 0(6̃1,OF ,s′0,ξ , ω
1)χ

′

τ . (86)

Hence Lemma 16.36 tells us that

h′s0
|
6̃1,OF ,s

′
0,ξ

=$ p2
−1−m g̃(−η)ẽp(−v−1

1 )p(−1) j+1 dẽ
ẽ
−$ [−mp] f̃ (−ζ )ẽ′v1(−1) j+1 dẽ′

ẽ′
,

where f̃ (−ζ )= F̃r( f (−ζ )), and g̃(−η) is defined similarly.
We need to compute the image of $−(p

2
−1−m)h′s0

in

H 1
dR(Us′0)

χ ′

τ = H 1(Us′0,OUs′0
)χ
′

τ .

Now the argument becomes exactly the same as the proof of Theorem 16.26:
By abuse of notation, we use a 1-hypercocycle ({ωs}, { fs1,s2}) to represent the
cohomology class of h′s0

∈$ p2
−1−m H 1

crys(Us′0/OF0)
χ ′

τ . Also there exists { fs} such
that fs2,s1 = fs2 − fs1 . By (84) and Lemma 16.18, we know that all fs are divisible
by p for s 6= s0. As for fs0 , we can compute it using Lemma 16.6 and Lemma 17.8.
We omit all the details here but just refer to the arguments from Lemma 16.36 to
Lemma 16.38 in the proof of Theorem 16.26.
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Lemma 17.13. us0 = u[w−1] =

{
(− 1) j+1bτ(w−1

1 )x p−2, k = 0,
0, k 6= 0.

Finally we come to the case s ′∈A2(s ′0), which does not exist when i∈{2, . . . , p−1}.

Definition 17.14. We define s ′′0 ∈ A(s0) as the vertex that corresponds to the coset

GL2(Zp)Q
×

p

(
1 1/p
0 1

)−1

∈ GL2(Zp)Q
×

p \GL2(Qp).

When k 6= 0, Lemma 17.9 tells us that ωτ̄ ,s0,ξ ∈ pH 0(6̃1,OF ,s0,ξ , ω
1)τ̄ . Therefore

by Lemma 16.18, the cohomology class of$−[−mp]ωτ̄ in H 1
crys(Us′′0 /OF0)τ̄ is inside

pH 1
crys(Us′′0 /OF0)τ̄ .

Lemma 17.15. When k 6= 0, us′′0 = 0.

So we assume k = 0 from now on.
Notice that (

0 −1
p 0

)−1 (
1 1/p
0 1

)
=

(
1 0
−1 1

)(
0 −1
p 0

)−1

.

Hence the (right) action of
( 1 1/p

0 1

)
fixes the vertex s0 and sends s ′′0 to s ′0. This

clearly implies that
( 1 1/p

0 1

)
sends the edge [s ′′0 , s0] to [s ′0, s0]. In other words, we

get an isomorphism

9s′0,s
′′

0
: 6̃1,OF ,[s′′0 ,s0] −→

∼ 6̃1,OF ,[s′0,s0].

Restrict 9s′0,s
′′

0 to 6̃1,OF ,s0 , we thus get an automorphism of 6̃1,OF ,s0 . As usual, we
identify 6̃1,OF ,s0,ξ with

Spf OF

[
ζ, ẽ′, 1

ζ p−ζ

]/(
ẽ′p+1

+ v−1
1 w1ξ

ζ p
−ζ

(p/ζ )p−1−1

)
.̂

To see 9s′0,s
′′

0
explicitly on it, we use

( 0 −1
p 0

)
to send 6̃1,OF ,s0,−ξ to 6̃1,OF ,s′0,ξ and

then apply the results in Section 9. An easy computation shows:

Lemma 17.16. 9s′0,s
′′

0
|
6̃1,OF ,s0,ξ

is

ζ 7→ ζ+1, ẽ′ 7→ ẽ′mod pOF

[
ζ, ẽ′, 1

ζ p−ζ

]/(
ẽ′p+1
+v−1

1 w1ξ
ζ p
−ζ

(p/ζ )p−1−1

)̂
.

Now consider

hs′′0
def
=

((
1 1/p
0 1

)−1)∗
(ωτ̄ ) ∈ H 0(6̃1,OF , ω

1)
(χ ′)p

τ̄ . (87)

On 6̃1,OF ,[s′0,s0],ξ , it can be written as

hs′′0 |6̃1,OF ,[s
′
0,s0],ξ
=$ [−mp] f1(η)ẽ

dẽ
ẽ
+$ p2

−1−m g1(ζ )ẽ′p
dẽ′

ẽ′
.
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By our construction (see (84)), ωτ̄ ,s′′0 ,ξ ∈ pH 0(6̃1,OF ,s′′0 ,ξ , ω
1)τ̄ . Hence,

hs′′0 |6̃1,OF ,s
′
0,ξ
∈ pH 0(6̃1,OF ,s′0,ξ , ω

1)τ̄ .

This implies:

Lemma 17.17. f1(η) ∈ pOF0

[
η,

1
ηp−1−1

]
.̂

Restrict hs′′0 to 6̃1,OF ,s0,ξ . Then we have

hs′′0 |6̃1,OF ,s0,ξ
≡$ p2

−1−m g1(ζ )ẽ′p
dẽ′

ẽ′
mod pH 0(6̃1,OF ,s0,ξ , ω

1)τ̄ .

By definition,

hs′′0 =

((
1 1/p
0 1

)−1)∗
(ωτ̄ ).

Hence 9s′0,s
′′

0
maps ωτ̄ |6̃1,OF ,s0,ξ

to hs′′0 |6̃1,OF ,s0,ξ
. Thanks to Lemma 17.16, we can

write down this map explicitly (after reducing modulo p). Recall that an explicit ex-
pression of ωτ̄ |6̃1,OF ,s0,ξ

is given in Lemma 17.10. Thus a simple computation gives:

Lemma 17.18. When k = 0,

g1(ζ )≡
1

v−1
1 w1(ζ−1)

mod OF0

[
ζ,

1
ζ p−1−1

]̂
.

With this lemma in hand, we can compute the image of $−(p
2
−1−m)hs′′0 in

H 1
dR(Us′0)

(χ ′)p

τ̄ = H 0(Us′0,OUs′0
)
(χ ′)p

τ̄ . We note that hs′′0 |6̃1,OF ,s
∈ H 0(6̃1,OF ,s, ω

1)τ̄

for any s ∈ A(s ′0) that is not s0. So the computation is exactly the same as the case
where we computed us0 . I omit the details here. The final result is:

Lemma 17.19. When k = 0, us′′0 =−x p−2.

We need to compute the same term of T 2([Id, xk y p−2−k
]). Assume k = 0. When

k 6= 0, it’s easy to see this term is zero. We already computed that

T ([Id, y p−2
])=

[(
0 −1
p 0

)
, x p−2

]
+ other terms.

Since (
1 1/p
0 1

)
=

(
0 −1
p 0

)(
0 p−1

−1 −p−1

)
,

by definition we have,

T
([(

0 −1
p 0

)
, x p−2

])
=

[(
1 1/p
0 1

)
, ϕp−2

((
0 p−1

−1 p−1

)−1)
(x p−2)

]
.



First covering of the Drinfel’d upper half-plane 499

Write (
0 p−1

−1 −p−1

)−1

= p
(

0 −1
1 0

)(
1 0
0 p−1

)(
1 0
1 1

)
.

Then

ϕp−2

((
0 p−1

−1 p−1

)−1)
(x p−2)= ϕp−2

((
0 −1
1 0

)(
1 0
0 p−1

))
((x + y)p−2)

= ϕp−2

((
0 −1
1 0

))
(y p−2)

=−x p−2.

Hence:

Lemma 17.20. T 2([Id, y p−2
])=


[(

1 1/p
0 1

)
,−x p−2

]
+ other terms, k = 0,[(

1 1/p
0 1

)
, 0
]
+ other terms, k 6= 0.

Combining the results of Lemmas 17.12, 17.13, 17.15, and 17.19 together with
Lemmas 16.41 and 17.20:

θ̄b(X)= X + (−1) j+1bτ(w−1
1 )T (X)+ T 2(X). �

18. A conjecture on B(χ, [1, b])

In the previous two sections, we have proved the admissibility of B(χ, [1, b]) and
explicitly compute its residue representation (see Corollaries 16.29 and 17.6, and
Remark 16.30). Recall that for each data (χ, [1, b]), we associate a two dimensional
Galois representation Vχ,[1,b] (Proposition 13.2) and prove that B(χ, [1, b]) is a
completion of the smooth representation c-IndGL2(Qp)

GL2(Zp)Q
×
p
ρχ−1 with respect to the

lattice2(χ, [1, b]) (Proposition 14.9). Up to some twist, this smooth representation,
via the classical local Langlands correspondence for GL2, corresponds to the Weil–
Deligne representation associated to V∨χ,[1,b] in [Fontaine 1994]. It is natural to
make the following:

Conjecture 18.1. Up to a twist of some character, B(χ, [1, b]) is isomorphic to
5(V∨χ,[1,b]) as a Banach space representation of GL2(Qp), where 5(V∨χ,[1,b]) is
defined via the p-adic local Langlands correspondence for GL2(Qp) (see [Colmez
2010; Colmez et al. 2014]).

The evidence for this conjecture is that we can verify it modulo $E , the uni-
formizer of E , namely:

Theorem 18.2. Via the semisimple modulo-p Langlands correspondence defined
by Breuil ([2003] or [2007]), up to a twist by some character and semisimplification,
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2(χ, [1, b])/$E corresponds to the residue representation of V∨χ,[1,b] with respect
to some lattice inside.

Proof. The residue representation of Vχ,[1,b] is computed in Theorem 6.12 of
[Savitt 2005]. I almost follow his notation except that his w there is my ux

here. 2(χ, [1, b])/$E2(χ, [1, b]) is computed in Corollaries 16.29 and 17.6,
and Remark 16.30. A direct computation shows that they indeed match via Breuil’s
dictionary. I omit the details here. �

Remark 18.3. There is some duality involved in the conjecture. The reason is that
we are using de Rham cohomology rather than its dual, de Rham cohomology with
compact support.

Remark 18.4. It seems that this conjecture follows from the work of Dospinescu
and Le Bras [2015] by taking the universal unitary completion in their construction.
The interested reader is referred to their paper.
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