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Let X = G/B and let L1 and L2 be two line bundles on X. Consider the cup-
product map

Hd1(X,L1)⊗Hd2(X,L2)
∪
−→ Hd(X,L),

where L= L1⊗L2 and d = d1+ d2. We answer two natural questions about the
map above: When is it a nonzero homomorphism of representations of G? Con-
versely, given generic irreducible representations V1 and V2, which irreducible
components of V1⊗V2 may appear in the right hand side of the equation above?
For the first question we find a combinatorial condition expressed in terms of
inversion sets of Weyl group elements. The answer to the second question is
especially elegant: the representations V appearing in the right hand side of the
equation above are exactly the generalized PRV components of V1⊗V2 of stable
multiplicity one. Furthermore, the highest weights (λ1, λ2, λ) corresponding
to the representations (V1,V2,V) fill up the generic faces of the Littlewood–
Richardson cone of G of codimension equal to the rank of G. In particular, we
conclude that the corresponding Littlewood–Richardson coefficients equal one.
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1. Introduction

1.1. Main problems. The main object of study of this paper is the cup-product
map

Hd1(X,L1)⊗ · · ·⊗Hdk (X,Lk)
∪
−→ Hd(X,L), (1.1.1)

where X= G/B, G is a semisimple algebraic group over an algebraically closed
field of characteristic zero, B is a Borel subgroup of G, L1, . . . ,Lk are arbitrary
line bundles on X, L = L1⊗ · · · ⊗ Lk , d1, . . . , dk are nonnegative integers, and
d = d1+ · · ·+ dk .

We assume that both sides of (1.1.1) are nonzero for otherwise the cup-product
map is the zero map. Without loss of generality we may also assume that the line
bundles L1, . . . ,Lk , and L are G-equivariant; then both sides of (1.1.1) carry a nat-
ural G-module structure and the cup-product map is G-equivariant. Furthermore by
the Borel–Weil–Bott theorem there are irreducible representations Vµ1, . . . ,Vµk , and
Vµ so that Hdi (X,Li )=V∗µi

for i = 1, . . . , k, and Hd(X,L)=V∗µ as representations
of G. The dual of (1.1.1) is thus a G-homomorphism

Vµ→ Vµ1 ⊗ · · ·⊗Vµk . (1.1.2)

Since Vµ1, . . . ,Vµk , and Vµ are irreducible representations, (1.1.1) is either surjec-
tive or zero; respectively, (1.1.2) is either injective or zero. This leads us naturally
to the two main problems of this paper.

Problem I. When is (1.1.1) a surjection of nontrivial representations?

Problem II. For which (k+1)-tuples (Vµ1, . . . ,Vµk ,Vµ) of irreducible represen-
tations of G can Vµ be realized as a component of Vµ1 ⊗ · · ·⊗Vµk via (1.1.2) for
appropriate line bundles L1, . . . ,Lk on X?

We call an irreducible representation Vµ that can be embedded into Vµ1⊗· · ·⊗Vµk

via (1.1.2) a cohomological component of Vµ1⊗· · ·⊗Vµk . A variation of Problem II
is to determine the cohomological components of Vµ1⊗· · ·⊗Vµk , for Vµ1, . . . ,Vµk

fixed.
With the exception of some quite degenerate cases for Problem II, we provide a

complete solution to both problems.

1.2. Solution of Problem I. Fix a maximal torus T ⊆ B. The G-equivariant line
bundles on X are in one-to-one correspondence with the characters of T. For a
character λ of T, we denote by Lλ the line bundle on X corresponding to the one
dimensional representation of B on which T acts via −λ.

The affine action of the Weyl group W of G on the lattice of T-characters 3 is
defined as

w · λ= w(λ+ ρ)− ρ,
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where ρ, as usual, denotes the half-sum of the roots of B. A character λ ∈ 3 is
regular if there exists a (necessarily unique) element w ∈ W such that w · λ is
a dominant character. Following Kostant [1961, Definition 5.10], we define the
inversion set 8w of w ∈W as the set 8w = w−11− ∩1+, where 1− = −1+ is
the set of negative roots of G.

Let λ1, . . . , λk ∈3 be the (regular) characters such that Li = Lλi for 16 i 6 k.
Then L= Lλ, where λ=

∑k
i=1λi . Assume that λ is also regular and denote by w

and w1, . . . , wk the Weyl group elements for which w ·λ and wi ·λi , for 16 i 6 k,
are dominant. With this notation we prove the following criterion for surjectivity
of (1.1.1).

Theorem I. For any semisimple G, if Hd(X,Lλ) 6= 0, then the cup-product map
(1.1.1) is surjective if and only if

8w =

k⊔
i=1

8wi . (1.2.1)

Studying the structure of (k+1)-tuples (w1, . . . , wk, w) satisfying (1.2.1) is an
interesting combinatorial problem which we do not address here. A recursive
description of such (k+1)-tuples in types A, B, and C is given in [Dewji et al. 2017].
For some open questions concerning (1.2.1) see the expository article [Dimitrov
and Roth 2009].

1.3. Solution of Problem II. We say that a component Vµ of Vµ1 ⊗ · · ·⊗Vµk has
stable multiplicity one if the multiplicity of Vmµ in Vmµ1 ⊗ · · · ⊗Vmµk is one for
all m� 0. We say that Vµ is a generalized PRV component of Vµ1 ⊗ · · ·⊗Vµk if
there exist w1, . . . , wk , and w ∈W such that w−1µ=w−1

1 µ1+· · ·+w
−1
k µk . (See

Sections 2.3 and 6.1 for further discussion of these conditions.)

Theorem II. (a) Let Vµ be a cohomological component of Vµ1⊗ · · ·⊗Vµk . Then
Vµ is a generalized PRV component of Vµ1⊗· · ·⊗Vµk of stable multiplicity one.

(b) Conversely, assume that Vµ is a generalized PRV component of Vµ1⊗· · ·⊗Vµk

of stable multiplicity one. If , in addition, one of the following holds:

(i) at least one of µ1, . . . , µk or µ is strictly dominant,
(ii) G is a simple classical group or a product of simple classical groups,

then Vµ is a cohomological component of Vµ1⊗ · · ·⊗Vµk .

It is unfortunate that in part (b) above we require condition (i) or (ii). Indeed,
we believe that we do not need these conditions but we impose them due to our
inability to overcome a combinatorial problem.

Remark. In type A a conjecture of Fulton, proved by Knutson, Tao, and Woodward
[Knutson et al. 2004, §6.1, §7] states that if Vµ is a component of Vµ1 ⊗ · · ·⊗Vµk
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of multiplicity one, then Vmµ has multiplicity one in Vmµ1 ⊗ · · · ⊗Vmµk for all
m > 1. Together with Theorem II, this means that in type A a component Vµ is a
cohomological component of Vµ1⊗· · ·⊗Vµk if and only if Vµ is a PRV component
of Vµ1 ⊗ · · ·⊗Vµk of multiplicity one.1

1.4. Representation-theoretic implications of Theorem II. The representation-the-
oretic significance of Theorem II is twofold: it provides both a geometric construc-
tion of special components of a tensor product via the Bott theorem, and a new way
of generalizing the classical PRV component.

The Borel–Weil–Bott theorem provides a geometric realization of every irre-
ducible representation of G as the cohomology (in any degree) of an appropriate
line bundle on X. In particular, every irreducible representation equals the space of
global sections of a unique line bundle on X. In this sense the Borel–Weil theorem
(the statement about cohomology in degree zero) suffices since the Bott theorem
(the statement about higher cohomology) yields the same representations. However,
in addition to being representations, the cohomology groups carry a ring structure
induced from the cup product. Theorem II employs this structure to give a geometric
realization of certain components of a tensor product of representations. As far as
we know this is the first use of the Bott theorem for a geometric construction of
representations in the case when G is a semisimple algebraic group over a field of
characteristic zero.

We are borrowing the term “generalized PRV component” from the case when
k = 2. Parthasarathy, Ranga Rao, and Varadarajan [Parthasarathy et al. 1967]
established that if µ is in the W-orbit of µ1+w0µ2 (where w0 denotes the longest
element of W), then Vµ is a component of Vµ1 ⊗Vµ2 . Moreover, they proved that
Vµ has multiplicity one in, and is the smallest component of, Vµ1 ⊗Vµ2 . It is true
more generally that if µ is in the W-orbit of µ1+ vµ2 (where v is now an arbitrary
element of W) then Vµ is again a component of Vµ1 ⊗Vµ2 ; this was established
independently by Kumar [1988] and Mathieu [1989].

Unlike the original PRV component, a generalized PRV component Vµ may
have multiplicity greater than one in Vµ1 ⊗Vµ2 . However, by Theorem II, every
cohomological component is a generalized PRV component of stable multiplicity
one. The cohomological components also retain an aspect of the minimality of the
original PRV component: every cohomological component of Vµ1⊗ · · · ⊗Vµk is
extreme among all components of Vµ1 ⊗ · · ·⊗Vµk . These properties of cohomo-
logical components suggest that they may be viewed as the “true” analog of the
original PRV component.

Figure 1 illustrates Theorem II in the case k = 2.

1This is not true in other types; see the component V1,0 of V1,1⊗V1,1 in the middle example of
Figure 1.
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V3,5⊗V1,2

SL3 SO5

V1,1⊗V1,1

SL3

V7,2⊗V1,3

– component of the tensor product

– cohomological component/generalized PRV component of stable multiplicity one

– generalized PRV component of multiplicity greater than one

– generalized PRV component of multiplicity one, but not stable multiplicity one

SL3 SO5 SL3

V3,5⊗V1,2 V1,1⊗V1,1 V7,2⊗V1,3

Figure 1. Illustration of Theorem II when k = 2.

1.5. Other results. In conclusion we mention several other results which may be
of independent interest.

The cup product and Schubert calculus. Recall that a basis for the cohomology ring
H∗(X,Z) of X = G/B is given by the classes of the Schubert cycles {[Xw]}w∈W
indexed by the elements of the Weyl group W . The dual basis {[�w]}w∈W , is given
by �w := Xw0w. With the notation of Section 1.2 we prove the following:

Theorem III. For any semisimple algebraic group G,

(a) if
⋂k

i=1[�wi ] · [Xw] = 1 then the cup-product map (1.1.1) is surjective;

(b) if
⋂k

i=1[�wi ] · [Xw] = 0 then the cup-product map (1.1.1) is zero.

We use Theorem III as stated above and a variation of its proof to prove Theorem I.
In general it is not known if condition (1.2.1) implies that

⋂k
i=1[�wi ] · [Xw] = 1.

In [Dimitrov and Roth ≥ 2017] we show that this is the case when G is a classical
group or G2; We do not know if condition (1.2.1) implies that the intersection
number is one in the other exceptional cases.

Diagonal Bott–Samelson–Demazure–Hansen varieties. We construct a class of
varieties which generalize the Bott–Samelson–Demazure–Hansen varieties. One
way to understand these varieties is a resolution of singularities of the total space
of intersections of translates of Schubert varieties; see Theorem 3.7.4. Other
notable results related to this construction include Lemma 3.8.1, which controls the
multiplicity of cohomological components, and Theorem 3.9.1, which provides a
new proof of the necessity of the inequalities determining the Littlewood–Richardson
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cone. These varieties have applications outside this paper. For instance, in a future
paper we use them to establish multiplicity bounds for the Littlewood–Richardson
coefficients generalizing the Klymik bound, each of which has the same asymptotic
order of growth as the multiplicity function, with each “centered” around a particular
cohomological component (in a way that the Klymik bound appears as the version
for the highest weight component). These varieties are also used in [Roth 2011] to
prove reduction rules for Littlewood–Richardson coefficients.

1.6. Related Work. After the initial version of this paper appeared on the arXiv,
other authors have worked on related ideas. V. Tsanov [2013], considers the more
general situation of an embedding G1 ↪→ G2 of complex semisimple Lie groups,
inducing an embedding

X1 := G1/B1 ↪→ X2 := G2/B2,

where B1 and B2 are nested Borel subgroups. The main result of [Tsanov 2013]
extends Theorem I to this setting, giving necessary and sufficient conditions for the
pullback map Hd(X1,L|X)← Hd(X2,L) to be nonzero, when L is an equivariant
bundle on X2; see [Tsanov 2013, Theorem 2.2]. The arguments in [Tsanov 2013]
use Lie algebra cohomology, and are quite different in character from the arguments
of this paper.

In a preprint, N. Ressayre [2009, Theorem 1] states that every generalized PRV
component of stable multiplicity one is a cohomological component. That is,
this result states that part (b) of Theorem II holds without requiring either of the
conditions (i) or (ii) of (b).

Finally, the varieties X=G/B considered in this paper have the property that they
are projective varieties acted on transitively by an algebraic group. There is another
natural class of varieties also fitting this description, namely Abelian varieties. Here
Mumford’s index theorem and the theorem on irreducibility of the theta-group
representation take the place of the Borel–Weil–Bott theorem. N. Grieve [2014]
proves results on the surjectivity of cup-product maps between cohomology of line
bundles on Abelian varieties, again subject to certain combinatorial restrictions.

2. Notation and background results

2.1. Notation and conventions. The ground field is algebraically closed of charac-
teristic zero. Throughout the paper we fix a semisimple connected algebraic group
G, a Borel subgroup B⊂ G, and a maximal torus T⊂ B. All parabolic subgroups
we consider contain T. The Lie algebras of algebraic groups are denoted by Fraktur
letters, e.g., g, b, t, etc. We use the term “G-module” instead of “representation of
G” to avoid differentiating between representations of algebraic groups and modules
over the respective Lie algebras; likewise, since T is fixed, we use the term “weight”
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both for characters of T and weights of t; in particular we only consider integral
weights of t.

The point

wB/B ∈ Xw ⊆ X= G/B,

where w ∈W and Xw is the corresponding Schubert variety, is denoted by w for
short. If M= G/P for some parabolic P we similarly use w to indicate the point
wP/P ∈M.

If 3 is the lattice of weights of T we denote the group ring of 3 by Z[3], i.e.,

Z[3] =

{ k∑
i=1

ci eλi

∣∣∣ ci ∈ Z, λi ∈3

}
.

For a T-module M, the formal character of M is

ChM=
∑
λ∈3

dimMλeλ ∈ Z[3],

where

Mλ
=
{

x ∈M | t · x = λ(t)x for every t ∈ t
}
.

All formal characters discussed in this paper are contained in Z[1]. For a subset
8⊆1, the formal character of

⊕
α∈8 gα is denoted by 〈8〉, i.e.,

〈8〉 =
∑
α∈8

eα.

If w is an element of the Weyl group W , then `(w) means the length of any
minimal expression giving w as a product of simple reflections. If v is a word in
the simple reflections, then `(v) is the number of reflections in the word. Note that,
if v is a word in simple reflections, and v ∈W is the corresponding element of the
Weyl group, then `(v)= `(v) if and only if v is a reduced word. If v = si1 · · · sim

is a nonempty word, we denote by vR the word si1 · · · sim−1 obtained from v by
dropping the rightmost reflection in v. If v = (v1, . . . , vk) is a sequence of words
then we set `(v)=

∑k
i=1`(vi ).

A list of symbols used in the paper can be found on page 812.

2.2. Inversion sets. Let 1+ be the set of positive roots of g (with respect to B).
Following Kostant [1961, Definition 5.10], for any element w of the Weyl group W
we define 8w, the inversion set of w, to be the set of positive roots sent to negative
roots by w, i.e.,

8w := w
−11− ∩1+. (2.2.1)
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For a subset 8 of 1+, we set 8c
:=1+ \8. We will need the following formulas,

which follow easily from the definition:

8w0w =8
c
w, (2.2.2)

w−11+ =8c
w t−8w, (2.2.3)

w−1
· 0= w−1ρ− ρ =−

∑
α∈8w

α. (2.2.4)

2.3. Generalized PRV components. For fixed dominant weights µ1, µ2, and µ it
is clear that the two conditions,

(a) there exist w1, w2, and w in W such that w−1µ= w−1
1 µ1+w

−1
2 µ2,

(b) there exists v in W such that µ is in the W-orbit of µ1+ vµ2,

are equivalent. If these conditions are satisfied we call Vµ a generalized PRV
component of Vµ1 ⊗Vµ2 .

As is suggested by the name, but is far from obvious from the definition, every
generalized PRV component of Vµ1 ⊗ Vµ2 is in fact a component of the tensor
product Vµ1 ⊗Vµ2 of G-modules. This was first proved when v = w0 (i.e., when µ
is in the W-orbit of µ1+w0µ2) in [Parthasarathy et al. 1967]. In the literature this
component is referred to simply as the PRV component. The general case, that Vµ is
a component of Vµ1⊗Vµ2 for an arbitrary v, became known as the PRV conjecture,
and was established independently by Kumar [1988] and Mathieu [1989].

In the present paper we extend the notion of generalized PRV component to
components of the tensor product of k irreducible G-modules for k > 2. We call
Vµ a generalized PRV component of Vµ1 ⊗· · ·⊗Vµk if there exist w1, . . . , wk , and
w in W such that w−1µ =

∑k
i=1w

−1
i µi . A straightforward induction from the

case k = 2 implies that every generalized PRV component of Vµ1 ⊗ · · · ⊗Vµk is
a component of the tensor product Vµ1 ⊗ · · ·⊗Vµk of G-modules. We record the
special case when µ= 0 for use in the proof of Theorem I.

Lemma 2.3.1. For any dominant weights µ1, . . . , µk , and Weyl group elements
w1, . . . , wk , if

∑k
i=1w

−1
i µi = 0 then (Vµ1 ⊗ · · ·⊗Vµk )

G
6= 0.

2.4. Borel–Weil–Bott theorem. Suppose that λ is a regular weight, so there is a
unique w ∈ W with w · λ ∈ 3+. The Borel–Weil–Bott theorem identifies the
cohomology of the line bundle Lλ on X as G-modules:

Hd(X,Lλ)=
{

V∗w·λ if d = `(w),
0 otherwise.

If λ is not a regular weight then the cohomology of Lλ is zero in all degrees.
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2.5. Serre duality on X . For any weight λ set S(λ)=−λ−2ρ. Since the canonical
bundle KX of X is equal to L−2ρ we see that LS(λ) = KX⊗L∗λ. In other words, S is
the function that for each weight λ returns the weight S(λ) of the line bundle Serre
dual to Lλ; the map S is clearly an involution. Let w be any element of the Weyl
group and λ any weight. A straightforward computation shows that S commutes
with the affine action of the Weyl group, i.e., that w ·S(λ)= S(w · λ).

Lemma 2.5.1. If λ is a regular weight and w the unique element of the Weyl group
with w · λ ∈3+ then (w0w) ·S(λ) ∈3+.

Proof. If µ is a dominant weight then V∗µ = V−w0µ. Therefore if w · λ= µ ∈3+

then

(w0w) ·S(λ)= w0 ·S(w · λ)= w0 ·S(µ)=−w0µ ∈3
+, (2.5.2)

concluding the proof. �

Since `(w0w)= N− `(w), the calculation above fits in neatly with the Borel–
Weil–Bott theorem (BWB) and Serre duality. If λ is a regular weight and w an
element of the Weyl group with w · λ= µ ∈3+ then we have

Vµ =
(
H`(w)(X,Lλ)

)∗ (by BWB)

= HN−`(w)(X,KX⊗L∗λ) (by Serre duality)

= H`(w0w)(X,LS(λ)) (see Section 2.5)

= V∗
−w0µ

, (by BWB and (2.5.2)).

2.6. Schubert varieties. For an element w ∈W of the Weyl group the Schubert
variety Xw is defined by

Xw := BwB/B⊆ G/B= X.

Recall that the classes of the Schubert cycles {[Xw]}w∈W give a basis for the
cohomology ring H∗(X,Z) of X. Each [Xw] is a cycle of complex dimension `(w).
The dual Schubert cycles {[�w]}w∈W , given by �w := Xw0w, also form a basis.
Each [�w] is a cycle of complex codimension `(w). The work of Demazure [1974],
Kempf [1976], Ramanathan [1985], and Seshadri [1987] shows that each Schubert
variety Xw is normal with rational singularities.

Remark. If w1, . . . , wk , and w ∈ W are such that `(w) =
∑
`(wi ), then the

intersection
⋂k

i=1[�wi ] · [Xw] is a number. The number is the coefficient of [�w]
when writing the product

⋂k
i=1[�wi ] in terms of the basis {[�v]}v∈W .

To reduce notation we use w to also refer to the point wB/B ∈ Xw ⊆ X. In
particular, for the identity e ∈W , Xe = {e}. Note that e ∈ X is also the image of
1G under the projection from G onto X.



776 Ivan Dimitrov and Mike Roth

Definition. The Bruhat order on the Weyl group W is the partial order given by
the relation v 6w if and only if Xv ⊆ Xw. The minimum element in this order is e
and the maximum element is w0, corresponding to the subvarieties Xe = {e} and
Xw0 = X respectively.

The following result will be used several times throughout the paper.

Lemma 2.6.1. Suppose that w1, . . . , wk are elements of the Weyl group such that
1+ =

⊔k
i=18wi . Then

⋂k
i=1[�wi ] 6= 0.

Proof. Each class [�wi ] is represented by any translation of the cycle �wi , so to
understand

⋂k
i=1[�wi ] we can study the intersection of schemes

k⋂
i=1

(w0wi )
−1�wi . (2.6.2)

Each of the schemes (w0wi )
−1�wi passes through e ∈ X. The tangent space to

(w0w)
−1�w at e is

Lie
(
(w0w)

−1B(w0w)
)
/Lie(B)=

⊕
α∈−8w0w

gα
(2.2.2)
=

⊕
α∈−8c

w

gα ⊆ b− = TeX,

where we have identified TeX with b− via the projection G→ X. Noting that
k⋂

i=1

8c
w =

( k⋃
i=1

8w

)c

= (1+)c =∅,

we conclude that the intersection of the tangent spaces of the varieties (w0wi )
−1�wi

at e∈X is 0. Hence the intersection (2.6.2) is transverse at the identity. By Kleiman’s
transversality theorem [1974, Corollary 4(ii)], small translations of each of the
varieties (w0wi )

−1�wi will intersect properly and compute the intersection number.
Small translations of varieties cannot remove transverse points of intersection and
thus

⋂k
i=1[�wi ] 6= 0. �

2.7. Symmetric and nonsymmetric forms. Most questions we consider, including
Problem I and Problem II, can be stated in nonsymmetric and symmetric forms
and it is frequently convenient to switch from one to the other. We illustrate this
procedure by showing how to switch from the nonsymmetric to the symmetric form
of Problem I.

In the nonsymmetric form we are given w1, . . . , wk , and w, such that `(w) =∑
`(wi ), and λ1, . . . , λk , and λ, such that λ =

∑
λi , satisfying the additional

conditions that wi · λi ∈3
+ for i = 1, . . . , k, and w · λ ∈3+. This corresponds to

the data of a cup-product problem:

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ H`(w)(X,Lλ). (2.7.1)
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Set µi =wi ·λi for i = 1, . . . , k, and µ=w ·λ to keep track of the modules which
appear as cohomology groups. By the Borel–Weil–Bott theorem the map (2.7.1)
corresponds to a G-equivariant map

V∗µ1
⊗V∗µ2

⊗ · · ·⊗V∗µk
→ V∗µ.

By Serre duality HN−`(w)(X,KX⊗L∗λ) 6= 0 and the cup-product map

H`(w)(X,Lλ)⊗HN−`(w)(X,KX⊗L∗λ)
∪
−→ HN(X,KX)

is a perfect pairing. Since H`(w)(X,Lλ) is an irreducible G-module, the surjectivity
of (2.7.1) is equivalent to the surjectivity of the cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk )(X,Lλk )⊗HN−`(w)(X,KX⊗L∗λ)
∪
−→ HN(X,KX). (2.7.2)

To get the symmetric form of this problem, we set wk+1 =w0w, λk+1 = S(λ)=
−λ− 2ρ, and µk+1 =−w0µ=wk+1 ·λk+1. Then Lλk+1 =KX⊗L∗λ by Section 2.5,
wk+1 ·λk+1 ∈3

+ by Lemma 2.5.1, and `(wk+1)=N−`(w), so that (2.7.2) becomes

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk )(X,Lλk )⊗H`(wk+1)(X,Lλk+1)
∪
−→ HN(X,KX).

Since
k+1∑
i=1

λi = λ+ (−λ− 2ρ)=−2ρ

and L−2ρ =KX, this is again a cup-product problem of the type we consider, but now
all weights λ1, . . . , λk+1 and Weyl group elements w1, . . . , wk+1 play equal roles.

By (2.2.2) 8wk+1 = 8
c
w and therefore the condition that 8w =

⊔k
i=18wi is

equivalent to the condition 1+ =
⊔k+1

i=1 8wi . Since [�wk+1] = [Xw0wk+1] = [Xw],
the intersection numbers

⋂k
i=1[�wi ] · [Xw] and

⋂k+1
i=1 [�wi ] are the same. Finally,

the multiplicity of Vµ in Vµ1⊗· · ·⊗Vµk is the same as the multiplicity of the trivial
module in Vµ1 ⊗ · · ·⊗Vµk ⊗Vµk+1 because Vµk+1 = V−w0µ = V∗µ.

To go from the symmetric form to the nonsymmetric form we simply reverse the
above procedure, although of course we are free to desymmetrize with respect to
any of the indices i = 1, . . . , k+ 1, and not just the last one.

For convenience we list in Table 1 the symmetric and nonsymmetric forms of
some formulas and expressions we are interested in. Since k is an arbitrary positive
integer, after switching to the symmetric form we often use k in place of k+ 1 to
reduce notation.

2.8. Demazure reflections. Suppose that W and M are varieties and π :W→M
is a P1-fibration, i.e., a smooth morphism with fibers isomorphic to P1. Let L be
a line bundle on W and b be the degree of L on the fibers of π . Demazure [1976,
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Nonsymmetric Symmetric⊗k
i=1 H`(wi )(X,Lλi )→ H`(w)(X,Lλ)

⊗k+1
i=1 H`(wi )(X,Lλi )→ HN(X,KX)∑k

i=1 `(wi )= `(w)
∑k+1

i=1 `(wi )= N∑k
i=1 λi = λ

∑k+1
i=1 λi =−2ρ∑k

i=1w
−1
i µi −w

−1µ
∑k+1

i=1 w
−1
i µi∑k

i=1w
−1
i · 0−w

−1
· 0

∑k+1
i=1 w

−1
i · 0+ 2ρ

8w =
⊔k

i=18wi 1+ =
⊔k+1

i=1 8wi⋂k
i=1[�wi ] · [Xw]

⋂k+1
i=1 [�wi ]

Table 1. Nonsymmetric and symmetric forms of some formulas.

Theorem 1] proves the following isomorphism of vector bundles on M:

Riπ∗L∼= R1−iπ∗(L⊗ωb+1
π ) for i = 0, 1, (2.8.1)

where ωπ is the relative cotangent bundle of π . The line bundle L⊗ωb+1
π is called

the Demazure reflection of L with respect to π .
Note that there is at most one value of i for which the resulting vector bundles

are nonzero: i = 0 if b> 0, i = 1 if b6−2, and neither if b=−1. Equation (2.8.1)
and the corresponding Leray spectral sequence give the isomorphisms

H j (W,L)∼=
{

H j+1(W,L⊗ωb+1
π ) if b > 0,

H j−1(W,L⊗ωb+1
π ) if b 6−2,

for all j.

Link between Demazure reflections and the affine action. Let αi be any simple root,
Pαi the parabolic associated to αi , and πi : X→Mi := G/Pαi the corresponding
P1-fibration. The relative cotangent bundle ωπi of πi is the line bundle L−αi . Given
any λ ∈3, the degree of the line bundle Lλ on the fibers of πi is λ(α∨i ), where α∨i
is the coroot corresponding to αi . We thus obtain that the Demazure reflection of
Lλ with respect to the fibration πi is the line bundle

Lλ⊗L
λ(α∨i )+1
−αi

= Lλ−(λ(α∨i )+1)αi = Lsiλ−αi = Lsi ·λ,

where si is the simple reflection corresponding to αi . The combinatorics of per-
forming Demazure reflections with respect to the various P1-fibrations of X is
therefore kept track of by the affine action of the Weyl group on 3. In particular, if
v = si1 · · · sim ∈W and λ ∈3, the result of applying the Demazure reflections with
respect to the fibrations πim , πim−1, . . . , πi1 in that order to Lλ is Lv·λ.
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Demazure reflections and base change. Given any morphism h : Y2→M we can
form the fiber product diagram

Y1
f
//

π1

��

W

π

��

Y2
h
//

�

M

If π is a P1-fibration then so is π1, and ωπ1 = f ∗ωπ . Therefore, for any line bundle
L on V, we have

f ∗(L⊗ωb+1
π )= ( f ∗L)⊗ωb+1

π1
,

where b is the degree of L on the fibers of π . The degree of f ∗L on π1 is also b
and therefore the formula above shows that the pullback of the Demazure reflection
of L with respect to π is the Demazure reflection of the pullback of L with respect
to π1. Furthermore, by the theorem on cohomology and base change, the natural
morphisms

Riπ1∗( f ∗L)←−∼ h∗(Riπ∗L),

R1−iπ1∗(( f ∗L)⊗ωb+1
π1
)←−∼ h∗(R1−iπ∗(L⊗ωb+1

π ))

are isomorphisms for i = 0, 1.

2.9. E2-terms and computation of maps on cohomology. Suppose that we have a
commutative diagram of varieties

W′ �
� γ

//

π ′

��

W

π

��

M′ �
�

// M

where the vertical maps are proper and the horizontal maps are closed immersions.
Suppose further that we have coherent sheaves F on W and F ′ on W′, and a map ϕ :
γ ∗F→F ′ of sheaves on W′. The map ϕ induces maps ϕd :Hd(W,F)→Hd(W′,F ′)
on cohomology and maps ϕd,k : Hd−k(M,Rk

π∗F)→ Hd−k(M′,Rk
π∗F ′) on the E2-

terms of the Leray spectral sequences for F and F ′ with respect to π and π ′.
Assume that both spectral sequences degenerate at the E2-term. In Section 5.4 we
will need to know when we can compute ϕd by knowing the maps ϕd,k .

By the definition of convergence of a spectral sequence there are increasing
filtrations

0= U−1 ⊆ U0 ⊆ · · · ⊆ Ud = Hd(W,F),

0= U′
−1 ⊆ U′0 ⊆ · · · ⊆ U′d = Hd(W′,F ′),
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such that Uk/Uk−1 = Hd−k(M,Rk
π∗F) and U′k/U

′

k−1 = Hd−k(M′,Rk
π∗F ′) for k =

0, . . . , d. Since the map ϕd on the cohomology groups is compatible with the
filtrations (in the sense that ϕd(Uk) ⊆ U′k for k = −1, . . . , d), ϕd induces maps
between the associated graded pieces of the filtrations; these maps are exactly the
maps ϕd,k .

We will need to know that ϕd can be computed from the maps ϕd,k in an
elementary case. Suppose there is a unique k such that Uk/Uk−1 is nonzero (and
so Uk/Uk−1 = Hd(W,F)), and a unique k ′ such that U′k′/U

′

k′−1 is nonzero (and so
U′k′/U

′

k−1 =Hd(W′,F ′)). Then we can compute ϕd from the maps ϕd,k if and only
if k = k ′; if this occurs then ϕd = ϕd,k .

In order to show that we must check the condition k = k ′ above, i.e., that the map
on E2-terms does not always determine the map ϕd , we give the following example
of a nonzero map between cohomology groups of sheaves where the induced map
on E2-terms is zero. This example is also a cup-product map.

Example 2.9.1. Let W= Pm
×Pm for some m > 1, F =OPm (1)�OPm (−r) with

r > m + 2, and let G = O1(1− r) be the restriction of F to the diagonal of W.
We have Hm(W,F) = H0(Pm,OPm (1)) ⊗ Hm(Pm,OPm (−r)) and Hm(W,G) =
Hm(Pm,OPm (1− r)). The natural restriction map ϕ : F → G induces the cup-
product map

ϕm : H0(Pm,OPm (1))⊗Hm(Pm,OPm (−r))
∪
−→ Hm(Pm,OPm (1− r)),

which is a surjective map of nonzero groups.
If π :W→M= Pm is the projection onto the first factor then both of the Leray

spectral sequences degenerate at the E2 term with only one nonzero entry in each
sequence. We have

Hm(W,F)= H0(M,Rm
π∗F) (i.e., k = m),

Hm(W,G)= Hm(M, π∗G) (i.e., k ′ = 0).

The maps ϕm,k on the E2-terms are clearly zero, even though ϕm is nonzero.

2.10. Bott–Samelson–Demazure–Hansen varieties. Let v = si1 · · · sim be a word,
not necessarily reduced, of simple reflections. Associated to v is a variety Zv , a left
action of B on Zv, and a B-equivariant map fv : Zv→ X. If v is nonempty there
is also a B-equivariant map πv : Zv→ ZvR

expressing Zv as a P1-bundle over ZvR

together with a B-equivariant σv : ZvR
→ Zv section such that fvR

= fv ◦ σv.
These varieties were originally constructed by Demazure [1974] and Hansen

[1973] following an analogous construction by Bott and Samelson [1958] in the
compact case. In this subsection we recall their construction and several related
facts. We give two different descriptions of the construction; both will be used in
the constructions in Section 3.



Cup products of line bundles and generalized PRV components 781

Recursive construction. Recall that e is unique point of X fixed by B. If the word
v is empty we define Zv to be e, the map fv to be the inclusion e ↪→ X, and the
B-action on Zv to be trivial.

If v = si1 · · · sim is nonempty, let u = vR = si1 · · · sim−1 be the word obtained by
dropping the rightmost reflection of v. By induction we have already constructed
Zu and the map fu : Zu → X. Set h = πim ◦ fu , where πim is the G-equivariant
projection (and P1-fibration) X→Mim =G/Pαim

. We then define Zv to be the fiber
product Zu ×Mim

X, and fv and πv to be the maps from the fiber product to X and
to Zu respectively. Since h = πim ◦ fu , by the universal property of the fiber product
there exists a unique map σv : Zu→ Zv such that fu = fv ◦ σv and idZu = πv ◦ σv.
These maps are summarized in the following diagram, where the square is a fiber
product:

Zv
fv

//

πv

��

X

πim

��

�

Zu
h

//

fu

??

σv

CC

Mim

(2.10.1)

Since B acts on Zu and on X, and the maps fu , πim , and h are B-equivariant, by
the universal property of the fiber product, the diagram (2.10.1) induces a B-action
on Zv such that fv and σv are B-equivariant maps. Since each morphism σv is
a P1-fibration it follows immediately that each Zv is a smooth proper variety of
dimension `(v).

Direct construction. For any word v set

Pv :=
{

e if v is empty,
Pαi1
× · · ·×Pαim

if v = si1 · · · sim is nonempty.

If v is empty we define Zv, fv, and the B-action as in the direct construction.
If v = si1 · · · sim is nonempty then Zv is the quotient of Pv by Bm , where an

element (b1, . . . , bm) of Bm acts on the right on (p1, . . . , pm) by

(p1, . . . , pm) · (b1, . . . , bm)=
(

p1b1, b−1
1 p2b2, b−1

2 p3b3, . . . , b−1
m−1 pmbm

)
.

The left action of B on Pv given by

b · (p1, p2, . . . , pm)= (bp1, p2, . . . , pm)

commutes with the right action of Bm and therefore descends to a left action of B
on Zv . We denote the corresponding B-equivariant quotient map by ψv : Pv→ Zv .



782 Ivan Dimitrov and Mike Roth

The product map Pv
φv
−→G given by (p1, . . . , pm) 7→ p1 · · · pm is equivariant

for the left B-action described above and left multiplication of G by B. Under the
homomorphism of groups Bm

→ B given by the projection (b1, . . . , bm) 7→ bm the
product map φv is also equivariant for the right action of Bm on Pv and the right
multiplication of G by B. The product map therefore descends to a left B-equivariant
morphism fv : Zv→ X.

Let u=vR= si1 · · · sim−1 be the word obtained by dropping the rightmost reflection
in v. The projection map prv : Pv→Pu sending (p1, . . . , pm) to (p1, . . . , pm−1)

is equivariant with respect to the projection Bm
→ Bm−1 sending (b1, . . . , bm) to

(b1, . . . , bm−1). Similarly the inclusion map jv :Pu↪→Pv sending (p1, . . . , pm−1) to
(p1, . . . , pm−1, 1G) is equivariant with respect to the inclusion Bm−1 ↪→Bm sending
(b1, . . . , bm−1) to (b1, . . . , bm−1, bm−1). The maps prv and jv respect the left B-
action on Pv and Pu , and therefore descend to B-equivariant maps πv : Zv→ Zu

and σv : Zu → Zv. Since prv ◦ jv = idPu and φv ◦ jv = φu , taking quotients we
obtain πv ◦ σv = idZu and fv ◦ σv = fu . Finally, the fibers of πv are isomorphic to
Pαim

/B∼= P1.
We record the following well-known facts about the construction above.

Proposition 2.10.2. (a) The varieties Zv produced by the recursive and direct
constructions above are isomorphic over X.

(b) If v= si1 · · · sim is a reduced word with product v then the image of fv :Zv→X
is Xv and fv is a resolution of singularities of Xv.

Proof. Part (b) is proved in [Demazure 1974] and [Hansen 1973]. To show (a)
it is enough to show that the varieties produced by the direct construction satisfy
the fiber product diagram (2.10.1). This is most easily checked after pulling back
(2.10.1) via the maps G→ X and Pu = Pi1 × · · · × Pim−1 → Zu ; the details are
omitted here. �

Maximum points. Let v = si1 · · · sim be a reduced word with product v. The image
of Zv under fv is Xv, by Proposition 2.10.2(b), and one can check that there is a
unique point pv of Zv which maps to v ∈ Xv. More specifically, from the point of
view of the direct construction, the point (si1, . . . , sim ) is a point of Pv and its image
under the quotient map Pv → Zv is pv. From the point of view of the recursive
construction one starts with p∅ = e, and recursively defines pv to be unique torus
fixed point in the P1-fiber of πv : Zv→ Zu over pu which is not equal to σv(pu),
where u = vR = si1 · · · sim−1 . Note that pv is the unique torus fixed point of Zv
whose image in Xv is the largest in the Bruhat order among torus-fixed points of
Xv. We call pv the maximum point of Zv.

Since pv is a torus fixed point, the torus acts on the tangent space TpvZv and it
will be important for us to know the formal character of TpvZv . It follows inductively
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from the recursive construction that

Ch(TpvZv)= 〈8v−1〉. (2.10.3)

2.11. Semistability of torus fixed points. The following lemma is due to Kostant.

Lemma 2.11.1. Let W be a projective variety with a G-action and L a G-equivariant
ample line bundle on W. A torus fixed point q ∈W is semistable with respect to L
if and only if the weight of Lq is zero. In this case the orbit of q is closed in the
semistable locus.

Proof. If the action of the torus on the fiber Lq is nontrivial then it is easy to see
(for instance using the Hilbert–Mumford criterion for semistability, [Mumford et al.
1994, Theorem 2.1, p. 49]) that q is not a stable point.

Conversely, suppose that the weight of Lq is zero. Replacing L by a multiple we
may assume that L is very ample and gives an embedding W ↪→Pr for some r . Let
Ar+1 be the affine space corresponding to Pr and Ar+1

\ {0} → Pr be the quotient
map. Then G acts linearly on Ar+1 inducing an action on Pr compatible with the
action on W. Let q̃ be any lift to Ar+1 of the image of q in Pr . The condition
that the torus act trivially on Lq is equivalent to the condition that q̃ be fixed by T
under the G-action on Ar+1. Kostant ([1963, p. 354, Remark 11]) proves that for
any finite dimensional module of a reductive group G and any point q̃ fixed by T,
the G-orbit of q̃ is closed; this result was also later generalized by Luna [1975,
Theorem (∗∗)]. Since G is reductive and the orbit of q̃ does not meet zero, there is
a G-invariant homogeneous form of some degree m which is nonzero on q̃. This
corresponds to a G-invariant section s ∈ H0(W,Lm)G such that s(q) 6= 0. We thus
see that if the weight of Lq is zero then q is a semistable point, and the orbit of q is
closed in the semistable locus. �

3. Diagonal Bott–Samelson–Demazure–Hansen–Kumar varieties

In this section we give a generalization of the varieties from Section 2.10. The
construction is a variation of a construction of Kumar [1988]; see Section 3.10 for a
comparison. These varieties are obtained by applying the idea of the Bott–Samelson
resolution to the diagonal inclusion X ↪→ Xk . They can also be thought of as a
desingularization of the total space of the variety of intersections of translates of
Schubert cycles. This alternate description is established in Theorem 3.7.4.

More specifically, for each sequence v = (v1, . . . , vk) of words we construct a
smooth variety Yv of dimension N+ `(v) with a G-action together with a proper
map fv : Yv→ Xk which is G-equivariant for the diagonal action of G on Xk . If u
is the sequence obtained by dropping a single simple reflection from the right of
one of the v j ’s then Yv is a P1-fibration over Yu, and there is a section Yu ↪→ Yv

compatible with the maps fv and fu to Xk . The fibration and section maps are
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G-equivariant; moreover they are compatible with the P1-fibrations on factors of Xk .
These relationships are summarized in diagram (3.1.2).

3.1. Recursive construction. Let v = (v1, . . . , vk) be a sequence of words. If all
v j are empty, i.e., if v = (∅, . . . ,∅), we set Yv = X and let fv : Yv→ Xk be the
diagonal embedding.

Otherwise suppose that v j is nonempty. Let

ul :=

{
vl if l 6= j,
(v j )R if l = j,

l = 1, . . . , k, (3.1.1)

and set u = (u1, . . . , uk). By induction on `(v) we may assume that Yu and the
map fu :Yu→Xk have been constructed. If v j = si1 · · · sim , so that u j = si1 · · · sim−1

then we define Yv, the map fv, the projection πv,u, and the section σv,u by the
following fiber product square:

Yv

fv
//

πv,u

��

Xk

(idX)
j−1
×πim×(idX)

k− j

��

Yu //

�

fu

==

σv,u

CC

X j−1
×Mim ×Xk− j

(3.1.2)

Here πim :X→Mim :=G/Pαim
is the natural projection, and Xk

→X j−1
×Mim×Xk− j

is the projection πim on the j-th factor and the identity on all others. The bottom
map

Yu→ X j−1
×Mim ×Xk− j

is the map fu to Xk followed by the map Xk
→ X j−1

×Mim ×Xk− j above.
Since Xk

→ X j−1
×πim ×Xk− j is a P1-fibration the same is true of πv,u. We

conclude by induction that the variety Yv is smooth, proper, and irreducible of
dimension N+`(v). The maps fu and idYu from Yu to Xk and Yu respectively give
rise to the section σv,u. By construction we have

fu = fv ◦ σv,u and idYu = πv,u ◦ σv,u.

This construction is well defined. Indeed, assume that we had dropped a simple
reflection from the right of v j ′ , j ′ 6= j to obtain a sequence of words u′ and used
Yu′ instead of Yu to construct Yv . We claim that the resulting variety Yv is the same.
This follows easily by induction on `(v) and the fact that the diagram expressing
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the commutativity of the projections on the different factors is a fiber square:

Xk (idX)
j ′−1
×πim×(idX)

k− j ′

//

(idX)
j−1
×πim×(idX)

k− j

��

X j ′−1
×Mi ′m ×Xk− j ′

��

X j−1
×Mim ×Xk− j //

�

X j ′−1
×Mim′

×X j− j ′−1
×Mim ×Xk− j

Here, by symmetry, we have assumed that j ′ < j .

3.2. Direct construction. Let v= (v1, . . . , vk) be a sequence of words. The group
B acts diagonally on Zv1 × · · ·×Zvk on the left. We define Yv to be the quotient of
G× (Zv1 × · · ·×Zvk ) by the left B-action

b · (g, z1, . . . , zk)= (gb−1, b · z1, . . . , b · zk). (3.2.1)

Since G× (Zv1 ×· · ·×Zvk ) is smooth and B acts without fixed points, the quotient
Yv is smooth.

The group G acts on G× (Zv1 × · · · × Zvk ) by left multiplication on the first
factor. Since this action commutes with the action of B, it descends to an action of
G on Yv. The map from G× (Zv1 × · · ·×Zvk ) to Xk given by

(g, z1, . . . , zk) 7→
(
g· fv1(z1), g· fv2(z2), . . . , g· fvk (zk)

)
(3.2.2)

is invariant under the B-action. If we let G act on Xk diagonally then (3.2.2) is also
G-equivariant and hence descends to a G-equivariant morphism fv : Yv→ Xk .

As in the direct construction, we suppose that v j is nonempty, define ul by
(3.1.1) and set u= (u1, . . . , uk). The B-equivariant morphisms πv : Zv j → Zu j and
σv j : Zu j → Zv j from Section 2.10 give rise to B-equivariant morphisms between
G× (Zv1 × · · · × Zvk ) and G× (Zu1 × · · · × Zuk ) and hence to a G-equivariant
P1-fibration πv,u : Yv → Yu and a G-equivariant section σv,u : Yu → Yv. These
maps fit together to give diagram (3.1.2).

3.3. Expanded version of the direct construction. Combining the formulas for Pv
from Section 2.10 with the direct construction above we obtain a more explicit
expression for Yv . If v = (v1, . . . , vk) with v j = si1, j · · · sim j , j for j = 1, . . . , k then
we define Yv to be the quotient of

G×Pv1 × · · ·×Pvk = G× (Pi1,1 × · · ·×Pim1,1
)× · · ·× (Pi1,k × · · ·×Pimk ,k

)

by the right action of B×Bm1 × · · ·×Bmk , where an element

(b0 | b1,1, . . . , bm1,1 | b1,2, . . . , bm2,2 | · · · | b1,k, . . . , bmk ,k)
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acts from the right on

(g | pi1,1, pi2,1, . . . , pim1,1
| pi1,2, pi2,2, . . . , pim2,2

| · · · | pi1,k , . . . , pimk ,k
)

to give(
gb0 | b−1

0 pi1,1b1,1, b−1
1,1 pi2,1b2,1, . . . , b−1

m1−1,1 pim1,1
bm1,1 | · · ·

· · · | b−1
0 pi1,k b1,k, . . . , b−1

mk−1,k pimk ,k
bmk ,k

)
.

(In the expressions above the vertical lines “|” are used to indicate logical groupings,
but otherwise have no significance.) The group G acts on G×Pv1 × · · ·×Pvk by
left multiplication on the G factor, this action descends to a left action on Yv.

The map fv is induced by the map sending an element

(g | pi1,1, pi2,1, . . . , pim1,1
| pi1,2, pi2,2, . . . , pim2,2

| · · · | pi1,k , . . . , pimk ,k
)

of G×Pv1 × · · ·×Pvk to

(gpi1,1 pi2,1 · · · pim1,1
| gpi1,2 pi2,2 · · · pim2,2

| · · · | gpi1,k · · · pimk ,k
) (3.3.1)

in Xk . From the explicit formulas this is clearly a G-equivariant map.
Finally, if v is a sequence of words, and u is a sequence obtained by dropping the

rightmost reflection of a single word in v (as in Section 3.2) then the G-equivariant
P1-fibration πv,u : Yv → Yu and the G-equivariant section σv,u : Yu → Yv are
constructed using the obvious formulas analogous to those in Section 2.10. It again
follows easily from these formulas that fu = fv ◦ σv,u.

Remark. Note that the variety Yv depends on the sequence of wordsv= (v1, . . . , vk)

and not just on the corresponding sequence (v1, . . . , vk) of Weyl group elements.
If we choose a different reduced factorization of each vi the resulting variety is
birational to Yv over Xk . The proof is omitted because we do not need this fact.

3.4. The map f◦. As before, let v = (v1, . . . , vk) be a sequence of words. Besides
the map fv to Xk , each Yv comes with a G-equivariant map f◦ to X expressing Yv

as a Zv1 × · · ·×Zvk -bundle over X.
From the point of view of the construction in Section 3.1 f◦ is the composite

map

Yv

πv,u
−−→ Yu→ · · · → Y∅ = X

obtained by dropping the elements in the entries of v one at a time. The fiber over
e in X is then the result of applying the recursive construction in Section 2.10
separately for each vi , i = 1, . . . , k, and so the fiber is Zv1 × · · ·×Zvk .

From the point of view of the construction in Section 3.2 one starts with the
projection G× (Zv1 × · · · ×Zvk )→ G onto the first factor. This is B-equivariant
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for the right action of B on G and hence descends to a morphism f◦ : Yv → X
expressing Yv as a Zv1 × · · ·×Zvk -bundle over X.

Let u= (∅, v1, . . . , vk). Since the action of B on the point Z∅ = e is trivial, we
have an isomorphism

G×Zv1 × · · ·×Zvk ' G×Z∅×Zv1 × · · ·×Zvk

of B-varieties and hence a G-isomorphism φ :Yv→Yu. From the explicit description
in (3.2.2) we see that the composite map fu ◦φ :Yv→Xk+1 followed by projection
onto the first factor is f◦, and that fu ◦ φ followed by projection onto the last k
factors is fv.

Thus the map f◦× fv : Yv→ X×Xk is equal to the map

f(∅,v1,...,vk) : Y(∅,v1,...,vk)→ Xk+1

under the isomorphism φ. This will be used in the proof of Theorem 3.7.4.

3.5. Maximum point. Let v = (v1, . . . , vk) be a sequence of words. We define
the maximum point pv of Yv to be the product maximum point (Section 2.10)
pv1 × · · · × pvk in the fiber Zv1 × · · · × Zvk of f◦ over e in X. Alternatively, if
v j = (si1, j , . . . , sim j , j ) for j = 1, . . . , k then (in the notation of Section 3.3) the point

(e | si1,1, si2,1, . . . , sim1,1
| · · · | si1,k , . . . , simk ,k

)

is a point of

G× (Pi1,1 × · · ·×Pim1,1
)× · · ·× (Pi1,k × · · ·×Pimk ,k

)

and its image in Yv under the quotient map by B×Bm1×· · ·×Bmk is the maximum
point pv. If each v j is a factorization of some vj ∈W , then the image fv(pv) of
the maximum point in Xk is the point qv := (v1, . . . , vk).

3.6. Tangent space formulas. We will need to know the formal character (see
Section 2.1) of the tangent space of Yv at the maximum point pv. If each v j is a
reduced word with product vj , then the formal character of the tangent space to Zv j

at pv j is 〈8v−1
j
〉 and the formal character of the tangent space of X at e is 〈1−〉.

Since the fibration f◦ is smooth, the formal character of Tpv
Yv is the sum of

these formal characters, i.e.,

Ch(Tpv
Yv)= 〈1

−
〉+

k∑
i=1

〈8v−1
i
〉.

If vj = w
−1
j w0 for j = 1, . . . , k, then by (2.2.2) this is the same as

Ch(Tpv
Yv)=1

−
+

k∑
i=1

〈8c
wi
〉. (3.6.1)
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3.7. Fibers and images of fv.

Lemma 3.7.1. Let v = (∅, v2, . . . , vk) be a sequence of words, with each vi a
reduced factorization of vi , and let Xv be the (reduced) image of fv in Xk . Then:

(a) Projection onto the first factor of Xk endows Xv with the structure of a fiber
bundle over X with fiber isomorphic to Xv2 × · · ·×Xvk .

(b) The variety Xv is normal with rational singularities of dimension N+ `(v),
and the induced map Yv→ Xv is birational with connected fibers.

Proof. Projection on the first factor of Xk gives a G-equivariant morphism Xv
η
→X.

Since G acts transitively on X this morphism is surjective and all fibers are isomor-
phic, i.e., this expresses Xv as a fiber bundle over X. To study the fibers we look at
the fiber η−1(e) over the B-fixed point e of X.

Consider the diagram

G× e×Zv2 × · · ·×Zvk

ψv
//

idG× idxo × fv1×···× fvk
��

Yv

fv
��

G× e×Xv2 × · · ·×Xvk

φ
// Xk

(3.7.2)

where φ is given by φ(g, e, x2, . . . , xk) = (g · e, g · x2, . . . , g · xk) ∈ Xk . Since
ψv and the leftmost vertical map are surjective, the image of fv is the same as
the image of φ. Since B is the stabilizer of e, the fiber η−1(e) is the image of
B× e×Xv2 × · · ·×Xvk under φ. But each Schubert variety Xw is stable under the
action of B and therefore the image above is just e×Xv2 × · · ·×Xvk , proving (a).

From the fibration η it is clear that

dim(Xv)= dim(X)+
k∑

i=2

dim(Xvi )= N+
k∑

i=2

`(vi )= N+ `(v),

because each vi is reduced and hence `(vi )= `(vi ) for i > 2.
The product of normal varieties is again normal, and the product of varieties with

rational singularities also has rational singularities. Since each Xw is normal with
rational singularities (Section 2.6), the fibers also have this property, and therefore
so does Xv (since the properties of being normal or having rational singularities are
local, and Xv is locally the product of the fiber and a smooth variety).

Since each map fvi :Zvi →Xvi is a resolution of singularities of a normal variety,
each fvi is birational with connected fibers. It follows that the map Yv→Xv , which
is the quotient of the leftmost vertical map in (3.7.2) by the action of B, is also
birational with connected fibers. This proves (b). �

Definition 3.7.3. If Xw is any Schubert subvariety of X and q is any point of X, we
define the subvariety qXw of X to be the result of translating Xw by any element in
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the B-coset corresponding to q. Since Xw is B-stable the result is independent of
the choice of representative for q .

The following theorem gives more precise information about the image and fibers
of fv.

Theorem 3.7.4. Let v = (v1, . . . , vk) be a sequence of reduced words with cor-
responding Weyl group elements (v1, . . . , vk). Then there exists a factorization
fv : Yv

τ
→Qv

h
→Xk such that

(a) Qv is normal with rational singularities;

(b) the map τ : Yv→ Qv is proper and birational with connected fibers;

(c) for each point (q1, . . . , qk) of Xk there is a natural inclusion

h−1(q1, . . . , qk) ↪→

k⋂
i=1

qi Xv−1
i

of the scheme-theoretic fiber h−1(q1, . . . , qk) into the scheme-theoretic inter-
section

⋂k
i=1 qi Xv−1

i
;

(d) the inclusion of schemes in (c) induces an isomorphism at the level of reduced
schemes, or in other words, the set-theoretic fiber h−1(q1, . . . , qk) is equal to
the set-theoretic intersection

⋂k
i=1 qi Xv−1

i
.

Proof. Let f◦× fv : Yv→ X×Xk be the product of fv and the map f◦ : Yv→ X
from Section 3.4 expressing Yv as a Zv1

×· · ·×Zvk
-bundle over X. We define Qv

to be the image of f◦ × fv with the reduced scheme structure, τ to be the map
from Yv onto Qv, and h to be the map from Qv to Xk induced by the projection
X×Xk

→ Xk . By construction fv = h ◦ τ .
Letting ψv be the map (from Section 3.2) defining Yv as a quotient of B ×

Zv1 × · · · ×Zvk and φ : G×Xv1 × · · · ×Xvk → Qv ⊆ X×Xk as the map sending
(g, x1, . . . , xk) to (gB/B, g · x1, . . . , g · xk) in X×Xk , we obtain a refinement of
diagram (3.7.2):

G×Zv1 × · · ·×Zvk

ψv
//

��

�

Yv

τ

��

f◦× fv

��

G×Xv1 × · · ·×Xvk

φ
// Qv
� � //

h
��

X×Xk

��

Xk Xk
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Since Yv ' Y(∅,v1,...,vk) (see Section 3.4) and under this isomorphism the map
f◦× fv is the map f(∅,v1,...,vk), it follows from Lemma 3.7.1(b) that Qv is normal

with rational singularities and that τ : Yv→ Qv is birational with connected fibers,
proving (a) and (b).

The composite map

G×Pv1 × · · ·×Pvk → G×Zv1 × · · ·×Zvk

ψv

−→ Yv
τ
−→ Qv

is given (in the notation of Section 3.3) by sending

(g | pi1,1, pi2,1, . . . , pim1,1
| pi1,2, pi2,2, . . . , pim2,2

| · · · | pi1,k , . . . , pimk ,k
)

to
(g | gpi1,1 pi2,1 · · · pim1,1

| gpi1,2 pi2,2 · · · pim2,2
| · · · | gpi1,k · · · pimk ,k

)

in X×Xk . A point q of X is therefore in the fiber

h−1(q1, . . . , qk)⊆ X× q1× · · ·× qk = X

if for any B-coset representatives g, g1, . . . , gk of q, q1, . . . , qk , there exist elements
{pi, j } in the respective parabolic subgroups such that we can solve the equations

gpi1,1 pi2,1 · · · pim1,1
= g1,

...
...
...

gpi1,k pi2,k · · · pimk ,k
= gk .

Moving the pi, j ’s to the right hand side, the system above becomes

g = g1 p−1
im1,1
· · · p−1

i2,1
p−1

i1,1
,

...
...

...

g = gk p−1
imk ,k
· · · p−1

i2,k
p−1

i1,k
,

which is equivalent to q belonging in the intersection
⋂k

i=1 qi Xv−1
i

, proving (d).
Let v be a reduced word with product v. By part (d) the set

Q′v :=
{
(q, p) ∈ X×X | p ∈ qXv

}
is the image of f(∅,v) :Y(∅,v)→X×X and is therefore a closed subvariety of X×X.
Alternatively Q′v is the Zariski closure of the set {(g, g · v) | g ∈ G} ⊆ X×X.

For i = 1, . . . , k, let pi : X×Xk
→ X×X be the map which is the product of

idX with projection Xk
→ X onto the i-th factor. The intersection

Q′v :=
k⋂

i=1

p−1
i (Q′vi

)
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is a closed subscheme of X×Xk which, by (d), agrees set theoretically with Qv.
Since Qv is reduced, we have the inclusion of schemes Qv ⊆ Q′v. If h′ is the
map h′ : Q′v → Xk induced by projection, then the scheme-theoretic fibers of
h are naturally a subscheme of the scheme-theoretic fibers of h′ (and both are
naturally subschemes of X). The scheme-theoretic fiber of h′ is the scheme-theoretic
intersection

⋂k
i=1 qi Xv−1

i
, proving (c). �

The image Xv is therefore the set of translations (q1, . . . , qk) in Xk for which
the intersection

⋂k
i=1 qi Xv−1

i
of translated Schubert varieties is nonempty, and the

set-theoretic fibers of h are the intersections themselves. Moreover, Qv is the
incidence correspondence of intersections of translates of Schubert varieties (the
first coordinate in X×Xk is the intersection, the remaining k coordinates are the
parameters (q1, . . . , qk) controlling the translates). Theorem 3.7.4 shows that Yv is
a resolution of singularities of Qv.

Corollary 3.7.5. Let v = (v1, . . . , vk) be a sequence of reduced words with cor-
responding Weyl group elements (v1, . . . , vk) such that

∑k
i=1 `(vi ) = (k − 1)N.

Then the degree of the map fv : Yv → Xk is given by the intersection number⋂k
i=1[�w0v

−1
i
] =

⋂k
i=1[Xv−1

i
].

Remark. The dimension of Yv in this case is N+
∑
`(vi )= kN= dim(Xk) so it

is reasonable to ask for the degree of the map.

Proof. Since we are working in characteristic zero, the degree of fv is given by
the number of points in a generic fiber. By Theorem 3.7.4 the map p : Yv→ Qv

is birational, and so the generic fiber of fv is the same as the generic fiber of
h : Qv→ Xk . By the Kleiman transversality theorem, if q1, . . . , qk are generic, the
scheme-theoretic intersection

⋂k
i=1 qi Xv−1

i
is reduced and finite, and the number of

points is equal to the intersection number
⋂k

i=1[Xv−1
i
] =

⋂k
i=1[�w0v

−1
i
] in H∗(X,Z).

By Theorem 3.7.4(c–d) if the scheme-theoretic intersection
⋂k

i=1 qi Xv−1
i

is reduced
it is equal to the scheme-theoretic fiber h−1(q1, . . . , qk), proving the corollary. �

3.8. Key lemma. We now prove an important lemma which will allow us to derive
several results necessary for the proofs of Theorems I and II. The lemma itself will
also be used in the proof of Theorem I.

Lemma 3.8.1. Let v be a sequence of reduced words, L be a G-equivariant line
bundle on Yv and s ∈ H0(Yv,L)G be a nonzero G-invariant section. Then:

(a) the weight of L at the T-fixed maximum point (Section 3.5) p = pv ∈ Yv

belongs to spanZ>0
1+;

(b) the weight of L at p is zero if and only if s does not vanish at p;

(c) without supposing that L has a G-invariant section, if L is an equivariant
bundle on Yv and the weight of L at p is zero, then dim H0(Yv,L)G 6 1.
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Remark. Part (c) will be used often to control the size of the G-invariant sections.

Proof. Let f◦ :Yv→X be the map from Section 3.4 expressing Yv as a Zv1×· · ·×Zvk -
bundle over X. The section s cannot vanish on any fiber of f◦ since (by G-invariance
and transitivity of G-action on X) s would vanish on all of Yv . We can thus restrict
s to get a nonzero section on the fiber Zv1 × · · ·×Zvk of f◦ over e ∈ X; this fiber
contains the maximum point p.

The formal character of the tangent space at the maximum point pi of Zvi

is 〈8v−1
i
〉; i.e., all the weights of this space are positive roots. Since the maximum

point p= p1×· · ·×pk ∈Z :=Zv1×· · ·×Zvk is the product of the maximum points of
the factors, each of the weights on the tangent space of p in Z is also a positive root.

Let mp be the maximal ideal of p in OZ,p. For every r > 0 we get a T-equivariant
restriction map

H0(Z,L|Z)→ L⊗OZ (OZ,p/m
r+1
p )= L⊗

(
OZ/mp⊕mp/m

2
p⊕ · · ·⊕mr

p/m
r+1
p
)
,

which is an injection for r sufficiently large. In particular, for sufficiently large r ,
the section s restricts to a nonzero element of L⊗OZ OZ,p/m

r+1
p . Since s is an

invariant section, this means that the zero weight is a weight of L⊗OZ (OZ,p/m
r+1
p ),

and so must appear in one of the factors L⊗OZ (m
i
p/m

i+1
p )= L⊗OZ Symi (mp/m

2
p)

for i = 0, . . . , r .
Since mp/m

2
p is dual to the tangent space at p, all weights of mp/m

2
p are negative

roots, and therefore the weights of Symi (mp/m
2
p) belong to spanZ601

+. Tensoring
with L multiplies the formal character of Symi (mp/m

2
p) by the weight of L at p.

Thus the zero weight is a weight of L⊗OZ Symi (mp/m
2
p) only if the weight of L

at p belongs to spanZ>0
1+. This proves (a).

The value of s at p is the restriction of s to the factor L⊗OZ (OZ,p/mp)= Lp. If
s does not vanish at p the weight of Lp is therefore zero. Conversely, if the weight
of Lp is zero then the weights of L⊗OZ Symi (mp/m

2
p) are nonzero for i > 1. Hence

the only possibility for the invariant section s under the restriction map is to have
nonzero restriction to L⊗OZ (OZ,p/mp)= Lp, proving (b).

Suppose that the weight of L at p is zero. If there were two linearly independent
sections s1, s2 ∈H0(Yv,L)G then some nonzero linear combination would vanish at
p contradicting (b). Hence if the weight is zero we must have dim H0(Yv,L)6 1,
giving (c). �

3.9. Applications of Lemma 3.8.1.

Theorem 3.9.1. Suppose that w1, . . . , wk , and w are elements of the Weyl group
such that

`(w)=

k∑
i=1

`(wi ) and
k⋂

i=1

[�wi ] · [Xw] 6= 0 in H∗(X,Z).
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Then:

(a) For any dominant weights µ1, . . . , µk , and µ such that the irreducible module
Vµ is a component of Vµ1⊗· · ·⊗Vµk , the weight

∑k
i=1w

−1
i µi−w

−1µ belongs
to spanZ>0

1+.

(b) If
∑k

i=1w
−1
i µi −w

−1µ= 0 then mult(Vµ,Vµ1 ⊗ · · ·⊗Vµk )= 1.

(c)
∑k

i=1w
−1
i ·0−w

−1
·0=

∑k
i=1(w

−1
k ρ−ρ)−(w−1ρ−ρ) belongs to spanZ>0

1+.

(d) If
∑k

i=1w
−1
i · 0= w

−1
· 0 then 8w =

⊔k
i=18wi .

Note that the action of the Weyl group in parts (a) and (b) is the homogeneous
action, while the action in parts (c) and (d) is the affine action.

Proof. Let vi = w
−1
i w0 for i = 1, . . . , k, vk+1 = w

−1, let vi be a reduced word
with product vi , for i = 1, . . . , k+ 1, and set v = (v1, . . . , vk+1). Then

∑
`(vi )=

(k+ 1− 1)N and so, by Corollary 3.7.5, the degree of fv : Yv→ Xk+1 is given by
the intersection number

k+1⋂
i=1

[�w0v
−1
i
] =

k⋂
i=1

[�wi ] · [Xw].

By hypothesis this intersection number is nonzero and therefore fv is surjective.
Given dominant weights µ1, . . . , µk , and µ let λi = −w0µi for i = 1, . . . , k

and λk+1 = µ. Set L to be the line bundle Lλ1 � · · · � Lλk+1 on Xk+1, so that
H0(Xk+1,L)= Vµ1 ⊗ · · ·⊗Vµk ⊗V∗µ and dim H0(Xk+1,L)G is the multiplicity of
Vµ in the tensor product Vµ1 ⊗ · · ·⊗Vµk .

Since fv is surjective, pullback induces an inclusion

H0(Yv, f ∗v L)
f ∗v
←− H0(Xk+1,L)

and, in particular, dim H0(Yv, f ∗v L)G > dim H0(Xk+1,L)G. We know, by applying
Lemma 3.8.1(a), that if f ∗v L has a nonzero G-invariant section then the weight of
f ∗v L at the maximum point pv belongs to spanZ>0

1+. This weight is

k+1∑
i=1

vi (−λi )=

k∑
i=1

(w−1
i w0)(w0µi )+w

−1(−µ)=

k∑
i=1

w−1
i µi −w

−1µ, (3.9.2)

proving (a).
If the weight in (3.9.2) is zero then dim H0(Xk+1,L)G 6 dim H0(Yv, f ∗v L)G 6 1

by Lemma 3.8.1(c), and so if Vµ is a component of Vµ1 ⊗ · · · ⊗Vµk then it is of
multiplicity at most one. The fact that Vµ actually is a component of the tensor
product is a consequence of the solution of the PRV conjecture — see Section 2.3
for a discussion. This proves (b).
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The map fv : Yv→ Xk+1 induces a natural map f ∗v KXk+1 → KYv
which is given

by a global section s of H0(Yv, ( f ∗v KXk+1)∗⊗KYv
). Since Yv and Xk+1 have the

same dimension and since fv is surjective, this section is nonzero. Because the
pullback morphism is natural, the section s is G-invariant. By Lemma 3.8.1(a) the
weight of the line bundle KYv/Xk+1 := ( f ∗v KXk+1)∗⊗KYv

at the maximum point pv

belongs to spanZ>01
+.

By (3.6.1), (2.2.2), and (2.2.3) the formal characters of the tangent spaces at pv

in Yv and qv := fv(pv) in Xk+1 are, respectively

Ch(Tpv
Yv)= 〈8w〉+ 〈1

−
〉+

k∑
i=1

〈8c
wi
〉 (3.9.3)

and

Ch(Tqv
Xk+1)=

(
〈8w〉+ 〈−8

c
w〉
)
+

k∑
i=1

(
〈8c

wi
〉+ 〈−8wi 〉

)
. (3.9.4)

A short calculation using formula (2.2.4) shows that the weight of KYv/Xk+1 at pv is∑k
i=1(w

−1
k ρ− ρ)− (w−1ρ− ρ), proving (c).

If the weight
∑k

i=1(w
−1
k ρ− ρ)− (w−1ρ− ρ) is zero then, by Lemma 3.8.1(b),

the section s is nonzero at pv . This means that fv is unramified at pv and therefore
the tangent space map TYv,p

d fv
−→TXk+1,q is an isomorphism. Hence both spaces

must have the same formal characters. Comparing the negative roots and their
multiplicities in (3.9.3) and (3.9.4) gives 1− =

(⊔k
i=1−8wi

)⊔
−8c

w which is
equivalent to 8w =

⊔k
i=18wi , proving (d). �

3.10. Relation with existing results. Part (a) of Theorem 3.9.1 is due to Berenstein
and Sjamaar [2000] . A theorem of this type was first proved by Klyachko [1998]
for GLn . This was later extended to all semisimple groups by Berenstein and
Sjamaar [2000] and by Kapovich, Leeb, and Millson [Kapovich et al. 2009]. Parts
(c) and (d) are due to Belkale and Kumar [2006]: part (c) is their Theorem 29 and
(d) is their Theorem 15, both in the case when the parabolic group P is the Borel
group B.

Part (b) is new and crucial for controlling the multiplicities of cohomological
components. The remaining statements have been included because Lemma 3.8.1
allows us to give a new, short, and unified proof of these results. In particular, we
obtain a new proof of the necessity of the inequalities determining the Littlewood–
Richardson cone. Namely, these inequalities are obtained by requiring that the
weights in Theorem 3.9.1(a) (for all w1, . . . , wk , w satisfying the conditions of the
theorem) belong to spanZ>01

+. (The proof that these inequalities are sufficient
requires a separate GIT argument.)
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Relation with a construction of Kumar. Given a sequence u of simple reflections,
Kumar [1988, §1.1] defined a variety Z̃u along with a map θu from Z̃u to X2. For
any pair of words v = (v1, v2) let u = v−1

1 v2 be the word obtained by reversing v1

and concatenating it onto the left of v2. By comparing the construction of Yv and Z̃u

it is not hard to find an isomorphism Z̃u =Yv over X2 (i.e., such that θu = fv under
the isomorphism). Therefore when k = 2 the varieties produced by our construction
are the same as the ones constructed in [Kumar 1988, §1.1].

4. Proof of Theorem III

4.1. We will prove Theorem III in its symmetric form. After applying the sym-
metrization procedure from Section 2.7 (and replacing k+ 1 by k) we obtain:

Theorem 4.1.1 (symmetric form of Theorem III). Let w1, . . . , wk be elements of
the Weyl group W such that

∑
i `(wi )= N, and let λ1, . . . , λk be weights such that

wi · λi are dominant weights for i = 1, . . . , k, and
∑k

i=1 λi =−2ρ.

(a) If
⋂k

i=1[�wi ] = 1 then the cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ HN(X,KX) (4.1.2)

is surjective.

(b) If
⋂k

i=1[�wi ] = 0 then (4.1.2) is zero.

The proof of Theorem 4.1.1 is given in Section 4.3. We will use the following
common notation. For any sequence λ= (λ1, . . . , λk) of weights let Lλ be the line
bundle

Lλ := Lλ1 � · · ·�Lλk = pr∗1 Lλ1 ⊗ · · ·⊗ pr∗k Lλk

on Xk , where pri : X
k
→ X denotes projection onto the i-th factor.

4.2. Inductive lemma. Let λ = (λ1, . . . , λk) be a sequence of weights and v =

(v1, . . . , vk) a sequence of words. Let u be a sequence of words as in (3.1.1), i.e.,
u is a sequence of words obtained by dropping a simple reflection from the right of
a single member of v. The following lemma lets us propagate information about
the pullback map

HN+`(v)(Yv, f ∗v Lλ)
f ∗v
←− HN+`(v)(Xk,Lλ) (4.2.1)

on the top degree cohomology of Yv to information about an analogous pullback
map to the top degree cohomology of Yu. If v j = si1 · · · sim , so that we are dropping
sim from v j to get u j , we denote by µ the sequence

µ := (λ1, . . . , λ j−1, sim · λ j , λ j+1, . . . , λk).
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Finally, we assume that the degree of Lλ is negative on the fibers of the P1-fibration
πv,u : Yv→ Yu.

Lemma 4.2.2. Under the conditions above, the pullback map

HN+`(u)(Yu, f ∗u Lµ)
f ∗u
←− HN+`(u)(Xk,Lµ)

is (a) surjective, (b) zero, or (c) surjective on the space of G-invariants, if the
pullback map (4.2.1) has the corresponding property (a), (b), or (c).

Here “surjective on the space of G-invariants” means (in the case of Yv) that

HN+`(v)(Yv, f ∗v Lλ)G
f ∗v
←− HN+`(v)(Xk,Lλ)G

is surjective.

Proof. To reduce notation set

Mu = X j−1
×Mim ×Xk− j

and let π : Xk
→Mu be the map

π = (idX)
j−1
×πim × (idX)

k− j .

The fiber product diagram (3.1.2) relating Yv, Yu, Xk , and Mu is

Yv

fv
//

πv

��

�

Xk

π

��

Yu
h

//

σv

GG

Mu

(4.2.3)

where h = π ◦ fu and where we use πv and σv in place of πv,u and σv,u to reduce
notation.

Note that Lµ is the Demazure reflection of Lλ with respect to π . By Section 2.8
this means that we have natural isomorphisms

πv∗( f ∗v Lµ)∼= R1πv∗( f ∗v Lλ) and π∗Lµ ∼= R1π∗Lλ (4.2.4)

valid on Yu and Mu respectively. Diagram (4.2.3), the Leray spectral sequences
for Lλ and Lµ relative to π and πv, and the isomorphisms (4.2.4) then give the
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commutative diagram of cohomology groups:

HN+`(v)(Yv, f ∗v Lλ) HN+`(v)(Xk,Lλ)
f ∗v

(4.2.1)
oo

HN+`(v)−1(Yu,R1πv∗ f ∗v Lλ)

o Leray

HN+`(v)−1(Mu,R1π∗Lλ)
h∗

oo

o Leray

HN+`(v)−1(Yu, πv∗ f ∗v Lµ)

o (4.2.4)

HN+`(v)−1(Mu, π∗Lµ)
h∗

oo

o (4.2.4)

HN+`(v)−1(Yv, f ∗v Lµ)

o Leray

HN+`(v)−1(Xk,Lµ)
f ∗v

oo

o Leray

(4.2.5)

We conclude that the bottom pullback map

HN+`(v)−1(Yv, f ∗v Lµ)
f ∗v
←− HN+`(v)−1(Xk, f ∗v Lµ)

is surjective, zero, or surjective on the space of G-invariants if (4.2.1) is.
On Yv we have the exact sequence of bundles

0→ f ∗v Lµ(−Yu)→ f ∗v Lµ→ f ∗v Lµ|Yu → 0, (4.2.6)

where we consider Yu to be a divisor in Yv via the section σv. The degree of
f ∗v Lµ(−Yu) is at least −1 on the fibers of πv so the corresponding Leray spectral
sequence gives

HN+`(v)(Yv, f ∗v Lµ(−Yu)
)
= HN+`(v)(Yu, πv∗( f ∗v Lµ(−Yu))

)
= 0,

where the second cohomology group above equals zero by reason of dimension:

N+ `(v)= N+ `(u)+ 1= dim(Yu)+ 1.

The end of the long exact cohomology sequence associated to (4.2.6) is therefore

HN+`(v)−1(Yv, f ∗v Lµ)
σ ∗v
−→ HN+`(v)−1(Yu, f ∗v Lµ|Yu)→ 0. (4.2.7)

Since `(u)= `(v)−1, fu= fv ◦σv , and all maps are G-equivariant, we conclude
that the pullback map f ∗u , being the composite map

HN+`(u)(Xk,Lµ)
f ∗v
−→ HN+`(u)(Yv, f ∗v Lµ)

σ ∗v
−→ HN+`(u)(Yu, f ∗v Lµ|Yu)

= HN+`(u)(Yu, f ∗u Lµ),

is (a) surjective, (b) zero, or (c) surjective on the space of G-invariants, if the
pullback map f ∗v in (4.2.1) has the corresponding property (a), (b), or (c). �
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Remark. In part (c) of Lemma 4.2.2 we can replace the statement about G-
invariants with a statement about any isotypic component; the proof above goes
through without change. We will only need the case of G-invariants as part of the
proof of Theorem I in Section 5 below.

4.3. Proof of Theorem 4.1.1 and variation. For the rest of this section, we fix the
following notation. Letw1, . . . , wk and λ1, . . . , λk be as in Theorem 4.1.1. For each
i = 1, . . . , k set vi := w

−1
i w0 and λ′i := v

−1
i · λi . Let vi be a reduced factorization

of vi and let v = (v1, . . . , vk). Finally, set λ= (λ1, . . . , λk) and λ′ = (λ′1, . . . , λ
′

k).

Proof of Theorem 4.1.1. Since

dim(Yv)= N+
k∑

i=1

`(vi )= N+
k∑

i=1

(N− `(wi ))= kN= dim(Xk),

Corollary 3.7.5 implies that the degree of fv : Yv→ Xk is given by the intersection
number

⋂k
i=1[�wi ]. Therefore the pullback map

HkN(Yv, f ∗v Lλ′)
f ∗v
←− HkN(Xk,Lλ′)

is a surjection if
⋂k

i=1[�wi ] = 1 and is zero if
⋂k

i=1[�wi ] = 0: If
⋂k

i=1[�wi ] = 1
then fv is a birational map between the smooth varieties Yv and Xk in characteristic
zero, and so the pullback map

H j (Yv, f ∗v Lλ′)
f ∗v
←− H j (Xk,Lλ′)

is an isomorphism in all degrees, and in particular is a surjection in degree j = kN.
On the other hand, if

⋂k
i=1[�wi ] = 0 then the image Xv of fv is subvariety of

Xk of dimension strictly less than kN and therefore the pullback map f ∗v in top
cohomology, which factors through HkN(Xv,Lλ|Xv

)= 0, is the zero map.
Consider a sequence

v =: v0, v1, . . . , v(k−1)N
:=∅= (∅, . . . ,∅)

of sequences of words which reduces v to the empty sequence, and where at
each step v j+1 is obtained by dropping a simple reflection from the right of a
single member of v j . Set λ j

= (v j )−1
·λ where (by slight abuse of notation) v j is

considered as an element of Wk and the action is componentwise. Note that λ0
= λ′

and λ(k−1)N
= λ. The construction of v j and λ j implies that the degree of Lλ j is

negative on the fibers of the P1-fibration πv j ,v j+1 : Yv j → Yv j+1 .
Applying Lemma 4.2.2 to the pairs (v j , v j+1) for j = 0, . . . , (k− 1)N− 1 we

conclude that

HN(Y∅, f ∗∅Lλ)
f ∗∅
←− HN(Xk,Lλ) (4.3.1)
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is surjective if
⋂k

i=1[�wi ] = 1 and zero if
⋂k

i=1[�wi ] = 0. By construction f∅ :
Y∅=X→Xk is the diagonal embedding of X into Xk and the pullback map (4.3.1)
is the cup-product map. This proves Theorem 4.1.1 and completes the proof of
Theorem III. �

We record a statement that will be used in the proof of Theorem I below.

Proposition 4.3.2. If the pullback map

HkN(Yv, f ∗v Lλ′)
f ∗v
←− HkN(Xk,Lλ′)

is surjective on the space of G-invariants then the cup-product map (4.1.2) is
surjective.

Proof. We repeat the inductive reduction in the proof of Theorem 4.1.1 above with
part (c) of Lemma 4.2.2 in place of parts (a) and (b). As a result we conclude
that the cup-product map (4.1.2) is surjective on the space of G-invariants. Since
HN(X,KX) is the trivial G-module we conclude that (4.1.2) is surjective. �

5. Proof of Theorem I and corollaries

In this section we use Theorem III and Proposition 4.3.2 to prove Theorem I. The
proof that (1.2.1) is necessary for the surjectivity of the cup-product map appears
in Section 5.1 and the proof that (1.2.1) is sufficient appears in Section 5.3.

5.1. Proof that 8w =
⊔k

i=18wi is a necessary condition for surjectivity. We
assume the notation of Section 1.2, and set µi = wi · λi for i = 1, . . . , k, and
µ = w · λ. By assumption the weights µ1, . . . , µk , and µ are dominant. By the
Borel–Weil–Bott theorem each H`(wi )(X,Lλi )= V∗µi

and Hd(X,Lλ)= V∗µ.
Since w−1

i µi = w
−1
i ·µi −w

−1
i · 0 and w−1µi = w

−1
·µi −w

−1
· 0, we have

k∑
i=1

w−1
i µi −w

−1µ=

( k∑
i=1

w−1
i ·µi −w

−1
·µ

)
−

( k∑
i=1

w−1
i · 0−w

−1
· 0
)
.

Furthermore
∑k

i=1w
−1
i ·µi −w

−1
·µ=

∑
λi − λ= 0 and so the equation above

becomes
k∑

i=1

w−1
i µi −w

−1µ=−

( k∑
i=1

w−1
i · 0−w

−1
· 0
)
. (5.1.1)

If the cup-product map H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ Hd(X,Lλ) is

surjective, then (after dualizing) Vµ must be a component of the tensor product
Vµ1 ⊗ · · ·⊗Vµk and by Theorem III(b), the intersection

⋂k
i=1[�wi ] · [Xw] 6= 0 in

H∗(X,Z); we may therefore apply Theorem 3.9.1.
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By Theorem 3.9.1(a) the left hand side of (5.1.1) belongs to spanZ>01
+ and

by part (c) of the same theorem the right hand side belongs to spanZ601
+. We

conclude that both sides are zero and so, by Theorem 3.9.1(d), 8w =
⊔k

i=18wi .
�

Remark. In the first half of the argument above, the hypothesis that the cup-
product map is surjective was used, along with Theorem III, to conclude that Vµ is a
component of Vµ1⊗· · ·⊗Vµk and

⋂k
i=1[�wi ] · [Xw] 6= 0. If, on the other hand, we

assume the latter two conditions then the second half of the argument still applies
to give 8w =

⊔k
i=18wi . We will use this observation in Corollary 5.4.7 below.

5.2. Setup for the proof of sufficiency. For convenience, we collect some of the
consequences of condition (1.2.1) in its symmetric form which have effectively
appeared in previous arguments, and which we will use in the proof of sufficiency.

Proposition 5.2.1. Suppose that w1, . . . , wk are elements of the Weyl group such
that 1+ =

⊔k
i=18wi .

Combinatorial Consequences:

(a)
∑k

i=1w
−1
i · 0=−2ρ.

(b) Suppose that λ1, . . . , λk are weights such that
∑
λi =−2ρ, and set µi =wi ·λi

for i = 1, . . . , k. Then
∑k

i=1w
−1
i µi = 0.

Geometric Consequences: For each i = 1, . . . , k, let vi = w
−1
i w0 and let vi be a

word which is a reduced factorization of vi . We set v = (v1, . . . , vk) and construct
as usual the variety Yv and the map fv : Yv→ Xk .

Then

(c) deg( fv) 6= 0.

(d) The weight of the relative canonical bundle KYv/KXk at pv is zero.

Proof. Part (a) is immediate from the condition1+=
⊔k

i=18wi and formula (2.2.4).
Part (b) reverses the argument used to arrive at (5.1.1) in Section 5.1:

k∑
i=1

µ−1µi =

( k∑
i=1

w−1
i ·µi

)
−

( k∑
i=1

w−1
i · 0

)
=

k∑
i=1

λi − (−2ρ)= 0.

Part (c) is Corollary 3.7.5 combined with Lemma 2.6.1. Part (d) is the symmetric
version of the computation in the proof of Theorem 3.9.1(d): the weight of the
relative canonical bundle KYv/Xk at pv is

∑k
i=1w

−1
i · 0 + 2ρ, which is zero by

part (a). �
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5.3. Proof that8w=
⊔k

i=18wi is a sufficient condition for surjectivity. Consider
the symmetric version of the problem as in Section 2.7. It suffices to show the
surjectivity of a cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ HN(X,KX), (5.3.1)

wherew1, . . . , wk are elements of the Weyl group such that
∑
`(wi )=N, λ1, . . . ,λk

are weights such that wi · λi ∈ 3
+ for i = 1, . . . , k and

∑
λi = −2ρ. After this

reduction condition (1.2.1) becomes 1+ =
⊔k

i=18wi . We recall the notation from
Section 4.3: vi := w

−1
i w0, λ′i := v

−1
i · λi , vi is a reduced factorization of vi ,

v = (v1, . . . , vk), and λ′ = (λ′1, . . . , λ
′

k).
By Proposition 4.3.2, to show the surjectivity of (5.3.1) it is enough to show that

the pullback map

HkN(Yv, f ∗v Lλ′)G
f ∗v
←− HkN(Xk,Lλ′)G (5.3.2)

on the space of G-invariants is surjective. We will show that both spaces of G-
invariants are one-dimensional, and that the induced map is an isomorphism. Note
that by Proposition 5.2.1(c) deg( fv) 6= 0 and so fv is surjective.

The pullback map on top cohomology is Serre dual to the trace map:

H0(Yv, ( f ∗v Lλ′)∗⊗KYv
)=H0(Yv, f ∗v (L

∗

λ′⊗KXk )⊗KYv/Xk
) Tr fv
−−→H0(Xk,L∗λ′⊗KXk ).

Let s∈H0(Yv,KYv/Xk )G be the nonzero G-invariant section giving the map f ∗v KXk→

KYv
induced by fv. The composition

H0(Xk,L∗λ′⊗KXk )
f ∗v
−→H0(Yv, f ∗v (L

∗

λ′ ⊗KXk )
) ·s
−→H0(Yv, f ∗v (L

∗

λ′ ⊗KXk )⊗KYv/Xk
)

Tr fv
−−→ H0(Xk,L∗λ′ ⊗KXk )

of pullback, multiplication by s, and the trace map is multiplication by deg( fv),
which is nonzero. This gives us the inequality

dim H0(Xk,L∗λ′ ⊗KXk )G 6 dim H0(Yv, f ∗v (L
∗

λ′ ⊗KXk )⊗KYv/Xk
)G (5.3.3)

and shows that in order to prove that the trace map induces an isomorphism on
G-invariants it is sufficient to prove that we have equality of dimensions in (5.3.3).

Set µi =wi ·λi =w0 ·λ
′

i for i = 1, . . . , k. By the Borel–Weil–Bott Theorem we
have HkN(Xk,Lλ′)=V∗µ1

⊗· · ·⊗V∗µk
and so (by Serre duality) H0(Xk,L∗λ′⊗KXk )=

Vµ1 ⊗ · · · ⊗Vµk . Now set νi = −w0µi for i = 1, . . . , k so that Vνi = V∗µi
and let

ν = (ν1, . . . , νk). By the calculation

S(λ′i )=−λ
′

i − 2ρ =−w0 ·µi − 2ρ =−(w0µi − 2ρ)− 2ρ =−w0µi



802 Ivan Dimitrov and Mike Roth

in each coordinate factor (as in Section 2.5), we conclude that L∗λ′ ⊗KXk = Lν .
The weight of Lν at q := fv(pv)= (v1, . . . , vk) is

−

k∑
i=1

viνi =

k∑
i=1

(w−1
i w0)(w0µi )=

k∑
i=1

w−1
i µi = 0,

where the last equality is due to Proposition 5.2.1(b). Since by Proposition 5.2.1(d)
the weight of KYv/Xk at pv is zero, the weight of f ∗v Lν ⊗KYv/Xk at pv in Yv is also
zero and hence

dim H0(Yv, f ∗v Lν ⊗KYv/Xk )G 6 1

by Lemma 3.8.1(c). On the other hand, Lemma 2.3.1 implies that

(Vµ1 ⊗ · · ·⊗Vµk )
G
6= 0

so we conclude that dim H0(Xk,Lν)G > 1. This gives us

16 dim H0(Xk,Lν)G 6 dim H0(Yv, f ∗v Lν ⊗KYv/Xk )G 6 1.

Therefore the inequality in (5.3.3) is an equality, and the cup-product map in (5.3.1)
is surjective. �

5.4. Corollaries of Theorem I and its proof.

Corollary 5.4.1. The cup-product map

H0(X,Lλ1)⊗Hd(X,Lλ2)→ Hd(X,Lλ1 ⊗Lλ2)

is surjective whenever both sides are nonzero.

Proof. If w2 is the element of the Weyl group so that w2 ·λ2 > 0 then the conditions
that λ1 is dominant and that Lλ1+λ2 has cohomology in the same degree d as Lλ2

imply that w2 · (λ1+ λ2)> 0, and so the corollary follows from Theorem I and the
obvious statement that 8w2 =8w2 t8e. �

Corollary 5.4.2 (compatibility with Leray spectral sequence). Suppose that λ1, λ2,
and λ= λ1+ λ2 are regular weights and that the cup-product map

Hd1(X,Lλ1)⊗Hd2(X,Lλ2)
∪
−→ Hd(X,Lλ)

is nonzero. Let P be any parabolic subgroup of G containing B, and

π : X→M := G/P
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be the corresponding projection. Then the cup-product map on X factors as a
composition

Hd1(X,Lλ1)⊗Hd2(X,Lλ2)
∪X

// Hd(X,Lλ)

Hd1−i (M,Ri
π∗Lλ1)⊗Hd2− j (M,R j

π∗Lλ2)

∪M

))

Hd−i− j (M,Ri+ j
π∗ Lλ)

Hd−i− j (M,Ri
π∗Lλ1 ⊗R j

π∗Lλ2)

∪π

77

of the cup product on M followed by the map induced on cohomology by the relative
cup-product map Ri

π∗Lλ1⊗R j
π∗Lλ2→Ri+ j

π∗ Lλ on the fibers of π . A similar statement
holds for the cup product of an arbitrary number of factors.

Proof. The factorization statement amounts to a numerical condition on the coho-
mology degrees of the line bundles on the fibers of π ensuring that the cup-product
map is computed by the map on E2-terms of the Leray spectral sequence. This
numerical condition is immediately implied by (1.2.1). We explain this in more
detail below.

Set L = Lλ1 � Lλ2 on X× X and consider the following factorization of the
diagonal map δX : X ↪→ X×X:

X

π

��

� � s
// X×M X �

� t
//

ψ

��
�

X×X

π×π

��

M M �
� δM

// M×M

(5.4.3)

The cup-product map then factors as

Hd(X,Lλ)
s∗
←− Hd(X×M X, t∗L)

t∗
←− Hd1(X,Lλ1)⊗Hd2(X,Lλ2)= Hd(X×X,L) (5.4.4)

and we claim that (5.4.4) induces the factorization claimed above.
By the Borel–Weil–Bott theorem applied to the fibers of π , for each of the

line bundles Lλ1 , Lλ2 , and Lλ there is precisely one degree for which the higher
direct image sheaf is nonzero. Suppose i is the degree such that Ri

π∗Lλ1 6= 0, j
is the degree such that R j

π∗Lλ2 6= 0, and k is the degree such that Rk
π∗Lλ 6= 0.

The Leray spectral sequence for the cohomology of these bundles degenerates
at the E2 term and we have the isomorphisms Hd1(X,Lλ1) = Hd1−i (M,Ri

π∗Lλ1),
Hd2(X,Lλ2)= Hd2− j (M,R j

π∗Lλ2), and Hd(X,Lλ1)= Hd−k(M,Rk
π∗Lλ).
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Since Ri+ j
π×π∗L= Ri

π∗Lλ1 �R j
π∗Lλ2 is a vector bundle on M×M, the theorem on

cohomology and base change gives us

Ri+ j
ψ∗ t∗L= δ∗M(R

i
π∗Lλ1 �R j

π∗Lλ2)= Ri
π∗Lλ1 ⊗R j

π∗Lλ2 on M,

and therefore we have Hd(X×MX, t∗L)=Hd−i− j (M,Ri
π∗Lλ1⊗R j

π∗Lλ2). The Leray
spectral sequences for L and t∗L with respect to ψ and π×π also degenerate at the
E2-terms and have nonzero terms in the same degree. The discussion in Section 2.9
implies that the map on E2-terms computes the pullback map t∗. Therefore t∗ in
(5.4.4) is equal to the map

Hd−i− j (M,Ri
π∗Lλ1 ⊗R j

π∗Lλ2)
δ∗M
←− Hd1−i (M,Ri

π∗Lλ1)⊗Hd2− j (M,R j
π∗Lλ2),

which shows that t∗ is the first part of the factorization claimed.
We now study s∗. The map s includes X as the relative diagonal of X×M X

over M. It follows that s∗ induces the relative cup-product map on the higher direct
image sheaves of t∗L and Lλ. Therefore the map associated to s∗ on the E2-terms
of the Leray spectral sequences for t∗L and Lλ is given by the relative cup-product
map

Hd−i− j (M,Ri+ j Lλ)= Hd−i− j (M,Ri+ j (Lλ1 ⊗Lλ2))
∪π
←− Hd−i− j (M,Ri

π∗Lλ1 ⊗R j
π∗Lλ2).

All that is needed to demonstrate the factorization claimed is to demonstrate the
condition k = i + j which ensures the map on the associated graded pieces in the
E2-terms agrees with the global map on the cohomology groups (see Section 2.9).

Suppose that w1, w2, and w are the elements of the Weyl group such that w1 ·λ1,
w2 · λ2, and w · λ are dominant. Then

k = #(8w ∩−1P), i = #(8w1 ∩−1P), j = #(8w2 ∩−1P),

where the symbol # indicates the cardinality of a set. The condition k = i + j
guaranteeing the factorization thus amounts to the condition

#(8w ∩−1P)= #(8w1 ∩−1P)+ #(8w2 ∩−1P). (5.4.5)

Since the original cup-product map was assumed surjective we must have 8w =
8w1 t8w2 by Theorem I; this immediately implies that (5.4.5) holds. �

Corollary 5.4.6. Suppose that w1, . . . , wk are elements of the Weyl group such that
1+=

⊔k
i=18wi , and that µ1, . . . , µk are dominant weights satisfying the condition∑k

i=1w
−1
i µi = 0. Then dim(Vµ1 ⊗ · · ·⊗Vµk )

G
= 1.

Proof. Set λi = w
−1
i · µi for i = 1, . . . , k. Then

∑
λi = −2ρ and we have a

cup-product problem as in (5.3.1). As part of the proof of Theorem I in Section 5.3
it was established that dim(Vµ1 ⊗ · · ·⊗Vµk )

G
= 1. Alternatively, the corollary is
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simply Theorem 3.9.1(b) applied in symmetric form, with Lemma 2.6.1 used to
ensure that the hypotheses of the theorem are satisfied. �

Corollary 5.4.7. Suppose that we have a cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ Hd(X,Lλ)

and, as above, Weyl group elements w1, . . . , wk , and w such that µi := wi · λi ,
i = 1, . . . , k, and µ :=w ·µ are dominant weights. Then if

⋂k
i=1[�wi ]·[Xw] 6= 0 the

cup-product map is surjective if and only if Vµ is a component of Vµ1 ⊗ · · ·⊗Vµk .

Proof. If Vµ is not a component of the tensor product the map is clearly not
surjective. Conversely, if Vµ is a component, the assumption on the intersection
number and the argument in Section 5.1 for the necessity of condition (1.2.1) show
that 8w =

⊔k
i=18wi , and therefore we conclude that the map is surjective by the

sufficiency of condition (1.2.1). �

The following example illustrates Corollary 5.4.7 and provides an example which
shows that condition (1.2.1) is not necessary in order to have a cup-product problem
for which both sides are nonzero.

Example 5.4.8. Let G = SL6 and w1 = w2 = s2s4s3. For any integers ai , bi > 0
(i = 1, 2) set

µi=(0, ai , 0, bi , 0) and λi=w
−1
i ·µi=(ai+1, bi+1,−4−ai−bi , ai+1, bi+1).

(The weights are written in terms of the fundamental weights of SL6.) Finally, let
w = s1s3s5s2s4s3 and set

µ= w · (λ1+ λ2)= (0, a1+ a2+ 1, 0, b1+ b2+ 1, 0) ∈3+.

We therefore get a cup-product problem:

H3(X,Lλ1)⊗H3(X,Lλ2)
∪
−→ H6(X,Lλ1+λ2).

By Theorem I, this cup product cannot be surjective, since 8w1 =8w2 ; alterna-
tively, the map cannot be surjective since Vµ is clearly not a component of Vµ1⊗Vµ2 .
The intersection number ([�w1] ∩ [�w2]) ·Xw is two.

Corollary 5.4.9. If 1+ =
⊔k

i=18wi then for any subset I⊆ {1, . . . , k} there is an
element w of the Weyl group such that 8w =

⊔
i∈I8wi .

Proof. Let λi = w
−1
i · 0 so that we get a cup-product problem as in (5.3.1). (Here

each H`(wi )(X,Lλi ) is the trivial G-module). By Theorem I and the assumption on
w1, . . . , wk this cup product is surjective. It can be factored by first taking the cup
product of any subset I ⊆ {1, . . . , k} of the factors and the resulting cup-product
problem must also be nonzero since the larger problem is. Hence by Theorem I
there is a w ∈W with w ·

(∑
i∈I λi

)
∈3+ and such that 8w =

⊔
i∈I8wi . �
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5.5. Comments. (1) Corollary 5.4.9 can also be proved independently of any of
the constructions in this paper by using a similar argument in nilpotent cohomology.
We are grateful to Olivier Mathieu for pointing this out to us.

(2) Using the result of Corollary 5.4.9 and induction, to prove Theorem I it is
sufficient to prove it in the case k = 2 of the cup product of two cohomology
groups into a third. We have chosen to develop the description of the varieties
Yv for arbitrary k partly since this is the natural generality of the construction,
partly because it makes no difference in our proofs, but also because some of the
applications (e.g., the multiplicity bounds) do not follow by induction. Note that
by the methods of this paper, even to prove the case k = 2 of the cup product it
would be necessary to consider the case of the cup product of three factors into
HN(X,KX), and hence we would need the construction of Yv for three factors.

(3) As Example 5.4.8 shows, the natural numerical condition `(w1)+`(w2)= `(w)

does not imply condition (1.2.1) even if there is a nontrivial cup-product problem
corresponding to w1, w2, and w. On the other hand, condition (5.4.5) imposes
further necessary numerical conditions for (1.2.1). Namely,

`(wP
1 )+ `(w

P
2 )= `(w

P) for every parabolic subgroup P⊇ B of G, (5.5.1)

wherewP
1 ,wP

2 ,wP denote the minimal length representatives inw1WP,w2WP,wWP.
In the case when G= SLn+1 one can show that condition (5.5.1) is sufficient for
(1.2.1). The simple inductive argument relies on the fact that if G = SLn+1 it is
possible to assign a parabolic Pα ⊃ B to every root α ∈1+ in such a way that −α
is a root of Pα but not a root of any proper parabolic subgroup of Pα containing B.
We do not know if (5.5.1) is sufficient to imply (1.2.1) for general G.

(4) Corollary 5.4.2 establishes the following factorization property: any nonzero
cup-product map on X factors as a cup product on G/P and fibers of π : X→ G/P
for all P⊃B. We know of no a priori reason why this should hold. The factorization
property is equivalent to (5.4.5) holding for all P⊃ B which is equivalent to (5.5.1).
Hence, in the case G= SLn+1 the factorization property is equivalent to (1.2.1).

6. Cohomological components and proof of Theorem II

6.1. Conditions on components of tensor products. We begin by introducing two
relevant conditions. We also recall the notion of generalized PRV component from
Section 2.3 for convenience.

Definitions 6.1.1. Suppose that µ1, . . . , µk , and µ are dominant weights.

(a) We say that Vµ is a generalized PRV component of Vµ1 ⊗ · · · ⊗Vµk if there
exist w1, . . . , wk , and w in W such that w−1µ=

∑k
i=1w

−1
i µi .
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(b) We say that Vµ is a component of stable multiplicity one of Vµ1 ⊗ · · ·⊗Vµk if
we have dim(Vmµ1 ⊗ · · ·⊗Vmµk ⊗V∗mµ)

G
= 1 for all m� 0.

(c) We say that Vµ is a cohomological component of Vµ1 ⊗ · · · ⊗Vµk if there
exist w1, . . . , wk , and w in W such that w−1µ=

∑k
i=1w

−1
i µi and such that

8w =
⊔k

i=18wi .

Under the hypothesis that 8w =
⊔k

i=18wi , the condition w−1µ=
∑k

i=1w
−1
i µi

is equivalent to the condition w−1
·µ =

∑k
i=1w

−1
i ·µi . Therefore by Theorem I

condition (c) is equivalent to having a surjective cup-product map

H`(w1)(X,Lw−1
1 ·µ1

)⊗ · · ·⊗H`(wk)(X,Lw−1
k ·µk

)
∪
−→ H`(w)(X,Lw−1·µ)

which, after dualizing, gives an injective map

Vµ→ Vµ1 ⊗ · · ·⊗Vµk .

In other words, we obtain a construction of Vµ as a component of Vµ1 ⊗ · · ·⊗Vµk

realized through the cohomology of X.
Note that the conditions in Definitions 6.1.1 are homogeneous: if Vµ is a gener-

alized PRV component, a component of stable multiplicity one, or a cohomological
component of Vµ1 ⊗ · · · ⊗Vµk then the same is true of Vmµ as a component of
Vmµ1 ⊗ · · ·⊗Vmµk for all m > 1. This follows immediately from the definitions.

6.2. Proof of Theorem II(a) and restatement of Theorem II(b).

Proof of Theorem II(a). Every cohomological component has multiplicity one by
Theorem 3.9.1(b) (the condition on nonzero intersection holds by the nonsymmetric
version of Lemma 2.6.1). By homogeneity we conclude that homological compo-
nents are of stable multiplicity one. From Definitions 6.1.1(a, c) it is clear that every
cohomological component is a generalized PRV component. Thus every cohomo-
logical component is a generalized PRV component of stable multiplicity one. �

For the proof of part (b) it will be more convenient to work with the symmetric
form of the problem. Applying the symmetrization procedure from Section 2.7
(and replacing k+ 1 by k) we obtain the following reformulation of Theorem II(b).

Proposition 6.2.1. Let µ1, . . . , µk be dominant weights such that

dim(Vmµ1 ⊗ · · ·⊗Vmµk )
G
= 1 for m� 0

and suppose that we have elements w1, . . . , wk such that
∑
w−1

i µi = 0. Then in
either of the following two cases:

(i) at least one of µ1, . . . , µk is strictly dominant,

(ii) G is a classical simple group or product of classical simple groups,
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there exist w1, . . . , wk ∈W such that

k∑
i=1

w−1
i µi = 0 and 1+ =

k⊔
i=1

8wi . (6.2.2)

The proof of Proposition 6.2.1 will be given in Section 6.8 after some preliminary
reduction steps.

For the rest of this section we assume that we have fixed dominant weights
µ1, . . . , µk and Weyl group elements w1, . . . , wk satisfying the conditions of
Proposition 6.2.1.

6.3. Outline of the proof of Proposition 6.2.1. For i = 1, . . . , k, let Pi be the
parabolic subgroup of G such that Lµi is the pullback to X of an ample line bundle
Lµ̃i on G/Pi . Set M= G/P1× · · ·×G/Pk and L= Lµ̃1 � · · ·�Lµ̃k . The condition
that dim(Vmµ1⊗· · ·⊗Vmµk )

G
= 1 for all m� 1 implies that the GIT quotient M//G

with respect to L is a point.
If w1, . . . , wk are elements such that

∑k
i=1w

−1
i µi = 0 then by Lemma 2.11.1,

the point q = (w−1
1 , . . . , w−1

k ) is a semistable point of M with a closed orbit. Let
H⊆ G be the stabilizer subgroup of q, and Nq be the normal space to the orbit at
q . By the Luna slice theorem and the fact that the GIT quotient M//G is a point we
conclude that Sym·(Nq)

H is one-dimensional.
The explicit combinatorial formula for the weights appearing in Nq shows that a

necessary condition for a solution of (6.2.2) to exist is that there is v ∈W such that
the weights of vNq are contained in 1−. In Proposition 6.6.1 below we formulate
a condition which, together with the necessary condition above, guarantees the
existence of a solution of (6.2.2). Together these two conditions are equivalent to
the existence of a parabolic subalgebra p with reductive part Lie(H) such that the
weights of Nq are contained in p.

Finally, we use the restriction that Sym·(Nq)
H is one-dimensional to show the

existence of such a parabolic subalgebra when G is a classical group, or for any
semisimple group G under a genericity condition.

6.4. Stabilizer subgroup of a semistable T-fixed point. Let Pi be the parabolic
with roots 1Pi = {α ∈ 1 | κ(α, µi ) > 0}, and let Mi = G/Pi . The stabilizer
subgroup of the point w−1

i in Mi is w−1
i Piwi , whose roots are

1w−1
i Piwi

=
{
α ∈1 | κ(wiα,µi )> 0

}
=
{
α ∈1 | κ(α,w−1

i µi )> 0
}
. (6.4.1)

Let M=M1×· · ·×Mk and let q be the point q= (w−1
1 , . . . , w−1

k ) of M. We set H=⋂k
i=1w

−1
i Pwi to be the stabilizer subgroup of q. The condition

∑k
i=1w

−1
i µi = 0

in combination with (6.4.1) shows that the roots of H are given by

1H =
{
α ∈1 | κ(α,w−1

i µi )= 0 for i = 1, . . . , k
}
. (6.4.2)
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We conclude from (6.4.2) that H is a reductive subgroup of G. Noting that T⊆ H,
the following lemma is another immediate consequence of (6.4.2).

Lemma 6.4.3. We have H= T if and only if the span of {w−1
i µi }

k
i=1 intersects the

interior of some Weyl chamber. This happens, for instance, if any one of the weights
µi is strictly dominant.

6.5. Torus action at fixed points of M and combinatorial deductions. Let Wi =

{w ∈W | wµi = µi } ⊆W be the stabilizer subgroup of µi ; this is the Weyl group
of Pi . We will need the formula for the formal character of the tangent space of Mi

at a torus fixed point. Because of the way that the inverses of group elements enter
into our formulas we make the following convention: For any element w of W and
any i we let ws(i) and wl(i) be respectively the shortest and longest elements in the
coset Wiw. Recall also that for 8⊆1, 〈8〉 denotes the formal character

∑
α∈8 eα .

With this convention, if wi is any element of W , the formal character of the
tangent space of Mi at the torus fixed point corresponding to the coset w−1

i Wi is

Ch(Tw−1
i

Mi )= 〈8wi,s(i)〉+ 〈−8
c
wi,l(i)
〉 =

〈
{α ∈1 | κ(α,w−1

i µi ) < 0}
〉
.

The formal character of the tangent space of M at q is therefore

Ch(TqM)=
k∑

i=1

(
〈8wi,s(i)〉+ 〈−8

c
wi,l(i)
〉
)
=

k∑
i=1

〈
{α∈1 |κ(α,w−1

i µi )<0}
〉
. (6.5.1)

Note that the multiplicity of each root α in the equations above is the number of i
for which κ(α,w−1

i µi ) < 0.
If α 6∈ 1H then there is some i for which κ(α,w−1

i µi ) 6= 0 and hence, by the
condition

∑k
i=1w

−1
i µi = 0, there is some i for which κ(α,w−1

i µi )< 0, i.e., α must
appear as a weight in TqM. By looking at the positive roots of TqM we therefore
conclude that

(1+ \1+H)=
⋃
8wi,s(i) . (6.5.2)

Let Oq be the G-orbit of q in M. Since H is the stabilizer of q, the formal
character of the tangent space TqOq is

Ch(TqOq)= 〈1
+
\1+H〉+ 〈1

−
\1−H〉. (6.5.3)

If Nq = TqM/TqOq is the normal space to the orbit at q , then the union in (6.5.2)
is disjoint if and only if the formal character of Nq contains no positive root.

Let M be the subspace of g spanned by the root spaces corresponding to the roots
appearing in Nq . Comparing the multiplicities in (6.5.1) and (6.5.3) we conclude
that the roots of M are

1M =
{
α ∈1 | κ(α,w−1

i µi ) < 0 for at least two i ∈ {1, . . . , k}
}
. (6.5.4)
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Let s= Lie(H); equations (6.5.4) and (6.4.2) show that M is an s-submodule of g.
The point q is not the only torus fixed point in its orbit; for any v ∈W we can

act on the left to get the torus fixed point vq = (vw−1
1 , . . . , vw−1

k ). The weights of
the normal space Nvq to the G-orbit at vq are the result of acting on the weights of
Nq by v and are hence the roots appearing in Ch(vM).

Repeating the previous arguments with the new point vq and the new stabilizer
group vHv−1

= Stab(vq), gives the following result.

Lemma 6.5.5. For any v ∈W we have

(1+ \1+
vHv−1)=

k⊔
i=1

8(wiv−1)s(i)

if and only if vM⊆ b−.

6.6. Reduction to the existence of pM.

Proposition 6.6.1. Suppose that there exists v ∈W satisfying the conditions

(i) vM⊆ b−,

(ii) there is an element w ∈W such that 8w =1+vHv−1 .

Then there exist w1, . . . , wk ∈W such that
∑k

i=1w
−1
i µi = 0 and 1+ =

⊔k
i=18wi .

Proof. By condition (i) and Lemma 6.5.5 we have (1+\1+
vHv−1)=

⊔k
i=18(wiv−1)s(i) .

Set w̃k+1 =w, µk+1 = 0, and w̃i = (wiv
−1)s(i) for i = 1, . . . , k. Conditions (i) and

(ii) above and the original assumption about w1, . . . , wk imply
k+1∑
i=1

w̃−1
i µi = 0 and 1+ =

k+1⊔
i=1

8w̃i . (6.6.2)

Equation (6.6.2) and Theorem I show that there is a surjective cup-product map

H`(w̃1)(X,Lw̃−1
1 ·µ1

)⊗ · · ·⊗H`(w̃k+1)(X,Lw̃−1
k+1·µk+1

)
∪
−→ HN(X,KX).

Since H`(w̃k+1)(X,Lw̃−1
k+1·µk+1

) is the trivial module, if we factor the map above
by cupping the k-th and (k+1)-st factors together first, we obtain a surjective
cup-product map onto HN(X,KX) only involving the modules V∗µ1

, . . . ,V∗µk
. By

invoking Theorem I again we conclude that there are w1, . . . , wk such that
k∑

i=1

w−1
i µi = 0 and 1+ =

k⊔
i=1

8wi , (6.6.3)

proving Proposition 6.6.1. �

Remark. If there do existw1, . . . , wk satisfying the conclusion of Proposition 6.2.1
it is not hard to show that there must exist v ∈W so that (i) of Proposition 6.6.1
holds. As a consequence of our method of proof we see a posteriori that there must
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be a v so that both (i) and (ii) hold when G is a classical group or under a genericity
condition. We do not know if condition (ii) is necessary in general.

It is useful to rephrase the conditions of Proposition 6.6.1 in terms of the existence
of a particular parabolic subalgebra pM.

Lemma 6.6.4. Let s = Lie(H). Suppose that there exists a parabolic subalgebra
pM with reductive part s such that M ⊆ pM. Then conditions (i) and (ii) of
Proposition 6.6.1 hold.

Proof. Let pM be such a parabolic subalgebra. Acting by an element v ∈W we
can conjugate pM so that b− ⊆ vpM. This implies that vM⊆ b−. Since vs is the
radical of a parabolic subalgebra containing b−, if w is the longest element of the
Weyl group of vs then 8w =1+vs =1

+

vHv−1 . �

Remark. If there exists v ∈W such that condition (ii) of Proposition 6.6.1 holds
then one can show that p := b−+ vs is a parabolic subalgebra of g. If condition
(i) also holds for this v then pM := v

−1p is a parabolic subalgebra satisfying
the conditions of Lemma 6.6.4. Therefore the existence of the parabolic pM is
equivalent to the conditions in Proposition 6.6.1. Since we will not need this
direction of the equivalence we omit the justification of the first assertion.

6.7. GIT consequences of the stable multiplicity one condition. Let L be the line
bundle on M whose pullback to Xk is Lµ1�· · ·�Lµk . Then L is a G-equivariant ample
line bundle on M. By the stable multiplicity one condition we have dim(M,Lm)G=1
for all m� 1, and so the GIT quotient M//G is a point.

The weight of L at q is
∑k

i=1w
−1
i µi = 0. By Lemma 2.11.1 this means that q

is a semistable point with a closed orbit. By the Luna slice theorem [1973, théorèm
du slice étale, p. 97], Spec(Sym(N ∗q )H) and the image of q in the GIT quotient
M//G have a common étale neighborhood. Hence dim(Nq/H)= dim(M//G)= 0,
i.e., dim Sym·(N ∗q )H = 1. Passing to the level of Lie algebras and dualizing we
obtain dim Sym·(Nq)

s
= 1.

Since M is isomorphic to an s-submodule of Nq we arrive at the following
consequence of the stable multiplicity one condition:

Lemma 6.7.1. Under the hypotheses of Proposition 6.2.1 and with the notation
of Section 6.5, we have dim Sym·(M)s = 1, i.e., Sym·(M)s consists of just the
constants.

6.8. Proof of Proposition 6.2.1. By Proposition 6.6.1 and Lemma 6.6.4, to prove
Proposition 6.2.1 it is enough to show the existence of the parabolic subalgebra pM.
By Lemma 6.7.1 we may assume that dim Sym·(M)s = 1.

Proof of 6.2.1(i). If any one of the weights µ1, . . . , µk is strictly dominant, or more
generally, if the span of {w−1

i µi }
k
i=1 intersects the interior of some Weyl chamber,
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then by Lemma 6.4.3 H = T and so s = Lie(T) = t and 1+t = ∅. The condition
that dim(Sym·(M)t) = 1 is then equivalent to the condition that no nontrivial
nonnegative combination of weights of M is zero. Hence by Farkas’s lemma the
weights of M all lie strictly on one side of a hyperplane and the cone dual to the
cone they span is open. We may therefore pick a weight in the interior of the dual
cone which is not on any hyperplane of the Weyl chambers. The roots lying on the
positive side of this hyperplane give the parabolic subalgebra pM. �

Proof of Proposition 6.2.1(ii). Equation (6.4.2) shows that the roots of s are given
by the vanishing of linear forms and hence s is the reductive part of a parabolic
subalgebra. Let a be the center of s. For any ν ∈ a∗ \ {0} set

gν =
{

x ∈ g | [t, x] = ν(t)x for all t ∈ a
}
.

Following Kostant [2010], we call ν ∈ a∗\{0} an a-root if gν 6= 0. Let R be
the set of a-roots of g and S the subset of those a-roots appearing in M, so that
M=

⊕
ν∈S g

ν .
A subset R′ of R is called saturated if whenever ν ∈R′ and rν ∈R for some

r ∈Q+ then rν ∈R′ as well. It follows from (6.5.4) that S is a saturated subset of R.
As part of the main theorem of [Dimitrov and Roth 2017] we establish the

following result.2

Theorem. Let g be a classical Lie algebra, s be a subalgebra which is the reductive
part of a parabolic subalgebra of g , S be a saturated subset of the a-roots R, and
M =

⊕
ν∈S g

ν . If dim(Sym·(M))s = 1, then there exists a parabolic subalgebra
pM ⊆ g, with reductive part s, such that M⊆ pM.

Thus when G is a simple classical group or a product of simple classical groups,
the above theorem along with the previous reductions establish Proposition 6.2.1
and finish the proof of Theorem II. �

List of symbols⊔k
i=1 disjoint union

κ( · , · ) the Killing form of G
3, 3+ weight lattice and cone of dominant weights
Vµ irreducible G-module of highest weight µ
mult(Vµ,V) the multiplicity of Vµ in V
{α1, . . . , αn} base of simple roots of B
W Weyl group of g

2The proof is rather technical, and involves a case-by-case analysis of the different types, a
characterization of the desired parabolics in terms of certain linearly ordered data, and an argument
that the hypothesis dim(Sym·(M))s = 1 allows one to take a partial order constructed from S and
extend it to a linear one.
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w · λ w(λ+ ρ)− ρ, the result of the affine action of w ∈W on λ ∈3
si simple reflection along αi

Pαi the minimal parabolic subgroup of G associated to αi

PI the minimal parabolic subgroup of G associated to a set I of
simple roots

WP the Weyl group of a parabolic subgroup P⊆ G
spanZ>0

8 the set of nonnegative integer combinations of elements
of 8⊆1

u or v a word si1 · · · sim in the simple reflections of the Weyl group
u, v the element of W corresponding to u or v
vR the word obtained by dropping the rightmost reflection of v
u or v a sequence (u1, . . . , uk) or (v1, . . . , vk) of words
8w w−11− ∩1+, the inversion set of w ∈W
〈8〉

∑
α∈8 eα, the formal character of

⊕
α∈8 gα, where 8⊂1

`(w) the length of w ∈W
Lλ the line bundle on X corresponding to the B-module on which T

acts via −λ
N the dimension of X
πi the projection πi : X→ G/Pαi (a P1-fibration)
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