Vol. 11, No. 4, 2017

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
On pairs of $p$-adic $L$-functions for weight-two modular forms

Florian Sprung

Vol. 11 (2017), No. 4, 885–928
Abstract

The point of this paper is to give an explicit p-adic analytic construction of two Iwasawa functions, Lp(f,T) and Lp(f,T), for a weight-two modular form anqn and a good prime p. This generalizes work of Pollack who worked in the supersingular case and also assumed ap = 0. These Iwasawa functions work in tandem to shed some light on the Birch and Swinnerton-Dyer conjectures in the cyclotomic direction: we bound the rank and estimate the growth of the Šafarevič–Tate group in the cyclotomic direction analytically, encountering a new phenomenon for small slopes.

Dedicated to Barry, Joe, and Rob

Keywords
Birch and Swinnerton-Dyer, $p$-adic L-function, elliptic curve, modular form, Šafarevič–Tate group, Iwasawa Theory
Mathematical Subject Classification 2010
Primary: 11G40
Secondary: 11F67, 11R23
Milestones
Received: 10 April 2016
Revised: 16 December 2016
Accepted: 13 January 2017
Published: 18 June 2017
Authors
Florian Sprung
School of Mathematics
Institute for Advanced Study & Princeton University
1 Einstein Dr
Princeton, NJ 08540
United States