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The degree of the Gauss map
of the theta divisor

Giulio Codogni, Samuel Grushevsky and Edoardo Sernesi

We study the degree of the Gauss map of the theta divisor of principally polarised
complex abelian varieties. Thanks to this analysis, we obtain a bound on the
multiplicity of the theta divisor along irreducible components of its singular locus.
We spell out this bound in several examples, and we use it to understand the
local structure of isolated singular points. We further define a stratification of the
moduli space of ppavs by the degree of the Gauss map. In dimension four, we
show that this stratification gives a weak solution of the Schottky problem, and
we conjecture that this is true in any dimension.

1. Introduction

Let (A,2) be a complex g-dimensional principally polarised abelian variety (ppav),
where, by abuse of notation, we write 2 both for an actual symmetric divisor of A
and for its first Chern class. The Gauss map

G :2 99K Pg−1

is the rational map given by the complete linear system L :=O(2)|2. If (A,2) is
indecomposable (not a product of lower-dimensional ppavs), then G is a rational
dominant generically finite map, and we are interested in its degree. Since a basis
of H 0(2, L) is given by the partial derivatives of the theta function restricted to
the theta divisor, the scheme-theoretic base locus of the Gauss map is equal to the
singular locus Sing(2), endowed with the scheme structure defined by the partial
derivatives of the theta function.

Given an irreducible component V of Sing(2), we denote by Vred the reduced
scheme structure on V, and then denote multVred 2 the vanishing multiplicity of the
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theta function along Vred. We denote by degV 2 the intersection number 2d
· V

on A, where d = dim V ; note that degV 2 ≥ 1 for any V, since the theta divisor
is ample. Our main result relates the multiplicity of the singularities of the theta
divisor with the degree of the Gauss map.

Theorem 1.1. Let (A,2) be an indecomposable principally polarised abelian
variety of dimension g ≥ 3. Let {Vi }i∈I be the set of irreducible components of
Sing(2); denote di := dim Vi and mi :=multVi,red 2. Then the following inequalities
hold: ∑

i∈I

mi (mi − 1)g−di−1 degVi,red
2≤ g! − degG ≤ g! − 4,

where degG is the degree of the Gauss map.

In Section 3 we discuss the improvements of this result in various cases, by using
the known lower bounds on the degree of the theta divisor on subschemes of A. In
particular, as an easy corollary we obtain a special case of a well-known result of
Ein and Lazarsfeld [1997].

Corollary 1.2. For any indecomposable ppav (A,2) such that the algebraic coho-
mology group HA2,2(A)= Z, the divisor 2 is smooth in codimension 1.

Remark 1.3. For the case of an isolated singular point z∈Sing(2) of multiplicity m,
the bound of Theorem 1.1 gives m(m− 1)g−1

≤ g! − 4, which asymptotically for
g→∞ behaves like m ≤ g/e, where e is the Euler number.

Recall that the inequality multz 2 ≤ g at any point of any ppav is a famous
result of Kollár [1995], while Smith and Varley [1996] prove that there exists a
point z such that multz 2 = g if and only if the ppav is the product of g elliptic
curves. Conjecturally (see the discussion in [Grushevsky and Hulek 2013]) for
indecomposable ppavs the multiplicity of the theta divisor at any point is at most
b(g+ 1)/2c— this is the maximum possible multiplicity for Jacobians of smooth
curves. The bound we get for multiplicity of isolated singular points is thus
asymptotically better than this conjecture.

Since the multiplicity mi ≥ 2, we also get the following:

Corollary 1.4. The number of isolated singular points of the theta divisor is at
most (g! − 4)/2.

Remark 1.5. Recall that by definition a vanishing theta-null for a ppav is an even
two-torsion point contained in the theta divisor. Conjecturally for an indecomposable
ppav the number of vanishing theta-nulls is less than 2g−1(2g

+ 1)− 3g, and this
conjecture was recently investigated in detail by Auffarth, Pirola, Salvati Manni [Auf-
farth et al. 2017]. The corollary above provides a better bound than this conjecture for
all ppavs for genus up to 8 (this is the range in which (g!−4)/2< 2g−1(2g

+1)−3g)
such that every vanishing theta-null is an isolated point of Sing(2).
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We use the machinery of Vogel’s v-cycles to obtain the proof of our result. As
we only need to apply this machinery in a specific case, we give a direct elementary
construction of v-cycles, and a self-contained argument for our results, not relying
on the general v-cycle literature.

Related results and approaches. Using the results of [Ein et al. 1996; Nakamaye
2000] one can obtain a slightly weaker version of the bound on the multiplicity of
singularities claimed in Theorem 1.1. More recently, Mustat,ă and Popa applied their
newly developed theory of Hodge ideals to also get a slightly weaker multiplicity
bound; see [Mustata and Popa 2016, Section 29]. Neither of these works is directly
related to the degree of the Gauss map. R. Varley explained to us that Corollary 1.4
can be obtained by extending the techniques from [Smith and Varley 1996] and
utilizing the machinery developed in [Fulton 1984, Section 4.4 and Chapter 11].

In the spirit of the Andreotti–Mayer loci defined as

N (g)
k := {(A,2) ∈Ag | dim Sing(2)≥ k},

we define the Gauss loci

G(g)
d := {(A,2) ∈Ag | deg(G :2 99K Pg−1)≤ d}.

In this spirit, we conjecture that the degree of the Gauss map gives a weak solution
to the Schottky problem:

Conjecture 1.6. The Gauss loci G(g)
d are closed for any d and g. The closure of

the locus of Jacobians of smooth curves Jg is an irreducible component of G(g)
d ′ ,

where d ′ =
(2g−2

g−1

)
. The closure of the locus of Jacobians of smooth hyperelliptic

curves Hg is an irreducible component of G(g)
2g−1 .

In making this conjecture, we recall that the degree of the Gauss map is known for
all Jacobians of smooth curves: it is equal to 2g−1 if the curve is hyperelliptic, and to(2g−2

g−1

)
if the curve is not hyperelliptic; see [Andreotti 1958, Proof of Proposition 10].

In Proposition 4.2, we prove Conjecture 1.6 for g = 4 (after easily verifying it
for any g < 4). We also show that all relevant Gauss loci are distinct in genus 4,
i.e., that for any 2≤ d ≤ 12 there exists an abelian fourfold such that the degree of
its Gauss map is equal to 2d .

Already when g = 5, we expect not all the even degree Gauss loci G(5)
2d for

2 ≤ d ≤ 60 to be distinct, and in general the following natural question remains
completely open:

Question 1.7. For a given g ≥ 5, what is the set of possible degrees of the Gauss
map for g-dimensional ppavs? Equivalently, for which d is G(g)

2d \G(g)
2d−2 nonempty?
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2. Generalities about the Gauss map and multiplicities of singularities

Our paper is focussed on studying the degree and the geometry of the Gauss map
for abelian varieties. We first recall the general setup for working with generically
finite rational maps to projective spaces.

Let X be an n-dimensional complex projective variety (we implicitly assume all
varieties in this paper to be irreducible, unless stated otherwise), L a line bundle
on X , and W ⊆ H 0(X, L) a vector subspace such that the rational map

f = |W | : X 99K PW∨

is generically finite and dominant. Let B be the scheme-theoretic base locus of f .
Our focus will be the discrepancy of f :

Definition 2.1 (discrepancy). In the above setup, the discrepancy δ of f is

δ := degX L − deg f.

If f is regular, the discrepancy δ is equal to zero. In general, naively, δ tells
us how much of the degree of L is absorbed by the base locus B. Note that the
discrepancy is not always positive: the presence of the base locus could even
increase the degree, as shown in Example 2.4. We will show that when L is ample
and the base locus is not empty, the discrepancy is strictly positive.

The following formula for the discrepancy in terms of Segre classes is given in
[Fulton 1984, Proposition 4.4]:

δ =

∫
B
(1+ c1(L))n ∩ s(B, X).

For our purposes in this paper we prefer to avoid Segre classes and use the language
of Vogel’s cycles, called v-cycles for short. The theory of v-cycles is fully developed
and described in detail in [Flenner et al. 1999]; other references are [Vogel 1984;
van Gastel 1991]. However, as the applications we need in this paper are limited,
for our purposes a limited version of the theory suffices. We thus prefer to give
an entirely self-contained exposition of the machinery we use — avoiding most
technicalities, and not having to rely on the literature on the subject.

In the setup above, we will define effective cycles V j with support contained
in B and the so-called residual cycles R j such that the support of none of their
irreducible components is contained in B, with j = 0, . . . , n. Both V j and R j are
equidimensional of dimension n− j , unless they are empty.

These cycles are defined inductively, according to Vogel’s intersection algorithm.
We let V 0

:=∅, and let R0
:= X . For any j > 0 assume we have already defined

effective cycles V j−1 and R j−1 of pure dimension n − j + 1. Since none of the
irreducible components of R j−1 have support contained in B, the zero locus Dj ⊂ X
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of a generic section sj ∈W does not contain any irreducible component of R j−1. We
thus write Dj ∩ R j−1

=
∑

k ak Ek , where the Ek are reduced and irreducible Cartier
divisors on R j−1. We order the divisors Ek in such a way that Ek is supported
within B for k = 1, . . . , t and is not supported within B for k > t . Then we let

V j
:=

t∑
k=1

ak Ek and R j
:=

∑
k>t

ak Ek .

The cycles R j and V j are effective of pure dimension n − j . The cycle V j can
possibly be empty; on the other hand, for Dj general, the cycle R j is nonempty.
Since

Dj ∩ R j−1
= V j

+ R j,

and since Dj is the zero locus of a section of L , it follows that

degR j L = degR j−1 L − degV j L . (1)

Theorem 2.2 (formula for the discrepancy). In the setup above, the discrepancy is
given by

δ =

n∑
j=1

degV j L .

Proof. For 0≤ j ≤ n, consider the restricted morphisms

f j := f |R j : R j 99K PHj ,

where Hj is the linear subspace of W∨ that is the common zero locus of the sections
s1, . . . , sj ∈W . Since R j is the closure of f −1(PHj ) in X , we have

deg f = deg f j

for any j . We now take j = n. Since Rn is zero-dimensional and it is supported
outside B, the map

fn : Rn
→ PHn

is a regular morphism, and thus

deg f = deg fn = degRn L .

To compute degRn L , we apply formula (1) n times to obtain

degRn L = degR0 L −
n∑

j=1

degV j L .

The theorem follows from observing that degR0 L = degX L . �
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Example 2.3. Let ` be a line in P3 and let W ⊂ H 0(P3, O(3)) define a generic
3-dimensional linear system of cubics containing `. This linear system gives a
rational map with finite fibres

f = |W | : P3 99K PW∨.

Let us run Vogel’s algorithm to describe the v-cycles and compute the discrepancy.
We thus pick 4 generic cubics D1, . . . , D4 ∈ W , and have R1

= D1 and V 1
= ∅.

The intersection D2 ∩ R1 is a reducible curve C ∪ `; thus R2
= C and V 2

= `.
The intersection C ∩ D3, is equal to the union of C ∩ ` and r reduced points not
contained in `, and thus V 3

= C ∩ ` and R3 consists of the other r reduced points.
To describe C ∩ `, notice that the arithmetic genus of C ∪ ` is 10. The curve C is a
component of a complete intersection; since we know the degree of all components
of this complete intersection, we can show that the genus of C is 7 using a standard
formula; see for example [Sernesi 1986, Proposition 11.6]. We conclude that C ∩ `
consists of 4 reduced points.

The discrepancy of the morphism associated to W is

δ = deg`O(3)+ degV 3O(3)= 3+ 4= 7.

Hence the rational map given by W has degree degP3 O(3)− δ = 27− 7= 20.
We can also compute this discrepancy using Segre classes. Notice that ` is

regularly embedded in P3, so its Segre class is just the inverse of the Chern class of
the normal bundle. Let p be the class of a point in `. We have

δ =

∫
`

(1+ 3p)3(1− 2p)=
∫
`

(1+ 9p− 2p)= 9− 2= 7.

It is worth remarking that the Segre classes formula expresses the discrepancy as
a difference, whereas the v-cycles formula expresses the discrepancy as a sum of
positive contributions.

We now modify slightly the previous example to obtain a map with negative
discrepancy (which is of course impossible for an ample line bundle L). The
highlight of the following example is that the discrepancy is negative because the
degree of L on the v-cycle V 2 is negative; in particular, L is not nef.

Example 2.4 (negative discrepancy). Keeping the notation of Example 2.3, we
consider the blow-up π : X→ P3 of P3 at generic points p1, . . . , pk on the line `;
in particular, we assume that these points are not contained in the curve C described
in Example 2.3. Let E1, . . . , Ek be the exceptional divisors and let E =

∑
Ei .

On X , we take as line bundle L = π∗O(3)− E , and as linear system we take the
proper transform W̃ of W ; denote by ˜̀ the proper transform of `.
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The v-cycles are the proper transform of the v-cycles of the previous example,
so V 2

= ˜̀, and V 3 consists again of 4 reduced points on ˜̀. The discrepancy is now

δ = deg ˜̀L + degV 3 L = (3− k)+ 4= 7− k,

which is negative for k > 7. The degree of the map is

degX L − δ = (27− k)− (7− k)= 20.

As expected, this degree agrees with the degree of the map described in Example 2.3;
the reason is that the two morphisms coincide outside the exceptional locus of the
blow-up.

Before giving an application of Theorem 2.2, we need to recall the notion of
multiplicity. Let Z be an irreducible subscheme of an irreducible scheme X ; the
multiplicity multZ X of X along Z is defined using the notion of Samuel multiplicity
as follows. Let (R,m) be the local ring of X at (the generic point of) Zred. In this
ring, Z is defined by an m-primary ideal q. For t sufficiently large, the Hilbert
function h(t) := len(R/qt) is a polynomial in t . We normalise this polynomial by
multiplying it by deg(h(t))! = codim(Z , X)!, and the Samuel multiplicity e(q, R)
is then defined to be the leading term of the normalised Hilbert polynomial.

Then one defines
multZ X := e(q, R).

The following commutative algebra result, roughly speaking, reduces the computa-
tion of the Samuel multiplicity to the case of local complete intersections.

Proposition 2.5. Let (R,m) be a d-dimensional Cohen–Macaulay local ring with
infinite residue field K . Let q be an m-primary ideal of R. Let t1, . . . , tm be a set of
generators of q, and let s1, . . . , sd be generic linear combinations of the ti . Then
the ideal I := (s1, . . . , sd)⊆ q computes the Samuel multiplicity of q; that is

e(q, R)= e(I, R)= `(R/I ).

Proof. From [Matsumura 1986, Theorems 14.13 and 14.14 on p. 112] it follows
that e(q, R) = e(I, R). Since R is Cohen–Macaulay, s := s1, . . . , sd is a regular
R-sequence; thus

`(R/I )= `(H0(s, R))=
∑

i

(−1)i`(Hi (s, R))= e(I, R)

by [op. cit., p. 109]. �

Before applying this result, let us recall that by definition the class of a closed
irreducible subscheme Z ⊂ X in the Chow group of X is

[Z ] = `(OX,Zred/IZ ) · [Zred],
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as explained for example in [Voisin 2002, Section 21.1.1].

Corollary 2.6 (bound on the discrepancy). In the setup above, assume that X is
Cohen–Macaulay, let B =

⋃r
i=1 Bi be the decomposition of the scheme-theoretic

base locus of f into its scheme-theoretic irreducible components, and let ei :=

multBi X. If L is nef , then
δ ≥

∑
i

ei degBi,red
L .

In particular, if B is nonempty and L is ample, then the discrepancy δ is strictly
positive.

Proof. Fix an irreducible component Bi of B and denote by k := dim X − dim Bi .
We will single out an irreducible component Zi of V k such that Zi,red = Bi,red and

ei =multBi X =multZi X = `(OX,Zi,red/IZi ).

Since Bi is contained in each divisor Dj , it follows that Bi is contained in Rk−1,
and, for dimensional reasons, Bi,red is the support of an irreducible component Zi

of Rk−1
∩ Dk . By construction of the v-cycles, this means that Zi is an irreducible

component of V k. In particular, we have Zi,red = Bi,red. Let (R,m) be the local
ring of X at the generic point of Zi,red. The ideal q defining Bi in the local
ring R is generated by the image in R of the linear system W. Recall that sj is
the section defining Dj . The subscheme Zi is defined in R by the image of the
sections s1, . . . , sk . These sections vanish on Bi , so they lie in q. The sections
are generic elements of W, so we can apply Proposition 2.5 to conclude that
`(OX,Zi,red/IZi )=multZi X =multBi X .

We now use the nefness of L , which implies that its degree is nonnegative on
any subscheme Y ⊂ X . Thus Theorem 2.2 implies

δ =

n∑
j=1

degV j L ≥
r∑

i=1

degZi
L .

where Z1, . . . , Zr is the list of irreducible components of v-cycles associated to the
irreducible components B1, . . . , Br of the base locus by the procedure described
above. (Note that if B is zero-dimensional we do not need to get rid of higher
codimension v-cycles, so the inequality becomes an equality.)

The degree degZi
L is an intersection number which can be computed in the

Chow group of X , so degZi
L = ei degBi,red

L . �

Let us compute the cycles Zi of the previous proof in a particular example.

Example 2.7. Let X be the singular quadric surface defined by x2
+ y2
+w2

= 0
in P3, with coordinates [x : y :w : z]; let p = [0 : 0 : 0 : 1] be the singular point. Let
L be OP3(1)|X , and consider the linear system W on X generated by the restrictions
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of x , y, and w. The base locus is the point p endowed with the reduced scheme
structure. On the other hand, if we run Vogel’s algorithm using as sections s1 = x ,
s2= y, and s3=w, the v-cycle V 2 is defined in P3 by the ideal (x2

+ y2
+w2, x, y);

thus V 2 is supported at p but is not reduced. This is a case where Z and B have
the same support and the same multiplicity in X , but they are different as schemes.

Remark 2.8 (zero-dimensional base locus). Suppose B =
⋃

i Bi , where each Bi

is a possibly nonreduced scheme supported on a closed point pi . In this case, as
explained in the proof of Corollary 2.6,

δ = degV n L =
∑

multBi X.

This formula has a down to earth proof. Take n general effective Cartier divisors Di

in |W |: they intersect in a point q ∈ PW∨; the intersection of the Di in X consists
of the points pi counted with multiplicity multBi X and other degX L −

∑
multBi X

distinct reduced points qi . These points qi are exactly the fibre of f over q , proving
the formula for δ in this case.

The case we are interested in is when X =2 is the theta divisor of a ppav (A,2)
of dimension g, and f = G is the Gauss map. We thus obtain

degG = g! − δ.

3. The multiplicity bound for theta divisors

In this section we prove Theorem 1.1 bounding the multiplicity of the theta divisor,
by an analysis of the discrepancy associated to the Gauss map. It is well-known
[Birkenhake and Lange 2004, Section 4.4] that for an indecomposable ppav the
Gauss map is dominant and has positive degree. We start with the following
observation.

Lemma 3.1. For an indecomposable ppav the degree of the Gauss map degG is
even. If g ≥ 3, then

4≤ degG ≤ g!.

Moreover, degG = g! if and only if the theta divisor is smooth.

Proof. Let ι : z 7→−z be the involution of the ppav; since the Gauss map is invariant
under ι, its degree is even.

If the degree of the Gauss map for a ppav of dimension g ≥ 3 were equal to 2,
then 2/ι would be rational. However, the quotient 2/ι cannot be rational because
there exist nonzero holomorphic ι-invariant 2-forms on 2.

The inequality degG ≤ g! follows from Corollary 2.6 and the fact that the Gauss
map is given by an ample line bundle. The last claim holds because the base locus
of the Gauss map is exactly Sing(2). �
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Since the base locus of the Gauss map is equal to Sing(2), the results of the
previous section combined with this lemma yield

δ = g! − degG ≤ g! − 4,

where δ is the discrepancy associated to G. To translate this into geometric infor-
mation about the singularities of the theta divisor, we need another commutative
algebra statement.

Proposition 3.2. Let D ⊂ X be an irreducible divisor in an n-dimensional smooth
variety X , and let Z be a d-dimensional irreducible component of Sing(D). Let
m :=multZred D and e :=multZ D. Then

e≥ m(m− 1)n−d−1.

Proof. Let (S, n) be the local ring of Zred ⊂ X . It is an (n−d)-dimensional regular
local ring. A local equation of D is an element f ∈nm. Let (R,m)= (S/( f ), n/( f ))
be the local ring of Zred ⊂ D. It is a Cohen–Macaulay ring of dimension n− d− 1.
Since m :=multZred D,

e(m, R)= m.

Let q := ( f1, . . . , fn) be the ideal of Z ⊂ D, where the fi are the classes of the
partial derivatives of f . Note that q⊆mm−1. Let s1, . . . , sn−d−1 ∈ q be a system of
parameters. Then

`(R/(s1, . . . , sn−d−1))≥ (m− 1)n−d−1e(m, R)= (m− 1)n−d−1m

by [Matsumura 1986, Theorem 14.9 on p. 109]. Choosing s1, . . . , sn−d−1 to be a
general linear combination of f1, . . . , fn we can apply Proposition 2.5. Then

e(q, R)= `(R/(s1, . . . , sn−d−1))≥ (m− 1)n−d−1m,

proving the proposition. �

We can now prove our main result.

Proof of Theorem 1.1. The theorem follows by combining the bound δ ≤ g! − 4,
Corollary 2.6, and Proposition 3.2. �

The estimates on the degree of the Gauss map and on the multiplicity of the singu-
larities of Theorem 1.1 can be improved using the vast literature on lower bounds of
degVi,red

2 for d-dimensional subvarieties V ⊆ A. For any p we denote by HAp,p(A)
the algebraic cohomology, that is the subgroup of H p,p(A,C)∩ H 2p(A,Z) gener-
ated by the dual classes to the fundamental cycles of (g−p)-dimensional subvarieties
of A (so in particular HA1,1 is the Néron–Severi group).

When d = 1, a refinement of Matsusaka’s criterion due to Ran states that if V
generates the abelian variety, then degV2≥ g, with equality if and only if A is a
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Jacobian and V is the Abel–Jacobi curve [Ran 1981, Corollary 2.6 and Theorem 3].
Combining this with Theorem 1.1 immediately yields the following:

Corollary 3.3. For a one-dimensional irreducible component V of Sing(2), denote
by m :=multVred2. If A is a simple abelian variety that is not a Jacobian, then

m(m− 1)g−2(g+ 1)≤ g! − degG ≤ g! − 4.

In general for d = dim V > 1, Ran [1981, Corollary II.6] shows that

degV2≥
(g

d

)
if V is nondegenerate in the sense of that paper.

If the class of V in HAg−d,g−d(A) is an integer multiple of the so-called minimal
class

θg−d :=
1

(g−d)!
2g−d

(which must be the case if HAg−d,g−d(A)= Z), then we have the bound

degV2≥
g!

(g−d)!
,

by noticing that V must then be a positive integral multiple of the minimal class,
since it has positive intersection number with 2d, we get in particular the following:

Corollary 3.4. For a d-dimensional irreducible component V of Sing(2), denote
by m :=multVred2. If HAg−d,g−d(A)= Z, then

m(m− 1)g−d−1 g!
(g−d)!

≤ g! − degG ≤ g! − 4.

Note that the case of d= g−2 of the above corollary gives precisely Corollary 1.2.
By applying Theorem 1.1, we can also obtain further results for the case of

isolated singular points, extensively studied in the literature. For an isolated point z
of Sing(2), let Bz be the irreducible component of Sing(2) supported at z, and let
e(z) :=multBz 2. We first need the following proposition:

Proposition 3.5. If z ∈ Sing(2) is an isolated double point such that the Hessian
matrix of θ (second partial derivatives) at z has rank at least g−1, then there exists
a local coordinate system in which locally the theta function can be written as

θ = x2
1 + · · ·+ x2

g−1+ x`g

for some `≥ 2. In this case e(z)= `.

Proof. The existence of a local coordinate system where θ can be written as
above follows immediately from the holomorphic Morse lemma [Żołądek 2006,
Theorem 2.26].
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Let si be as in Proposition 2.5; since we are interested just in the linear span
of the si , applying Gauss elimination algorithm we can assume that si = xi , for
i = 1, . . . , g− 2 and sg−1 = xg−1+ x`−1

g . Since

e= dimC S/( f, s1, . . . , sn−d−1),

where S is the local ring of the abelian variety at z, the statement follows. �

In genus 4 the proposition immediately gives the following corollary, which was
obtained by completely different methods in [Smith and Varley 2012].

Corollary 3.6. Let (A,2) ∈A4 be a Jacobian of a smooth nonhyperelliptic curve
with a semicanonical g1

3 (i.e., with a theta-null). Then locally around the unique sin-
gular point z of the theta divisor, the theta function can be written in an appropriate
local coordinate system as θ = x2

1 + x2
2 + x2

3 + x4
4 .

Proof. Recall that the degree of the Gauss map for any nonhyperelliptic genus 4
Jacobian is

(2·4−2
4−1

)
= 20= 4! − 4, so the discrepancy δ is equal to 4.

By [Arbarello et al. 1985, p. 232], in this case Sing(2)red = {p} and the rank of
the Hessian of the theta function at p is equal to 3. The result now follows from
Proposition 3.5 and Corollary 2.6. �

Remark 3.7. Smith and Varley [2012] prove that coordinates xi in the corollary
above can furthermore be chosen to be equivariant, i.e., such that they all change
sign under the involution z 7→ −z of the ppav. This also follows from the above
proof: indeed, in Proposition 3.5 note that if the point z is two-torsion, i.e., fixed
by the involution, then since the theta divisor is also invariant under the involution,
as a set, one can use the equivariant version of the holomorphic Morse lemma to
ensure that the coordinates xi are equivariant under the involution as well.

The proposition also immediately yields the following easy general bound, which
seems not to have been previously known.

Corollary 3.8. If the point z is an isolated singular point of 2, and the rank of
the Hessian of the theta function at z is at least g− 1, then, with the notation of
Proposition 3.5, we have `≤ g! − 4.

In a similar spirit, we can also prove the following bound

Corollary 3.9. A theta divisor contains at most 1
2(g! − 4) isolated singular points.

Proof. For any isolated point z ∈ Sing(2), we can apply the multiplicity one
criterion, which states that a primary ideal in a local ring has Samuel multiplicity
one if and only if the ring is regular and the ideal is the maximal ideal, to see that
e(z)≥ 2; references for the criterion are [Fulton 1984, Proposition 7.2] or [Nowak
1997]. Then the corollary follows from Theorem 1.1. �
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Perhaps the next interesting case of ppavs with singular theta divisors beyond
Jacobians of curves are intermediate Jacobians of smooth cubic threefolds. In this
case the degree of the Gauss map can be computed from the geometric description
given by Clemens and Griffiths [1972]; see [Krämer 2016, Remark 7(b)]. Let us
sketch the computation. In [Clemens and Griffiths 1972], the authors consider the
Fano surface S of lines of a cubic 3-fold F and a natural rational map:

9 : S× S −→2,

where 2 ⊂ J (F) is the theta divisor. They prove that 9 is generically 6 to 1,
[op. cit., p. 348]. The composition G ·9 associates to an ordered pair of lines
(`1, `2) ∈ S × S the hyperplane H := 〈`1, `2〉 ⊂ P4. The degree of G ·9 equals
the number of ordered pairs of nonintersecting lines contained in the cubic surface
H ∩ F for a general H ∈ P4∨. There are 27× 16 ordered pairs of nonintersecting
lines on a nonsingular cubic surface; therefore the degree of G is

deg(G)=
deg(G ◦9)

deg(9)
=

27× 16
6
= 72.

We remark that since the degree of the Gauss map for Jacobians of genus 5 curves
is either 16 (for hyperelliptic curves) or

(8
4

)
= 70 (for nonhyperelliptic curves),

this computation already shows that the intermediate Jacobian of a smooth cubic
threefold is not a Jacobian of a curve, allowing one to bypass a longer argument for
this in [Clemens and Griffiths 1972].

Our machinery gives a quick alternative computation for this degree.

Proposition 3.10. The degree of the Gauss map of the intermediate Jacobian of a
smooth cubic threefold is equal to 72.

Proof. It is well-known [Beauville 1982] that B = Sing(2) is supported on a single
point z, which has multiplicity 3; the tangent cone of that singularity is the cubic
threefold. In this case, as explained in Remark 2.8, the discrepancy δ equals the
multiplicity e of 2 along B.

We use Proposition 2.5 to compute e. Locally near its singularity, the theta
function is a cubic polynomial defining the cubic, plus higher order terms. Since
the cubic is smooth, its partial derivatives are independent, and thus in the setup of
Proposition 2.5 we can choose si to be the theta function (which vanishes at z to
order 3), and four of its partial derivatives (each of which vanishes to second order).
Thus we compute the Samuel multiplicity of z, or equivalently degB2, to be equal
to 3 · 24

= 48. It follows that the discrepancy is equal to 48. Thus the degree of the
Gauss map in this case is degG = 5! − 48= 72. �
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4. The stratification by the degree of the Gauss map

The moduli space of ppavs Ag is an orbifold of complex dimension g(g+ 1)/2.
The classical Andreotti–Mayer loci N (g)

k are defined to be the loci of ppav such that
dim Sing(2)≥ k. These loci are closed. In analogy with the Andreotti–Mayer loci,
we define the Gauss loci.

Definition 4.1 (Gauss loci). For any d ∈ Z≥0 we let G(g)
d ⊆ Ag be the set of all

ppavs for which the degree of the Gauss map is less than or equal to d .

For a decomposable ppav, the Gauss map is not dominant, so the degree of the
Gauss map is 0; in other words Adec

g ⊂ G(g)
0 , where we denoted by Adec

g the locus
of decomposable ppavs. By definition we have G(g)

0 ⊆ G(g)
1 ⊆ · · · ⊆ G(g)

g! = Ag.
Since degG is always even, G(g)

2d = G(g)
2d+1 for any d. For g ≥ 3, since the degree

of the Gauss map on an indecomposable ppav is at least 4, G(g)
0 = G(g)

1 = G(g)
2 =

G(g)
3 =Adec

g .
We now discuss in detail the Gauss loci in low genus. In genus g = 2 the theta

divisor of any indecomposable principally polarised abelian surface is smooth, and
the degree of the Gauss map is equal to two. To summarise,

G(2)
0 =Adec

2 and G(2)
2 =A2.

In genus 3 the theta divisor of any nonhyperelliptic Jacobian is smooth, while
the theta divisor of a hyperelliptic Jacobian has a unique singular point, which is an
ordinary double point. Thus,

G(3)
0 = G(3)

2 =Adec
3 , G(3)

4 =H3, and G(3)
6 =A3,

where H3 denotes the locus of hyperelliptic Jacobians, and we note that the boundary
of H3 in A3 is in fact equal to the decomposable locus. We note that in this case
the Gauss loci are equal to the Andreotti–Mayer loci, but already in genus 4 this is
not the case.

We now turn to genus 4. Recall that N (4)
1 =H4, and the degree of the Gauss map

for a Jacobian of a smooth hyperelliptic genus 4 curve is equal to 24−1
= 8; this is

to say H4 ⊂G(4)
8 \G(4)

6 . We also recall from [Beauville 1977] that N (4)
0 =J4∪θnull,

where J4 denotes the locus of Jacobians, and θnull denotes the theta-null divisor —
the locus of ppavs with a singular 2-torsion point on the theta divisor. Recall
also that the degree of the Gauss map for any nonhyperelliptic genus 4 Jacobian
is equal to 20. Furthermore, as is well-known, and as also immediately follows
from our bound for the discrepancy, an indecomposable 4-dimensional ppav cannot
have an isolated singular point z on the theta divisor with m =multz2> 2 (since
3 · 23

= 24> 20= 4! − 4). Finally, Grushevsky and Salvati Manni [2008] showed
that if the theta divisor of a 4-dimensional indecomposable ppav has a double point
that is not ordinary, it is the Jacobian of a curve. To summarise (and further using
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[Beauville 1977]), if a 4-dimensional indecomposable ppav that is not a Jacobian
has a singular theta divisor, the only singularities of it are at two-torsion points
(vanishing theta-nulls), and each of those is an ordinary double point.

We can now describe the Gauss loci in genus 4.

Proposition 4.2. (1) All the Gauss loci G(4)
2d are closed.

(2) All the Gauss loci G(4)
2d , for d = 2, . . . , 12 are distinct.

(3) The locus G(4)
4 is equal to the union of the locus of decomposable ppavs

Adec
4 = G(4)

0 (which has two irreducible components A1×A3, of dimension 7,
and A2×A2 of dimension 6), and one point {AV }, the fourfold discovered by
Varley [1986].

(4) The 9-dimensional locus J4 is an irreducible component of G(4)
20 , which has

another 8-dimensional irreducible component.

(5) The 7-dimensional locus H4 is an irreducible component of G(4)
8 , which has

another 2-dimensional irreducible component.

Proof. Indeed, the above results imply that for a 4-dimensional indecomposable
ppav that is not a Jacobian, the only possible singularities of the theta divisor are
theta-nulls that are ordinary double points, each of which contributes precisely two
to the discrepancy by Proposition 3.5. The degree of the Gauss map is then 24−2k,
where k is the number of vanishing theta constants. Since the vanishing of an even
theta constant defines a divisor on a level cover A4(4, 8) of A4, the locus where a
given collection of theta constants vanishes is always closed in A4(4, 8), and thus
its image is closed in A4. Thus all the Gauss loci are closed within A4 \ N (4)

1 . Since
N (4)

1 =H4 ∪Adec
4 ⊂ G(4)

8 , it follows that G(4)
2d are closed for d ≥ 4, and to prove (1)

it remains to show that G(4)
4 and G(4)

6 are closed. The statement about G(4)
4 follows

from (3), which we will prove shortly. To prove that G(4)
6 is closed, all we need to

show is that a family in G(4)
6 can not degenerate to a smooth hyperelliptic Jacobian,

which lies in G(4)
8 \ G(4)

6 . We will do this once we are done with the rest of the
proof.

To show that all Gauss loci are distinct, recall that Varley [1986] constructed an
indecomposable principally polarised abelian fourfold AV , which is not a Jacobian,
but has 10 vanishing even theta-nulls (and note that the above discussion reproves
that a 4-dimensional indecomposable ppav can have at most k = 10 vanishing theta
constants). Thus the degree of the Gauss map for AV is equal to 4, so that AV ∈G(4)

4 .
Debarre [1987] showed that AV is the unique indecomposable ppav in A4 such
that the singular locus of the theta divisor consists of 10 isolated points; in our
language, this implies (3), which also shows that the locus G(4)

4 is closed. Thus
locally on A4(4, 8) the point AV is defined by the vanishing of the corresponding 10
theta constants. The vanishing locus of each theta constant is a hypersurface in
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A4(4, 8), and since all 10 of them locally intersect in expected codimension 10, any
subset also locally intersects in expected codimension. Thus for any k ≤ 10, there
is a (10− k)-dimensional locus of ppavs near AV with exactly k vanishing theta
constants (and which do not lie on J4, since AV is not a Jacobian). Thus locally
near AV there exist ppavs with the degree of the Gauss map equal to 24− 2k, for
any k ≤ 10.

Furthermore, by the above discussion we see that there exists an irreducible
(10−k)-dimensional component of G(4)

24−2k containing AV . Taking k = 2 and k = 8
shows the existence of irreducible components of G(4)

20 \J4 and of G(4)
8 \H4 of the

claimed dimensions. Furthermore, we note that the boundary of H4 within A4 is

(H2×H2)∪(H1×H3)= (A2×A2)∪(A1×H3)(Adec
4 = (A2×A2)∪(A1×A3).

Recalling that J4 and H4 are irreducible, and that the Gauss map on these loci
generically has degree 20 and 8, respectively, proves parts 4 and 5.

Finally, we return to statement (1). Suppose we have a family At of ppavs
contained in G(4)

6 , degenerating to some A0 ∈H4. We want to prove that A0 cannot
be a smooth hyperelliptic Jacobian, which is equivalent to showing that A0 ∈Adec

4 .
Indeed, a generic At must be a ppav that has at least 9 vanishing theta constants,
and thus the same configuration of 9 theta constants must also vanish on A0. It is
known that for any smooth hyperelliptic Jacobian there are exactly 10 vanishing
even theta constants, every three of them forming an azygetic triple (this results
seems to go back to Riemann originally, we refer to [Mumford 1984] for a detailed
discussion). Thus if among the 9 vanishing theta constants on At there exists a
syzygetic triple, then a syzygetic triple of theta constants vanishes at A0, and so A0

cannot be a smooth hyperelliptic Jacobian. On the other hand, if an azygetic 9-tuple
of theta constants vanishes on At , then At is a hyperelliptic Jacobian or a product,
by [Igusa 1981, Lemma 6]. But then since At ∈ G(4)

6 , it follows that At ∈Adec
4 . �

In genus 5, if the theta divisor is smooth, the degree of the Gauss map is 120.
For intermediate Jacobians of cubic threefolds the degree of the Gauss map is 72,
for the Jacobian of any nonhyperelliptic curve it is 70, while for the Jacobian of any
hyperelliptic curve it is 16. In this case our results show that if all singular points of
theta divisor are isolated (i.e., on N (5)

0 \N (5)
1 ), there are at most (5!−4)/2= 58 such

singular points — which in particular is much better than the conjectured bound
of 24(25

+ 1)− 35
= 285 for the number of vanishing even theta constants in this

case; see [Auffarth et al. 2017] for the recent results on this conjecture.
All irreducible components of the Andreotti–Mayer locus N (5)

1 were described
explicitly by Debarre [1988, Proposition 8.2] via the Prym construction, using the
fact that the Prym map is dominant onto A5. While it appears possible to compute
the degree of the Gauss map for a generic point of every irreducible component
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of N (5)
1 , determining the degree of the Gauss map for every point of N (5)

1 would
require computing the degree of the Gauss map for Pryms of all admissible covers
that arise as degenerations, which involves a large number of cases, and which
we thus do not undertake. Furthermore, we have G(5)

16 ⊃H5, and Debarre showed
that N (5)

2 \A
dec
5 =H5 [Ciliberto and van der Geer 2000, Section 1], while Ein and

Lazarsfeld [1997] showed that N (5)
3 =Adec

5 , which is thus equal to G(5)
4 . We do not

know whether various Gauss loci are distinct.
In higher genus, other than the classical case of Jacobians, the degree of the

Gauss map is known for a generic Prym: Verra [2001] showed that it is equal to
D(g)+2g−3, where D(g) is the degree of the variety of all quadrics of rank at most
3 in Pg−1. We note that for g = 5 a generic ppav is a Prym, with a smooth theta
divisor, and thus the result of Verra recovers the degree 5! = 120 of the Gauss map
in this case.
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