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Hybrid sup-norm bounds for
Maass newforms of powerful level

Abhishek Saha

Let f be an L2-normalized Hecke–Maass cuspidal newform of level N , char-
acter χ and Laplace eigenvalue λ. Let N1 denote the smallest integer such
that N |N 2

1 and N0 denote the largest integer such that N 2
0 |N . Let M denote

the conductor of χ and define M1 = M/ gcd(M, N1). We prove the bound
‖ f ‖∞�ε N 1/6+ε

0 N 1/3+ε
1 M1/2

1 λ5/24+ε, which generalizes and strengthens previ-
ously known upper bounds for ‖ f ‖∞.

This is the first time a hybrid bound (i.e., involving both N and λ) has been
established for ‖ f ‖∞ in the case of nonsquarefree N . The only previously known
bound in the nonsquarefree case was in the N -aspect; it had been shown by the au-
thor that ‖ f ‖∞�λ,ε N 5/12+ε provided M = 1. The present result significantly im-
proves the exponent of N in the above case. If N is a squarefree integer, our bound
reduces to ‖ f ‖∞�ε N 1/3+ελ5/24+ε, which was previously proved by Templier.

The key new feature of the present work is a systematic use of p-adic rep-
resentation theoretic techniques and in particular a detailed study of Whittaker
newforms and matrix coefficients for GL2(F) where F is a local field.

1. Introduction

1A. The main result. Let f be a Hecke–Maass cuspidal newform on the upper half
plane of weight 0, level N , character χ , and Laplace eigenvalue λ. We normalize the
volume of Y0(N ) to be equal to 1 and assume that 〈 f, f 〉 :=

∫
Y0(N )
| f (z)|2 dz = 1.

The problem of bounding the sup-norm ‖ f ‖∞ := supz∈Y0(N )| f (z)| in terms of the pa-
rameters N and λ is interesting from several points of view (quantum chaos, spectral
geometry, subconvexity of L-functions, diophantine analysis) and has been much
studied recently. For squarefree levels N , there were several results, culminating
in the best currently known bound due to Templier [2015], which states that

‖ f ‖∞�ε λ
5/24+εN 1/3+ε.

The author is supported by EPSRC grant EP/L025515/1.
MSC2010: primary 11F03; secondary 11F41, 11F60, 11F72, 11F85, 35P20.
Keywords: Maass form, sup-norm, automorphic form, newform, amplification.
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The exponent 5
24 above for λ has stayed stable since the pioneering work of Iwaniec

and Sarnak [1995] (who proved ‖ f ‖∞�ε λ
5/24+ε in the case N = 1), and it will

likely require some key new idea to improve it. The exponent 1
3 for N in the above

bound also appears difficult to improve, at least for squarefree levels, as it seems
that the method used so far, primarily due to Harcos and Templier [2012; 2013] and
Templier [2010; 2015] has been pushed to its limit. The purpose of the present paper
is to show that the situation is very different for powerful (nonsquarefree) levels.

To state our result, we introduce a bit of notation. Let N1 denote the smallest
integer such that N | N 2

1 . Let N0 be the largest integer such that N 2
0 | N . Thus N0

divides N1 and N = N0 N1.1 Note that if N is squarefree, then N1 = N and N0 = 1.
On the other hand, if N is a perfect square or if N is highly powerful (a product of
high powers of primes) then N1 � N0 �

√
N . Also, let M be the conductor of χ

(so M divides N ) and put M1 = M/ gcd(M, N1). Note that M1 divides N0, and in
fact M1 equals 1 if and only if M divides N1. We will refer to the complementary
situation of M1 > 1 (i.e., M -N1) as the case when the character χ is highly ramified.

We prove the following result, which generalizes and strengthens previously
known upper bounds for ‖ f ‖∞.

Theorem (see Theorem 3.2). We have

‖ f ‖∞�ε N 1/6+ε
0 N 1/3+ε

1 M1/2
1 λ5/24+ε.

Thus in the squarefree case, our result reduces to that of Templier. However
when N1 � N0 �

√
N , and M | N1 (i.e., χ is not highly ramified), our result gives

‖ f ‖∞�ε N 1/4+ελ5/24+ε.

The exponent of 1
4 we obtain in this case is better than the exponent of 1

3 in the
squarefree case.

We note that the only upper bound known before this for general (i.e., possibly
nonsquarefree) N is due to the present author, and was proved only very recently
[Saha 2014]. It was shown that

‖ f ‖∞�λ,ε N 5/12+ε

when χ is trivial (no dependence on λ was proved). The results of this paper not
only substantially improve those of [Saha 2014] but also use quite different methods.
We believe that the approach we take in this paper, characterized by a systematic
use of adelic language and local representation-theoretic techniques that separate
the difficulties place by place, is the right one to take for powerful levels.

1If N has the prime factorization N =
∏

p pn p , then N0 and N1 have prime factorizations

N0 =
∏

p pbn p/2c and N1 =
∏

p pdn p/2e.
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As for the optimum upper bound for ‖ f ‖∞, it is reasonable to conjecture that

‖ f ‖∞�ε N ελ1/12+ε, (1)

if M1 = 1 (i.e., provided χ is not highly ramified). If true, (1) is optimal as
one can prove lower bounds of a similar strength. (But see page 1044.) If χ is
highly ramified, we cannot expect (1) to hold, for reasons explained in [Saha 2016].
Roughly speaking, in the highly ramified case, the corresponding local Whittaker
newforms can have large peaks due to a conspiracy of additive and multiplicative
characters. This leads to a lower bound for ‖ f ‖∞ that is larger than N ε in the
N -aspect. This phenomenon was first observed in Templier [2014] in the case when
χ is maximally ramified (M1 = N0) and extended in [Saha 2016] to cover a much
bigger range of M1. That the factor M1/2

1 is present in our main theorem above
(giving worse upper bounds in the highly ramified case) fits nicely with this theme.

In the table below we compare the upper bound provided by this paper with the
lower bound provided in [Saha 2016]. We consider newforms of level N = pn , for
1≤ n ≤ 5. The second column gives the possible values of M in each case, and the
next three give the corresponding values of N0, N1 and M1. The penultimate column
gives the upper bound provided by the theorem on the previous page and should

N M N0 N1 M1
factor N 1/6

0 N 1/3
1 M1/2

1 in
this work’s upper bound

factor in lower bound
from [Saha 2016]

p 1 or p 1 p 1 N 1/3 1

p2 1 or p p p 1 N 1/4 1
p2 p p p N 1/2 N 1/4

p3 1, p or p2 p p2 1 N 5/18 1
p3 p p2 p N 4/9 N 1/6

1, p or p2 p2 p2 1 N 1/4 1
p4 p3 p2 p2 p N 3/8 1

p4 p2 p2 p2 N 1/2 N 1/4

1, p, p2 or p3 p2 p3 1 N 4/15 1
p5 p4 p2 p3 p N 11/30 N 1/10

p5 p2 p3 p2 N 7/15 N 1/5

Table 1. A comparison of upper and lower bounds for ‖ f ‖∞. The
penultimate column gives the factor that replaces · · · in the bound
‖ f ‖∞ �ε N ελ5/24+ε

× · · · given by our main theorem on the
previous page. The last column gives the corresponding factor in
the previously known lower bound ‖ f ‖∞�ε N−ελ1/12−ε

× · · · .
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serve as a nice numerical illustration of our result in the depth aspect (N = pn ,
n→∞). The final column gives the corresponding lower bound proved in Theorem
3.3 of [Saha 2016]. The difference between these last two columns reflects the gap
in the state of our current knowledge. As the table makes clear, the larger upper
bounds for highly ramified χ are often matched by larger lower bounds.

Finally, we have colored blue all the quantities on the last column that we
(optimistically) conjecture to be in fact the true size of ‖ f ‖∞ (up to a factor of
(Nλ)ε) in those cases.

1B. Organization of this paper. The remainder of Section 1 is an extended intro-
duction that explains some of the main features of our work. In Section 2, which is
the technical heart of this paper, we undertake a detailed analytic study of p-adic
Whittaker newforms and matrix coefficients for representations of GL2(F) where F
is a nonarchimedean local field of characteristic 0. The two main results we prove
are related to a) the support and average size of p-adic Whittaker newforms, b) the
size of eigenvalues of certain matrix coefficients. These might be of independent
interest. In Section 3, we prove the main result, Theorem 3.2. Perhaps surprisingly,
and in contrast to our previous work [Saha 2014], no counting arguments are needed
in this paper beyond those supplied by Templier for the squarefree case. Also, in
contrast to [Saha 2014], we do not need any powerful version of the “gap principle”.
Instead, we rely almost entirely on the p-adic results of Section 2.

1C. Squarefree versus powerful levels. The first bound for ‖ f ‖∞ in the N -aspect
was ‖ f ‖∞�λ,ε N 216/457+ε , proved by Blomer and Holowinsky [2010]. They also
proved the hybrid bound ‖ f ‖∞� (λ1/2 N )1/2−1/2300. These results were only valid
under the assumption that N is squarefree. After that, there was fairly rapid progress
(again only assuming N squarefree) by Harcos and Templier [Harcos and Templier
2012; 2013; Templier 2010; 2015], culminating in the hybrid bound due to Templier
described earlier. Note that the N -exponent in Templier’s case is 1

3 , which may be
viewed as the “Weyl exponent”, as it is a third of the way from the trivial bound
of N 1/2+ε towards the expected optimum bound2 of N ε.

For a long time, there was no result at all when N is not squarefree. Indeed, all
the papers of Harcos and Templier rely crucially on using Atkin–Lehner operators
to move any point of H to a point of imaginary part ≥ 1

N (which is essentially
equivalent to using a suitable Atkin–Lehner operator to move any cusp to infinity).
This only works if N is squarefree. In [Saha 2014], the first (and only previous)
result for Maass forms of nonsquarefree level was proved; assuming that M = 1
we showed that ‖ f ‖∞�λ,ε N 5/12+ε. A key new idea in [Saha 2014] was to look
at the behavior of f around cusps of width 1 and to formulate all the geometric and

2As mentioned earlier, this optimum bound is only expected to hold when χ is not highly ramified.
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diophantine results around such a cusp. Apart from this, the overall strategy was
not that different from the works of Harcos and Templier and the exponent of 5

12
obtained was weaker than the exponent 1

3 for the squarefree case.
An initial indication that the exponent 1

3 in the N -aspect might be beaten for
powerful levels was given by Marshall [2016], who showed recently that for a
newform g of level N and trivial character on a compact arithmetic surface (i.e.,
coming from a quaternion division algebra) the bound

‖g‖∞�ε λ
1/4+εN 1/2+ε

1

holds true. In particular, when N is sufficiently powerful, this gives a “sub-Weyl”
exponent of 1

4 in the N -aspect. Marshall’s proof does not work for the usual Hecke–
Maass newforms f on the upper-half plane of level N that we consider in this paper
(though it does work for certain shifts of these f when restricted to a fixed compact
set). Finally, our main result, Theorem 3.2, gives (when χ is not highly ramified)
the bound ‖ f ‖∞�ε N 1/6+ε

0 N 1/3+ε
1 λ5/24+ε which may be viewed as a strengthened

analogue of Marshall’s result for cusp forms on the upper-half plane.
As indicated already, the powerful level case has been historically more difficult

than the squarefree case. It may thus seem surprising that in the powerful case, we
succeed in obtaining better exponents than in the squarefree case. However this
seems to be a relatively common phenomenon. For example, for the related problem
of quantum unique ergodicity in the level aspect, the known results in the squarefree
case [Nelson 2011] give mass equidistribution with no power-savings but for power-
ful levels one obtains mass equidistribution with power savings [Nelson et al. 2014].
Again, for the problem of proving strong subconvexity bounds in the conductor
aspect for Dirichlet L-functions, one only has a Weyl exponent 1

6 when the conductor
is squarefree, but Milićević [2016] has shown an improved exponent of .1645 . . .< 1

6
for high prime powers. The results of this paper continue this surprising pattern
(for which we do not attempt to give a general conceptual explanation).

1D. Fourier expansions and efficient generating domains. It seems worth noting
explicitly the following interesting technical aspect of our work: the method of
Fourier (Whittaker) expansion, once one chooses a good (adelic) generating domain,
leads to the rather strong bound ‖ f ‖∞�ε M1/2

1 N 1/2+ε
1 λ1/4+ε. Note that this bound

reduces to the “trivial bound” when N is squarefree, but is almost of the same
strength (in the N -aspect) as our main theorem when N is sufficiently powerful. In
this subsection, we briefly explain the ideas behind this.

It is best to work adelically here. Let φ be the automorphic form associated to
f , and let g = g f g∞ ∈ G(A), where g f denotes the finite part of g and g∞ denotes
the infinite component. Then ‖ f ‖∞ = supg∈G(A)|φ(g)|. Because of the invariance
properties for φ, it suffices to restrict g to a suitable generating domain D ⊂ G(A).
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Roughly speaking, D can be any subset of G(A) such that the natural map from D
to Z(A)G(Q)\G(A)/K is a surjection where K is a subgroup of G(A) generated
by a set of elements under which |φ| is right-invariant.

The Whittaker expansion for φ, which we want to exploit to bound |φ(g)|, looks
as follows:

φ(g)=
∑

q∈Q6=0

Wφ

([q
1

]
g
)
.

The above is an infinite sum, but two things make it tractable. First of all there is
an integer Q(g f ), depending on g f , such that the sum is supported only on those q
whose denominator divides Q(g f ). Secondly, the sum decays very quickly after a
certain point |q|> T (g∞) due to the exponential decay of the Bessel function. The
upshot is that

|φ(g)| �
∑

n∈Z6=0
|n|<Q(g f )T (g∞)

Wφ

([n/Q(g f )
1

]
g
)
. (2)

The key quantity is the length Q(g f )T (g∞) of the sum above. Indeed, assum-
ing Ramanujan type bounds on average for the local Whittaker newforms and
using Cauchy–Schwartz, the expression (2) leads to the inequality3

|φ(g)| �ε

(Q(g f )T (g∞))1/2+ε. The key point therefore, is to choose an efficient generating
domain D inside G(A), such that supg∈D Q(g f )T (g∞) is as small as possible.

Let us look at some examples. Suppose φ corresponds to a Hecke–Maass cusp
form for SL2(Z). Then it is natural to take D to be the subset of G(A) consisting of
the elements g with g f = 1 and g∞ =

[ y x
1

]
such that − 1

2 ≤ x ≤ 1
2 and y ≥

√
3

2 . In
this case Q(g f )= 1 and T (g∞)= λ1/2/y, leading to the bound |φ(g)| �ε λ

1/4+ε

as expected. Next, suppose φ corresponds to a newform of level N where N is
squarefree. In this case one can include the Atkin–Lehner operators inside the
symmetry group K above. Harcos and Templier showed that one can take D
to be the subset of G(A) consisting of the elements with g f = 1 and for which
g∞ =

[ y x
1

]
such that y ≥

√
3/(2N ) (and some additional properties). For such

an element, one again has Q(g f ) = 1 and T (g∞) = λ1/2/y leading to the bound
|φ(g)| �ε (λ

1/2/y)1/2+ε� N 1/2+ελ1/4+ε.
When N is nonsquarefree, it is not possible to construct a generating domain D

with a finite value of supg∈D T (g∞) for which all points have g f = 1. Classically,
this means that any fundamental domain (for the full symmetry group generated
by 00(N ) and the Atkin–Lehner operators) must touch the real line. The idea used
in [Saha 2014] was to take the infinite part of D essentially the same as in the
squarefree case and take the finite part to be a certain nice subset of

∏
p|N GL2(Zp).

3Strictly speaking, this inequality is not completely accurate as one has to add an (usually smaller)
error term coming from peaks of the local Whittaker and K -Bessel functions.
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Classically, our choice of generating domain in [Saha 2014] corresponded to taking
discs around cusps of width 1. Assuming χ = 1, this choice again gave Q(g f )= 1
and T (g∞)= λ1/2/y leading to the same bound |φ(g)| �ε N 1/2+ελ1/4+ε as earlier.
Thus, in all the above papers, the worst case bound obtained by the Whittaker
expansion (i.e., for smallest y) was just the trivial bound N 1/2+ελ1/4+ε (also, all
these papers restricted to χ = 1).

In this paper we choose a somewhat different generating domain from that of
[Saha 2014]. For simplicity, we describe this domain here in the special case when
N = p2n0 and M = pm , for some prime p and some nonnegative integers n0 and m.
Take D to consist of the elements gpg∞, where g∞ =

[ y x
1

]
with y ≥

√
3/2

and gp ∈ GL2(Zp)
[ pn0

1

]
. It is easy to prove this is a generating domain. The

difficulties lie in computing Q(g f ) and in proving that the required Ramanujan
type bounds on average hold. These key technical local results involve intricate
calculations that take up a good part of Section 2. We are able to prove that
supg∈D Q(g f )= pmax(m,n0) = M1

√
N . Also, T (g∞)= λ1/2/y as usual. This leads

to the surprisingly strong Whittaker expansion bound of

|φ(g)| �ε M1/2
1 N 1/4+ελ1/4+ε

in this case. Classically, the generating domain described above corresponds to
taking discs around the cusps of the group

00(pn0, pn0)=
{[a

c
b
d

]
∈ SL2(Z) : pn0 | b, pn0 | c

}
.

We remark here that the function f ′(z) := f (z/pn0) is a Maass form for00(pn0, pn0).
When N is not a perfect square, the generating domain we actually use is slightly

different than described above. Roughly speaking, we exploit the existence of
Atkin–Lehner operators at primes that divide N to an odd power. This does not
change the value of supg∈D Q(g f )T (g∞) and so does not really affect the Whittaker
expansion analysis; however it makes it easier to count lattice points for amplification
(described in the next subsection). In any case, the Whittaker expansion bound
we prove ultimately (see Section 3D) is |φ(g)| �ε (N0 M1λ

1/2/y)1/2+ε where
y ≥ N0/N1, leading to the worst case bound of |φ(g)|�ε M1/2

1 N 1/2+ε
1 λ1/4+ε. This,

as mentioned earlier, is essentially of the same strength (in the N -aspect) as our
main theorem when N is sufficiently powerful.

It bears repeating that the main tools used for the above bound are local, relating to
the representation theory of p-adic Whittaker functions. This supports the assertion
of Marshall [2016] that N 1/2+ε

1 should be viewed as the correct local bound in the
level aspect (when χ is not highly ramified). Our analysis of these p-adic Whittaker
functions also lead to other interesting questions. For example, one can ask for
a sup-norm bound for these local Whittaker newforms, and in (1), we predict a
Lindelöf type bound when χ is not highly ramified (this conjecture was originally
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made in [Saha 2016]). One of the key technical results in Section 2 essentially
proves an averaged version of this conjecture (this is the Ramanujan type bound on
average alluded to earlier).

1E. The pretrace formula and amplification. Recall our main theorem:

‖ f ‖∞�ε N 1/6+ε
0 N 1/3+ε

1 M1/2
1 λ5/24+ε.

As we have seen above, the method of Fourier (Whittaker) expansion gives us the
bound ‖ f ‖∞�ε N 1/2+ε

1 M1/2
1 λ1/4+ε (with even better bounds when the relevant

point on our generating domain has a large value for y) so we need to save a further
factor of (N1/N0)

1/6λ1/24. This is done by amplification, whereby we choose
suitable test functions at each prime to obtain a pretrace formula and then estimate
its geometric side via some point counting results from [Harcos and Templier
2013; Templier 2015]. The basic idea is that by choosing these local test functions
carefully (constructing an amplifier) one should be able to boost the contribution of
the newform f to the resulting pretrace formula. The details for this are given (in a
fairly flexible adelic framework) in Sections 3E–3G.

The unramified local test functions that we use in this paper are standard and
essentially go back to Iwaniec–Sarnak (the key point is to exploit a simple identity
relating the eigenvalues for the Hecke operators T (`) and T (`2)). However, our
ramified local test functions are very different from the papers of Harcos and
Templier or our previous paper [Saha 2014]. In all those past papers, the ramified
test functions had been simply chosen to be the characteristic functions of the
relevant congruence subgroups. In contrast, we use a variant of the local test
function used by Marshall [2016]. The main results about this test function are
proved in Sections 2F–2H. Roughly speaking, it is (the restriction to a large compact
subgroup of) the matrix coefficient for a local vector v′ obtained by translating the
local newform. The key property of this test function is that its unique nonzero
eigenvalue is fairly large (and v′ is an eigenvector with this eigenvalue).

Our choice of test functions at ramified primes ensures that any pretrace formula
involving them averages over relatively few representations of level N . It may be
useful to view this as a ramified analogue of the classical (unramified) amplifier.
Indeed, the resulting “trivial bound” obtained via the pretrace formula (by choosing
the unramified test functions trivially) matches exactly (on compact subsets) with
the strong local bounds obtained via Whittaker expansion. This is an important
point because it means that we only need to save a further factor of (N1/N0)

1/6λ1/24

by putting in the unramified amplifier and counting lattice points. This is carried
out in Section 3G.

It is worth noting that we do not need any new counting results in this paper
beyond those proved by Harcos and Templier. This is because the counting part of
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our paper is only concerned with the squarefree integer N1/N0. In particular, the
role of amplification in this paper to improve the N exponent is relatively minor
when N is highly powerful (note that N1/N0 approaches a negligible power of
N as N gets more powerful). Indeed, when N is a perfect square (N1 = N0), all
our savings in the N -aspect come from Whittaker expansion and we do not gain
anything further by amplification.4 In contrast, in [Saha 2014] we had a relatively
poor bound coming from Whittaker expansion but we then saved a nontrivial power
of N via amplification.

The technical reason why the method of amplification does not improve the
N -aspect too much beyond our strong local bounds is that our ramified test func-
tions have relatively large support. Consequently, we do not have many global
congruences related to N , and congruences are essential for savings via counting.
More precisely, our ramified test functions are supported on the maximal compact
subgroup at primes that divide N to an even power, and supported on a (slightly)
smaller subgroup at primes that divide N to an odd power (it is the latter case
that leads to the savings of (N1/N0)

1/6). If we were to reduce the support of our
test functions further and thus force new congruences, the resulting savings via
counting would be eclipsed by the resulting loss due to the fact that our pretrace
formula would now be averaging over more representations of level N . Somehow
the ramified and unramified parts of the amplifier seem to work against each other
and the key point is to strike the right balance.

It would be an interesting and challenging problem to detect any additional
cancellation on the geometric side of our pretrace formula by going beyond counting
lattice points and perhaps taking into account the phases of the matrix coefficient
used to construct the ramified test function. Such a result could potentially push
the upper-bound for ‖ f ‖∞ below N 1/4.

1F. Notations. We collect here some general notations that will be used throughout
this paper. Additional notations will be defined where they first appear in the paper.

Given two integers a and b, we use a | b to denote that a divides b, and we use
a | b∞ to denote that a | bn for some positive integer n. For any real number α, we
let bαc denote the greatest integer less than or equal to α and we let dαe denote the
smallest integer greater than or equal to α. The symbol A denotes the ring of adeles
of Q and A f denotes the subset of finite adeles. For any two complex numbers
α and z we let Kα(z) denote the modified Bessel function of the second kind.

The groups GL2, SL2, PSL2, 00(N ) and 01(N ) have their usual meanings. The
letter G always stands for the group GL2. If H is any subgroup of G, and R is any
subring of R, then H(R)+ denotes the subgroup of H(R) consisting of matrices
with positive determinant.

4However, we always gain a nontrivial savings in the λ aspect via amplification.
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We let H= {x + iy : x ∈ R, y ∈ R, y > 0} denote the upper half plane. For any
γ =

[a
c

b
d

]
in GL2(R)

+, and any z∈H, we define γ (z) or γ z to equal (az+b)/(cz+d).
This action of GL2(R)

+ on H extends naturally to the boundary of H.
We say that a function f on H is a Hecke–Maass cuspidal newform of weight 0,

level N , character χ and Laplace eigenvalue λ if it has the following properties:

• f is a smooth real analytic function on H.

• f satisfies (1+ λ) f = 0 where 1 := y−2(∂2
x + ∂

2
y ).

• For all γ =
[a

c
b
d

]
∈ 00(N ), f (γ z)= χ(d) f (z).

• f decays rapidly at the cusps of 01(N ).

• f is orthogonal to all oldforms.

• f is an eigenfunction of all the Hecke and Atkin–Lehner operators.5

The study of newforms f as above is equivalent to the study of corresponding
adelic newforms φ which are certain functions on G(A). For the details of this
correspondence, see Remark 3.1.

We use the notation A�x,y,z B to signify that there exists a positive constant C ,
depending at most upon x, y, z, so that |A| ≤ C |B|. The symbol ε will denote a
small positive quantity. The values of ε and that of the constant implicit in�ε,...

may change from line to line.

2. Local calculations

2A. Preliminaries. We begin with fixing some notations that will be used through-
out this section. Let F be a nonarchimedean local field of characteristic zero whose
residue field has cardinality q . Let o be its ring of integers, and p its maximal ideal.
Fix a generator $ of p. Let |·| denote the absolute value on F normalized so that
|$ | = q−1. For each x ∈ F×, let v(x) denote the integer such that |x | = q−v(x). For
a nonnegative integer m, we define the subgroup Um of o× to be the set of elements
x ∈ o× such that v(x − 1)≥ m.

Let G = GL2(F) and K = GL2(o). For each integral ideal a of o, let

K0(a)= K ∩
[
o o

a o

]
, K1(a)= K ∩

[
1+ a o

a o

]
, K 0(a)= K ∩

[
o a

o o

]
.

For x ∈ F , y ∈ F× and t ∈ F×, write

w =

[
0 1
−1 0

]
, a(y)=

[
y

1

]
, n(x)=

[
1 x

1

]
, z(t)=

[
t

t

]
,

5Assuming the previous properties, this last property is equivalent to the weaker condition that f
is an eigenfunction of almost all Hecke operators.
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Define subgroups N = {n(x) : x ∈ F}, A = {a(y) : y ∈ F×}, Z = {z(t) : t ∈ F×},
B1 = N A and B = Z N A = G ∩

[
∗ ∗

∗

]
of G.

We normalize Haar measures as follows. The measure dx on the additive group
F assigns volume 1 to o, and transports to a measure on N . The measure d×y on
the multiplicative group F× assigns volume 1 to o×, and transports to measures
on A and Z . We obtain a left Haar measure dLb on B via dL(z(u)n(x)a(y)) =
|y|−1 d×u dx d×y. Let dk be the probability Haar measure on K . The Iwasawa
decomposition G = BK gives a left Haar measure dg = dLb dk on G.

For each irreducible admissible representation σ of G (resp. F×) we define
a(σ ) to be the smallest nonnegative integer such that σ has a K1(p

a(σ ))-fixed
(resp. Ua(σ )-fixed) vector.

2B. Some matrix invariants. From now on, fix π to be a generic irreducible ad-
missible unitary representation of G. Let n = a(π), and let ωπ denote the central
character of π .

It is convenient now to introduce some notation. Define

• n1 :=
⌈n

2

⌉
,

• n0 := n− n1 =
⌊n

2

⌋
,

• m = a(ωπ ),

• m1 =max(0,m− n1).

Note that m1 = 0 if and only if m ≤ n1; this can be viewed as the case when ωπ is
not highly ramified.

Next, for any g ∈ G, we define two integers t (g) and l(g) which depend on g
and n. Recall the disjoint double coset decomposition [Saha 2016, Lemma 2.13]:

G =
⊔
t∈Z

⊔
0≤l≤n

⊔
v∈o×/Umin(l,n−l)

Z Na($ t)wn($−lv)K1(p
n). (3)

Accordingly, given any matrix g ∈ G, we define t (g) and l(g) to be the unique
integers such that

• 0≤ l(g)≤ n,

• g ∈ Z Na($ t (g))wn($−l(g)v)K1(p
n) for some v ∈ o×.

Remark 2.1. It is illuminating to restate these matrix invariants slightly differently.
Let g in G. The Iwasawa decomposition tells us that g ∈ Z Na(y)k where k =[a

c
b
d

]
∈ K . Then one can check that l(g)=min(v(c), n), and t (g)= v(y)− 2l(g).

In the sequel, we will often consider matrices g lying in the set K a($ n1). The
next few lemmas explicate some key properties of this set.
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Lemma 2.2. Suppose that k ∈ K and n is odd (so n1 = n0+ 1). Then:

(1) l(ka($ n1))≥ n1 if and only if k ∈ N (o)K 0(p).

(2) l(ka($ n1))≤ n0 if and only if k ∈ wK 0(p).

Proof. We first assume that l(ka($ n1)) ≥ n1 and prove that k ∈ BK 0(p). For
brevity, put l = l(ka($ n1)). So we can write ka($ n1) = bwn($−lv)k ′, where
b ∈ B, k ′ ∈ K1(p

n) and n ≥ l ≥ n1. Therefore k = b′wn($ n1−lv)k2, where k2 =

a($ n1)k ′a($−n1)∈ K 0(pn1) and b′ ∈ B. To complete the proof that k ∈ BK 0(p), it
suffices to check that there exists a matrix b2 ∈ B such that b2wn($ n1−lv)∈ K 0(p).
By explicit verification, b2 =

[
$ n1−lv

0
1

$ l−n1v−1

]
works. Once we have k ∈ BK 0(p),

it follows immediately that k ∈ B(o)K 0(p)= N (o)K 0(p).
The proof that l(ka($ n1)) ≤ n0 implies k ∈ wK 0(p) is similar. The reverse

implications follow using N (o)K 0(p) ∩ wK 0(p)=∅. �

Lemma 2.3. Suppose that k ∈ K0(p), n is odd, and g ∈
{
1,
[
$

1]}. Then

kgwa($ n1)= k ′a($ n1)g′z,

where k ′ ∈ K , l(k ′a($ n1))≤ n0, g′ ∈
{
1,
[
$ n

1]}, and z ∈ Z.

Proof. If g = 1, then kgwa($ n1) = w(w−1kw)a($ n1). If g =
[
$

1], then
kgwa($ n1)=w(w−1kw)a($ n1)

[
$ n

1]z(−$ n1−n). Since (w−1kw) ∈ K 0(p), the
result now follows from Lemma 2.2. �

Lemma 2.4. Suppose that g ∈ K a($ n1). Then t (g)=min(n1− 2l(g),−n1).

Proof. This follows by an explicit computation similar to the proof of Lemma 2.2.
We omit the details. �

2C. Our goal. It may be worthwhile to declare at this point the output from the
rest of Section 2 that will be needed for our main theorem.

In Sections 2D–2E, we will study the local Whittaker newform Wπ , which is a
certain function on G. Given a compact subset J of G, we are interested in the
following questions:

(1) For each g ∈ J , provide a good upper bound for the quantity

sup{|y| :Wπ (a(y)g) 6= 0}.6

(2) Prove an average Ramanujan-type bound for the function |Wπ (a(y)g)| when-
ever g ∈ J and Wπ (a(y)g) 6= 0.

For our global applications, it will be useful to have the set J to be relatively
large (so that we can create a generating domain out of it with a relatively small
archimedean component) while also making sure that the supremum of the upper

6This is essentially the local analogue of the quantity Q(g f ) described in the introduction.
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bound above (as g varies in J ) is fairly small (so as to optimize the Whittaker
expansion bound). We will choose J to equal the set K a($ n/2) if n is even and
equal to {g ∈ K a($ n1) : l(g)≤ n0} if n is odd. For this set J we will answer the
two questions above in Proposition 2.11. This proposition will be of key importance
for our global Whittaker expansion bound.

Next, in Sections 2F–2H, we will study a certain test function 8′π . This test
function, viewed as a convolution operator, is essentially idempotent, and therefore
has exactly one nonzero positive eigenvalue. In Proposition 2.13, we determine the
size of this nonzero eigenvalue, and we also prove that a($ n1)·Wπ is an eigenvector
with this eigenvalue. This proposition will be of key importance for our global
bound coming from the amplified trace formula.

In view of the technical material coming up, it is worth emphasizing that Propo-
sitions 2.11 and 2.13 are the only results from the rest of Section 2 that will be used
in Section 3.

2D. The Whittaker newform. Fix an additive character ψ : F → S1 with con-
ductor o. Then π can be realized as a unique subrepresentation of the space of
functions W on G satisfying W (n(x)g)=ψ(x)W (g). This is the Whittaker model
of π and will be denoted W(π, ψ).

Definition 2.5. The normalized Whittaker newform Wπ is the unique function in
W(π, ψ) invariant under K1(p

n) that satisfies Wπ (1)= 1.

The following lemma is well known and so we omit its proof.

Lemma 2.6. Suppose that Wπ (a(y)) 6= 0. Then |y| ≤ 1, i.e., y ∈ o.

Lemma 2.7 [Saha 2016, Proposition 2.28]. Let π̃ denote the contragredient repre-
sentation of π . Let t ∈ Z, 0≤ l ≤ n, v ∈ o×, and assume7 ωπ ($)= 1. We have

Wπ̃ (a($ t)wn($−lv))

=ε
( 1

2 ,π
)
ωπ (v)ψ(−$

t+lv−1)Wπ (a($ t+2l−n)wn(−$ l−nv)).

Define gt,l,v := a($ t)wn($−lv). Let X̃ denote the group of characters µ of F×

such that µ($) = 1. For each µ ∈ X̃ and each x ∈ F , define the Gauss sum
G(x, µ)=

∫
o× ψ(xy)µ(y) d×y.

We will need two additional results for the results of the next subsection. The
first one is a key formula from [Saha 2016].

Lemma 2.8 [Saha 2016, Proposition 2.23]. Assume that ωπ ∈ X̃ , we have

Wπ (gt,l,v)=
∑

µ:a(µ)≤l,
µ∈X̃

ct,l(µ)µ(v),

7There is no loss of generality in this assumption as we can always twist π by a character of the
form | |ir to ensure this.
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where the coefficients ct,l(µ) can be read off from the following identity

ε
( 1

2 , µπ
)( ∞∑

t=−∞

q(t+a(µπ))(1/2−s)ct,l(µ)

)
L(s, µπ)−1

=ωπ (−1)
( ∞∑

a=0

Wπ (a($ a))q−a(1/2−s)G($ a−l, µ−1)

)
L(1− s, µ−1ω−1

π π)
−1. (4)

The next result deals with conductors of character twists. While the proof is
quite easy, it involves a question that comes up frequently in such problems, see,
e.g., Remark 1.9 of [Nelson et al. 2014].

Lemma 2.9. Let l ≤ n0 be a nonnegative integer. For each character µ with
a(µ)= l, we have a(µπ)≤max(n, l +m). Furthermore, for each r ≥ 0,∣∣{µ ∈ X̃ : a(µ)= l, a(µπ)=max(n, l +m)− r}

∣∣≤ ql−r/2.

Proof. If π is supercuspidal we have l +m ≤ n. Writing π as a twist of a minimal
supercuspidal, the result follows from Tunnell’s theorem [1978, Proposition 3.4] on
conductors of twists of supercuspidal representations. If π is principal series, then it
follows from the well-known formula a(χ1�χ2)= a(χ1)+a(χ2). If π is a twist of
the Steinberg representations, it follows from the formula a(χSt)=max(2a(χ), 1).

�

2E. The support and average size of Wπ . In this subsection we will prove an
important technical result (Proposition 2.10) about the size and support of Wπ .
This will then be combined with the results of the previous subsection to deduce
Proposition 2.11 which will be needed for our global application. To motivate all
these results, we first recall a conjecture made in [Saha 2016].

Conjecture 1 (local Lindelöf hypothesis for Whittaker newforms). Suppose that
a(ωπ )≤ n1 (i.e., m1 = 0). Then

1� sup
g∈G
|Wπ (g)| �ε qnε.

This conjecture (originally stated as [Saha 2016, Conjecture 2]) seems to be
quite hard as it implies square-root cancellation in sums of twisted GL2-ε-factors.
However, for the purpose of this paper, we can prove a bound that is (at least) as
strong as the above conjecture on average. This is achieved by the second part
of the next proposition, which generalizes some results obtained in [Nelson et al.
2014, Section 2], which considered the special case ωπ = 1.

Proposition 2.10. (1) If Wπ (g) 6= 0, then t (g)≥−max(2l(g), l(g)+m, n).
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(2) Suppose t (g)=−max(2l(g), l(g)+m, n)+ r where r ≥ 0. Then we have(∫
v∈o×

∣∣Wπ (a(v)g)
∣∣2 d×v

)1/2

� q−r/4.

Proof. By twisting π with a character of the form | |ir if necessary (which does not
change |Wπ |), we may assume ωπ ∈ X̃ . Also assume n ≥ 1, as the case n = 0 is
trivial. Because of the coset decomposition from earlier, we may further assume
that g= gt,l,v := a($ t)wn($−lv)). Finally, because of Lemma 2.7, we can assume
(by replacing π by π̃ if necessary) that 0≤ l ≤ n0. The desired result then is the
following:

• Let 0 ≤ l ≤ n0. If Wπ (gt,l,v) 6= 0, then t ≥ −max(n, l + m). Further if
t =−max(n, l +m)+ r where r ≥ 0 then(∫

v∈o×

∣∣Wπ (gt,l,v)
∣∣2 d×v

)1/2

� q−r/4.

In the notation of (4), the above is equivalent to:

Claim 1. Let 0 ≤ l ≤ n0. If there exists µ ∈ X̃ such that a(µ) ≤ l and ct,l(µ) 6= 0
then t ≥ −max(n, l +m). Further if t = −max(n, l +m)+ r where r ≥ 0 then∑

µ∈X̃
a(µ)≤l

|ct,l(µ)|
2
� q−r/2.

Define the quantities dt,l(µ) via the following identity (of polynomials in q±s):

ε
( 1

2 , µπ
)( ∞∑

t=−∞

q(t+a(µπ))(1/2−s)ct,l(µ)

)
L(s, µπ)−1

=

( ∞∑
t=−∞

q(t+a(µπ))(1/2−s)dt,l(µ)

)
. (5)

Note that (for fixed l and µ) dt,l(µ) is nonzero for only finitely many t . Further-
more, ct,l(µ) =

∑
∞

i=0 αi dt−i,l(µ) where |α0| = 1 and |αi | � q−i/2. (In fact, if π
is supercuspidal, αi = 0 for all i > 0). Hence it suffices to prove Claim 1 for the
quantities dt,l(µ) rather than ct,l(µ). Therefore using (4) it suffices to prove this:

Claim 2. Let 0≤ l ≤ n0. Define the quantities dt,l(µ) via the identity( ∞∑
t=−∞

q(t+a(µπ))(1/2−s)dt,l(µ)

)
= ωπ (−1)

( ∞∑
a=0

Wπ (a($ a))q−a(1/2−s)G($ a−l, µ−1)

)
L(1− s, µ−1ω−1

π π)
−1. (6)

If there exists µ ∈ X̃ such that a(µ)≤ l and dt,l(µ) 6= 0 then t ≥−max(n, l +m).
Further, if t =−max(n, l +m)+ r with r ≥ 0, then

∑
µ∈X̃

a(µ)≤l
|dt,l(µ)|

2
� q−r/2.
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We only consider the case L(s, π) = 1, as the case L(s, π) 6= 1 is similar but
easier. (Note that L(s, π) 6= 1 if and only if either m = n or n = 1.)

Let µ ∈ X̃ be such that a(µ) ≤ l. As L(s, π)= 1, we can use the well-known
formulas stated in [Saha 2016, Equation (6) and Lemma 2.5] to deduce that the
quantity on the RHS of (6) lying inside the bracket is a constant of absolute value
�q−l/2 if a(µ)= l or if a(µ)=0 and l=1; and is equal to 0 otherwise. Furthermore,
there are at most 2 characters µ ∈ X̃ with a(µ)≤ n0 and L(s, µ−1ω−1

π π) 6= 1 (this
can be checked, for example, using the classification written down in [Saha 2016,
Section 2.2]).

We henceforth assume that a(µ) = l or a(µ) = 0 and l = 1; else there is
nothing to prove as dt,l(µ) = 0. Suppose first that L(s, µ−1ω−1

π π) = 1. Then,
by equating coefficients on both sides of (6), we see that dt,l(µ) 6= 0 implies t =
−a(µπ)≥−max(n, a(µ)+m)≥−max(n, l+m), using Lemma 2.9. Furthermore
if t =−max(n, l +m)+ r , then∑

µ∈X̃
a(µ)∈{l,0}
L(s,µπ)=1

∣∣dt,l(µ)
∣∣2� ∑

µ∈X̃
a(µ)∈{l,0}

a(µπ)=max(n,l+m)−r

q−l
� q−r/2,

again using Lemma 2.9.
Suppose next that L(s, µ−1ω−1

π π) 6= 1. In this case µ 6= 1 so if dt,l(µ) 6= 0 we
must have a(µ)= l. Also, the right side of (6) is of the form α0+α1q−1(1/2−s)

+

α2q−2(1/2−s) with αi�q−(l+i)/2. Furthermore if α2 6=0 then a(µπ)=0≤n−2 and
if α2=0 then α1 6=0 and a(µπ)≤max(n0,m)≤n−1. So again equating coefficients
and using Lemma 2.9, we see that dt,l(µ) 6= 0⇒ t ≥−n ≥−max(n, l +m), and
furthermore if t =−max(n, l +m)+ r , then

∑
µ∈X̃

a(µ)=l
L(s,µπ) 6=1

∣∣dt,l(µ)
∣∣2� 2∑

i=0

∑
µ∈X̃

a(µ)=l
a(µπ)=max(n,l+m)−r−i

q−l−i
� q−r/2,

again using Lemma 2.9.
Putting everything together, the proof of Claim 2 is complete. �

Next, for any g ∈ G, define

n0(g)=min(l(g), n− l(g)), and q(g)=max(n0, n0(g)− n1+m).

We note the useful bounds 0≤ n0(g)≤ n0 and n0 ≤ q(g)≤ n0+m1.

Proposition 2.11. Suppose that g ∈ K a($ n1). Assume further that either n is even
or l(g)≤ n0.

(1) If for some y ∈ F×, we have Wπ (a(y)g) 6= 0, then v(y)≥−q(g).
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(2) Suppose b =−q(g)+ r where r ≥ 0. Then we have(∫
v∈o×

∣∣Wπ (a($ bv)g)
∣∣2 d×v

)1/2

� q−r/4.

Proof. This follows immediately from Lemma 2.4 and Proposition 2.10. �

Remark 2.12. Note that the map on o× given by v 7→ |Wπ (a(vy)g)| is Un0(g)

invariant for all y ∈ F× and g ∈ G. Hence the second part of Proposition 2.11 is
equivalent to

1
|o×/Un0(g)|

∑
v∈o×/Un0(g)

∣∣Wπ (a($ bv)g)
∣∣2d×v� q−r/2.

2F. Test functions. We now change gears and start looking at certain local test
functions (related to matrix coefficients) that will be used later in the trace formula.
We begin with some definitions. Let C∞c (G, ω

−1
π ) be the space of functions κ on G

with the following properties:

(1) κ(z(y)g)= ω−1
π (y)κ(g).

(2) κ is locally constant.

(3) |κ| is compactly supported on Z\G.

Given κ1, κ2 ∈ C∞c (G, ω
−1
π ) we define the convolution κ1 ∗ κ2 ∈ C∞c (G, ω

−1
π ) via

(κ1 ∗ κ2)(h)=
∫

Z\G
κ1(g−1)κ2(gh) dg, (7)

which turns C∞c (G, ω
−1
π ) into an associative algebra.

Next let σ be a representation of G with central character equal to ωπ . Then, for
any κ ∈ C∞c (G, ω

−1
π ) and any vector v ∈ σ , we define R(κ)v to be the vector in σ

given by

R(κ)v =
∫

Z\G
κ(g)(σ (g)v) dg. (8)

Let vπ be any newform in the space of π , i.e., any nonzero vector fixed by K1(p
n).

Equivalently vπ can be any vector in π corresponding to Wπ under some isomor-
phism π 'W(π, ψ). Thus vπ is unique up to multiples. Put v′π = π(a($

n1))vπ .
Note that v′π is, up to multiples, the unique nonzero vector in π that is invariant
under the subgroup a($ n1)K1(p

n)a($−n1).
Let 〈 , 〉 be any G-invariant inner product on π (this is also unique up to multiples).

Define a matrix coefficient 8π on G as follows:

8π (g)=
〈vπ , π(g)vπ 〉
〈vπ , vπ 〉

;



1026 Abhishek Saha

this is clearly independent of the choice of vπ or the normalization of the inner
product. Further, let

K 0
:= K 0(pn1−n0)=

{
K if n is even,
K 0(p) if n is odd.

Put

8′π (g)=

8π (a($−n1)ga($ n1))=
〈v′π , π(g)v

′
π 〉

〈v′π , v
′
π 〉

if g ∈ Z K 0,

0 if g /∈ Z K 0.

Then it follows that 8′π ∈ C∞c (G, ω
−1
π ) and 8′π (g

−1)=8′π (g). In particular, the
operator R(8′π ) is self-adjoint.

Proposition 2.13. There exists a positive real constant δπ depending only on π and
satisfying δπ � q−n1−m1 such that the following hold:

(1) R(8′π )v
′
π = δπv

′
π .

(2) 8′π ∗8
′
π = δπ8

′
π .

Remark 2.14. This is a refinement of a result of Marshall [2016] that holds in
the special case ωπ = 1; he used a slightly different test function which does not
differentiate between n odd and even.

Remark 2.15. In fact with some additional work one can prove δπ � q−n1−m1 .

The rest of this section will be devoted to proving this proposition. We note a
useful corollary.

Corollary 2.16. Let σ be a generic irreducible admissible unitarizable representa-
tion of G such that ωσ = ωπ and let vσ be any vector in the space of σ . Suppose
that R(8′π )vσ = δvσ for some complex number δ. Then δ ∈ {0, δπ }; in particular, δ
is a nonnegative real number.

Proof. We have

δδπvσ = δπ R(8′π )vσ = R(8′π ∗8
′

π )vσ = R(8′π )R(8
′

π )vσ = δ
2vσ ,

implying that δ ∈ {0, δπ }. �

2G. Some preparatory lemmas.

Lemma 2.17. Consider the representation π |K 0 of K 0 and let π ′ be the subrep-
resentation of π |K 0 generated by v′π . Then π ′ is a finite dimensional irreducible
representation of K 0.

Proof. We know that π ′ is isomorphic to a direct sum of irreducible representations
of K 0. However if there were more than one summand in the decomposition of π ′,
then the representation π |K 0 (and hence the representation π) would contain a
a($ n1)K1(p

n)a($−n1)-fixed subspace of dimension greater than one; by newform
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theory this is impossible. Hence π ′ is irreducible. The finite dimensionality of π ′

follows from the admissibility of π . �

Lemma 2.18. Let π ′ be as in Lemma 2.17. Then both claims of Proposition 2.13
hold with the quantity δπ defined as follows:

δπ =

∫
Z\G
|8′π (g)|

2 dg =
∫

K 0
|8′π (g)|

2 dg = 1
[K : K 0] dim(π ′)

.

Proof. Note that 〈 , 〉 is an invariant inner product for π ′. It follows immediately
(from the orthonormality of matrix coefficients) that the last two quantities are equal.
The equality of the middle two quantities is immediate from our normalization of
Haar measures.

We now show that this quantity satisfies the claims of Proposition 2.13. First of all,
R(8′π )v

′
π is a vector in π that is invariant under the subgroup a($ n1)K1(p

n)a($−n1).
It follows that R(8′π )v

′
π = δv

′
π for some constant δ. Taking inner products with v′π

immediately shows that δ = δπ . This proves the first assertion of Proposition 2.13.
The second assertion is a standard property of convolutions of matrix coefficients.

�

Proof of Proposition 2.13 in the case of nonsupercuspidal representations. For any
nonsupercuspidal representation π it suffices to show that

dim(π ′)� qn0+m1,

where π ′ is as in Lemma 2.17.
We can embed π inside a representation χ1 �χ2, consisting of smooth functions

f on G satisfying

f
([a

0
b
d

]
g
)
=
∣∣ a

d

∣∣1/2χ1(a)χ2(d) f (g).

Here χ1 and χ2 are two (not necessarily unitary) characters. Let f ′ be the function in
χ1 �χ2 that corresponds to v′π . Let K ′ be the (normal) subgroup of K 0 consisting
of matrices

[a
c

b
d

]
such that a ≡ d ≡ 1 (mod pn0+m1), b ≡ 0 (mod pn1+m1) and

c≡0 (mod pn0+m1). Let VK ′ be the subspace of χ1�χ2 consisting of the functions f
that satisfy f (gk)= ωπ (a) f (g) for all k =

[a
c

b
d

]
∈ K ′. Then f ′ ∈ VK ′ . Moreover

(and this is the key fact!) if k ∈ K 0 and k ′ ∈ K ′, then the top left entries of
k ′ and kk ′k−1 (both these matrices are elements of K ′) are equal modulo pm .
Hence the space VK ′ is stable under the action of K 0. So it suffices to prove that
dim(VK ′)� qn0+m1 .

Using the Iwasawa decomposition, it follows that |B(F)\G(F)/K ′| � qn0+m1 .
Fix a set of double coset representatives S for B(F)\G(F)/K ′. Since any element
of VK ′ is uniquely determined by its values on S, it follows that dim(VK ′)� qn0+m1 .
The proof is complete. �
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2H. Proof of Proposition 2.13 in the case of supercuspidal representations. We
now assume that π is supercuspidal. In this case, m ≤ n0, hence m1 = 0. So it
suffices to prove that∫

K 0
|8π (a($−n1)ga($ n1))|2 dg� q−n1 . (9)

The next proposition gives a formula for 8π , which may be of independent
interest.

Proposition 2.19. For 0≤ l < n, we have

8π (n(x)gt,l,v)

= G(−$ l−n, 1)G($ t+lv−1
− x, 1)ωπ (−v)δt,−2l

+ ε
(1

2 , π
)
ωπ (v)

∑
µ∈X̃

a(µ)=n−l
a(µπ̃)=n−2l−t

G($ l−n, µ)G(vx −$ t+l, µ)ε
( 1

2 , µπ̃
)
. (10)

Proof. Using the usual inner product in the Whittaker model, and the fact that
Wπ (a(t)) is supported on t ∈ o×, (as π is supercuspidal) it follows that

8π (n(x)gt,l,v)=

∫
o×
ψ(−ux)ωπ (u)Wπ (gt,l,vu−1) d×u. (11)

On the other hand, by the formula for Wπ in [Saha 2016, Proposition 2.30] and
using Lemma 2.7 we have

Wπ (a($ t)wn($−lv))

= ωπ (−v
−1)ψ(−$ t+lv−1)G($ l−n, 1)δt,−2l

+

(
ε
( 1

2 , π̃
)
ωπ (v

−1)ψ(−$ t+lv−1)

×

∑
µ∈X̃

a(µ)=n−l
a(µπ)=n−t−2l

G($ l−n, µ−1)ε
( 1

2 , µ
−1π

)
µ(−v).

)

Substituting this into (11), we immediately get the required result. �

To obtain (9), we will need to substitute the formula from Proposition 2.19 and
integrate. The following elementary lemma (which is similar to Lemma 2.6 of [Hu
2017]) will be useful; we omit its proof.

Lemma 2.20. Let f be a function on G that is right K1(p
n)-invariant. Then∫

G
f (g) dg =

n∑
k=0

Ak

∫
B

f (bwn($−k)) db,
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where A0 = (1 + q−1)−1, An = qn(1 + q−1)−1 and, for 0 < k < n, Ak =

qk(1− q−1)(1+ q−1)−1.

We now complete the proof of (9). Using Lemma 2.20, it suffices to prove that∫
b∈B

bwn($−n1 )∈a($−n1 )K 0a($ n1 )

|8π (bwn($−n1))|2 db� q−2n1 . (12)

Now, note that the quantity z(u)n(x)a(y)wn($−n1) lies in a($−n1)K 0a($ n1)

if and only if

u =$ n1u′, y =$−2n1 y′ and x =$−n1 x ′,

for y′ ∈ o×, u′ ∈ o×, x ′ ∈ o and y′−x ′ ∈ pn1−n0 . Hence the left side of (12) is equals

q−n1

∫
y′∈o×,x ′∈o

x ′∈y′+pn1−n0

|8π (n($−n1 x ′)g−2n1,−n1,y′−1)|2 dx ′ d×y′. (13)

Now, we can exactly evaluate the integral in (13) using Proposition 2.19. We
expand |8π (n($−n1 x ′)g−2n1,n1,y′−1)|2 and observe that the main (diagonal) terms
are simple to evaluate as we know the modulus-squared of Gauss sums. Indeed, the
contribution to (13) from the diagonal terms is simply

q−n1

∫
y′∈o×, x ′∈o

x ′∈y′+pn1−n0

∑
µ∈X̃

a(µ)=n0
a(µπ̃)=n

q−2n0 � q−2n1 .

On the other hand, the contribution from the cross terms is zero. Indeed, each cross
term involves an integral like∫

y′∈o×, x ′∈o
y′−1x ′−1∈pn1−n0o×

µ−1
1 µ2((y′−1x ′− 1)$ n0−n1),

which equals 0 because of the orthogonality of characters. This completes the proof
of (12). �

3. Sup-norms of global newforms

From now on, we move to a global setup and consider newforms on GL2(A) where
A is the ring of adeles over Q. For any place v of Q, we will use the notation Xv for
each local object X introduced in the previous section. The corresponding global
objects will be typically denoted without the subscript v. The archimedean place
will be denoted by v =∞. We will usually denote a nonarchimedean place v by p,
where p is a rational prime. The set of all nonarchimedean places (primes) will be
denoted by f .
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We fix measures on all our adelic groups (like A, GL2(A), etc.) by taking the
product of the local measures over all places (for the nonarchimedean places, these
local measures were normalized in Section 2A; at the archimedean place we fix
once and for all a suitable Haar measure). We normalize the Haar measure on R to
be the usual Lebesgue measure. We give all discrete groups the counting measure
and thus obtain a measure on the appropriate quotient groups.

3A. Statement of result. As usual, let G = GL2. Let π = ⊗vπv be an irre-
ducible, unitary, cuspidal automorphic representation of G(A) with central character
ωπ =

∏
v ωπv . For each prime p, let the integers n p, n1,p, n0,p, m p, and m1,p be

defined as in Section 2B. We put N =
∏

p pn p , N0 =
∏

p pn0,p , N1 =
∏

p pn1,p ,
M =

∏
p pm p , and M1 =

∏
p pm1,p . Thus, N is the conductor of π , M is the

conductor of ωπ , N0 is the largest integer such that N 2
0 | N , and N1 = N/N0 is the

smallest integer such that N | N 2
1 . Let N2 = N1/N0 = N/N 2

0 . Note that N2 is a
squarefree integer and is the product of all the primes p such that p divides N to an
odd power. If N is squarefree, then N2= N1= N and N0= 1 while if N is a perfect
square then N0 = N1 =

√
N and N2 = 1. Note also that M1 = M/ gcd(M, N1).

We assume that π∞ is a spherical principal series representation whose central
character is trivial on R+. This means that π∞ ' χ1 �χ2,8 where for i = 1, 2, we
have χ1 = |y|i t sgn(y)m , χ2 = |y|−i t sgn(y)m , with m ∈ {0, 1}, and t ∈R∪

(
−

i
2 ,

i
2

)
.

Let K1(N )=
∏

p∈ f K1,p(pn p)=
∏

p -N G(Zp)
∏

p | N K1,p(pn p) be the standard
congruence subgroup of G(Ẑ)=

∏
p∈ f G(Zp); note that K1(N )G(R)+ ∩G(Q) is

equal to the standard congruence subgroup 01(N ) of SL2(Z). Let K∞ = SO2(R)

be the maximal connected compact subgroup of G(R) (equivalently, the maximal
compact subgroup of G(R)+). We say that a nonzero automorphic form φ ∈ Vπ is
a newform if φ is K1(N )K∞-invariant. It is well-known that a newform φ exists
and is unique up to multiples, and corresponds to a factorizable vector φ =⊗vφv.
We define

‖φ‖2 =

∫
Z(A)G(F)\G(A)

|φ(g)|2 dg.

Remark 3.1. If φ is a newform, then the function f on H defined by f (g(i))=φ(g)
for each g ∈ SL2(R) is a Hecke–Maass cuspidal newform of level N (and charac-
ter ωπ ). Precisely, it satisfies the relation

f
([a

c
b
d

]
z
)
=

( ∏
p | N

ωπ,p(d)
)

f (z), for all
[a

c
b
d

]
∈ 00(N ). (14)

8For two characters χ1 and χ2 on R×, we let χ1 �χ2 denote the principal series representation on
G(R) that is unitarily induced from the corresponding representation of B(R); this consists of smooth
functions f on G(R) satisfying

f
([ a

0
b
d
]
g
)
=
∣∣ a

d
∣∣1/2χ1(a)χ2(d) f (g).
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The Laplace eigenvalue λ for f is given by λ= 1
4 + t2 where t is as above. (Note

that λ� (1+ |t |)2.)
Furthermore, any Hecke–Maass cuspidal newform f is obtained in the above

manner from a newform φ in a suitable automorphic representation π . The newform
φ can be directly constructed from f via strong approximation. It is clear that
supg∈G(A)|φ(g)| = supz∈00(N )\H| f (z)|.

Our main result is as follows.

Theorem 3.2. Let π be an irreducible, unitary, cuspidal automorphic representa-
tion of G(A) such that π∞'χ1�χ2, where, for i =1, 2, we have χ1=|y|i t sgn(y)m

and χ2 = |y|−i t sgn(y)m , with m ∈ {0, 1} and t ∈ R ∪
(
−

i
2 ,

i
2

)
. Let the integers

N0, N1 and M1 be defined as above and let φ ∈Vπ be a newform satisfying ‖φ‖2= 1.
Then

sup
g∈G(A)

|φ(g)| �ε N 1/6+ε
0 N 1/3+ε

1 M1/2
1 (1+ |t |)5/12+ε.

Remark 3.3. If π has trivial central character and N1 �
√

N (this is the case
whenever N is sufficiently “powerful”), then we get supg∈G(A)|φ(g)| �t,ε N 1/4+ε,
which is a considerable improvement over the best previously known result [Saha
2014] supg∈G(A)|φ(g)| �t,ε N 5/12+ε, due to the author.

3B. Atkin–Lehner operators and a generating domain. Let π be as in Section 3A
and φ ∈ Vπ a newform. In order to prove Theorem 3.2 we will restrict the variable g
to a carefully chosen generating domain inside G(A). In order to do this, we will
have to consider the newform φ along with some of its Atkin–Lehner translates.
The object of this section is to explain these ideas and describe our generating
domain. The main result in this context is Proposition 3.6 below.

We begin with some definitions. For any integer L , let P(L) denote the set
of distinct primes dividing L . For any subset S of P(N ), let ηS, hS ∈ G(A f ) be
defined as follows: ηS,p =

[
pnp

1] if p ∈ S and ηS,p = 1 otherwise; hS,p = a(pn1,p)

if p ∈ S and hS,p = 1 otherwise. Define

KS =
∏
p∈S

G(Zp)⊂ G(A f ), JS = KShS ⊂ G(A f ).

Finally, define

JS = {g ∈ JS : l(gp)≤ n0,p for all p ∈ S such that n p is odd}.

Using Lemma 2.2, we see that g ∈
∏

p∈S G(Qp) belongs to JS if and only if
gp ∈ wK 0

p(p)a(p
n1,p) for all p ∈ S for which n p is odd. If L divides N , we abuse

notation by denoting

hL = hP(L), KL = KP(L), JL = JP(L) and JL = JP(L).
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For any 0< c <∞, let Dc be the subset of B1(R)
+
' H defined by

Dc := {n(x)a(y) : x ∈ R, y ≥ c}.

Finally, for L > 0, define

FL={n(x)a(y)∈D√3/(2L) :z=x+iy satisfies |cz+d|2≥1/L ,∀(0, 0) 6=(c, d)∈Z2
}.

Next, for any subset S of P(N ), let ωS
π =

∏
v ω

S
π,v be the unique character9 on

Q×\A× with the following properties:

(1) ωS
π,∞ is trivial on R+.

(2) ωS
π,p|Z×p is trivial if p ∈ S and equals ωπ,p|Z×p if p /∈ S.

Note that ωP(N )
π = 1, ω∅

π = ωπ and, for each S, ωS
π has conductor

∏
p/∈S pm p .

Define the irreducible, unitary, cuspidal automorphic representation π S by π S
=

π̃⊗ωS
π =π⊗(ω

−1
π ω

S
π ). A key observation is that for every S, the representation π S

has conductor N and its central character ωπ S = ω−1
π (ω

S
π )

2 has conductor M . We
have π∅

= π and πP(N )
= π̃ .

Lemma 3.4. The function φS on G(A) given by φS(g) := (ω−1
π ω

S
π )(det(g))φ(gηS)

is a newform in π S .

Proof. It is clear that φS is a vector in π S , and one can easily check from the
defining relation that it is K1(N )K∞ invariant. �

Remark 3.5. In the special case ωπ = 1, one has π S
= π for every subset S

of P(N ). In this case, for each S, the involution π(ηS) on Vπ corresponds to a
classical Atkin–Lehner operator, and φS

= ±φ with the sign equal to the Atkin–
Lehner eigenvalue. We will call the natural map on Z(A)G(Q)\G(A)/K1(N )K∞
induced by g 7→ gηS the adelic Atkin–Lehner operator associated to S.

Recall that JN =
∏

p | N2
wK 0

p(p)a(p
n1,p)

∏
p | N , p -N2

G(Zp)a(pn1,p)⊂ G(A f ).
The next proposition tells us that any point in Z(A)G(Q)\G(A)/K1(N )K∞ can
be moved by an adelic Atkin–Lehner operator to a point whose finite part lies in
JN and whose infinite component lies in FN2 .

Proposition 3.6. Suppose that g ∈ G(A). Then there exists a subset S of P(N2)

such that
g ∈ Z(A)G(Q)(JN ×FN2)ηS K1(N )K∞.

Proof. Let wN be the diagonal embedding of w =
[ 0
−1

1
0

]
into KN . The determi-

nant map from wN hN K1(N )h−1
N w−1

N is surjective onto
∏

p Z×p . Hence by strong

9The existence, as well as uniqueness, of the character ωS
π follows from the identity

A× =Q×R+
∏

p Z×p .
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approximation for gh−1
N w−1

N , we can write gh−1
N w−1

N = zgQg+
∞
(wN hN kh−1

N w−1
N )

where z ∈ Z(A), gQ ∈ G(Q), g+
∞
∈ G(R)+ and k ∈ K1(N ). In other words,

g ∈ Z(A)G(Q)g+
∞
wN hN K1(N ). (15)

Using Lemma 1 from [Harcos and Templier 2012], we can find a divisor N3 of N2,
and a matrix W ∈ M2(Z) such that

W ≡
[ 0

0
∗

0

]
mod N3, W ≡

[
∗

0
∗

∗

]
mod N2, det(W )= N3, W∞g+

∞
∈ FN2 K∞.

W∞ denotes the element W considered as an element of G(R)+. Let S be the set of
primes dividing N3. Note that Wp ∈ K0,p(p)

[ 0
p

1
0

]
if p ∈ S, Wp ∈ K0,p(p) if p | N2

but p /∈ S, and Wp ∈ G(Zp) if p -N2. Since W ∈ G(Q), it follows from above and
from (15) that g is an element of

Z(A)G(Q)FN2 K∞
( ∏

p∈S
K0,p(p)

[ 0
p

1
0

]
w
)( ∏

p | N2
p/∈S

K0,p(p)w
)( ∏

p | N
p -N2

G(Zp)
)
hN K1(N )

= Z(A)G(Q)(JN ×FN2)ηS K1(N )K∞,

where in the last step we have used Lemma 2.3. �

Corollary 3.7. Let π and φ be as in Theorem 3.2. Suppose that for all subsets S of
P(N2) and all g ∈ JN , n(x)a(y) ∈ FN2 , we have

|φS(gn(x)a(y))| �ε N 1/2+ε
1 M1/2

1 N−1/6
2 (1+ |t |)5/12+ε.

Then the conclusion of Theorem 3.2 is true.

Proof. This follows from Proposition 3.6 and the fact that

|φS(gn(x)a(y))| = |φ(gn(x)a(y)ηS)|. �

3C. Sketch of proof modulo technicalities. We now prove Theorem 3.2 assuming
some key bounds whose proofs will take the rest of this paper. For brevity we put
T = 1+|t |. Also, recall that N2= N1/N0. We need to show that for each g ∈G(A),

|φ(g)| �ε N 1/2+ε
1 M1/2

1 N−1/6
2 T 5/12+ε.

By letting φ run over all its various Atkin–Lehner translates φS , for S ⊆ P(N2),
we may assume (by Corollary 3.7) that g ∈ JNFN2 . Therefore, in what follows, we
will not explicitly keep track of the set S, but instead prove the following: Given an
automorphic representation π as in Section 3A (with associated quantities N1, N2,
T and M1 as defined earlier), a newform φ ∈ Vπ satisfying ‖φ‖2 = 1, and elements
g ∈ JN and n(x)a(y) ∈ FN2 , we have

|φ(gn(x)a(y))| �ε N 1/2+ε
1 M1/2

1 N−1/6
2 T 5/12+ε. (16)
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As noted, the above statement implies Theorem 3.2. Implicit here is the fact that
we are letting π vary among the various π S , which all have exactly the same values
of N , N1, N2, M1 and T as π , and moreover the corresponding newforms φS all
satisfy ‖φS

‖2 = ‖φ‖2.
We prove (16) by a combination of two methods. In Proposition 3.8, we use the

Whittaker expansion to bound this quantity. Precisely, we prove the following bound:

|φ(gn(x)a(y))| �ε (N T )ε
((N1 M1T

N2 y

)1/2
+

(N1T 1/3

N2

)1/2)
. (17)

To prove (17) we rely on Proposition 2.11. Next, in Proposition 3.16, we use the
amplification method to bound this quantity. We prove that for each 3≥ 1, we have

|φ(gn(x)a(y))|2

�ε (N T3)εN1 M1

[
T+N 1/2

2 T 1/2 y
3

+31/2T 1/2(N−1/2
2 +y)+32T 1/2 N−1

2

]
. (18)

The proof of this bound relies on Proposition 2.13 and some counting arguments
due to Harcos and Templier. Combining the two bounds leads to Theorem 3.2, as
we explain now.

Choose 3= T 1/6 N 1/3
2 . Then (18) becomes

|φ(gn(x)a(y))|2�ε (N T )εN1 M1[T 5/6 N−1/3
2 + T 7/12 N−1/6

2 y]. (19)

If y≤T 1/4 N−1/6
2 , then we use (19) to immediately deduce (16). If y≥T 1/4 N−1/6

2 ,
then we use (17) to obtain the bound

|φ(gn(x)a(y))| �ε (N T )εM1/2
1 N 1/2

1 N−5/12
2 T 3/8, (20)

which is much stronger than (16)! This completes the proof.

3D. The bound via the Whittaker expansion. Let π and φ be as in Section 3A
with ‖φ‖2 = 1. The object of this section is to prove the following result.

Proposition 3.8. Let x ∈ R, y ∈ R+ and g ∈ JN . Then

|φ(gn(x)a(y))| �ε (N T )ε
((N0 M1T

y

)1/2
+ (N0T 1/3)1/2

)
.

Remark 3.9. If we assume Conjecture 1, then we can improve the bound in
Proposition 3.8 to

(N T )ε
((N0 M1T

y

)1/2
+ (T 1/3)1/2

)
.

We now begin the proof of Proposition 3.8. One has the usual Fourier expansion
at infinity

φ(n(x)a(y))= y1/2
∑

n∈Z6=0

ρφ(n)Ki t(2π |n|y)e(nx). (21)
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Lemma 3.10 notes some key properties about the Fourier coefficients in (21).

Lemma 3.10. The Fourier coefficients ρφ(n) satisfy the following properties:

(1) |ρφ(n)| = |ρφ(1)λπ (n)| where λπ (n) are the coefficients of the L-function of π .

(2) |ρφ(1)| �ε (N T )εeπ t/2.

(3)
∑

1≤|n|≤X |λπ (n)|
2
� X (N T X)ε.

Proof. All the parts are standard. The first part is a basic well-known relation
between the Fourier coefficients and Hecke eigenvalues. The second part is due to
Hoffstein and Lockhart [1994]. The last part follows from the analytic properties
of the Rankin–Selberg L-function (e.g., see [Harcos and Michel 2006]). �

The Fourier expansion (21) is a special case of the more general Whittaker
expansion that we describe now. Let g f ∈ G(A f ). Then the Whittaker expansion
for φ says that

φ(g f n(x)a(y))=
∑

q∈Q6=0

Wφ(a(q)g f n(x)a(y)), (22)

where Wφ is a global Whittaker newform corresponding to φ given explicitly by

Wφ(g)=
∫

x∈A/Q

φ(n(x)g)ψ(−x) dx .

Putting g f = 1 in (22) gives us the expansion (21). On the other hand, the function
Wφ factors as Wφ(g)= c

∏
v Wv(gv) where

(1) Wp =Wπp at all finite primes p,

(2) |W∞(a(q)n(x)a(y))| = |qy|1/2|Ki t(2π |q|y)|.

The constant c is related to L(1, π,Ad); for further details on this constant, see
[Saha 2016, Section 3.4].

For any g =
∏

p | N gp ∈ JN , define

N g
0 =

∏
p | N

pn0(gp) and Qg
=

∏
p | N

pq(gp),

where the integers n0(gp) and q(gp) are as defined just before Proposition 2.11.
Note that the “useful bounds” stated there imply that N g

0 | N0 and Qg
| N0 M1.

Lemma 3.11. Suppose that g ∈ JN and Wφ(a(q)gn(x)a(y)) 6= 0 for some q ∈Q.
Then we have q = n/Qg for some n ∈ Z.

Proof. We have Wπp(a(q)gp) 6= 0 for each p | N and Wπp(a(q)) 6= 0 for each p -N .
Now the result follows from Proposition 2.11 and Lemma 2.6. �
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Henceforth we fix some g ∈ JN . By comparing the expansion (22) for g f = g
with the trivial case g f = 1, we conclude that
φ(gn(x)a(y))

=

∑
n∈Z6=0

Wφ(a(n/Qg)gn(x)a(y))

=

∑
n∈Z6=0

( ∏
p | N

Wπp(a(n/Qg)g)
)(

c
∏
p -N

Wπp(a(n))
)

W∞(a(n/Qg)n(x)a(y))

=

( y
Qg

)1/2 ∑
n∈Z6=0

(|n|, N∞)1/2ρφ
( n
(|n|, N∞)

)
λπN (n; g)Ki t

(2π |n|y
Qg

)
χn, (23)

where χn is some complex number of absolute value 1, and for each nonnegative
integer n we define

λπN (n; g) :=
∏
p | N

Wπp(a(np−q(gp))gp).

The tail of the sum (23) consisting of the terms with 2π |n|y/Qg > T + T 1/3+ε

is negligible because of the exponential decay of the Bessel function. Put

R = Qg
(T+T 1/3+ε

2πy

)
�

QgT
y
.

Using the Cauchy–Schwarz inequality and Lemma 3.10, we therefore have

|φ(gn(x)a(y))|2�ε (N T )εeπ t
( y

Qg

)( ∑
0<n<R

(|n|, N∞)
∣∣∣λπ( n

(|n|, N∞)

)∣∣∣2)
×

( ∑
0<n<R

∣∣∣λπN (n; g)Ki t

(2π |n|y
Qg

)∣∣∣2). (24)

Lemma 3.12. The function λπN (n; g) satisfies the following properties:

(1) Suppose that n1 is a positive integer such that n1 | N∞, and n0, n′0 are two
integers coprime to N such that n0 ≡ n′0 (mod N g

0 ). Then

|λπN (n0n1; g)| = |λπN (n
′

0n1; g)|.

(2) For any integer r and any n1 | N∞,∑
r N g

0≤|n0|<(r+1)N g
0

(n0,N )=1

|λπN (n0n1; g)|2� N g
0 n−1/2

1 .

Proof. Let p | N and u1, u2 ∈ Z×p . Then by (3) it follows that, for all w ∈Q×p ,

|Wπp(a(wu1)gp)| = |Wπp(a(wu2)gp)|,

whenever u1 ≡ u2 mod (pn0(gp)). It follows that if n1 | N∞, then

|λπN (n0n1; g)| = |λπN (n
′

0n1; g)| if n0 ≡ n′0 (mod N g
0 ). (25)
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Furthermore using the above and the Chinese remainder theorem,

1
N g

0

∑
n0 mod N g

0
(n0,N )=1

|λπN (n0n1; g)|2 =
∏
p | N

(∫
Z×p

∣∣Wπp(a(n1vp−q(gp))gp)
∣∣2 d×v

)
,

and hence by Proposition 2.11,

1
N g

0

∑
n0 mod N g

0
(n0,N )=1

|λπN (n0n1; g)|2� n−1/2
1 . �

Lemma 3.13. We have∑
0<n<R

teπ t
∣∣∣λπN (n; g)Ki t

(2π |n|y
Qg

)∣∣∣2�ε (N T )ε
(

N g
0 T 1/3

+
QgT

y

)
.

Remark 3.14. If we assume Conjecture 1, then the bound on the right side can be
improved to (N T )ε

(
T 1/3
+ (QgT )/y

)
.

Proof. Let f (y)=min(T 1/3, |y/T − 1|−1/2). Then it is known that

teπ t
|Ki t(y)|2� f (y),

see, e.g., [Templier 2015, (3.1)]. Using the previous lemma, we may write

teπ t
∑

0<n<R

∣∣∣λπN (n; g)Ki t

(2π |n|y
Qg

)∣∣∣2
�

∑
1≤n1≤R
n1 | N∞

∑
1≤|n0|≤R/n1
(n0,N )=1

|λπN (n0n1; g)|2 f
(2π |n0n1|y

Qg

)

�

∑
1≤n1≤R
n1 | N∞

∑
0≤r≤bR/(n1 N g

0 )c

∑
r N g

0≤|n0|≤(r+1)N g
0

(n0,N )=1

|λπN (n0n1; g)|2 f
(2π |n0n1|y

Qg

)

� N g
0

∑
1≤n1≤R
n1 | N∞

n−1/2
1

∑
0≤r≤bR/(n1 N g

0 )c

f
(2π |n(r)0 n1|y

Qg

)

(where n(r)0 ∈ [r N g
0 , (r + 1)N g

0 ] is the point where f (2πn(r)0 n1 y/Qg) is maximum,
and where we have used Lemma 3.12)

�

∑
1≤n1≤R
n1 | N∞

n−1/2
1 N g

0

(
T 1/3
+

∫ R/(N g
0 n1)

0
f
(

2πN g
0 rn1 y

Qg

)
dr
)
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(as f has� 1 turning points)

�

∑
1≤n1≤R
n1 | N∞

(
N g

0 T 1/3n−1/2
1 + n−3/2

1
Qg

y

∫ T+T 1/3+ε

0

∣∣∣ s
T
− 1

∣∣∣−1/2
ds
)

�ε (N T )ε
(

N g
0 T 1/3

+
QgT

y

)
. �

Lemma 3.15. For all X > 0, we have∑
0<n<X

(|n|, N∞)
∣∣∣λπ( n

(|n|, N∞)

)∣∣∣2�ε (N T X)εX.

Proof. This follows from the last part of Lemma 3.10 using a similar (but simpler)
argument to Lemma 3.13. �

Finally, by combining (24), Lemma 3.13 and Lemma 3.15, we get the bound

|φ(gn(x)a(y))|2�ε (N T )ε
(QgT

y
+ N g

0 T 1/3
)
. (26)

Taking square roots, and using that Qg
≤ N0 M1 and N g

0 ≤ N0, we get the conclusion
of Proposition 3.8.

3E. Preliminaries on amplification. Our aim for the rest of this paper is to prove
the following proposition. As explained in Section 3C, this will complete the proof
of our main result.

Proposition 3.16. Let 3≥ 1 be a real number. Let n(x)a(y) ∈FN2 , g ∈ JN . Then

|φ(gn(x)a(y))|2

�ε (3N T )εN1 M1

[
T+N 1/2

2 T 1/2 y
3

+31/2T 1/2(N−1/2
2 +y)+32T 1/2 N−1

2

]
. (27)

Recall that hN =
∏

p | N a(pn1,p). Define the vector φ′ ∈ Vπ by

φ′(g)= φ(ghN ).

Then the problem becomes equivalent to bounding the quantity φ′(kN n(x)a(y))
where kN ∈ KN =

∏
p | N G(Zp) and kN hN ∈ JN . Note that φ′ is K ′1(N )K∞-

invariant where K ′1(N ) := hN K1(N )h−1
N .

Define the function8′N on
∏

p | N G(Qp) by8′N =
∏

p | N 8
′
πp

, with the functions
8′πp

defined in Section 2F. By Proposition 2.13, it follows that

R(8′N )φ
′
:=

∫
(Z\G)(∏p | N Qp)

8′N (g)(π(g)φ
′) dg = δNφ

′,
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where δN � N−1
1 M−1

1 . Note also that if g ∈
∏

p | N G(Qp) and 8′N (g) 6= 0, then
g∈ Z(Qp)G(Zp) for each prime p dividing N and g∈ Z(Qp)K 0

p(p) for each prime
p dividing N2. Also, recall that R(8′N ) is a self-adjoint, essentially idempotent
operator.

Next, we consider the primes not dividing N . Let Hur be the usual global
(unramified) convolution Hecke algebra; it is generated by the set of all functions κur

on
∏

p -N G(Qp) such that for each finite prime p not dividing N ,

(1) κp ∈ C∞c (G(Qp), ω
−1
πp
),

(2) κp is bi-G(Zp)-invariant.

It is well-known that Hur is a commutative algebra and is generated by the various
functions κ` (as ` varies over integers coprime to N ) where κ` =

∏
p -N κ`,p and

the function κ`,p in C∞c (G(Qp), ω
−1
πp
) is defined as follows:

(1) κ`,p(zka(`)k)= |`|−1/2ω−1
πp
(z) for all z ∈ Z(Qp) and k ∈ G(Zp).

(2) κ`,p(g)= 0 if g /∈ Z(Qp)G(Zp)a(`)G(Zp).

Then, it follows that for each κur ∈Hur,

R(κur)φ
′
:=

∫
∏

p -N (Z\G)(Qp)

κur(g)(π(g)φ′) dg = δurφ
′,

where δur is a complex number (depending linearly on κur). Furthermore,

R(κ`)φ′ = λπ (`)φ′,

where the Hecke eigenvalues λπ (`) were defined earlier in Lemma 3.10. Moreover,
we note that as κur varies over Hur, the corresponding operators R(κur) form a
commuting system of normal operators. Indeed, if we define κ∗` =

(∏
p | ` ω

−1
πp
(`)
)
κ`,

and extend this via multiplicativity and antilinearity to all of Hur, then we have an
involution κ 7→ κ∗ on all of Hur. It is well-known that κ∗(g)= κ(g−1) and hence
R(κ∗) is precisely the adjoint of R(κ).

Finally, we consider the infinite place. For g ∈ G(R)+, let u(g) denote the
hyperbolic distance from g(i) to i ; precisely u(g) = 3D|g(i)− i |2/(4 Im(g(i))).
Each bi-Z(R)K∞-invariant function κ∞ in C∞c (Z(R)\G(R)

+), can be viewed as
a function on R+ via κ∞(g) = κ∞(u(g)). For each irreducible spherical unitary
principal series representation σ of G(R), we define the Harish-Chandra–Selberg
transform κ̂∞(σ ) via

κ̂∞(σ )=

∫
Z(R)\G(R)+

κ∞(g)
〈σ(g)vσ , vσ 〉
〈vσ , vσ 〉

dg,

where vσ is the unique (up to multiples) spherical vector in the representation σ . For
all such σ it is known that R(κ∞)vσ = κ̂∞(σ )vσ ; in particular R(κ∞)φ′= κ̂∞(π∞)φ′.
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By [Templier 2015, Lemma 2.1] there exists such a function κ∞ on G(R) with
the following properties:

(1) κ∞(g)= 0 unless g ∈ G(R)+ and u(g)≤ 1.

(2) κ̂∞(σ )≥ 0 for all irreducible spherical unitary principal series representations
σ of G(R).

(3) κ̂∞(π∞)� 1.

(4) For all g ∈ G(R)+, |κ∞(g)| ≤ T . Moreover, if u(g) ≥ T−2, then |κ∞(g)| ≤
T 1/2/u(g)1/4.

Henceforth, we fix a function κ∞ as above.

3F. The amplified pretrace formula. In this subsection, we will use L2(X) as a
shorthand for L2(G(Q)\G(A)/K ′1(N )K∞, ωπ ).

Let the functions 8′N , κ∞ be as defined in the previous subsection. Consider the
space of functions κ on G(A) such that κ =8′Nκurκ∞ with κur in Hur. We fix an
orthonormal basis B = {ψ} of the space L2(X) such that φ′ ∈ B and consisting of
eigenfunctions for all the operators R(κ) with κ as above; i.e., for all ψ ∈ B, there
exists a complex number λψ satisfying

R(8′N )R(κur)R(κ∞)ψ = R(κ)ψ :=
∫

Z(A)\G(A)
κ(g)(π(g)ψ) dg = λψψ.

Such a basis exists because the set of all R(κ) as above form a commuting system
of normal operators. The basis B naturally splits into a discrete and continuous
part, with the continuous part consisting of Eisenstein series and the discrete part
consisting of cusp forms and residual functions.

Given a κ =8′Nκurκ∞ as above, we define the automorphic kernel Kκ(g1, g2)

for g1, g2 ∈ G(A) via

Kκ(g1, g2)=
∑

γ∈Z(Q)\G(Q)

κ(g−1
1 γ g2).

A standard calculation tells us that if ψ =⊗vψv is an element of L2(X) such
that ψv is an eigenfunction for R(κv) with eigenvalue λv, for each place v, then∫

Z(A)G(Q)\G(A)
Kκ(g1, g2)ψ(g2) dg2 =

(∏
v

λv

)
ψ(g1). (28)

Lemma 3.17. Suppose that κur= κ
′
ur∗(κ

′
ur)
∗ for some κ ′ur ∈Hur. Put κ =8′Nκurκ∞.

If ψ ∈ B then ∫
Z(A)G(Q)\G(A)

Kκ(g1, g2)ψ(g2) dg2 = λψψ(g1),
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for some λψ ≥ 0. Moreover λφ′ ≥ M−1
1 N−1

1 |λ
′
ur|

2κ̂∞(π∞) where the quantity λ′ur is
defined by R(κ ′ur)φ

′
= λ′urφ

′.

Proof. By our assumption that ψ ∈B, a complex number λψ as above exists. We can
write λψ = λψ,Nλψ,urλψ,∞ using the decomposition R(κ)= R(8′N )R(κur)R(κ∞).
We have λψ,∞≥ 0 by our assumption κ̂∞(σ )≥ 0 for all irreducible spherical unitary
principal series representations σ of G(R). We have λψ,N ≥ 0 by Corollary 2.16.
Finally if R(κ ′ur)ψ = λ

′

ψψ then λψ,ur= |λ
′

ψ |
2
≥ 0. Hence λψ ≥ 0. The last assertion

is immediate from the results of the previous subsection. �

Henceforth we assume that κur = κ
′
ur ∗ (κ

′
ur)
∗ for some κ ′ur ∈ Hur and we put

κ =8′Nκurκ∞. Then spectrally expanding Kκ(g, g) along B and using Lemma 3.17
we get, for all g ∈ G(A),

M−1
1 N−1

1 κ̂∞(π∞)|λ
′

urφ
′(g)|2 ≤ Kκ(g, g).

Note that κ̂∞(π∞) ≥ 1. Next we look at the quantity Kκ(g, g). Assume that
g= kN n(x)a(y) with kN =

∏
p | N kp ∈ KN and kN hN ∈ JN . The second condition

means that kp ∈ wK 0
p(p) for all p | N2. We have

Kκ(g, g)=
∑

γ∈Z(Q)\G(Q)

8′N (k
−1
N γ kN )κur(γ )κ∞((n(x)a(y))−1γ n(x)a(y)).

Above we have8′N (k
−1
N γ kN )≤ 1, moreover if8′N (k

−1
N γ kN ) 6= 0 then we must have

(a) k−1
p γ kp ∈ Z(Qp)G(Zp) for all primes p dividing N , and

(b) k−1
p γ kp ∈ Z(Qp)K 0

p(p) for all primes p dividing N2.

Condition (a) implies that γ ∈ Z(Qp)G(Zp) for all primes p dividing N . Con-
dition (b), together with the fact that kp ∈ wK 0

p(p) for all p | N2, implies that
γ ∈ Z(Qp)K0,p(p) for all primes p dividing N2.

Finally we have κ∞(g) = 0 if det(g) < 0, and if det(g) > 0 we can write
κ∞(g)= κ∞(u(g)) as explained earlier, whence

κ∞((n(x)a(y))−1γ n(x)a(y))= κ∞(u(z, γ z)), z = x + iy,

where, for any two points z1 and z2 on the upper-half plane, u(z1, z2) denotes the
hyperbolic distance between them, i.e., u(z1, z2) = |z1 − z2|

2/(4 Im(z1) Im(z2)).
Putting everything together, we get the following Proposition.

Proposition 3.18. Let κ ′ur ∈ Hur and suppose that R(κ ′ur)φ
′
= λ′urφ

′. Let κur =

κ ′ur ∗ (κ
′
ur)
∗ and κ = 8′Nκurκ∞. Then for all z = x + iy and all k ∈ KN such that

khN ∈ JN , we have

|φ′(kn(x)a(y))|2 ≤ M1 N1
|λ′ur|

2

∑
γ∈Z(Q)\G(Q)+,

γ∈Z(Qp)K0,p(p)∀p | N2
γ∈Z(Qp)G(Zp)∀p | N

|κur(γ )κ∞(u(z, γ z))|.
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3G. Conclusion. We now make a specific choice for κur. Let 3 ≥ 1 be a real
number. We let

S = {` : ` prime, (`, N )= 1,3≤ `≤ 23}.

Define for each integer r ,

cr =

{
|λπ (r)|/λπ (r) if r = ` or r = `2, ` ∈ S,
0 otherwise.

We set κ ′ur=
∑

r crκr , and κur= κ
′
ur∗(κ

′
ur)
∗. Given this, let us estimate the quantities

appearing in Proposition 3.18.
First of all, we have λ′ur=

∑
`∈S(|λπ (`)|+|λπ (`

2)|). By the well-known relation
λπ (`)

2
−λπ (`

2)=ωπ`(`), it follows that |λπ (`)|+|λπ (`2)|≥1. Hence λ′ur�ε3
1−ε.

Next, using the well-known relation

κm ∗ κ
∗

n =
∑

t | gcd(m,n)

(∏
p | t

ωπp(t)
)(∏

p | n

ω−1
πp
(n)
)
κmn/t2,

we see that
κur =

∑
1≤l≤1634

ylκl

where the complex numbers yl satisfy:

|yl | �


3, l = 1,
1, l = `1 or l = `1`2 or l = `1`

2
2 or l = `2

1`
2
2 with `1, `2 ∈ S,

0, otherwise.

We have |κl(γ )|≤ l−1/2. Moreover κl(γ )=0 unless γ ∈ Z(Qp)G(Zp)a(`)G(Zp)

for all p -N . We deduce the following bound:

|φ′(kn(x)a(y))|2

�ε 3
−2+εM1 N1

∑
1≤l≤1634

yl√
l

∑
γ∈Z(Q)\G(Q)+,

γ∈Z(Qp)K0,p(p)∀p | N2
γ∈Z(Qp)G(Zp)a(`)G(Zp)∀p -N2

|κ∞(u(z, γ z))|. (29)

Define

M(`, N2)=
{[a

c
b
d

]
, a, b, c, d ∈ Z, a > 0, N2 | c, ad − bc = `

}
.

The following lemma follows immediately from strong approximation.

Lemma 3.19. Let γ ∈ G(Q)+ and ` be a positive integer coprime to N2. Suppose
for each prime p that γ ∈ Z(Qp)G(Zp)a(`)G(Zp). Suppose also for each prime
p | N2 that γ ∈ Z(Qp)K0,p(p). Then there exists z ∈ Z(Q) such zγ ∈ M(`, N2).
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Proof. Omitted. �

Let us take another look at (29) in view of Lemma 3.19. The sum in (29) is
over all matrices γ in Z(Q)\G(Q)+ such that γ ∈ Z(Qp)K0,p(p) for p | N2 and
γ ∈ Z(Qp)G(Zp)a(`)G(Zp) for p -N2. The latter condition can equally well be
taken over all p as

Z(Qp)G(Zp)a(`)G(Zp)= Z(Qp)G(Zp)a(`)G(Zp)= Z(Qp)G(Zp)

if ` and p are coprime, which is the case when p | N . Therefore Lemma 3.19,
together with the fact that the natural map from M(`, N2) to Z(Q)\G(Q)+ is an
injection, implies that the sum in (29) can replaced by a sum over the set M(`, N2).
Hence, writing g = khN ∈ JN as before, we get

|φ(gn(x)a(y))|2 = |φ′(kn(x)a(y))|2

�ε 3
−2+εM1 N1

∑
1≤l≤1634

yl√
l

∑
γ∈M(`,N2)

|κ∞(u(z, γ z))|. (30)

For any δ > 0, we define

N (z, `, δ, N2)= |{γ ∈ M(`, N2) : u(z, γ z)≤ δ}|.

We have the following counting result due to Templier [2015, Proposition 6.1].

Proposition 3.20. Let z = x + iy ∈ FN2 . For any 0< δ < 1 and positive integer `
coprime to N2, let the number N (z, `, δ, N2) be defined as above.

For 3≥ 1, define

A(z,3, δ, N2)=
∑

1≤l≤1634

yl√
l
N (z, `, δ, N2).

Then

A(z,3,δ,N2)�ε3
εN ε

2
[
3+3N 1/2

2 δ1/2 y+35/2δ1/2 N−1/2
2 +35/2δ1/2 y+34δN−1

2

]
.

Proof. This is Proposition 6.1 of [Templier 2015]. �

Now (30) gives us

|φ(gn(x)a(y))|2�ε 3
−2+εM1 N1

∫ 1

0
|κ∞(δ)| d A(z,3, δ, N2). (31)

Using Proposition 3.20 and the property |κ∞(δ)| ≤ min(T, T 1/2/δ1/4), we im-
mediately deduce Proposition 3.16 after a simple integration, as in [Templier 2015,
Section 6.2].
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may not hold in general in the case of powerful levels. This is due to the failure of
Conjecture 1 in certain cases, which we have recently discovered.

References

[Blomer and Holowinsky 2010] V. Blomer and R. Holowinsky, “Bounding sup-norms of cusp forms
of large level”, Invent. Math. 179:3 (2010), 645–681. MR Zbl

[Harcos and Michel 2006] G. Harcos and P. Michel, “The subconvexity problem for Rankin–Selberg
L-functions and equidistribution of Heegner points II”, Invent. Math. 163:3 (2006), 581–655. MR
Zbl

[Harcos and Templier 2012] G. Harcos and N. Templier, “On the sup-norm of Maass cusp forms of
large level: II”, Int. Math. Res. Not. 2012:20 (2012), 4764–4774. MR Zbl

[Harcos and Templier 2013] G. Harcos and N. Templier, “On the sup-norm of Maass cusp forms of
large level III”, Math. Ann. 356:1 (2013), 209–216. MR Zbl

[Hoffstein and Lockhart 1994] J. Hoffstein and P. Lockhart, “Coefficients of Maass forms and the
Siegel zero”, Ann. of Math. (2) 140:1 (1994), 161–181. MR Zbl

[Hu 2017] Y. Hu, “Triple product formula and mass equidistribution on modular curves of level N”,
Int. Math. Res. Not. (2017), art. id. rnw322.

[Iwaniec and Sarnak 1995] H. Iwaniec and P. Sarnak, “L∞ norms of eigenfunctions of arithmetic
surfaces”, Ann. of Math. (2) 141:2 (1995), 301–320. MR Zbl

[Marshall 2016] S. Marshall, “Local bounds for L p norms of Maass forms in the level aspect”,
Algebra Number Theory 10:4 (2016), 803–812. MR Zbl
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Collinear CM-points
Yuri Bilu, Florian Luca and David Masser

André’s celebrated theorem of 1998 implies that each complex straight line
Ax + By+C = 0 (apart from obvious exceptions) contains at most finitely many
points ( j (τ ), j (τ ′)), where τ, τ ′∈H are algebraic of degree 2. We show that there
are only a finite number of such lines which contain more than two such points.
As there is a line through any two complex points, this is the best possible result.
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1. Introduction

André [1998] proved that a nonspecial irreducible plane curve in C2 may have
at most finitely many CM-points. Here a plane curve is a curve defined by an
irreducible equation F(x, y)=0, where F is a polynomial with complex coefficients,
and a CM-point (called also a special point) in C2 is a point whose coordinates are
both singular moduli. Recall that a singular modulus is the invariant of an elliptic
curve with complex multiplication; in other words, it is an algebraic number of the
form j (τ ), where j denotes the standard j-function on the upper half-plane H and

MSC2010: primary 11G15; secondary 11G18.
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τ ∈H is an algebraic number of degree 2. Thus, a CM-point is a point of the form
( j (τ ), j (τ ′)) with τ, τ ′ ∈ H algebraic of degree 2.

Special curves are those of the following types:
• “vertical lines” x = j (τ ) and “horizontal lines” y = j (τ ), where j (τ ) is a

singular modulus, and

• modular curves Y0(N ), realized as the plane curves 8N (x, y)= 0, where 8N

is the modular polynomial of level N .

Recall that the polynomial 8N (X, Y ) ∈ C[X, Y ] is the X -monic C-irreducible
polynomial satisfying 8N ( j (z), j (N z))= 0. It is known that actually 8N (X, Y ) ∈
Z[X, Y ]; this and other properties of 8N can be found, for instance, in [Cox 1989,
Theorem 11.18].

Clearly, each special curve contains infinitely many CM-points, and André proved
that special curves are characterized by this property.

André’s result was the first nontrivial contribution to the celebrated André–Oort
conjecture on the special subvarieties of Shimura varieties; see [Pila 2011] and the
references therein.

Several other proofs (some conditional on the GRH) of André’s theorem were
suggested [Bilu et al. 2013; Breuer 2001; Edixhoven 1998; Kühne 2012; 2013; Pila
2009]. We specifically mention the argument of Pila [2009], based on an idea of
Pila and Zannier [2008]. Pila [2011] extended it to higher dimensions, proving
the André–Oort conjecture for subvarieties of Cn . To state this result, one needs
to introduce the notion of “special variety”; then Pila’s theorem asserts that an
algebraic subvariety of Cn has at most finitely many maximal special subvarieties.
See Section 2 and Theorem 2.4 for the details.

Besides general results, some particular curves were considered. For instance,
Kühne [2013, Theorem 5] proved that the straight line x+ y= 1 has no CM-points,1

and a similar result for the hyperbola xy = 1 was obtained in [Bilu et al. 2013].
The same conclusion was obtained in [Habegger et al. 2017] for the quartic curve

x3 y− 2x2 y2
+ xy3

− 1728x3
+ 1216x2 y+ 1216xy2

− 1728y3
+ 3538944x2

−2752512xy+3538944y2
−2415919104x−2415919104y+549755813888= 0;

this is equivalent to the fact that there are no complex t 6= 0, 1,−1 for which the
two elliptic curves Y 2

= X (X − 1)(X − t) and Y 2
= X (X − 1)(X + t) both have

complex multiplication.
One can ask about CM-points on general straight lines Ax+By+C = 0. One has

to exclude from consideration the special straight lines: x = j (τ ), y = j (τ ) (where
j (τ ) is a singular modulus) and x = y, the latter being nothing else than the modular

1The same result was independently obtained in an earlier version of [Bilu et al. 2013] but did not
appear in the final version.



Collinear CM-points 1049

curve Y0(1) (the modular polynomial 81 is X − Y ). According to the theorem of
André, these are the only straight lines containing infinitely many CM-points.

In [Allombert et al. 2015] all CM-points lying on nonspecial straight lines defined
over Q are listed. More generally, Kühne [2013, p. 5] remarks that, given a positive
integer ν, at most finitely many CM-points belong to the union of all nonspecial
straight lines defined over a number field of degree ν; moreover, for a fixed ν all
these points can, in principle, be listed explicitly, though the implied calculation
does not seem to be feasible.

Here we take a different point of view: instead of restricting the degree of field
of definition, we study the (nonspecial) straight lines passing through at least three
CM-points.

Such lines do exist [Allombert et al. 2015, Remark 5.3]: since

det
[

1728 −884736000
287496 −147197952000

]
= 0,

the three points (0, 0), (1728, 287496) and (−884736000,−147197952000) be-
long to the same straight line 1331x = 8y, and just as well for the points (0, 0),
(1728,−884736000) and (287496,−147197952000) on 512000x =−y. Here

j
(
−1+

√
−3

2

)
= 0, j (

√
−1)= 1728, j (2

√
−1)= 287496,

j
(
−1+

√
−43

2

)
=−884736000, j

(
−1+

√
−67

2

)
=−147197952000.

Call an (unordered) triple {P1, P2, P3} of CM-points collinear if P1, P2, P3 are
pairwise distinct and belong to a nonspecial straight line.

In this paper we prove the following:

Theorem 1.1. There exist at most finitely many collinear triples of CM-points.

In particular, there exist at most finitely many nonspecial straight lines passing
through three or more CM-points. This latter consequence looks formally weaker
than Theorem 1.1, but in fact it is equivalent to it, due to the theorem of André.

Remark 1.2. The referee drew our attention to the phenomenon of automatic
uniformity, discovered by Scanlon [2004]. Combining Theorem 4.2 from [Scanlon
2004] with Pila’s Theorem 2.4 stated in the next section, one obtains the following
“uniform” version of the theorem of André: there is a (noneffective) uniform upper
bound cd on the number of CM-points on an arbitrary nonspecial curve of geometric
degree d (with an arbitrary field of definition). For every d, it is a widely open
question what the optimal cd actually is; moreover, even obtaining an effective upper
bound for cd seems to be quite difficult. It might be an easier question to ask for an
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optimal bound c∗d such that all but finitely many nonspecial curves of degree d contain
at most c∗d special points. In this language our Theorem 1.1 simply asserts that c∗1=2.

The idea of the proof of Theorem 1.1 is simple. Three points (xi , yi ) lie on a
line if and only if ∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣= 0. (1-1)

This defines a variety in C6 to which we can apply Pila’s André–Oort result. This
guarantees finiteness outside the special subvarieties of positive dimension. One
easily detects “obvious” positive-dimensional special subvarieties: they correspond
to the line being special in two dimensions or the three points not being distinct.
The main difficulty is showing that there are no other positive-dimensional special
subvarieties: this is the content of the “main lemma”, whose proof occupies the
overwhelming part of the article. Along the way we have to solve some auxiliary
problems not only of André–Oort type but also of “mixed type” involving roots of
unity.

It could be mentioned that, while the main lemma is completely effective,
Theorem 1.1 is not because its deduction from the main lemma relies on Pila’s
Theorem 2.4, which is noneffective.

For analogous Diophantine assertions about lines proved also using “determinant
varieties”, the reader can consult the articles of Evertse, Győry, Stewart and Tijdeman
[Evertse et al. 1988] about S-units or of Schlickewei and Wirsing [1997] about
heights. In these papers, one is actually in the multiplicative group G2

m and the
appropriate special varieties are much easier to describe.

Plan of the article. In Section 2 we recall the general notion of special variety and
state the already mentioned theorem of Pila, proving the André–Oort conjecture for
subvarieties of Cn .

In Section 3 we present the main lemma, which lists all maximal positive-
dimensional special subvarieties of the “determinant variety” defined by (1-1), and
we deduce Theorem 1.1 from the theorem of Pila and the main lemma.

In Sections 4, 5, 6 and 7 we obtain various auxiliary results used in the sequel.
The proof of the main lemma occupies Sections 8 to 12. In Section 8 we collect
some preliminary material and show how the proof of the main lemma splits into
four cases. These cases are treated in Sections 9 to 12.

2. Special varieties and the theorem of Pila

We recall the definition of special varieties from [Pila 2011]. The referee pointed
out that this is not the definition used in the standard formulation of the André–Oort
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conjecture, and some work is required to show that the two are equivalent. However,
this presents no issues for our purposes since the main result that we need, Pila’s
Theorem 2.4, proved in [Pila 2011], is stated therein in terms of this definition.

To begin, we define sets M in Cm (where m ≥ 1) as follows. If m = 1, then
M = C, while if m ≥ 2, then M is given by modular equations

8N (i)(x1, xi )= 0 (i = 2, . . . ,m). (2-1)

More generally for Cn (where n≥ 1), one takes a partition n= l0+m1+· · ·+md

(where d ≥ 0) with l0 ≥ 0 and with m1 ≥ 1, . . . ,md ≥ 1 (when d ≥ 1) and defines
sets K in Cn

=Cl0×Cm1×· · ·×Cmd as L0×M1×· · ·×Md , where L0 (if l0 ≥ 1)
is a single point whose coordinates are singular moduli and M1, . . . ,Md (if d ≥ 1)
are as M above. Then any irreducible component K̃ of K , which necessarily has
the form

K̃ = L0× M̃1× · · ·× M̃d (2-2)

with irreducible components M̃1, . . . , M̃d of M1, . . . ,Md , is an example of a special
variety in the sense of Pila; and one gets all examples by permuting the coordinates.
The dimension is d.

When n = 2 and d = 1, this agrees with the notion of special curve introduced
in Section 1 because the polynomials 8N are irreducible.

The following property of special varieties is certainly known, but we could not
find a suitable reference.

Proposition 2.1. Let 0 ≤ e ≤ d ≤ n. Then every special variety of dimension d
contains a Zariski-dense union of special varieties of dimension e.

Proof. If d = 0, there is nothing to prove. Otherwise, by induction, it suffices to
treat the case e = d − 1, with the special variety (2-2).

If m1 = 1, then M̃1 = C and for each singular modulus ξ the variety L0×{ξ}×

M̃2× · · ·× M̃d is special of dimension d − 1. As there are infinitely many singular
moduli, the union is Zariski-dense in K̃ .

If m1 ≥ 2 (call it m), we note from (2-1) that x1 is nonconstant on M̃1. Thus,
the corresponding projection of M̃1 to C is dominant. We can therefore find
infinitely many singular moduli ξ1 for which some (ξ1, ξ2, . . . , ξm) lies in M̃1. As
8N (i)(ξ1, ξi ) = 0 for i = 2, . . . ,m, it is clear that ξ2, . . . , ξm are also singular
moduli, and now the corresponding

L0×{(ξ1, ξ2, . . . , ξm)}× M̃2× · · ·× M̃d

do the trick. �

Special points are exactly those of the form (ξ1, . . . , ξn), where each ξi is a
singular modulus. To characterize the special curves in a similar way, it will be
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convenient to use the language of “ j-maps”. A map f : H→ C will be called a
j -map if either f (z) = j (γ z) for some γ ∈ GL+2 (Q) (a nonconstant j-map) or
f (z)= j (τ ) with τ ∈H algebraic of degree 2 (a constant j-map). Here GL+2 (Q)
is the subgroup of GL2(Q) consisting of matrices with positive determinants. We
define a j -set to be of the form {( f1(z), . . . , fn(z)) : z ∈ H}, where each fk is a
j-map and at least one of them is nonconstant.

Remark 2.2. It is worth noting that every j-map is 0(N )-automorphic2 for some
positive integer N . This is trivially true for constant j-maps, and a nonconstant
j-map f = j ◦ γ is γ−10(1)γ -automorphic. So it remains to note that γ−10(1)γ
contains 0(N ) for a suitable N . Indeed, write A ∈ 0(N ) as I + N B, where
I is the identity matrix and B is a matrix with entries in Z. Then the matrix
γ Aγ−1

= I + Nγ Bγ−1 has entries in Z if N is divisible by the product of the
denominators of the entries of γ and γ−1.

It seems to be known (and even used in several places) that every special curve
is a j-set and that the converse is also true. As we could not find a convincing
reference, we provide here an argument. We thank the referee for many explanations
on this topic.

Proposition 2.3. (1) Any j-set is a Zariski-closed irreducible algebraic subset
of Cn .

(2) A subset of Cn is a j-set if and only if it is a special curve.

Proof. In the proof of Part (1), we may restrict to the case when all f1, . . . , fn

are nonconstant j-maps. Denote by Z ⊂ Cn the j-set defined by these maps.
According to Remark 2.2, the maps f1, . . . , fn are 0(N )-automorphic for some
positive integer N . Hence, each fi induces a regular map, also denoted by fi , of
the affine modular curve Y (N )=0(N )\H to C, and our Z is the image of the map
( f1, . . . , fn) : Y (N )→ Cn .

Furthermore, each fi extends to a regular map f i : X (N )→ P1(C) of projec-
tive curves, where X (N ) is the standard compactification of Y (N ), as explained,
for instance, in [Diamond and Shurman 2005, §2.4]. The image Z of the map
( f 1, . . . , f n) : X (N )→P1(C)n is Zariski-closed in P1(C)n and irreducible (being
the image of an irreducible projective curve under a regular map). But for x ∈ X (N ),
we have f i (x)=∞ if and only if x ∈ X (N ) \ Y (N ) (we write P1(C)= C∪ {∞}

in the obvious sense). Hence, Z = Z ∩Cn , which shows that Z is Zariski-closed
in Cn and irreducible. This proves Part (1).

2Recall that 0(N ) is the kernel of the mod N reduction map SL2(Z)→ SL2(Z/NZ), and “the
function f is 0(N )-automorphic” means f ◦ η = f for any η ∈ 0(N ).
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Part (2) is an easy consequence of Part (1). If f and g are two nonconstant
j-maps, then there exists N such that 8N ( f, g)= 0. It follows that, up to coordi-
nate permutations, any j-set is contained in L0×M , where L0 is a point whose
coordinates are singular moduli and M ⊆ Cm is defined as in (2-1). Since our j -set
is irreducible and Zariski-closed, it must be an irreducible component of L0×M ,
that is, a special curve. In particular, a j-set is an irreducible one-dimensional
algebraic set defined over Q.

Conversely, every special curve has (up to coordinate permutations) the shape
L0× M̃ , where M̃ is an irreducible component of a set M ⊂Cm defined as in (2-1).
Recall that two complex numbers x, y satisfy 8N (x, y)= 0 if and only if x and y
are j-invariants of two elliptic curves linked by a cyclic N -isogeny. Now let
(ξ1, . . . , ξm) be a transcendental point3 of M̃ . Then the numbers ξ1, . . . , ξm are
j-invariants of isogenous elliptic curves. Hence, if we write ξ1 = j (z) with some
z ∈H, then there exist γ2, . . . , γm ∈GL+2 (Q) such that ξi = j (γi z) for i = 2, . . . ,m.

Thus, M̃ shares a transcendental point with the j-set defined by the j-maps
j, j ◦ γ2, . . . , j ◦ γm . Since both are Zariski-closed irreducible one-dimensional
algebraic sets defined over Q, they must coincide. �

A similar “parametric” description can be given for higher dimensional special
varieties. We do not go into this because we will not need it.

Pila [2011] generalized the theorem of André by proving the following:

Theorem 2.4 (Pila). An algebraic set in Cn contains at most finitely many maximal
special subvarieties.

“Maximal” is understood here in the set-theoretic sense: let V be an algebraic
set in Cn and M ⊆ V a special variety; we call M a maximal special subvariety
of V if for any special variety M ′ such that M ⊆ M ′ ⊆ V we have M = M ′.

If an algebraic curve is not special, then its only special subvarieties are special
points, and we recover the theorem of André.

3. Main lemma and proof of Theorem 1.1

Theorem 1.1 is an easy consequence of Pila’s Theorem 2.4 and the following lemma.

Lemma 3.1 (main lemma). Let f1, f2, f3, g1, g2, g3 be j-maps, not all constant.
Assume that the determinant

det

 1 1 1
f1 f2 f3

g1 g2 g3

 (3-1)

is identically 0. Then at least one of the following holds:

3“Transcendental” means here that the coordinates of this point are not all algebraic over Q.
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• f1 = f2 = f3,

• g1 = g2 = g3,

• for some distinct k, ` ∈ {1, 2, 3} we have fk = f` and gk = g`,

• fk = gk for k = 1, 2, 3.

In this section we prove Theorem 1.1 assuming the validity of the main lemma.
Lemma 3.1 itself will be proved in the subsequent sections.

Consider the algebraic set in C6 consisting of the points (x1, x2, x3, y1, y2, y3)

satisfying ∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣= 0. (3-2)

Then Lemma 3.1 has the following consequence.

Corollary 3.2. The algebraic set (3-2) has exactly six maximal special subvarieties
of positive dimension:

• the subvariety Rx , defined in C6 by x1 = x2 = x3,

• the subvariety Ry , defined in C6 by y1 = y2 = y3,

• the three subvarieties Sk,`, defined in C6 by xk = x` and yk = y`, where
k, ` ∈ {1, 2, 3} are distinct, and

• the subvariety T , defined in C6 by xk = yk for k = 1, 2, 3.

Proof. Let K̃ be a special variety in (3-2) of positive dimension. By Proposition 2.1 it
contains a Zariski-dense union of special curves. By Proposition 2.3 each such curve
is a j-set. By the main lemma, each j-set is contained in one of the subvarieties
above. The latter are clearly irreducible and also special; for example with Rx we
have n = 6, d = 4, and the partition with

l0 = 0, m1 = 3, m2 = m3 = m4 = 1.

Taking closures we see that K̃ itself is also contained in one of them. �

Now we are ready to prove Theorem 1.1. Let

Pk = (xk, yk) (k = 1, 2, 3)

be three special points forming a collinear triple. Then the point Q = (x1, x2, x3,

y1, y2, y3) belongs to the algebraic set (3-2). Moreover, since our points are pairwise
distinct, Q does not belong to any of Sk,`, and since the straight line passing through
our points is not special, Q does not belong to any of Rx , Ry, T .

This shows that {Q} is a zero-dimensional maximal special subvariety of the
algebraic set (3-2), and we complete the proof by applying Theorem 2.4. �
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The main lemma will be proved in Sections 8–12, after some preparations made
in Sections 4–7.

4. Roots of unity

In this section we collect some facts about roots of unity used in the proof of the
main lemma.

Lemma 4.1. Let α be a sum of k roots of unity and N a nonzero integer. Assume
that N | α (in the ring of algebraic integers). Then either α = 0 or k ≥ |N |.

Proof. Assume α 6= 0, and write α = Nβ, where β is a nonzero algebraic integer.
Then there exists an embedding Q(α)

σ
−→ C such that |βσ | ≥ 1. It follows that

|N | ≤ |ασ |. But since α is a sum of k roots of unity, we have |ασ | ≤ k. �

Lemma 4.2. Let a, b be nonzero rational numbers and η, θ roots of unity. Assume
that α = aη + bθ is of degree 1 or 2 over Q. Then Q(α) is one of the fields
Q,Q(i),Q(

√
−2),Q(

√
−3),Q(

√
2),Q(

√
3),Q(

√
5), and after a possible swap-

ping of aη and bθ , and possible replacing of (a, η) by (−a,−η) and/or (b, θ) by
(−b,−θ), we have the following:

(1) If Q(α)=Q, then

(a) either both η and θ are ±1 or
(b) η is a primitive cubic root of unity, θ = η−1, and a = b, or
(c) θ =−η and a = b.

(2) If Q(α)=Q(i), then

(a) either η = i and θ ∈ {1, i} or
(b) η is a primitive 12th root of unity, θ =−η−1, and a = b.

(3) If Q(α)=Q(
√
−3), then η is a primitive cubic root of unity, and θ is a cubic

root of unity (primitive or not).

(4) If Q(α)=Q(
√
−2), then η is a primitive 8th root of unity, θ =−η−1, and a=b.

(5) If Q(α)=Q(
√

2), then η is a primitive 8th root of unity, θ = η−1, and a = b.

(6) If Q(α)=Q(
√

3), then η is a primitive 12th root of unity, and

(a) either θ = η−1 and a = b or
(b) θ =−η3(=±i) and a = 2b.

(7) If Q(α)=Q(
√

5), then η is a primitive 5th root of unity, θ = η−1, and a = b.

Proof. Without loss of generality, we may assume that a and b are coprime integers.
Let N be the order of the multiplicative group generated by η and θ , and L=Q(η, θ);
then [L :Q] = ϕ(N ), where ϕ is Euler’s totient function.

If ϕ(N ) ≤ 2, then N ∈ {1, 2, 3, 4, 6}, and we have one of the options (1), (2a),
or (3). If α = 0, then we have option (1c).
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From now on we assume that ϕ(N ) > 2 and α 6= 0. Since ϕ(N ) > 2, there exists
σ ∈ Gal(L/Q) such that (ησ , θσ ) 6= (η, θ), but ασ = α. We obtain

a(η− ησ )= b(θσ − θ). (4-1)

By our choice of σ , both sides of (4-1) are nonzero. Since a and b are coprime
integers, we have a | (θσ − θ), whence |a| ≤ 2 by Lemma 4.1. Similarly, |b| ≤ 2. It
follows that (a, b) ∈ {(±1,±1), (±1,±2), (±2,±1)}. Swapping (if necessary) aη
and bθ , and replacing (if necessary) (a, η) by (−a,−η) and/or (b, θ) by (−b,−θ),
we may assume that a ∈ {1, 2} and b= 1. The rest of the proof splits into two cases.

The case a = 2 and b = 1. In this case (4-1) becomes 2(η − ησ ) = θσ − θ . We
must have θσ =−θ ; otherwise all the conjugates of the nonzero algebraic integer
(θσ − θ)/2 would be of absolute value strictly smaller than 1. Thus, we obtain
η− ησ + θ = 0. Three roots of unity may sum up to 0 only if they are proportional
to (1, ζ3, ζ

−1
3 ), where ζ3 is a primitive cubic of unity. We obtain θ/η = ζ−1

3 , and
η = α(a+ bζ−1

3 )−1 is of degree at most 4 over Q. Since θ = ησ − η ∈ Q(η), we
obtain L =Q(η); in particular, η is a primitive N -th root of unity.

Thus, ϕ(N )= [Q(η) :Q] ≤ 4, and in fact ϕ(N )= 4 because ϕ(N ) > 2. Since
−ησ/η= ζ3, we must have 3 | N . Together with ϕ(N )= 4, this implies that N = 12
and η is a primitive 12th root of unity. Hence, we have the option (6b).

The case a = b = 1. In this case η− ησ + θ − θσ = 0. Four roots of unity may
sum up to 0 only if two of them sum up to 0 (and the other two sum up to 0 as
well). Since η 6= ησ and η 6= −θ (because α 6= 0), we have η = θσ and ησ = θ .
This implies that L =Q(η)=Q(θ), both η and θ are primitive N -th roots of unity,
and σ 2

= 1.
We claim that the subgroup H ={1, σ } is the stabilizer of Q(α) in G=Gal(L/Q).

Thus, let ς ∈ G satisfy ας = α. Since η+ ησ − ης − ησς = 0 and η+ ησ 6= 0, we
must have either η = ης or η = ησς . Since L = Q(η), in the first case we have
ς = 1 and in the second case ς = σ−1

= σ .
Thus, H is the stabilizer of Q(α). Since |H | = 2 and [G : H ] = [Q(α) :Q] = 2,

we obtain ϕ(N )= |G| = 4, which implies that N ∈ {5, 8, 10, 12}.
Now if N = 5, then we have option (7). If N = 10, then replacing (a, η) by

(−a,−η) and (b, θ) by (−b,−θ), we obtain option (7) as well. If N = 8, then
we have one of the options (4) or (5). Finally, if N = 12, then we have one of the
options (2b) or (6a). �

5. Singular moduli

In this section we collect miscellaneous properties of singular moduli used in the
sequel. We start by recalling the notion of the discriminant of a singular modulus.
Let τ ∈H be algebraic of degree 2; the endomorphism ring of the lattice Zτ+Z is an
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1 −3 −4 −7 −8 −11 −12 −16 −19 −27
j 0 1728 −3375 8000 −32768 54000 287496 −884736 −12288000
1 −28 −43 −67 −163
j 16581375 −884736000 −147197952000 −262537412640768000

Table 1. Discriminants 1 with h(1) = 1 and the corresponding
singular moduli.

order in the imaginary quadratic field Q(τ ); the discriminant 1=1τ of this order
will be called the discriminant of the singular modulus j (τ ). This discriminant is a
negative integer satisfying 1≡ 0, 1 mod 4.

It is well-known (see, for instance, [Cox 1989, §11]) that

• any singular modulus of discriminant 1 is an algebraic integer of degree equal
to the class number of 1, denoted h(1), and

• the singular moduli of discriminant 1 are all conjugate over Q; moreover, they
form a complete set of Q-conjugates.

A full description of singular moduli of given discriminant 1 is well-known as
well. Denote by T = T1 the set of triples of integers (a, b, c) such that

gcd(a, b, c)= 1, 1= b2
− 4ac, either −a < b ≤ a < c or 0≤ b ≤ a = c.

Then the map

(a, b, c) 7→ j
(

b+
√
1

2a

)
(5-1)

defines a bijection from T1 onto the set of singular moduli of discriminant 1. In
particular, h(1)= |T1|. The proof of this is a compilation of several classical facts,
some of which go back to Gauss; see, for instance, [Bilu et al. 2016, §2.2] and the
references therein.

It is crucial for us that the set T1 has only one triple (a, b, c) with a = 1. The
corresponding singular modulus will be called the principal singular modulus of
discriminant 1. Note that the principal singular modulus is a real number; in
particular,

any singular modulus has a real Q-conjugate. (5-2)

There exist exactly 13 discriminants 1 with h(1) = 1. The corresponding
singular moduli (and only they) are rational integers. The full list of the 13 rational
singular moduli is well-known and reproduced in Table 1.

Finally, we use the inequality

|| j (τ )| − e2π Im τ
| ≤ 2079, (5-3)
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which holds for every τ ∈H satisfying Im τ ≥
√

3/2 [Bilu et al. 2013, Lemma 1].
In particular, if (a, b, c) ∈ T1, then the number

τ(a, b, c)=
b+
√
1

2a

satisfies Im τ(a, b, c)≥
√

3/2 [Bilu et al. 2016, p. 403, (8)]. Hence, (5-3) applies
with τ = τ(a, b, c).

All the facts listed above will be repeatedly used in this section, sometimes
without a special reference.

Lemma 5.1. Let x be a singular modulus, and let x ′ be the principal singular
modulus of the same discriminant. Then either x = x ′ or |x ′|> |x | + 180000.

Proof. Let 1 be the common discriminant of x and x ′. We may assume that
|1| ≥ 15; otherwise, h(1)= 1 and there is nothing to prove. We assume that x 6= x ′

and will use (5-3) to estimate |x | from above and |x ′| from below.
We have x = j (τ ) and x ′ = j (τ ′), where τ = τ(a, b, c) and τ ′ = τ(a′, b′, c′) for

some (a, b, c), (a′, b′, c′) ∈ T1. Since x ′ is principal, and x is not, we have a′ = 1
and a ≥ 2. Hence,

Im τ ′ = π |1|1/2, Im τ =
π |1|1/2

a
≤
π |1|1/2

2
.

We obtain
|x ′| ≥ eπ |1|

1/2
− 2079, |x | ≤ eπ |1|

1/2/2
+ 2079,

which implies

|x ′| − |x | ≥ eπ |1|
1/2
− eπ |1|

1/2/2
− 4158≥ eπ

√
15
− eπ

√
15/2
− 4158> 180000,

as wanted. �

Lemma 5.2. Let x, y be singular moduli, and let a, b ∈ Z be such that |a|, |b| ≤
90000. Assume that y 6= b and that (x − a)/(y − b) is a root of unity. Then
either x = y or x, y ∈ Z. In particular, if x/y is a root of unity (with y 6= 0) or if
(x − 744)/(y− 744) is a root of unity, then x = y.

Proof. Let x ′ and y′ be the principal singular moduli of the same discriminants as x
and y. We may assume that |x ′| ≥ |y′|. We may further assume, by conjugating,
that x = x ′. Then y = y′ as well since otherwise |y|< |y′|−180000 by Lemma 5.1,
and we obtain

|y|+90000≥|y−b|= |x−a|= |x ′−a|≥ |x ′|−90000≥|y′|−90000> |y|+90000,

a contradiction. Thus, both x and y are principal singular moduli. In particular,
both are real, which implies x − a =±(y− b).

Now Theorem 1.2 of [Allombert et al. 2015] implies one of the following options:
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(1) x = y and a = b,

(2) x, y ∈ Z, or

(3) x and y are distinct and of degree 2 over Q.

We have to rule out option (3). Thus, assume that to be the case and let f (T )=
T 2
+ AT +C and g(T )= T 2

+ BT +D be the Q-minimal polynomials of x and y.
Since x and y are both principal and distinct, they are not Q-conjugate, which
means that the polynomials F and G are distinct. We have either x + y = a+ b or
x − y = a− b. Taking Q-traces, we obtain A+ B = 2(a+ b) or A− B = 2(a− b).
In particular, we have either |A+ B| ≤ 360000 or |A− B| ≤ 360000.

However, our F and G are among the 29 Hilbert class polynomials associated to
the imaginary quadratic orders of class number 2. The full list of such polynomials
can be found in Table 2 of [Bilu et al. 2016]. A quick inspection of this table shows
that, if A and B are middle coefficients of two distinct polynomials from this table,
then |A+ B| > 360000 and |A− B| > 360000. Hence, option (3) is impossible.
This proves the first statement of the lemma.

In the special cases a = b = 0 or a = b = 744, we must have either x = y or

x, y ∈ Z, x 6= y, x + y ∈ {0, 1488}. (5-4)

Inspecting Table 1, we find out that (5-4) is impossible. The lemma is proved. �

Lemma 5.3. Let x and y be distinct principal singular moduli. Then ||x | − |y||>
1600.

Proof. Denote by 1x and 1y the discriminants of x and y, respectively. We will
assume that |1x |> |1y|. If |1x | ≤ 12, then h(1x)= 1, and the statement follows
by inspection of Table 1. And if |1x | ≥ 15, then

|x | − |y| ≥ (eπ |1x |
1/2
− 2079)− (eπ |1y |

1/2
+ 2079)

≥ eπ |1x |
1/2
− eπ |1x−1|1/2

− 4158

≥ eπ
√

15
− eπ

√
14
− 4158

> 60000,

which is much stronger than needed. The lemma is proved. �

Lemma 5.4. Let x be a singular modulus, and assume that the number field Q(x)
is a Galois extension of Q. Then the Galois group of Q(x)/Q is 2-elementary, that
is, isomorphic to (Z/2Z)k for some k.

Proof. This is well-known; see, for instance, Corollary 3.3 from [Allombert et al.
2015]. �

Lemma 5.5. Let x, y be singular moduli and ε, η roots of unity. Then ε(x−744)+
η(y− 744) is not a root of unity.
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Proof. We will assume that

ε(x − 744)+ η(y− 744)= 1

and derive a contradiction. We clearly have

||y| − |x || ≤ 1489. (5-5)

We follow the same strategy as in the proof of Lemma 5.2. We denote by x ′ and y′

the principal moduli of the same discriminants as x and y, respectively, and we
may assume that |x ′| ≥ |y′| and x = x ′. We claim that y = y′ as well. Indeed, if
y 6= y′, then Lemma 5.1 implies that

|y| + 1489≥ |x | = |x ′| ≥ |y′|> |y| + 180000,

a contradiction.
Thus, we may assume that both x and y are principal singular moduli. Lemma 5.3

and inequality (5-5) imply that x = y. Thus,

(ε+ η)(x − 744)= 1.

In particular 0 6= ε+ η ∈ R, which implies η = ε−1.
Lemma 5.4 implies that the Galois group of the number field Q(x)=Q(ε+ε−1)

is 2-elementary. Since Q(ε+ ε−1) is a subfield of degree at most 2 in Q(ε), the
Galois group of Q(ε)/Q is either 2-elementary or Z/4Z times a 2-elementary group.
But this group is (Z/nZ)×, where n is the order of the root of unity ε. Using the well-
known structure of the multiplicative group (Z/nZ)× (see, for instance, [Ireland and
Rosen 1990, Theorem 3 in §4.1]), one easily finds out that any integer n with the
property “the group (Z/nZ)× is either 2-elementary or Z/4Z times a 2-elementary
group” divides either 48 or 120. It follows that |ε+ ε−1

| ≥ 2 sin(π/60) (recall that
ε+ ε−1

= ε+ η 6= 0). Hence,

|x − 744| ≤
1

2 sin(π/60)
< 10.

No principal singular modulus satisfies the latter inequality. �

Lemma 5.6. The numbers 744, 744±1, 744±2, 744±196884, 744±1±196884,
744± 2 · 196884 are not singular moduli.

Proof. The proof is just by inspection of Table 1. �

Lemma 5.7. Let θ be a root of unity. Then 744+ θ and 744+ 196884θ are not
singular moduli.

Proof. If 744+θ or 744+196884θ is a singular modulus, then the cyclotomic field
Q(θ) has a real embedding by (5-2), which is possible only if θ =±1. Now apply
Lemma 5.6. �
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Lemma 5.8. Assume that a singular modulus of discriminant 1 is a sum of k roots
of unity. Then

|1| ≤ π−2(log(k+ 2079))2.

Proof. We may assume that our modulus (denote it by x) is principal and, as in the
proof of Lemma 5.1, deduce from this that it satisfies |x | ≥ eπ |1|

1/2
− 2079. On

the other hand, since x is a sum of k roots of unity, we have |x | ≤ k, whence the
result. �

Lemma 5.9. Let η, θ be roots of unity, x a singular modulus, and a, b, c ∈ Z.
Assume that

x = aη+ bθ + c, a, b 6= 0, |a| + |b| + |c| ≤ 3400000.

Then one of the following options holds:

• We have x ∈ Z.

• After possible replacing of (a, η) by (−a,−η) and/or (b, θ) by (−b,−θ), we
have the following: η is a primitive 5th root of unity, θ = η−1, a = b, and

(a, c) ∈
{
(85995,−52515), (−85995,−138510),

(565760, 914880), (−565760, 349120)
}
. (5-6)

Proof. Let 1 be the discriminant of the singular modulus x . Lemma 5.8 implies
that

|1| ≤ π−2(log(3400000+ 2079))2 < 22.92. (5-7)

Assume that x /∈ Z; then h(1) > 1. Among negative quadratic discriminants
satisfying (5-7), all but two have class number 1; these two are 1 = −15 and
1=−20. In both cases h(1)= 2 and Q(x)=Q(

√
5), so option (7) of Lemma 4.2

applies in both cases. After possible replacing of (a, η) by (−a,−η) and/or (b, θ)
by (−b,−θ), we obtain the following: η is a primitive 5th root of unity, θ = η−1,
and a = b, so we have x = a(η+ η−1)+ c.

The two singular moduli of discriminant 1=−15 are

−191025± 85995
√

5
2

=−
191025

2
± 85995( 1

2 + η+ η
−1)

=

{
either 85995(η+ η−1)− 52515,
or −85995(η+ η−1)− 138510,

which gives us the first two options in (5-6)
Similarly, the two singular moduli of discriminant 1 = −20 are 632000 ±

282880
√

5, which gives the other two options. �
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6. Rational matrices

In this section we obtain some elementary properties of Q-matrices, which will be
used in our study of j-maps in Section 7.

Recall that we denote by GL+2 (Q) the subgroup of GL2(Q) consisting of matrices
of positive determinant. Unless the contrary is stated explicitly, in this section matrix
refers to an element in GL+2 (Q). We call two matrices A and A′ equivalent (denoted
A∼ A′) if there exists a matrix B ∈SL2(Z) and a scalar λ∈Q× such that A′=λB A.

For a, b∈Q we define gcd(a, b) as the nonnegative δ∈Q such that aZ+bZ= δZ.
Given a matrix A =

[a
c

b
d

]
, we define the normalized left content of A by

nlc(A)=
gcd(a, c)2

det A
.

Clearly, nlc(A)= nlc(A′) if A ∼ A′.

Proposition 6.1. Every matrix A is equivalent to an upper-triangular matrix of the
form

[a
0

b
1

]
with a > 0, where a = nlc(A). We have

[a
0

b
1

]
∼
[a′

0
b′
1

]
if and only if

a = a′ and b ≡ b′ mod Z.

Proof. It suffices to show that A is equivalent to an upper-triangular matrix; the rest
is easy. Let

( x
y

)
be the left column of A and δ = gcd(x, y). Then x/δ, y/δ ∈ Z, and

there exist u, v ∈ Z such that ux + vy = δ. Multiplying A on the left by the matrix[ u
−y/δ

v
x/δ

]
∈ SL2(Z), we obtain an upper-triangular matrix. �

Proposition 6.2. Let A1, A2 be nonequivalent matrices. Then there exists a matrix
B such that nlc(A1 B) 6= nlc(A2 B).

Proof. We may assume that nlc(A1)= nlc(A2) (otherwise there is nothing to prove).
Multiplying on the right by A−1

1 , we may assume that A1 =
[ 1

0
0
1

]
. We may further

assume that A2 =
[a

0
b
1

]
. Since a = nlc(A2) = nlc(A1) = 1, we have A2 =

[ 1
0

b
1

]
,

where b /∈ Z since A2 � A1.
Now B =

[ 1
−b−1

0
1

]
would do. Indeed,

nlc(A1 B)= nlc(B)= gcd(−b−1, 1)2, nlc(A2 B)= nlc
[

0 b
−b−1 1

]
= b−2,

and we have to prove that gcd(−b−1, 1) 6= |b|−1. This is equivalent to gcd(1, b) 6= 1,
which is true because b /∈ Z. �

One may wonder if the same statement holds true for more than two matrices:
given pairwise nonequivalent matrices A1, . . . , An , does there exist a matrix B ∈
GL+2 (Q) such that nlc(A1 B), . . . , nlc(An B) are pairwise distinct? The proof of the
main lemma could have been drastically simplified if it were the case. Unfortunately,
the answer is “no” already for three matrices, as the following example shows.
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Example 6.3. Let

A1 =

[
1 0
0 1

]
, A2 =

[
1 1/2
0 1

]
, A3 =

[
4 0
0 1

]
.

We claim that, for any matrix B, at least two of the numbers

nlc(A1 B), nlc(A2 B), nlc(A3 B)

are equal. Indeed, write B =
[a

c
b
d

]
. After multiplying by a suitable scalar, we may

assume that c = 2. Now

nlc(A1 B)=
gcd(a, 2)2

det B
, nlc(A2 B)=

gcd(a+ 1, 2)2

det B
, nlc(A3 B)=

gcd(4a, 2)2

4 det B
,

and we must show that among the three numbers

gcd(a, 2), gcd(a+ 1, 2), 1
2 gcd(4a, 2)

there are two equal. And this is indeed the case:

• if ord2(a) > 0, then gcd(a+ 1, 2)= 1
2 gcd(4a, 2),

• if ord2(a)= 0, then gcd(a, 2)= 1
2 gcd(4a, 2), and

• if ord2(a) < 0, then gcd(a, 2)= gcd(a+ 1, 2).

Still, it is possible to prove something.

Proposition 6.4. Let A1, A2, A3 be pairwise nonequivalent matrices. Then there
exists a matrix B such that among the numbers nlc(A1 B), nlc(A2 B), nlc(A3 B) one
is strictly bigger than the two others.

Proof. We may assume that Ak =
[ak

0
∗

1

]
for k = 1, 2, 3. If the numbers ak are

pairwise distinct, then there is nothing to prove. Hence, we may assume that a1= a2.
Multiplying on the right by A−1

3 and afterwards by a suitable diagonal matrix, we
may assume that

A1 =

[
1 b1

0 1

]
, A2 =

[
1 b2

0 1

]
, A3 =

[
a−1 0

0 1

]
,

where a > 0. Since A1 � A2, we have b1 6≡ b2 mod Z, and we may assume b1 /∈ Z.
Set B =

[ 1
−b−1

1

0
1

]
. Then

nlc(A1 B)= b−2
1 ,

nlc(A2 B)= gcd(1− b−1
1 b2, b−1

1 )2,

nlc(A3 B)= a gcd(a−1, b−1
1 )2.

(6-1)
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Multiplying numbers (6-1) by ab2
1, we must show that among the three numbers

a, a gcd(b1− b2, 1)2, gcd(b1, a)2 (6-2)

one is strictly bigger than the others.
If the numbers in (6-2) are pairwise distinct, then there is nothing to prove. Now

assume that two of them are equal. Since b1 6≡ b2 mod Z, then gcd(b1−b2, 1) < 1,
and in particular, the first two of them are distinct.

Further, the equality a = gcd(b1, a)2 is not possible either. Indeed, in this case
for any prime number p we would have

ordp(a)= 2 min{ordp(a), ordp(b1)},

which implies that either ordp(a)= 2 ordp(b1) > 0 or ordp(b1)≥ ordp(a)= 0. In
particular, ordp(b1)≥ 0 for any p, contradicting our assumption b1 /∈ Z.

Thus, the only possibility is a gcd(b1− b2, 1)2 = gcd(b1, a)2, and we obtain

a > a gcd(b1− b2, 1)2 = gcd(b1, a)2. �

7. Level, twist, and q-expansion of a j -map

In this section we collect some properties of j-maps used in the sequel.
Given γ, γ ′ ∈ GL+2 (Q), we have j (γ z) = j (γ ′z) if and only if the matrices γ

and γ ′ are equivalent in the sense of Section 6. Combined with Proposition 6.1,
this gives the following:

Proposition 7.1. Let f be a nonconstant j -map. Then there exist a unique positive
number m ∈Q and a unique modulo 1 number µ ∈Q such that f (z)= j (mz+µ).

Note that m = nlc(γ ) for any γ ∈ GL+2 (Q) such that f (z)= j (γ z).
Setting q = e2π i z and ε = e2π iµ, the map f (z) = j (mz + µ) admits the “q-

expansion”

f (z)= ε−1q−m
+ 744+ 196884εqm

+ 21493760ε2q2m
+ o(q2m), (7-1)

where here and below we accept the following convention:

• O(q`) means “terms of q-degree ` or higher” and

• o(q`) means “terms of q-degree strictly higher than `”.

We call m and ε the level and the twist of the nonconstant j-map f . For a
constant j-map, we set its level to be 0 and its twist undefined. The following
property will be routinely used, usually without special reference:

two nonconstant j-maps coincide if and only if their levels and twists coincide.
(7-2)
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We will denote in the sequel A = 196884 and B = 21493760 so that (7-1) reads

f (z)= ε−1q−m
+ 744+ Aεqm

+ Bε2q2m
+ O(q2m). (7-3)

The following lemma will play an important role in Section 8.

Lemma 7.2. Let f1, f2, f3 be pairwise distinct j-maps, not all constant. Then
there exists γ ∈ GL+2 (Q) such that one of the maps f1 ◦ γ, f2 ◦ γ, f3 ◦ γ has level
strictly bigger than the two others.

Proof. If only one of the maps fk is nonconstant, then there is nothing to prove. If
exactly two of them, say f1 and f2, are nonconstant, then Proposition 6.2 implies
the existence of γ ∈ GL+2 (Q) such that f1 ◦ γ and f2 ◦ γ have distinct levels,
and we are done. Finally, if all the three are nonconstant, the result follows from
Proposition 6.4. �

We conclude this section with a linear-independence property of nonconstant
j-maps.

Lemma 7.3. Let f, g be nonconstant j -maps satisfying a nontrivial linear relation
a f + bg+ c = 0, where (a, b, c) ∈ C3 and (a, b, c) 6= (0, 0, 0). Then f = g and
a+ b = c = 0.

Proof. Any two nonconstant j-maps parametrize the modular curve Y0(N ) of a
certain level N ; in other words, we have 8N ( f, g)= 0, where 8N (x, y) is the N -th
modular polynomial. If we also have a f +bg+c=0, then the polynomial8N (x, y),
being irreducible, must divide the linear polynomial ax + by+ c. It follows that
N = 1 since 81(x, y)= x − y is the only modular polynomial of degree 1. �

8. Initializing the proof of the main lemma

In this section we start the proof of the main lemma. Thus, from now on, let
f1, f2, f3, g1, g2, g3 be j-maps, not all constant and satisfying∣∣∣∣∣∣

1 1 1
f1 f2 f3

g1 g2 g3

∣∣∣∣∣∣= 0. (8-1)

This can be rewritten as

( f1− f2)(g2− g3)= ( f2− f3)(g1− g2). (8-2)

If say f1= f2, then we find from (8-2) that either f2= f3, in which case f1= f2= f3,
or g1 = g2, in which case f1 = f2 and g1 = g2. Hence, we may assume in the
sequel that

f1, f2, f3 are pairwise distinct, and so are g1, g2, g3. (8-3)
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We will show that under this assumption

fk = gk (k = 1, 2, 3). (8-4)

Let mk, nk be the levels of fk, gk , respectively, for k = 1, 2, 3. If fk and/or gk is
not constant, we denote the corresponding twists by εk = e2π iµk and/or ηk = e2π iνk ,
respectively.

8A. Some relations for the levels. Since not all of our six maps are constant, we
may assume that the three maps fk are not all constant. Lemma 7.2 implies now
that, after a suitable variable change, one of the numbers m1,m2,m3 is strictly
bigger than the others. After renumbering, we may assume that

m1 > m2,m3.

We claim that

n1 > n2, n3 (8-5)

as well, and moreover,

m1−max{m2,m3} = n1−max{n2, n3}. (8-6)

Indeed, assume that, say, n2 ≥ n1, n3. Then the leading terms of the q-expansion on
the left and on the right of (8-2) are of the forms cq−(m1+n2) and c′q−(max{m2,m3}+n2)

with some nonzero c and c′. (Precisely,

c =


ε−1

1 η−1
2 , n2 > n3,

ε−1
1 (η−1

2 − η
−1
3 ), n2 = n3 > 0,

ε−1
1 (g2− g3), n2 = n3 = 0,

and it follows from (8-3) that c 6=0; in a similar way one shows that c′ 6=0.) And this
is impossible because m1+n2>max{m2,m3}+n2. This proves that n1> n2, n3. In
particular the three maps gk are also not all constant. Again comparing the leading
terms of the q-expansion on the left and on the right of (8-2), we obtain (8-6).

Swapping, if necessary, the functions fk and gk , we may assume that

m1 ≥ n1, (8-7)

and after renumbering, we may assume that

m1 > m2 ≥ m3. (8-8)

Equation (8-6) now becomes

m1−m2 = n1−max{n2, n3}. (8-9)
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8B. One more lemma. Here is a less obvious property, which will be used in the
proof several times.

Lemma 8.1. In the above setup we cannot simultaneously have f2= g3 and g2= f3.

Proof. If f2 = g3 and g2 = f3, then

0=

∣∣∣∣∣∣
1 1 1
f1 f2 f3

g1 f3 f2

∣∣∣∣∣∣= ( f3− f2)( f1+ g1− f2− f3).

Since f2 6= f3, this implies

f1+ g1 = f2+ f3. (8-10)

We will see that this leads to a contradiction.
Observe first of all that m2 > 0. Indeed, if m2 = 0, then m3 = 0 as well by (8-8).

Hence, both f2 and f3 are constant, and (8-10) contradicts Lemma 7.3.
Next, we have m3 > 0 as well. Indeed, if f3 is constant, then comparing the

constant terms in (8-10), we find f3 = 744, contradicting Lemma 5.6.
Thus, we have m1 ≥ n1 > n3 = m2 ≥ m3 > 0. Comparing the q-expansions

f1+ g1 =


ε−1

1 q−m1 + η−1
1 q−n1 + O(1), m1 > n1,

(ε−1
1 + η

−1
1 )q−m1 + O(1), m1 = n1, ε1 6= −η1,

1488+ 2Bε2
1q2m1 + o(q2m1), m1 = n1, ε1 =−η1,

f2+ f3 =


ε−1

2 q−m2 + ε−1
3 q−m3 + O(1), m2 > m3,

(ε−1
2 + ε

−1
3 )q−m2 + O(1), m2 = m3, ε2 6= −ε3,

1488+ 2Bε2
2q2m2 + o(q2m2), m2 = m3, ε2 =−ε3,

we immediately derive a contradiction. �

8C. The determinant D(q). We will study in the sequel a slightly modified version
of the determinant from (8-1):

D(q)=

∣∣∣∣∣∣
1 1 1

qm1 f1 qm1 f2 qm1 f3

qn1 g1 qn1 g2 qn1 g3

∣∣∣∣∣∣ .
The advantage is that it has no negative powers of q . Equation (8-1) simply means
that D(q) vanishes as a formal power series in q . It will be useful to write

D(q)=

∣∣∣∣∣∣
1 1 1

qm1( f1− 744) qm1( f2− 744) qm1( f3− 744)
qn1(g1− 744) qn1(g2− 744) qn1(g3− 744)

∣∣∣∣∣∣ . (8-11)

This would allow us to eliminate the constant terms in the q-expansions of fk and gk .
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It will be convenient to use the notation

f̃k =

{
ε−1

k , mk > 0,
fk − 744, mk = 0,

g̃k =

{
η−1

k , nk > 0,
gk − 744, nk = 0

(8-12)

so that

qm1( fk − 744)= f̃kqm1−mk + o(qm1), qn1(gk − 744)= g̃kqn1−nk + o(qn1).

Lemma 5.6 implies that

f̃k, g̃k 6= 0 (k = 1, 2, 3), (8-13)

which will be frequently used, usually without special references.

8D. The four cases. According to (8-5) and (8-8), there are four possible cases:

m2 = m3,

m2 > m3, n2 > n3,

m2 > m3, n2 = n3,

m2 > m3, n3 > n2.

They are treated in the four subsequent sections, respectively. We will show that in
the first two cases we have (8-4) and that the last two cases are impossible. The
proofs in the four cases are similar in strategy but differ in technical details.

Most of our arguments are nothing more than careful manipulations with q-
expansions. Still, they are quite technical, and to facilitate reading, we split proofs
of each of the cases it into short logically complete steps.

9. The case m2 = m3

In this section we assume that

m1 > m2 = m3.

We want to prove that in this case we have fk = gk for k = 1, 2, 3.
Let us briefly describe the strategy of the proof. We already have (8-5), and after

renumbering we may assume that

n1 > n2 ≥ n3.

Equation (8-9) now becomes

m1−m2 = m1−m3 = n1− n2. (9-1)
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We start by proving that n2 = n3; see Section 9A. With this done, setting m2 =

m3 = m and n2 = n3 = n, we rewrite (9-1) as

m1−m = n1− n. (9-2)

The next step is proving (see Section 9B) that m1 = n1. In view of (9-2) this would
imply that m = n as well. In particular, fk and gk are of the same level for every
k = 1, 2, 3. After this, we will be ready to prove that fk = gk for k = 1, 2, 3; see
Section 9C.

9A. Proof of n2 = n3. In this subsection we prove that n2 = n3. Set

m1−m2 = m1−m3 = n1− n2 = λ, n1− n3 = λ
′
≥ λ.

We want to show that λ′ = λ.
Assume that λ′ > λ. Then by (8-7) all the mk and nk except perhaps n3 are

positive. We consider separately the cases n3 = 0 and n3 > 0.

The subcase n3 = 0. If n3 = 0, then using notation (8-12), we write g̃3 = g3− 744
and

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ

η−1
1 η−1

2 qλ g̃3qλ
′

∣∣∣∣∣∣+ o(qn1)

= (ε−1
1 η−1

2 − ε
−1
2 η−1

1 + ε
−1
3 η−1

1 )qλ+ ε−1
3 η−1

2 q2λ
+ ε−1

1 g̃3qλ
′

+o(qn1)+O(qλ+λ
′

).

The term with qλ
′

can be eliminated only if λ′ = 2λ and ε−1
1 g̃3 = ε

−1
3 η−1

2 , that is,
g3 = 744+ ε1ε

−1
3 η−1

2 , contradicting Lemma 5.7.

The subcase n3 > 0. If n3 > 0, then

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ

η−1
1 η−1

2 qλ η−1
3 qλ

′

+ Aη3qn1+n3

∣∣∣∣∣∣+ o(qn1+n3)

= (ε−1
1 η−1

2 − ε
−1
2 η−1

1 + ε
−1
3 η−1

1 )qλ− ε−1
3 η−1

2 q2λ
− ε−1

1 η−1
3 qλ

′

+ ε−1
2 η−1

3 qλ+λ
′

− Aε−1
1 η3qn1+n3 + o(qn1+n3).

As n1+ n3 > λ
′, the term with qn1+n3 can be eliminated only if either

λ < λ′ < 2λ= n1+ n3 < λ+ λ
′, ε−1

3 η−1
2 =−Aε−1

1 η3,

which is impossible because A is not a root of unity, or

λ < λ′, 2λ < n1+ n3 = λ+ λ
′, ε−1

2 η−1
3 = Aε−1

1 η3,

which is again impossible by the same reason.
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Conclusion. Thus, we have proved that n2 = n3. Setting m = m2 = m3 and
n = n2 = n3, we can summarize our knowledge as

m1 > m2 = m3 = m, m1−m = n1− n = λ > 0,

n1 > n2 = n3 = n, m1− n1 = m− n ≥ 0.

Together with (8-3) this implies that

f̃2 6= f̃3, g̃2 6= g̃3. (9-3)

9B. Proof of m1 = n1. Now we want to prove that

m1 = n1. (9-4)

Thus, assume that m1 > n1, in which case we also have m > n. We consider
separately the subcases n > 0 and n = 0.

The subcase n > 0. If n > 0, then

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ

η−1
1 η−1

2 qλ+ Aη2qn1+n η−1
3 qλ+ Aη3qn1+n

∣∣∣∣∣∣+ o(qn1+n)

=

∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣ qλ+
∣∣∣∣ε−1

2 ε−1
3

η−1
2 η−1

3

∣∣∣∣ q2λ
+Aε−1

1 (η2−η3)qn1+n
+o(qn1+n)+o(q2λ).

Here the coefficient of qλ must vanish. If 2λ > n1 + n, then that of qn1+n must
vanish too, but that would contradict (9-3). If 2λ < n1 + n, then the coefficient
of q2λ must vanish and then that of qn1+n . It follows that 2λ= n1+ n and∣∣∣∣ε−1

2 ε−1
3

η−1
2 η−1

3

∣∣∣∣= Aε−1
1 (η3− η2). (9-5)

As noted, both sides of (9-5) are nonzero. Since the left-hand side is a sum of two
roots of unity, Lemma 4.1 implies that 196884 = |A| ≤ 2, a contradiction. This
completes the proof of (9-4) in the case n > 0.

The subcase n = 0. If n = 0, then g2 and g3 are distinct constants, and the other
functions are nonconstant. Also, we have λ= n1, and so

m1 = m+ n1. (9-6)
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Now, using notation (8-12), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qn1 + Aε2qm1+m ε−1

3 qn1 + Aε3qm1+m

η−1
1 + Aη1q2n1 g̃2qn1 g̃3qn1

∣∣∣∣∣∣
+ o(qm1+m)+ o(q2n1)

=

∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 g̃2− g̃3

∣∣∣∣ qn1 +

∣∣∣∣ε−1
2 ε−1

3
g̃2 g̃3

∣∣∣∣ q2n1 + Aη−1
1 (ε3− ε2)qm1+m

+ o(qm1+m)+ o(q2n1).

As ε3 6= ε2, the coefficient of qm1+m is nonzero; by Lemma 5.2 so is the coefficient
of q2n1 . This shows that 2n1 = m1+m. Together with (9-6) this implies m1 = 3m
and n1 = 2m; rescaling z, we may assume

m = 1, n1 = 2, m1 = 3.

Hence,

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 q2
+Aε2q4

+Bε2
2q5 ε−1

3 q2
+Aε3q4

+Bε2
3q5

η−1
1 +Aη1q4 g̃2q2 g̃3q2

∣∣∣∣∣∣+ O(q6)

=

∣∣∣∣ε−1
1 ε−1

2 −ε
−1
3

η−1
1 g̃2−g̃3

∣∣∣∣ q2
+

(∣∣∣∣ε−1
2 ε−1

3
g̃2 g̃3

∣∣∣∣+Aη−1
1 (ε3−ε2)

)
q4
+Bη−1

1 (ε2
3−ε

2
2)q

5
+O(q6).

Equating to 0 the coefficient of q5, we obtain ε3 = ±ε2, and (9-3) implies that
ε3 =−ε2. Using this, and equating to 0 the coefficients of q2 and q4, we obtain

ε−1
1 (g̃2− g̃3)= 2ε−1

2 η−1
1 , ε−1

2 (g̃2+ g̃3)= 2Aη−1
1 ε2,

from which we deduce g2 = g̃2+ 744= ε1ε
−1
2 η−1

1 + Aη−1
1 ε2

2 + 744.
Now Lemma 5.9 implies that g2 ∈ Z, from which we deduce, using Lemma 4.2,

that both roots of unity ε1ε
−1
2 η−1

1 and η−1
1 ε2

2 must be ±1. Hence, g2 is one of the
four numbers 744± 1± A, contradicting Lemma 5.6.

9C. Proof of fk = gk for k = 1, 2, 3. In the previous subsection we proved that

m1 = n1 > m = n. (9-7)

We want to now prove that

fk = gk (k = 1, 2, 3). (9-8)

We again distinguish the subcases m = n > 0 and m = n = 0. As before, we set
λ= m1−m = n1− n.
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The subcase m = n > 0. If m = n > 0 then

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ+ Aε2qλ+2m ε−1

3 qλ+ Aε3qλ+2m

η−1
1 η−1

2 qλ+ Aη2qλ+2m η−1
3 qλ+ Aη3qλ+2m

∣∣∣∣∣∣+ o(qλ+2m)

=

∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣qλ+∣∣∣∣ε−1
2 ε−1

3
η−1

2 η−1
3

∣∣∣∣q2λ
+A

∣∣∣∣ε−1
1 ε2− ε3

η−1
1 η2− η3

∣∣∣∣qλ+2m
+o(qλ+2m). (9-9)

This implies the equations∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣= 0,
∣∣∣∣ε−1

2 ε−1
3

η−1
2 η−1

3

∣∣∣∣= 0,
∣∣∣∣ε−1

1 ε2− ε3

η−1
1 η2− η3

∣∣∣∣= 0 (9-10)

if 2λ 6= λ+ 2m and the equations∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣= 0,∣∣∣∣ε−1
2 ε−1

3
η−1

2 η−1
3

∣∣∣∣=−A
∣∣∣∣ε−1

1 ε2− ε3

η−1
1 η2− η3

∣∣∣∣ (9-11)

if 2λ = λ + 2m. If both sides of (9-11) are nonzero, then Lemma 4.1 implies
196884= |A| ≤ 2, a contradiction. Hence, in any case we have (9-10).

Resolving the first two equations from (9-10) in η−1
1 , η−1

2 , η−1
3 and using (9-3),

we obtain
(η1, η2, η3)= θ(ε1, ε2, ε3)

for some θ ∈ C. Substituting this into the third equation in (9-10) and again using
(9-3), we find θ =±1. If θ =−1, then we get for D(q) the value∣∣∣∣∣∣∣

1 1 1
ε−1

1 +Aε1q2λ+2m ε−1
2 qλ+Aε2qλ+2m

+Bε2
2qλ+3m ε−1

3 qλ+Aε3qλ+2m
+Bε2

3qλ+3m

−ε−1
1 −Aε1q2λ+2m

−ε−1
2 qλ−Aε2qλ+2m

+Bε2
2qλ+3m

−ε−1
3 qλ−Aε3qλ+2m

+Bε2
3qλ+3m

∣∣∣∣∣∣∣
+ o(qλ+3m)

=

∣∣∣∣∣∣∣
1 1 1

ε−1
1 +Aε1q2λ+2m ε−1

2 qλ+Aε2qλ+2m
+Bε2

2qλ+3m ε−1
3 qλ+Aε3qλ+2m

+Bε2
3qλ+3m

0 2Bε2
2qλ+3m 2Bε2

3qλ+3m

∣∣∣∣∣∣∣
+ o(qλ+3m)

= 2Bε−1
1 (ε2

2−ε
2
3)q

λ+3m
+ o(qλ+3m),

which gives ε2=±ε3, and ε2=−ε3 by (9-3). Thus, we have ε2= η3=−ε3=−η2,
which implies that f2 = g3 and g2 = f3, contradicting Lemma 8.1.

The only remaining option is θ = 1, which, together with (9-7), proves (9-8).
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The subcase m= n= 0. This case can be easily settled using Lemma 7.3. Indeed, in
the case m = n = 0 the functions f1, g1 are nonconstant, f2, f3, g2, g3 are constant,
and

0=

∣∣∣∣∣∣
1 1 1
f1 f2 f3

g1 g2 g3

∣∣∣∣∣∣= (g2− g3) f1− ( f2− f3)g1+

∣∣∣∣ f2 f3

g2 g3

∣∣∣∣
is a nontrivial linear relation for f1, g1 (recall that f2 6= f3 and g2 6= g3 by (8-3)).
By Lemma 7.3

f1 = g1, f2− f3 = g2− g3,

∣∣∣∣ f2 f3

g2 g3

∣∣∣∣= 0.

From the last two equations, one easily deduces that f2 = g2 and f3 = g3, proving
(9-8).

10. The case m2 > m3 and n2 > n3

In this section we assume that

m1 > m2 > m3, n1 > n2 > n3. (10-1)

As in the previous section, we will prove that in this case fk = gk for k = 1, 2, 3.
The strategy of the proof is similar to that of the previous section. Equation (8-9)

now reads
m1−m2 = n1− n2. (10-2)

We start with proving that

m1−m3 = n1− n3; (10-3)

see Section 10A. Then we prove, in Section 10B, that m1 = n1. Since, by this time,
we will already know (10-2) and (10-3), this will imply that mk = nk for every
k = 1, 2, 3. After this, we prove that fk = gk for k = 1, 2, 3 in Section 10C.

We set m1−m2 = n1− n2 = λ. We also have m1 ≥ n1 by (8-7). Let us collect
our knowledge:

m1>m2>m3, n1>n2>n3, m1−m2=n1−n2=λ>0, m1−n1=m2−n2≥0.

10A. Proof of m1 − m3 = n1 − n3. Now let us prove that m1 − m3 = n1 − n3.
Using notation (8-12), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 η−1

2 qλ g̃3qn1−n3

∣∣∣∣∣∣+ o(qn1)

=

∣∣∣∣ε−1
1 ε−1

2
η−1

1 η−1
2

∣∣∣∣ qλ+ f̃3η
−1
1 qm1−m3 − ε−1

1 g̃3qn1−n3 + o(qm1−m3)+ o(qn1−n3).
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If m1−m3 6= n1− n3, then we have one of the options

λ < m1−m3 < n1− n3, λ < n1− n3 < m1−m3.

In the first case qm1−m3 cannot be eliminated, and in the second case qn1−n3 cannot
be eliminated. This proves that m1−m3 = n1− n3.

We set m1−m3 = n1− n3 = λ
′. Thus,

m1 > m2 > m3, n1 > n2 > n3,

m1−m2 = n1− n2 = λ > 0, m1−m3 = n1− n3 = λ
′ > λ > 0, (10-4)

m1− n1 = m2− n2 = m3− n3 ≥ 0.

In addition to this, from

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qλ

′

η−1
1 η−1

2 qλ g̃3qλ
′

∣∣∣∣∣∣+ o(qn1)=

∣∣∣∣ε−1
1 ε−1

2
η−1

1 η−1
2

∣∣∣∣ qλ−
∣∣∣∣ε−1

1 f̃3

η−1
1 g̃3

∣∣∣∣ qλ
′

+ o(qλ
′

),

we deduce that ∣∣∣∣ε−1
1 ε−1

2
η−1

1 η−1
2

∣∣∣∣= ∣∣∣∣ε−1
1 f̃3

η−1
1 g̃3

∣∣∣∣= 0, (10-5)

which means that

(η−1
1 , η−1

2 , g̃3)= θ(ε
−1
1 , ε−1

2 , f̃3) (10-6)

with some root of unity θ .

10B. Proof of m1 = n1. In this subsection we show that m1 = n1. Thus, assume

m1 > n1, (10-7)

in which case we also have

m2 > n2, m3 > n3. (10-8)

We should also have

n3 > 0. (10-9)

Indeed, if m3>n3=0, then the second equation in (10-5) reads g3=744+ε1ε
−1
3 η−1

1 ,
which is impossible by Lemma 5.7.
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Using (10-6), (10-7), (10-8), and (10-9), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

η−1
1 η−1

2 qλ η−1
3 qλ

′

+ Aη3qn1+n3

∣∣∣∣∣∣+ o(qn1+n3)

=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

0 0 Aη3qn1+n3

∣∣∣∣∣∣+ o(qn1+n3)

=−Aε−1
1 η3qn1+n3 + o(qn1+n3),

a contradiction.
This proves that

mk = nk (k = 1, 2, 3). (10-10)

10C. Proof of fk = gk for k = 1, 2, 3. To prove that fk = gk for k = 1, 2, 3, we
only need to show that

θ = 1,

where θ is from (10-6). If m3 = n3 = 0, then rewriting the equality g̃3 = θ f̃3 as
(g3− 744)= θ( f3− 744), we deduce θ = 1 from Lemma 5.2.

Now assume that m3 = n3 > 0. In this case

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

+ Aε3qm1+m3

η−1
1 η−1

2 qλ η−1
3 qλ

′

+ Aη3qm1+m3

∣∣∣∣∣∣+ o(qm1+m3)

=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

+ Aε3qm1+m3

0 0 Aε3(θ
−1
− θ)qm1+m3

∣∣∣∣∣∣+ o(qm1+m3)

=−Aε−1
1 ε3(θ

−1
− θ)qm1+m3 + o(qm1+m3),

which implies θ =±1. If θ =−1, then we get for D(q) the value∣∣∣∣∣∣
1 1 1

ε−1
1 + Aε1q2m1 ε−1

2 qλ+ Aε2qm1+m2 ε−1
3 qλ

′

+ Aε3qm1+m3 + Bε2
3qm1+2m3

−ε−1
1 − Aε1q2m1 −ε−1

2 qλ− Aε2qm1+m2 −ε−1
3 qλ

′

− Aε3qm1+m3 + Bε2
3qm1+2m3

∣∣∣∣∣∣
+ o(qm1+2m3)

=

∣∣∣∣∣∣
1 1 1

ε−1
1 + Aε1q2m1 ε−1

2 qλ+ Aε2qm1+m2 ε−1
3 qλ

′

+ Aε3qm1+m3

0 0 2Bε2
3qm1+2m3

∣∣∣∣∣∣+ o(qm1+2m3)

=−2Bε−1
1 ε2

3qm1+2m3 + o(qm1+2m3),

a contradiction.
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Thus, in any case we have θ = 1 in (10-6). Together with (10-10), this proves
that fk = gk for k = 1, 2, 3.

11. The case m2 > m3 and n2 = n3

In this section we assume that

m1 > m2 > m3, n1 > n2 = n3 (11-1)

and will show that this is impossible.
Relation (8-9) now becomes m1−m2 = n1− n2 = n1− n3. We set

m1−m2 = n1− n2 = n1− n3 = λ. (11-2)

Fist of all, let us rule out the case n2 = n3 = 0. In this case n1 = λ < m1−m3.
Using notation (8-12), we write in this case

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ 0

η−1
1 g̃2qλ g̃3qλ

∣∣∣∣∣∣+ o(qλ)= (ε−1
1 g̃2− ε

−1
1 g̃3− ε

−1
2 η−1

1 )qλ+ o(qλ).

We obtain ε−1
1 g̃2− ε

−1
1 g̃3− ε

−1
2 η−1

1 = 0, which contradicts Lemma 5.5.
Thus, we may assume in the sequel that

n2 = n3 > 0. (11-3)

Since n2 = n3, we have
η2 6= η3, (11-4)

which will be systematically used, sometimes without special reference.
Our principal objective will be to show that m3 = m1− 2λ and n1 = m1− λ/2.

The first of these two relations is proved already in Section 11A. The second one is
more delicate and will be established in Section 11D, after some preparatory work
done in the previous subsections. On the way, we will also prove certain inequalities
relating the numbers mk , nk , and λ and certain relations for the twists. After all this
is done, obtaining a contradiction will be relatively easy; see Section 11E.

11A. Proof of 2λ= m1−m3 ≤ n1+ n2. Using notation (8-12), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 η−1

2 qλ+ Aη2qn1+n2 η−1
3 qλ+ Aη3qn1+n2

∣∣∣∣∣∣+ o(qm1)+ o(qn1+n2)

= (ε−1
1 η−1

2 − ε
−1
1 η−1

3 − ε
−1
2 η−1

1 )qλ+ ε−1
2 η−1

3 q2λ
+ η−1

1 f̃3qm1−m3

+ Aε−1
1 (η2− η3)qn1+n2 + o(qm1−m3)+ o(qn1+n2). (11-5)
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First of all, this gives

ε−1
1 η−1

2 − ε
−1
1 η−1

3 − ε
−1
2 η−1

1 = 0. (11-6)

A sum of three roots of unity can vanish only if they are proportional to the three
distinct cubic roots of unity. In particular,

η2/η3 is a primitive 6th root of unity. (11-7)

We have m1−m3 ≥ 2λ. Indeed, if 2λ > m1−m3, then we must have

m1−m3 = n1+ n2, η−1
1 f̃3 =−Aε−1

1 (η2− η3). (11-8)

If m3 > 0, this gives η−1
1 ε−1

3 = −Aε−1
1 (η2− η3), which is impossible because A

does not divide a root of unity. And if m3 = 0, then f3 = 744− Aε−1
1 η1(η2− η3).

Lemma 5.9 now implies that f3 ∈ Z, and we obtain f3 ∈ {744± 196884, 744±
2 · 196884}, contradicting Lemma 5.6.

We have m1−m3 ≤ 2λ. Indeed, if 2λ < m1−m3, then the term with q2λ cancels
either a term in o(qn1+n2) or the term with qn1+n2 . In the first situation the terms
with qm1−m3 and qn1+n2 must cancel each other, and we are back to (11-8). In the
second situation we must have

2λ= n1+ n2, ε−1
2 η−1

3 =−Aε−1
1 (η2− η3),

which is impossible because A = 196884 does not divide a root of unity.
Thus, we proved that m1−m3 = 2λ.

We have n1+ n2 ≥ 2λ. Indeed, if n1+ n2 < 2λ=m1−m3, then the nonzero term
Aε−1

1 (η2− η3)qn1+n2 cannot be eliminated. (It is nonzero because of (11-4).)

Thus, we proved that

2λ= m1−m3 ≤ n1+ n2. (11-9)

11B. Proof of n1+n2 > 2λ. We want to show now that the inequality in (11-9) is
strict. Thus, assume the contrary, that is,

2λ= m1−m3 = n1+ n2. (11-10)

Then (11-5) implies that

ε−1
2 η−1

3 + η
−1
1 f̃3+ Aε−1

1 (η2− η3)= 0. (11-11)

This implies that m3 = 0. Indeed, if m3 > 0, then (11-11) can be rewritten as

ε−1
2 η−1

3 + η
−1
1 ε−1

3 =−Aε−1
1 (η2− η3). (11-12)
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Both sides in (11-12) are nonzero by (11-4), and Lemma 4.1 implies that 2≥ |A|,
a contradiction. Thus, we have m3 = 0, which, together with (11-2) and (11-10),
implies that

m1 = 2λ, m2 = λ, n1 =
3
2λ, n2 = n3 =

1
2λ.

Rescaling, we may assume that λ= 2, which gives

m1 = 4, m2 = 2, m3 = 0, n1 = 3, n2 = n3 = 1.

Using (11-6) and (11-11), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 q2 f̃3q4

η−1
1 η−1

2 q2
+ Aη2q4

+ Bη2
2q5 η−1

3 q2
+ Aη3q4

+ Bη2
3q5

∣∣∣∣∣∣+ O(q6)

= Bε−1
1 (η2

2− η
2
3)q

5
+ O(q6),

which gives η2 =±η3, contradicting (11-7).
This proves that

2λ= m1−m3 < n1+ n2. (11-13)

11C. Proof of m3 > 0. In addition to this, we have m3 > 0. Indeed, equating to 0
the coefficient of q2λ in (11-5), we obtain

ε−1
2 η−1

3 + η
−1
1 f̃3 = 0. (11-14)

If m3 = 0, then this gives f3 = 744− ε−1
2 η−1

3 η1, contradicting Lemma 5.7. This
proves that

m3 > 0, (11-15)
and (11-14) becomes

ε−1
2 η−1

3 =−ε
−1
3 η−1

1 . (11-16)

11D. Proof of m1+m3 = n1+n2 < 3λ. Our next step is showing that m1+m3 =

n1+ n2 < 3λ. Using (11-6) and (11-16), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3

η−1
1 η−1

2 qλ+ Aη2qn1+n2 η−1
3 qλ+ Aη3qn1+n2

∣∣∣∣∣∣+o(qm1+m3)+o(qn1+n2)

= Aε3η
−1
1 qm1+m3 + Aε−1

1 (η2− η3)qn1+n2 − ε−1
3 η−1

2 q3λ

+ o(qm1+m3)+ o(qn1+n2). (11-17)

We have m1+m3 ≥ n1+ n2. Indeed, if m1 +m3 < n1 + n2, then we must have
m1+m3 = 3λ and Aε3η

−1
1 = ε

−1
3 η−1

2 , which is impossible because A is not a root
of unity.
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We have m1+m3 ≤ n1+ n2. Similarly, if m1+m3 > n1+ n2, then we must have
n1+ n2 = 3λ and Aε−1

1 (η2− η3)= ε
−1
3 η−1

2 , which is impossible because A does
not divide a root of unity.

We have m1+m3 = n1+ n2 < 3λ. Indeed, if m1+m3=n1+n2> 3λ, then the q3λ

cannot be eliminated. And if m1+m3=n1+n2=3λ, then Aε3η
−1
1 +Aε−1

1 (η2−η3)=

ε−1
3 η−1

2 , which is impossible because A does not divide a root of unity.

Thus, we proved that

m1+m3 = n1+ n2 < 3λ. (11-18)

Since n2 = n1− λ and m3 = m1− 2λ (see (11-2) and (11-13)), this implies that

n1 = m1−
1
2λ. (11-19)

Also, comparing the coefficients in (11-17), we obtain

ε3η
−1
1 + ε

−1
1 η2− ε

−1
1 η3 = 0. (11-20)

11E. Conclusion. We are almost done. Let us summarize the relations between the
levels we already obtained. We deduce from (11-2), (11-15), (11-18), and (11-19)

m2=m1−λ, m3=m1−2λ, n1=m1−
1
2λ, n2= n3=m1−

3
2λ, 2λ<m1<

5
2λ.

This implies the inequalities

2m1>m1+m2=m1+m3+λ=n1+n2+λ>3λ, 2n1>3λ, n1+2n2>m1+2m3.

It follows that

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3 + Bε2

3qm1+2m3

η−1
1 η−1

2 qλ+ Aη2qn1+n2 η−1
3 qλ+ Aη3qn1+n2

∣∣∣∣∣∣
+ o(qm1+2m3)+ o(q3λ)

=−ε−1
3 η−1

2 q3λ
+ Bε2

3η
−1
1 qm1+2m3 + o(qm1+2m3)+ o(q3λ).

We obtain 3λ=m1+2m3 and ε−1
3 η−1

2 = Bε2
3η
−1
1 . But the last equation is impossible

because B is not a root of unity. This proves that (11-1) is impossible in case (11-3).

12. The case m2 > m3 and n3 > n2

In this section we assume that

m1 > m2 > m3, n1 > n3 > n2 (12-1)

(as usual with m1 ≥ n1) and will, eventually, arrive at a contradiction. This is the
nastiest case, and we beg for the reader’s patience.
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Relation (8-9) now becomes m1−m2 = n1−n3. We set m1−m2 = n1−n3 = λ.
Using notation (8-12), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 g̃2qn1−n2 η−1

3 qλ

∣∣∣∣∣∣+ o(qn1)

=

∣∣∣∣ε−1
1 ε−1

2
η−1

1 −η−1
3

∣∣∣∣ qλ+ f̃3η
−1
1 qm1−m3 + ε−1

1 g̃2qn1−n2 + ε−1
2 η−1

3 q2λ

− f̃3g̃2qm1−m3+n1−n2 + o(qn1). (12-2)

Since 0< λ < m1−m3, n1− n2, this implies that∣∣∣∣ε−1
1 ε−1

2
η−1

1 −η−1
3

∣∣∣∣= 0. (12-3)

12A. Proof of m1−m3 = n1− n2. Let us start by proving that

m1−m3 = n1− n2. (12-4)

Indeed, assume that m1−m3 6= n1− n2. Then qn1−n2 in (12-2) can be eliminated
only if

n1− n2 = 2λ, ε−1
1 g̃2 =−ε

−1
2 η−1

3 . (12-5)

This implies also that n2 > 0. Indeed, if n2 = 0, then the second equality in (12-5)
gives g2 = 744− ε1ε

−1
2 η−1

3 , contradicting Lemma 5.7.
Using (12-3) and (12-5), we can now write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 η−1

2 q2λ
+ Aη2qn1+n2 η−1

3 qλ

∣∣∣∣∣∣+ o(qm1)+ o(qn1+n2)

= f̃3η
−1
1 qm1−m3 + Aε−1

1 η2qn1+n2 + o(qm1−m3)+ o(qn1+n2).

Here the term with qm1−m3 cannot be eliminated by o(qn1+n2) since then m1−m3>

n1+ n2 and after elimination qn1+n2 would still be standing. So

m1−m3 = n1+ n2, f̃3η
−1
1 =−Aε−1

1 η2. (12-6)

However, the second equality in (12-6) is impossible. Indeed, if m3 > 0, then it
becomes ε−1

3 η−1
1 = −Aε−1

1 η2, which is clearly impossible because A = 196884
is not a root of unity. And if m3 = 0, then it becomes f3 = 744 − Aε−1

1 η1η2,
contradicting Lemma 5.7.
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This proves (12-4). We set m1−m3 = n1−n2 = λ
′. Since m1 ≥ n1 by (8-7), we

may summarize our present knowledge as

m1 > m2 > m3, n1 > n3 > n2,

m1−m2 = n1− n3 = λ > 0, m1−m3 = n1− n2 = λ
′ > λ,

m1− n1 = m2− n3 = m3− n2 ≥ 0.

12B. Proof of m3 > 0. In this subsection we prove that m3 > 0. We will assume
that m3 = 0 and will arrive at a contradiction.

If m3 = 0, then

m1 = n1 = λ
′, m2 = n3, m3 = n2 = 0. (12-7)

Using (12-3), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ+ Aε2qm1+m2 f̃3qm1

η−1
1 g̃2qm1 η−1

3 qλ+ Aη3qm1+m2

∣∣∣∣∣∣+ o(qm1+m2)

=

∣∣∣∣ ε−1
1 f̃3

−η−1
1 g̃2

∣∣∣∣ qm1+ε−1
2 η−1

3 q2λ
+A

∣∣∣∣ε−1
1 ε2

η−1
1 −η3

∣∣∣∣ qm1+m2+o(qm1+m2). (12-8)

The term with qm1+m2 can be eliminated if either∣∣∣∣ε−1
1 ε2

η−1
1 −η3

∣∣∣∣= 0, (12-9)

or m1+m2 = 2λ and

A
∣∣∣∣ε−1

1 ε2

η−1
1 −η3

∣∣∣∣=−ε−1
2 η−1

3 . (12-10)

However, (12-10) is impossible because A does not divide a root of unity. Hence,
we have (12-9). Together with (12-3), this implies that

(ε1, ε2)= θ(η1,−η3), θ =±1. (12-11)

The rest of this subsection splits into three cases depending on the relation
between m2 and λ.

The case m2 > λ. In this case m1 > 2λ and q2λ in (12-8) cannot be eliminated.

The case m2 < λ. In this case m1 < 2λ, and qm1 in (12-8) can be eliminated only if
ε−1

1 g̃2+ η
−1
1 f̃3 = 0, which, combined with (12-11), gives g̃2 =−θ f̃3. Lemma 5.2

implies that θ =−1 and f̃3 = g̃2, that is, f3 = g2. Also, since θ =−1, we obtain
ε2 = η3, which, together with m2 = n3 (see (12-7)), implies that f2 = g3. This
contradicts Lemma 8.1.



1082 Yuri Bilu, Florian Luca and David Masser

The case m2 = λ. In this case m1=2λ<m1+m2 and ε−1
1 g̃2+η

−1
1 f̃3+ε

−1
2 η−1

3 =0,
which contradicts Lemma 5.5.

This completes the proof of impossibility of m3 = 0.

12C. Proof of n2 > 0. Thus, we have m3 > 0. Let us now prove that n2 > 0 as
well. Indeed, if n2 = 0, then

m1 > n1 = λ
′, m2 > n3, m3 > n2 = 0. (12-12)

Using (12-3), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qn1

η−1
1 g̃2qn1 η−1

3 qλ

∣∣∣∣∣∣+ o(qn1)

= (ε−1
1 g̃2+ ε

−1
3 η−1

1 )qn1 + ε−1
2 η−1

3 q2λ
+ o(qn1).

Now to eliminate qn1 we need to have one of the following:

ε−1
1 g̃2+ ε

−1
3 η−1

1 = 0, (12-13)

ε−1
1 g̃2+ ε

−1
3 η−1

1 + ε
−1
2 η−1

3 = 0. (12-14)

However, since g̃2 = g2 − 744, (12-13) contradicts Lemma 5.7. Furthermore,
applying Lemma 5.9 to (12-14), we obtain g2∈{744, 744±1, 744±2}, contradicting
Lemma 5.6.

This proves that n2 > 0. Let us summarize our present knowledge as

m1 > m2 > m3 > 0, n1 > n3 > n2 > 0,

m1−m2 = n1− n3 = λ > 0, m1−m3 = n1− n2 = λ
′ > λ,

m1− n1 = m2− n3 = m3− n2 ≥ 0.

12D. Proof of m1 = n1. Next, we show that m1 = n1. Thus, assume that m1 > n1.
Then we also have m2 > n3 and m3 > n2. Using (12-3), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

η−1
1 η−1

2 qλ
′

+ Aη2qn1+n2 η−1
3 qλ

∣∣∣∣∣∣+ o(qn1+n2)

=

∣∣∣∣ ε−1
1 ε−1

3
−η−1

1 η−1
2

∣∣∣∣ qλ
′

+ ε−1
2 η−1

3 q2λ
− ε−1

3 η−1
2 q2λ′

+ Aε−1
1 η2qn1+n2

+ o(qn1+n2). (12-15)
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To eliminate qn1+n2 we need one of the following to hold:

2λ= n1+ n2, ε−1
2 η−1

3 =−Aε−1
1 η2, (12-16)

2λ′ = n1+ n2, ε−1
3 η−1

2 = Aε−1
1 η2. (12-17)

However, the second equations in both (12-16) and (12-17) cannot be true because
A is not a root of unity.

This proves that m1 = n1. Moreover,

m1 = n1 > m2 = n3 > m3 = n2 > 0, (12-18)

m1−m2 = n1− n3 = λ > 0, m1−m3 = n1− n2 = λ
′ > λ.

12E. Proof of λ′ = 2λ. Our next quest is proving that λ′ = 2λ. Using (12-3) and
(12-18), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

η−1
1 η−1

2 qλ
′

η−1
3 qλ

∣∣∣∣∣∣+o(qm1)=−

∣∣∣∣ε−1
1 ε−1

3
η−1

1 −η−1
2

∣∣∣∣ qλ
′

+ε−1
2 η−1

3 q2λ
+o(qλ

′

).

This already implies that λ′ ≤ 2λ; otherwise q2λ cannot be eliminated.
The proof of the opposite inequality λ′ ≥ 2λ is much more involved. Thus,

assume that λ′ < 2λ. Then we must have∣∣∣∣ε−1
1 ε−1

3
η−1

1 −η−1
2

∣∣∣∣= 0.

Together with (12-3) this implies that

(η1,−η3,−η2)= θ(ε1, ε2, ε3), (12-19)

where θ is some root of unity. We obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

+ Aε3qm1+m3

θ−1ε−1
1 −θ−1ε−1

3 qλ
′

− Aθε3qm1+m3 −θ−1ε−1
2 qλ

∣∣∣∣∣∣+o(qm1+m3)

=−θ−1ε−2
2 q2λ

+ θ−1ε−2
3 q2λ′

+ Aε3ε
−1
1 (θ−1

− θ)qm1+m3+o(qm1+m3).

To eliminate qm1+m3 one of the following should be satisfied:

Aε3ε
−1
1 (θ−1

−θ)= θ−1ε−2
2 , Aε3ε

−1
1 (θ−1

−θ)=−θ−1ε−2
3 , Aε3ε

−1
1 (θ−1

−θ)=0.

Since A does not divide a root of unity, only the third equation is possible, which
implies θ =±1. If θ =−1, then (12-18) and (12-19) imply that f2= g3 and f3= g2,
contradicting Lemma 8.1. Thus, θ = 1 and

(η1,−η3,−η2)= (ε1, ε2, ε3),
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which gives us the relations

qm1(g1− 744)= qm1( f1− 744),

qm1(g3− 744)=−qm1( f2− 744)+ O(qm1+2m2),

qm1(g2− 744)=−qm1( f3− 744)+ 2Bε2
3qm1+2m3 + o(qm1+2m3).

Using this, and the identity∣∣∣∣∣∣
1 1 1
a b c
a −c+ x −b

∣∣∣∣∣∣= c2
− b2
+ x(a− c),

we obtain

D(q)=

∣∣∣∣∣∣
1 1 1

qm1( f1− 744) qm1( f2− 744) qm1( f3− 744)
qm1( f1− 744) −qm1( f3− 744)+ 2Bε2

3qm1+2m3 −qm1( f2− 744)

∣∣∣∣∣∣
+ o(qm1+2m3)

= 2Bε−1
1 ε2

3qm1+2m3 + (ε−1
3 qm1−m3 + Aε3qm1+m3)2

− (ε−1
2 qm1−m2 + Aε2qm1+m2)2+ o(qm1+2m3)

=−ε−2
2 q2λ

+ ε−2
3 q2λ′

+ 2Bε−1
1 ε2

3qm1+2m3 + o(qm1+2m3)

(recall that λ= m1−m2 and λ′ = m1−m3). We see that to eliminate qm1+2m3 we
need to have either 2Bε−1

1 ε2
3= ε

−2
2 or 2Bε−1

1 ε2
3=−ε

−2
3 ; both are clearly impossible.

This proves that λ′ = 2λ. Thus,

m1 = n1, m2 = n3 = m1− λ, m3 = n2 = m1− 2λ > 0. (12-20)

12F. Proof of 2λ < m1 < 3λ. Now it is not difficult to show that

2λ < m1 < 3λ. (12-21)

In fact, m1 > 2λ is already in (12-20). Next, using (12-3), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3

η−1
1 η−1

2 q2λ
+ Aη2qm1+m3 η−1

3 qλ

∣∣∣∣∣∣+ o(qm1+m3)

= (ε−1
1 η−1

2 + ε
−1
3 η−1

1 + ε
−1
2 η−1

3 )q2λ
− ε−1

3 η−1
2 q4λ

− A
∣∣∣∣ε−1

1 ε3

η−1
1 −η2

∣∣∣∣ qm1+m3

+ o(qm1+m3).

Since m1 > 2λ, this gives

ε−1
1 η−1

2 + ε
−1
3 η−1

1 + ε
−1
2 η−1

3 = 0. (12-22)
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Further, if 4λ<m1+m3, then q4λ cannot be eliminated. And if 4λ=m1+m3, then

−ε−1
3 η−1

2 = A
∣∣∣∣ε−1

1 ε3

η−1
1 −η2

∣∣∣∣ ,
which is impossible because A does not divide a root of unity.

Thus, we have 4λ > m1+m3 = 2m1− 2λ, that is, m1 < 3λ, proving (12-21). In
addition to this, to eliminate qm1+m3 we need to have∣∣∣∣ε−1

1 ε3

η−1
1 −η2

∣∣∣∣= 0.

Together with (12-3) this implies that

(η−1
1 ,−η−1

3 ,−η2)= θ(ε
−1
1 , ε−1

2 , ε3) (12-23)

for some root of unity θ .

12G. Conclusion. It follows from (12-21) that m3 < λ, whence

m1+ 2m3 < m1+m3+ λ= m1+m2 < 2m1.

Using this, (12-3), (12-22), and (12-23), we obtain for D(q) the value∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3 + Bε2

3qm1+2m3

η−1
1 η−1

2 q2λ
+ Aη2qm1+m3 + Bη2

2qm1+2m3 η−1
3 qλ

∣∣∣∣∣∣
+ o(qm1+2m3)

=−ε−1
3 η−1

2 q4λ
− B

∣∣∣∣ε−1
1 ε2

3
η−1

1 −η2
2

∣∣∣∣ qm1+2m3 + o(qm1+2m3).

Arguing as in Section 12F, we obtain from this 4λ > m1+ 2m3 and∣∣∣∣ε−1
1 ε2

3
η−1

1 −η2
2

∣∣∣∣= 0,

which, together with (12-23), implies that θ = −1. It follows that η2 = ε3 and
η3 = ε2; together with (12-18) this implies g2 = f3 and g3 = f2, contradicting
Lemma 8.1.

This completes the proof of impossibility of (12-1). The main lemma is now
fully proved.
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A uniform classification of discrete series
representations of affine Hecke algebras

Dan Ciubotaru and Eric Opdam

We give a new and independent parametrization of the set of discrete series
characters of an affine Hecke algebra Hv , in terms of a canonically defined basis
Bgm of a certain lattice of virtual elliptic characters of the underlying (extended)
affine Weyl group. This classification applies to all semisimple affine Hecke
algebras H, and to all v ∈ Q, where Q denotes the vector group of positive
real (possibly unequal) Hecke parameters for H. By analytic Dirac induction
we define for each b ∈ Bgm a continuous (in the sense of Opdam and Solleveld
(2010)) family Qreg

b :=Qb \Q
sing
b 3 v→ IndD(b; v), such that ε(b; v)IndD(b; v)

(for some ε(b; v) ∈ {±1}) is an irreducible discrete series character of Hv . Here
Qsing

b ⊂Q is a finite union of hyperplanes in Q.
In the nonsimply laced cases we show that the families of virtual discrete series

characters IndD(b; v) are piecewise rational in the parameters v. Remarkably,
the formal degree of IndD(b; v) in such piecewise rational family turns out to
be rational. This implies that for each b ∈ Bgm there exists a universal rational
constant db determining the formal degree in the family of discrete series char-
acters ε(b; v)IndD(b; v). We will compute the canonical constants db, and the
signs ε(b; v). For certain geometric parameters we will provide the comparison
with the Kazhdan–Lusztig–Langlands classification.
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1. Motivation and goals

Let R= (X, R0, Y, R∨0 , F0) be a based root datum. In particular, X, Y are Z-lattices
of finite rank in perfect duality, R0 ⊂ X is the set of roots, R∨0 ⊂ Y is the set of
coroots, and F0 ⊂ R0 is the set of simple roots. Define the (extended) affine Weyl
group W :=W0 n X , where W0 =W (R0) is the finite Weyl group associated with
the root system R0. Let R0,+ ⊃ F0 denote the positive roots. We denote by S0

the set of simple reflections of W0. Associated to R one has a canonical Laurent
polynomial algebra 3 generated by invertible “Hecke parameters”, and the generic
extended affine Hecke algebra H3 over 3 (see, e.g., [Opdam and Solleveld 2010]).
Let Q be the real vector group of the algebraic torus associated with 3. If v ∈Q
then we denote by Hv the corresponding specialization of H3.

The Hecke algebra Hv has a natural structure of a normalized Hilbert algebra
and an abstract Plancherel formula [Opdam 2004]. It is a fundamental question to
classify explicitly the irreducible discrete series characters (the simple summands in
the Plancherel decomposition) and compute their formal degrees, i.e., the Plancherel
mass of the discrete series characters.

For the Hecke algebras Hv with equal parameters of a simply connected root
datum, the classification of the irreducible discrete series modules in terms of
the Kazhdan–Lusztig–Langlands parameters was obtained in the seminal paper of
Kazhdan and Lusztig [1987] and also by Ginzburg [Chriss and Ginzburg 1997].
This classification was generalized later by Lusztig [2002] for the Hecke algebras
that occur in relation with the unipotent representations of quasisimple p-adic
groups with connected center. In the case when the p-adic group is the split form
of SO(2n + 1), the parametrization of irreducible discrete series modules was
also determined by Waldspurger [2004]. By applying Clifford theory to Kazhdan–
Lusztig theory, Reeder [2002] extended the Kazhdan–Lusztig classification to root
data of arbitrary isogeny type in the case when the parameters are equal. For
unequal parameters unipotent Hecke algebras, this method was carried out recently
by Aubert, Baum, Plymen and Solleveld [Aubert et al. 2017]. In the case of the
Hecke algebra of affine type Cn , a different classification in terms of Kato’s “exotic
geometry” was offered in [Ciubotaru and Kato 2011].

Using a different, analytic approach, a complete explicit Plancherel decompo-
sition for affine Hecke algebras of arbitrary isogeny and with arbitrary positive
parameters was obtained in [Opdam 2004; 2007]. The program was continued in
[Opdam and Solleveld 2010], where a classification of irreducible discrete series in
this generality is obtained, except that for root data of type E , the authors had to
also rely on certain results from Kazhdan and Lusztig [1987].

In this paper, we give a new and uniform classification of the set of discrete series
modules of Hv in terms of certain canonical orthonormal subset Bgm of the elliptic
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character lattice of W for arbitrary positive parameters and arbitrary root data,
which is independent of the previous classifications, including the Kazhdan–Lusztig
classification. We also give algebraic models for the discrete series modules and
we study their formal degrees from the perspective of parameter deformations, in
particular, we obtain complete and explicit closed formulas for the formal degrees
of all irreducible discrete series modules. At several places in our proofs, we rely on
[Opdam 2007] and [Opdam and Solleveld 2010] for the classification of the central
characters of irreducible discrete series in terms of residual points, on [Opdam 2004]
and [Opdam and Solleveld 2009] for the elements of elliptic theory for affine Hecke
algebras, and on [Ciubotaru et al. 2014] for several facts about Dirac induction for
graded affine Hecke algebras.

1A. Uniform classification of the discrete series. Let RZ(W ) be the lattice of
elliptic virtual characters of W , equipped with the Euler–Poincaré pairing, and let
RZ(Hv) denote the lattice of elliptic virtual characters of Hv . If π is an element of
RZ(Hv), let us denote by π its image in RZ(Hv).

In this paper we will use a basic tool, the so-called “scaling map”:

lim
v→1
: RZ(Hv)→RZ(W )

[π ] →
[
lim
ε→0

πvε
]
, (1)

where πvε := π ◦ j−1
ε . Here jε :Han

v (U )→Han
vε (σε(U )) (ε > 0) is the isomorphism

between the analytic localizations Han
v (U ) and Han

vε (σε(U )) of the affine Hecke
algebra as introduced in [Opdam 2004, Theorem 5.3]. It is easy to see that the
family of isomorphisms { j−1

ε }ε>0 has a well defined limit at ε = 0, defining a
homomorphism i0 :C[W ]→Han

v (U ) (see [Solleveld 2012, Proposition 4.1.2]). This
explains the existence of the desired “scaling map” limv→1 : RZ(Hv)→RZ(W )

as in (1). The isomorphisms jε (ε > 0) induce isometric isomorphisms [Opdam
and Solleveld 2009, Theorem 3.5(b)]:

( j−1
ε )∗ :RZ(Hv)→RZ(Hvε ). (2)

Consequently, the limit limv→1 of (1) is an isometry too [Opdam and Solleveld
2009, Theorem 3.5(b)].

Let us denote by Yv ⊂ RZ(W ) the image of this map, and by Yv−m ⊂ Yv the
image of the sublattice of RZ(Hv) of the virtual discrete series characters of Hv.
Let Ygm ⊂RZ(W ) be the smallest sublattice which contains all lattices Yv−m (see
Definition 2.5). We call Ygm the lattice of generically massive elliptic characters of
W, and Yv−m the sublattice of v-massive elliptic characters of W.

The lattice Ygm possesses a distinguished orthonormal basis Bgm characterized
by a positivity property to be explained below. To each b ∈ Bgm we will assign a
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subset (nonempty by definition) Qreg
b ⊂Q of the space of parameters by:

Qreg
b :=

{
v ∈Q | ∃ an irreducible discrete series π of Hv such that lim

ε→0
πvε = b

}
.

According to [Opdam and Solleveld 2010], the complement Qsing
b of Qreg

b is a union
of finitely many hyperplanes (depending on b). For y ∈ Ygm in general we put
Qreg

y :=
⋂

b∈Supp(y)Q
reg
b . Combining with the technique of analytic Dirac induction

(introduced in [Ciubotaru et al. 2014] in the context of graded affine Hecke algebras)
we can associate a family of virtual discrete series characters

Qreg
y 3 v→ IndD(y; v) ∈RZ(Hv)

(called the Dirac induction of y at v, see Definition 2.7), which depends linearly on y,
for each fixed v ∈Qreg

y . If b ∈ Bgm and v ∈Qreg
b then IndD(b; v) is an irreducible

character up to a sign, characterized by the property limε→0(IndD(b; vε))= b. We
will prove (see Proposition 3.8) that the family IndD(y; v) depends continuously
on v ∈Qreg

y in the sense of [Opdam and Solleveld 2010]. The “Vogan conjecture”
(see [Ciubotaru et al. 2014]) allows one to compute the generic central character
W0rb of IndD(b) explicitly, where rb ∈ T3 := Hom(X,3×) is a generic residual
point in the sense of [Opdam and Solleveld 2010].

To such an orbit of generic residual points W0rb we associated in [Opdam and
Solleveld 2010] an explicit rational function mQ

b := mW0rb
on Q which is regular

on Q, and with the property that Qreg
b = {v ∈Q | mb(v) 6= 0}.

Let RZ,temp(Hv) denote the Grothendieck group of finite-dimensional tempered
Hv-representations and let RZ,temp(Hv) denote the image of RZ,temp(Hv) in RZ(Hv).
As a consequence of the parabolic Langlands classification, it is easy to see
that RZ,temp(Hv) = RZ(Hv). Extend the notion of formal degree fdeg linearly
to RZ,temp(Hv). Observe that in this way, the function fdeg naturally descends to
RZ,temp(Hv).

Theorem 1.1. Retain the previous notation.

(a) Ygm has a unique orthonormal basis Bgm such that for all b ∈ Bgm, and for all
v ∈Qreg

b , db(v) := mb(v)
−1fdeg(IndD(b; v)) > 0.

(b) IndD(b; v) is represented by a virtual character IndD(b; v) of Hv which is plus
or minus an irreducible discrete series.

(c) The central character of IndD(b; v) is the specialization at v of a W0-orbit of
generic residual points W0rb, with rb ∈ T3 := Hom(X,3×).

(d) The family IndD(b; v) depends continuously on v ∈Qreg
b (in the sense of [Opdam

and Solleveld 2010]).

(e) For all b ∈ Bgm, the signature function Qreg
b 3 v→ ε(b; v) ∈ {±1} such that

ε(b; v) IndD(b; v) is an irreducible discrete series character, is locally constant.
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(f) For each v ∈Q, define Bv−m = {b ∈ Bgm | mb(v) 6= 0}. The assignment

Bv−m 3 b→ ε(b; v) IndD(b; v)

yields a canonical bijection between Bv−m and the set of irreducible discrete series
characters of Hv.

(g) For all b ∈ Bgm: db(v) = db is independent of v ∈ Qreg
b (where db(v) is the

positive function defined in (a)), and db ∈Q+. In other words, for all v ∈Qreg
b ,

fdeg(IndD(b; v))= dbmb(v)

(a rational function of v, regular in all points of Q, with zero locus Qsing
b ).

This represents first of all a new classification of the discrete series of Hv , which
is uniform in the sense that it applies to all irreducible root data and all parameters
v ∈ Q. It is explicit in the sense that for cases where a classification of discrete
series has been given in other terms in the literature (e.g., in terms of Kazhdan–
Lusztig–Langlands parameters) the comparison can be explicitly given. The main
tool for making this uniform classification explicit in specific cases is the Hecke
algebra version of the “Vogan conjecture” established first in [Barbasch et al. 2012]
and sharpened to the version that we need here in [Ciubotaru et al. 2014]. This
enables the explicit computation in terms of b ∈ Bgm of the central character W0rb.
More precisely, motivated by the ideas of Vogan and Huang and Pandžić for (g,K )-
modules of real reductive groups, [Barbasch et al. 2012] introduced the notion of
Dirac cohomology of a finite dimensional graded Hecke algebra module M . The
Dirac cohomology is a finite dimensional representation of the pin double cover
of the finite Weyl group and the main idea is that if M has a central character
(in particular, if it is a simple module), then the Dirac cohomology, if nonzero,
determines its central character. In the present setting, to every b ∈ Bgm, one
can attach canonically an irreducible representation of the pin double cover of an
“endoscopic” subgroup of W0 in such a way that this representation occurs in the
Dirac cohomology of the graded Hecke algebra module supported on IndD(b; v),
and this in turn, using the idea just explained, determines the central character of
IndD(b; v).

Let b ∈ Bgm, let C ⊂ Qb be a connected component (an open cone in Q),
and let v0 ∈ ∂(C) ⊂ Qsing

b . An underlying issue is the behavior of the families
IndD(b; v) near v0 ∈Q

sing
b . These questions play a technical role in the proof of the

above Theorem, and are of independent interest. To be sure, the family IndD(b; v)
is not continuous in any neighborhood of v0, which is one of the reasons that
Theorem 1.1(g) is surprising and noteworthy. We will show that there is a sense
in which the family IndD(b; v) can be extended along smooth curves in QC as an
algebraic family of genuine characters, provided one lifts the condition that the
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characters in the family are discrete series characters. More precisely, consider an
affine smooth curve C⊂QC which intersects C in a real curve containing v0 ∈ C .
Then C∩C 3 v→ IndD(b; v) extends as a rational family of generically irreducible
genuine characters to a finite branched covering C̃ of C. Importantly, this family
is unramified at points of C∩C , and regular at the points of C̃ lying above v0. In
particular one can define a limit IndD(b,C; v0) at v0 of the family of discrete series
along C “from the direction of C”. This “limit of discrete series” is a tempered
character, which depends on (C,v0). We expect that it does not depend on the
choice of C. Notice that if C intersects the boundary of C transversally at v0 then C

will also intersect the chamber C− opposite to C with respect to v0, and thus there
exists also a limit IndD(b,C−,C; v). It would be interesting to investigate how
these two limits are related to each other, in terms of the relevant analytic R-group.

2. Massive pure elliptic virtual characters

2A. Elliptic virtual characters of affine Weyl groups.

2A1. Elliptic virtual characters of affine Weyl groups. We identify X with the
normal subgroup {e}×X ⊂W , and W0 with the subgroup W0×{0}. Let E =R⊗X ;
then W acts naturally on the Euclidean space E as a group of affine isometries.

The lattice X ⊂W is the normal subgroup of elements whose conjugacy class
is finite. A centralizer of an element x ∈ X is called a Levi subgroup of W . There
are finitely many Levi subgroups of W , and this collection is conjugation invariant.
Each Levi subgroup L ⊂W is itself an affine Weyl group L =WL n X , where WL

is a Levi subgroup of W0 (the isotropy group of x in W0). Then WL is a Coxeter
group, and has a unique set of simple reflections SL consisting of reflection rα ∈W0

with α ⊂ R0,+. Every Levi subgroup is conjugate to a standard Levi subgroup. We
call L standard if SL ⊂ S0.

An element w ∈ W is called elliptic if w does not belong to any proper Levi
subgroup L ⊂W (see [Opdam and Solleveld 2009]). The following are easily seen
to be equivalent:

(a) w ∈W is elliptic.

(b) The canonical image of w in W0 is elliptic (with respect to the action of W0

on E).

(c) The centralizer of w in W is finite.

(d) The conjugacy class of w is a union of left (or equivalently right) cosets of a
sublattice of X of maximal rank.

(e) w has isolated fixed points in E .

(f) w has a unique fixed point in E .
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The set of elliptic elements is a finite union of conjugacy classes.
An (extended) parahoric subgroup of W is the pointwise stabilizer of an affine

subspace in E . Given e ∈ E consider the isotropy group We ⊂W . Then We has a
natural faithful linear action on Te(T ) ' E , and an element w ∈ We is said to be
elliptic if w is elliptic in We with respect to the action on Te(T ), in the sense of
Reeder [2001].

We denote by RZ(W ) the Grothendieck group of the category of C[W ]-modules
of finite length, and by RC(W ) its complexification. The character map defines
an embedding of RC(W ) into the space of complex class functions on W . Let
RC(W ) denote the complex valued class functions on W supported on the set of
elliptic conjugacy classes. When we compose the character map with the restriction
map we obtain a surjective map from RC(W ) to RC(W ). In [Opdam and Solleveld
2009] it was shown that the kernel of this map is spanned by the set of characters
which are induced from proper Levi subgroups. We will identify RC(W ) with this
quotient of RC(W ). We denote by RZ(W ) ⊂ RC(W ) the image of RZ(W ), and
refer to this lattice as the group of elliptic virtual characters.

There exists a unique conjugation invariant measure [Opdam and Solleveld 2009,
Theorem 3.3(c)] µell on W , which is supported on the elliptic conjugacy classes,
and which is defined by µell((1−w)(X))= |W0|

−1 if (1−w)(X) has maximal rank,
and µell((1−w)(X))= 0 otherwise. This defines an integral positive semidefinite
Hermitian pairing, the elliptic pairing EPW on RC(W ) by integrating f ḡ over W
with respect to the measure µell. The Euler–Poincaré pairing on RZ(W ) is expressed
by EPW . More precisely [Opdam and Solleveld 2009], given virtual representations
U and V of W , with characters χU and χV respectively, one has

EPW (U, V )=
∫
w∈W

χU (w)χV (w)dµell(w)=

∞∑
i=0

(−1)i dim ExtiW (U,V ). (3)

In particular EPW is integral on RZ(W ). By [Opdam and Solleveld 2009] the
radical of EPW is exactly the kernel of the quotient map RC(W )→RC(W ), hence
in particular EPW descends to a positive definite integral inner product on RZ(W ).

The Weyl group W0 acts naturally on the algebraic torus T = Hom(X,C×).
Clearly w ∈W0 is elliptic if and only if w has finitely many fixed points on T. It
was shown in [Opdam and Solleveld 2009] that the set of elliptic conjugacy classes
of W and the set of W0-orbits of pairs (C, t) with C ∈ Wt an elliptic conjugacy
class (with respect to the faithful action of Wt on Tt(T )) and t ∈ T have the same
cardinality. Here the action of W0 is defined by w(C, t)= (wCw−1, wt).

Elements f ∈RC(W ) can be viewed as tracial functionals f ∈C[W ]∗ supported
on the set of elliptic conjugacy classes. Hence the center

Z(C[W ])= C[X ]W0 ⊂ C[W ]
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acts on RC(W ) by multiplication, i.e., z. f (a) := f (za) for all z ∈ Z(C[W ]),
f ∈ R(W ), and a ∈ C[W ]. Using Mackey theory we showed in [Opdam and
Solleveld 2009] that there exists an isometric isomorphism

Ind :=
⊕

s∈W0\T

Inds :
⊕

s∈W0\T

RC(Ws)→RC(W ). (4)

Here RC(Ws) is equipped with the elliptic inner product [Reeder 2001] for the
isotropy group Ws with respect to its natural faithful representation on the tangent
space Ts(T ) of T at s, and the direct sum is an orthogonal direct sum. Furthermore
Inds is the linear map on RC(Ws) realized by the Mackey induction functor. The
image of Inds equals

Im(Inds)=RC(W )W0s, (5)

the Z(C[W ])-eigenspace in RC(W ) with eigenvalue W0s, hence (4) gives the
orthogonal decomposition of RC(W ) as a direct sum of Z(C[W ])-eigenspaces. By
Mackey theory for W =W0 n X this decomposition is compatible with the integral
structure. It follows that we also have an orthogonal direct sum decomposition of
lattices:

Ind :=
⊕

s∈W0\T

Inds :
⊕

s∈W0\T

RZ(Ws)→RZ(W ). (6)

Definition 2.1 ([Ciubotaru et al. 2014]). Let X be a Z-lattice equipped with an
integral positive definite bilinear form. An element x ∈ X is called pure if x is not
a nontrivial orthogonal sum in X .

2B. Affine Hecke algebras and Dirac induction. Unfortunately we do not know
how to define a Dirac-type operator for affine Hecke algebras. Using appropriate
versions of Lusztig’s reduction theorems and results of [Ciubotaru et al. 2014;
Opdam and Solleveld 2009; 2010], we can nevertheless define Dirac-type induction
from a well-defined subspace of the space of elliptic characters of the affine Weyl
group to the space of virtual discrete series characters of Hv.

For affine Hecke algebras we use the setup and notation of [Opdam and Solleveld
2010, Section 2]. Thus given a based root datum R let 3 denote the canonically
associated Laurent polynomial ring of Hecke parameters v(s), and let H3=H3(R)
denote the associated affine Hecke algebra defined over 3. Let Qc = Hom(3,C),
the group of complex points of an algebraic torus. Let Q⊂Qc be the real vector
group, the identity component of the group of real points.

We denote the canonical 3-basis of H3 by Nw (with w ∈ W ), where the nor-
malization is such that for affine simple reflections s ∈ S we have

(Ns− v(s))(Ns+ v(s)−1)= 0. (7)
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An element v ∈Q is determined by its coordinates v(s) := v(s)(v) with s ∈ S. We
denote by Hv =H3(R)⊗Cv the corresponding specialized affine Hecke algebra,
specialized at v.

According to the Bernstein–Lusztig–Zelevinski presentation of H3 we have a
unique abelian subalgebra A = C[θx | x ∈ X ] ⊂ H such that θx = Nx if x ∈ X is
dominant. Then A' C[X ], and the center Z(H3) is equal to AW0 '3[X ]W0 .

Given v ∈Q, consider the quotient RC(Hv) of the complexified Grothendieck
ring RC(Hv) of finite length representations of Hv by the subspace generated by
the properly parabolically induced representations. By [Ciubotaru and He 2014]
this is a finite dimensional complex vector space for all v ∈ Q. Notice also that
RC(Hv=1) = RC(W ). The image of the lattice of virtual characters is denoted
by RZ(Hv). The center Z(Hv) acts on RC(Hv), and by Schur’s lemma we have a
decomposition

RZ(Hv)=
⊕

t∈W0\T

RZ(Hv)W0t . (8)

If v ∈Q is a positive parameter then [Opdam and Solleveld 2009] asserts that Hv

has finite global dimension, and we define an integral bilinear form EPH on RZ(Hv)

by

EPH(U, V )=
∞∑

i=0

(−1)i dim ExtiHv
(U,V ). (9)

As mentioned above, there exists [Opdam and Solleveld 2009] a “scaling map”
limv→1 : RC(Hv) → RC(W ) which is an isometry. In particular EPH is itself
symmetric and positive semidefinite. One way to understand limv→1 is via Lusztig’s
reduction results to graded affine Hecke algebras, combined with Clifford theory,
and the restriction map from graded affine Hecke algebra representations to repre-
sentations of the corresponding Weyl group. This is what we will look into in the
next paragraph.

2B1. Clifford theory for extensions of graded affine Hecke algebras. Consider
v ∈Q, and let V be an irreducible representation of Hv . Recall the polar decompo-
sition T = TuTv , where Tu = Hom(X, S1) and Tv = Hom(X,R>0). Let the central
character of V be W0t with t = sc where s ∈ Tu is a unitary element, and c ∈ Tv.
Let Fs,1, Rs,1 and 0s be as in [Opdam and Solleveld 2010, Definition 2.5], so that
the isotropy group Ws of s in W0 equals Ws =W(Rs,1)o0s , and α(t) > 0 for all
α ∈ Rs,1. We recall that 0s is a finite abelian group, acting on Fs,1 by diagram
automorphisms preserving ks,1. Lusztig’s reduction theorems [1989a] in the version
discussed in [Opdam and Solleveld 2010, Theorems 2.6 and 2.8, Corollary 2.10]
imply that the category of finite dimensional representations of Hv with central
character W0t is equivalent to the category of finite dimensional representations
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of H(Rs,1, Ts(T ), Fs,1; ks) o 0(t) with real central character W (Rs,1)ξ . Here
H(Rs,1, Ts(T ), Fs,1; ks) is the graded affine Hecke algebra as defined in [Opdam
and Solleveld 2010, Section 2], ξ ∈ Ts(T ) is the unique vector in the real span of
R∨s,1 such that α(t)= eα(ξ) for all α ∈ Rs,1 and 0(t)⊂ 0s is the isotropy group of
the central character W (Rs,1)ξ of H(Rs,1, Ts(T ), Fs,1; ks).

Clifford theory [Ram and Ramagge 2003] for the crossed product

H(Rs,1, Ts(T ), Fs,1; ks)o0s

says that the irreducible characters of this algebra are obtained as follows. Let
U be an irreducible representation of H(Rs,1, Ts(T ), Fs,1; ks). Let 0U ⊂ 0s be
the isotropy subgroup for the equivalence class [U ] of irreducible representations
of H(Rs,1, Ts(T ), Fs,1; ks). Then twisting U by elements of 0U equips U with a
representation of a twisted group algebra C[0U ; ηU ] with respect to a 2-cocycle
ηU of 0U with values in C×. Consider a simple module M of C[0U ; η

−1
U ], then

NH(U,M) := IndH(Rs,1,Ts(T ),Fs,1;ks)o0s
H(Rs,1,Ts(T ),Fs,1;ks)o0U

(U ⊗M)

is an irreducible H(Rs,1, Ts(T ), Fs,1; ks)o0s-module, and all its irreducible mod-
ules are equivalent to such a module. Moreover, NH(U,M)' NH(U ′,M ′) if and
only if U ′ 'U ◦ γ−1 for some γ ∈ 0s , and M ′ ' M ◦ γ−1.

Observe that when U has central character W (Rs,1)ξ then 0U ⊂0(t). Thus Clif-
ford theory implies that the set of irreducible modules of H(Rs,1,Ts(T ),Fs,1;ks)o0s

with central character Wsξ is in natural bijection with the set of irreducible mod-
ules of H(Rs,1, Ts(T ), Fs,1; ks)o 0(t) with central character W (Rs,1)ξ . In fact
it follows from the proof of Lusztig’s reduction theorem that this bijection be-
tween the respective sets of irreducibles arises from a Morita equivalence of the
two algebras, formally completed at the appropriate central characters Wsξ and
W (Rs,1)ξ respectively. Therefore, by the above, the category of finite dimensional
representations of Hv with central character W0t is naturally equivalent with the
category of finite dimensional representations of H(Rs,1, Ts(T ), Fs,1; ks)o0s with
real central character Wsξ . In particular we have a natural isomorphism

RZ(Hv)W0t 'RZ

(
H(Rs,1, Ts(T ), Fs,1; ks)o0s

)
Wsξ
. (10)

It is an interesting question what the central support of RZ(Hv) is. Clearly, if
RZ(Hv)W0t 6= 0 then, by the above, one has Ts(E)Ws = 0.

Since C[Ws] = C[W (Rs,1)]o 0s , we have a similar description of the set of
irreducibles of C[Ws] as modules of the form NWs(X,M) where X is an irreducible
for W(Rs,1).

The restriction functor

ResWs :H(Rs,1,Ts(T ),Fs,1;ks)o0s-modules→C[Ws]=C[W(Rs,1)]o0s-modules,
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induces a homomorphism on the level of the Grothendieck groups of representations
of finite length. Via the above correspondences, the “scaling map” limv→1 (more
precisely, limε→0 πvε ) corresponds to taking the limit ε→ 0 of the family of twists
by linear scaling isomorphisms,

ψε : H(Rs,1, Ts(T ), Fs,1; ks)o0s→ H(Rs,1, Ts(T ), Fs,1; εks)o0s,

defined by φε(ξ)= ε−1ξ . This is the restriction map ResWs . In particular we see:

Corollary 2.2. The map [π ] → limε→0[πvε ] respects the lattices of virtual char-
acters, and defines an isometric map RZ(Hv)→ RZ(W ) sending RZ(Hv)W0t to
RZ(W )W0s , where t = sc ∈ TuTv as before. More precisely, if π corresponds to
the module U of H(Rs,1, Ts(T ), Fs,1; ks) o 0s via (10), and bs = [U |Ws ], then
limε→0[πvε ] = Inds(bs).

2B2. Residual points. Let R1 be the reduced root subsystem of the inmultiplicable
roots of the possibly nonreduced root system

Rnr = R0 ∪ {2α | α∨ ∈ 2Y ∩ R∨0 }. (11)

For β ∈ Rnr, define the parameters vβ∨ in terms of the v(s) as in [Opdam and
Solleveld 2010, (7), (8)]. For every v ∈ Q, recall the Macdonald c-function,
c =

∏
α∈R1,+

cα, a rational function on T, where

cα(t, v)=
(1+ v−1

α∨ α(t)
−

1
2 )(1− v−1

α∨ v−2
2α∨α(t)

−
1
2 )

1−α(t)−1 . (12)

If α ∈ R1 \ R0 then α/2 is a character of T ; however, if α ∈ R0 ∩ R1 then v2α∨ = 1,
and we interpret the numerator of cα as (1− v−2

α∨ α(r)
−1). Thus for all α ∈ R1, the

expression for cα defines a rational function on T indeed. Set η(t)= (c(t)c(t−1))−1.
Define the pole order i{r} of η at r ∈ T as in [Opdam and Solleveld 2010, (34)]. By
[Opdam 2007, Theorem 6.1], i{r} ≥ rk(R0) for all r ∈ T .

Definition 2.3 ([Opdam and Solleveld 2010, Definitions 2.39 and 2.40]). An el-
ement r ∈ T is called a residual point of (R, v) if i{r} = rk(R0). The set of
(R, v)-residual points is denoted by Res(R, v).

A Qc-valued point r ∈ T3 is called a (Q-)generic residual point of R if there
exists an open dense subset U ⊂ Q such that the points r(v) ∈ Res(R, v) for all
v ∈U. The set of generic residual points of R is denoted by Res(R) (or Res(R,Q)
if confusion is possible).

Let r be a Q-generic residual point. As in [Opdam and Solleveld 2010, (40)],
we define the mass function mW0r as the rational function on Q defined by

mW0r = mQ
W0r =

∏
′

α∈R1
(α(r)−1

− 1)∏
′

α∈R1
(v−1
α∨ α(r)

−
1
2 + 1)

∏
′

α∈R1
(v−1
α∨ v
−2
2α∨α(r)

−
1
2 − 1)

. (13)
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Here
∏
′ means that the factors which are identically zero as functions on Q are

omitted. The function mW0r is regular on Q (see [Opdam and Solleveld 2010,
Theorem 2.60, Corollary 4.4, Theorem 4.6]), hence, in particular, continuous. Com-
ments similar to those above concerning the interpretation of the roots α(r)−

1
2 apply.

Observe that the expression in (13) is independent of the choice of representative r
in its W0-orbit.

We will also need the related notions for the graded affine Hecke algebra. Let
R1⊂V ∗ be a semisimple reduced root system and let K be the space of W0-invariant
real valued functions on R1.

Definition 2.4 ([Heckman and Opdam 1997; Opdam and Solleveld 2010, Defini-
tion 2.55]). For k ∈ K, a point h ∈ V is called (R1, k)-residual if∣∣{α ∈ R1 | α(h)= kα}

∣∣= ∣∣{α ∈ R1 | α(h)= 0}
∣∣+ dim(V ). (14)

We denote by Reslin(R1) the set of linear maps ξ :K→ V such that for almost all k,
the point ξ(k) ∈ V is (R1, k)-residual. The elements ξ ∈ Reslin(R1) are called the
generic linear residual points.

2B3. Massive elliptic representations.

Definition 2.5. We define

Yv := lim
v→1

(RZ(Hv))⊂RZ(W ), (15)

and let Yv−m ⊂ Yv be the sublattice generated by the limits limε→0 πvε of dis-
crete series representations of Hv. We call Yv−m the lattice of v-massive elliptic
representations of W . Finally let Ygm ⊂ RZ(W ) be the sublattice generated by⋃

v∈Q Yv−m , the lattice of generically massive elliptic representations of W. In
general, Ygm 6=RZ(W ).

Proposition 2.6. The lattice Ygm admits an orthonormal basis Bgm ⊂ Ygm. If
b ∈ Bgm then b ∈RZ(W )W0s for some s ∈ Tu such that rk(Rs,1)= dim(Tu).

Proof. It follows from the classification [Opdam and Solleveld 2010, Section 5] that
an irreducible discrete series (V, πv) of Hv has central character W0r(v) for some
generic residual point r , and we can write r = sc with s ∈ Tu and c= exp(ξ), where
ξ is a generic linear residual point for H(Rs,1, Ts(T ), Fs,1; ks) whose evaluation at
ks is residual. In particular, the rank of Rs,1 is equal to the dimension of Tu .

By [Opdam and Solleveld 2010] it also follows that π corresponds via (10)
to the representation of H(Rs,1, Ts(T ), Fs,1; ks)o 0s induced by the irreducible
representation U ⊗M of H(Rs,1, Ts(T ), Fs,1; ks)o0U, where U is an irreducible
discrete series character of H(Rs,1, Ts(T ), Fs,1; ks) (here we also use the discussion
in the text above). In Corollary 2.2 we have seen that the limit b := limε→0 πvε

equals b = Inds(bs) with bs = U |Ws . By the results of [Ciubotaru et al. 2014]
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and of [Opdam and Solleveld 2010] we see that the algebraic Dirac induction
for H(Rs,1, Ts(T ), Fs,1; ks) of bs yields an elliptic representation supported by the
central character W (Rs,1)ξ(ks), which is (by [Opdam and Solleveld 2010]) residual
for all v ∈ Qreg

b , a complement in Q of finitely many hyperplanes. Recall that,
by [Opdam 2007], a central character W (Rs,1)ξ(ks) for H(Rs,1, Ts(T ), Fs,1; ks) is
residual if and only if Wsξ(ks) is residual for H(Rs,1, Ts(T ), Fs,1; ks)o0s . (This
is because of the invariance of residual central characters under Dynkin diagram
automorphisms.)

Let v′ ∈ Qreg
b . By the main result of [Ciubotaru et al. 2014], since Wsξ(k ′s) is

residual there exists a virtual discrete series character U ′ of H(Rs,1, Ts(T ), Fs,1; k ′s)
with U ′|Ws = bs (U ′ is the analytic Dirac induction of bs). Again using the classifi-
cation of the discrete series of [Opdam and Solleveld 2010], and (10), there exists a
virtual discrete series character π ′v′ of Hv′ with b = Inds(bs)= limε→0 πv′ε . Since
Ygm ⊂RZ(W ) it is clear that Ygm is finitely generated. Choose a finite collection
of (irreducible) discrete series πi of Hvi such that the corresponding limits bi are
linearly independent and generate Ygm. By the arguments above, if v ∈

⋂
i Q

reg
bi

then there exist virtual discrete series characters π ′i of Hv with

bi := lim
ε→0

π ′i,vε .

Consequently, Ygm = Yv−m . Since the limit map is an isometry and since (by
[Opdam and Solleveld 2009]) the irreducible discrete series form an orthonormal
set with respect to EPH, Yv−m (and thus Ygm) admits an orthonormal basis. �

At this point, the basis Bgm from Proposition 2.6 is not unique. The canonical
choice for the basis Bgm is obtained in Corollary 3.19.

2B4. Dirac induction for affine Hecke algebras.

Definition 2.7. Given b ∈ Bgm and v ∈ Qreg
b , we define IndD(b; v) (the “Dirac

induction of b”) as the unique virtual discrete series character of Hv whose scaling
limit satisfies limε→0 IndD(b; vε)= b. Up to a sign ε(b; v) ∈ {±1}, IndD(b; v) is
an irreducible discrete series character. For all v ∈Q this defines a bijection

Bv−m 3 b→ ε(b; v) Ind(b; v) ∈1v,

where 1v :=1(Hv) denotes the set of isomorphism classes of irreducible discrete
series representations of Hv.

In the proof of Proposition 2.6 we have seen that IndD(b; v) is not directly con-
structed as the index of a Dirac-type operator but rather, it corresponds via (10) and
a Morita equivalence to the discrete series U ⊗M of H(Rs,1, Ts(T ), Fs,1; ks)o0U ,
with U = Indan

D (bs, ks) the analytic Dirac induction (defined in [Ciubotaru et al.
2014]) of bs for H(Rs,1, Ts(T ), Fs,1; ks). The existence of IndD(b; v) follows



1102 Dan Ciubotaru and Eric Opdam

from this construction. It also follows from this construction that ± IndD(b; v) is
irreducible.

2B5. The generic Vogan central character map. Let Bgm be an orthonormal basis
of Ygm. As we have seen, given b ∈ Bgm the set Qreg

b = {v | b ∈ Bv−m} is the
complement of finitely many hyperplanes in Q. As in the proof of Proposition 2.6,
to each b ∈ Bgm we have a canonically associated orbit of generic residual points
W0rb, with rb = s exp ξs , and ξs the generic linear residual point associated to
bs ∈ RZ(Ws) by the generic version of “Vogan’s conjecture” (see [Ciubotaru et al.
2014, Theorem 3.2]). Strictly speaking, the results of [Ciubotaru et al. 2014] apply
to give a residual central character of a nonextended graded affine Hecke algebra,
but as already noted in the proof of Proposition 2.6, one may use the invariance
[Opdam 2007] of these central characters under diagram automorphisms to obtain
the desired central character in our more general setting.

Let us denote the resulting generic central character map (see [Opdam and
Solleveld 2010]) by:

gccB : Bgm→W0 \Hom(X,3×)=W0 \ T3,

b→W0(s exp ξs)

(the generic Vogan central character map). From the proof of Proposition 2.6 and
Definition 2.7 we obtain:

Corollary 2.8. For all b ∈ Bgm and v ∈Qreg
b we have

gccv(IndD(b; v))= gccB(b)=W0rb.

Moreover, W0rb(1)=W0s if and only if b can be written as b = Inds(bs).

Definition 2.9. We put mb := mW0rb , where mW0rb denotes the mass function
associated to the orbit of Q-generic residual points gccB(b) = W0rb in (13). By
[Opdam and Solleveld 2010], and we have for all b ∈ B that

Qreg
b = {v ∈Q | mb(v) 6= 0}.

When Q′ is a subtorus of Q, we will write mQ′
b for the function mW0r ′b defined with

respect to the Q′-generic residual point r ′b obtained from rb by base change to Q′.
Notice that mQ′

b = d ′mb|Q′ for some d ′ ∈Q, with d ′ 6= 0 if and only if Qreg
b ∩Q

′
6=∅.

Theorem 2.10. The generic Vogan central character map gccB is a surjection
gccB : Bgm→W0 \Res(R).

Proof. In [Opdam 2004] it was shown (also see [Opdam and Solleveld 2010]) that
for any v ∈ Q, every orbit of residual points of Hv is the specialization at v of a
generic orbit of residual points W0r at v. The main theorem of [Opdam 2004] states
that for any v ∈Q, and any orbit of residual cosets W0r(v), there exists a discrete
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series character π of Hv such that W0r(v) is the central character of π . The set
W0 \Res(R) is finite, hence

Qgen
:=

{
v ∈

⋂
W0r∈W0\Res(R)

Qreg
W0r

∣∣∣
For all r, r ′ ∈ Res(R): W0r(v)=W0r ′(v) only if Wr =W0r ′

}
is open and dense in Q. Let v ∈ Qgen and W0r ∈ W0 \ Res(R). By the above
there exists a π ∈1v such that cc(π)=W0r(v). Since v ∈Qgen this implies that
gccv(π)=W0r . (For the definition of the generic central character map gccv, see
[Opdam and Solleveld 2010, Definition 5.4].) Put b := limε→0 πvε . By Corollary 2.8
we have gccB(b)=W0r . �

Denote by BW0r ⊂ Bgm the fiber gcc−1
B (W0r) of the map from Theorem 2.10.

3. One-dimensional algebraic families of discrete series representations,
and their limits

3A. One-dimensional algebraic families of discrete series. Given a generic resid-
ual point r ∈ Hom(X,3×) we know that r(v) is a residual point for all v ∈Qreg

W0r ,
which is the complement of finitely many hyperplanes in Q. By [Opdam and
Solleveld 2010, Corollary 5.9]) we have a nonempty set of irreducible discrete
series characters of Hv with generic central character W0r . Denote this nonempty
set by:

DSW0r,v := {π ∈1(Hv) | gcc(π)= b}.

Hence W0r(v) is the central character of the following nonempty union:

DSW0r(v) :=
⋃

{W0r ′ |W0r ′(v)=W0r(v)}

DSW0r ′,v .

Let v ∈ QC. For each r ′(v) ∈ W0r(v), choose a convex open neighborhood
Ur ′(v) of r ′(v) ∈ T such that the only residual cosets of the µ-function µR,v of
Hv which intersect Ur ′(v) in fact contain r ′(v). Let U reg

r ′(v) = Ur ′(v) ∩ T reg be the
complement in Ur ′(v) of the union of the set of residual cosets of µR,v in T . The
choice of Ur ′(v) as above implies that U reg

r ′(v) is homeomorphic to the complement of
a central hyperplane arrangement in a complex vector space with origin r ′(v). In
particular, the homology group Hn(U

reg
r ′(v),Z) only depends on the local structure

of the pole hyperplane arrangement at r ′(v), and if we would shrink Ur ′(v) to a
smaller convex open neighborhood U ′,reg

r ′(v) ⊂ Ur ′(v) of r ′(v) this would induce a
canonical isomorphism Hn(U

′,reg
r ′(v),Z)= Hn(U

reg
r ′(v),Z). Let us denote the direct limit

lim
−−→

Hn(U
′,reg
r ′(v),Z) by Hn,r ′(v)(Z).
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In general, if U ⊂T is homeomorphic to a complex ball B⊂ t, via the exponential
mapping of the complex algebraic torus T , then U reg

:=U ∩T reg is homeomorphic
to the intersection of B with the complement of an affine hyperplane arrangement. In
this section we will need some basic facts about the topology of hyperplane arrange-
ments, see [Orlik and Terao 1992; Schechtman and Varchenko 1991]. By [Schecht-
man and Varchenko 1991, Paragraph 4.4] it easily follows that Hn(U reg,Z) is in a
canonical way a direct sum of the Hn,p(Z) where p runs over the set of points of U
which lie in the intersection lattice generated by the codimension one residual cosets
of µR,v. Let πp : Hn(U reg,Z)→ Hn,p(Z) denote the corresponding projection.

Let us denote the collection of open sets {Ur ′(v)}r ′∈W0r by U . Let OU,v ⊂ QC

be an open ball with center v with the property that for all v′ ∈ OU,v and all
r ′ ∈ W0r we have r ′(v′) ∈ Ur ′(v). Given v ∈ QC and a homology class [ξr ′(v)] ∈

Hn(Ur ′(v),Z) for each r ′(v) ∈W0r(v), this defines for all v′ ∈OU,v a unique class
πr ′(v′)([ξr ′(v′)]) ∈ Hn,r ′(v′)(Z). It is easy to see that this procedure defines a topology
basis of the étale space of a sheaf FH

n,r ′ of abelian groups over QC, with stalks
Hn,r ′(v)(Z). Let Qgen

W0r,C⊂QC be the Zariski-open set of v ∈QC such that |W0r(v′)|
is locally constant at v, and such that if r ′ is a generic residual point such that
W0r(v) = W0r ′(v) then W0r = W0r ′.1 Clearly, the sheaf FH

n,r is locally trivial in
the analytic topology on v ∈Qgen

W0r,C. We have shown:

Lemma 3.1. For each generic residual point r , the homology groups Hn,r(v)(Z)

(v ∈QC) are the stalks of a sheaf FH
n,r (in the analytic topology) of finitely generated

abelian groups on QC, which is locally trivial on the Zariski-open set Qgen
W0r,C.

The main results of [Opdam 2004] and of [Opdam and Solleveld 2010] show that
for each v∈Qreg

W0r we can choose, for each r ′(v)∈W0r(v), classes ξr ′(v)∈Hn,r ′(v)(Z)

and, for each χ ∈ DSW0r(v), constants cχ,C ∈Q+ depending only on the connected
component C=Cχ,v⊂Qreg

gccv(χ)
to which v belongs (where gccv(χ)=W0r ′′ denotes

the generic central character [Opdam 2004, Definition 5.4] of χ ), such that for all
h ∈Hv, ∑

χ∈DSW0r(v)

cχ,Cχv(h) = mW0r (v)
−1

∑
r ′(v)∈W0r(v)

∫
t∈ξr ′(v)

Kv(h, t), (16)

where Kv(h, t) = Et(v; h)1(t)−1µR,v dt is a rational (n, 0)-form in t ∈ T , with
1(t) :=

∏
α>0(1−α(t)

−1) and with Et(v; h) a linear functional in h ∈H3, which
is regular on (t, v) ∈ T ×QC, and such that Et(v; a)= a(t)1(t) for all a ∈A.

We now prove a fundamental continuity property of (16) (or even the full
Plancherel decomposition of the trace of Hv) with respect to the topology of
the sheaves FH

n,r .

1Using the results of [Opdam 2007] it is easy to see that Qgen
W0r,C ∩Q=Qgen

W0r , in the notation of
[Opdam and Solleveld 2010].
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Lemma 3.2. Let r be a generic residual point and let v ∈ Qreg
W0r . For r ′ ∈ W0r

and for v′ in a sufficiently small neighborhood of v, the local homology classes
[ξr ′(v′)] ∈ Hn,r ′(v′)(Z) in (16) form a local section of FH

n,r ′ .

Proof. We use the analogous construction to the above of sheaves FH
n,rL
(Z) for

all rL ∈ TL a generic residual point. Recall the residue lemma [Opdam 2004,
Lemma 3.4]. By [Opdam 2004, Proposition 3.7] we can realize the local traces
Xc defined in [Opdam 2004, Lemma 3.4] “explicitly” by a system of local cycles
ξL(v) ⊂ BL(v)(rL(v), δ)⊂ TL(v) (for all quasiresidual cosets L(v)⊂ T ) such that for
t0 ∈ Tv deep in the negative Weyl chamber, the cycles t0Tu and

⋃
L ξL(v)× T L

u are
homologous. Moreover, the ξL(v) satisfy certain local properties (see [Opdam 2004,
Proposition 3.7], items (i), (ii) and (iii)) which guarantee that for all h ∈Hv, the
functional

C[T ] 3 f →
∫
ξL(v)×T L

u

f (t)Kv(h, t)

can be written as a distribution on rL(v)Tu with support in L(v)temp
= rL(v)T

L
u ,

applied to f (which is zero if Lv is not a residual coset).
The definition of the local sections of the sheaves FH

n,rL′
is such that the local

properties ((i), (ii) and (iii) mentioned in [Opdam 2004, Proposition 3.7]) can be
satisfied by cycles

ξL ′(v′) ⊂ BL ′(v′)(rL ′(v
′), δ)⊂ TL ′(v′)

representing the classes [ξL ′(v′)] ∈ Hn,rL′ (v
′)(Z) for v′ in a small neighborhood of v.

Moreover, it is automatic that t0Tu is homologous to the union of
⋃

L ξL(v′)× T L
u

(union over the generic residual cosets L) with a collection of cycles of the form
ξL ′(v′)× T L ′

u , where L ′(v′) is quasiresidual (which are irrelevant). This implies the
result. �

Corollary 3.3. For v ∈ Qreg
W0r , the left-hand side of (16) extends to a central func-

tional on Hv′ for all v′ in a Zariski-open neighborhood of v in QC. For h ∈ H3

this functional takes values in the quotient field Q3 of 3. The values of this
functional restrict to continuous functions on the connected component C of v in⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

.

Proof. We extend the left-hand side in a neighborhood of v by taking local sections
of classes [ξr ′(v)] in FH

n,r ′ , and use the right-hand side of (16) to define the left-hand
side. We know from [Opdam and Solleveld 2010] that the left-hand side extends,
for all h ∈ H3, continuously on

⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

. Let χ ∈ DSW0r(v) and let
gccv(χ) :=W0r ′. Let

v′ ∈
⋂

χ∈DSW0r(v)

Cχ,v ∩Q
gen
gccv(χ)

.
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Then the left-hand side of (16) can be written as
∑
{W0r ′|W0r ′(v)=W0r(v)}6W0r ′(h; v′),

with
6W0r ′(h; v′) :=

∑
χ∈DSW0r ′,v′

cχ,Cχv′(h). (17)

We have

6W0r ′(h; v′) = mW0r ′(v
′)−1

∑
r ′′(v′)∈W0r ′(v′)

∫
t∈ξr ′′(v′)

Kv′(h, t),

where, for v′ in a sufficiently small neighborhood of v, the class [ξr ′′(v′)] is equal to
the image πr ′′(v′)(ξr ′′(v)) ∈ Hn,r ′′(v′)(Z) of the constant cycle ξr ′′(v), by Lemmas 3.1
and 3.2. It follows that in a small analytic neighborhood of v the expression
6W0r ′(h; v′′) is given by an element of Q3. This extends v′→ 6W0r ′(h; v′) to a
rational function on a Zariski-open set of QC.

The continuity of the values of 6W0r ′(h; v′) in the connected component C ⊂
Qreg

W0r ′ of v′ follows from [Opdam and Solleveld 2010, Theorem 3.4, Proposition 3.7],
and this implies the continuity assertion in the theorem. �

Remark 3.4. We note that 6W0r (h; ·) is not rational on
⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

. The
rational functions of Corollary 3.3 depend on the connected component of v in⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

.

Let C⊂Q be (the set of complex points of) an irreducible real algebraic curve
which is not contained in

⋃
W0r Q

sing
W0r . Let R be the ring of regular functions of

C, with quotient field K. Thus R is a quotient of 3, and we can form HR :=

H3 ⊗3 R. Let P = v0 ∈ C be a smooth point of C, and let C ⊂ Qreg
W0r be a

connected component such that v0 ∈C . Let v′ ∈C∩Qgen
W0r , and consider6W0r (h; v′).

According to Corollary 3.3, this positive rational linear combination of the discrete
series characters with central character W0r(v′) extends as a rational function in v′

which is continuous on C . By Corollary 3.3 we can restrict the values of6W0r (h; v′)
to v′ ∈ C∩C . By the argument of [Kollár and Nowak 2015, Proposition 7] it is
clear that this restriction defines a rational function on C which we will denote
by 6C

W0r,C(h) ∈ K, depending linearly on h ∈ HR. These rational functions are
continuous on C∩C .

Lemma 3.5. Assume that C∩C consists of smooth points and let P = v0 ∈ C∩C.
For all h ∈HR we have: The rational function6C

W0r,C(h) is regular in P= v0. There
exists a Zariski-open neighborhood U ⊂ C of C∩C such that 6C

W0r,C(h) ∈R(U)
for all h ∈HR(U).

Proof. Since 6C
W0r,C(h) is rational and P is a smooth point of the curve C, it is

enough to show that v→6C
W0r,C(h; v) is bounded in a neighborhood of v0= P ∈C

for v ∈ C∩C . But 6W0r ( · ; v) is a positive functional on Hv for all v ∈ C , and
if v ∈ C ∩ C then 6W0r (Te; v) =

∑
χ∈DSW0r,v

cχ,C deg(χ) = C ∈ Q+ is constant.
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By [Opdam 2004, Corollary 2.17(i)] we see that |6C
W0r,C(h; v)| ≤ C‖h‖o. This

implies the regularity at P of the rational function v→6C
W0r,C(h; v) for all h ∈HR.

Note that for z ∈ Z ⊂HR we have 6C
W0r,C(zh; v)= z(W0r(v))6C

W0r,C(h; v), while
v→ z(W0r(v))∈R is regular on C. Since HR is finitely generated over Z it follows
that we can find an open neighborhood U of C∩C on which v→6C

W0r,C(h; v) is
regular for all h ∈HR. �

From now on we will assume that C∩C consists of smooth points of C, and that
U⊂ C is as in Lemma 3.5. We have shown that

6C
W0r,C ∈H

∗

R(U) := HomR(U)(HR(U),R(U))

is a central functional in the HR(U)⊗R(U)H
op
R(U)-module H∗R(U), supported by the

central character W0r .

Definition 3.6. MU
W0r,C ⊂H∗R(U) denotes the HR(U)⊗H

op
R(U)-submodule generated

by 6C
W0r,C .

We will now show that a generic family χ of discrete series characters as discussed
in [Opdam and Solleveld 2010] always admits an algebraic model when we restrict
the parameter space to a curve C in Q. Moreover, we can find such models that
are regular at the intersection of the curve with the boundary of the connected
component C ⊂Qreg

gcc(χ) (an open cone) on which χ lives. More precisely:

Proposition 3.7. (i) MU
W0r,C is an HR(U)⊗R(U)H

op
R(U)-module. The central subalge-

bra ZR(U)⊗R(U)ZR(U) acts via scalar multiplication via the character (z1⊗ z2)→

(z1z2)(W0r) ∈R(U).

(ii) MU
W0r,C is a locally free R(U)-module of finite rank.

(iii) MU
W0r,C has a canonical HR(U)-algebra structure such that, if we put e =

mW0r6
C
W0r,C ∈ MU

W0r,C ⊂H∗R(U), the map HR(U) 3 h→ he is an algebra homomor-
phism.

(iv) If v ∈ U∩C then

MU
W0r,C ⊗Cv '⊕χ∈DSW0r,v EndC(Vχv

),

where Vχv
is a vector space on which the discrete series character χv is realized.

(v) We may assume without loss of generality that U is smooth. There exists a
Zariski-open subset U∗ ⊂ U with C∩C ⊂ U∗ such that

MU∗

W0r,C := MU
W0r,C ⊗R(U)R(U

∗)

is a locally free separable R(U∗)-algebra of finite rank.

(vi) There exists a branched covering φ : Ũ→ U such that the following holds true.
Let L ⊃ K denote the function field of Ũ, and let R̃(U) := R(Ũ) be the integral
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closure of R(U) in L. Put M̃U
W0r,C := MU

W0r,C ⊗ R̃(U). There exists a finite set of
projective R̃(U)-modules of finite rank {L i }i∈I , such that

M̃U
W0r,C ⊂ M̃U,max

W0r,C '
⊕
i∈I

EndR̃(U)(L i )

is an R̃(U)-order. This turns L i into an HR̃(U)-module, for each i ∈ I.

(vii) With U∗ as in (v), define Ũ∗ := φ−1(U∗) and let R(Ũ∗) ⊂ L be the integral
closure of R(U∗) (which is the localization of R(U∗) at Ũ∗). Put M̃U∗

W0r,C :=

MU∗

W0r,C ⊗R(U∗)R(Ũ
∗). Then we have an isomorphism

M̃U∗

W0r,C = M̃U∗,max
W0r,C '

⊕
i∈I

EndR̃(U)(L
∗

i ),

with L∗i := L i ⊗R̃(U)R(Ũ
∗).

(viii) The covering φ (as in (vi)) is not branched at points of C∩C. Let v ∈ C∩C
and let ṽ be a closed point lying above v ∈ C∩C. There exists a unique bijection
i→ χi from I onto DSW0r,v such that L i,ṽ := L i ⊗Cṽ ' Vχi,v as representation of
Hv, via the canonical isomorphism Hv 'HR̃(U),ṽ.

Proof. Assertion (i): This is immediate from the definition.

Assertion (ii): Since 6C
W0r,C is central and is a ZU-eigenfunction with eigen-

value W0r , it is clear that MU
W0r,C is finitely generated over R(U). It is also obviously

torsion free over R(U), implying that the localization MU
W0r,C,Q is free over RQ

for all Q ∈ U (since the local rings are principal ideal domains). Since MU
W0r,C is

finitely generated, this implies that it is a locally free module.

Assertion (iii): We need to verify that the kernel of the surjective HR(U)-module
homomorphism HR(U) 3 h→ he ∈ MR(U)

W0r,C is a two-sided ideal. This is a trivial
consequence of the centrality of e. This turns MR(U)

W0r,C into an HR(U)-algebra.

Assertions (iv) and (v): We have already established that MR(U)
W0r,C is a locally free

HR(U)-algebra of finite rank. When we specialize at v ∈C ∩U, we may use the fact
[Delorme and Opdam 2008, Corollary 5.8] that ev ∈Sv ⊂H∗v is a central idempotent
of the Schwartz algebra Sv to see that the specialization MW0r,C,v = MU

W0r,C ⊗Cv

equals the finite dimensional semisimple algebra as stated in (iv). Hence the trace
form of MU

W0r,C is nondegenerate over K, and by shrinking U∗ sufficiently we may
assume that the discriminant of the trace form of MU

W0r,C is nonvanishing on U∗.
We arrive at the conclusion of (v) (see, e.g., [Artin 1999, Section IV.3]).

Assertion (vi): By (v) it follows that MK
W0r,C :=MU

W0r,C⊗R(U)K is a finite separable
K-algebra. Hence MK

W0r,C isomorphic to a finite direct sum of central simple algebras
over finite separable field extensions Ki of K (see [Artin 1999, Section IV.3]). Tsen’s
Theorem [Artin 1999, Section III.15] implies that in fact MK

W0r,C is a direct sum
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of full matrix algebras Matdi×di (Ki ). Consider the compositum L of the Ki . It is
easy to see that for all i , the tensor product Ki ⊗K L is isomorphic to a finite direct
sum of copies of L. It follows that L is a finite separable extension of K such that
ML

W0r,C := MU
W0r,C ⊗R(U) L= MK

W0r,C ⊗K L is isomorphic to a finite direct sum of
full matrix algebras ML

W0r,C,i ' EndL(Ldi ) over L. Let 5i denote the projection
homomorphism ML

W0r,C→ML
W0r,C,i . Let R̃(U) be the integral closure of R(U) in L,

which is a Dedekind domain with fraction field L. The inclusion R(U) ⊂ R̃(U)

gives rise to a ramified covering φ : Ũ→ U. We may assume, by shrinking U∗ (as
in (v)) if necessary, that φ : Ũ∗ := φ−1(U∗)→ U∗ is finite étale.

Now M̃U
W0r,C :=MU

W0r,C⊗R(U)R̃(U)⊂ML
W0r,C is clearly an R̃(U)-order in ML

W0r,C .
Hence the projection 5i (M̃U

W0r,C) is an R̃(U)-order in ML
W0r,C,i ' EndL(Ldi ). By

[Artin 1999, Theorem IV.4.1, Proposition IV.4.7] this is contained in a maximal
R̃(U)-order in ML

W0r,C,i which must be a trivial Azumaya algebra of the form
EndR̃(U)(L i ) where L i ⊂ Ldi denotes an R̃(U)-lattice. Hence we have

M̃U
W0r,C ⊂

⊕
i

5i (M̃U
W0r,C)⊂

⊕
i

EndR̃(U)(L i )=: M̃
U,max
W0r,C .

This turns L i into an HR̃(U)-module, and proves (vi).

Assertions (vii) and (viii): Localizing at Ũ∗ we obtain M̃U∗

W0r,C ⊂
⊕

i EndR̃(U)(L
∗

i ),
where L∗i := L i ⊗R̃(U)R(Ũ

∗) is an R(Ũ∗)-lattice in Ldi . Since M̃U∗

W0r,C is separable,
by (v), we have M̃U∗

W0r,C = (M̃
U∗

W0r,C)
∗
:=HomR(Ũ∗)(M̃

U∗

W0r,C ,R(Ũ
∗)). As in the proof

of [Artin 1999, Corollary IV.4.5] this implies that M̃U∗

W0r,C is a maximal R(Ũ∗)-order,
hence we actually have M̃U∗

W0r,C =
⊕

i EndR̃(U)(L
∗

i ), proving (vii). When we take
ṽ lying above a v ∈ U∗ ∩ C , then specializing at ṽ and comparing (iv) and (vii)
we obtain (viii). Observe that the structural result (vi) implies that φ can not be
ramified at v. Indeed, when assuming the contrary then (vi) would imply that the
number of discrete series characters of Hv with generic central character W0r would
be strictly smaller than the number of such discrete series characters of Hv′ with
v′ ∈ C in a small neighborhood of v. This contradicts [Opdam and Solleveld 2010,
Corollary 5.11]. �

Proposition 3.8. Let b ∈ Bgm. The family Qreg
b 3 v→ ε(b; v) IndD(b; v) is contin-

uous (in the sense of [Opdam and Solleveld 2010, Section 3]).

Proof. The discrete series character ε(b; v) IndD(b; v) of Hv has generic central
character gccv(πv)=W0r with r = rb by Corollary 2.8. By [Opdam and Solleveld
2010, Definition 5.10] we know therefore that ε(b; v) IndD(b; v) is also the spe-
cialization at v of a unique continuous family of generic irreducible discrete series
characters χ ∈1gen

W0rb
(R) with generic central character W0rb on Qgen

b . By [Opdam
and Solleveld 2010, Corollary 5.8] 1W0rb(R), is a constant sheaf with finite fiber.
Let C be a connected component of Qreg

b , and let C be any irreducible real curve in
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Q which intersects C . Let IC ⊂ C∩C be connected. By the above it is enough to
show that ε(b; v) IndD(b; v) and χv are equivalent when v ∈ IC. In other words, it
is enough to show that for all v ∈ IC we have limε→0[χvε ] = b. By Proposition 3.7,
the restriction of χ to C∩C is realized by an algebraic model L defined over some
Zariski-open set Ũ of a ramified cover C̃ of C, such that IC ⊂ U and there is no
ramification at the points of IC. Choose a lift ĨC of IC.

By Corollary 2.8 we know that b = Inds(bs), where gccB(b) = W0r for some
generic residual point r = sc with s ∈ Tu a fixed special point, and c= exp(ξ) with
ξ a generic linear residual point for H(Rs,1, Ts(E), Fs,1; ks). By Proposition 3.7
we know that ε(b,C) IndD(b,C; v) is realized by an algebraic family L defined
over R(Ũ∗). By shrinking U∗ if necessary, we may assume that for all ṽ ∈ Ũ∗

we have, for all r, r ′ ∈ W0r , that sWsc 6= s ′Ws′c′ (with r ′ = s ′c′) if and only
if sWsc(v) ∩ s ′Ws′c′(v) = ∅ with v = φ(ṽ). Let ms be the ideal in R(Ũ∗)[X ]
corresponding to the finite set sWsc of R(Ũ∗)-points of T . By our choice of R(Ũ∗),
we have that ms+m′s =R(Ũ∗)[X ] whenever sWsc 6= s ′Ws′c′. Hence by the Chinese
remainder theorem we have

(R(Ũ∗)[X ])W0r̂ '

⊕
s′∈W0s

(R(Ũ∗)[X ])s′Ws′c
̂ .

Let 1 =
∑

s′∈W0s es′ be the corresponding decomposition into orthogonal idem-
potents of 1 ∈ (R(Ũ∗)[X ])W0r̂ . Let HR(Ũ∗) = H3 ⊗3 R(Ũ∗). Since HR(Ũ∗) con-
tains the Bernstein subalgebra AR(U∗) ' R(U∗)[X ], we can define the idempo-
tents es ∈ (HR(Ũ∗))W0r̂ . Since gcc(Lb) = W0r , we can consider L as a module
over (HR(Ũ∗))W0r̂ . Hence the es act on L , and are mapped to idempotent elements
in EndR(Ũ∗)(L) such that Id=

∑
s′∈W0s es′ .

Following Lusztig [1989a, Lemmas 8.14, 8.15] we know that

Hs,R(Ũ∗) := (HR(Ũ∗)(Rs))Wsĉ o0s

is isomorphic to the algebra (HR(Ũ∗))s,W0r̂ := es(HR(Ũ∗))W0r̂ es , via the map (in the
notation of [loc. cit.]) f.Tw,s .γ → f.es .Tw.es .Tγ .es . Hence the finite, locally free
R(U∗) module Ls := es L is a module over Hs,R(Ũ∗), and in particular over the
finite-type Hecke subalgebra

Hs,R(Ũ∗),0 :=HR(Ũ∗)(W (R1,s))o0s

in the obvious way. By shrinking R(Ũ∗) if necessary we may assume that Ls

is actually a free R(Ũ∗)-module. Let χs denote the character of Ls (considered
as a function of v ∈ IC). By Corollary 2.2 we see that for each v ∈ IC we have
limε→0[χvε ] = Inds(bv,s), where bv,s = limε→0[χs,vε ]. This limit clearly only
depends on the restriction of Ls to Hs,R(Ũ∗),0. Now it is well known that (see, e.g.,
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[Opdam 1995, Theorem 5])2 the irreducible characters of Hs,R(Ũ∗),0 take values in
3. This implies that bv,s is independent of v ∈ IC, as desired. �

Corollary 3.9. ε(b, · ) is locally constant on Qreg
b .

Proof. The continuity of Qreg
b 3 v → ε(b; v) IndD(b; v) implies that on each

connected component C of Qreg
b the sign C 3 v→ ε(b, v) is continuous, hence

constant. �

Definition 3.10. If C ⊂ Qreg
b is a connected component, we define ε(b,C) :=

ε(b, v) ∈ {±1} for any choice of v ∈ C .

3B. Limits of discrete series. Let b ∈Bgm let C ⊂Qreg
b be a connected component,

and let v0 ∈ ∂C . Choose a connected real algebraic curve Cr = C ∩ Q ⊂ Q
which meets C , and contains v0 ∈ Cr as a smooth point of Cr . Extend Cr to a
complex affine algebraic curve C ⊂ QC. Assume we have chosen the structures
as in Proposition 3.7 with respect to W0r = gccB(b), v0, C and C. Let v be a
point in C∩C such that v0 and v are in the same connected component of C∩C .
Given a ṽ ∈ Ũ∗ above v ∈ C∩C , let us denote by Lb the unique R̃(U)-lattice as in
Proposition 3.7(vi) such that L i,ṽ ' Vχb,v (according to Proposition 3.7(viii)), where
χb,v = ε(b; v) IndD(b; v). The interval IC ⊂ Cr connecting v to v0 has a unique lift
ĨC starting at ṽ ∈ Ũ∗. Let ṽ0 ∈ Ũ be the unique endpoint of this lifted interval lying
above v0.

Definition 3.11. We denote by IndD(b,C; v0) the unique virtual character of Hv0

such that ε(b,C) IndD(b,C; v0) is realized by Lb,ṽ0 . We call this representation
the limit of the family of discrete series χb = ε(b; v) IndD(b; v) along C from C
at v0.

Remark 3.12. A priori IndD(b,C; v0) may depend on the chosen curve and the
model Lb of ε(b; v) IndD(b) defined over R̃(U), but we suppress this from the
notation.

Corollary 3.13. ε(b,C) IndD(b,C; v0) is a genuine tempered character.

Proof. Since the limit ε(b,C) IndD(b,C; v0) was defined by specializing the R̃(U)-
module Lb at ṽ = ṽ0, it is by definition a genuine character.

The central character of Lb(ṽ) is W0r(v) (with v=φ(ṽ)), hence for all z ∈ZR(U)

we have z(W0r) ∈R(U). Recall that ZR(U) =AW0
R(U), hence the generalized AR(U)

weight spaces belongs to the set W0r ⊂ T (R(U)).
Let r ′(v0) ∈W0r(v0), and let ṽ ∈ ĨC be close to ṽ0. Choose a basis {x1, . . . , xn}

of X , and consider the corresponding commuting elements θi ∈A acting in Lb(ṽ).
For each i consider the set Si,r ′(v0) := {r

′′
∈ W0r | xi (r ′′(v0)) = xi (r ′(v0))} of

2For a discussion of the rationality properties of characters for finite Hecke algebras, see also
[Geck and Pfeiffer 2000, Section 9.3], and the references therein.
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generalized eigenvalues of θi (acting in Lb(ṽ)) which coalesce to xi (r ′(v0)) at
v = v0. Then the projection 5r ′,ṽ onto the direct sum of the generalized A-weight
spaces in Lb(ṽ) which coalesce to r ′(v0) is the composition of the commuting
projection operators5i,r ′,ṽ onto the direct sum of the generalized eigenspaces r ′′(v)
of θi (ṽ) with r ′′ ∈ Si,r ′(v0). By holomorphic functional calculus we have

5i,r ′,ṽ =
1

2π i

∫
∂Di

(z Id−θi (ṽ))
−1 dz,

where Di is a fixed disk around xi (r ′(v0)) such that xi (r ′′(v)) ∈ Di if and only if
r ′′ ∈ Si,r ′(v0) (such Di clearly exist, provided v is sufficiently close to v0). Hence
the 5i,r ′,ṽ are continuous in ṽ. In particular 5r ′,ṽ is continuous in ṽ, implying that
the dimension of its image is independent of v. Therefore r ′(v0) is a generalized
A-weight of Lb(ṽ0) if and only if for some v∈ IC sufficiently close to v0, there exists
a r ′′(v) with r ′′(v0)= r ′(v0) (i.e., r ′′ ∈

⋂
i Si,r ′(v0)) such that r ′′(v) is a generalized

A-weight of the discrete series representation Lb(ṽ). In particular, r ′(v) is a limit
of A-weights which meet the Casselman condition for temperedness [Opdam 2004,
Lemma 2.20]. This is a closed condition, hence the generalized A-weights of
Lb(ṽ0) satisfy the Casselman conditions themselves. The mentioned lemma implies
that Lb(ṽ0)= ε(b,C) IndD(b,C; v0) is tempered. �

Corollary 3.14. The tempered character ε(b,C) IndD(b,C; v0) is a member of
an algebraic family of characters of HR̃(U)-characters with values in R̃(U). For
generic element ṽ ∈ Ũ this character is irreducible, and for ṽ ∈ Ũ∗ ∩ C it is an
irreducible discrete series.

Remark 3.15. The limit ε(b,C) IndD(b,C; v0) may be irreducible or not. In the
case of the Hecke algebras of type C(1)n the limits of discrete series were constructed
using the geometric model [Kato 2009] of characters of the generic affine Hecke
algebra of this type. In this situation it is known that the limits of the discrete series
at nontrivial singular parameters are always irreducible [Ciubotaru et al. 2012]. In
general the limit to the trivial parameter v = 1 will be a reducible character of
the affine Weyl group (the only exceptions being the “one W -type” discrete series
characters).

Proposition 3.16. lim
ε→0
[IndD(b,C; vε0)] = b ∈ Bgm ⊂RZ(W ).

Proof. The proof is exactly the same as the proof of Proposition 3.8. �

Corollary 3.17. The covering φ is not ramified at the points of C∩C.

Proof. The argument of Proposition 3.8 proves that bs = limε→0[χs,vε ] for any v in
a neighborhood of v0. On the other hand, the discrete series of Hv are parametrized
by the b ∈Bv−gm =Bgm∩Yv−gm by Corollary 2.2, Proposition 2.6 and Section 2B4.
Moreover, for b in the image of Inds , the limit map b → bs is an isometry by
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Corollary 2.2. Hence the generic discrete series with generic central character W0r
are also parametrized by the corresponding elliptic class bs of Ws . Therefore the
algebraic continuation of the discrete series characters ε(b,C) IndD(b; v) (realized
by Lb) on Ũ∗ can not have monodromy around v0, by the above. We conclude that
the character values are regular functions in a neighborhood of v0 ∈ U. �

3C. The rationality of the generic formal degree.

3C1. The universality of the rational factors of the generic formal degree. The fol-
lowing result follows now simply from [Ciubotaru and Opdam 2015, Corollary 5.7;
Ciubotaru et al. 2014; Opdam and Solleveld 2010]:

Theorem 3.18. Fix b ∈ Bgm. The formal degree of a continuous family of virtual
discrete series characters Qreg

b 3 v → IndD(b; v) as a function of v ∈ Qreg
b is a

rational function of the form dbmb, with db ∈Q×.

Proof. By [Ciubotaru and Opdam 2015, Corollary 5.7] the formal degree of
IndD(b; v) is a linear combination of rational functions of the vs , which only
depends on the elliptic class limε→0 IndD(b; vε). This is, by definition, b (and
therefore independent of v). On the other hand we have shown that this family is
continuous and (by [Ciubotaru et al. 2014]) has generic central character W0rb. By
[Opdam and Solleveld 2010, Theorem 4.6] we conclude that the formal degree has
the form db(C)mb for some constants db(C) depending on the connected component
C of Qreg

b in which v lies. But the rationality implies that these constants need to
be equal on all chambers. �

Corollary 3.19. We can choose the basis vector b ∈ Bgm uniquely such that db > 0.
With this choice, ε(b,C) will be equal to the sign of mb(v) for v ∈ C.

3D. Proof of Theorem 1.1. The proof of Theorem 1.1 is all completed now, and we
point out where the various parts of it have been proved. Part (a) is in Proposition 2.6
and Corollary 3.19. Part (b) is in Section 2B4. Part (c) is Corollary 2.8. Part (d) is
in Proposition 3.8. Part (e) is Corollary 3.9. Part (f) follows from Corollary 2.2,
Proposition 2.6, and Section 2B4. Part (g) is Theorem 3.18.

4. Explicit results; comparison with the Kazhdan–Lusztig–Langlands
classification

In this section we will compare the uniform classification of the discrete series
with the Kazhdan–Lusztig–Langlands classification when an affine Hecke algebra
arises in the context of a unipotent type of an unramified simple group defined
over a nonarchimedean local field. We will also compute, for all affine Hecke
algebras of simple type, the canonically positive basis Bgm and the fundamental
rational constants db appearing in the generic Plancherel measure. We will moreover
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explain how the general semisimple case can be reduced to the case of simple type.
In addition, we will show that in each connected component of Qreg

b the generic
discrete series character ε(b; v) IndD(b; v) takes values in Q3, the quotient field
of 3. Needless to say, the results in this section are based on case-by-case methods.

4A. Determination of the canonically positive basis Bgm.

4A1. The sign of mb(v). In light of Corollary 3.19, we need to analyze the sign
of mb(v). Specialize

v(s)= v fs , with v > 1, fs ∈ R.

Write r = sc as before and let H(Rs,1, Ts(T ), Fs,1; ks) denote the corresponding
graded affine Hecke algebra. Recall that the parameter function ks is given by
[Opdam and Solleveld 2010, (26)]

ks(α)=

{
logv(v

2
α∨) if α ∈ R0 ∩ R1, or if α = 2β, β ∈ R0 and β(s)= 1,

logv(v
2
α∨v

4
2α∨) if α = 2β, β ∈ R0, β(s)=−1.

(18)
Write c = vc̄. The following proposition says that the sign of the function mW0,r

can in fact be detected at the graded Hecke algebra level.

Proposition 4.1. The sign of mW0,r from (13) equals the sign of the expression

mW0c̄ =

∏
′

α∈Rs,1
α(c̄)∏

′

α∈Rs,1
(α(c̄)− ks(α))

. (19)

This expression is a polynomial which equals the product of n rational linear forms
in the parameters ks(α) (where n is the rank of R0).

Proof. For every α ∈ R1, α(s) is a root of unity. Write R1 = Rs,1 t Rs,−1
1 t Rs,z

1 ,
where Rs,−1

1 = {α ∈ R1 | α(s)=−1} and Rs,z
1 = {α ∈ R1 | α(s)2 6= 1}. If α is a root

in R1 \ R0, then α is a root of type A1 in Bn and from the classification of isolated
semisimple elements s in this situation, we see that α ∈ Rs,1.

We break up the product expression for mW0r according to the three types
of roots: Rs,1, Rs,−1

1 , Rs,z
1 . Take Rs,−1

1 first and we analyze the contribution
of its numerator and denominator. The numerator is a product of expressions
(−α(c)− 1)(−α(c)−1

− 1) > 0, since α(c) > 0, one factor for each positive root
α ∈ Rs,−1

1 . For the denominator, for each positive root α ∈ Rs,−1
1 (which by the

remark above it is in R0), we have a factor (−v−2
α∨ α(c)

−1
− 1)(−v−2

α∨ α(c)− 1) > 0.
Therefore, the part of the expression corresponding to Rs,−1

1 is positive.
Consider now Rs,z

1 . Its contribution equals∏
′

α∈Rs,z
1
(α(s)α(c)− 1)∏

′

α∈Rs,z
1
(α(s)v−2

α∨ α(c)− 1)
.
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The argument in [Opdam 2004, Theorem 3.27(v)] shows that both the numerator
and the denominator are polynomial expressions in v with rational (in fact integer)
coefficients. Moreover, since α(s) is not real, these polynomials do not afford real
roots in v. It follows that they are always positive or always negative for real v. But
it is clear that for v = 0 the fraction above equals 1> 0, and therefore it is always
positive.

In conclusion, the sign of mW0r equals the sign of the expression

mW0r =

∏
′

α∈Rs,1
(α(c)−1

− 1)∏
′

α∈Rs,1
(v−1
α∨ α(c)

−1/2+ 1)
∏
′

α∈Rs,1
(v−1
α∨ v
−2
2α∨α(c)

−1/2− 1)
.

The numerator can be rewritten as
∏
α∈R+s,1

α(c)−1(−1)(α(c)− 1)2 and therefore
its sign is (−1)ns , where ns = #{α ∈ R+s,1 | α(c) 6= 1} = #{α ∈ R+s,1 | α(c̄) 6= 0}. But
this is also the sign of the numerator in (19).

Let α∈ R+0 ∩Rs,1 be given. Then α and−α give a contribution in the denominator
of v−4

α∨ (α(c)
−1
− v2

α∨)(α(c)− v
2
α∨) = v

−4
α∨ (v

−α(c̄)
− vks(α))(vα(c̄)− vks(α)). Clearly,

the sign of this expression is the same as the sign of (−α(c̄)−ks(α))(α(c̄)−ks(α)).
Now suppose that α = 2β with β ∈ R0. If β(s) = 1, the factors of the form

(v−1
α∨ α(r)

−1/2
+ 1)= (vα∨β(c)−1

+ 1) are all positive and can be ignored. So the
contribution in the denominator comes from the factors (v−1

α∨ v
−2
2α∨α(r)

−1/2
− 1)=

(v−ks(α)/2β(c)−1
− 1). Grouping together the factors corresponding to α and −α

as before and multiplying by powers of v, we see that the contribution to the sign
is given by (vα(c̄)/2− vks(α)/2)(v−α(c̄)/2− vks(α)/2). But this has the same sign as
(−α(c̄)− ks(α))(α(c̄)− ks(α)).

Finally, if β(s)=−1, then the factor

(v−1
α∨ v
−2
2α∨α(r)

−1/2
− 1)=−(v−1

α∨ v
−2
2α∨β(c)

−1
+ 1)

is negative and the contributions of these factors for α and −α cancel out. Thus
we remain with the factor (v−1

α∨ α(r)
−1/2
+ 1)= (−v−ks(α)/2β(c)+ 1) and the same

analysis as in the previous case applies.

The regularity of mW0r on Q implies that mW0c̄ is bounded if the ks(α) take
arbitrary real values. At the same time, mW0c̄ is a rational function whose numerator
and denominator are products of rational linear expressions in the ks(α), with
(as follows from Definition 2.3) exactly n more factors in the numerator than in
the denominator. It follows that the denominator divides the numerator, leaving a
polynomial in the ks(α) of degree n of the desired form. �

Example 4.2. Consider the affine Hecke algebra of type G2 with parameters k1

and k2 as in Section 4B3 below and in Table 1. In particular, let

c̄1 = [k1, k2], c̄2 = [k1,−k1+ k2], and c̄3 =
[
k1,

1
2(−k1+ k2)

]
,
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be the three generic linear residual points in the graded affine Hecke algebra of
type G2. The corresponding polynomials in Proposition 4.1 are:

mW0c̄1 =
1

36(k1+ 2k2)(2k1+ 3k2),

mW0c̄2 =−
1

36(2k1− 3k2)(k1− 2k2),

mW0c̄3 =
1

36 k1k2.

(20)

Notice that the zeros of these polynomials give precisely the sets Qsing
bi

, 1≤ i ≤ 3,
see [Heckman and Opdam 1997, Proposition 4.15; Opdam and Solleveld 2010,
Table 4].

Remark 4.3. Fix b ∈ Bgm and suppose v0 ∈Q
reg
b \Q

gen
b is a nongeneric, but regular

parameter. By definition, b is in Bv0−m and let r0 = limv→v0 rb(v). The irreducible
discrete series at v0 in the family defined by b is ds(b, v0)= ε(b; v0) IndD(b; v0).
By Theorem 1.1, the sign ε(b; v) is locally constant and therefore taking limv→v0 in
the formula of Theorem 1.1(g), we see that ε(b; v0) equals the sign of mW0r (v0)=

limv→v0 mW0rb(v), where mW0rb is defined by (13). This equals the sign of mW0c̄b .

4B. Tables. We present the explicit form of the canonically positive basis Bgm,
as well as the generic residual central characters W0rb, the constants db in the
case when R is a simple root datum of type C (1)

n (with three parameters), B(1)n ,
Cn adjoint, G2, and F4 (with two parameters). For the affine Hecke algebra of
a simple, nonsimply laced root datum of arbitrary isogeny, one may deduce the
relevant information from the cases listed above, by specializing the parameters
appropriately and by the use of induction and restriction (see Section 4E).

4B1. C (1)
n . Let

X = Zn
= 〈ε1, . . . , εn〉, R0 = {±εi ± ε j , i 6= j, ±εi }, F0 = {εi − εi+1, εn}.

For simplicity of notation, we use the coordinates εi for the basis of Y as well. We
have W = X o W0 = ZR0 o W0. The affine simple roots are

F = {(εi − εi+1, 0} ∪ {(2εn, 0)} ∪ (−2ε1, 1)

and the affine Dynkin diagram (with parameters) is

v0 v1+3 v1 · · · v1 v2ks . (21)

Here the affine simple root is α0= (−2ε1, 1) and it gets the label v0. Let H(v0,v1,v2)

be the affine Hecke algebra with generators N0, N1, . . . , Nn . We need to switch to
the Bernstein presentation. The algebra H(v0, v1, v2) is generated by N1, . . . , Nn
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and θ±1
1 , . . . , θ±1

n (here θi = θεi ) subject to the relations

θi Ni − Niθi+1 = (v1− v
−1
1 )θi , 1≤ i ≤ n− 1,

θi N j = N jθi , |i − j | ≥ 2,

θn Nn − Nnθ
−1
n = (v2− v

−1
2 )θn + (v0− v

−1
0 ),

(22)

the usual Hecke relations and the commutation of the θi ’s. In the change of
presentation, we set θi = N0 Nsεi , where sεi ∈W0 is the reflection corresponding to
the root εi .

It is immediate that the assignment N0 7→ −v
−1
0 gives a surjective algebra

homomorphism onto the finite Hecke algebra H f (Cn, v1, v2) of type Cn with param-
eters v1, v2. Translating to the Bernstein presentation, we find that the assignment

Ni 7→ Ni , θi 7→ −v
−1
0 Nsεi , 1≤ i ≤ n, (23)

extends to a surjective algebra homomorphism onto the Hecke algebra H f (Cn,v1,v2)

of finite type. This allows us to lift every simple H f (Cn,v1,v2)-module to a sim-
ple module of the affine Hecke algebra. The simple H f (Cn,v1,v2)-modules are
parametrized by bipartitions (λ, µ) of n. It is particularly useful to use Hoefsmit’s
construction of such modules, see [Geck and Pfeiffer 2000, pages 322–325], since
in that realization the Nsεi act diagonally.

We recall the construction. Denote by V(λ,µ)(v) the simple module of H f (Cn)

parametrized by (λ, µ). Its basis is indexed by left-justified decreasing standard
tableaux of shape (λ, µ). Let † denote such a Young tableau. Then

Nsε j
·†= ct(†, n− j + 1)†, where ct(†, k)=

{
v

2(y−x)
1 v2 if k occurs in λ,
−v

2(y−x)
1 v−1

2 if k occurs in µ,

where (x, y) are the coordinates of the box in which k occurs. (The coordinates
(x, y) of a box in the Young tableau increase to the right in y and down in x .)

This means that in Ṽ(λ,µ)(v), the lift of V(λ,µ) to the affine Hecke algebra, we
have

θ j · †=−v−1
0 ct(Y, n− j + 1)†. (24)

The condition that a simple module is a discrete series module is that the eigenvalues
of the product θ1·θ2 · · · θ j are all smaller than 1 in absolute value, for all j=1, . . . , n.
From (24), we see that when the absolute value of the specialization of v0 is
much larger than that of v1 and v2, every V(λ,µ)(v) is a discrete series module.
Moreover, the central characters of these modules are all distinct at generic values
of the parameters, and since, by [Opdam and Solleveld 2010], the dimension of
the space RZ(W ) equals the number of bipartitions of n, it follows that the set
{limv→1 Ṽ(λ,µ)(v)} is an orthonormal basis of Ygm =RZ(W ). In order to determine
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the canonically positive basis Bgm, it remains therefore to determine the signs
ε(b, v) for each b = limv→1 Ṽ(λ,µ)(v).

To this end, we need to examine the formal degrees of these modules. Denote by
Rsh

0 = {±εi }, the short roots, and by Rlo
0 = {±εi ± ε j }, the long roots. Specialize

v1 = v, v2 = v
k++k−, v0 = v

k+−k−,

where v > 1 and k−, k+ ∈ R. Notice that R1 \ R0 = {±2εi }. The formula for the
generic formal degree [Opdam and Solleveld 2010, Theorem 4.6 and (40)] gives in
our particular case that the formal degree of a discrete series π(b, v) with central
character W0rb(v) is

fdeg(π(b, v))=
db ε(b, k+, k−)

∏
′

α∈R1
(α(rb(v))

−1
− 1)∏

′

α∈Rlo
0
(v−2α(rb(v))−1− 1)

·
1∏

′

α∈Rsh
0
(v−2k+α(rb(v))−1− 1)

∏
′

α∈Rsh
0
(v−2k−α(rb(v))−1+ 1)

,

where ε(b, k+, k−) is a sign to be made explicit (see (28)). From [Ciubotaru et al.
2012, Theorem 4.7] (see the remark in the proof of [Opdam 2016, Theorem 4.12]),
we know that

db = 1. (25)

Fix a bipartition (λ, µ). The corresponding central character W0rb(v) is the W0-orbit
of the string

r(λ,µ) =
(
(−v2(y−x)v2k− | (x, y) ∈ λ); (v2(y′−x ′)v−2k+ | (x ′, y′) ∈ µ)

)
. (26)

and therefore

c̄(λ,µ) = (c̄λ(k−), c̄µ(−k+)), where c̄λ(k)= ((y− x)+ k | (x, y) ∈ λ).

We will use Proposition 4.1 to compute the signs. Denote by B|λ| the root subsystem
of R0 given by the roots that involve only coordinates εi , 1≤ i ≤ |λ|. Similarly, let
B|µ| be the root subsystem in coordinates ε j , |λ| < j ≤ n. Let D|λ| = B|λ| ∩ Rlo

0
and A|λ|1 = B|λ| ∩ Rsh

0 , and similarly for µ. Notice that H(Rs,1, Ts(T ), Fs,1; ks) is
isomorphic to the product of graded affine Hecke algebras H(B|λ|, k−)×H(B|µ|, k+),
where by H(B`, k) we denote the graded affine Hecke algebra of type B` with
parameters 1 on the long roots and m on the short roots. Define for λ (and similarly
for µ):

mλ(k)=

∏
′

α∈B|λ| α(c̄λ(k))∏
′

α∈D|λ|(α(c̄λ(k))− 1)
∏
′

α∈A|λ|1
(α(c̄λ(k))− k)

,

ε(λ, k)= the sign of mλ(k).

(27)
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Then from Proposition 4.1, mλ(k) is a degree n polynomial and

ε(b, k+, k−)= ε(λ, k−)ε(µ,−k+)= ε(λ, k−)ε(µT , k+), (28)

where µT denotes the transpose partition to µ.
As noticed before, in the chamber where k− � k+ � 0, the discrete series

are V(λ,µ)(v). Let ε(λ, µ)= limk±→∞ ε(b, k+, k−). In conclusion, we have proved:

Proposition 4.4. For the affine Hecke algebra of type C (1)
n , the canonically positive

basis Bgm,C of Ygm =RZ(W ) is

Bgm,C =
{
b(λ,µ) := ε(λ, µ)Ṽ(λ,µ)(1) | (λ, µ) bipartition of n

}
,

where Ṽ(λ,µ)(1) is the irreducible W-representation with central character W0s(λ,µ),

s(λ,µ) = (−1, . . . ,−1︸ ︷︷ ︸
|λ|

, 1, . . . , 1︸ ︷︷ ︸
|µ|

),

and whose restriction to W0 is the irreducible W0-representation labeled by the
bipartition (λ, µ).

4B2. B(1)n , Cn adjoint. The Iwahori–Hecke algebra of Spin2n+1(F) is associated
with the root datum of type B(1)n , for which the parameter space Q is two dimensional.
This two parameter family is isogenous to a specialization HB of the generic
affine Hecke algebra HC of type C (1)

n discussed in the previous section, namely
HB =HC |v0=1 (or equivalently k− = k+). Observe that HB is associated with the
extended diagram of type B(1)n , i.e., R0 has type Cn , and X is its weight lattice. The
Iwahori–Hecke algebra of PGSp2n(F) is associated with the extended diagram of
type C (1)

n , and has a root datum with R0 of type Bn with X its weight lattice. The
generic affine Hecke algebra HC,ad of this type has a two dimensional parameter
space Qad ⊂Q given by v0 = v2. Clearly, HC,ad is isogenous to the specialization
HC,Qad =HC |v0=v2 (or equivalently k−= 0) of the generic affine Hecke algebra HC

of type C (1)
n . To find the bases Bgm of these two parameter generic Hecke algebras,

we use some general results on isogeny (see Section 4E) in conjunction with the
following remark:

Remark 4.5. Consider an arbitrary generic affine Hecke algebra H3 over the
parameter ring3 as in Section 2B, with parameter space Q and canonically positive
basis Bgm. Suppose that we have a quotient 3′ of 3 corresponding to a subtorus
Q′ ⊂Q, and let B′gm be the corresponding basis for H3′ . For any b ∈ Bgm we have
mQ′

b = d ′bmb|Q′ (see Definition 2.9) with

±b ∈ B′gm⇐⇒Qreg
b ∩Q

′
6=∅⇐⇒ d ′b 6= 0,

and
B′gm =

{
sign(d ′b)b | b ∈ Bgm and Qreg

b ∩Q
′
6=∅

}
. (29)
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Proposition 4.6. (1) The canonically positive basis of HB is Bgm,B = Bgm,C .

(2) The canonically positive basis of HC,Qad is (see [Opdam and Solleveld 2010,
Proposition 6.4] for the notion of λ-regular)

Bgm,C,Qad = {εC,Qad(λ)b(λ,µ) | 0 is λ-regular },

where εC,Qad(λ) is the sign of mC,Qad
λ (0) ·mλ(0).

Proof. By Remark 4.5 and formula (28) we need to compute the sign

sign
(

lim
(k+,k−)→(k0,+,k0,−)

m′λ(k−)m
′

µT (k+)
)
· ε(λ, k0,−)ε(µ

T , k0,+),

where k0,+ = k0,− = k in the first case, and k0,+ = k, k0,− = 0 in the second
case (here k is a generic real number), and m′ denotes the polynomial m B

λ (in the
first case) or mC,Qad

λ (in the second case) defined as m, but with c̄ generic on the
relevant 2-dimensional parameter space instead of the 3-dimensional parameter
space of HC . The combinatorial condition that 0 is λ-regular is precisely designed
so that mλ(0) 6= 0.

It is obvious that in the first case the sign is +1. Since in the second case the
contribution of k+ is +1 again, the claim follows. �

Remark 4.7. Let λ be an arbitrary partition. The signs εC,Qad(λ) that appear in
Proposition 4.6 can be computed in the terms of the diagram of the partition. We
need to count the signs contributed by the nonzero linear factors that appear in
mλ(k), k generic but which become zero at k = 0. These are all factors of the
form ±k, ±2k. One combinatorial answer is that the resulting sign is (−1)`, where
` is the number of pairs of distinct boxes {x1, x2} in the Young diagram of λ that
are “almost symmetric” with respect to the main diagonal. I.e., suppose x1 is the
box on or below the diagonal and x ′1 is the flip of x1 with respect to the diagonal,
then x2 is one unit away from x ′1 in one of the four directions.

4B3. G2, F4. For the affine Hecke algebras of types G2 and F4, we work with the
following coordinates. For G2, the affine diagram is

α0 α1 α2+3 ,

with parameters v(si )= v
2ki, i = 1, 2, while for F4, it is

α0 α1 α2 α3+3 α4 ,

with parameters v(s1)= v
2k1, v(s3)= v

2k2. In both cases, v > 1 and ki ∈ R.
Let ω∨i denote the fundamental coweights. A central character is of the form

rb = sc, where c= v
∑

i aiω
∨

i , where s is a compact element of the torus. The generic
residual central characters are listed in Tables 1 and 2 (Parts 1 and 2). In these
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b s W0c db G2 ε

b1 1 [k1, k2] 1 [G2, 1] 1
b2 1 [k1,−k1+ k2] 1 [G2(a1), (21)] −1
b3 1 [k1,

1
2(−k1+ k2)] 1/2 [G2(a1), (3)] 1

b4 2A1 [−
1
2 k1−

3
2 k2, k2] 1/2 [2A1, 1] 1

b5 A2 [k1,−k1] 1/3 [A2, 1] 1

b E6 ⊂ E8 ε 3E6 ε

b1 [A2 E6, θ] 1 E6 1
b2 [A2 E6(a1), θ] −1 E6(a1) −1
b3 [A2 E6(a3), θ] 1 E6(a3) 1
b4 [A1 A2 A5, θ] 1 A1 A5 1
b5 [A8, θ] 1 A3

2 1

Table 1. G2.

tables, if s 6= 1, we specify it by the type of its centralizer in the second column. In
the third column, we give c in the form [ai ].

For each generic residual central character W0rb, we compute the function mb(v)

using formula (40) from [Opdam and Solleveld 2010]. To obtain the constant db,
we compute the limits of mb(v) in equal parameter case, e.g., k1→ 1, k2→ 1 and
also in the unequal parameter cases that appear in E8. Then we compare the results
with the formulas for formal degrees in [Reeder 2000; 1994]. To complete the
determination of the Langlands parameter, i.e., the representation of the component
group, we computed, when needed, the W0-structure of the specialization of the
family of discrete series and compared it with the K -structure of the representations
in Reeder’s tables. The relevant unequal parameter cases that appear in E8 are:
the affine Hecke algebra of type F4 that controls the subcategory of unipotent
representations where the parahoric subgroup is D4 in E8, and the affine Hecke
algebra of type G2 for the subcategories of unipotent representations where the
parahoric subgroup is E6 in E8. For this comparison, we need to multiply the
specialization of the formal degree in the unequal parameters Hecke algebra by the
factor ρ(1)/PJ (v

2), where ρ is the appropriate cuspidal unipotent representation
(whose dimension is given in the tables of [Carter 1985]) and PJ (v

2) is the Poincaré
polynomial of the finite Hecke algebra corresponding to the parahoric J .

In addition, the Iwahori–Hecke algebra for the quasisplit exceptional p-adic group
3E6 (respectively, 2E7) is isomorphic to a direct sum of three (respectively, two)
copies of an affine Hecke algebra with unequal parameters of type G2 (respectively,
F4). To compare the formal degrees in these cases against the results of [Reeder
1994], we need to multiply the specialization of formal degrees for the affine Hecke
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b s W0c db F4 ε

b1 1 [k1, k1, k2, k2] 1 [F4, 1] 1
b2 1 [k1, k1, k2− k1, k2] 1 [F4(a1),−] −1
b3 1 [k1, k1, k2− k1, k1] 1 [F4(a1),+] 1
b4 1 [k1, k1, k2− 2k1, k2] 1 [F4(a3), (211)] 1
b5 1 [k1, k1, k2− 2k1, 2k1] 1 [F4(a2),+] 1
b6 1 [k1, k1, k2− 2k1, k1] 1 [F4(a3), (31)] −1
b7 1 [k1, k1, k2− 2k1,−2k2] 1 [F4(a2),−] −1
b8 1 [0, k1, 0, k2− k1] 1/6 [F4(a3), (4)] 1
b9 1 [0, k1, 0, k2− k1] 1/3 [F4(a3), (22)] 1
b10 B4 [k1/2, k1, k2,−3k1− 2k2] 1/2 [B4,+] 1
b11 B4 [2k1,−k1, k2,−k1− 2k2] 1/2 non-ds
b12 B4 [0, k1,−k1+ k2,−2k2] 1/2 [B4(531), ε′′] −1
b13 B4 [k1, k1,−2k1+ k2, k1− 2k2] 1/2 [B4(531), 1] 1
b14 B4 [k1, k1,−3k1+ k2, 3k1− 2k2] 1/2 [B4(531), ε′] −1
b15 C3 A1 [−2k1− 3k2, k1, k2, k2] 1/2 [C3× A1,+] 1
b16 C3 A1 [−2k1, k1,−k2, 2k2] 1/2 [C3(42)× A1,++] 1
b17 C3 A1 [−2k1+ 3k2, k1,−k2,−k2] 1/2 [C3(42)× A1,+−] −1
b18 2A2 [k1,−k1− 2k2, k2, k2] 1/3 [2A2, 1] 1
b19 A3 A1 [k1, k1,−3k1/2− k2/2, k2] 1/4 [A1 A3, 1] 1

Table 2. (Part 1) F4.

algebra by the factor
(q1/2

− q−1/2)n+1

|�|
∏

O(q |O|/2− q−|O|/2)
,

where n+ 1 is the number of nodes in the affine Dynkin diagram, and O ranges
over the Galois orbits in the affine Dynkin diagram. See [Opdam 2016, (25)] for
more details. For the nonsplit inner forms, this procedure allows us to find the
L-packet to which the representation should belong, but it is not sufficient to enable
us to attach the representation of the component group.3

4C. Relation with Kazhdan–Lusztig parameters. Let R be a semisimple root
datum. Let G be the connected complex semisimple group with root datum
R. Consider the generic affine Hecke algebra H with root datum R and equal
parameters, i.e., v(s) = v(s′) = v for all s, s′ ∈ S. If G is simply connected,
the Kazhdan–Lusztig classification [Kazhdan and Lusztig 1987] applies to give a

3This is a subtle question, see [Opdam 2016] for results in this sense. We plan to return to this
question in future work.
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b D4 ⊂ E8 ε 2E7 ε

b1 [A1 E7,−] 1 E7 1
b2 [A1 E7(a4),−−] −1 E7(a1) −1
b3 [A1 E7(a2),−] 1 E7(a2) 1
b4 [A1 E7(a3),+−] 1 E7(a3) 1
b5 [A1 E7(a3),−+] −1 E7(a3) −1
b6 [A1 E7(a4),+−] 1 E7(a4) 1
b7 [A1 E7(a1),−] −1 E7(a4) −1
b8 [A1 E7(a5),−3] 1 E7(a5) 1
b9 [A1 E7(a5),−21] 1 E7(a5) 1
b10 [D8,−] 1 A1 D6 1
b11 [D8(5, 11),−] 1 A1 D6(3, 9) −1
b12 [D8(1, 3, 5, 7), r ] 1 A1 D6(5, 7) −1
b13 [D8(7, 9),−] −1 non-ds
b14 [D8(3, 13),−] −1 non-ds
b15 [A3 D5,−1] 1 A1 D6 1
b16 [A3 D5(3, 7),−1] −1 A1 D6(5, 7) 1
b17 non-ds A1 D6(3, 9) −1
b18 [A1 A2 A5,−1] 1 A2 A5 1
b19 [A1 A7,−] 1 A1 A2

3 1

Table 2. (Part 2) F4.

parametrization of the simple discrete series Hv0-modules, v0 > 1, in terms of

DSKL(R)=G \
{
(x, φ) | x ∈G elliptic, φ ∈ Â(x) such that H top(Bx)

φ
6= 0

}
. (30)

This result has been extended by Reeder [2002] (also see [Aubert et al. 2017]) to the
case where R has arbitrary isogeny type. Recall that we say that x is elliptic in G
if the conjugacy class of x does not meet any proper Levi subgroup of G. Here we
denoted by A(x)= ZG(x)/ZG(x)0 Z(G) the component group of the centralizer of
x in G (mod the center of G), by Bx the Springer fiber of x in G, and by H top(Bx)

φ

the φ-isotypic component of A(x) in the top cohomology of Bx .
As is well known, by the construction of Springer extended by Lusztig and Kato

in the simply connected case (see, for example, [Reeder 2000, Section 8]), and
further extended by Reeder [2002, Section 3] to the arbitrary semisimple case, the
full cohomology groups H •(Bx)

φ carry an action of W . We define

BKL
DS = {hx,φ := H •(Bx)

φ
⊗ ε | (x, φ) ∈ DSKL(R)}, (31)

where ε is the sign character of W .
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Let x be an elliptic parameter as above and write x = su for the Jordan decom-
position, with s ∈ Tu . Let ψ : SL(2,C)→ G be the Lie homomorphism such that
φ
((

1 1
0 1

))
= u. Set

τ = sφ
((
v−1 0

0 v

))
∈ TuTv and q = v2.

The following Proposition follows easily from the work of Kazhdan and Lusztig
[Kazhdan and Lusztig 1987; Lusztig 1995; 1989b] and the definitions.

Proposition 4.8. Let πv,hx,φ be the Kazhdan–Lusztig representation of H associated
to the elliptic Kazhdan–Lusztig parameter (x, φ). Then

πv,hx,φ = IndD(hx,φ, v). (32)

In particular, πv,hx,φ is a discrete series character with central character W0τ .

Proof. By [Kazhdan and Lusztig 1987], the representation πv,hx,φ is an irre-
ducible discrete series with central character W0τ . We know by [Reeder 2001,
Theorem 5.11.1] that limv→1 πv,hx,φ = hx,φ , hence (32) follows directly from
Definition 2.7. �

If R is of simply connected type then the formal degree is given by the formula
[Opdam 2016; Reeder 2000]:

fdeg(πv,hx,φ )=
φ(1)

|A(x)||Z(G)|
mKL
v (τ ), (33)

where

mKL
v (τ )= q |R|/2

∏
′

α∈R(α(τ)− 1)∏
′

α∈R(qα(τ)− 1)
.

Proposition 4.9. Equation (33) holds for all semisimple root data R.

Proof. Let G ′ be an arbitrary connected complex semisimple group with root
datum R′, and let 1→C→G→G ′→ 1 be the universal covering of G ′. Consider
x ′ = s ′u′ ∈ G ′ elliptic, and let x = su ∈ G be a lifting of x . Let A(x), A(x ′)⊂ Gad

be the centralizers of the unramified Langlands parameters associated to x and x ′

as in the text above Proposition 4.9 (these are finite subgroups, since x and x ′ are
elliptic). We define a homomorphism A(x ′)→ C by a→ asa−1s−1

∈ C , whose
image we denote by Cx . Similar to [Reeder 2002, Section 3.3], this give rise to an
exact sequence:

1→ A(x)→ A(x ′)→ Cx → 1

(more precisely, A(x) and A(x ′) are the images in Gad of Reeder’s Aτ,u and A+τ,u
respectively). Let (x, φ)∈DSKL(R). Let Cx,φ ⊂Cx be the isotropy group of φ with
respect to the natural action of Cx on the set of equivalence classes of irreducible
characters of A(x). Let µ denote the complex 2-cocycle of Cx,φ associated to φ,
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and Ex,φ =C[Cx,φ, µ] the corresponding twisted group algebra. By Mackey theory
(see [Reeder 2002, Section 3.3]) we have

Ex,φ ' EndC[A(x ′)](IndA(x ′)
A(x) φ),

and thus
IndA(x ′)

A(x) φ =
⊕

ψ∈Irr(Ex,φ)

ψ ⊗ ρ
ψ
φ , (34)

with ρψφ ∈ Irr(A(x ′)) as Ex,φ⊗C[A(x ′)]-module. Moreover, all irreducible charac-
ters ρ of A(x ′) appear as some ρ ' ρψφ , and ρψφ ' ρ

ψ ′

φ′ if and only if φ′ is a twist of
φ by an element of Cx , and ψ ′ and ψ correspond accordingly via this twist. By
counting the multiplicity of ρψφ in the regular representation of A(x ′) using (34) we
see:

dim(ρψφ )=
|Cx |

|Cx,φ|
dim(φ) dim(ψ). (35)

On the other hand we consider the affine Hecke algebras Hv and H′v. Reeder
[Reeder 2002, Section 1.5, Lemma 3.5.2] showed H′v = (Hv)

C , and

πv,hx,φ |H′v =
⊕

ψ∈Irr(Ex,φ)

ψ ⊗πv,hx ′,ρψ
φ
. (36)

Now πv,hx ′,ρψ
φ

will arise as a summand of πv,h x̃,φ̃
|H′v if and only if (x̃, φ̃) is a

twist of (x, φ) by an element of C . The Plancherel decomposition of the trace
τ ′ of the normalized Hecke algebra H′v is obtained by restricting the Plancherel
decomposition of the trace τ of Hv , since (see [Opdam 2016, Paragraph 2.4.1]) we
have τ ′ = τ |H′v . The above shows that in this restriction, the character of πv,hx ′,ρψ

φ

will appear with formal degree equal to the formal degree of πv,hx,φ with respect
to Hv, multiplied by the multiplicity

|C |
|Cx,φ|

dim(ψ). (37)

Considering that clearly mKL
v (τ )= mKL

v (τ ′), and using (33), (34), (35), and (37),
we see that

fdeg(πv,hx ′,ρψ
φ
)=

ρ
ψ
φ (1)

|A(x ′)||Z(G ′)|
mKL
v (τ ′),

as was to be proved. �

By [Reeder 2000, Proposition 7.2], mKL
v (τ )= qdimBu (q − 1)`|M s

0 |R(q), where
`= dim T , M s

0 is as in [Reeder 2000, Lemma 7.1], and R(q) is a rational function
in q that has the property that R(0)= 1 and R(1) 6= 0. On the other hand, we know
by [Opdam 2004, Proposition 3.27(v)] that mKL

v (τ )q− dimBu must equal a scalar
times a rational function in cyclotomic polynomials in q . This means that R(q) is a
scalar times a rational function where both the numerator and the denominator are
products of cyclotomic polynomials 8n(q) with n ≥ 2. Since R(0)= 1, the scalar
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must be in fact 1. But then R(q) > 0 whenever q is specialized to any real number
greater than −1, which implies that mKL

v (τ ) > 0 whenever q > 1.
Notice that the same conclusion follows from our sign formula (19). In the equal

parameter case, we have ks ≡ 1, and therefore the number of contributions of (−1)
in (19) equals the number of roots α(c̄) < 0 plus the number of roots α(c̄) < 1.
Because of integrality of the central character c̄ and the fact that the roots of c̄ that
vanish come in pairs, it follows, that this is an even number, thus the sign of mW0c̄

is positive.

Proposition 4.10. Suppose R is a semisimple root datum and let v0 denote the
specialization in the equal parameters case.

(a) Bv0−m = {bx,φ := ε(x, φ)hx,φ | hx,φ ∈ BKL
DS }, where ε(x, φ)= ε(bx,φ; v0) is the

sign of mQ
W0rb

(v0) (see Remark 4.3).

(b) If R is simply laced, then Bgm = BKL
DS and

dbx,φ =
φ(1)

|A(x)||Z(G)|
for all bx,φ ∈ Bgm.

(c) Suppose R is a root datum of type G2 or F4. Then

Bgm(G2)= {ε(x, φ)hx,φ | hx,φ ∈ BKL
DS }

and

Bgm(F4)= {ε(x, φ)hx,φ | hx,φ ∈ BKL
DS } ∪ {b11 = H •(BxB4

)triv⊗ ε},

with xB4
= sB4

u(711), where ZG(sB4
) is of type B4 and u(711) is a representative

of the subregular unipotent class in B4. The explicit signs ε(x, φ) are given in
the sixth column in Tables 1 and 2 (Part 1), while the constants dbx,φ are listed
in the fourth column of the tables.

Proof. As in Remark 4.3, for every b∈Bv0−m , ds(b; v0)=ε(b; v0) Ind(b; v0) and we
know that the sign ε(b, v0) is given by the sign of the generic m-function. Applying
the restriction map, we get that Res(ds(b; v0))= ε(b; v0) Ind(b; v0). On the other
hand, as explained above Res(ds(b; v0)) equals an hx,φ for some (x, φ)∈DSKL(R).
This is the claim in part (a).

Part (b) follows immediately from (a) by Proposition 4.9 and the discussion
preceding the present proposition: in the simply laced case, the generic m-function
equals mKL

v (τ ), which is positive.
Part (c) is contained in Section 4B3, where Tables 1 and 2 were computed. �

Remark 4.11. If R is a simply connected root datum of type B or C , then one can
relate the elements of BKL

DS to the bipartitions in the basis Bgm from Proposition 4.4
using the combinatorial algorithms of Slooten [2008], see also [Opdam 2016]. If
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(x, φ) is a discrete Kazhdan–Lusztig parameter as above, let (λ(x, φ), µ(x, φ)) be
the bipartition associated by the algorithms in [loc. cit.]. Then

BKL
DS =

{
ε(λ(x, φ), µ(x, φ)) · b(λ(x,φ),µ(x,φ)) | (x, φ) ∈ DSKL(R)

}
,

where ε(λ(x, φ), µ(x, φ)) equals the sign of limks(α)→1 mW0c̄ from (19).

4D. Pin cover of the Weyl group. Suppose W is a finite Weyl group with its
reflection representation E . Fix a positive definite W-invariant symmetric bilinear
form on E . Define the Clifford algebra C(E) and the pin cover p : W̃→W as in
[Ciubotaru et al. 2014, Section 3.1]. Let det be the determinant character of W̃ acting
on E . As in [Ciubotaru et al. 2014, Section 4.1], define W̃ ′ to be equal to W̃ , when
dim E is odd, and to equal ker det (an index two subgroup), when dim E is even.

If dim E is odd, then C(E) has two nonisomorphic simple complex modules;
we denote them S+ and S−. When dim E is even, C(E) has a unique simple
complex module whose restriction to the even part C0(E) splits into a direct sum of
two nonisomorphic modules, denoted again S+ and S−. We fix the choice of S+

(and S−) in both cases once and for all.
An irreducible W̃ ′-representation is said to be genuine if it does not factor

through p(W̃ ′). Two nonisomorphic irreducible W̃ ′-representations are said to be
associate if one is the det-dual of the other, when dim E is odd, and if they both
occur in the restriction to W̃ ′ of an irreducible W̃-module, when dim E is even. For
example {S+, S−} is a pair of associate W̃ ′-representations. Denote by Irr2 W̃ ′ the
set of associate genuine pairs.

We apply these constructions in the case when R is a semisimple, simply con-
nected root datum, W =Ws , with s an isolated element of Tu and E = Ts(T )∼= E .
For the connections with elliptic theory, see [Ciubotaru et al. 2014, Section 4] for
example. Given {̃σ+, σ̃+}, let ξs (̃σ

+)= ξs (̃σ
−) be a representative of the generic

central character defined by [Ciubotaru et al. 2014, Theorem 3.2]. Let

Irr2
gm W̃s

′
=
{
{̃σ+, σ̃−} ∈ Irr2 W̃ ′s

∣∣ ξs (̃σ
+) is generically residual for (Rs,1, ks)

}
and

Irr2
KL W̃s

′
=
{
{̃σ+, σ̃−} ∈ Irr2

gm W̃ ′s
∣∣ ξs (̃σ

+)(1) is residual for (Rs,1, ks = 1)
}
,

where ξs (̃σ
+)(1) denotes the specialization at the equal parameter case ks = 1.

Write Bgm =
⊔

s Inds(Bgm,s) for the canonically positive basis, where Bgm,s is a
certain orthonormal subset of RZ(Ws). By [Ciubotaru et al. 2014, Theorem 4.2],
for each bs ∈ Bgm,s there exists a pair (̃σ+bs

, σ̃−bs
) of associate genuine irreducible

W̃ ′s-representations such that

bs =1(̃σ
+

bs
, σ̃−bs

) :=
σ̃+bs
− σ̃−bs

S+− S−
in RZ(Ws).
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Moreover, as explained in Section 2B4, ξs (̃σ
+

bs
)= rbs ; in particular,

{̃σ+bs
, σ̃−bs
} ∈ Irr2

gm W̃s
′
.

By the same results in [loc. cit.], the assignment bs 7→ {̃σ
+

bs
, σ̃−bs
} is injective. Thus

if we define Irr2
gmW̃s

′
= {(̃σ+bs

, σ̃−bs
) | bs ∈ Bgm,s}, then the map 1 defines a bijection

1 : Irr2
gmW̃s

′
→ Bgm,s .

In fact, Irr2
gmW̃s

′ is just Irr2
gm W̃s

′ with a particular choice of σ̃+ versus σ̃−.
We can explain this choice independently in the case of Irr2

KL W̃s
′. Since

ξs (̃σ
+)(1) is a residual point, we know by [Opdam 2004] that ξs (̃σ

+)(1) satisfies
the same combinatorial condition as the Bala–Carter condition for half of the middle
element of a distinguished Lie triple in ZG(s). Thus, the pair {̃σ+, σ̃−} ∈ Irr2

KL W̃s
′

determines the (conjugacy class of an) element u, and therefore the elliptic element
x = su in the Kazhdan–Lusztig parametrization. To formalize this, denote by
u({̃σ+, σ̃−}) a representative of the unipotent class attached in this way.

Let �W̃s
be the Casimir element of W̃s , e.g., [Ciubotaru et al. 2014, (3.2.5)]. The

scalar σ̃+(�W̃s
) by which �W̃s

acts in σ̃+ (which does not depend on the choice of
σ̃+ versus σ̃−) equals the squared norm of ξs (̃σ

+).
It remains to discuss how to associate a representation φ of the component

group A(x). This will also lead to the desired canonical choice for σ̃±. Let x = su
be an elliptic element of G. Recall that this means that u is distinguished in ZG(s).
Let Xs(u, φ) and σs(u, φ) denote the standard and irreducible Ws-representations
afforded via Springer theory by H •(Bs

u)
φ
⊗ ε and H 2ds

u (Bs
u)
φ
⊗ ε respectively,

where Bs
u is the Springer fiber of u in ZG(s) and ds

u = dimBs
u . As above, there exist

associate irreducible representations σ̃s(u, φ)± such that

Xs(u, φ)⊗ (S+− S−)= σ̃s(u, φ)+− σ̃s(u, φ)−.

As noticed in [Ciubotaru and Trapa 2013; Ciubotaru and He 2015], if we write

Xs(u, φ)= σs(u, φ)+
∑
u′>u

a(u′,φ′)Xs(u′, φ′)

(by the results of Borho and Macpherson), then one can deduce that σ̃s(u, φ)± can
only appear in σs(u, φ)⊗ S± and in no other Xs(u′, φ′)⊗ S±. Moreover, by the
Dirac theory, the scalar σ̃s(u, φ)±(�W̃s

) equals the squared norm of half a middle
element for a Lie triple of u, and this is the minimal such scalar that may appear for
an irreducible constituent of σs(u, φ)⊗ S±. By [Ciubotaru 2012] (case-by-case) or
[Ciubotaru and He 2015] (uniformly), σ̃s(u, φ)+ appears with multiplicity one in
σs(u, φ)⊗ S+ (and similarly for the − case).

The conclusion is that σ̃s(u, φ)+ is characterized by the property that it is the
unique irreducible constituent of σs(u, φ)⊗ S+ for which the scalar by which �W̃s
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acts in it is minimal among all the constituents of the tensor product. Moreover,
σ̃s(u, φ)+ does not appear as such a “minimal representation” in any other tensor
product of this form. This gives a one-to-one correspondence between the sets
{σs(u, φ)} and {̃σs(u, φ)+}. Given a σ̃+ in the latter set, denote by φ(̃σ+) the local
system φ for the Springer representation in the former set. In particular, we have a
preferred representation σ̃+ in any pair belonging to Irr2

KL W̃s
′. Thus we get a set

Irr2
KLW̃s

′ of ordered pairs. In summary we have:

Proposition 4.12. Suppose R is a simply connected semisimple root datum. Then,
with the canonical choice of representations σ̃+ as above,⊔

s

Inds ◦1(Irr2
KLW̃s

′
)= BKL

DS .

Given a pair (̃σ+, σ̃−) ∈ Irr2
KL(W̃s

′
), the Kazhdan–Lusztig parameter (x = su, φ)

is given by u = u({̃σ+, σ̃−}) and φ = φ(̃σ+) with the notation as in the previous
paragraph.

Remark 4.13. If, in addition R is simply laced, this also implies that

Bgm =
⊔

s

Inds ◦1(Irr2
KLW̃s

′
).

When R is not simply laced, the relation between Bv0−m and BKL
DS

(
and therefore⊔

s Inds ◦1(Irr2
KLW̃s

′
)
)

was given in Section 4C.

Remark 4.14. The case of root data of type E is particularly interesting. Suppose
R is a simply connected, type E , root datum. Let {̃σ+, σ̃−} ∈ Irr2(W̃s

′
) be given,

with the notation as above. We know a priori that ξs (̃σ
+) equals k/2 times the

middle element of a Lie triple of a quasidistinguished unipotent element u of ZG(s)
(see [Ciubotaru et al. 2014, Section 5]). By [Opdam 2004, Appendix] (also see
[Opdam and Solleveld 2010]), this is a residual point for (Rs, k) if and only if
u is distinguished in ZG(s). The key, empirical, observation is that for the root
systems Rs occurring in a type E root system, the squared norms of the middle
element of a quasidistinguished Lie triple uniquely identifies the unipotent class.
In particular, the scalar by which �W̃s

acts in σ̃+ already identifies uniquely the
unipotent class of u({̃σ+, σ̃−}), and in particular if {̃σ+, σ̃−} ∈ Irr2

gm(W̃s
′
). In this

way we can effectively determine the base BKL
DS = Bgm of Proposition 4.12, and for

each b ∈ Bgm, the central character W0τ (with τ = s exp(ξs)) of IndD(b; v). This
recovers the classification of the discrete series characters of H starting from the
Springer theory of Ws .

4E. The general semisimple case. Let us consider the determination of the basis
Bgm for an arbitrary semisimple root datum R. Recall that if H⊂H′ are isogenous
extended affine Hecke algebras such that Rnr = R′nr (see (11)), so that in particular
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we have a canonical identification Q=Q′, then the functors induction IndH′
H and

restriction ResH
′

H respect the discrete series [Delorme and Opdam 2011, Lemma 6.3]
in the sense that an irreducible discrete series is mapped to a finite direct sum of
irreducible discrete series. From this we easily obtain:

Proposition 4.15. Let b∈Bgm (respectively b′ ∈B′gm), and let v ∈Qreg
b (respectively

v ∈Qreg
b′ ). Let δ′ (respectively δ) be an irreducible summand of IndH′

H (IndD(b; v))
(respectively ResH

′

H (IndD(b′; v))). Then limv→1 δ
′ is an element of B′gm and all

elements of B′gm are of this form, and similarly, limv→1 δ is an element of Bgm and
all elements of Bgm are of this form.

The following result reduces the explicit computation of the restrictions and
inductions of discrete series to the case of restriction and induction of representations
of the extended affine Weyl groups W ⊂W ′.

Proposition 4.16. We have IndH′
H (IndD(b; v)) = IndD(IndW ′

W (b); v) and similarly
ResH

′

H (IndD(b; v))= IndD(ResW ′
W (b); v).

Proof. This follows easily from Definition 2.7 and the proof of [Delorme and
Opdam 2011, Lemma 6.3], by taking the limit limv→1 on both sides. �

Remark 4.17. From Propositions 4.15 and 4.16, it follows that for every b ∈ Bgm,
the induced character IndW ′

W (b) is a positive integral linear combination of elements
of B′gm. Therefore, in practice, in order to obtain the elements of B′gm that lie in the
support of IndW ′

W (b), it is sufficient to decompose IndW ′
W (b) as a positive integral

linear combination of unit vectors in R(W ′). The resulting unit vectors are all in
B′gm automatically by the canonical positivity property of B′gm.

The same analysis holds for the restrictions ResW ′
W (b).

By the results of Sections 4B, 4C, and 4D we have determined the basis Bgm

for at least one representative of each isogeny class of irreducible root data. Using
Remark 4.17 it is now easy to determine Bgm for an arbitrary irreducible root datum.

Now suppose that R is an arbitrary semisimple based root datum. The finite
abelian group � acts faithfully on the affine Coxeter diagram of R by special
affine diagram automorphisms, and it is easy to see that the special affine diagram
automorphisms respect the irreducible components of the diagram of R. Let Di with
i = 1, 2, . . . , e denote the irreducible components of the affine Coxeter diagram
of R, and let �i denote the image of � in the group of special affine diagram
automorphisms of Di . Then � ⊂ �1× · · · ×�e. Let R′ = R1×R2 · · · ×Re be
the root datum which is isogenous to R, such that �′ =�1× · · ·×�e.

Proposition 4.18. We have Q=Q′=Q1×· · ·×Qe. In particular, Propositions 4.15
and 4.16 apply to the isogeny H⊂H′.
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Proof. We need to verify that Rnr = R′nr. But this reduces to the actions of the
groups � and �′ on the irreducible components. The result follows easily from the
definition of Rnr (see, e.g., [Opdam and Solleveld 2010, Section 2]). �

In the notation of Proposition 4.18, we have B′ = B′1 × · · · × B′e, which can
be determined explicitly since the factors are of irreducible type. Hence we can
determine B using Propositions 4.15 and 4.16.

4F. Rationality of characters of discrete series. In this subsection, we discuss the
character value ring for the families of generic discrete series considered before. In
light of Corollary 3.3, we know that for every generic residual central character W0r
and for every v ∈Qreg

W0r , the central functional given by the “stable combination” of
generic characters (16) takes values in Q3, the quotient field of 3, i.e.,∑

χ∈DSW0r(v)

cχ,Cχv(h) ∈ Q3, for all h ∈H3. (38)

Proposition 4.19. Suppose the root datum R of the generic affine Hecke algebra
H3 is simple and not simply laced. Let W0r be a generic residual central character
and let v ∈Qreg

W0r be given. Then for every discrete series character χ ∈ DSW0r(v),
we have χv(h) ∈ Q3, for all h ∈H3.

Proof. By the classification of generic discrete series families [Opdam 2004;
Opdam and Solleveld 2010], we know that, when R is not simply laced, the
cardinality of DSW0r(v) is always 1, except if R = F4 and W0r is the central
character [0, k1, 0, k2− k1] from Table 2. Therefore, with this exception, the claim
immediately follows from (38).

Let’s consider now this exceptional residual central character in F4. In the same
coordinates as in Table 2, we have r = v2[0,k1,0,k2−k1] and

Qreg
W0r = {k1, k2 ∈ R | k1k2 6= 0}.

There are always two families of discrete series πv,I = ε(b8; v) IndD(b8; v) and
πv,II= ε(b9; v) IndD(b9; v) for v ∈Qreg

W0r , where b8, b9 are as in Table 2. From (38),
we know that πv,I+πv,II takes values in Q3, so it suffices to show that πv,II has the
same property. Assume first that k1 > 0 and k2 > 0. Then πv,II is a 10-dimensional
module that has the property that it is A-semisimple, i.e., each generalized weight
space under the action of Bernstein’s abelian subalgebra A is one-dimensional.
This claim follows from [Reeder 2000, page 80], where the weight diagram of this
module is given under the label [A1 E7(a5),−21]. Let Wt(πv,II) denote the set of
weights. As it is well known, we may choose a basis of the module consisting of
weight vectors †λ, λ∈Wt(πv,II) such that for every s ∈ S0, the action of Ns is given
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by

Ns · †λ =


v(s)−v(s)−1

1−θ−α(λ)
†λ, if s(λ) /∈Wt(πv,II),

v(s)−v(s)−1

1−θ−α(λ)
†λ+

(
v(s)−1

+
v(s)−v(s)−1

1−θ−α(λ)

)
†s(λ) if s(λ) ∈Wt(πv,II),

where s = sα . This means that both types of generators, θx and Ns act in this basis
via matrices with entries in Q3, and the claim follows.

To treat the other three quadrants in k1, k2, notice that the affine Hecke algebra
of type F4 has three involutions of the form Ns 7→ −N−1

s , where s ranges over the
long simple reflections, the short simple reflections, and all the simple reflections,
respectively. (The last one is the Iwahori–Matsumoto involution.) Applying these
involutions to the modules πv,I and πv,II from the k1 > 0, k2 > 0 case, we obtain
the discrete series in the other three cases. �
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An explicit bound for the least prime ideal
in the Chebotarev density theorem

Jesse Thorner and Asif Zaman

We prove an explicit version of Weiss’ bound on the least norm of a prime
ideal in the Chebotarev density theorem, which is a significant improvement
on the work of Lagarias, Montgomery, and Odlyzko. As an application, we
prove the first explicit, nontrivial, and unconditional upper bound for the least
prime represented by a positive-definite primitive binary quadratic form. We
also consider applications to elliptic curves and congruences for the Fourier
coefficients of holomorphic cuspidal modular forms.

1. Introduction and statement of results

In 1837, Dirichlet proved that if a; q 2Z and gcd.a; q/D 1, then there are infinitely
many primes p � a .mod q/. In light of this result, it is natural to ask how big the
first such prime, say P.a; q/, is. Assuming the generalized Riemann hypothesis
(GRH) for Dirichlet L-functions, Lamzouri, Li, and Soundararajan [Lamzouri et al.
2015] proved that for all q � 4,

P.a; q/� .'.q/ log q/2; (1-1)

where ' is Euler’s totient function. Nontrivial, unconditional upper bounds are
significantly harder to prove. The first such bound on P.a; q/ is due to Linnik
[1944a; 1944b], who proved that for some absolute constant c1 > 0,

P.a; q/� qc1 (1-2)

with an absolute and computable implied constant. Admissible values of c1 are now
known explicitly. Building on the work of Heath-Brown [1992], Xylouris [2011]
proved that one may take c1 D 5:2 unconditionally. (Xylouris improved this to
c1 D 5 in his Ph.D. thesis.) For a detailed history of the unconditional progress
toward (1-1), see [Heath-Brown 1992, Section 1].

MSC2010: primary 11R44; secondary 11M41, 14H52.
Keywords: Chebotarev density theorem, least prime ideal, Linnik’s theorem, binary quadratic forms,

elliptic curves, modular forms, log-free zero density estimate.
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A broad generalization of (1-2) lies in the context of the Chebotarev density
theorem. Let L=F be a Galois extension of number fields with Galois group G.
To each prime ideal p of F which is unramified in L, there corresponds a certain
conjugacy class of automorphisms in G which are attached to the prime ideals of
L lying above p. We denote this conjugacy class using the Artin symbol

�L=F
p

�
.

For a conjugacy class C �G, let

�C .x; L=F / WD #
n
p W p is unramified in L,

h
L=F

p

i
D C , NF=Q p� x

o
:

The Chebotarev density theorem asserts that

�C .x; L=F /�
jC j

jGj

Z x

2

dt

log t
:

In analogy with (1-2), it is natural to bound the quantity

P.C;L=F / WDmin
n
NF=Q p W p unramified in L,h

L=F

p

i
D C , NF=Q p a rational prime

o
: (1-3)

Under GRH for Hecke L-functions, Lagarias and Odlyzko [1977] proved a bound
for P.C;L=F /; Bach and Sorenson [1996] made this bound explicit, proving that

P.C;L=F /� .4 logDLC 2:5ŒL WQ�C 5/2; (1-4)

where DL D jdisc.L=Q/j. (This can be improved assuming Artin’s conjecture; see
work of V. K. Murty [1994, Equation 2].) We note that if LDQ.e2�i=q/ for some
integer q � 1 and F DQ, then one recovers a bound of the same analytic quality
as (1-1), though the constants are slightly larger.

The first nontrivial, unconditional bound on P.C;L=F / is due to Lagarias,
Montgomery, and Odlyzko [Lagarias et al. 1979]; they proved P.C;L=F /� 2Dc2L
for some absolute constant c2 > 0. Recently, Zaman [2017b] explicitly bounded c2,
proving that1

P.C;L=F /�D40L : (1-5)

The bound (1-5), up to quality of the exponent, is commensurate with the best
known bounds when L is a quadratic extension of F D Q, which reduces to the
problem of bounding the least quadratic nonresidue. We observe, however, that if q
is prime, LDQ.e2�i=q/, and F DQ, then (1-5) states that P.a; q/� q40.q�2/,
which is much worse than (1-2).

Weiss [1983] significantly improved the results in [Lagarias et al. 1979]. Let A
be any abelian subgroup of G such that A\C is nonempty, let yA be the character

1Unless mentioned otherwise, all implied constants in all asymptotic inequalities f � g or
f DO.g/ are absolute and computable.
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group of A, and let K D LA be the subfield of L fixed by A. Let the K-integral
ideal f� be the conductor of a character � 2 yA, and let

Q.L=K/DmaxfNK=Q f� W � 2 yAg: (1-6)

Weiss proved that for certain absolute constants c3 > 0 and c4 > 0,

P.C;L=F /� 2ŒK WQ�c3ŒKWQ�.DKQ.L=K//c4 : (1-7)

To see how (1-7) compares to (1-5), we observe that if A is a cyclic subgroup of G,
then

D
1=jAj
L �DKQ.L=K/�D1='.jAj/L :

(See [Bach and Sorenson 1996, Lemma 4.2] for a proof of the upper bound; the
lower bound holds for all A and follows from the conductor-discriminant formula.)
Furthermore, if F DQ andLDQ.e2�i=q/, then one may take yA to be the full group
of Dirichlet characters modulo q, in which case K D F D Q and Q.L=K/ D q.
Thus Weiss proves a bound on P.C;L=F /, which provides a “continuous transition”
from (1-2) to (1-5). In particular, (1-2) follows from (1-7).

In this paper, we prove the following bound on P.C;L=F /, which makes (1-7)
explicit.

Theorem 1.1. LetL=F be a Galois extension of number fields with Galois groupG,
let C �G be a conjugacy class, and let P.C;L=F / be defined by (1-3). Let A�G
be an abelian subgroup such that A\C is nonempty, K D LA be the fixed field
of A, and QDQ.L=K/ be defined by (1-6). Then

P.C;L=F /�D694K Q521CD232K Q367ŒK WQ�290ŒKWQ�:

Remarks. � Theorem 1.1 immediately implies that P.a; q/� q521. For his-
torical context, this is slightly better than Jutila’s bound [1970] on P.a; q/,
which was over 25 years after Linnik’s original theorem.

� The bound we obtain on P.C;L=F / follows immediately from the effective
lower bound on �C .x; L=F / given by (3-2), which is of independent interest.
See [Zaman 2017a, Theorem 1.3.1] for a related lower bound.

� If ŒK W Q� � 2.logDK/= log logDK , then P.C;L=F /� D694K Q521. Situa-
tions where ŒK W Q� > 2.logDK/= log logDK are rare; the largest class of
known examples involve infinite p-class tower extensions, which were first
studied by Golod and Šafarevič [1964].

� If L=K is unramified, then QD 1 and DK DD
1=jAj
L . Thus

P.C;L=F /�D
694=jAj
L CD

232=jAj
L ŒK WQ�290ŒKWQ�:

If ŒK WQ�� 2.logDK/= log logDK , this improves (1-5) when jAj � 18.
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We now consider some specific applications of Theorem 1.1, the first of which
is a bound on the least prime represented by a positive-definite primitive binary
quadratic form Q.x; y/ 2 ZŒx; y� of discriminant D. It follows from (1-7) that the
least such prime p satisfies p� jDjc5 for some positive absolute constant c5; see
Kowalski and Michel [2002] for a similar observation. Ditchen [2013] proved, on
average over D 6� 0 .mod 8/, that p�� jDj

20=3C�, and Zaman [2016b] showed
p�� jDj

9:5C� in an exceptional case. However, a nontrivial unconditional explicit
bound on the least prime represented by Q for all such quadratic forms has not
been calculated before now. Such a bound follows immediately from Theorem 1.1.

Theorem 1.2. Let Q.x; y/ 2 ZŒx; y� be a positive-definite primitive binary qua-
dratic form of discriminant D. There exists a prime p −D represented by Q.x; y/
such that p� jDj694. In particular, if n is a fixed positive integer, there exists a
prime p − n represented by x2Cny2 such that p� n694.

We now consider applications to the study of the group of points on an elliptic
curve over a finite field. LetE=Q be an elliptic curve without complex multiplication
(CM), and let NE be the conductor of E. The order and group structure of E.Fp/,
the group of Fp-rational points on E, frequently appears when doing arithmetic
over E. Thus we are interested in understanding the distribution of values and
divisibility properties of #E.Fp/.

V. K. Murty [1994] and Li [2012] proved unconditional and GRH-conditional
bounds on the least prime that does not split completely in a number field. This yields
bounds on the least prime p − `NE such that ` − #E.Fp/, where `� 11 is prime.
As an application of Theorem 1.1, we prove a complementary result on the least
p − `NE such that ` j #E.Fp/. To state the result, we define !.NE /D #fp Wp jNE g
and rad.NE /D

Q
pjNE

p.

Theorem 1.3. LetE=Q be a non-CM elliptic curve of conductorNE , and let `�11
be prime. There exists a prime p − `NE such that

p� `.5300C1600!.NE//`
2

rad.NE /1900`
2

and ` j #E.Fp/:

Remark. The proof is easily adapted to allow for elliptic curves over other number
fields; we omit further discussion for brevity.

One of the first significant results in the study of the distribution of values of
#E.Fp/ is due to Hasse, who proved that if p −NE , then jpC1�#E.Fp/j< 2

p
p.

For a prime `, the distribution of the primes p such that #E.Fp/� pC 1 .mod `/
can also be studied using the mod ` Galois representations associated to E.

Theorem 1.4. Let E=Q be a non-CM elliptic curve of squarefree conductor NE ,
and let `� 11 be prime. There exists a prime p − `NE such that

#E.Fp/� pC 1 .mod `/ and p� `.4600C1200!.NE//`N 2100`
E :



A bound for the least prime ideal in the Chebotarev density theorem 1139

Theorem 1.4 will follow from a more general result on congruences for the
Fourier coefficients of certain holomorphic cuspidal modular forms. Let

f .z/D

1X
nD1

af .n/e
2�inz

be a cusp form of integral weight kf �2, levelNf �1, and nebentypus �f . Suppose
further that f is a normalized eigenform for the Hecke operators. We call such a
cusp form f a newform; for each newform f , the map n 7! af .n/ is multiplicative.
Suppose af .n/2Z for all n�1. In this case, �f is trivial when f does not have CM,
and �f is a nontrivial real character when f does have CM. Moreover, when kf D 2,
f is the newform associated to an isogeny class of elliptic curves E=Q. In this
case, Nf DNE , and for any prime p −NE , we have that af .p/D pC1�#E.Fp/.

Theorem 1.5. Let f .z/D
P1
nD1 af .n/e

2�inz 2 ZŒŒe2�iz�� be a non-CM newform
of even integral weight kf � 2, level Nf , and trivial nebentypus. Let ` � 3 be a
prime such that (12-1) holds and gcd.kf � 1; `� 1/D 1. For any residue class a
modulo `, there exists a prime p − `Nf such that

af .p/� a .mod `/ and p� `.4600C1200!.Nf //` rad.Nf /
2100`:

Remarks. � Equation (12-1) is a fairly mild condition regarding whether the
modulo ` reduction of a certain representation is surjective. This condition is
satisfied by all but finitely many choices of `. See Section 12 for further details.

� The proofs of Theorems 1.3–1.5 are easily adapted to allow composite moduli
` as well as elliptic curves and modular forms with CM. Moreover, the proofs
can be easily modified to study the mod ` distribution of the trace of Frobenius
for elliptic curves over number fields other than Q. We omit further discussion
for brevity.

� Using (1-5), the least prime p such that af .p/� a .mod `/ satisfies the bound
p� `120`

3.1C!.Nf // rad.Nf /40.`
3�1/ for any choice of a. Thus Theorem 1.5

constitutes an improvement over (1-5) for `� 11.

� If r24.n/ is the number of representations of n as a sum of 24 squares, then
691r24.p/D 16.p

11C 1/C 33152�.p/, where Ramanujan’s function �.n/ is
the n-th Fourier coefficient of �.z/, the unique non-CM newform of weight
12 and level 1. If ` … f2; 3; 5; 7; 23; 691g is such that `¥ 1 .mod 11/, then by
Theorem 1.5, there exists p ¤ ` such that

691r24.p/� 16.p
11
C 1/ .mod `/ and p� `4600`:

2. Notation and auxiliary estimates

2A. Notation. We use the following notation throughout the paper.
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� K is a number field.

� OK is the ring of integers of K.

� nK D ŒK WQ� is the degree of K=Q.

� DK is the absolute value of the discriminant of K.

� ND NK=Q is the absolute field norm of K.

� �K.s/ is the Dedekind zeta function of K.

� q is an integral ideal of K.

� Cl.q/D I.q/=Pq is the narrow ray class group of K modulo q.

� �, or � .mod q/, is a character of Cl.q/, referred to as a Hecke character or
ray class character of K.

� ı.�/ is the indicator function of the trivial character.

� f� is the conductor of �; that is, it is the maximal integral ideal such that � is
induced from a primitive character �� .mod f�/.

� D� DDKNf�.

� L.s; �/ is the Hecke L-function associated to �.

� H , or H .mod q/, is a subgroup of Cl.q/, or equivalently of I.q/, contain-
ing Pq. The group H is referred to as a congruence class group of K.

� � .modH/ is a character � .mod q/ satisfying �.H/D 1.

� QDQH DmaxfNf� W � .modH/g is the maximum conductor of H .

� fH D lcmff� W � .modH/g is the conductor of H .

� H� .mod fH / is the primitive congruence class group inducing H .

� hH D ŒI.q/ WH�.

We also adhere to the convention that all implied constants in all asymptotic inequali-
ties f �g or f DO.g/ are absolute with respect toH andK. If an implied constant
depends on a parameter, such as �, then we use�� andO� to denote that the implied
constant depends at most on �. All implied constants will be effectively computable.
Finally, all sums over integral ideals of K will be over nonzero integral ideals.

2B. Hecke L-functions. For a more detailed reference on Hecke L-functions, see
[Lagarias et al. 1979]. Strictly speaking, a Hecke character � is a function on Cl.q/
but, by pulling back the domain of � and extending it by zero, we regard � as a
function on integral ideals of K. We use this convention throughout the paper.

The Hecke L-function of �, denoted L.s; �/, is defined as

L.s; �/D
X
n

�.n/Nn�s D
Y
p

�
1�

�.p/

Nps

��1
(2-1)
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for Refsg> 1, where the sum is over integral ideals n of K and the product is over
prime ideals p of K. Recall that the Dedekind zeta function �K.s/ is the primitive
Hecke L-function associated to the trivial character �0; that is,

�K.s/D
X
n

.Nn/�s D
Y
p

�
1�

1

Nps

��1
(2-2)

for Refsg> 1. Returning to L.s; �/, assume that � is primitive for the remainder of
this subsection, unless otherwise specified. Define the completed Hecke L-function
�.s; �/ by

�.s; �/D Œs.s� 1/�ı.�/Ds=2� 
�.s/L.s; �/; (2-3)

where D� D DKNf�, ı.�/ is the indicator function of the trivial character, and

�.s/ is the gamma factor of � defined by


�.s/D
h
��s=2�

�
s

2

�ia.�/
�

h
��.sC1/=2�

�
sC1

2

�ib.�/
: (2-4)

Here a.�/ and b.�/ are certain nonnegative integers satisfying

a.�/C b.�/D nK : (2-5)

It is a classical fact that �.s; �/ is entire of order 1 and satisfies the functional
equation

�.s; �/D w.�/�.1� s; �/; (2-6)

where w.�/2C is the root number of � satisfying jw.�/j D 1. The zeros of �.s; �/
are the nontrivial zeros � of L.s; �/ and are known to satisfy 0 < Ref�g< 1. The
trivial zeros ! of L.s; �/ are given by

ord
sD!

L.s; �/D

8<:
a.�/� ı.�/ if ! D 0;
b.�/ if ! D�1;�3;�5; : : : ;
a.�/ if ! D�2;�4;�6; : : : ;

(2-7)

and arise as poles of the gamma factor of L.s; �/. Since �.s; �/ is entire of order 1,
it admits a Hadamard product factorization given by

�.s; �/D eA.�/CB.�/s
Y
�

�
1�

s

�

�
es=�: (2-8)

Lemma 2.1. Let � be a primitive Hecke character. Then

�Re
n
L0

L
.s; �/

o
D
1

2
logD�CRe

�
ı.�/

s� 1
C
ı.�/

s

�
�

X
�

Re
n
1

s��

o
CRe

�

 0�


�
.s/

�
;

where the sum is over all nontrivial zeros � of L.s; �/.

Proof. See [Lagarias and Odlyzko 1977, Lemma 5.1], for example. �
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By similar arguments, there exists an explicit formula for higher derivatives
of �L

0

L
.s; �/.

Lemma 2.2. Let � be a Hecke character (not necessarily primitive) and k � 1 be a
positive integer. Then

.� 1/kC1
dk

dsk
L0

L
.s; �/D

X
p

1X
mD1

.log Np/�.p/
.log Npm/k

.Npm/s

D
ı.�/kŠ

.s� 1/kC1
�

X
!

kŠ

.s�!/kC1

for Refsg> 1, where the first sum is over prime ideals p of K and the second sum
is over all zeros ! of L.s; �/, including trivial ones, counted with multiplicity.

Proof. By standard arguments, this follows from the Hadamard product (2-8) of
�.s; �/ and the Euler product of L.s; �/. See [Lagarias et al. 1979, (5.2) and (5.3)],
for example. �

2C. Explicit L-function estimates. In order to obtain explicit results, we must
have explicit bounds on a few important quantities. First, we record a bound for
L.s; �/ in the critical strip 0 < Refsg< 1 via a Phragmén–Lindelöf type convexity
estimate due to Rademacher.

Lemma 2.3 [Rademacher 1959]. Let � be a primitive Hecke character and take
� 2

�
0; 1
2

�
. Then for s D � C it ,

jL.s; �/j �
ˇ̌̌
1Cs

1�s

ˇ̌̌ı.�/
�Q.1C �/

nK

�
D�

.2�/nK
.3Cjt j/nK

�.1C���/=2
uniformly in the strip ��� � � 1C �.

Next, we record an explicit bound on the digamma function and 
 0�

�
.s/.

Lemma 2.4. Let sD �C it with � > 1 and t 2R. Then Re
˚
� 0

�
.s/
	
� log jsjC��1

and, for any Hecke character �,

Re
�

 0�


�
.s/

�
�
nK

2
.log.jsjC 1/C ��1� log�/:

In particular, for 1 < � � 6:2 and jt j � 1, we have Re
˚
 0�

�
.s/
	
� 0.

Proof. The first estimate follows from [Ono and Soundararajan 1997, Lemma 4].
The second estimate is a straightforward consequence of the first combined with
the definition of 
�.s/ in (2-4). The third estimate is contained in [Ahn and Kwon
2014, Lemma 3]. �

Next, we establish some bounds on the number of zeros of L.s; �/ in a circle.
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Lemma 2.5. Let � be a Hecke character. Let s D � C it with � > 1 and t 2 R. For
r > 0, denote

N�.r I s/ WD #f�D ˇC i
 W 0 < ˇ < 1; L.�; �/D 0; js� �j � rg: (2-9)

If 0 < r � 1, then

N�.r I s/� f4 logDKC2 log Nf�C2nK log.jt jC3/C4C4ı.�/g � rC4C4ı.�/:

Proof. Without loss, we may assume � is primitive. Observe that

N�.r I s/�N�.r I 1C it/�N�.2r I 1C r C it/;

so it suffices to bound the latter quantity. Now, if s0 D 1C r C it , notice

N�.2r I s0/� 4r
X

js0��j�2r

Re
n

1

s0��

o
� 4r

X
�

Re
n

1

s0��

o
:

Applying Lemmas 2.1 and 2.4 twice and noting Re
˚
L0

L
.s0; �/

	
� �

� 0K
�K
.1C r/ via

their respective Euler products, the above is

� 4r

�
Re
n
L0

L
.s0; �/

o
C
1

2
logD�CRe

�

 0�


�
.s0/

�
C ı.�/Re

n
1

s0
C

1

s0�1

o�
� f4 logDK C 2 log Nf�C 2nK log.jt jC 3/C 4C 4ı.�/g � r C 4C 4ı.�/

as D� DDKNf�. For details on estimating � �
0
K

�K
.1C r/, see Lemma 2.10. �

To improve the bound in Lemma 2.5, we exhibit an explicit inequality involv-
ing the logarithmic derivative of L.s; �/ comparable with [Kadiri and Ng 2012,
Theorem 2] for the Dedekind zeta function.

Proposition 2.6. Let 0 < � < 1
4

, T � 1, and s D � C it . For a primitive Hecke
character �, define a multiset of nontrivial zeros of L.s; �/ by

Zr;t D f�D ˇC i
 W L.�; �/D 0; j1C it � �j � rg:

Then, for 0 < r < �,

�Re
n
L0

L
.s; �/

o
�

�
1

4
C
�

�
C 5�10

�
L�C .4�2C 80�10/L0�

C ı.�/Re
n
1

s�1

o
�

X
�2Zr;t

Re
n
1

s��

o
CO�.nK/ (2-10)

and

�Re
n
L0

L
.s; �/

o
�

�
1

4
C
�

�
C 5�10

�
L�C ı.�/Re

n
1

s�1

o
CO�.nK/ (2-11)

uniformly in the region 1<��1C� and jt j�T , where L�D logD�CnK log.TC3/
and L0� D logDK CL�.
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Proof. This result is a modified version of [Zaman 2016a, Lemma 4.3] which is
motivated by [Heath-Brown 1992, Lemma 3.1]. The main improvements are the
valid range of � and t . Consequently, we sketch the argument found in [Zaman
2016a] highlighting the necessary modifications. Assume � is nontrivial. Apply
[Heath-Brown 1992, Lemma 3.2] with f .z/ D L.z; �/, a D s, and R D 1 � �,
where �D �s;� 2

�
0; 1
10

�
is chosen sufficiently small so that L.w; �/ has no zeros

on the circle jw� sj DR. Then

�Re
n
L0

L
.s; �/

o
D�

X
js��j<R

Re
n
1

s��
�
s��

R2

o
�J; (2-12)

where
J WD

Z 2�

0

cos �
�R
� log jL.sCRei� ; �/j d�:

To bound J from below, write

J D

Z �=2

0

C

Z 3�=2

�=2

C

Z 2�

3�=2

D J1CJ2CJ3;

say, so we may consider each contribution separately. For J1, notice by [Zaman
2016a, Lemma 2.5],

log jL.sCRei� ; �/j � log �K.� CR cos �/� nK log
�

1

��1CR cos �

�
:

Write
�
0; �
2

�
D
�
0; �
2
� .� � 1/

�
[
�
�
2
� .� � 1/; �

2

�
D I1[ I2, say. Then

J1 D

Z
I1

C

Z
I2

� nK

Z
I1

cos � log
�

1

cos �

�
d� CnK log

�
1

��1

� Z
I2

cos � d� �� nK :

A similar argument holds for J3 so J1CJ3�� nK . For J2, consider � 2
�
�
2
; 3�
2

�
.

As 1<� �1C� andR<1, we have 0<�CR cos � �1C�. Hence, by Lemma 2.3,

log jL.sCRei� ; �/j � 1
2
L�.�R cos � C �/CO�.nK/:

Thus,

J2 �
L�
2�R

Z 3�=2

�=2

.�R cos2 � C � cos �/ d� CO�.nK/;

yielding overall
J � �

�
1

4
C

�

�R

�
L�CO�.nK/: (2-13)

For the sum over zeros in (2-12), observe that the terms are nonnegative, so (2-11)
follows immediately from (2-12) and (2-13) after taking �!0, which impliesR!1.
To prove (2-10), consider 0 < r < �. By the same observation, we may restrict our
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sum over zeros from js� �j<R to a smaller circle within it: j1C it � �j � r . As
r < � < 1

4
by assumption, we discard the zeros outside this smaller circle. For such

zeros � satisfying j1C it � �j � r , notice Refs � �g D � �ˇ � �C r < 2�. This
implies, by Lemma 2.5, that

X
j1Cit��j�r

Re
ns� �
R2

o
�
2�

R2
� f.2L0�C 8/r C 8g �

4�2

R2
L0�CO.1/: (2-14)

Thus, (2-10) immediately follows2 upon combining (2-12), (2-13), and (2-14), and
taking �! 0, which implies R! 1. This completes the proof for � nontrivial.

For �D �0 trivial, similarly proceed with [Heath-Brown 1992, Lemma 3.2] with
f .z/D ..z�1/=.zC1//�K.z/ and aD z, but the choice of R is different due to the
simple pole of the Dedekind zeta function. Observe that the circles jw� 1j D �10

and jw� sj DR are disjoint for at least one of the following:

(i) all R 2 .1� �10; 1/, or

(ii) all R 2 .1� 5�10; 1� 4�10/.

In the case of (i), choose RD 1� � for �D �s;� sufficiently small so that L.w; �/
has no zeros on the circle jw� sj DR. Similarly for (ii), take RD 1� 4�10� �.

Continuing with the same arguments, the only difference occurs when bounding
J1 and similarly J3, in which case one must estimateZ �=2

0

cos �
�R

log
ˇ̌̌
s�1CRei�

sC1CRei�

ˇ̌̌
d�:

By our choice of R, the quantity in the logarithm is �� 1, and hence the above
is O�.1/. The remainder of the argument is the same, except at the final step one
must take R! 1 in case (i) and R! 1� 4�10 in case (ii). The latter case yields
the additional �10 terms appearing in (2-10). �

Lemma 2.7. Let � be a Hecke character and 0 < r < � < 1
4

. If s D � C it with
1 < � < 1C � and N�.r I s/ by (2-9), then, letting � D 1C 4

�
�C 16�2C 340�10,

N�.r I s/� �
�
2 logDK C log Nf�CnK log.jt jC 3/CO�.nK/

�
� r C 4C 4ı.�/:

Proof. This is analogous to Lemma 2.5 except that we bound N�.r I 1C it/ instead
of N�.2r I 1CrC it/, and further, we apply Proposition 2.6 in place of Lemmas 2.1
and 2.4. �

2One actually obtains (2-10) without the extra �10 terms.
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2D. Arithmetic sums. We estimate various sums over integral ideals of K, which
requires some additional notation. It is well-known that the Dedekind zeta function
�K.s/, defined by (2-2), has a simple pole at s D 1. Thus, we may define

�K WD Res
sD1

�K.s/ and 
K WD �
�1
K lim

s!1

�
�K.s/�

�K

s� 1

�
(2-15)

so the Laurent expansion of �K.s/ at s D 1 is given by

�K.s/D
�K

s� 1
C �K
K COK.js� 1j/:

We refer to 
K as the Euler–Kronecker constant of K. (See [Ihara 2006] for details
on 
K .)

Lemma 2.8. For x > 0 and 0 < � < 1
2

,ˇ̌̌̌ X
Nn<x

1

Nn

�
1�

Nn
x

�nK
� �K

�
log x�

nKX
jD1

1

j

�
� �K
K

ˇ̌̌̌
�� .n

nK
K DK/

1=4C�x�1=2:

Proof. The quantity we wish to bound equals

1

2�i

Z � 1
2
Ci1

� 1
2
�i1

�K.sC 1/
xs

s

nK ŠQnK
jD1.sC j /

ds

D
nK Š

2�i

Z � 1
2
Ci1

� 1
2
�i1

�K.sC 1/
�.s/

�.nK C 1C s/
xs ds:

Applying Lemma 2.3, Stirling’s formula, and �Q.1C �/
nK � eO�.nK/, the result

follows. �

Corollary 2.9. Let � > 0 be arbitrary. If x � 3.nnKK DK/
1=2C�, thenX

Nn<x

1

Nn
�

n
1�

1

1C2�
CO�

�
1

log x

�o
� �K log x:

Proof. It suffices to assume that �K � 1= log x. From Lemma 2.8, it follows that

1

�K

X
Nn<x

1

Nn
� log x�

nKX
jD1

1

j
C 
K CO�.x

��=8 log x/;

by our assumption on x. By [Ihara 2006, Proposition 3],


K � �
1

2
logDK C


QC log 2�
2

�nK � 1;
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where 
Q D 0:5772 : : : is Euler’s constant. Since
P
1�j�nK

j�1 � lognK C 1,

1

�K

X
Nn<x

1

Nn

� .log x/f1CO�.x��=8/g�
1

2
logDK C


QC log 2�
2

�nK � lognK � 2

� .log x/
n
1�

1

1C2�
CO�..log x/�1/

o
;

by our assumption on x. �

Taking the logarithmic derivative of �K.s/ yields in the usual way

�
�0K
�K
.s/D

X
n�OK

ƒK.n/

.Nn/s
(2-16)

for Refsg> 1, where ƒK. � / is the von Mangoldt ƒ-function of the field K defined
by

ƒK.n/D

�
log Np if n is a power of a prime ideal p,
0 otherwise.

(2-17)

Using this identity, we prove an elementary lemma.

Lemma 2.10. For y � 3 and 0 < r < 1,

(i) �
�0K
�K
.1C r/D

X
n

ƒK.n/

Nn1Cr
�
1

2
logDK C

1

r
C 1, and

(ii)
X

Nn�y

ƒK.n/

Nn
� e log.eD1=2K y/.

Proof. Part (i) follows from Lemmas 2.1 and 2.4, (2-16), and Ref.1Cr��/�1g � 0.
Part (ii) follows from (i) by taking r D .logy/�1. �

Finally, we end this section with a bound for hH in terms of nK , DK , and
QDQH , and a comparison between Q and NfH .

Lemma 2.11. Let H be a congruence class group of K. For � > 0,

hH � e
O�.nK/D

1=2C�
K Q1C�:

Proof. Observe, by the definitions of Q and fH in Section 2A, that for a Hecke
character � .modH/ we have f� j fH and Nf� �Q. Hence,

hH D
X

� .modH/

1�
X

Nf�Q
f j fH

X
� .mod f/

1D
X

Nf�Q
f j fH

#Cl.f/:

Recall the classical bound #Cl.f/� 2nKhKNf, where hK is the (broad) class number
of K. (See [Milne 2013, Theorem 1.7], for example.) Bounding the class number
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using Minkowski’s bound (see [Weiss 1983, Lemma 1.12], for example), we deduce
that

hH �
X

Nf�Q
f j fH

eO�.nK/D
1=2C�
K Nf� eO�.nK/D

1=2C�
K Q1C�

X
f j fH

1

.Nf/�
:

For the remaining sum, notice
P

f j fH
.Nf/�� �

Q
p j fH

.1�Np��/�1 � eO.!.fH //,
where !.fH / is the number of prime ideals p dividing fH . From [Weiss 1983,
Lemma 1.13], we have !.fH / � O�.nK/ C � log.DKQ/, whence the desired
estimate follows after rescaling �. �
Remark. Weiss [1983, Lemma 1.16] achieves a comparable bound with Q1C�

replaced by NfH . This seemingly minor difference will in fact improve the range
of T in Theorem 3.2.

Lemma 2.12. Let H be a congruence class group of K. Then Q � NfH �Q
2.

Remark. The lower bound is achieved when H D PfH . We did not investigate the
tightness of the upper bound, as this estimate is sufficient for our purposes.

Proof. The arguments here are motivated by [Weiss 1983, Lemma 1.13]. Without
loss, we may assumeH is primitive. SinceQDQH DmaxfNf� W� .modH/g and
fH D lcmff� W� .modH/g, the lower bound is immediate. For the upper bound, we
apply arguments similar to [Weiss 1983, Lemma 1.13]. Consider any m j fH . Let
Hm denote the image of H under the map I.fH /=PfH ! I.m/=Pm. This induces
a map I.fH /=H ! I.m/=Hm, which, since H is primitive, must have nontrivial
kernel. Hence, characters of I.m/=Hm induce characters of I.fH /=H .

Now, for p j fH , choose eD ep � 1 maximal so that pe j fH . Define mp WD fHp�1

and consider the induced map I.fH /=H ! I.mp/=Hmp with kernel Vp. Since H is
primitive, Vp must be nontrivial and hence #Vp � 2. Observe that the characters �
of I.fH /=H such that pe − f� are exactly those which are trivial on Vp and hence
are hH=#Vp in number. For a given p, this yields

hH

2
� hH

�
1�

1

#Vp

�
D

X
� .modH/
pep k f�

1:

Multiplying both sides by log.Npep/ and summing over p j fH , we have

1

2
hH log NfH D

hH
2

X
p j fH

log.Npep/�
X
p j fH

X
� .modH/
pep k f�

log Npep

�

X
� .modH/

log Nf� � hH logQ:

Comparing both sides, we deduce NfH �Q
2 as desired. �
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Lemma 2.13. Let H be a congruence subgroup of K and � > 0 be arbitrary. ThenX
p j fH

log Np

Np
� .2�/�1nK C � logQ:

Proof. This follows from [Zaman 2016a, Lemma 2.4] and Lemma 2.12. �

3. Proof of Theorem 1.1 and Linnik’s three principles

3A. Proof of Theorem 1.1. The primary goal in this paper is to prove the following
result, from which Theorem 1.1 follows.

Theorem 3.1. Let K be a number field, let H .mod q/ be a congruence class
group of K, and let fH be the conductor of H . Let I.q/ be the group of fractional
ideals of K which are coprime to q and let C 2 I.q/=H be arbitrary. Let �
.modH/ be a character of I.q/=H of conductor f�. Finally, let hH D ŒI.q/ WH�,
QDmaxfNK=Qf� W � .modH/g, and m be the product of prime ideals dividing q

but not fH . If

x �D694K Q521CD232K Q367n
290nK
K C .DKQn

nK
K /1=1000NK=Qm; (3-1)

and DKQŒK WQ�ŒKWQ� is sufficiently large, then

#fp 2 C W deg.p/D 1; NK=Q p� xg � .DKQn
nK
K /�5

x

hH log x
:

Assuming Theorem 3.1, we now prove Theorem 1.1.

Proof of Theorem 1.1. The proof proceeds exactly as in [Weiss 1983, Theorem 6.1].
Let L=F be a finite Galois extension of number fields with Galois group G, and
let C � G be a given conjugacy class. Let A � G be an abelian subgroup such
that A \ C is nonempty, and let K D LA be the fixed field of A. Let fL=K be
the conductor of L=K, and let m be the product of prime ideals P in K which
are unramified in L but such that the prime p of F lying under P is ramified
in L. If

�L=K
P

�
denotes the Artin symbol, then the Artin map P 7!

�L=K
P

�
induces

a group homomorphism I.mfL=K/! A because the conjugacy classes in A are
singletons; thus if H is the kernel of the homomorphism, then the canonical map
! W I.mfL=K/=H ! A is an isomorphism. Moreover, H is a congruence class
group modulo the ideal mfL=K of K with fH D fL=K .

Choose �0 2 C \A. Using !, �0 determines a coset of I.mfH /=H ; thus by
Theorem 3.1, if (3-1) holds and DKQn

nK
K is sufficiently large, then

#
n
NK=QP� x W deg.P/D 1;

h
L=K

P

i
D f�0g

o
� .DKQn

nK
K /�5

x

hH log x
:

Let p be a prime ideal of F lying under P. By the definition of m, p is unramified in
L and NK=QPD NF=Q p because deg.P/D 1. Furthermore, ŒL=F; p�D C . Thus
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if x satisfies (3-1),

#
n
p W deg.p/D 1;

h
L=F

p

i
D C; NF=Q p� x

o
� .DKQn

nK
K /�5

x

hH log x
:

As in [Weiss 1983, Theorem 6.1], NK=Qm � DK and hH D ŒL W K�. By the
definition of Q and the definition of H , we have that QDQ, so

�C .x; L=F /� .DKQnnKK /�5
x

ŒL WK� log x
(3-2)

wheneverDKQn
nK
K is sufficiently large and x�D694K Q521CD232K Q367n290nKK C

DKQnnKK . Since DKQnnKK � DLn
nL
L and there are only finitely many number

fields L with DLn
nL
L not sufficiently large, we may enlarge the implied constant in

Theorem 1.1 to allow for those exceptions and complete the proof. �

3B. The key ingredients. To outline our proof of Theorem 3.1, we recall the
modern approach to proving Linnik’s bound on the least prime in an arithmetic
progression. In order to obtain small explicit values of c1 in (1-2), one typically
requires three principles, explicit versions of which are recorded in [Heath-Brown
1992, Section 1]:

� A zero-free region for Dirichlet L-functions: if q is sufficiently large, then the
product

Q
� .mod q/L.s; �/ has at most one zero in the region

s D � C it; � � 1�
0:10367

log.q.2Cjt j//
: (3-3)

If such a zero exists, it is real and simple and its associated character is also
real.

� A “log-free” zero density estimate: if q is sufficiently large, � > 0, and we
define N.�; T; �/D #f�D ˇC i
 W L.�; �/D 0; j
 j � T; ˇ � �g, thenX

� .mod q/

N.�; T; �/�� .qT /
.12=5C�/.1��/; T � 1: (3-4)

� The zero repulsion phenomenon: if q is sufficiently large, � > 0 is sufficiently
small, � > 0, and the exceptional zero in the region (3-3) exists and equals
1��= log q, then

Q
� .mod q/L.s; �/ has no other zeros in the region

� � 1�

�
2
3
� �
�
.log��1/

log.q.2Cjt j//
: (3-5)

If such an exceptional zero exists, then it is real and simple and it corresponds
with a nontrivial real character �.

Number field variants of these principles were proved by Fogels [1962a; 1962b],
but his proof did not maintain the necessary field uniformity. To prove (1-7), Weiss
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developed variants of these principles with effective number field dependence; the
effective field dependence is critical for the proof of (1-7). To prove Theorem 3.1,
we make Weiss’ field-uniform results explicit.

3C. The zero density estimate. In Sections 4–6, we prove an explicit version of
Weiss’ variant of (3-4) for Hecke characters using the power sum method. Assume
the notation in the previous section, and define

N.�; T; �/ WD #f�D ˇC i
 W L.�; �/D 0; � < ˇ < 1; j
 j � T g;

where the nontrivial zeros � of L.s; �/ are counted with multiplicity. Weiss [1983,
Corollary 4.4] proved that there exists an absolute constant c6 > 0 such that if
1
2
� � < 1 and T � n2Kh

1=nK
H , thenX

� .modH/

N.�; T; �/� .eO.nK/D2KQT
nK /c6 : (3-6)

We prove the following.

Theorem 3.2. LetH be a congruence class group of a number fieldK. If 1
2
�� <1

and T �maxfn5=6K .D
4=3
K Q

4=9
/�1=nK ; 1g, thenX

� .modH/

N.�; T; �/� feO.nK/D2KQT
nKC2g

81.1��/: (3-7)

If 1� 10�3 � � < 1, then one may replace 81 with 73.5.

Remarks. � Theorem 3.2 noticeably improves Weiss’ density estimate (3-6) in
the range of T . If nK � 2.logDK/= log logDK , then Theorem 3.2 holds for
T � 1. Thus we may take T � 1 for most choices of K.

� We see from Minkowski’s lower bound for DK and the valid range of T that
the eO.nK/ factor is always negligible, regardless of how nK compares to
.logDK/= log logDK .

It is instructive to compare the two primary methods for proving log-free zero
density estimates. The basic idea behind the proof of (3-4) (the so-called mollifier
method) is to construct a Dirichlet polynomial which detects zeros by assuming
large values at the zeros of a Dirichlet L-function. The optimal Dirichlet polynomial
for this task looks like a smoothed version of �.n/, where

�.n/D

�
.�1/r if n is squarefree with r prime factors;
0 otherwise;

is the usual Möbius function. In order to efficiently sum the large values contributed
by each of the detected zeros, one relies on the fact that the partial sums of �.n/
exhibit significant cancellation. To see why this is true, observe that the prime
number theorem (with the error term of Hadamard and de la Vallée Poussin) is



1152 Jesse Thorner and Asif Zaman

equivalent to the statement that there exists an absolute constant c7 > 0 such that if
x is sufficiently large, thenX

n�x

�.n/� x exp.�c7.log x/1=2/: (3-8)

The fact that (3-8) is a part of the proofs of the log-free zero density estimates in
[Graham 1977; Heath-Brown 1992; Iwaniec and Kowalski 2004; Jutila 1977] may
not be immediately obvious. After summing the mollified Dirichlet polynomials
over all characters � .mod q/ and applying duality, one must ultimately minimize
the quadratic form

S.x/D
X
n�x

�X
d jn

�d

�2
subject to the constraint

�d D

8<:�.d/min
�
1;

log.z2=d/
log.z2=z1/

�
if 1� d � z2;

0 if d > z2;

where 1<z1<z2 are given real numbers. (For example, see [Iwaniec and Kowalski
2004, pp. 430–431].) Each of [Graham 1977; Heath-Brown 1992; Iwaniec and
Kowalski 2004; Jutila 1977] uses the work of Graham [1978] to estimate S.x/ with
this choice of �d ; Graham proved that

S.x/�
x

log.z2=z1/

�
1CO

�
1

log.z2=z1/

��
: (3-9)

At several points in the proof, Graham uses the asymptotic prime number theorem
in the form (3-8).

For a number field K, let �K.n/ be the extension of the Möbius function to
the prime ideals of K. For the sake of simplicity, suppose that the Dedekind zeta
function �K.s/ has no Landau–Siegel zero. The effective form of the prime ideal
theorem proven in [Lagarias and Odlyzko 1977] is equivalent to the statement that
there exists an absolute constant c8 > 0 such that if log x� nK.logDK/2, thenX

Nn�x

�K.n/� x exp
�
�c8

� log x
nK

�1=2 �
:

Therefore, to generalize (3-9) to the Möbius function ofK, x needs to be larger than
any polynomial in DK before the partial sums of �K.n/ up to x begin to exhibit
cancellation. Thus if one extends the preceding arguments to prove an analogue of
(3-4) for the Hecke characters of K, then the ensuing log-free zero density estimate
will not have the K-uniformity which is necessary to prove Theorem 3.1.

Turán developed an alternative formulation of log-free zero density estimates. The
idea is to take high derivatives of L0=L.s; �/. This produces a large sum of complex
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numbers involving zeros of L.s; �/, which can be bounded below by the Turán
power sum method (see Proposition 5.1). The integral of a certain zero-detecting
polynomial (which is not defined in terms of the Möbius function) gives an upper
bound for these high derivatives. Thus, when a certain zero-detecting polynomial
(which is not defined in terms of the Möbius function) encounters a zero of L.s; �/,
its integral will be bounded away from zero because of the lower bound given by
the power sum method. The contributions from the detected zeros up to height T
are summed efficiently using a particular large sieve inequality (see Section 4).

The advantage of using the power sum method in our proofs lies in the fact that
Turán’s lower bound for power sums is a purely Diophantine result, independent of
the number fields in our proofs; this allows for noticeably better field uniformity
than the mollifier method. The disadvantage is that the lower bound in the power
sum method is quite small, which, for example, would inflate the constant 12

5
in

(3-4). To our knowledge, the power sum method is the only tool available that
produces a K-uniform log-free zero density estimate of the form (3-4) which is
strong enough to deduce a conclusion as strong as Theorem 1.1. Limitations to the
power sum method indicate a genuine obstacle to any substantive improvements in
the constants in Theorem 1.1 when using these methods.

To prove the large sieve inequality (4-4) used in the proof of Theorem 3.2, we use
bounds in Section 2 for certain sums over integral ideals, which require smoothing
with a kernel that is nK times differentiable. Unfortunately, the smoothing intro-
duces the powers of nKnK (see the comments immediately preceding [Weiss 1983,
Section 1]). As mentioned after Theorem 1.1, the factor of nKnK is negligible if
nK is small compared to .logDK/= log logDK , which is expected to be the case
in most applications.

3D. Zero repulsion. In Section 7, we prove an explicit variant of the zero repul-
sion phenomenon for Hecke L-functions, also known as the Deuring–Heilbronn
phenomenon.

Theorem 3.3. Let H be a congruence class group of K. Let  .modH/ be a real
Hecke character and suppose L.s;  / has a real zero ˇ1. Let T � 1 be arbitrary,
� .modH/ an arbitrary Hecke character, and �0 D ˇ0 C i
 0 a zero of L.s; �/
satisfying 1

2
� ˇ0 < 1 and j
 0j � T . Then, for � > 0 arbitrary,

ˇ0 � 1�

log
� c�

.1�ˇ1/ log.DK �Q �T nKeO�.nK//

�
b1 logDK C b2 logQC b3nK logT CO�.nK/

for some absolute, effective constant c� > 0 and

.b1; b2; b3/D

�
.48C �; 60C �; 24C �/ if  is quadratic;
.24C �; 12C �; 12C �/ if  is trivial.
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Remark. Other versions of the zero repulsion phenomenon by Kadiri and Ng [2012]
and Zaman [2016a] apply for an asymptotically smaller range of ˇ0 and j
 0j � 1.

In Section 8, we collect all existing results and our new theorems on the dis-
tribution of zeros of Hecke L-functions and package them into versions required
for the proof of Theorem 3.1. The necessary explicit zero-free regions for Hecke
L-functions have already been established in previous work of Zaman [2016a;
2017a], which improved on [Ahn and Kwon 2014; Kadiri 2012], and are valid in a
certain neighborhood of s D 1. In Sections 9–11, we use Theorems 3.2 and 3.3,
along with the aforementioned work of Zaman, to prove Theorem 3.1. In Section 12,
we prove Theorems 1.2–1.5 using Theorem 1.1.

4. Mean values of Dirichlet polynomials

Gallagher [1970] proved the following mean value results for Dirichlet polynomials.

Theorem. Let fang be a sequence of complex numbers such that
P
n�1 njanj

2<1.

(1) If T � 1, thenX
� .mod q/

Z T

�T

ˇ̌̌ 1X
nD1

an�.n/n
it
ˇ̌̌2
dt �

1X
nD1

.qT Cn/janj
2: (4-1)

(2) Let R � 2, and assume an D 0 if n has any prime factor less than R. If T � 1,
thenX
q�R

log R
q

X�

� .mod q/

Z T

�T

ˇ̌̌ 1X
nD1

an�.n/n
it
ˇ̌̌2
dt �

1X
nD1

.R2T Cn/janj
2: (4-2)

Here,
P� denotes the restriction to primitive characters � .mod q/.

In (4-2), the log.R=q/ weighting on the left-hand side (which arises from the
support of an) turns out to be decisive in some applications, such as the proof of
(1-2). To prove Theorem 3.2, we need a K-uniform analogue of (4-1) when an is
supported as in (4-2). Weiss used the Selberg sieve to prove such a result in his
Ph.D. thesis [1980, Theorem 30, p. 98].

Theorem (Weiss). Let b. � / be a complex-valued function on the integral ideals n
of K, and suppose that

P
n.Nn/jb.n/j2 <1. Let T � 1. Suppose that b.n/D 0

when n has a prime ideal factor p with Np � z, and define V.z/D
P

Nn�z Nn�1.
If 0 < � < 1

2
, thenX

�.H/D1

Z T

�T

ˇ̌̌X
n

b.n/�.n/Nn�it
ˇ̌̌2
dt

�

X
n

jb.n/j2
� �K
V.z/

NnC c.�/.nnKK DKQT
nKz4/1=2C�hHT

�
for some constant c.�/ > 0 depending only on �.
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Remark. Assuming the Lindelöf hypothesis for Hecke L-functions, the upper
bound improves to

�

X
n

jb.n/j2
� �K
V.z/

NnC c.�/.DKQ/
�hHT

1C�nKz2C�
�
:

This appears to be optimal when using the Selberg sieve, considering that when
K DQ, the second term is roughly .qT z2/1C�. For related unconditional results,
see [Duke 1989, Section 1].

This result is interesting in its own right, but to make the result more practical for
the applications at hand, Weiss chose b.n/ to be supported on the prime ideals p such
that y <Np�yc9 . Then, Weiss set zDy1=3 and chose logy� c10 log.DKQT nK /
and � D 1

3
. By Corollary 2.9 and taking c9 and c10 to be sufficiently large, Weiss’

result reduces toX
�.H/D1

Z T

�T

ˇ̌̌ X
y<Np�yc9

b.p/�.n/Nn�it
ˇ̌̌2
dt �

1

logy

X
y<p�yc9

jb.p/j2Np:

Weiss [1983, Corollary 3.8] recast this estimate with more generality.

Corollary 4.1 (Weiss). Let b. � / be a complex-valued function on the prime ideals
p of K such that

P
p.Np/jb.p/j2 <1 and b.p/D 0 whenever Np� y. Let H be a

primitive congruence class group of K. If y � .hHn
2nK
K DKQT

2nK /8, thenX
�.H/D1

Z T

�T

ˇ̌̌X
p

b.p/�.n/Nn�it
ˇ̌̌2
dt �

1

logy

X
p

jb.p/j2Np:

The exponent 8 in the range of y in Corollary 4.1 is large enough to influence the
value of c6 in (3-6), which affects c3 and c4 in (1-7). In this section, we improve
Corollary 4.1 so that it does not influence the exponents in Theorem 3.2.

Theorem 4.2. Let � � � > 0 be arbitrary. Let b. � / be a complex-valued function
on the prime ideals p of K such that

P
p.Np/jb.p/j2 <1 and b.p/D 0 whenever

Np� y. Let H be a primitive congruence class group of K. If T � 1 and

y � C�fhHn
.5=4C�/nK
K D

3=2C�
K Q1=2T nK=2C1g1C� (4-3)

for some sufficiently large C� > 0, thenX
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�

�
5�
˚
1� 1

1C�

	�1
1
1C�

log
� y
hH

�
�L0
CO�.y

��=2/

�X
p

Npjb.p/j2; (4-4)

where L0 D 1
2

logDK C 1
2

logQC 1
4
nK lognK C

�
1
2
nK C 1

�
logT CO�.1/.
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Remark. Taking � D � and using Lemma 2.11, we improve the range of y in
Corollary 4.1 to

y� eO�.nK/fn
5=4nK
K D2KQ

3=2T nK=2C1g1C�:

4A. Preparing for the Selberg sieve. To apply the Selberg sieve, we require several
weighted estimates involving Hecke characters. Before we begin, we highlight the
necessary properties of our weight ‰.

Lemma 4.3. For T � 1, let AD T
p
2nK . Define

b‰.s/D hsinh.s=A/
s=A

i2nK
and let

‰.x/D
1

2�i

Z 2Ci1

2�i1

b‰.s/x�s ds
be the inverse Mellin transform of b‰.s/. Then:

(i) 0�‰.x/�A=2 and‰.x/ is a compactly supported function vanishing outside
the interval e�2nK=A � x � e2nK=A.

(ii) b‰.s/ is an entire function.

(iii) For all complex s D � C it , jb‰.s/j � .A=jsj/2nKej� j=A.

(iv) For jsj � A, jb‰.s/j � .1Cjsj2=.5A2//2nK .

(v) Uniformly for j� j � A=
p
2nK , jb‰.s/j � 1.

(vi) Let fbmgm�1 be a sequence of complex numbers with
P
m jbmj<1. ThenZ T

�T

ˇ̌̌X
m

bmm
�it
ˇ̌̌2
dt �

5�

2

Z 1
0

ˇ̌̌X
m

bm‰
�
x

m

�ˇ̌̌2 dx
x
:

Proof. For (i)–(v), see [Weiss 1983, Lemma 3.2]; in his notation, ‰.x/DH2nK .x/
with parameter ADT

p
2nK . Statement (vi) follows easily from the proof of [Weiss

1983, Corollary 3.3]. �

For the remainder of this section, assume:

� H .mod q/ is an arbitrary primitive congruence class group of K.

� 0 < � < 1
2

and T � 1 is arbitrary.

� ‰ is the weight function of Lemma 4.3.

Next, we establish improved analogues of [Weiss 1983, Lemmas 3.4 and 3.6 and
Corollary 3.5].
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Lemma 4.4. Let � .modH/ be a Hecke character. For x > 0,ˇ̌̌X
n

�.n/

Nn
�‰
� x

Nn

�
� ı.�/

'.q/

Nq
�K

ˇ̌̌
�� fn

nK=4
K D

1=2
K Q1=2T nK=2C1g1C�:

Proof. The quantity we wish to bound equals

1

2�i

Z �1Ci1
�1�i1

L.sC 1; �/b‰.s/xs ds: (4-5)

If � .mod q/ is induced by the primitive character �� .mod f�/, then

L.s; �/D L.s; ��/
Y

pjq; p−f�

.1���.p/Np�s/:

Thus jL.it; �/j � 2!.q/jL.it; ��/j, where !.q/ is the number of distinct prime ideal
divisors of q. Since H .mod q/ is primitive, !.q/ � 6e4=�nK C �

2
log.DKQ/ by

[Weiss 1983, Lemma 1.13]. So, for Refsg D �1,

jL.sC 1; �/j � eO�.nK/.DKQ/
�=2
jL.sC 1; ��/j:

Thus, by Lemma 2.3, (4-5) is

� eO�.nK/.DKQ/
1=2C�x�1

Z 1
0

.1Cjt j/.1=2C�/nK jb‰.�1C it/j dt
as D� �DKQ. By Lemma 4.3(iii) and (iv), this integral is

�

Z A=2

0

.1Cjt j/.1=2C�/nK jb‰.�1Cit/j dtCZ 1
A=2

.1Cjt j/.1=2C�/nK jb‰.�1Cit/j dt;
which is � eO.nK/A.1=2C�/nKC1. Collecting the above estimates, the claimed
bound, up to a factor of �, follows upon recalling A D T

p
2nK and noting

eO.nK/�� .n
nK
K /�. �

Corollary 4.5. Let C be a coset of H , and let d be an integral ideal coprime to q.
For all x > 0, we haveˇ̌̌ X

n2C; djn

1

Nn
‰
� x

Nn

�
�
'.q/

Nq

�K

hH
�
1

Nd

ˇ̌̌
�� fn

nK=4
K D

1=2
K Q1=2T nK=2C1g1C� �

1

x
:

Proof. The proof is essentially the same as that of [Weiss 1983, Corollary 3.5],
except for the fact that we have an improved bound in Lemma 4.4. �

We now apply the Selberg sieve. For z � 1, define

Sz D fn W p j n) Np> zg and V.z/D
X

Nn�z

1

Nn
: (4-6)
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Lemma 4.6. Let C be a coset of H . For x > 0 and z � 1,

X
n2C\Sz

1

Nn
‰
� x

Nn

�
�

�K

hHV.z/
CO�

�
fn
nK=4
K D

1=2
K Q1=2T nK=2C1g1C�z2C2�

x

�
:

Proof. The proof is essentially the same as that of [Weiss 1983, Lemma 3.6], except
for the fact that we have an improved bound in Lemma 4.4. �

4B. Proof of Theorem 4.2. Let z be a parameter satisfying 1� z � y, which we
will specify later. Extend b.n/ to all integral ideals n of K by zero. Applying
Lemma 4.3 and writing

bm D
X

NnDm

b.n/�.n/;

for each Hecke character � .modH/, it follows that

X
� .modH/

Z T

�T

ˇ̌̌X
n

b.n/�.n/Nn�it
ˇ̌̌2
dt

�
5�

2

Z 1
0

X
� .modH/

ˇ̌̌X
n

b.n/�.n/‰
� x

Nn

�ˇ̌̌2 dx
x
: (4-7)

By the orthogonality of characters and the Cauchy–Schwarz inequality,X
� .modH/

ˇ̌̌X
n

b.n/�.n/‰
� x

Nn

�ˇ̌̌2
� hH

X
C2I.q/=H

�X
n2C

Nnjb.n/j2‰
� x

Nn

�� X
n2C\Sz

‰.x=Nn/

Nn

since z � y and b.n/ is supported on prime ideals with norm greater than y. For
ı D ı.�/ > 0 sufficiently small and Bı > 0 sufficiently large, denote

M 0ı DMız
2C2ı and Mı D Bıfn

nK=4
K D

1=2
K Q1=2T nK=2C1g1Cı :

By Lemma 4.6, the right-hand side of the preceding inequality is therefore at most

X
C2I.q/=H

X
n2C

Nnjb.n/j2‰
� x

Nn

�� �K
V.z/

C
hHM

0
ı

x

�
�

X
n

Nnjb.n/j2‰
� x

Nn

�� �K
V.z/

C
hHM

0
ı

x

�
;

By Lemma 4.3(v), if we insert the above estimates into (4-7), then we obtain the
bound
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X
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�
5�

2

X
n

Nnjb.n/j2
�
�K

V.z/

Z 1
0

‰
� x

Nn

� dx
x
C hHM

0
ı

Z 1
0

1

x
‰
� x

Nn

� dx
x

�
�
5�

2

X
n

Nnjb.n/j2
� �K
V.z/

jb‰.0/jC hHM 0ı
Nn

jb‰.1/j�:
Since b.n/ is supported on prime ideals whose norm is greater than y, the last line
of the previous display is

�
5�

2

� �K
V.z/

CO.hHMız
2C2ıy�1/

�X
p

Npjb.p/j2:

Now, select z satisfying

z D

�
y.1Cı/=.1C�/

hHMı

�1=.2C2ı/
; (4-8)

so 1� z � y and hence

X
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�
5�

2

� �K
V.z/

CO�.y
��=2/

�X
p

Npjb.p/j2 (4-9)

for ıD ı.�/ > 0 sufficiently small. If C� in (4-3) is sufficiently large, then (4-3) and
(4-8) imply z � 3.nnKK DK/

1=2C�=2. Applying Corollary 2.9 to (4-9), it follows
thatX
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�

�
5��

2f1C�g log zCO�.1/
CO�.y

��=2/
�X

p

Npjb.p/j2

since � � � > 0. Finally, by (4-3) and (4-8),

2 log z � 1

1C�
log
�
y

hH

�
�
1

2

n
logDK C logQC 1

2
nK lognK C .nK C 2/ logT CO�.1/

o
:

Putting this estimate into the previous inequality gives the conclusion. �
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5. Detecting the zeros of Hecke L-functions

5A. Notation. We first specify some additional notation to be used throughout this
section.

Arbitrary quantities.

� Let H .mod q/ be a primitive congruence class group.

� Let � 2
�
0; 1
8

�
and � D 1C 4

�
�C 16�2C 340�10.

� Let T � 1. Define QDQH and

LD LT;� WD logDK C 1
2

logQC
�
1
2
nK C 1

�
log.T C 3/C‚nK ; (5-1)

where ‚D‚.�/� 1 is sufficiently large depending on �.

� Let �0 > 1
20

. Suppose � 2 R and � > 0 satisfy

�0 � ��
1
16

L and j� j � T: (5-2)

Furthermore, let r D �
L .

Fixed quantities.

� Let ˛; �; ! 2 .0; 1/ be fixed.

� Define A� 1, so that A1 D
p
A2C 1 satisfies

A1 D 2
�
4e
�
1C

1

˛

��˛
.1C �/: (5-3)

� Let x D eXL and y D eYL with X; Y > 0 given by

Y D Y� D
1

eA1
�
1

˛

n
2�AC

8

�

o
;

X DX� D
2 log

�
2A1
1�!

�
.1�!/

�
1C˛

˛

n
2�AC

8

�

o
;

(5-4)

and ˛; �; ! chosen so that 2 < Y < X . Notice X D X� and Y D Y� depend
on the arbitrary quantities � and �, but they are uniformly bounded above and
below in terms of ˛, �, and !, i.e., X � 1 and Y � 1. For this reason, while
X and Y are technically not fixed quantities, they may be treated as such.

5B. Statement of results.

Detecting zeros. The first goal of this section is to prove the following proposition.

Proposition 5.1. Let � .modH/ be a Hecke character. Suppose L.s; �/ has a
nontrivial zero � satisfying

j1C i� � �j � r D
�

L : (5-5)
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Further assume

J.�/ WD
W1�CW2

A1.1C �/k0
< 1; (5-6)

where

X D X�; Y D Y�;

k0 D k0.�/ D ˛
�1.2�A�C 8/;

W1 DW1.�/D 8A1
�
1C 1

k0

�
C 2eA1

�
Y C 1

2
Cf2X C 1ge�!�X

�
CO.�/;

W2 DW2.�/D 2e!
�1A1e

�!�X
C 18CO.�/:

If � < �
A1

L and 2 < Y < X , then

r4 log
�
x

y

�Z x

y

ˇ̌̌ X
y�Np<u

�.p/ log Np

Np1Ci�

ˇ̌̌2 du
u
C ı.�/1fj� j<Arg.�/

�

�˛=.1C˛/
8e21=˛

�4�A�C16 .1�J.�//2
4

:

Remark. Note that Wj .�/� 1 for j D 1; 2.

The proof of Proposition 5.1 is divided into two main steps, with the final
arguments culminating in Section 5E. The method critically hinges on the following
power sum estimate due to Kolesnik and Straus.

Theorem 5.2 [Kolesnik and Straus 1983]. For any integer M � 0 and complex
numbers z1; : : : ; zN , there is an integer k with M C 1� k �M CN such that

jzk1 C � � �C z
k
N j � 1:007

�
N

4e.MCN/

�N
jz1j

k :

Makai [1964] showed that the constant 4e is essentially optimal.

Explicit zero density estimate. Using Theorem 4.2 and Proposition 5.1, the second
and primary goal of this section is to establish an explicit log-free zero density
estimate. Recall, for a Hecke character �,

N.�; T; �/D #f� W L.�; �/D 0; � < Ref�g< 1; jIm.�/j � T g; (5-7)

where � 2 .0; 1/ and T � 1.

Theorem 5.3. Let � 2 .1;1/ and � 2
�
0; 1
10

�
be fixed and set � D 1� �L . Suppose

�0 � � <
�

�A1
L; X > Y > 4:6;

and T �max
˚
n
5=6
K

�
D
4=3
K Q4=9

��1=nK ; 1	; (5-8)

where X DX�� and Y D Y��. ThenX
� .modH/

N.�; T; �/�
4�p
�2� 1

�.C4�
4
CC3�

3
CC1�CC0/e

B1�CB2 �f1�J.��/g�2;
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where J. � / is defined by (5-6) satisfying J.��/ < 1, and

B1 D 4�A� log.4e˛�1.1C˛/2.1C˛/=˛/;

B2 D 16 log.4e˛�1.1C˛/2.1C˛/=˛/;

C4 D
5�e�X.X �Y /2.X CY C 1C �/�4

.1� 1
1C�

/
�
1
1C�

Y � 4
� ;

C3 D
4

��
C4; C1 D 4�A�; C0 D 16AC �:

(5-9)

Remark. � In Sections 6 and 8E, we will employ Theorem 5.3 with various
choices of parameters ˛, �, � , �, !, and � depending on the range of � .
Consequently, this result is written without any explicit choice of the fixed or
arbitrary quantities found in Section 5A.

� The quantities C4 and C3 are technically not constants with respect to � or �,
but one can see that both are bounded absolutely according to the definitions
in Section 5A.

Sections 5C and 5D are dedicated to preparing for the proof of Proposition 5.1
which is contained in Section 5E. The proof of Theorem 5.3 is finalized in Section 5F.

5C. A large derivative. Suppose � .modH/ is induced from the primitive char-
acter ��. Define F.s/ WD L0

L
.s; ��/ and z WD 1C r C i� . Using Theorem 5.2, the

goal of this subsection is to show F.s/ has a large high-order derivative, which we
establish in the following lemma.

Lemma 5.4. Keep the above notation and suppose L.s; �/ has a zero � satisfying
(5-5). If � < �

A1
L and 1S is the indicator function of a set S , then

ı.�/1fj� j<Arg.�/C
ˇ̌̌
rkC1

kŠ
F .k/.z/

ˇ̌̌
�

�
˛

4e.1C˛/

�2�A�C8
2kC1

�
1�

˚
8
�
1C 1

k

�
A1CO.�/

	
�C 18

A1.1C �/k

�
for some integer k in the range 1

˛
� .2�A�C 8/� k � 1C˛

˛
� .2�A�C 8/.

Proof. By [Weiss 1983, Lemma 1.10],

F.s/C
ı.�/

s� 1
D

X
j1Ci���j<1=2

1

s� �
CG.s/

uniformly in the region j1Ci��sj< 1
2

, whereG.s/ is analytic and jG.s/j�L in this
region. Differentiating the above formula k times and evaluating at z D 1C r C i� ,
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we deduce

.�1/k

kŠ
�F .k/.z/C

ı.�/

.z� 1/kC1
D

X
j1Ci���j<1=2

1

.z� �/kC1
CO.4kL/

since r D �
L <

1
16

by assumption (5-2). The error term arises from boundingG.k/.z/
using Cauchy’s integral formula with a circle of radius 1

4
. For zeros � that satisfy

Ar < j1C i� � �j< 1
2

, notice

.A2C 1/r2 < r2Cj1C i� � �j2 � jz� �j2 � .rCj1C i� � �j/2 �
�
rC 1

2

�2
< 1:

Recalling A1 D
p
A2C 1, it follows by partial summation thatX

Ar<j1Ci���j<1=2

1

jz� �jkC1
�

Z 1

A1r

u�k�1 dN�.uI z/

D .kC 1/

Z 1

A1r

N�.uI z/

ukC2
duCO.L/;

where we bounded N�.1I z/� L using [Lagarias et al. 1979, Lemma 2.2]. By
Lemma 2.5, the above is therefore

� .kC 1/

Z 1
A1r

4uLC 8
ukC2

duCO.L/�
4
˚
1C 1

k

	
A1rLC 8

.A1r/kC1
CO.L/:

By considering cases, one may bound the ı.�/-term as follows:

rkC1 �
ˇ̌̌ ı.�/

.z� 1/kC1

ˇ̌̌
� ı.�/ � 1fj� j<Arg.�/C

1

AkC11

: (5-10)

The above results now yield

ı.�/1fj� j<Arg.�/C
ˇ̌̌rkC1F .k/.z/

kŠ

ˇ̌̌
�

ˇ̌̌ X
j1Ci���j�Ar

rkC1

.z� �/kC1

ˇ̌̌
�

�
4
˚
1C 1

k

	
A1rLC 9

AkC11

CO..4r/kC1L/
�
: (5-11)

To bound the remaining sum over zeros from below, we wish to apply Theorem 5.2.
Let

N DN�.Ar I 1C i�/D #f� W L.�; �/D 0; j1C i� � �j � Arg:

Since � < �
A1

L< �
A
L and � < 1

8
, Lemma 2.7 and (5-1) imply that N � 2�A�C 8.

Define M WD b.2�A�C 8/=˛c. Thus, from Theorem 5.2 and assumption (5-5),ˇ̌̌ X
j1Ci���j�Ar

1

.z� �/kC1

ˇ̌̌
�

� ˛

4e.1C˛/

�2�A�C8 1

.2r/kC1
(5-12)
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for some M C 1� k �M CN. To simplify the right-hand side of (5-11), observe
that

.4r/kC1L� 4�.4r/k� �.4�/kA�k1 � ��A�k1 ; (5-13)

since
r D

�

L <
�

A1
<

1

4A1

by assumption. Moreover, our choice of A1 in (5-3) implies

A
�.kC1/
1 D

� ˛

4e.1C˛/

�˛k 1
2k
�

1

A1.1C �/k

�

� ˛

4e.1C˛/

�2�A�C8 1

2kC1
�

2

A1.1C �/k
; (5-14)

since ˛k � ˛.M C 1/� 2�A�C 8. Incorporating (5-12)–(5-14) into (5-11) yields
the desired result. The range of k in Lemma 5.4 is determined by the above choice
of M and N. �

5D. Short sum over prime ideals. Continuing with the discussion and notation of
Section 5C, from the Euler product for L.s; ��/, we have

F.s/D
L0

L
.s; ��/D�

X
n

��.n/ƒK.n/.Nn/�s

for Refsg > 1 and where ƒK. � / is given by (2-17). Differentiating the above
formula k times, we deduce

.�1/kC1rkC1

kŠ
�F .k/.z/D

X
n

ƒK.n/�
�.n/

Nn1CrCi�
� rEk.r log Nn/ (5-15)

for any integer k � 1, where z D 1C r C i� and Ek.u/D uk=kŠ. From Stirling’s
bound (see [DLM 2010]) in the form

kke�k
p
2�k � kŠ� kke�k

p
2�ke1=12k;

one can verify

Ek.u/�

8<:A
�k
1 eu if u� k

eA1
;

A�k1 e.1�!/u if u� 2

1�!
log
�
2A1
1�!

�
k;

(5-16)

for any k � 1 and A1 > 1; ! 2 .0; 1/ defined in Section 5A. The goal of this
subsection is to bound the infinite sum in (5-15) by an integral average of short
sums over prime ideals.
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Lemma 5.5. Suppose the integer k is in the range given in Lemma 5.4. If �< �
A1

L
thenˇ̌̌X

n

��.n/ƒK.n/

Nn1CrCi�
� rEk.r log Nn/

ˇ̌̌
� r2

Z x

y

ˇ̌̌ X
y�Np<u

��.p/ log Np

Np1Ci�

ˇ̌̌ du
u

C

�
e
h
Y C

1

2
Cf2X C 1ge�!�X CO.�/

i
�C

e1�!�X

!

�
A�k1 ;

where x D eXL and y D eYL with X DX� and Y D Y� defined by (5-4).

Proof. First, divide the sum on the left-hand side into four sums:X
n

D

X
Np<y

C

X
y�Np<x

C

X
Np�x

C

X
n not prime

D S1CS2CS3CS4:

Observe that (5-4) and (5-16), along with the range of k in Lemma 5.4, imply that

Ek.r log Nn/�

�
A�k1 .Nn/r if Nn� y;

A�k1 .Nn/.1�!/r if Nn� x:
(5-17)

Hence, for S1, it follows by Lemma 2.10 that

jS1j � rA
�k
1

X
Np<y

log Np

Np

� rA�k1 � e log.eD1=2K y/� e
�
�Y C

�

2
C �

�
A�k1 ;

since r D �
L < �, logDK � L, and y D eYL. Similarly, for S3, apply partial

summation using Lemma 2.10 to deduce

jS3j � rA
�k
1

X
Np�x

log Np

.Np/1C!r

� rA�k1

Z 1
x

!re log.eD1=2K t /

t1C!r
dt �

�˚
X C 1

2

	
�C!�1C �

�e1�!�X
Ak1

:

For S4, since uk

kŠ
� eu for u > 0, observe

Ek.r log Nn/D 1
kŠ
.2r/k

�
1
2

log Nn
�k
� .2r/k.Nn/1=2:
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Thus, by Lemma 2.10,

jS4j � r
X
p

X
m�2

log Np

.Npm/1Cr
Ek.r log Npm/

� .2r/kr
X
p

X
m�2

log Np

.Npm/1=2Cr

� .2r/kr
X
p

log Np

Np1C2r
� ��A�k1 ;

since logDK � L and L�1� r D �
L <

�
A1

. Also note that � 2
�
0; 1
8

�
implies

.2�/k� �. Finally, for the main term S2, define

W.u/DW�.uI �/ WD
X

y�Np<u

�.p/ log Np

Np1Ci�
;

so by partial summation,

S2 D rW.x/x
�rEk.r log x/� r2

Z x

y

W.u/
d

dt
Œe�tEk.t/�

ˇ̌̌
tDr logu

du

u
(5-18)

as W.y/D 0. Similar to S1, S3, and S4, from (5-17) and Lemma 2.10 it follows

jrW.x/x�rEk.r log x/j � rA�k1 x�!r
X

y�Np<x

ƒK.n/

Nn

� e
�˚
X C 1

2

	
�C �

�
e�!�XA�k1 :

Observeˇ̌̌
d

dt
.e�tEk.t//

ˇ̌̌
D je�tEk�1.t/� e

�tEk.t/j � e
�t ŒEk�1.t/CEk.t/�� 1

from the definition of Ek.t/ and since
P1
kD0Ek.t/D e

t . Hence,

jS2j � r
2

Z x

y

jW.u/j
du

u
C e

�n
X C

1

2

o
�C �

�
e�!�XA�k1 :

Collecting all of our estimates, we conclude the desired result as �� �0� 1. �

5E. Proof of Proposition 5.1. If ı.�/1fj� j<Arg.�/ D 1, then the inequality in
Proposition 5.1 holds trivially, as the right-hand side is certainly less than 1. Thus,
we may assume otherwise.

Combining Lemmas 5.4 and 5.5 via (5-15), it follows that

r2
Z x

y

ˇ̌̌ X
y�Np<u

��.p/ log Np

Np1Ci�

ˇ̌̌
du

u
�

� ˛

4e.1C˛/

�2�A�C8
�
1

2kC1
f1�J.�/g; (5-19)
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after bounding A�k1 as in (5-14) and noting k � k0 in the range of Lemma 5.4. By
assumption, J.�/ < 1 and hence the right-hand side of (5-19) is positive. Therefore,
squaring both sides and applying Cauchy–Schwarz to the left-hand side gives

r4 log
�
x

y

�Z x

y

ˇ̌̌ X
y�Np<u

��.p/ log Np

Np1Ci�

ˇ̌̌2 du
u

�

� ˛

4e.1C˛/

�4�A�C16
�

1

22kC2

˚
1�J.�/

	2
:

By assumption, yDeYL>e2L�Nf�, so it follows that ��.p/D�.p/ for y�Np<x.
So we may replace �� with � in the above sum over prime ideals. Finally, we note
k � 1C˛

˛
.2�A�C 8/ since k is in the range of Lemma 5.4, yielding the desired

result. �

5F. Proof of Theorem 5.3. For � .modH/, consider zeros �D ˇC i
 of L.s; �/
such that

1�
�

L � ˇ < 1; j
 j � T: (5-20)

Let �? D �� and r? D �?

L D �.1� �/, so by (5-8) we have r? < �
A1

. For any zero
� D ˇC i
 of L.s; �/, define ˆ�;�.�/ WD 1fj1Ci���j�r?g.�/. If � satisfies (5-20)
then one can verify by elementary arguments that

1

r?

Z T

�T

ˆ�;�.�/ d� �

p
�2� 1

�
:

Applying Proposition 5.1 to such zeros �, it follows thatZ T

�T

1

r?
ˆ�;�.�/

�

h
.r?/4 log

�
x

y

�Z x

y

ˇ̌̌ X
y�Np<u

�.p/ log Np

Np1Ci�

ˇ̌̌2 du
u
C ı.�/1fj� j<Ar?g.�/

i
d�

�

p
�2� 1

4�

� ˛

4e.1C˛/2.1C˛/=˛

�2�A��C16
f1�J.��/g DW w.�/:

Note x D eXL and y D eYL, where X D X�? and Y D Y�? . Summing over all
zeros � of L.s; �/ satisfying (5-20), we have that

w.�/N.�; T; �/

� .X �Y /.2�r?LC 8/.r?/3L
Z x

y

�Z T

�T

ˇ̌̌ X
y�Np<u

�.p/ log Np

Np1Ci�

ˇ̌̌2
d�

�
du

u

C ı.�/.4�Ar?LC 16A/ (5-21)
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since, for j� j � T and r? < �,X
� WL.�;�/D0

ˆ�;�.�/DN�.r
?
I 1C i�/� 2�r?LC 8

by Lemma 2.7. From the conditions on Y and T in (5-8) and the definition of L in
(5-1), observe that, for � D �.�/ > 0 sufficiently small, Lemma 2.11 implies

y D eYL � C�fhHn
.5=4C2�/nK
K D

3=2C2�
K Q1=2T nK=2C1g1C�

since � � 1
10

and ‚D‚.�/� 1 is sufficiently large. Therefore, we may sum (5-21)
over � .modH/ and apply Theorem 4.2 with b.p/D .log Np/=Np for y �Np< u

to deduce

w.�/
X

� .modH/

N.�; T; �/

�

�
C 0.2�r?LC 8/.r?/3CO�

�.r?/4L2
e�YL=2

�� Z x

y

X
y�Np<u

.log Np/2

Np

du

u

C 4A�r?LC 16A; (5-22)

where
C 0 D 5�.X �Y /

�
1�

1

1C�

��1� 1

1C�
Y � 4

��1
:

To calculate C 0, we replaced L0 (as found in Theorem 4.2) by observing from
Lemma 2.11 that L0C 1

1C�
log hH �4L (since T �maxfn5=6K .D

4=3
K Q4=9/�1=nK ; 1g

and ‚D‚.�/ is sufficiently large). For the remaining integral in (5-22), notice by
Lemma 2.10 thatZ x

y

X
y�Np<u

.log Np/2

Np

du

u
� log x

Z x

y

e log.eD1=2K u/
du

u

�
e

2
X.X �Y /

�
X CY C 1C

2

L

�
L3:

Substituting this estimate in (5-22) and recalling r? D �?

L D
��
L , we have shown

w.�/
X

� .modH/

N.�; T; �/

� 2�C 00�4 ��4C 8C 00�3 ��3C 4�A� ��C 16ACO�.�
3Le��L/;

where
C 00 D

e

2
X.X �Y /

�
X CY C 1C

2

L

�
C 0:

Since L�‚ and ‚ is sufficiently large depending on �, the big-O error term above
and the quantity 2

L in C 00 may both be bounded by �. This completes the proof of
Theorem 5.3. �
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6. Log-free zero density estimate

Having established Theorem 5.3, in this section we prove Theorem 3.2.

Proof of Theorem 3.2: Without loss, we may assume H .mod q/ is primitive
because QDQH DQH 0 ; hH D hH 0 andX

� .modH/

N.�; T; �/ D
X

� .modH 0/

N.�; T; �/

if H 0 induces H . Suppose 1
2
� � � 1� 0:05

4
. By a naive application of [Lagarias

et al. 1979, Lemma 2.1], one can verify that for T � 1,X
� .modH/

N.�; T; �/� hHT log.DKQT nK /

� .eO.nK/D2KQT
nKC2/81.1��/ (6-1)

after bounding hH with Lemma 2.11.
Now, let � 2

�
0; 1
8

�
be fixed and define L as in (5-1). Suppose 1� �

4
< � < 1.

Let R � 1 be fixed and sufficiently large. By applying the bound in Lemma 2.11 to
[Weiss 1983, Theorem 4.3], we deduce that for T � 1,X

� .modH/

N
�
1�

R

L ; T; �
�
� 1; (6-2)

so it suffices to bound
P
�.H/D1N.�; T; �/ in the range

1�
�

4
< � < 1�

R

L ; (6-3)

or equivalently, if � D 1� �
L , in the range

R < � <
�

4
L:

According to Theorem 5.3 and the notation defined in Section 5A, select

� D 1C 10�5; � D 10�5; �D 10�5; ! D 10�5; and ˛ D 0:15:

It follows that the constants B2; C0; C1; C3; C4 in Theorem 5.3 are bounded abso-
lutely,

X > Y > 4:6; B1 � 146:15�; and �A1 < 4;

where � D 1C 4
�
�C 16�2C 340�10. Moreover, since � > R,

J.��/�
�

.1C10�5/�
�

R

.1C10�5/R
;
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and therefore J.��/ < 1
2

for R sufficiently large. Thus, by Theorem 5.3,X
� .modH/

N.�; T; �/� �4e146:15��� e146:2�� D e146:2�.1��/L (6-4)

for � satisfying (6-3) and T � maxfn5=6K D
�4=3nK
K Q�4=9nK ; 1g. To complete

the proof of Theorem 3.2, it remains to choose � in (6-4). If � D 0:05 then
146:2� < 162D 2 � 81, yielding the desired result when combined with (6-1). If
� D 10�3 then 146:2� < 147D 2 � 73:5 as claimed. �

7. Zero repulsion: the Deuring–Heilbronn phenomenon

In this section, we prove Theorem 3.3 and establish the Deuring–Heilbronn phe-
nomenon for L-functions of Hecke characters � .modH/ where H .mod q/ is
a (not necessarily primitive) congruence class group. We will critically use the
following power sum inequality.

Theorem 7.1 (Lagarias–Montgomery–Odlyzko). Let � > 0 and a sequence of
complex numbers fzngn be given. Suppose that jznj � jz1j for all n � 1. Define
M WD 1

jz1j

P
n jznj. Then there exists m0 with 1�m0 � .12C �/M such that

Re
� 1X
nD1

zm0n

�
�

�

48C5�
jz1j

m0 :

Proof. This is a modified version of [Lagarias et al. 1979, Theorem 4.2]; see [Zaman
2017b, Theorem 2.3] for details. �

We prepare for the application of this result by establishing a few preliminary
estimates and then end this section with the proof of Theorem 3.3.

7A. Preliminaries.

Lemma 7.2. Let � .mod q/ be a Hecke character. For � � 2 and t 2 R,

�Re
n
L0

L
.� C it; �/

o
� �Re

n
L0

L
.� C it; ��/

o
C

1

2��1
.nK C log Nq/;

where �� is the primitive character inducing �.

Proof. By definition,

L.s; �/D P.s; �/L.s; ��/; where P.s; �/ D
Y

pjq; p−f�

�
1�

��.p/

Nps

�
;
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so it suffices to show
ˇ̌
P 0

P
.s; �/

ˇ̌
�

1
2��1

.nK C log Nq/. Observe, by elementary
arguments, ˇ̌̌

P 0

P
.s; �/

ˇ̌̌
D

ˇ̌̌̌ X
pjq; p−f�

1X
kD1

��.pk/ log Npk

k.Npk/s

ˇ̌̌̌

�

X
pjq

log Np

Np� � 1
�

1

1� 2��
�
1

2��1

X
pjq

log Np

Np
:

From [Zaman 2016a, Lemma 2.4],X
pjq

log Np

Np
�
p
nK log Nq�

nK

2
C

log Nq

2
:

Combining this fact with the previous inequality gives the desired estimate. �

Lemma 7.3. Let � .mod q/ be a Hecke character. For � > 1 and t 2 R,

X
! trivial

1

j�Cit�!j2
�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
1

2�
C

1

�2

�
�nK if � is primitive,�

1

2�
C

1

�2

�
�nK

C

�
1

2�
C

2

�2 log 2

�
� log Nq

unconditionally;

where the sum is over all trivial zeros ! of L.s; �/ counted with multiplicity.

Proof. Suppose � .mod q/ is induced by the primitive character �� .mod f�/. Then

L.s; �/D P.s; �/L.s; ��/; where P.s; �/ D
Y

pjq; p−f�

�
1�

��.p/

Nps

�
;

for all s 2 C. Thus, the trivial zeros of L.s; �/ are either zeros of the finite Euler
product P.s; �/ or trivial zeros of L.s; ��/. We consider each separately. From
(2-7) and (2-5), observe

X
! trivial

L.!;��/D0

1

j�Cit�!j2
� a.�/

1X
kD0

1

.�C2k/2Ct2
C b.�/

1X
kD0

1

.�C2kC1/2Ct2

� nK

1X
kD0

1

.�C2k/2
�

�
1

2�
C

1

�2

�
nK :

Now, if � is primitive then P.s; �/� 1 and hence never vanishes. Otherwise, notice
the zeros of each p-factor in the Euler product of P.s; �/ are totally imaginary and
are given by a�.p/iC2�iZ=log Np for some 0� a�.p/ < 2�= log Np. Translating
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these zeros ! 7! !C it amounts to choosing another representative 0� b�.pI t / <
2�= log Np. Therefore,X

! trivial
P.!;�/D0

1

j�Cit�!j2
� 2

X
pjq; p−f�

1X
kD0

1

�2C.2�k= log Np/2

�

�
1

2�
C

2

�2 log 2

�
log Nq;

as required. �

Lemma 7.4. Let H .mod q/ be a congruence class group of K. Suppose  
.modH/ is real and � .modH/ is arbitrary. For � D ˛ C 1 with ˛ � 1 and
t 2 R,X

�
�K.�/D0

1

j���j2
C

X
�

L.�; /D0

1

j���j2
C

X
�

L.�;�/D0

1

j�Cit��j2
C

X
�

L.�; �/D0

1

j�Cit��j2

�
1

˛
�

h
1

2
log.D3KQ

2D /C
�

log.˛C 2/C 2

˛C1
C

1

2˛C1�1
� 2 log�

�
nK

CnK log.˛C 2Cjt j/C 2

2˛C1�1
logQC 4

˛
C

4

˛C1

i
;

where the sums are over all nontrivial zeros of the corresponding L-functions.

Remark. If  is trivial, notice that the left-hand side equals

2

� X
�

�K.�/D0

1

j���j2
C

X
�

L.�;�/D0

1

j�Cit��j2

�
:

This additional factor of 2 will be useful to us later.

Proof. Suppose  and � are induced from the primitive characters  � and ��,
respectively. From the identity 0� .1C �.n//.1CRef��.n/.Nn/�itg/, it follows
that

0� �Re
�
�0K
�K
.�/C

L0

L
.�; �/C

L0

L
.� C it; ��/C

L0

L
.� C it;  ���/

�
: (7-1)

The first three L-functions are primitive, but � WD  ��� is a character modulo
Œf�; f �, the least common multiple of f and f�, and hence is not necessarily
primitive. Thus, by Lemma 7.2, we deduce

0� �Re
�
�0K
�K
.�/C

L0

L
.�; �/C

L0

L
.� C it; ��/C

L0

L
.� C it; ��/

�
C
nKClog NŒf�; f �

2��1
:
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Note NŒf�; f ��Q2 since  and � are both characters trivial on the congruence
subgroup H , and therefore the norms of their respective conductors are bounded
by Q. Using this bound, we apply Lemmas 2.1 and 2.4 to each of the primitive
L-function terms, yielding

0�
1

2
log.DKD D�D�/C

2

2��1
logQCnK log.� C 1Cjt j/CA�nK

�Re
� X

�
�K.�/D0

1

���
C

X
�

L.�; /D0

1

���
C

X
�

L.�;�/D0

1

�Cit��
C

X
�

L.�; �/D0

1

�Cit��

�

C
1C ı. /

˛
C
1C ı. /

˛C 1
CRe

�
ı.�/C ı.� /

˛C it
C
ı.�/C ı.� /

˛C 1C it

�
; (7-2)

where A� D log.� C 1/C 2
�
C

1
2��1

� 2 log� . Since 0 < ˇ < 1, we notice

Re
n

1

�Cit��

o
�

˛

j�Cit��j2
and Re

n
1

˛Cit
C

1

˛C1Cit

o
�
1

˛
C

1

˛C1
:

Further, D� and D� are both � DKQ, since � D  ��� induces the character
 � .mod q/, which is trivial on H . Rearranging (7-2) and employing all of the
subsequent observations gives the desired conclusion. �

7B. Proof of Theorem 3.3. If zH .mod m/ induces H .mod q/, then a character
� .modH/ is induced by a character Q� .mod zH/. It follows that

L.s; �/D L.s; Q�/
Y

pjq; p−m

�
1�
Q�.p/

Nps

�

for all s 2C. This implies that the nontrivial zeros of L.s; �/ are the same nontrivial
zeros of L.s; Q�/. Therefore, without loss of generality, we may assume H .mod q/

is primitive.
We divide the proof according to whether  is quadratic or trivial. The arguments

in each case are similar but require some minor differences.

Case 1:  is quadratic. Let m be a positive integer, ˛ � 1, and � D ˛C 1. From
the inequality 0 � .1C  �.n//.1C Ref��.n/.Nn/�i


0

g/ and Lemma 2.2 with
s D � C i
 0, it follows that

Re
� 1X
nD1

zmn

�
�

1

˛m
�

1

.˛C 1�ˇ1/2m

CRe
�
ı.�/C ı. �/

.˛C i
 0/2m
�

ı.�/C ı. �/

.˛C 1C i
 0�ˇ1/2m

�
; (7-3)
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where zn D zn.
 0/ satisfies jz1j � jz2j � � � � and runs over the multisets

f.� �!/�2 W ! is any zero of �K.s/g;

f.� �!/�2 W ! ¤ ˇ1 is any zero of L.s;  �/g;

f.� C i
 0�!/�2 W ! ¤ ˇ1 is any zero of L.s; ��/g;

f.� C i
 0�!/�2 W ! ¤ ˇ1 is any zero of L.s;  ���/g:

(7-4)

Note that the multisets include trivial zeros of the corresponding L-functions, and
 ��� is a Hecke character (not necessarily primitive) modulo the least common
multiple of f� and f . With this choice, it follows that�

˛C 1
2

��2
� .˛C 1�ˇ0/�2 � jz1j � ˛

�2: (7-5)

The right-hand side of (7-3) may be bounded via the observationˇ̌̌̌
1

.˛C it/2m
�

1

.˛C it C 1�ˇ1/2m

ˇ̌̌̌
� ˛�2m

ˇ̌̌̌
1�

1�
1C 1�ˇ1

˛Cit

�2m ˇ̌̌̌
� ˛�2m�1m.1�ˇ1/;

whence

Re
� 1X
nD1

zmn

�
� ˛�2m�1m.1�ˇ1/: (7-6)

On the other hand, by Theorem 7.1, for � > 0, there exists some m0 Dm0.�/ with
1�m0 � .12C �/M such that

Re
� 1X
nD1

zm0n

�
�
�

50
jz1j

m0�
�

50
.˛C1�ˇ0/�2m0�

�

50
˛�2m0 exp

�
�
2m0
˛
.1�ˇ0/

�
;

where M D jz1j�1
P1
nD1 jznj. Comparing with (7-6) for mDm0, it follows that

exp
�
�.24C 2�/

M

˛
.1�ˇ0/

�
��

M

˛
.1�ˇ1/: (7-7)

Therefore, it suffices to bound M
˛

and optimize over ˛ � 1.
By (7-4), M is a sum involving nontrivial and trivial zeros of certain L-functions.

For the nontrivial zeros, we employ Lemma 7.4 with D DDKNf �DKQ since
 is quadratic. For the trivial zeros, apply Lemma 7.3 in the “primitive” case for
�K.s/; L.s;  

�/; L.s; ��/ and in the “unconditional” case for L.s;  ���/. In the
latter case, we additionally observe that, asH .mod q/ is primitive, log Nq�2 logQ



A bound for the least prime ideal in the Chebotarev density theorem 1175

by Lemma 2.12. Combining these steps along with (7-5), it follows that

M

˛
�
.˛C1=2/2

˛2
�

h
2 logDKC

�
3

2
C

2˛

2˛C2
C

4˛

.˛C1/2 log 2
C

2

2˛C1�1

�
logQ

C

�
log.˛C 2/C log.˛C 3/C 2� 2 log� C 4˛

.˛C1/2
C

1

2˛C1�1

�
nK

CnK logT C 4

˛
C

4

˛C1

i
; (7-8)

for ˛ � 1. Note that, in applying Lemma 7.4, we used that log.˛ C 2C T / �
log.˛C 3/C logT for T � 1. Finally, select ˛ sufficiently large, depending on
� > 0, so the right-hand side of (7-8) is

�

�
2C

�

100

�
logDK C

�
2:5C

�

100

�
logQC

�
1C

�

100

�
nK logT CO�.nK/:

Incorporating the resulting bounds into (7-7) completes the proof of Theorem 3.3
for  quadratic.

Case 2:  is trivial. Begin with the inequality 0� 1CRef��.n/.Nn/�i

0

g. This
similarly implies

Re
� 1X
nD1

zmn

�
�

1

˛m
�

1

.˛C1�ˇ1/2m

CRe
�

ı.�/

.˛Ci
 0/2m
�

ı.�/

.˛C1Ci
 0�ˇ1/2m

�
(7-9)

for a new choice zn D zn.
 0/ satisfying jz1j � jz2j � � � � and which runs over the
multisets

f.� �!/�2 W ! ¤ ˇ1 is any zero of �K.s/g;

f.� C i
 0�!/�2 W ! ¤ ˇ1 is any zero of L.s; ��/g:
(7-10)

Following the same arguments as before, we may arrive at (7-7) for the new
quantity M D jz1j�1

P1
nD1 jznj. To bound the nontrivial zeros arising in M , apply

Lemma 7.4 withD DDK since  is trivial. For the trivial zeros, apply Lemma 7.3
in the “primitive” case for both �K.s/ and L.s; ��/. It follows from (7-5) that, for
˛ � 1,

M

˛
�
.˛C1=2/2

˛2
�

h
logDK C

�
1

2
C

1

2˛C1�1

�
logQ

C
1

2
nK logT C 2

˛
C

2

˛C1
C

�
1

2
log.˛C 2/C 1

2
log.˛C 3/C 1

� log� C 2˛

.˛C1/2
C

1=2

2˛C1�1

�
nK

i
: (7-11)
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Again, we select ˛ sufficiently large, depending on � > 0, so the right-hand side of
(7-11) is

�

�
1C

�

50

�
logDK C

�
0:5C

�

50

�
logQC

�
0:5C

�

50

�
nK logT CO�.nK/:

Incorporating the resulting bound into (7-7) completes the proof of Theorem 3.3. �
Remark. To obtain a more explicit version of Theorem 3.3, the only difference
in the proof is selecting an explicit value of ˛ in the final step of each case. The
possible choice of ˛ is somewhat arbitrary because the coefficients of logDK ,
logQ, and nK in (7-8) and (7-11) cannot be simultaneously minimized. Hence,
in the interest of having relatively small coefficients of comparable size for all
quantities, one could choose the value ˛ D 18.

8. Zeros in low-lying rectangles

Analogous to [Heath-Brown 1992] for the classical case, most of the key numerical
estimates we use to prove Theorem 3.1 pertain to zeros in a “low-lying” rectangle.
In this section, we record the relevant existing results and establish some new ones.
These encompass the required three principles in Section 3 and will be applied in
the final arguments for the proof of Theorem 3.1. We begin with some notation.

8A. Logarithmic quantity. Let ı0 > 0 be fixed and sufficiently small. For the
remainder of the paper, define

L WD

8̂̂̂̂
<̂
ˆ̂̂:

�
1
3
C ı0

�
logDK C

�
19
36
C ı0

�
logQ

C
�
5
12
C ı0

�
nK lognK

if n5nK=6K �D
4=3
K Q4=9,�

1C ı0
�

logDK C
�
3
4
C ı0

�
logQ

C ı0nK lognK
otherwise.

(8-1)

Notice that

L � .1C ı0/ logDK C
�
3
4
C ı0

�
logQC ı0nK lognK ;

L �
�
5
12
C ı0

�
nK lognK ;

(8-2)

unconditionally. For T? � 1 fixed,3 set T0 WD maxfn5=6K .D
4=3
K Q4=9/�1=nK ; T?g.

We compare LDLT0;ı0 given by (5-1) with L and deduce L�L for L sufficiently
large. This observation implies that

N
�
1�

�

L
; T; �

�
�N

�
1�

�

L ; T; �
�

(8-3)

for � > 0 and N.�; T; �/ defined in (5-7). We will utilize this fact in Section 8E.

3For the purposes of this paper, setting T? D 1 would suffice, but we avoid this choice to make the
results of Section 8 more widely applicable.
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8B. Low-lying zeros. Next we specify some important zeros of
Q
� .modH/L.s; �/

which will be used for the remainder of the paper. Consider the multiset of zeros
given by

Z WD
�
� 2 C W

Y
� .modH/

L.�; �/D 0; 0 < Ref�g< 1; jIm.�/j � T?

�
: (8-4)

We select three important zeros in Z as follows:

� Choose �1 2 Z such that Ref�1g is maximal. Let �1 be its associated Hecke
character, so L.�1; �1/D 0. Let

�1 D ˇ1C i
1 D
�
1�

�1

L

�
C i

�1

L
;

where ˇ1 D Ref�1g, 
1 D Imf�1g, �1 > 0, and �1 2 R.

� Choose �02Znf�1; �1g satisfyingL.�0; �1/D0 such that Ref�0g is maximal.4

Similarly, let

�0 D ˇ0C i
 0 D
�
1�

�0

L

�
C i

�0

L
:

� Let Z1 be the multiset of zeros of L.s; �1/ contained in Z . Choose �2 2ZnZ1
such that Ref�2g is maximal. Let �2 be its associated Hecke character, so
L.�2; �2/D 0. Similarly, let

�2 D ˇ2C i
2 D
�
1�

�2

L

�
C i

�2

L
:

8C. Zero-free regions. With the above notation, we may introduce the first of
three principles. We record the current best-known existing explicit result regarding
zero-free regions of Hecke L-functions.

Theorem 8.1 (Zaman). For L sufficiently large, we have minf�0; �2g> 0:2866. If
�1 < 0:0875 then �1 is a simple real zero of

Q
� .modH/L.s; �/ and is associated

with a real character �1.

Proof. When T?D 1 andH DPq, in which caseQDNq, this is implied by [Zaman
2016a, Theorems 1.1 and 1.3] since L satisfies (8-2). For general congruence
subgroups H and any fixed T? � 1, the argument, which occurs in [Zaman 2017a],
is achieved by modifying [Zaman 2016a] as follows:

� Assume H .mod q/ is primitive, i.e., fH D q.

� Restrict to characters � .mod q/ satisfying �.H/D 1 throughout.

� Redefine L and L� in [Zaman 2016a, (3.2)] to replace log Nq with logQ.

4If �1 is real then �0 2 Z n f�1g instead with the other conditions remaining the same.
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� Substitute applications of [Zaman 2016a, Lemma 2.4] with Lemma 2.13 since
q D fH . When estimating certain sums, this allows one to transfer from
imprimitive characters � .modH/ to primitive ones.

� Modify [Zaman 2016a, Lemma 3.2] so that the special value T0.q/, in that
lemma’s notation, instead satisfies T? � T0.q/� 1

10
T?T ; one can achieve this

by analogously supposing, for a contradiction, that each region ˛ � � � 1
and T?10j � jt j � T?10jC1 for 0� j < J with J D Œlog T =log 10� contains
at least one zero of

Q
� .modH/L.s; �/. After applying [Zaman 2016a, (3.4)]

with T D T?T , the rest of the argument follows similarly. �

8D. Zero repulsion. Here we record two explicit estimates for zero repulsion when
an exceptional zero exists.

Theorem 8.2 (Zaman). If �1 < 0:0875 then unconditionally, for L sufficiently
large, minf�0; �2g > 0:44. If � � �1 < 0:0875 then, for L sufficiently large
depending on � > 0, minf�0; �2g> 0:2103 log.1=�1/.

Proof. When T?D 1 and H DPq, this is contained in [Zaman 2016a, Theorem 1.4]
since L satisfies (8-2). Similarly to the proof of Theorem 8.1, one may modify
[Zaman 2016a] to deduce the same theorem for general congruence subgroups H
and any fixed T? � 1. �

Theorem 8.2 is not equipped to deal with exceptional zeros �1 extremely close
to 1 due to the requirement �1 � �. Thus, we require a more widely applicable
version of zero repulsion; this is precisely the purpose of Theorem 3.3, which we
restate here in the current notation.

Theorem 8.3. Let T � 1 be arbitrary. Suppose �1 is a real character and �1 is a
real zero. For � .modH/, let � ¤ �1 be any nontrivial zero of L.s; �/ satisfying
1
2
� Ref�g D 1 � �

L
< 1 and jImf�gj � T . For L sufficiently large depending

on � > 0 and T , we have � > log.c�=�1/=.80C �/, where c� > 0 is an effective
constant depending only on �.

Proof. This follows immediately from Theorem 3.3 since

.48C �/ logDK C .60C �/ logQC .24C �/nK logT CO�.nK/� .80C 2�/L

for L sufficiently large depending on � and T . �

The repulsion constant 1
80C�

� 0:0125 in Theorem 8.3 is much smaller than
0:2103 in Theorem 8.2. This deficiency follows from using power sum arguments;
see the remarks following Theorem 3.3. We now quantify how close an exceptional
zero �1 can be to 1.

Theorem 8.4 [Stark 1974]. Unconditionally, �1� e�24L =5.
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Proof. This follows from (8-1), (8-2), and the proof of [Stark 1974, Theorem 10,
p. 148]. �

8E. Log-free zero density estimates. First, we restate a slightly weaker form of
Theorem 3.2 in the current notation.

Theorem 8.5. Let T � 1 be arbitrary. If 0 < � <L thenX
� .modH/

N
�
1�

�

L
; T; �

�
� e162�

provided L is sufficiently large depending on T .

Proof. This follows from (8-1) and Theorem 3.2. �
In addition to Theorem 8.5, we require a completely explicit zero density estimate

for “low-lying” zeros. Define5

N .�/DNH .�/ WD
X

� .modH/

N
�
1�

�

L
; T?; �

�
D

X
� .modH/

#
n
� W L.�; �/D 0; 1�

�

L
< Ref�g< 1; jImf�gj � T?

o
: (8-5)

By Theorem 8.1, observe that N .0:0875/ � 1 and N .0:2866/ � 2. In light of
these bounds, we exhibit explicit numerical estimates for N .�/ in the range with
0:287� �� 1. For each fixed value of �, we apply Theorem 5.3 with � D 0:1 and
� 2 .0; 10�5/ assumed to be fixed and sufficiently small, and obtain a bound for
N .�L =L/. By (8-3), the same bound holds for N .�/. By performing numerical
experimentation over the remaining parameters .˛; �; !; �/ using MATLAB, we
roughly optimize the bound in Theorem 5.3 and generate Table 1. Note that we
have verified J.��/ < 1 and X�� > Y�� > 4:6 in each case.

Based on Table 1, we may also establish an explicit estimate for N .�/ by
specifying parameters in Theorem 5.3.

Theorem 8.6. Let �0 > 0 be fixed and sufficiently small. If 0 < � < �0L then
N .�/� e162�C188 for L sufficiently large. If 0<�� 1 then N .�/ is also bounded
as in Table 1.

Proof. For �� 0:2866, the result is immediate as N .0:2866/� 2 by Theorem 8.1.
For 0:2866 � � � 1, one can directly verify the desired bound by using Table 1.
Now, consider �� 1. Apply Theorem 5.3 with

T D T0; �0 D 1; ˛ D 0:1549; �D 0:05722;

� D 10�5; � D 0:1; � D 1:0030; ! D 0:02074:

5Note N .�/ defined here is not the same as N.�/ as defined in [Zaman 2016a]. Instead, one has
N.�/�N .�/.
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� logN.�/� ˛ � ! � J.��/ Y�� X��

0.287 198.1 0.3448 0.09955 0.03466 1.0082 0.46 5.8 993
0.288 198.3 0.3444 0.09943 0.03462 1.0082 0.46 5.8 991
0.289 198.5 0.3441 0.09931 0.03458 1.0082 0.46 5.8 988
0.290 198.7 0.3437 0.09918 0.03454 1.0082 0.46 5.8 986
0.291 198.9 0.3433 0.09906 0.03450 1.0082 0.46 5.8 984
0.292 199.1 0.3429 0.09894 0.03446 1.0081 0.46 5.8 982
0.293 199.3 0.3426 0.09882 0.03442 1.0081 0.46 5.8 979
0.294 199.5 0.3422 0.09870 0.03439 1.0081 0.46 5.8 977
0.295 199.8 0.3418 0.09859 0.03435 1.0081 0.46 5.8 975
0.296 200.0 0.3415 0.09847 0.03431 1.0081 0.46 5.8 973
0.297 200.2 0.3411 0.09835 0.03427 1.0080 0.46 5.8 970
0.298 200.4 0.3408 0.09823 0.03423 1.0080 0.46 5.8 968
0.299 200.6 0.3404 0.09811 0.03420 1.0080 0.46 5.8 966
0.300 200.8 0.3400 0.09800 0.03416 1.0080 0.46 5.8 964
0.325 205.9 0.3316 0.09518 0.03326 1.0075 0.47 5.8 914
0.350 211.0 0.3240 0.09257 0.03242 1.0071 0.47 5.7 871
0.375 216.0 0.3171 0.09014 0.03163 1.0067 0.47 5.7 833
0.400 220.9 0.3108 0.08787 0.03090 1.0064 0.48 5.7 800
0.425 225.7 0.3054 0.08678 0.02878 1.0061 0.46 5.6 769
0.450 230.4 0.2998 0.08373 0.02956 1.0059 0.48 5.6 744
0.475 235.1 0.2948 0.08184 0.02895 1.0056 0.48 5.6 720
0.500 239.8 0.2903 0.08006 0.02837 1.0054 0.49 5.6 699
0.550 249.0 0.2821 0.07677 0.02729 1.0050 0.49 5.5 661
0.600 258.0 0.2748 0.07379 0.02631 1.0046 0.50 5.5 629
0.650 266.9 0.2684 0.07109 0.02542 1.0043 0.50 5.4 602
0.700 275.6 0.2627 0.06862 0.02460 1.0041 0.50 5.4 579
0.750 284.3 0.2576 0.06634 0.02383 1.0039 0.51 5.4 559
0.800 292.9 0.2529 0.06424 0.02313 1.0037 0.51 5.4 541
0.850 301.4 0.2486 0.06230 0.02247 1.0035 0.51 5.3 525
0.900 309.8 0.2447 0.06049 0.02186 1.0033 0.51 5.3 510
0.950 318.2 0.2412 0.05880 0.02128 1.0032 0.52 5.3 497
1.000 326.5 0.2378 0.05722 0.02074 1.0030 0.52 5.3 486

Table 1. Bounds for N .�/ using Theorem 5.3 with � D 0:1 and � 2 .0; 10�5�.

This choice of values is motivated by the last row of Table 1, but with a more
suitable choice for ˛. With this selection, one can check that for any �� 1,

4:61� Y�� � 9:2; 264�X�� � 526; J.��/� 0:272:

These inequalities can be verified by elementary arguments involving the definitions
in Section 5A and (5-6). In particular, for any ��1, the assumptions of Theorem 5.3
are satisfied for all 1� � < �0L .
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Now with these estimates, we may deduce upper bounds for C4, C3, C1, C0, B2,
and B1 in Theorem 5.3 as follows:

C4 D C4.�/� 6:0� 10
13; C1 � 17; B2 � 154;

C3 D C3.�/� 2:4� 10
14; C0 � 65; B1 � 156;

for �� 1. Thus, by Theorem 5.3, for 1� �� �0L ,

N.�/� 52.6:0� 1013 ��4C 2:4� 1014 ��3C 17 ��C 65/e156�C154:

To simplify the expression on the right-hand side, we crudely observe that the above
is

� 52 � 65
�
6:0� 1013 �

24

64 �65
�
.6�/4

4Š

C 2:4� 1014 �
6

63 �65
�
.6�/3

3Š
C 6�C 1

�
e156�C154

� 52 � 6:7� 1012 �
�
.6�/4

4Š
C
.6�/3

3Š
C 6�C 1

�
e156�C154 � e162�C188;

as desired. �

9. Proof of Theorem 3.1: preliminaries

We may finally begin the proof of Theorem 3.1. The arguments below are motivated
by [Heath-Brown 1992, Section 10] and mostly follow the structure of [Zaman
2017b, Section 4]. Recall that we retain the notation introduced in Section 8 for the
remainder of the paper.

9A. Choice of weight. We define a weight function (see [Zaman 2017b, Lemmas
2.6 and 2.7]) and describe its properties.

Lemma 9.1. For real numbers A;B > 0 and a positive integer ` � 1 satisfying
B > 2`A, define

F.z/D F`.zIB;A/D e
�.B�2`A/z

�
1�e�Az

Az

�2`
; (9-1)

and let f .t/ be the inverse Laplace transform of F.z/. Then:

(i) 0� f .t/� A�1 for all t 2 R.

(ii) The support of f is contained in ŒB � 2`A;B�.

(iii) For x > 0 and y 2 R,

jF.xC iy/j � e�.B�2`A/x
�
1�e�Ax

Ax

�2`
� e�.B�2`A/x :
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For the entirety of this section, select real numbers A;B > 0 and an integer `� 1
satisfying B > 2`A, and let F. � /D F`. � IB;A/. The inverse Laplace transform of
F.z/ is written as f .t/, so that F.z/D

R1
0 f .t/e�zt dt . To motivate our choice

of f , we note that the parameter ` is chosen to be of size O.nK/, so that f .t/ is
O.nK/-times differentiable and hence F.xC iy/ decays like jyj�O.nK/ for fixed
x > 0 and as jyj !1. This decay rate is necessary when applying log-free zero
density estimates such as Theorem 3.2 to bound the contribution of zeros which are
high in the critical strip.

9B. A weighted sum of prime ideals. For the congruence class group H .mod q/,
let C be an element of the class group of H ; that is, C 2 I.q/=H . Using the
compactly supported weight f , define

S WD
X

p− qDK
Np is a rational prime

log Np

Np
f
� log Np

L

�
� 1C.p/; (9-2)

where 1C. � / is an indicator function for the coset C, DK is the different of K, and
the sum is over degree 1 prime ideals p of K not dividing qDK . We reduce the
proof of Theorem 3.1 to verifying the following lemma.

Lemma 9.2. Let �> 0 be sufficiently small and let m be the product of prime ideals
dividing q but not fH . If hHL �1S �� minf1; �1g for

B �max
n
693:5;

log Nm

L
C 8�

o
; AD

4

L
; `D b�L c (9-3)

and L is sufficiently large then Theorem 3.1 holds.

Proof. Select B D .log x/=L with AD 4=L and `D b�L c. From the definition
(8-1) of L and the condition on x in (3-1), one can verify that B satisfies (9-3).
Now, since f is supported in ŒB � 2`A;B� and jf j � A�1 �L by Lemma 9.1,

S �L e8�L x�1 log x #fp W Np� x; deg.p/D 1; p 2 Cg:

Multiplying both sides by hHL �1 and noting B satisfies (9-3), we conclude

#fp W Np� x; deg.p/D 1; p 2 Cg � 4S
L
�
xe�8�L

log x
�� e

�5L
�

x

hH log x
:

by Theorems 8.1 and 8.4. Fixing � and noting L � log.DKQn
nK
K / yields the

conclusion of Theorem 3.1. �
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Now, by orthogonality of characters,

S D
1

hH

X
� .modH/

�.C/S�;

where S� WD
X

p− qDK
Np is a rational prime

log Np

Np
�.p/f

� log Np

L

�
: (9-4)

We wish to write S� as a contour integral involving a logarithmic derivative of a
primitive Hecke L-function. Before doing so, we define

mD
Y

p j q; p− fH

p: (9-5)

Lemma 9.3. If B � 2`A >maxf1; .log Nm/=L g then

L �1S� D
1

2�i

Z 2Ci1

2�i1

�
L0

L
.s; ��/F..1� s/L / dsCO.A�1e�.B�2`A/L =2/;

where �� is the primitive Hecke character inducing � .modH/.

Proof. Observe

1

2�i

Z 2Ci1

2�i1

�
L0

L
.s; ��/F..1� s/L / ds

DL �1
X
n

ƒ.n/

Nn
��.n/f

� log Nn

L

�
DL �1 zS�;

say. Thus, we must show zS� equals S� up to a negligible contribution from prime
ideal powers, prime ideals whose norms are not rational primes, and prime ideals
dividing qDK . For simplicity, denote X D e.B�2`A/L .

Prime ideal powers. By Lemma 9.1, the contribution of such ideals in zS� is bounded
by X

p

X
m�2

log Np

Npm
f
� log Npm

L

�
� A�1

X
p

X
m�2

Npm�X

log Np

Npm
:

Since a rational prime p splits into at most nK prime ideals in K, the right-hand
side is

�A�1
X

p rational

X
.p/�p

X
m�2

Npm�X

log Np

Npm
�A�1

X
p rational
p�X1=2

1

p2

X
.p/�p

log Np�A�1LX�1=2

by partial summation and noting nK �L from Minkowski’s bound.
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Prime ideals with norm not equal to a rational prime. By Lemma 9.1,

X
p

Np not a rational prime

1X
mD1

log Np

Npm
f
� log Npm

L

�
� A�1

X
Np�X

Np not a rational prime

log Np

Np
:

For p appearing in the right-hand sum and lying above the rational prime p, notice
Np� p2. Thus, arguing as in the previous case, we deduce

� A�1
X

p�X1=2

p rational prime

1

p2

X
.p/�p

log Np� A�1LX�1=2:

Prime ideals dividing qDK . AsB�2`A>maxf1; .log Nm/=L g, NDK�DK�e
L

by (8-2), and f is supported in ŒB � 2`A;B�, we have f ..log Np/=L / D 0 for
p jmDK . As �.p/D ��.p/ for all p −m, this implies that

�.p/f
� log Np

L

�
D ��.p/f

� log Np

L

�
for all prime ideals p. Combining all of these contributions to compare S� with zS�
yields the desired result. �

Applying Lemma 9.3 to (9-4), we deduce

L �1S D
1

hH

X
� .modH/

1

2�i

Z 2Ci1

2�i1

�
L0

L
.s; ��/F..1� s/L / ds

CO.A�1e�.B�2`A/L =2/; (9-6)

provided B � 2`A >maxf1; .log Nm/=L g.

9C. A sum over low-lying zeros. The next step is to shift the contour in (9-6) and
pick up the arising poles. Our objective in this subsection is to reduce the analysis
to the “low-lying” zeros of Hecke L-functions.

Lemma 9.4. Let T? � 1 be fixed, and let �1 and �1 be as in Section 8B. If the
inequalitiesB�2`A>maxf162; .log Nm/=L g, `>.81nKC162/=4, andA>1=L
hold and L is sufficiently large, thenˇ̌
hHL �1S �F.0/C�1.C/F..1� �1/L /

ˇ̌
�

X
� .modH/

X0

�

jF..1� �/L /jCO
��

2

AT?L

�2`
T
40:5nK
? C e�78L

�
;

where the sum
P0 indicates a restriction to nontrivial zeros � ¤ �1 of L.s; �/,

counted with multiplicity, satisfying 0 < Ref�g< 1 and jImf�gj � T?.
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Proof. Shift the contour in (9-6) to the line Refsg D �1
2

. For each primitive
character ��, this picks up the nontrivial zeros of L.s; �/, the simple pole at s D 1
when � is trivial, and the trivial zero at s D 0 of L.s; �/ of order r.�/. To bound
the remaining contour, by [Lagarias et al. 1979, Lemma 2.2] and Lemma 9.1(iii)
with [Zaman 2017b, Lemma 2.7], for Refsg D �1

2
we have

�
L0

L
.s; ��/�L CnK log.jsjC2/ and jF..1�s/L /j� e�

3
2
.B�2`A/L

� jsj�2

since A > 1=L . It follows that

1

2�i

Z � 1
2
Ci1

� 1
2
�i1

�
L0

L
.s; ��/F..1� s/L / ds�L e�

3
2
.B�2`A/L :

Overall, (9-6) becomes

hHS

L
�F.0/C

X
� .modH/

�.C/
X
�

F..1� �/L /

�

X
� .modH/

r.�/F.L /C
L

e.B�2`A/L =2
; (9-7)

where the inner sum over � is over all nontrivial zeros of L.s; �/. From (2-5) and
(2-7), notice r.�/� nK . Thus, by Lemma 9.1 and Minkowski’s bound nK �L ,

1

hH

X
� .modH/

r.�/F.L /�L e�.B�2`A/L :

Since hH � e2L by Lemma 2.11 and (8-2), it follows from (9-7) that

hHL �1S D F.0/�
X

� .modH/

�.C/
X
�

F..1� �/L /CO.L e�.B�2`A�4/L =2/:

The error term is bounded by O.e�78L / as B � 2`A > 162. Therefore, it suffices
to show

Z WD
X

� .modH/

1X
kD0

X
�

2kT?�Imf�g<2kC1T?

jF..1� �/L /j �
�

2

AT?L

�2`
T
40:5nK
? :

From Lemma 9.1, writing �D ˇC i
 with ˇ � 1
2

, observe

jF.�L /jC jF..1� �/L /j � 2e�.B�2`A/.1�ˇ/L
�

2

Aj
 jL

�2`
;

and moreover, from Theorem 3.2,

zN.�/ WD
X

� .modH/

N.�; 2T; �/� .e162L T 81nKC162/.1��/
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for 1
2
� � � 1, T � 1, and L sufficiently large. Thus, by partial summation,X

� .modH/

X
�

T�jImf�gj�2T

jF..1� �/L /j �
�

2

ATL

�2`Z 1=2

1

e�.B�2`A/.1��/L d zN.�/

�

�
2

AL

�2`
T 40:5nKC81�2`

since B > 2`AC 162. Note we have used that the zeros of
Q
� .modH/L.s; �/ are

symmetric across the critical line Refsg D 1
2

. Overall, we deduce

Z�
�
2

AL

�2`
T
40:5nKC81�2`
?

1X
kD0

.2k/40:5nKC81�2`�
�

2

AT?L

�2`
T
40:5nK
? ;

since ` > 1
4
.81nK C 162/ and T? is fixed, as desired. �

We further restrict the sum over zeros in Lemma 9.4 to zeros � close to the line
Refsg D 1. To simplify the statement, we also select parameters ` and A for the
weight function.

Lemma 9.5. Let T? � 1 and � 2 .0; 1/ be fixed and 1 � R � L be arbitrary.
Suppose

B � 2`A >max
n
162;

log Nm

L

o
; AD

4

L
; `D b�L c: (9-8)

If L is sufficiently large thenˇ̌
hHL �1S �F.0/C�1.C/F..1� �1/L /

ˇ̌
�

X
� .modH/

X?

�

jF..1��/L /jCO.e�.B�2`A�162/RC.2T?/
�2�L e�L

Ce�78L /

where the marked sum
P? runs over zeros � ¤ �1 of L.s; �/, counting with

multiplicity, satisfying 1�R=L < Ref�g< 1 and jImf�gj � T?.

Proof. For L sufficiently large depending on � and �, the quantities B , A, and `
satisfy the assumptions of Lemma 9.4. Denote B 0 DB � 2`A. We claim it suffices
to show X

� .modH/

X0

Ref�g�1�R=L

jF..1� �/L /j � e�.B
0�162/R; (9-9)

where
P0 is defined in Lemma 9.4. To see the claim, we need only show that the

error term in Lemma 9.4 is absorbed by that of Lemma 9.5. For L sufficiently
large, notice T 40:5nK? � e�L as nK logT? D o.L /; hence, for our choices of A
and `, we have �

2

AT?L

�2`
T
40:5nK
? �

�
1

2T?

�2�L

e�L :
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This proves the claim. Now, to establish (9-9), define the multiset of zeros

Rm.�/ WD
n
� W L.�; �/D 0; 1�

mC1

L
� Ref�g � 1� m

L
; jIm.�gj � T?

o
for 1�m�L . By Theorem 8.5 and Lemma 9.1, it follows thatX

� .modH/

X
�2Rm.�/

jF..1� �/L /j � e�B
0m

X
� .modH/

#Rm.�/� e�.B
0�162/m

for L sufficiently large. Summing over m�R yields the desired conclusion. �

10. Proof of Theorem 3.1: exceptional case

For this section, we assume �1 < 0:0875. By Theorem 8.1, �1 is a simple real zero
and �1 is a real Hecke character. For fixed � 2 .0; 10�3/ sufficiently small, assume
L is sufficiently large and that

B �max
n
163;

log Nm
L

C 8�
o
; `D b�L c; and AD

4

L
:

Thus B; `, andA satisfy (9-8) and B 0 WDB�2`A>162. For the moment, we do not
make any additional assumptions on the minimum size of B and hence B 0. To prove
Theorem 3.1 when �1 is an exceptional zero, it suffices to show, by Lemma 9.2, that
hHL �1S�minf1; �1g for B �maxf593; .log Nm/=L C8�g and L sufficiently
large.

For a nontrivial zero � of a Hecke L-function, write �D ˇC i
 D
�
1� �

L

�
C i
 ,

so that by Lemma 9.1, jF..1� �/L /j � e�B
0�. From Lemma 9.5, with T? � 1

fixed and 1�R �L arbitrary, it follows that if we define

�D

8̂̂<̂
:̂
�

if T? D 1
and RDR.�/ is sufficiently large,

O.e�.B
0�162/RC e�78L /

if T? D T?.�/ is sufficiently large
and 1�R �L ,

(10-1)

then

hHL �1S � 1��1.C/e�B
0�1 �

X
� .modH/

X?

�

e�B
0�
��; (10-2)

where the restricted sum
P? is over zeros � ¤ �1, counted with multiplicity,

satisfying 0 < ��R and j
 j � T?.
Suppose the arbitrary parameter �? > 0 satisfies

� > �? for every zero � occurring in the restricted sum of (10-2). (10-3)

It remains for us to divide into cases according to the range of �1 and value of
�1.C/ 2 f˙1g. In each case, we make a suitable choice for �?.
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10A. Moderate exceptional zero .� � �1 < 0:0875 or �1.C/ D �1/. For the
moment, we do not make any assumptions on the size of �1 other than that
0<�1<0:0875. Select T?D 1 andRDR.�/ sufficiently large so�D � according
to (10-1). By partial summation, our choice of �? in (10-2), and Theorem 8.6,X

� .modH/

X?

�

e�B
0�
�

Z R

�?
e�B

0� dN .�/

� e�.B
0�162/RC188

C

Z 1
�?
B 0e�.B

0�162/�C188 d�:

As RDR.�/ is sufficiently large and B 0 > 162, the above is

�

�
1�

162

B 0

��1
e188�.B

0�162/�?
C �:

Comparing with (10-2), we have

hHL �1S � 1��1.C/e�B
0�1 �

�
1�

162

B 0

��1
e�.B

0�162/�?C188
� 2�: (10-4)

Finally, we further subdivide into cases according to the size of �1 and value of
�1.C/ 2 f˙1g. Recall � > 0 is sufficiently small.

Case 1: �1 medium .10�3 � �1 < 0:0875/. Here we also assume B � 593, in
which case B 0 � 592. Select �? D 0:44, which, by Theorem 8.2, satisfies (10-3)
for the specified range of �1. Incorporating this estimate into (10-4) and noting
j�1.C/j � 1, we deduce

hHL �1S � 1� e�592�10
�3

�
592
430
e�430�0:44C188� 2�� 0:032� 2�

for � 2 Œ10�3; 0:0875�. Hence, for � sufficiently small, hHL �1S � 1 in this
subcase, as desired.

Case 2: �1 small .�� �1 < 10�3/. Here we also assume B � 297, in which case
B 0� 296:5. Select �?D 0:2103 log.1=�1/, which, by Theorem 8.2, satisfies (10-3).
For � < 10�3, this implies �? > 1:45. Applying both of these facts in (10-4) and
noting j�1.C/j � 1, we see

hHL �1S � 1� e�296:5�1 � 296
134
e�.134:5�188=1:45/�

?

� 2�

� 1� e�296:5�1 � 296
134
�1� 2�

since 4:84� 0:2103D 1:017 � � �> 1. As 1� e�x � x� x2

2
for x � 0, the above is

� 296:5�1�
.296:5/2

2
�21�

296
134
�1� 2�� 294:2�1.1� 150�1/� 2�� 250�

because � � �1 < 10�3. Therefore, hHL �1S � 1, completing the proof of this
subcase.
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Case 3: �1 very small .�1 < �/ and �1.C/D�1. Here we also assume B � 163,
in which case B 0 > 162:5. From (10-4), it follows that

hHL �1S � 1C e�162:5�1 � 325e�0:5�
?C188

� 2�� 2�O.e�0:5�
?

C �C�1/:

By Theorem 8.3, the choice �?D 1
81

log.c11=�1/ satisfies (10-3) for some absolute
constant c11 > 0. Since �1 < �, the above is therefore

� 2�O.�0:5=81C �/� 2�O.�1=162/:

As � is fixed and sufficiently small, we conclude hHL �1S � 1 as desired. This
completes the proof for a “moderate” exceptional zero.

10B. Truly exceptional zero .�1 < � and �1.C/DC1/. Select T? D T?.�/ suf-
ficiently large and let RD 1

80:1
log.c12=�1/, where c12 > 0 is a sufficiently small

absolute constant. By Theorem 8.3, it follows that the restricted sum over zeros �
in (10-2) is empty and therefore, by (10-2) and (10-1),

hHL �1S � 1� e�B
0�1 �O.�

.B 0�162/=80:1
1 C e�78L /

as �1.C/ D 1. Additionally assuming B � 243, in which case B 0 � 242:2, and
noting 1� e�x � x� x2

2
for x � 0, we conclude that

hHL �1S � 242:2�1�O.�
2
1C�

80:2=80:1
1 C e�78L /

� �1.242:2�O.�
0:001
1 C e�73L //

since �1� e�4:8L by Theorem 8.4. As �1 � � for fixed � > 0 sufficiently small,
we conclude hHL �1S � �1 as desired.

Comparing all cases, we see that the most stringent condition is B � 593, thus
completing the proof of Theorem 3.1 in the exceptional case. �

Remark. WhenH .mod q/ is primitive, the “truly exceptional” subcase considered
in Section 10B is implied by a numerically much stronger result of Zaman [2016b,
Theorem 1.1] using entirely different methods.

11. Proof of Theorem 3.1: nonexceptional case

For this section, we assume �1 � 0:0875. Thus, we no longer have any additional
information as to whether �1 is real or not, or whether �1 is real or not. We
proceed in a similar fashion as the exceptional case, but require a slightly more
refined analysis due to the absence of the Deuring–Heilbronn phenomenon. Assume
�? > 0 satisfies �? <minf�0; �2g, where �0 and �2 are defined in Section 8B. For
0 < �� 10�3 fixed, suppose B �maxf693:5; .log Nm/=L C 8�g, `D b�L c, and
A D 4=L . Thus B; `, and A satisfy (9-8). By Lemma 9.2, it suffices to show
hHL �1S � 1. For simplicity, denote B 0 D B � 2`A� 693. For a nontrivial zero
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� of a Hecke L-function, as usual, write �D ˇC i
 D .1��=L /C i�=L . From
Lemma 9.5, as F.0/D 1, it follows that

hHL �1S � 1� jF.�1C i�1/j � jF.�1� i�1/j �
X

� .modH/

X�

�

jF.�C i�/j � �;

where the marked sum
P� runs over nontrivial zeros �¤ �1 (or �¤ �1; �1 if �1 is

complex) of L.s; �/, counted with multiplicity, satisfying �? � ��R and j
 j � 1
for some RDR.�/� 1 sufficiently large. By Lemma 9.1, this implies

hHL �1S � 1� 2e�B
0�1 �

X
� .modH/

X
�?���R
j
 j�1

e�B
0�
� �: (11-1)

Let ƒ> 0 be a fixed parameter to be specified later. To bound the remaining sum
over zeros, we apply partial summation using the quantity N .�/, defined in (8-5),
over two different ranges: (i) �? � ��ƒ and (ii) ƒ< ��R.

For (i), partition the interval Œ�?; ƒ� into M subintervals with sample points

�? Dƒ0 <ƒ1 <ƒ2 < � � �<ƒM Dƒ:

By partial summation, we see

Z1 WD
X

� .modH/

X
�?<��ƒ
j
 j�1

e�B
0�
D

MX
jD1

X
� .modH/

X
ƒj�1<��ƒj

e�B
0�

� e�B
0ƒM�1N .ƒM /C

M�1X
jD1

.e�B
0ƒj�1 � e�B

0ƒj /N .ƒj /:

By Theorem 8.1, we may choose �? D 0:2866. Furthermore, we select

ƒD 1; M D 32; ƒr D

8<:
0:286C 0:001r; 1� r � 14;

0:300C 0:025.r � 14/; 15� r � 22;

0:5C 0:05.r � 22/; 23� r � 32;

and incorporate the estimates from Table 1 to bound N . � /, yielding Z1 � 0:9926.
For (ii), apply partial summation along with Theorem 8.6. Since B 0 � 693> 162

and RDR.�/ is sufficiently large, it follows that

Z2 WD
X

� .modH/

X
ƒ<��R
j
 j�1

e�B
0�
� e188�.B

0�162/R
CB 0

Z 1
ƒ

e188�.B
0�162/� d�

for L sufficiently large depending on �. Evaluating the right-hand side with
B 0 � 693 and ƒD 1, we deduce Z2 � 10�400.
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Incorporating (i) and (ii) into (11-1), we conclude

hHL �1S � 1� 2e�B
0�1 � 0:9926� 10�400� 2�� 0:0073� 2�

as �1 > 0:0875 and B 0 � 693. Since � 2 .0; 10�3� is fixed and sufficiently small,
we conclude hHL �1S � 1. This completes the proof of Theorem 3.1. �

12. Proofs of Theorems 1.2–1.5

Proof of Theorem 1.2. Let Q.x; y/ 2 ZŒx; y� be a positive-definite primitive binary
quadratic form of discriminantD. LetKDQ.

p
D/, and letL be the ring class field

of the order of discriminant D in K. By Theorem 9.12 of [Cox 1989], the rational
primes p −D represented byQ are the primes which split inK that satisfy a certain
Chebotarev condition in L. We have that DKQ� jDj. The result follows. �

We now state a slightly weaker version of (3-2) and Theorem 1.1 which will be
convenient for the remaining proofs. For positive integers n, let !.n/D #fp W p j ng
and rad.n/D

Q
pjn p.

Theorem 12.1. Let L=F be a Galois extension of number fields with Galois group
G and L ¤ Q, and let C be any conjugacy class of G. Let H be an abelian
subgroup of G such that H \C is nonempty, and let K ¤Q be the subfield of L
fixed by H . Define

M.L=K/ WD ŒL WK�3=2n
!.DL/
K rad.DL/5=2:

If .M.L=K/nK/nK is sufficiently large and

x� ŒL WK�nK rad.DL/nK�694M.L=K/694nK ;
then

�C .x; L=F /�
.M.L=K/nK/

�15nK=2

ŒL WK�

x

log x
:

Consequently, for all L=F , we have that

P.C;L=F /� ŒL WK�nK rad.DL/nK�694M.L=K/694nK :

Proof. Let P.L=K/ be the set of rational primes p such that there is a prime
ideal p of K such that p j p and p ramifies in L. By [Serre 1981, Proposition 6],
DK � .nK/

nK!.DK/ rad.DK/nK�1. Since L=K is abelian, we have by [Murty
et al. 1988, Proposition 2.5] that

Q�
�
ŒL WK�

Y
p2P.L=K/

p

�2nK
:

The primes in P.L=K/ and the primes dividing DK all divide DL. Since K ¤Q,
we have !.DK/� 1 and nK � 2. Thus the result follows from Theorem 1.1, and
in particular (3-2). �
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Remark. For comparison, if one uses [Serre 1981, Proposition 6] to bound DL,
then (1-5) implies that P.C;L=F /� .n

!.DL/
L rad.DL//40nL . We can replace

!.DL/ with 1 if L=Q is Galois.

12A. GL2 extensions. We now review some facts about GL2 extensions of Q and
class functions to prove Theorems 1.3–1.5. Let

f .z/D

1X
nD1

af .n/e
2�inz

2 ZŒŒe2�iz��

be a non-CM newform of even weight k � 2 and level N � 1. Let ` be a prime,
and let F` be the finite field of ` elements. By [Deligne 1971], there exists a
representation

�f;` W Gal.Q=Q/! GL2.F`/

with the property that if p − `N and �p is a Frobenius element at p in Gal.Q=Q/,
then �f;` is unramified at p, tr �f;`.�p/� af .p/ .mod `/, and det �f;`.�p/� pk�1

.mod `/. Let L D Lf;` be the subfield of Q fixed by the kernel of �f;`. Then
L=Q is a Galois extension unramified outside `N whose Galois group Gal.L=Q/

is isomorphic to a subgroup of

G DGk;` D fA 2 GL2.F`/ W detA is a .k�1/-th power in F�` g:

If ` is sufficiently large, then the representation is surjective, in which case

Gal.L=Q/ŠG: (12-1)

When k D 2 and the level is N, f is necessarily the newform of a non-CM elliptic
curve E=Q of conductor N. In this case, we write �f;` D �E;`, and L is the `-
division field Q.EŒ`�/. It is conjectured that Gal.L=Q/Š GL2.F`/ for all ` > 37.
When E=Q is non-CM and has squarefree level, it follows from the work of Mazur
[1978] that ker Q�E;` Š GL2.F`/ for all `� 11.

Lemma 12.2. Let L=Q be a GL2.F`/ extension which is unramified outside of `N
for some N � 1. Let C � GL2.F`/ be a conjugacy class intersecting the subgroup
D of diagonal matrices. There exists a prime p − `N such that

p� `.5209C1542!.N//`
2

rad.N /1737`.`C1/ and
hL=Q

p

i
D C:

Proof. If K D LD is the subfield of L fixed by D, then ŒL W K� D .` � 1/2

and ŒK W Q� D `.`C 1/. Moreover, rad.DL/ j ` rad.N /. The result now follows
immediately from Theorem 12.1. �

Proof of Theorem 1.3. It follows from the proof of [Murty 1994, Theorem 4] and
Mazur’s torsion theorem [1978] that it suffices to consider `� 11. Let LDQ.EŒ`�/
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be the `-division field of E=Q. For p − `NE , we have that E.Fp/ has an element
of order ` if and only if

tr �`;E .�p/� det �`;E .�p/C 1 .mod `/; (12-2)

where �p is a Frobenius automorphism at p in Gal.Q=Q/. If Gal.L=Q/ŠGL2.F`/,
then the �`;E .�p/2GL2.F`/ which satisfy (12-2) form a union of conjugacy classes
in GL2.F`/ which includes the identity element. The subgroup D of diagonal
matrices is a maximal abelian subgroup of GL2.F`/. Thus �fidg.x; L=Q/ is a
lower bound for the function that counts the primes p � x such that p − `NE and
` j #E.Fp/. Since rad.DL/ j ` rad.N /, Lemma 12.2 implies the claimed result.

Suppose now that Gal.L=Q/ is not isomorphic to GL2.F`/. The possible cases
are described in the proof of [Murty 1994, Theorem 4]. Applying similar analysis
to all of these cases, one sees that the above case gives the largest upper bound for
the least prime p such that ` j #E.Fp/. �

We require some basic results on class functions (see [Serre 1981]) for the proof
of Theorem 1.5. Let L=F be a Galois extension of number fields with Galois
group G, and let � WG!C be a class function. For each prime ideal p of F , choose
any prime ideal P of L dividing p. LetDP and IP be the decomposition and inertia
subgroups of G at p, respectively. We then have a distinguished Frobenius element
�P 2DP=IP. For each m� 1, let

�.Frobmp /D
1

jIPj

X
g2DP

gIPD�
m
P 2DP=IP

�.g/:

Note that �.Frobmp / is independent of the aforementioned choice of P. If p is
unramified in L, this definition agrees with the value of � on the conjugacy class
Frobmp of G. For x � 2, we define

��.x/ D
X

p unramified in L
NF=Q p�x

�.Frobp/; Q��.x/ D
X

p unramified in L
NF=Q pm�x

1

m
�.Frobmp /:

Let C � G be stable under conjugation, and let 1C W G ! f0; 1g be the class
function given by the indicator function of C . Now, define �C .x; L=F /D �1C .x/

and Q�C .x; L=F /D Q�1C .x/. Serre [1981, Proposition 7] proved that if x � 2, then

j�C .x; L=F /� Q�C .x; L=F /j � 4nF ..logDL/=nLC
p
x/: (12-3)

By arguments similar to the proof of Theorem 1.1, we have that if A is an abelian
subgroup ofG such thatA\C is nonempty, then Q�C .x; L=F /D Q�IndGA C

.x; L=LA/.
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Proof of Theorem 1.5. Let ` be an odd prime such that (12-1) is satisfied. Assuming
gcd.k� 1; `� 1/D 1, we have G Š GL2.F`/. To prove the theorem, we consider

�f .xI `; a/ WD #
˚
p � x W p − `N; af .p/� a .mod `/;

` splits in Q..af .p/
2
� 4pk�1/1=2/

	
:

Note that for p − `N, af .p/2� 4pk�1 D tr.�f;`.�p//� 4 det.�f;`.�p//2, where �p
is Frobenius at p in Gal.Q=Q/. The subset C �G given by

C D fA 2G W tr.A/� a .mod `/; tr.A/2� 4 det.A/ is a square in F�` g

is a conjugacy-invariant subset of G, so we bound Q�C .x; L=Q/. Let B �G denote
the subgroup of upper triangular matrices; the condition that tr.A/2� 4 det.A/ is
a square in F�

`
means that �p is conjugate to an element in B . If � is a maximal

set of elements 
 2 B which are nonconjugate in G with tr.
/� a .mod q/, then
C D

F

2� CG.
/, where CG.
/ denotes the conjugacy class of 
 in G. Since B

is a subgroup of G with the property that every element of C is conjugate to an
element of B , it follows from [Zywina 2015, Lemma 2.6] that

Q�C .x; L=Q/D
X

2�

Q�CB.
/.x; L=L
B/

ŒCentG.
/ W CentB.
/�
;

where CentG.
/ denotes the centralizer of 
 in G (and similarly for B). If
C1D

F

 2 � nonscalar CB.
/, then it follows that Q�C .xIL=Q/� 1

jGj
Q�C1.x; L=L

B/

for all x � 2.

Case 1: `N sufficiently large, a 6� 0 .mod `/. Let U be the normal subgroup of
B consisting of the matrices whose diagonal entries are both 1. We observe that
U � C1 � C1; therefore, using arguments from [Zywina 2015, Lemma 2.6], we
have that Q�C1.x; L=L

B/D Q�C2.x; L
U =LB/ for x � 2, where C2 is the image of

C1\B in B=U . It follows from (12-3) and Theorem 12.1 that if `N is sufficiently
large and x is bounded below as in Theorem 12.1, then

Q�C2.x; L
U =LB/ > 0 if and only if �C2.x; L

U =LB/ > 0: (12-4)

It is straightforward to compute nLB D `C 1 and ŒLU W LB � D .`� 1/2. Since
LU =LB is abelian and all of the ramified primes divide `N, the theorem now
follows from Theorem 12.1.

Case 2: `N sufficiently large, a� 0 .mod `/. Let H be the normal subgroup of B
consisting of matrices whose eigenvalues are both equal. We have that H �C1 �C1
since multiplying a trace zero matrix by a scalar does not change the trace. Let
C3 be the image of C1 \B in B=H . The arguments are now the same as in the
previous case, with LH replacing LU . In fact, since B=H Š F�

`
is abelian of order
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`� 1 and C3 is a singleton, we obtain a slightly better exponent than what is stated
in Theorem 1.5 when a� 0 .mod `/.

Case 3: `N not sufficiently large. Let A2 D U and A3 D H . The lower bound
for �Ci .x; L

Ai=LB/ (i D 2 or 3) given by Theorem 12.1 only holds when `N is
sufficiently large. Therefore, when `N is not sufficiently large, we cannot verify
(12-4) using Theorem 12.1. For these finitely many exceptional cases, we use
Weiss’ lower bound on �Ci .x; L

Ai=LB/ that follows from [Weiss 1983, Theorem
5.2], which holds uniformly for all choices of N and `. Continuing the proof as
in Case 1 (this requires us to take c10 sufficiently small and c11 to be sufficiently
large in [Weiss 1983, Theorem 5.2]), we see that the least prime p − `N such that
af .p/� a .mod `/ is absolutely bounded in all of the finitely many exceptional
cases. This proves the theorem. �
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Modular curves of prime-power level
with infinitely many rational points

Andrew V. Sutherland and David Zywina

For each open subgroup G of GL2(Ẑ) containing −I with full determinant, let
XG/Q denote the modular curve that loosely parametrizes elliptic curves whose
Galois representation, which arises from the Galois action on its torsion points,
has image contained in G. Up to conjugacy, we determine a complete list of the
248 such groups G of prime power level for which XG(Q) is infinite. For each G,
we also construct explicit maps from each XG to the j-line. This list consists
of 220 modular curves of genus 0 and 28 modular curves of genus 1. For each
prime `, these results provide an explicit classification of the possible images of
`-adic Galois representations arising from elliptic curves over Q that is complete
except for a finite set of exceptional j-invariants.

1. Introduction

Let E be an elliptic curve defined over Q and denote its j-invariant by jE . For
each positive integer N , let E[N ] denote the N -torsion subgroup of E(Q), where
Q is a fixed algebraic closure of Q. The natural action of the absolute Galois group
GalQ := Gal(Q/Q) on E[N ] ' (Z/NZ)2 induces a Galois representation

ρE,N : GalQ→ GL2(Z/NZ).

After choosing compatible bases for the torsion subgroups E[N ], these representa-
tions determine a Galois representation

ρE : GalQ→ GL2(Ẑ),

whose composition with the projection GL2(Ẑ)→GL2(Z/NZ) given by reduction
modulo N is equal to ρE,N for each N . The images of ρE,N and ρE are uniquely
determined up to conjugacy in GL2(Z/NZ) and GL2(Ẑ), respectively. If E does not
have complex multiplication (CM), then ρE(GalQ) is an open subgroup of GL2(Ẑ),
by Serre’s [1972] open image theorem, hence of finite index in GL2(Ẑ).

Sutherland was supported by NSF grants DMS-1115455 and DMS-1522526.
MSC2010: primary 14G35; secondary 11F80, 11G05.
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Let G be an open subgroup of GL2(Ẑ) that satisfies det(G)= Ẑ× and −I ∈ G.
Let N be the least positive integer such that G is the inverse image of its image
under the reduction map GL2(Ẑ)→ GL2(Z/NZ); we call N the level of G.

Associated to G is a modular curve XG/Q; one can define XG as the generic
fiber of the smooth proper Z[1/N ]-scheme that is the coarse moduli space for
the algebraic stack MG[1/N ] in the sense of [Deligne and Rapoport 1973, §IV],
where G denotes the image of G under reduction modulo N . See Section 2 for
some background on XG and an alternate description; in particular, it is a smooth
projective geometrically integral curve defined over Q.

When G = GL2(Ẑ), the modular curve XG is the j-line P1
Q
= A1

Q
∪ {∞}. If G

and G ′ are open subgroups of GL2(Ẑ) with det(G)= det(G ′)= Ẑ× and−I ∈G,G ′

such that G ⊆ G ′, then there is a natural morphism XG→ XG ′ of degree [G ′ : G].
In particular, with G ′ = GL2(Ẑ), we have a morphism

πG : XG→ P1
Q = A1

Q ∪ {∞}

of degree [GL2(Ẑ) : G] from XG to the j-line.
The key property for our applications is that for an elliptic curve E/Q with

jE /∈{0, 1728}, the group ρE(GalQ) is conjugate in GL2(Ẑ) to a subgroup of G if and
only if jE is an element of πG(XG(Q)); see Proposition 2.7. This property requires
−I ∈G, since there is always an elliptic curve E with any given rational j -invariant
such that −I ∈ ρE(GalQ); it also requires det(G)= Ẑ×, since det(ρE(GalQ))= Ẑ×,
and that G contain an element corresponding to complex conjugation.

We are interested in those groups G for which XG has infinitely many rational
points; equivalently, for which there are infinitely many elliptic curves E/Q, with
distinct j -invariants, such that ρE(GalQ) is conjugate to a subgroup of G. We need
only consider modular curves XG of genus 0 or 1 since otherwise XG(Q) is finite
by Faltings’ theorem [1983].

In this article, we give an explicit description of all such subgroups G ⊆GL2(Ẑ)

for which the modular curve XG has infinitely many rational points in the special
case where the level N of G is a prime power; we also give an explicit model for
XG and the morphism πG . We need only describe the groups G up to conjugacy in
GL2(Ẑ). For notational simplicity, we define the genus of G to be the genus of the
corresponding curve XG .

Theorem 1.1. Up to conjugacy, there are 248 open subgroups G of GL2(Ẑ) of
prime power level satisfying −I ∈ G and det(G)= Ẑ× for which XG has infinitely
many rational points. Of these 248 groups, there are 220 of genus 0 and 28 of
genus 1.

The 220 subgroups of genus 0 in Theorem 1.1 are given in Tables 1, 2 and 3
of the online supplement. For such a group G of genus 0, we also describe the

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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morphism πG . More precisely, we give a rational function J (t) ∈Q(t) such that
the function field of XG is of the form Q(t) and the morphism from XG to the
j-line is given by the equation j = J (t). In particular, if E/Q is an elliptic curve
with jE /∈ {0, 1728}, then ρE(GalQ) is conjugate to a subgroup of G if and only if
jE = J (t0) for some t0 ∈Q∪ {∞}.

The 28 subgroups of genus 1 in Theorem 1.1 are listed in Table 4 of the online
supplement; their levels are all powers of 2 except for a group of level 11 whose
image in GL2(Z/11Z) is the normalizer of a nonsplit Cartan subgroup. For such a
group G of genus 1, we give a Weierstrass model for XG and the morphism πG to
the j-line.

Example 1.2. Up to conjugacy, there is a unique subgroup G ⊆GL2(Ẑ) of genus 0
and level 27 given by Theorem 1.1. It has label 27A0-27a in our classification,
and we may choose it so that the image of G in GL2(Z/27Z) is generated by the
matrices

( 1
0

1
1

)
,
( 2

9
1
5

)
and

(1
3

2
2

)
. Using Table 1 of the online supplement, associated

to G is the rational function

J (t)= F3
(
F2(F1(t))

)
=
(t3
+ 3)3(t9

+ 9t6
+ 27t3

+ 3)3

t3(t6+ 9t3+ 27)
,

where F1(t)= t3, F2(t)= t (t2
+9t+27) and F3(t)= (t+3)3(t+27)/t . That J (t)

is the composition of three rational functions reflects the fact that the morphism πG

factors as XG → XG ′ → XG ′′ → P1
Q

for some groups G ( G ′ ( G ′′ ( GL2(Ẑ).
The groups G ′ and G ′′ have labels 9B0-9a and 3B0-3a, respectively, and can also
be found in Table 1 of the online supplement.

Remark 1.3. In contrast to the case of prime power level, in general there are
infinitely many open subgroups G of GL2(Ẑ) satisfying −I ∈ G and det(G)= Ẑ×

for which the modular curve XG has infinitely many rational points. Let us explicitly
construct just one of several infinite families of such groups G.

Let D be the discriminant of a quadratic number field and let χD : Ẑ
×
→ {±1}

be the continuous quadratic character arising from the corresponding Dirichlet
character. Let ε : GL2(Ẑ)→ {±1} be the character obtained by composing the
reduction map GL2(Ẑ)→ GL2(Z/2Z) with the unique nontrivial homomorphism
GL2(Z/2Z)→ {±1}. Define the group

G D :=
{

A ∈ GL2(Ẑ) : ε(A)= χD(det(A))
}
;

it is an open subgroup of GL2(Ẑ) of index 2 containing −I with det(G D) = Ẑ×

whose level is |D| or 2|D|, depending on whether D ≡ 0 mod 4 or D ≡ 1 mod 4.
For D 6= D′, the groups G D and G D′ are not conjugate in GL2(Ẑ).

The modular curve XG D has genus 0 and a rational point (it has a unique, hence
rational, cusp); the function field of XG D is of the form Q(t) with the map to the j -
line given by J (t)= Dt2

+1728. Each XG D is a Q(
√

D)-twist of the modular curve

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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XG corresponding to the unique index 2 subgroup G ⊆ GL2(Ẑ) whose reduction
has index 2 in GL2(Z/2Z); it has label 2A0-2a in our classification and can be
found in Table 3 (see the online supplement), along with its map to the j-line,
which is J (t)= t2

+ 1728.
In general, if 0⊆ SL2(Z) is a fixed congruence subgroup of level N and index m

containing−I , there are infinitely many nonconjugate open subgroups G⊆GL2(Ẑ)

of index M containing −I with det(G)= Ẑ× whose reductions modulo N coincide
with that of 0 upon intersection with SL2(Z/NZ). The levels M of these groups G
may be arbitrarily large multiples of N (and divisible by arbitrarily large primes).
The corresponding modular curves XG/Q are nonisomorphic, but for each XG there
is a cyclotomic field Q(ζM) over which XG becomes isomorphic to the modular
curve X0/Q(ζN ) (the quotient of the extended upper half plane by the action of 0)
after base change; as in our example, the XG form an infinite family of twists.

1A. `-adic representations. Fix a prime `. Define the set

J` :=
⋃
G

(
πG(XG(Q))∩Q

)
of rational numbers, where G varies over the open subgroups of GL2(Ẑ) whose
level is a power of ` and satisfies −I ∈ G and det(G)= Ẑ×, and for which XG(Q)

is finite. Note that the set J` contains the 13 j-invariants of CM elliptic curves
over Q: for n ≥ 1 each CM j-invariant corresponds to points on at least one of the
modular curves X+s (`

n), X+ns(`
n), X0(`

n), and for sufficiently large n these curves
have genus at least 2, hence finitely many rational points (by Faltings’ theorem).

For an elliptic curve E/Q, let

ρE,`∞ : GalQ→ GL2(Z`)

be the representation describing the Galois action on the `-power torsion points;
it is the composition of ρE with the natural projection GL2(Ẑ)→ GL2(Z`). After
excluding a finite number of j -invariants, we will describe the possible images of the
`-adic representation arising from elliptic curves over Q. Denote by ±ρE,`∞(GalQ)
the group generated by −I and ρE,`∞(GalQ).

The following theorem describes the possibilities for ±ρE,`∞(GalQ), up to con-
jugacy, when jE is not in the (finite!) set J`.

Theorem 1.4.

(i) The set J` is finite.

(ii) If E/Q is an elliptic curve with jE /∈ J`, then ±ρE,`∞(GalQ) is conjugate in
GL2(Z`) to the `-adic projection of a unique group G from Theorem 1.1 with
`-power level. Moreover, G does not have genus 1, level 16, and index 24 in
GL2(Ẑ).

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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(iii) Let G be a group from Theorem 1.1 with `-power level that does not have
genus 1, level 16, and index 24 in GL2(Ẑ). Then there are infinitely many
elliptic curves E/Q, with distinct j-invariants, such that ±ρE,`∞(GalQ) is
conjugate in GL2(Z`) to the `-adic projection of G.

Remark 1.5. (i) Serre [1981, p. 399] has asked whether ρE,` is surjective for all
non-CM elliptic curves E/Q and all primes ` > 37. For ` > 37, this would
imply that the set J` consists of only the 13 j -invariants of CM elliptic curves
over Q.

(ii) It would be nice to explicitly know the finite sets J`; the proof that J` is
finite relies on [Zywina 2015b], which is ineffective since it applies Faltings’
theorem several times.

Theorem 1.4 describes the subgroups of GL2(Z`), up to conjugacy, that occur as
±ρE,`∞(GalQ) for infinitely many elliptic curves E/Q with distinct j-invariants.

Theorem 1.4 also allows us to determine the subgroups of GL2(Z`), up to
conjugacy, that occur as ρE,`∞(GalQ) for infinitely many elliptic curves E/Q with
distinct j -invariants. They are precisely the subgroups H of the `-adic projection G
of a group from Theorem 1.4 with `-power level such that ±H = G. Indeed if
G =±ρE,`∞(GalQ), then for any such H there is a quadratic twist of E such that
H is conjugate to ρE ′,`∞(GalQ), see [Zywina 2015a, §5.1; Sutherland 2016, §5.6];
when H is properly contained in G this quadratic twist is unique up to isomorphism
and can be explicitly determined.

Corollary 1.6. For `=2,3,5,7,11,13 there are respectively 1201,47,23,15,2,11
subgroups H of GL2(Z`) that arise as ρE,`∞(GalQ) for infinitely many elliptic
curves E/Q with distinct j-invariants. For ` > 13 the only such subgroup is
H = GL2(Z`).

A list of the groups H appearing in Corollary 1.6 can be found in electronic
form at [Sutherland and Zywina 2016].

1B. Overview. We now give a brief overview of the contents of this paper. As
already noted, the groups G from Theorem 1.1, along with the corresponding
modular curves XG and morphisms πG , can be found in the online supplement.

In Section 2, we review the background material we need concerning the modular
curves XG . If G has level N , then we can identify the function field of XG with a
subfield of the field FN of modular functions on 0(N ) whose Fourier coefficients
lie in the cyclotomic field Q(ζN ). As a working definition of XG , we define it in
terms of its function field.

In Section 3, we determine up to conjugacy the open subgroups G of GL2(Ẑ)

with genus at most 1 that satisfy det(G)= Ẑ×, −I ∈G, and contain an element that
“looks like complex conjugation”; this last condition is necessary, since otherwise

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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XG(R), and therefore XG(Q), is empty. We are left with 220 groups of genus 0 and
250 groups of genus 1 that include all the groups that appear in Theorem 1.1. These
computations make use of the tables of Cummins and Pauli [2003] of congruence
subgroups of low genus.

Let 0 be a congruence subgroup of SL2(Z) and let X0 be the smooth compact
Riemann surface obtained by taking the quotient of the complex upper-half plane
by 0 and adjoining cusps. Assume further that X0 has genus 0. In Section 4,
we describe how to explicitly construct a hauptmodul for 0; it is a meromorphic
function h on X0 that has a unique pole at the cusp at∞. We describe h in terms
of Siegel functions; its Fourier coefficients are computable and lie in the field
Q(ζN )⊆ C.

In Section 5, we prove the part of Theorem 1.1 concerning genus 0 groups.
Let G be one of the genus 0 groups from Section 3 and let J (t) ∈ Q(t) be the
corresponding rational function from the online supplement. We need to verify that
the function field Q(XG) of XG is of the form Q( f ), for some modular function f
for which J ( f ) coincides with the modular j -function. Using our work in Section 4,
we can construct an explicit modular function h such that Q(ζN )(XG)=Q(ζN )(h),
along with a rational function J ′(t)∈Q(ζN )(t) such that J ′(h)= j . The function f
must satisfy f = ψ(h) for some ψ(t) ∈ Q(ζN )(t) of degree 1, and therefore
J ′(h)= j = J ( f )= J (ψ(h)); this in turn implies that J ′(t)= J (ψ(t)). We then
directly test all the modular functions f := ψ(h), where ψ(t) ∈Q(ζN )(t) is one of
the finitely many degree 1 rational functions that satisfy J ′(t)= J (ψ(t)).

In Section 6, we prove the part of Theorem 1.1 concerning genus 1 groups.
Let G be one of the genus 1 groups from Section 3. One can show that XG has
good reduction at all primes p - N and its modular interpretation gives a way
to compute #XG(Fp) directly from the group G, without requiring an explicit
model. By computing #XG(Fp) for enough primes p - N , one can determine the
Jacobian JG of XG up to isogeny. This allows us to compute the rank of JG(Q)

which is an isogeny invariant of JG . We need only consider groups for which
JG(Q) has positive rank since otherwise XG(Q) is finite; this leaves the 28 genus 1
groups in Theorem 1.1. These 28 groups G of genus 1 and a description of their
morphisms πG already appear in the literature; our contribution lies in proving that
there are no others.

In Section 7, we complete the proof of Theorem 1.4, and in Section 8 we explain
how we found the rational functions J (t) ∈Q(t) whose verification is described in
Section 5.

The online supplement lists the 248 groups G that appear in Theorem 1.1, along
with explicit maps from XG to the j-line; for the 220 groups of genus 0 these are
rational functions J (t), and for the 28 groups of genus 1 these are morphisms J (x, y)
from an explicit Weierstrass model for XG as an elliptic curve of positive rank. One

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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can use these maps to explicitly construct infinite families of elliptic curves E/Q
with distinct j-invariants whose `-adic Galois images match the groups G listed
in Theorem 1.4 and the groups H listed in Corollary 1.6 by choosing appropriate
quadratic twists.

1C. Related results. Contemporaneous with our work, Rouse and Zureick-Brown
[2015] independently computed explicit models for all modular curves XG/Q of
2-power level that have a noncuspidal rational point, including all those for which
XG(Q) is infinite. The XG of 2-power level in our list agree with theirs, although we
generally obtain different (but isomorphic) models (note our groups are transposed
relative to theirs; in our choice of the isomorphism Aut(E[N ])' GL2(Z/NZ) we
view matrices in GL2(Z/NZ) as acting on the left, rather than the right).

Notation and terminology. For each integer n ≥ 1, we denote by ζn the n-th root
of unity e2π i/n in C, and let Kn :=Q(ζn) denote the corresponding cyclotomic field.
For any nonconstant function f ∈ K (t), where K is a field, the degree of f is its
degree as a morphism P1

K → P1
K .

For any ring R, we denote by M2(R) the ring of 2× 2 matrices with coefficients
in R. We denote by Ẑ the profinite completion of Z, and view the profinite group

GL2(Ẑ)' lim
←−−

N
GL2(Z/NZ)'

∏
`

GL2(Z`)

as a topological group in the profinite topology. If G is an open subgroup of GL2(Ẑ),
we define its level to be the least positive integer N for which G is the inverse image
of a subgroup of GL2(Z/NZ) under the natural projection GL2(Ẑ)→GL2(Z/NZ).
If G is a subgroup of GL2(Z/NZ), its level is defined to be the level of its inverse
image in GL2(Ẑ), which is necessarily a divisor of N . For convenience we may
identify the level N subgroups of GL2(Z/NZ) with their inverse images in GL2(Ẑ),
and conversely. By the genus of an open subgroup G of GL2(Ẑ) satisfying −I ∈ G
and det(G)= Ẑ×, we mean the genus of the modular curve XG defined in Section 2.

For sets S and T we use S− T to denote the set of elements that lie in S but
not T .

2. Modular functions and modular curves

In this section, we summarize the background we need concerning modular curves.

2A. Congruence subgroups. Fix a congruence subgroup 0 of SL2(Z), i.e., a sub-
group of SL2(Z) containing

0(N ) := {A ∈ SL2(Z) : A ≡ I (mod N )}

for some integer N ≥ 1. The smallest such N is the level of 0.
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The group 0 acts on the complex upper half plane H by linear fractional trans-
formations, and the quotient Y0 = 0\H is a smooth Riemann surface. By adding
cusps, we can extend Y0 to a smooth compact Riemann surface X0 . We denote by
X (N ) the Riemann surface X0(N ). The genus of 0 is the genus of the Riemann
surface X0.

2B. Cusps. Define the extended upper half plane by H∗ :=H∪P1(Q)=H∪Q∪{∞}.
The action of 0 extends to H∗ and we can identify the quotient 0\H∗ with X0 . In
particular, the cusps correspond to the 0-orbits of Q∪ {∞}.

Lemma 2.1. Let a/b and α/β be elements of Q ∪ {∞} satisfying gcd(a, b) = 1
and gcd(α, β)= 1 (where we take∞=±1/0). Then 0 · a/b = 0 ·α/β if and only
if γ

(a
b

)
≡±

(
α
β

)
(mod N ) for some γ ∈ 0.

Proof. For the case 0 = 0(N ), see [Shimura 1971, Lemma 1.42]. The general case
follows easily. �

Let ±0 be the congruence subgroup generated by −I and 0. From Lemma 2.1,
we find that the cusps of X0 correspond with the orbits of ±0 on the set of(a

b

)
∈ (Z/NZ)2 of order N . Using this, it is straightforward to find representatives

of the cusps of X0.

2C. Modular functions. A modular function for 0 is a meromorphic function
of X0; they correspond to meromorphic functions f of H that satisfy f (γ τ)= f (τ )
for all γ ∈ 0 and are meromorphic at the cusps. The function field C(X0) of X0
consists of the meromorphic functions of X0.

Let τ be a variable of the upper half plane. Let w be the width of the cusp at∞,
i.e., the smallest positive integer for which

( 1
0
w
1

)
is an element of 0; it is a divisor

of N . For any rational number m, define qm
:= e2π imτ . Then any modular function

f for 0 has a unique q-expansion

f (τ )=
∑
n∈Z

cnqn/w,

where the cn are complex numbers that are 0 for all but finitely many n < 0. We
will often refer to the cn as the coefficients of f .

2D. Field of modular functions. Fix a positive integer N . Denote by FN the field
of meromorphic functions of the Riemann surface X (N ) whose q-expansions have
coefficients in KN := Q(ζN ). For example, F1 = Q( j), where j is the modular
j-invariant.

For f ∈FN and γ ∈SL2(Z), let f |γ ∈FN denote the modular function satisfying
f |γ (τ )= f (γ τ).
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For each d ∈ (Z/NZ)×, let σd be the automorphism of KN satisfying σd(ζN )=ζ
d
N .

We extend σd to an automorphism of the field FN by defining

σd( f ) :=
∑

n

σd(cn)qn/N ,

where f has expansion
∑

n cnqn/N . We now recall some facts about the extension
FN of F1 =Q( j).

Proposition 2.2. The extension FN of Q( j) is Galois. There is a unique isomor-
phism

θN : GL2(Z/NZ)/{±I }
∼
−→ Gal(FN/Q( j))

such that the following hold for all f ∈ FN :

(a) For g ∈SL2(Z/NZ), we have θN (g) f = f |γ t , where γ is any matrix in SL2(Z)

that is congruent to g modulo N and γ t is the transpose of γ .

(b) For g =
(1

0
0
d

)
∈ GL2(Z/NZ), we have θN (g) f = σd( f ).

Moreover, the algebraic closure of Q in FN is Q(ζN ); it corresponds to the subgroup
SL2(Z/NZ)/{±I }.

Proof. This is well known; see [Kubert and Lang 1981, Chapter 2, §2] for a summary
(where the action given is a right action obtained as above but without the transpose
in (a)). �

Throughout the rest of the paper, we let GL2(Z/NZ) act on FN via the homo-
morphism θN of Proposition 2.2. We set g∗( f ) := θN (g)( f ) for g ∈ GL2(Z/NZ)

and f ∈ FN .

Remark 2.3. There are other natural actions of GL2(Z/NZ) on FN ; for example,
one could replace γ t in condition (a) by γ−1 or just act on the right. Our choice is
motivated by Proposition 2.6 below.

2E. Modular curves. Let G be a subgroup of GL2(Z/NZ) satisfying −I ∈G and
det(G)= (Z/NZ)×. Let FG

N be the subfield of FN fixed by the action of G from
Proposition 2.2. Proposition 2.2 and the assumption det(G)= (Z/NZ)× imply that
Q is algebraically closed in FG

N .
The modular curve XG associated with G is the smooth projective curve with

function field FG
N . The curve XG is defined over Q and is geometrically irreducible.

The inclusion of fields FG
N ⊇ F1 =Q( j) gives rise to a nonconstant morphism

πG : XG→ Spec Q[ j] ∪ {∞} = P1
Q

of degree [GL2(Z/NZ) :G]. Moreover, given another group G⊆G ′⊆GL2(Z/NZ),
the inclusion FG ′

N ⊆ FG
N induces a nonconstant morphism XG → XG ′ of degree

[G ′ : G]. Composing XG→ XG ′ with πG ′ gives the morphism πG .
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Let 0 be the congruence subgroup consisting of γ ∈ SL2(Z) for which γ t

modulo N lies in G ∩SL2(Z/NZ). The level of 0 divides, but need not equal, N .

Lemma 2.4. (i) The field KN (XG), i.e., the function field of the base extension of
XG to KN , is the field consisting of f ∈ FN satisfying f |γ = f for all γ ∈ 0.

(ii) The genus of the modular curve XG is equal to the genus of 0.

Proof. Proposition 2.2 implies that KN is algebraically closed in FN and that we
have an isomorphism Gal(FN/KN ( j))

∼
−→ SL2(Z/NZ)/{±I }. Thus KN (XG) is the

subfield of FN fixed by G ∩SL2(Z/NZ). Part (i) is now clear.
Since KN is algebraically closed in FN and Q is algebraically closed in Q(XG),

we have

[C ·KN (XG) :C( j)] = [KN (XG) : KN ( j)] = [Q(XG) :Q( j)] = [GL2(Z/NZ) :G].

Since det(G)= (Z/NZ)×, we deduce that [C · KN (XG) : C( j)] = [SL2(Z) : 0].
Clearly each f ∈KN (XG) is a modular function for 0, thus C·KN (XG)⊆C(X0).

We in fact have C ·KN (XG)=C(X0), since [C ·KN (XG) :C( j)] = [SL2(Z) :0] =

[C(X0) : C( j)]. The curve XG has the same genus as the Riemann surface X0
because C(XG)= C(X0). �

Remark 2.5. Another natural congruence subgroup to study is the congruence
subgroup 0′ consisting of γ ∈SL2(Z) such that γ modulo N lies in G∩SL2(Z/NZ),
which we use later in the paper. Observe that the congruence subgroups 0 and 0′

are conjugate in SL2(Z); indeed, we have B−1γ B = (γ t)−1 for all γ ∈ SL2(Z),
where B :=

( 0
−1

1
0

)
. Thus 0 and 0′ have the same genus.

The following proposition is crucial to our application.

Proposition 2.6. Let E be an elliptic curve defined over Q with jE /∈ {0, 1728}.
Then ρE,N (GalQ) is conjugate in GL2(Z/NZ) to a subgroup of G if and only if jE

belongs to πG(XG(Q)).

Proof. See [Zywina 2015a, §3] for a proof. �

2F. Modular curves and open subgroups. Fix an open subgroup G of GL2(Ẑ)

that satisfies −I ∈ G and det(G)= Ẑ×. Let N ≥ 1 be an integer that is divisible by
the level of G. Define the modular curve

XG := XG,

where G ⊆ GL2(Z/NZ) is the image of G modulo N . Observe that the modular
curve XG and its function field do not depend on the initial choice of N .

Every (open) subgroup G ′ of GL2(Ẑ) that contains G satisfies −I ∈ G ′ and
det(G ′)= Ẑ×, and we have a morphism XG→ XG ′ . With G ′ =GL2(Ẑ), we obtain
a morphism πG : XG→ XG ′ =P1

Q
to the j -line that agrees with πG . The following

is equivalent to Proposition 2.6.
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Proposition 2.7. Let E be an elliptic curve defined over Q with jE /∈ {0, 1728}.
Then ρE(GalQ) is conjugate in GL2(Ẑ) to a subgroup of G if and only if jE belongs
to πG(XG(Q)). �

2G. Complex conjugation. Fix a subgroup G of GL2(Z/NZ) satisfying −I ∈ G
and det(G)= (Z/NZ)×. For our curve XG to have rational points, we need G to
contain an element that “looks like” complex conjugation.

Lemma 2.8. For any elliptic curve E/Q and integer N > 1, the group ρE,N (GalQ)
contains an element that is conjugate in GL2(Z/NZ) to

(1
0

0
−1

)
or
( 1

0
1
−1

)
.

Proof. This follows from of [Zywina 2015b, Proposition 3.5] (and its proof for the
cases jE ∈ {0, 1728}). �

Note that
( 1

0
0
−1

)
and

( 1
0

1
−1

)
are conjugate to each other in GL2(Z/NZ) if N is

odd. If G does not contain an element that is conjugate in GL2(Z/NZ) to
(1

0
0
−1

)
or
( 1

0
1
−1

)
, then XG(Q) must be empty since XG(R) is finite (by [Zywina 2015b,

Proposition 3.5]), hence empty, since XG is nonsingular.

3. Group theoretic computations

We define an admissible group to be an open subgroup G of GL2(Ẑ) for which the
following conditions hold:

• G has prime power level.

• −I ∈ G and det(G)= Ẑ×.

• G contains an element that is conjugate in GL2(Ẑ) to
( 1

0
0
−1

)
or
( 1

0
1
−1

)
.

The condition det(G)= Ẑ× is needed for Proposition 2.7 since det(ρE(GalQ))=
Ẑ×. If we were interested in elliptic curves defined over other number fields, then
we could loosen this restriction which could increase the base field of the modular
curve XG .

The condition −I ∈ G is also needed in Proposition 2.7. For an elliptic curve
E/Q, there is a quadratic twist E ′/Q, which automatically has the same j -invariant
as E , such that −I ∈ ρE(GalQ).

The last condition on G is necessary in order for XG(Q) to be nonempty, as
explained in Section 2G.

Proposition 3.1. Let G be an admissible group of genus 0. The set XG(Q) is
infinite.

Proof. We have XG(R) 6= ∅ by [Zywina 2015b, Proposition 3.5]. For primes p
not dividing its prime power level the modular curve XG has good reduction at p
and XG(Qp) 6=∅, since the reduction of XG to Fp necessarily has rational points
that can be lifted to Qp via Hensel’s lemma. Thus XG has rational points locally
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at all but at most one place of Q. The product formula for Hilbert symbols and
the Hasse–Minkowksi theorem then imply that XG has a rational point and is thus
isomorphic to P1 and has infinitely many rational points. �

Remark 3.2. As shown by Proposition 3.1, our three criteria for admissibility rule
out genus 0 curves with no rational points. There are ten groups G of 2-power level
that satisfy our first two criteria but not the third; these give rise to the ten pointless
conics XG found in [Rouse and Zureick-Brown 2015]. There are three such groups
of 3-power level, three of 5-power level, and none of higher prime-power level.

Fix an integer g ≥ 0. In this section, we explain how to enumerate all admissible
subgroups G of GL2(Ẑ), up to conjugacy, that have genus at most g. We shall
apply these methods with g = 1 to verify Theorem 3.3 below, and to find explicit
representatives of these conjugacy classes of groups; Magma [Bosma et al. 1997]
scripts that perform this enumeration can be found in [Sutherland and Zywina 2016].

Theorem 3.3.

(i) Up to conjugacy in GL2(Ẑ), there are 220 admissible subgroups of genus 0.

(ii) Up to conjugacy in GL2(Ẑ), there are 250 admissible subgroups of genus 1.

Remark 3.4. The 220 admissible subgroups G of genus 0, up to conjugacy, are
precisely those given in Tables 1–3 of the online supplement. More precisely, for
each entry of the table, we have an integer N and a set of generators that generates
the image in GL2(Z/NZ) of an admissible group of level N and genus 0.

Remark 3.5. The 28 admissible subgroups G of genus 1 that have infinitely many
rational points, up to conjugacy, are precisely those given in Table 4 of the online
supplement, of which 27 have level 16 and 1 has level 11. The levels arising among
the remaining 222 are 7, 8, 9, 11, 16, 17, 19, 27, 32, and 49.

For a fixed admissible group G of level N , let 0 be the congruence subgroup
of SL2(Z) consisting of matrices whose image modulo N lies in the image of G
mod N ; the level of 0 necessarily divides N , and 0 contains −I . By Lemma 2.4(ii)
and Remark 2.5, the modular curve XG has the same genus as 0.

The basic idea of our computation is to reverse the process above; we start with
a congruence subgroup 0 of genus at most g and prime power level, and then
enumerate the possible groups G that could produce 0.

Let Sg be the set of congruences subgroups of SL2(Z) of prime power level that
contain −I and have genus at most g. We know that the set Sg is finite from a
theorem of Dennin [1974]. When g ≤ 24, and in particular, for g = 1, we can
explicitly determine the elements of Sg from the tables of Cummins and Pauli
[2003] (their methods can also be extended to larger g).

Let Lg be the set of primes that divide the level of some congruence subgroup

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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0 ∈ Sg. The set Lg is finite, since Sg is finite, and we have L1 = {2, 3, 5, 7, 11, 13,
17, 19}. If G is an admissible group of genus at most g, then its level must be a
power of a prime ` ∈ Lg. For the rest of the section, we fix a prime ` ∈ Lg. Since
Lg is finite, it suffices to explain how to compute the admissible groups G with
genus at most g whose level is a power of `, and we need only consider levels
strictly greater than 1 since GL2(Ẑ) is the only admissible group of level 1.

Fix a prime power N := `n > 1, and consider any congruence subgroup 0 ∈ Sg

whose level divides N . By enumerating subgroups of GL2(Z/NZ) one can explicitly
determine those subgroups G N that satisfy the following conditions:

(1) G N has level N ,

(2) G N ∩SL2(Z/NZ) is equal to the image of 0 modulo N ,

(3) det(G N )= (Z/NZ)×,

(4) G N contains an element that is conjugate in GL2(Z/NZ) to
( 1

0
0
−1

)
or
( 1

0
1
−1

)
.

Let H be the image of 0 in SL2(Z/NZ). The group H = G N ∩ SL2(Z/NZ) is
normal in G N and hence G N is a subgroup of the normalizer K of H in GL2(Z/NZ).
So rather than searching for G N in K , we can work in the quotient K/H where the
image of G N is an abelian group isomorphic to (Z/NZ)×. Using Magma, we can
efficiently enumerate all abelian subgroups A of K/H of order #(Z/NZ)×. For
each such subgroup A we then test whether its inverse image G N in K satisfies
conditions (1)–(4) above.

Let G be the subgroup of GL2(Ẑ) consisting of those matrices whose image
modulo N lies in a fixed group G N satisfying the conditions (1)–(4). The group G
is admissible of level N and has genus at most g. Moreover, it is clear that every
admissible group of level N and genus at most g arises in this manner.

Fix an integer e ≥ 1. By applying the above method with 1≤ n ≤ e, we obtain
all admissible groups G of genus at most g and level dividing `e. Our algorithm
proceeds by applying this procedure to increasing values of e. In order for it to
terminate we need to know that there are only finitely many admissible groups G
of `-power level and genus at most g, and we need an explicit way to determine
when we have reached an e that is large enough to guarantee that we have found
them all. Proposition 3.6 below addresses both issues.

Proposition 3.6.

(i) There are only finitely many admissible groups G with genus at most g whose
level is a power of `.

(ii) Take any integer n ≥ 2 with n 6= 2 if `= 2. Define N := `n . Suppose that there
is no subgroup G N of GL2(Z/NZ) that satisfies conditions (1)–(4) for some
0 ∈ Sg with level dividing N. Then any admissible group G of genus at most g
with level a power of ` has level at most N .
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The remainder of this section is devoted to proving Proposition 3.6. We will
need the following basic lemma.

Lemma 3.7. Let ` be a prime and let G be an open subgroup of GL2(Z`). For each
integer m ≥ 1, let im be the index of the image of G in GL2(Z/`

mZ). If in+1 = in

for an integer n ≥ 1, with n 6= 1 if `= 2, then [GL2(Z`) : G] = in .

Proof. Since G is an open subgroup, it suffices to prove im+1 = im for all m ≥ n;
we proceed by induction on m. The base case is given, so we assume im+1 = im for
some m ≥ n; we need to show that im+2 = im+1. Let Gm denote the image of G in
GL2(Z/`

mZ). Reduction modulo `m gives exact sequences related by inclusions

1 Km+1 GL2(Z/`
m+1Z) GL2(Z/`

mZ) 1

1 Hm+1 Gm+1 Gm 1.

The inductive hypothesis im+1 = im implies that the kernels Hm+1 and Km+1

coincide; in particular, Hm+1 is as large as possible (i.e., it has order `4). It thus
suffices to show that the kernel Hm+2 of the reduction map from Gm+2 to Gm+1

also has order `4. We have |Hm+2| ≤ `
4, so it suffices to give an injective map

Hm+1→ Hm+2.
Let M be an element of G whose image in Gm+1 lies in Hm+1; then M= I+`m A

for some A ∈M2(Z`). Since m ≥ 1, with m ≥ 2 if `= 2, we have

(1+ `m A)` = 1+
(
`

1

)
`m A+

(
`

2

)
`2m A2

+ · · · ≡ 1+ `m+1 A (mod `m+2).

The `-power map thus induces an injection Hm+1→ Hm+2. �

Remark 3.8. Lemma 3.7 holds more generally. One can replace GL2(Z`) with the
unit group of any (unital associative) Z`-algebra A that is torsion-free and finitely
generated as a Z`-module (in the lemma, A=M2(Z`)); the proof is exactly the same.

Proof of Proposition 3.6(i). Let G be the set of admissible groups of genus at most
g whose level is a power of `. Note that if G ′ is a subgroup of GL2(Ẑ) containing
some G ∈ G, then G ′ ∈ G. We wish to show that G is finite.

We claim that any admissible group G has only finitely many maximal subgroups
that are also admissible and whose level is a power of `. It suffices to show that an
open subgroup H of GL2(Z`) has only finitely many open maximal subgroups. Let
8(H) be the Frattini subgroup of H ; it is the intersection of the maximal closed
proper subgroups of H . By the proposition in [Serre 1997, §10.5], 8(H) is an
open subgroup of H . This proves the claim.

Now suppose that G is infinite. The claim implies that G contains an infinite
descending chain G1 ) G2 ) G3 ) · · · (let G1 =GL2(Ẑ) ∈ G, let G2 ∈ G be one of
the finitely many maximal subgroups of G1 in G that has infinitely many subgroups
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in G, and continue in this fashion). For each i ≥ 1, let 0i be the congruence subgroup
associated to Gi (i.e., 0i consists of the matrices in SL2(Z) whose image modulo N
lies in the image modulo N of Gi , where N is the level of Gi ); then 0i ∈ Sg. Since
[GL2(Ẑ) : Gi ] = [SL2(Z) : 0i ], we have inclusions 01 ) 02 ) 03 ) · · · . This
contradicts the finiteness of Sg and the proposition follows. �

Proof of Proposition 3.6(ii). Fix an integer n ≥ 1 as in the statement of part (ii).
Suppose there is an integer m > n such that there is an admissible group G of level
`m and genus at most g.

With N := `n , let G N be the image of G in GL2(Z/NZ). The curve XG N

has genus at most g since it is dominated by XG . Therefore, conditions (2),
(3), and (4) hold for some 0 ∈ Sg with level dividing N . Our assumption on n
implies that the level of G N is a proper divisor of N . This implies that the index
in := [GL2(Z/NZ) :G N ] agrees with in−1 := [GL2(Z/`

n−1Z) :G`n−1], where G`n−1

is the image of G in GL2(Z/`
n−1Z). Since in = in−1, Lemma 3.7 implies that

[GL2(Z`) : G] = in−1. However, this means that G has level dividing `n−1 which
is impossible since, by assumption, G has level `m > `n−1. Therefore, no such
admissible group G exists. �

4. Construction of hauptmoduls

Fix a congruence subgroup 0 of genus 0 and level N . The function field of X0 is
then of the form C(h), where the function h : X0→C∪{∞} gives an isomorphism
between X0 and the Riemann sphere; in particular, h has a unique (simple) pole.

We may choose h so that its unique pole is at the cusp∞; we will call such an
h a hauptmodul of 0. Every hauptmodul of 0 is then of the form ah+ b for some
complex numbers a 6= 0 and b. For example, the familiar modular j-invariant

j (τ )= q−1
+ 744+ 196884q + 21493760q2

+ 864299970q3
+ · · ·

is a hauptmodul for SL2(Z). If h is a hauptmodul for 0, then we have an inclusion
of function fields C( j)⊆ C(h) and hence J (h)= j for a unique rational function
J (h) ∈ C(t).

The main task of Section 4 is to describe how to find an explicit hauptmodul h
of 0 in terms of Siegel functions when N is a prime power. Our h will have
coefficients in KN . In Section 4D, we explain how to compute the rational function
J (t) corresponding to h.

4A. Siegel functions. Take any pair a = (a1, a2) ∈Q2
−Z2. We define the Siegel

function ga(τ ) to be the holomorphic function H→ C× defined by the series

−q1/2B2(a1) ·e(a2(a1−1)/2)·(1−e(a2)qa1)

∞∏
n=1

(1−e(a2)qn+a1)(1−e(−a2)qn−a1),
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where e(z)= e2π i z and B2(x)= x2
− x + 1

6 .
Recall that the Dedekind eta function is the holomorphic function on H given by

η(τ) := q1/24
∞∏

n=1

(1− qn).

For each γ =
(a

c
b
d

)
∈ SL2(Z), there is a unique 12-th root of unity ε(γ ) ∈ C× such

that
η(γ τ)2 = ε(γ )(cτ + d)η(τ )2. (4-1)

We can characterize the map ε : SL2(Z)→C× by the property that it is a homomor-
phism satisfying ε

(( 1
0

1
1

))
= ζ12 and ε

(( 0
−1

1
0

))
= ζ4; see [Kubert and Lang 1981,

Chapter 3, §5]. Moreover, the kernel of ε is a congruence subgroup of level 12 and
agrees with the commutator subgroup of SL2(Z).

The following lemma gives several key properties of Siegel functions.

Lemma 4.1. For any γ ∈ SL2(Z), a ∈Q2
−Z2, and b ∈ Z2, the following hold:

(i) g−a =−ga ,

(ii) ga+b = (−1)b1+b2+b1b2 · e((b2a1− b1a2)/2) · ga ,

(iii) ga|γ = ε(γ ) · gaγ , where we view a as a row vector.

Proof. In [Kubert and Lang 1981, Chapter 2, §1], we see that ga(τ )= ka(τ )η(τ )
2,

where ka(τ ) is a Klein form (with W =Wτ in the notation the previous work). Part
(ii) follows directly from property K2 in [loc. cit.].

Take any γ ∈ SL2(Z) and let (c, d) be the last row of γ . From properties K0
and K1 of the above reference, we find that

ka(γ τ)= (cτ + d)−1kaγ (τ ). (4-2)

From (4-1) and (4-2), we deduce that ga(γ τ)= ε(γ )·gaγ (τ ), which proves part (iii).
Finally, part (i) follows from part (iii) with γ =−I , since ε(−I )=−1. �

For an integer N > 1, let AN be the set of pairs (a1, a2) ∈ N−1Z2
− Z2 that

satisfy one of the following conditions:

• 0< a1 <
1
2 and 0≤ a2 < 1,

• a1 = 0 and 0< a2 ≤
1
2 ,

• a1 =
1
2 and 0≤ a2 ≤

1
2 .

The set AN is chosen so that every nonzero coset of (N−1Z2)/Z2 is represented by
an element of the form a or −a for a unique a ∈AN . So for any a ∈ N−1Z2

−Z2,
we can use parts (i) and (ii) of Lemma 4.1 to show that

ga = ε · ζ · ga′
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for an explicit sign ε ∈ {±1}, N -th root of unity ζ , and pair a′ ∈AN .

4B. Siegel orbits. Now fix a congruence subgroup 0 of level N > 1. For each
a ∈AN and γ ∈ SL2(Z), let a ∗ γ be the unique element of AN such that a ∗ γ or
−a ∗ γ lies in the coset aγ +Z2. The map

AN ×SL2(Z)→AN , (a, γ ) 7→ a ∗ γ

then gives a right action of SL2(Z) on AN . In particular, this gives a right action of
0 on AN .

Fix a 0-orbit O of AN and define

gO :=
∏

a∈O
ga;

it is a holomorphic function H→ C×.

Lemma 4.2. The function g12N
O is a modular function for 0. Every pole and zero

of g12N
O on X0 is a cusp.

Proof. Take any γ ∈ 0 and a ∈ AN . By Lemma 4.1(iii), we have g12N
a |γ = g12N

aγ .
We have aγ = ε · (a ∗ γ + b) for some ε ∈ {±1} and b ∈ Z2. By parts (i) and (ii) of
Lemma 4.1, we find that g12N

a |γ = g12N
aγ is equal to g12N

a∗γ . Therefore,

g12N
O |γ =

∏
a∈O

g12N
a |γ =

∏
a∈O

g12N
a∗γ = g12N

O ,

where the last equality uses the fact that the map O→O, a 7→ a ∗ γ is a bijection
(since O is a 0-orbit). The remaining statement about the poles and zeros of g12N

O
follows immediately since each ga is holomorphic and nonzero on H. �

Let P1, . . . , Pr be the cusps of X0. Choose a representative s j ∈ Q∪ {∞} of
each cusp Pj and a matrix A j ∈ SL2(Z) satisfying A j · ∞ = s j . Let w j be the
width of the cusp Pj ; it is the smallest positive integer b such that A j

(1
0

b
1

)
A−1

j is
an element of 0.

For a nonzero meromorphic function f of H given by a q-expansion, we define
ordq( f ) to be the smallest rational number m such that there is a nonzero term of
the form qm in the expansion of f . For each cusp Pj , define the map

vPj : C(X0)
×
→ Z, f 7→ w j · ordq( f |A j );

it is a surjective homomorphism and agrees with the valuation giving the order of
vanishing of a function at Pj . We extend ordq and vPj by setting ordq(0)=+∞
and vPj (0)=+∞.

We now give a computable expression for the divisor of g12N
O on X0.
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Lemma 4.3. With notation as above, we have

div(g12N
O )=

r∑
j=1

(
6Nw j

∑
a∈O

B2
(
〈(a A j )1〉

))
· Pj ,

where B2(x)= x2
−x+ 1

6 , (a A j )1 is the first coordinate of the row vector a A j , and
〈x〉 denotes the positive fractional part of the real number x , chosen so 0≤ 〈x〉< 1
and x −〈x〉 ∈ Z.

Proof. For any a ∈ (N−1Z2)−Z2, we have ordq(ga) =
1
2 · B2(〈a1〉); see [Kubert

and Lang 1981, p. 31]. We have

vPj (g
12N
O )=

∑
a∈O

vPj (g
12N
a )=

∑
a∈O

w j ordq(g12N
a |A j )=

∑
a∈O

w j ordq(g12N
a A j

),

where the last equality uses Lemma 4.1(iii). Therefore,

vPj (g
12N
O )=

∑
a∈O

12Nw j ordq(ga A j )= 6Nw j

∑
a∈O

B2
(
〈(a A j )1〉

)
.

Since all poles and zeros of g12N
O are cusps, we have div(g12N

O )=
r∑

i=1
vPj (g

12N
O )·Pj ,

and the lemma follows immediately. �

4C. Constructing hauptmoduls of prime power level. Fix a congruence subgroup
0 of SL2(Z) of prime power level N > 1 that has genus 0. Let P1, . . . , Pr be the
cusps of 0; we choose our cusps so that P1 is the cusp at∞.

In this section, we explain how to construct an explicit hauptmodul of 0 whose
q-expansion has coefficients in KN . Moreover, our hauptmodul will be of the form

M∑
i=1

ζ
ei
2N 2

∏
a∈AN

gma,i
a (4-3)

with integers ma,i and ei .

Case 1: multiple cusps. First assume that 0 has at least two cusps. We will use
the following lemma to construct a hauptmodul for certain genus 0 congruence
subgroups.

Let O1, . . . ,On be the distinct 0-orbits of AN . For each Oi , define the divisor
Di := div(g12N

Oi
) on X0 . By Lemma 4.3, the divisors D1, . . . , Dn are supported on

{P1, . . . , Pr } and are straightforward to compute.

Lemma 4.4. Suppose there is an n-tuple m ∈ Zn such that

n∑
i=1

mi Di =−12N · P1+ 12N · P2.
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Let 0 ≤ e < 2N 2 be the integer satisfying e ≡
∑n

i=1 mi
∑

a∈Oi
Na2(N − Na1)

(mod 2N 2). Then

h := ζ e
2N 2

n∏
i=1

gmi
Oi

is a hauptmodul for 0 whose q-expansion has coefficients in KN . On X0, we have
div(h)=−P1+ P2.

Proof. Since X0 has genus 0, there is a meromorphic function f on X0 with
div( f )=−P1+ P2. Lemma 4.2 implies that f 12N/h12N defines a function on X0;
it has divisor

12N div( f )−
n∑

i=1

mi div(g12N
Oi

)= 12N (−P1+ P2)−

n∑
i=1

mi Di = 0,

where the last equality uses our assumption on m. Therefore, f 12N/h12N is constant.
Since f and h are meromorphic functions on the upper half-plane, we deduce that
f/h is a (nonzero) constant. In particular, h is modular for 0 and div(h)=−P1+P2.

The function h on X0 is a hauptmodul for 0 since its only pole is the simple pole
at P1, i.e., the cusp at∞.

It remains to show that the coefficients of h lie in KN . Take any a ∈AN . From
the series defining ga , we find that a equals the root of unity e

(1
2a2(a1 − 1)

)
=

ζ
Na2(Na1−N )
2N 2 times a Laurent series in q1/(6N 2) with coefficients in KN . Set

e′ :=
n∑

i=1

mi

∑
a∈Oi

Na2(Na1− N ).

The coefficients of ζ−e′

2N 2

∏n
i=1 gmi

Oi
thus all lie in KN . The lemma follows since

e ≡−e′ (mod 2N 2). �

Using the Cummins–Pauli classification of genus 0 congruence subgroups [Cum-
mins and Pauli 2003], we have explicitly verified that the n-tuple m from Lemma 4.4
always exists. Using Lemma 4.3, the existence of m comes down to finding integral
solutions to r linear equations with integer coefficients in n variables. Using
Lemma 4.4, we can thus find an explicit hauptmodul for 0 of the form (4-3) with
M = 1 (we have ma,i = mi if a ∈Oi ).

Remark 4.5. One can also abstractly prove the existence of the n-tuple m. If N is
an odd prime power, then any modular function of level N whose zeros and poles
are all cusps can be expressed as a constant times a product of Siegel functions ga

with a ∈ N−1Z2
−Z; see [Kubert and Lang 1981, Chapter 5, Theorem 1.1(i)].

If N ≥ 4 is a power of 2, this can also be deduced from [loc. cit.]. (One needs
to be a little careful here since ga has a different definition in [Kubert and Lang
1981, Chapter 4, §1] when 2a ∈ Z. For the alternate ga from the previous work
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with 2a ∈ Z, one can express them as a constant times a product of Siegel functions
ga′ with a′ ∈A4 ⊆AN .)

The case N = 2 can be handled directly. For example, one can show that

g8
(1/2,0) · g

4
(1/2,1/2) and g12

(1/2,0) · g
12
(1/2,1/2)

are hauptmoduls for 0(2) and 00(2), respectively (note that 0ns(2) has a single
cusp and does not fall into this case; it falls into case 2 below).

Case 2: a single cusp and N 6= 11. Now assume that X0 has a single cusp and that
N 6= 11. There are no nonconstant modular functions for 0 whose zeros and poles
are only at the cusps of X0 . In particular, a hauptmodul of 0 is never be equal to a
product of Siegel functions.

Using the Cummins–Pauli classification, we find that there is a congruence
subgroup 0′ that is a proper normal subgroup of 0, also of level N and containing
−I , such that X0′ has genus 0 and has exactly [0 : 0′] cusps (this is where we use
N 6= 11).

Since X0′ has multiple cusps, we know from Case 1 how to construct a haupt-
modul h′ of 0′ with coefficients in KN that is of the form (4-3). Using that 0′ is
normal in 0, we find that h′|γ is modular for 0′ for all γ ∈ 0 and the function
depends only on the coset 0′ · γ . Define

h :=
∑

γ∈0′\0

h′|γ ;

it is a modular function for 0. Since X0 has only one cusp and X0′ has [0 :0′] cusps,
we deduce that the modular functions {h′|γ }γ∈0′\0 on X0′ each have their unique
(simple) pole at different cusps. This implies that h has a simple pole at the unique
cusp of X0 and is holomorphic elsewhere. Therefore, h is a hauptmodul for 0.

Since h′ is modular for 0(N ) and has coefficients in KN , so does h′|γ for all
γ ∈ SL2(Z); see Proposition 2.2. Therefore, the coefficients of h lie in KN .

Finally, it remains to show that h is of the form (4-3). It suffices to show that h′|γ
is of the form (4-3) for a fixed γ ∈ 0. We know that h′ is equal to some product
ζ e

2N 2

∏
a∈AN

gma
a , so

h|γ = ε(γ )bζ e
2N 2

∏
a∈AN

gma
aγ

with b :=
∑

a∈AN
ma by Lemma 4.1(iii). Recall that for each a ∈ AN , there is a

unique a ∗ γ ∈ AN such that aγ lies in the same coset of (N−1Z2)/Z2 as a ∗ γ
or −a ∗ γ . From Lemma 4.1(i) and (ii), the functions gma

aγ and gma
a∗γ agree up to a

multiplication by some computable root of unity −ζ e′
N . Therefore, h|γ is equal to

ε(γ )b times a function of the form (4-3) with M = 1.
It remains only to show that ε(γ )b is a power of a 2N 2-th root of unity. Kubert

and Lang [1981, Chapter 3, §5] give a necessary and sufficient condition for the
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product
∏

a∈AN
gma

a to be modular for 0(N ); these conditions hold since h′ is
modular for 0′ ⊇ 0(N ). If N is a power of a prime `≥ 5, then [Kubert and Lang
1981, Chapter 3, Theorem 5.2] implies that b ≡ 0 (mod 12) and hence ε(γ )b = 1.
If N is a power of 3, then [Kubert and Lang 1981, Chapter 3, Theorem 5.3] implies
that b ≡ 0 (mod 4) and hence ε(γ )b is a power of ζ3. If N is a power of 2, then
[Kubert and Lang 1981, Chapter 3, Theorem 5.3] implies that b ≡ 0 (mod 3) and
hence ε(γ )b is a power of ζ4. Therefore, ε(γ )b is indeed a power of a 2N 2-th root
of unity.

Case 3: N = 11. The remaining case is when X0 has a single cusp and N = 11.
We include this case only for completeness; we will not need it for our application.

Define the function

f (τ ) :=
∏

(a1,a2)∈B

g(a1/11, a2/11)(τ ),

where

B :=
{
(0,1), (0,2), (0,3), (1,0), (1,2), (1,5), (1,7), (2,1), (2,2),
(2,4), (2,5), (2,6), (2,7), (2,8), (2,9), (2,10), (3,0), (3,2),
(3,4), (3,5), (3,6), (3,8), (3,10), (4,0), (4,1), (4,2), (4,4),
(4,5), (4,6), (5,1), (5,4), (5,5), (5,6), (5,7), (5,8), (5,9)

}
.

One can verify that∑
(a1,a2)∈B

a2
1 ≡

∑
(a1,a2)∈B

a2
2 ≡

∑
(a1,a2)∈B

a1a2 ≡ 0 (mod 11)

and that |B| = 36≡ 0 (mod 12). Theorem 5.2 of [Kubert and Lang 1981, Chapter
3, §5] implies that f is a modular function for 0(11). Using∑

(a1,a2)∈B

1
11

a2 ·

1
11a1− 1

2
=−

60
11

and the q-expansion of Siegel functions from Section 4A, we find that all the
coefficients of f lie in K11. Therefore, f ∈ F11.

Using that 0(11) is normal in 0, we find that f |γ is modular for 0(11) for all
γ ∈ 0 and the function depends only on the coset 0(11) · γ . Define

h :=
∑

γ∈0(11)\0

f |γ ;

it is a modular function for 0. That h is of the form (4-3) follows as in the previous
case.

We claim that h is a hauptmodul for 0. From our description of h in terms of
Siegel functions, we find that h has no poles except possibly at the unique cusp
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(at∞). From [Cummins and Pauli 2003], there is a unique genus 0 congruence
subgroup of SL2(Z) of level 11 up to conjugacy in GL2(Z) (the one labeled 11A0).
We have computed all the possible 0 and shown that h has a simple pole at∞, and
is therefore a hauptmodul.

Remark 4.6. The set B comes from Section 5.3 of [Chua et al. 2004]. That
work gives methods to compute hauptmoduls for genus 0 congruence subgroups
(unfortunately, the accompanying hauptmodul tables are no longer available). The
authors use “generalized Dedekind eta functions”, which are essentially Siegel
functions.

4D. The rational function J(t). For a hauptmodul h of 0, there is a unique func-
tion J (t) ∈ C(t) such that J (h)= j ; it has degree d := [SL2(Z) : ±0].

Let us briefly explain how to compute J (t) assuming that one can compute
sufficiently many terms of the expansion of f . Let K ⊆ C be a field containing all
the coefficients of h. Consider the equation

(adhd
+ · · ·+ a1h+ a0)− j · (bdhd

+ · · ·+ b1h+ b0)= 0 (4-4)

with unknowns ai , bi ∈ K , where d := [SL2(Z) : ±0]. Computing the q-expansion
coefficients of the left-hand side of (4-4) yields a system of homogeneous linear
equations in the unknowns ai and bi . The existence and uniqueness of J ensure that
the solutions (a1, . . . , ad , b1, . . . , bd) ∈ K 2d form a one-dimensional subspace. By
computing sufficiently many coefficients of (4-4) one can find a nonzero solution
(a1, . . . , ad , b1, . . . , bd) ∈ K 2d , unique up to scaling by K×, and

J (t)=
ad td
+ · · ·+ a1t + a0

bd td + · · ·+ b1t + b0
∈ K (t)

is then the unique rational function for which J (h)= j . Note that if the hauptmodul h
is constructed as in the previous section then we have J (t) ∈ KN (t), where N is
the level of 0.

5. Modular curves of genus 0

Fix the following:

• An integer N > 1 that is a prime power.

• A subgroup G of GL2(Z/NZ) satisfying −I ∈ G and det(G)= (Z/NZ)×.

• A rational function J (t) ∈Q(t).

In this section, we explain how to determine if the function field of XG is of the
form Q( f ) for some modular function f ∈ FN satisfying J ( f )= j . We will use
this to verify the entries of Tables 1–3, found in the online supplement.

If such an f exists, then XG 'P1
Q

and the isomorphism πG : XG→P1
Q

is given

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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by the relation j = J ( f ) in their function fields. We may assume the necessary
condition that [GL2(Z/NZ) : G] = degπG agrees with the degree of J (t).

Remark 5.1. In Section 8 we explain how the J (t) listed in Tables 1–3 of the
online supplement, were actually found, which involves the use of a Monte Carlo
algorithm and assumes the generalized Riemann hypothesis (GRH). The purpose of
this section is to explain how we can unconditionally verify a given J (t), regardless
of how it was found.

5A. Construction of possible f . Let 0 be the congruence subgroup consisting of
γ ∈ SL2(Z) for which γ t modulo N lies in G (equivalently, in G ∩ SL2(Z/NZ)).
By Lemma 2.4(ii), we may assume that 0 has genus 0 since otherwise XG has
positive genus and its function field cannot be of the form Q( f ).

The group 0 acts on the right on the field FN ; let F0
N be subfield fixed by this

action. By Lemma 2.4(i), we have KN (XG)= F0
N .

In Section 4C, we described how to compute an explicit hauptmodul h for 0
such that coefficients of its q-expansion all lie in KN ′ ⊆ KN , where the level N ′ of
0 divides N . Therefore, we have

KN (XG)= F0
N = KN (h).

Moreover, we can express h in terms of Siegel functions and hence we can
compute as many of its coefficients as we desire. In Section 4D, we described how
to compute the unique rational function J ′(t) ∈ KN (t) for which j = J ′(h). The
degree of J ′(t) agrees with [SL2(Z) : 0] = [GL2(Z/NZ) : G], thus J (t) and J ′(t)
have the same degree.

Remark 5.2. The rational function J ′(t) gives a map to the j -line from X0 , which
is defined over KN =Q(ζN ), while the rational function J (t) gives a map to the
j-line from XG , which is defined over Q. We use J ′(t) in our procedure to verify
J (t), but note that J ′(t) does not determine J (t); in general there will be multiple
nonconjugate subgroups G corresponding to 0 and a different rational function
J (t) for each of the corresponding XG (in total we have 220 modular curves XG

of genus 0 corresponding to 73 modular curves X0).

Lemma 5.3. The modular functions f ∈ KN (XG) that satisfy KN (XG)= KN ( f )
and J ( f ) = j are precisely those of the form ψ(h), where ψ(t) ∈ KN (t) is a
degree 1 function satisfying J ′(t)= J (ψ(t)).

Proof. First take any ψ(t) ∈ KN (t) of degree 1 satisfying J ′(t)= J (ψ(t)). Define
f := ψ(h). We have KN ( f ) = KN (h) = KN (XG), since ψ has an inverse, and
J ( f )= J (ψ(h))= J ′(h)= j .

Now suppose that KN (XG)= KN ( f ) for some f ∈ KN (XG) satisfying J ( f )= j .
Since KN ( f )= KN (XG)= KN (h), we have f =ψ(h) for a unique ψ(t) ∈ KN (t)

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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of degree 1. We then have j = J ( f ) = J (ψ(h)) and therefore J ′(t) = J (ψ(t)),
since J ′(t) is the unique element of KN (t) that satisfies J ′(h)= j . �

5B. Finding possible f . Define 9 to be the set of ψ(t) ∈ KN (t) of degree 1 for
which J ′(t) = J (ψ(t)); these ψ arise in Lemma 5.3. We now explain how to
compute 9.

Choose three distinct elements β1, β2, β3 ∈ KN ∪{∞}. For 1≤ i ≤ 3, define the
set

Ri :=
{
α ∈ KN ∪ {∞} : J ′(βi )= J (α) and ordβi (J

′)= ordα(J )
}
,

where ordβi (J
′) is the order of vanishing of J ′(t) at t = βi . Let R be the set of

triples α = (α1, α2, α3) ∈ R1× R2× R3 such that α1, α2, and α3 are distinct. Let
ψα ∈ KN (t) be the unique rational function of degree 1 such that ψα(βi )= αi for
all 1≤ i ≤ 3.

Take any ψ ∈ 9. We have J ′(βi ) = J (ψ(βi )) and ordβ(J ′) = ordψ(β)(J ) for
each 1 ≤ i ≤ 3. Therefore, ψ(βi ) ∈ Ri for each 1 ≤ i ≤ 3 and hence ψ = ψα for
some α ∈ R. So we have

9 =
{
ψα : α ∈ R, J ′(t)= J (ψ(t))

}
.

Since R is finite, this gives us a way to compute the (finite) set 9.
By Lemma 5.3, the set

{ψ(h) : ψ ∈9}

is the set of modular functions f ∈ KN (XG) that satisfy KN (XG) = KN ( f ) and
J ( f )= j .

5C. Checking each f . Let f be one of the finite number of functions that satisfy
KN (XG)= KN ( f ) and J ( f )= j . We just saw how to compute all such f ; they are
of the form ψ(h) for a degree 1 function ψ(t) ∈ KN (t) and a modular function h
satisfying KN (XG)= KN (h) that is expressed in terms of Siegel functions. Recall
from Section 2D that each A ∈ GL2(Z/NZ) acts on FN via the isomorphism
θN : GL2(Z/NZ)/{±I }

∼
−→ Gal(FN/Q( j)) of Proposition 2.2, and for f ∈ FN we

use A∗( f ) := θN (A)( f ) to denote this action.

Lemma 5.4. (i) We have Q(XG)=Q( f ) if and only if f ∈Q(XG).

(ii) For a matrix A ∈ G, we have A∗( f ) = f if and only if ordq(A∗( f )− f ) >
2w/N ′, where w is the width of the cusp∞ of X0 and N ′ is the level of 0.

Proof. We first prove part (i); only one implication needs proof. Suppose that
f ∈Q(XG). Then Q( f )⊆Q(XG) and it suffices to show that these two fields have
the same degree over Q( j). This is true since we have been assuming that degπG

is equal to the degree of J (t).
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For part (ii), again only one implication needs proof. Suppose ordq(A∗( f )− f )>
2w/N ′. As meromorphic functions on X0, f and A∗( f ) have a unique (simple)
pole since h has this property andψ has degree 1. Therefore, the function A∗( f )− f
on X0 is zero or has at most two poles (and hence at most two zeros). Our assumption
ordq(A∗( f )− f ) > 2w/N ′ implies that A∗( f )− f has a zero of order 3 at the
cusp∞ and thus A∗( f )− f = 0. �

By Lemma 5.4(i), we have Q(XG) = Q( f ) if and only if A∗( f ) = f for all
A ∈ G in a set of generators of G; it suffices to consider A ∈ G for which det(A)
generate (Z/NZ)× since h and hence f is fixed by G ∩ SL2(Z/NZ). It remains
to describe how to determine whether A∗( f ) is equal to f . By Lemma 5.4(ii), it
suffices to compute enough terms of the q-expansion of A∗( f )− f to determine
whether ordq(A∗( f )− f ) > 2w/N ′ holds.

Finally, let us briefly explain how to compute terms in the q-expansion of
A∗( f )− f . Let d be an odd integer congruent to det(A) modulo N . Choose a
matrix γ ∈ SL2(Z) so that At

≡
( 1

0
0
d

)
γ (mod N ). We thus have

A∗( f )− f = σd( f )|γ − f = σd(ψ)(σd(h)|γ )−ψ(h), (5-1)

where σd(ψ) is the rational function with σd applied to the coefficients of its nu-
merator and denominator. Our hauptmodul h is of the form

∑M
i=1 ζ

ei
2N 2

∏
a∈AN

gma,i
a

for certain integers ei and ma,i , so

σd(h)|γ =
M∑

i=1

ζ
ei d
2N 2

∏
a∈AN

(σd(ga)|γ )
ma,i .

From the series expansion of ga , one easily checks that σd(g(a1,a2)) = g(a1,da2).
From Lemma 4.1(iii), we have σd(ga)|γ = ε(γ )g(a1,da2)γ and hence

σd(h)|γ =
M∑

i=1

ζ
ei d
2N 2 ·

∏
a∈AN

ε(γ )ma,i ·

∏
a∈AN

gma,i
(a1,da2)γ

.

Thus by computing enough terms in the q-expansion of the functions {ga}a∈AN ,
we are able to compute the q-expansion of h and σd(h)|γ to as many terms as we
desire. This allows us to compute terms in the q-expansion of A∗( f )− f via (5-1).

Remark 5.5. Suppose that X0 has at least 3 cusps. We then have A∗( f ) = f if
and only if A∗( f ) and f take the same value at any three of the cusps (as in the
proof of Lemma 5.4, this implies that A∗( f )− f has at least three zeros and hence
is the zero function). In the case of at least three cusps, our hauptmodul h was
given as a constant times a product of Siegel functions; so its value at the cusp∞ is
determined by the first term of the q-expansion of h. The value at any other cusp c
can be determined by the first term of the q-expansion of h|γ with γ ∈ SL2(Z)
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satisfying γ∞= c. This approach is quicker since fewer terms of the q-expansions
are required.

5D. Verifying the entries of our tables. We now explain how to verify the validity
of our genus 0 tables. Magma scripts that perform these verifications can be found
in [Sutherland and Zywina 2016].

In the online supplement, each row of Tables 1–3 gives a set of generators of
a subgroup G of GL2(Z/NZ) that satisfies −I ∈ G and det(G)= (Z/NZ)× for a
prime power N . We may assume that N > 1. By composing rational maps, we
obtain a corresponding rational function J (t) ∈Q(t).

Using the earlier parts of Section 5, we can construct a modular function f ∈FN

such that Q(XG) = Q( f ) and J ( f ) = j . So XG is isomorphic to P1
Q

and the
morphism πG : XG→ P1

Q
is given by the relation j = J ( f ) in their function fields.

(We also note that there is no harm in replacing G by a conjugate group; this is
useful because one can reuse the hauptmodul computations for different groups in
the tables.)

Fix a group G⊆GL2(Z/NZ) as above, and a modular function f ∈FN satisfying
Q(XG)=Q( f ) and J ( f )= j .

Now fix another group G ′ ⊆ GL2(Z/N ′Z) from our table so that N divides
N ′ and the image of G ′ in GL2(Z/NZ) is conjugate to a subgroup of G. In
the above computations, we have constructed a modular function f ′ satisfying
Q(XG ′) =Q( f ′) and J ′( f ′) = j for a rational function J ′(t) ∈Q(t) also arising
from the tables.

Take any subgroup G̃ ⊆ GL2(Z/NZ) conjugate to G ′ whose image modulo N
lies in G. Choose any A ∈ GL2(Z/N ′Z) for which G̃ := AG ′A−1 and define
f̃ := A∗( f ′). We have an inclusion of fields

Q( f̃ )=Q(X G̃)⊇Q(XG)=Q( f ).

The extension Q( f̃ )/Q( f ) has degree i := [GL2(Z/N ′Z):G ′]/[GL2(Z/NZ):G].
Therefore, ϕ( f̃ )= f for a unique ϕ(t) ∈Q(t) of degree i . We can compute ϕ(t)
using the method from Section 4D; the coefficients of f and f̃ can be computed as
in Section 5C.

The rational function ϕ is not unique, it depends on the choices of G̃, f , f ′,
and A. However, any other rational function occurring would be of the form
ψ ′(ϕ(ψ(t))), where ψ,ψ ′ ∈Q(t) are degree 1 functions satisfying J (ψ(t))= J (t)
and J ′(ψ ′(t))= J ′(t). Note that all the possible ψ and ψ ′ can be computed as in
Section 5B (with J = J ′). We have checked that the rational function relating G
and G ′ in our tables, when given, is indeed of the form ψ ′(ϕ(ψ(t))).

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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6. Modular curves of genus 1

We now consider the open subgroups G of GL2(Ẑ) with genus 1 and prime power
level N = `e that satisfy −I ∈ G and det(G)= Ẑ×. We are interested in describing
those G for which XG(Q) is infinite. There is no harm in replacing G by a conjugate.
So by Theorem 3.3(ii), there are 250 cases that need to be checked.

Let JG be the Jacobian of the curve XG . Using the methods of [Zywina 2015b],
we can compute the rank of JG(Q). From [Deligne and Rapoport 1973, §IV], we
find that the curve XG has good reduction at all primes p - N = `e. Therefore, JG

is an elliptic curve defined over Q whose conductor is a power of `. The primes `
that arise are small enough to ensure that JG is isomorphic to one of the elliptic
curves in Cremona’s [2016] tables; this gives a finite number of candidates for JG

up to isogeny.
For each prime p - 6`, we can compute #JG(Fp)= #XG(Fp) from the modular

interpretation of XG ; see [Zywina 2015b, §3.6] for details. In particular, we can
compute #JG(Fp) directly from the group G without computing a model for XG (or
its reduction modulo p). By computing several values of #JG(Fp) with p 6= `, we
can quickly distinguish the isogeny class of JG among the finite set of candidates.
We then compute the rank of JG(Q), which we note is an isogeny invariant.

Running this procedure on each of the 250 genus 1 groups G given by Theorem 3.3,
we find that JG(Q) has rank 0 for 222 groups and JG(Q) has positive rank for 28
groups; a Magma script that performs this computation can be found in [Sutherland
and Zywina 2016]. We need only consider the 28 groups G for which JG(Q) has
positive rank, since XG(Q) is finite if JG(Q) has rank 0.

Now let G be one of the 28 groups for which JG(Q) has positive rank; they are
precisely the 28 genus 1 groups in Theorem 1.1 and can be found in Table 4 of the
online supplement. For each of these groups G, if XG(Q) is nonempty then it must
be infinite, since the Abel–Jacobi map then gives a bijection from XG(Q) to JG(Q).
We initially verified that XG(Q) is nonempty by finding an elliptic curve E/Q with
ρE(GalQ)⊆ G using an extension of the algorithm in [Sutherland 2016].

For each of these 28 groups G, a model for XG and the morphism πG can already
be found in the literature (and are equivalent to the ones we give in the online
supplement). For the 27 groups G of level 16 these curves and morphisms were
constructed in [Rouse and Zureick-Brown 2015]; the models and morphisms we
give in Table 4 for these groups are slightly different (we constructed them by taking
fiber products of our genus 0 curves), but we have verified that they are isomorphic
(note that their groups are transposed relative to ours). The remaining group G
has level 11 and its image in GL2(Z/11Z) is the normalizer of a nonsplit Cartan
subgroup. An explicit model for XG = X+ns(11) and the morphism to the j -line can
be found in [Halberstadt 1998]; these are reproduced in the online supplement.

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf


1226 Andrew V. Sutherland and David Zywina

7. Proof of Theorem 1.4

If `≤ 13, then the set J` is finite by [Zywina 2015b, Proposition 4.8]. If ` > 13,
this follows from [Zywina 2015b, Proposition 4.9]; note that ρE,`∞ is surjective if
and only if ρE,` is surjective, since ` ≥ 5, by [Serre 1968, §IV, Lemma 3]. This
proves (i).

For a group G from Theorem 1.1, define the set

SG :=
⋃
G ′
πG ′,G(XG ′(Q)),

where G ′ varies over the proper subgroups of G that are conjugate to one of the
groups in Theorem 1.1 of `-power level and πG ′,G : XG ′ → XG is the natural
morphism induced by the inclusion G ′ ⊆ G. Note that this is a finite union.

Suppose first that G has genus 0. Then XG ' P1
Q

and SG is a thin subset
of XG(Q), in the language of [Serre 1997, §9]. The field Q is Hilbertian, and in
particular P1(Q)' XG(Q) is not thin; this implies that the complement XG(Q)−SG

cannot be thin and must be infinite.
Suppose that G has genus 1. If G does not have level 16 and index 24, then there

are no proper subgroups G ′ of G that are conjugate to a group from Theorem 1.1,
and therefore SG is empty and XG(Q)−SG is infinite.

Now suppose that G has genus 1, level 16, and index 24. There are 7 such G,
labeled

16C1-16c, 16C1-16d, 16B1-16a, 16B1-16c, 16D1-16d, 8D1-16b, 8D1-16c

and explicitly described in Table 4 of the online supplement. Each of these G
contains either two or four index 2 subgroups G ′ that are conjugate to one of the
groups in Theorem 1.1. In every case we have SG = XG(Q), so that XG(Q)−SG

is empty; see [Rouse and Zureick-Brown 2015, Example 6.11, Remark 6.3].
Let E/Q be an elliptic curve with jE /∈J`. The group±ρE,`∞(GalQ) is conjugate

in GL2(Z`) to the `-adic projection of a unique group G from Theorem 1.1 with
`-power level. Using Proposition 2.6, we can also characterize G as the unique
group from Theorem 1.1 with `-power level such that jE ∈ πG(XG(Q)−SG). Parts
(ii) and (iii) follow by noting that πG(XG(Q)−SG) is empty when G has genus 1,
level 16, and index 24, and it is infinite otherwise.

8. How the J(t) were found

Let G be one of the genus 0 subgroups of GL2(Ẑ) from Theorem 1.1; they are listed
in Tables 1–3 of the online supplement and were determined using the algorithm
described in Section 3. For each G, we also have a rational function J (t) ∈Q(t)

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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such that the function field of XG is of the form Q( f ) and j = J ( f ), where j is
the modular j-invariant; the verification of this property is described in Section 5.

In this section, we explain how we found J (t); note that the method we used
to verify the correctness of J (t) does not depend on how it was found! None of
our theorems depend on the techniques described in this section. All that matters
is that they eventually produced functions J (t) whose correctness we could verify
using the procedure described in Section 5D.

We used an extension of the algorithm in [Sutherland 2016] to search for elliptic
curves E/Q for which ρE(GalQ) is conjugate to a subgroup of G. This was initially
done by simply checking elliptic curves in Cremona’s [2016] tables and the LMFDB
[LMFDB Collaboration 2013] (but see Remark 8.1 below). After enough searching,
we find elliptic curves E1, E2, E3 defined over Q with distinct j-invariants j1,
j2, j3 for which we believe that ρEi (GalQ) is conjugate in GL2(Ẑ) to a subgroup
of G; in particular, we expect that j1, j2, j3 ∈ πG(XG(Q)). We ran the Monte Carlo
algorithm in [Sutherland 2016] using parameters that ensure the error probability is
less than 2−100, under the GRH.

Now suppose that j1, j2, j3 are indeed elements of πG(XG(Q)). The curve XG

has genus 0 and rational points, so it is isomorphic to P1
Q

. We can choose an
isomorphism XG ' P1

Q
such that there are points P1, P2, P3 ∈ XG(Q) satisfying

πG(Pi )= ji which map to 0, 1,∞, respectively. There is thus a rational function
J (t)∈Q(t) such that J (0)= j1, J (1)= j2, J (∞)= j3 and such that Q(XG)=Q( f )
for a modular function f satisfying J ( f ) = j ; the function f is obtained by
composing our isomorphism P1

Q
' XG with πG .

We can now find all such potential J . As explained in Section 5, we can
construct a modular function h ∈ FN and a rational function J ′(t) ∈ KN (t) such
that KN (XG)= KN (h) and j = J ′(h), where N is the level of G. We thus have

J (t)= J ′(ψ(t))

for some degree 1 function ψ(t) ∈ KN (t) satisfying ψ(0) ∈ R1, ψ(1) ∈ R2, and
ψ(∞) ∈ R3, where

Ri := {α ∈ KN ∪ {∞} : J ′(α)= ji }.

Since the sets Ri are finite and disjoint, there are only finitely many ψ(t) ∈Q(t) of
degree 1 satisfying ψ(0) ∈ R1, ψ(1) ∈ R2, ψ(∞) ∈ R3. For each such ψ(t), we
check whether J ′(ψ(t)) lies in Q(t).

Consider any ψ as above for which J ′(ψ(t)) ∈Q(t). Set J (t) := J ′(ψ(t)) and
f := ψ−1(h) ∈ KN (XG). We have J ( f )= J ′(h)= j . The field Q( f ) is thus the
function field of a modular curve XG ′ , where G ′ is an open subgroup of GL2(Ẑ)

of level N satisfying det(G ′) = Ẑ× and −I ∈ G ′; it consists of matrices whose
reductions modulo N fix f . We can then check whether G is equal to G ′. Since
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[GL2(Ẑ) : G] = degπG = deg J = [GL2(Ẑ) : G ′], it suffices to determine whether
G is a subgroup of G ′; equivalently, whether G fixes f . A method for determining
whether f is fixed by G is described in Section 5C.

We will eventually find a ψ for which we have G = G ′ (provided that our
initial j-invariants ji are valid). This then proves that Q(XG)=Q( f ) for some f
satisfying J ( f )= j , where J (t) := J ′(ψ(t)) ∈Q(t).

Note this rational function J (t) is not unique since J (ϕ(t)) would also work for
any ϕ(t) ∈Q(t) of degree 1. Using similar reasoning, it is easy to determine if two
J1, J2 ∈Q(t) satisfy J2(t)= J2(ϕ(t)) for some degree 1 function ϕ ∈Q(t). We have
chosen our rational functions so that they are relatively compact when written down.

Remark 8.1. Having run this procedure to obtain functions J (t) for each of the
groups G where we were able to find suitable E1, E2, E3 in Cremona’s tables,
we then address the remaining groups G by picking a group G ′ that contains a
subgroup conjugate to G for which we already know a function J ′(t) ∈Q(t); such
a G ′ existed for every G not addressed in our initial search of Cremona’s tables.
Using the function J ′(t) we can quickly obtain a large list of elliptic curves E for
which ρE(GalQ) is a subgroup of G ′. By running the algorithm in [Sutherland
2016] on several thousand (or even millions) of these curves we are eventually able
to find E1, E2, E3 with distinct j-invariants for which it is highly probable that
ρEi (GalQ) is actually conjugate to a subgroup of the smaller group G contained
in G ′. We then proceed as above to compute the function J (t) for G.
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Some sums over irreducible polynomials
David E. Speyer

We prove a number of conjectures due to Dinesh Thakur concerning sums of the
form

∑
P h(P) where the sum is over monic irreducible polynomials P in Fq [T ],

the function h is a rational function and the sum is considered in the T−1-adic
topology. As an example of our results, in F2[T ], the sum

∑
P 1/(Pk

−1) always
converges to a rational function, and is 0 for k = 1.

1. Introduction

Our goal is to explain some identities experimentally discovered by Dinesh Thakur,
involving sums over irreducible polynomials in finite fields. We begin by stating the
simplest of these identities: Let P be the set of irreducible polynomials in F2[T ].
Then ∑

P∈P

1
P − 1

= 0.

Here the sum must be interpreted as a sum of power series in T−1. For example,
the first five summands are

1
T − 1

= T−1
+ T−2

+ T−3
+ · · ·

1
(T + 1)− 1

= T−1

1
(T 2+ T + 1)− 1

= T−2
+ T−3

+ · · ·

1
(T 3+ T + 1)− 1

= T−3
+ · · ·

1
(T 3+ T 2+ 1)− 1

= T−3
+ · · · .

As the reader can see, only finitely many terms contribute to the coefficient of each
power of T−1, and the coefficient of T− j is 0 for each j .

MSC2010: primary 11M38; secondary 05E05, 11M32.
Keywords: zeta function, special value, function field.
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We now introduce the notation necessary to state our general results. To aid
the reader’s comprehension, we adopt the following conventions: Integers will
always be denoted by lower case Roman letters (k, p, q, . . . ); polynomials over
finite fields will always be denoted by capital Roman letters (A, F , P , . . . ), sets
of such polynomials will always be denoted by calligraphic letters (A, P , R, . . . ),
symmetric polynomials will be denoted by bold letters (ek , pk , . . . ). Of course,
there will be other sorts of mathematical objects as well, which we trust the reader
to accommodate as they occur.

Let p be a prime and q a power of p. Let Fq be the field with q elements. Let R
be the polynomial ring Fq [T ]. Let K be the fraction field Fq(T ) and let K̂ be the
T−1-adic completion of K. All infinite sums will be understood in the T−1-adic
topology.

Let P be the set of irreducible polynomials in R; let P1 be the set of monic
irreducible polynomials. Here is our main result for the case p = 2.

Theorem 1.1. If p = 2 then, for any positive integer k ≡ 0 mod q − 1, the sum∑
P∈P1

1
Pk − 1

is in K.

The reader may wonder what happens if we sum over all irreducible polynomials
rather than monic ones; that is an easy corollary:

Corollary 1.2. Let p = 2. For any positive integer k, the sum∑
P∈P

1
Pk − 1

is in K.

Proof. We rewrite the sum as
∑

P∈P1

∑
a∈F×q

1/((a P)k − 1). The corollary then
follows from the identity∑

a∈F×q

1
(aX)k − 1

=
1

XLCM(k,q−1)− 1

in Fq(U ). To prove this identity, write

1
(aX)k − 1

=

∞∑
j=1

1/(aX)k j

and recall that ∑
a∈F×q

am
=

{
1, m ≡ 0 mod q − 1,
0, otherwise. �
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We now discuss the case of a general prime. Define the rational function Gp(U )
by

Gp(U )=
(1−U p)− (1−U )p

p(1−U )p .

When p = 2, we have G2(U ) = (2U − 2U 2)/(2(1 − U )2) = U/(1 − U ), so
G2(1/P)= 1/(P−1). When p is odd, we have the following alternate expressions
for Gp:

Proposition 1.3. If p is odd, then, as rational functions in Fp(U ), we have

Gp(U )=

∑p−1
j=1 U j/j

(1−U )p =
∑

0≤ j<∞
j 6≡0 mod p

U j

j
.

Proof. If p is odd, then (1−U p)− (1−U )p
=
∑p−1

j=1 (−1) j−1
(p

j

)
U j. We have

(−1) j−1

p

(
p
j

)
=
(−1) j−1(p− 1)(p− 2) · · · (p− j + 1)

1 · · · 2 · · · ( j − 1) j
≡

1
j

mod p.

This proves the first equality, and the second is immediate. �

Theorem 1.4. For any positive integer k ≡ 0 mod q − 1, the sum∑
P∈P1

Gp(1/Pk)

is in K.

As we noted, G2(1/X)= 1/(X − 1), so Theorem 1.4 implies Theorem 1.1.

Remark 1.5. When p = 2, we do not have G2(U )=
∑

j 6≡0 mod p U j/j ; the latter
sum is H(U ) := U/(1−U 2). However, it is true that

∑
P∈P1

H(1/Pk) is in K,
because H(U )= G(U )−G(U 2).

Once again, we have a trivial variant where we sum over P:

Corollary 1.6. For any positive integer k, the sum∑
P∈P

Gp(1/Pk)

is in K.

Proof. If p=2, we proved this in Corollary 1.2, so we may (and do) assume p is odd.
As in the proof of Corollary 1.2, we rewrite the sum as

∑
P∈P1

∑
a∈F×q

Gp(1/(a P)k).
We now need the identity∑

a∈F×q

Gp((aU )k)= GCD(q − 1, k)Gp(U LCM(q−1,k))
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in Fq(U ). To prove this identity, we use the formula Gp(U ) =
∑

j 6≡0 mod p U j/j
and the identity ∑

a∈F×q

am
=

{
q − 1, m ≡ 0 mod q − 1,
0, otherwise.

So ∑
a∈F×q

Gp(1/(aU )k)=
∑

j 6≡0 mod p

∑
a∈F×q

1
j (aU )k j = (q − 1)

∑
j 6≡0 mod p

k j≡0 mod q−1

1
jU k j .

Putting k j = LCM(q − 1, k)`, this is

(q − 1)
∑

`6≡0 mod p

k
LCM(q − 1, k)`U LCM(q−1,k)`

=
k(q − 1)

LCM(q − 1, k)
Gp(U LCM(q−1,k))

= GCD(q − 1, k)Gp(U LCM(q−1,k)),

as required. �

We also compute explicit values for the sum when k is not too large.

Theorem 1.7. Let k = (q − 1)`. If 1 ≤ ` ≤ q/p, then
∑

P∈P1
Gp(1/Pk) = 0. If

q/p+ 1< `≤ 2q/p, then∑
P∈P1

Gp(1/Pk)= `
(T q
− T )q+1

(T q2
− T q)(T q2

− T )
.

In principle, our methods are capable of computing
∑

P∈P1
Gp(1/Pk) for any

k ≡ 0 mod q − 1, but they become impractical beyond `= 2q/p.

History of the problem. Dinesh Thakur suspected such relations should exist, based
on heuristics concerning ζ deformation. He experimentally discovered most of
the relations described above in characteristic two, and suspected there should be
similar results in odd characteristic. Thakur [2015] published these computations
in a preprint entitled “Surprising symmetries in distribution of prime polynomials”.
At Thakur’s suggestion, Terence Tao [2015] promoted the problem in posts on his
blog and on the Polymath blog. I am grateful to Thakur for finding such an elegant
problem and to Tao for bringing it to my attention. My thanks also to all who
participated in the discussion on the Polymath blog: Noam Elkies, Ian Finn, Ofir
Gorodetsky, Jesse, Gil Kalai, David Lowry-Duda, Dustin G. Mixon, John Nicol,
Partha Solapurkar, John Voight, Victor Wang, Qiaochu Yuan, Joshua Zelinsky, and
additional thanks to Ofir Gorodetsky for suggesting several improvements to the
manuscript.

The author is supported by NSF grant DMS-1600223.
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2. The Carlitz exponential, and symmetric polynomials

The main tool in our proofs is the theory of the Carlitz exponential. Put

Di = (T q i
− T )(T q i

− T q)(T q i
− T q2

) · · · (T q i
− T q i−1

).

Define

eC(Z)=
∞∑
j=0

Zq j

D j
,

this sum is T−1-adically convergent for any Z ∈ K̂. We will make use of the product
identity

eC(π Z)
π Z

=

∏
A∈R\{0}

(
1+ Z

A

)
,

where π ∈ K̂( q−1
√
−T ) is given by

π =
T q−1
√
−T∏

A∈R\{0}(1− (T A)−1)
.

See, for example, [Goss 1996, Theorem 3.2.8]. This identity should be thought of
as similar to Euler’s identity,

sin(π z)
π z

=

∏
a∈Z\{0}

(
1+

z
a

)
.

We introduce the notations A for the nonzero polynomials of R, and A1 for the
monic polynomials.

Writing ek for the elementary symmetric function of degree k, this implies

ek(1/A)A∈A =

{
π k/D j , k = q j

− 1,
0, otherwise.

Since the ring of symmetric polynomials is generated by the ek , we deduce:

Proposition 2.1. If f is a homogenous symmetric polynomial of degree k, then
f (1/A)A∈A is in π kK.

Here we note that f (1/A)A∈A is always defined, since only finitely many terms
contribute to the coefficient of any particular power of T−1.

The above considers symmetric polynomials in {1/A}A∈A, but we would rather
restrict to the case of A monic. To this end, we have

Proposition 2.2.

e`(1/Aq−1)A∈A1 =

{
(−1)`π`(q−1)/D j , `= (q j

− 1)/(q − 1),
0, otherwise.



1236 David E. Speyer

Proof. Grouping together scalar multiples of the same polynomial in the Carlitz
product identity, we have

eC(π Z)
π Z

=

∏
A∈A1

(
1− Zq−1

Aq−1

)
.

Equate coefficients of Z `(q−1) on both sides. �

Corollary 2.3. If f is a homogenous symmetric polynomial of degree `, then
f (1/Aq−1)A∈A1 is in π`(q−1)K.

3. Proofs of rationality

We now have enough background to prove Theorem 1.4 and, hence, Theorem 1.1.
Throughout, let k ≡ 0 mod q − 1.

Consider the symmetric polynomial

gp(X1, X2, . . .) :=
1
p

((∑
X i

)p
−

∑
X p

i

)
.

The polynomial gp has integer coefficients, so we may discuss plugging elements
of K into it.

Let C be the cyclic group of order p, and let C act on Ap
1 by rotating coordinates.

Let 1 denote the diagonal: 1 := {(A, A, . . . , A)} ⊂Ap
1 . Then

gp(1/Ak)A∈A1 =

∑
(A1,...,Ap)∈(A

p
1 \1)/C

1
Ak

1 Ak
2 · · · A

k
p
.

The sum is over cosets for the free action of C on Ap
\1.

Let
8=

{
(A1, . . . , Ap) ∈A

p
1 : GCD(A1, . . . , Ap)= 1

}
.

Any (A1, . . . , Ap) ∈A
p
1 can be uniquely factored as Ai = DBi for some D ∈A1

and (B1, . . . , Bp) ∈8. So we can factor the above sum as

gp(1/Ak)A∈A1 =

(∑
D∈A1

1
Dkp

)( ∑
(B1,...,Bp)∈(8\{(1,...,1)})/C

1
Bk

1 Bk
2 · · · B

k
p

)
.

Now, from Corollary 2.3, gp(1/Ak)A∈A, is in π pkK. Also from Corollary 2.3,∑
D∈A1

1/Dkp is in π pkK, and a quick computation shows that this sum is 1 plus
terms in T−1Fq [[T−1

]], so it is not zero. We deduce that∑
(B1,...,Bp)∈(8\(1,...,1))/C

1
Bk

1 Bk
2 · · · B

k
p
∈ K.
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For B ∈A1, let9(B) be the set of p-tuples (B1, B2, . . . , Bp) for which
∏

Bi = B
and GCD(B1, . . . , Bp)= 1. Let ψ(B)= #9(B). So we have shown that∑

B∈A1\{1}

ψ(B)/p
Bk ∈ K.

Here, to interpret the numerator, we must divide ψ(B) by p as integers and only
then consider the quotient in Fp.

If B= Pk1
1 Pk2

2 · · · P
kr
r then there is an easy bijection between9(B) and9(Pk1

1 )×

9(Pk2
2 )× · · · ×9(P

kr
r ), so ψ(B)=

∏
ψ(Pki

i ). If P is irreducible then ψ(Pr ) is
divisible by p for any r > 0, since C acts freely on 9(Pr ). So, if B is divisible
by two different irreducible polynomials, then ψ(B) is divisible by p2. So we can
rewrite the sum as ∑

P∈P1

∞∑
r=1

ψ(Pr )/p
Prk .

We now compute ψ(Pr ); which is the number of p-tuples (Pr1, . . . , Prp)

with
∏

Pri = Pr and GCD(Pr1, . . . , Prp) = 1. In other words, we must count
(r1, . . . , rp) ∈ Z

p
≥0 with

∑
ri = r and min(r1, . . . , rp) = 0. The number of

(r1, . . . , rp) ∈ Z
p
≥0 with

∑
ri = r is the coefficient of U r in 1/(1−U )p. In order

to impose min(r1, . . . , rp)= 0, we subtract off the terms with min(r1, . . . , rp) > 0.
These are in bijection with (s1, . . . , sp) ∈ Z

p
≥0 with p+

∑
si = r . So ψ(Pr ) is the

coefficient of U r in 1/(1−U )p
−U p/(1−U )p. In other words,

∑
∞

r=0 ψ(P
r )U r
=

(1−U p)/(1−U )p. So

∞∑
r=1

ψ(Pr )

p
U r
=

1
p

( 1−U p

(1−U )p − 1
)
= Gp(U ).

We deduce that
∑
∞

r=1(ψ(P
r )/p)/Prk

= Gp(1/Pk). We have now shown that∑
P∈P1

Gp(1/Pk) ∈ K, as claimed. �

We record the specific formula we have proved:

Proposition 3.1. Let k be a positive integer. Then

∑
P∈P1

Gp(1/Pk)=
gp(1/Ak)A∈A1∑

A∈A1
1/Apk .

We will rewrite this formula in various ways in Section 5. We remark that
this formula is correct even if k is not divisible by q − 1, although we have only
shown the ratio is in K when k ≡ 0 mod q − 1. The denominator of this formula is
ζ(pk)= ζ(k)p, where ζ is the Goss ζ -function [1979].
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4. Vanishing

We will now prove the claim in Theorem 1.7 that the sum vanishes when k =
(q − 1)` for 1 ≤ ` ≤ q/p. From Proposition 3.1, it is equivalent to show that
gp(1/A`(q−1))A∈A1 = 0. To this end, we must explicitly write gp(1/A`(q−1)) as a
polynomial in the ek(1/Aq−1).

The variables λ or µ will always denote partitions, meaning weakly decreasing
sequences (λ1, λ2, . . . , λr ) of positive integers; sums over λ or µ implicitly contain
the condition that the summation variable is a partition.

We define eλ =
∏

s eλs . The symmetric polynomials eλ form an integer basis for
the symmetric polynomials with integer coefficients.

Lemma 4.1. Write

gp(X`
1, X`

2, . . .)=
∑
|λ|=p`

cλeλ(X1, X2, . . .)

for some integers cλ. Then c11···1 = 0.

Proof. Note that e11···1 is the only eλ with a nonzero coefficient of X p`
1 . The

coefficient of X p`
1 in gp(X`

1, X`
2, . . .) is clearly 0. �

Now, suppose that `≤ q/p, so we have p`< q+1. So any partition (λ1, . . . , λr )

of p` other than (1, 1, . . . , 1) contains a λi between 2 and q. By Proposition 2.2,
em(1/Aq−1)A∈A1 = 0 for 2 ≤ m ≤ q, so eλ(1/Aq−1)A∈A1 = 0 whenever λ is a
partition of p` other than (1, 1, . . . , 1). We deduce that gp(1/Aq−1)A∈A1 = 0 as
desired. �

5. Computations for small k

In this section, we will discuss the computation of
∑

P∈P1
Gp(1/Pk) for k ≡

0 mod q−1 and, in particular, prove the remaining half of Theorem 1.7. Our strategy
is to combine Propositions 3.1 and 2.2. We must compute gp(1/A`(q−1))A∈A1 and∑

A∈A1
1/Apk . Note the latter is ( p`(1/Aq−1)A∈A1)

p, where pd(X1, X2, . . .) is the
power sum symmetric function

∑
Xd

i . We write k = (q − 1)`.
Put

gp(X`
1, X`

2, . . . )=
∑
|λ|=`p

cλeλ(X1, X2, . . .),

p`(X1, X2, . . . )=
∑
|µ|=`

dµeµ(X1, X2, . . .).

Note that em(1/Aq−1)A∈A1 = 0 unless m is of the form (q j
−1)/(q−1). So we only

need to sum over partitions where all the parts of λ are of the form (q j
−1)/(q−1).

From now on, we now impose that q/p+ 1 ≤ ` ≤ 2q/p. So ` < q + 1. Any
partition of ` cannot contain any parts of size (q j

−1)/(q−1), for j > 1. Similarly,
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p` < 2q + 2, so a partition of p` can contain at most one part of size q + 1 =
(q2
− 1)/(q − 1) and no parts of size (q j

− 1)/(q − 1) for j > 2. We deduce that
the only terms which contribute to our final answer come from λ= (1, 1, . . . , 1)
or λ = (q + 1, 1, 1, . . . , 1) when computing gp(1/A`(q−1))A∈A1 , and from µ =

(1, 1, . . . , 1) in computing ( p`(1/Aq−1)A∈A1)
p. Moreover, from Lemma 4.1, the

coefficient c(1,1,...,1) is zero.
We deduce that∑
P∈P1

Gp(1/Pk)=
c(q+1,1p`−q−1) e(q+1,1p`−q−1)(1/Aq−1)A∈A1

(d1` e1` (1/Aq−1)A∈A1)
p

=
c(q+1,1p`−q−1) eq+1(1/Aq−1)A∈A1(e1(1/Aq−1)A∈A1)

p`−q−1

d1` (e1(1/Aq−1)A∈A1)
p`

=
c(q+1,1p`−q−1) eq+1(1/Aq−1)A∈A1

d1` (e1(1/Aq−1)A∈A1)
q+1 .

Here 1r is shorthand for the partition with r parts equal to 1.
We now use Proposition 2.2. The powers of π and (−1) cancel to give∑
P∈P1

Gp(1/Pk)=
c(q+1,1p`−q−1)

d1`

Dq+1
1

D2
=

c(q+1,1p`−q−1)

d1`

(T q
− T )q+1

(T q2
− T q)(T q2

− T )
.

To finish the computation, we must find cq+1,1ps−1 and d1` . The latter is easy:
Comparing coefficients of X`

1 on both sides of

p`(X1, X2, . . . )=
∑
|µ|=`

dµeµ(X1, X2, . . .),

we deduce that d1` = 1.
To compute c(q+1,1p`−q−1), we begin with the formula

gp(X`
1, X`

2, . . . )=
1
p
(

p`(X1, X2, . . . , )
p
− pp`(X1, X2, . . .)

)
.

For brevity, we write f (X) to indicate that the inputs to a symmetric polynomial are
(X1, X2, . . .). Note that we are working with symmetric polynomials with integer
coefficients, so it makes sense to divide by p.

We rewrite the right hand side of the previous equation as

1
p

((
e1(X)`+ · · ·

)p
−
(
e1(X)p`

+ dq+1,1p`−q−1 eq+1(X)e1(X)p`−q−1
+ · · ·

))
.

Here the ellipses denote terms eλ where λ has some part that is not of the form
(q j
− 1)/(q − 1). We deduce that

cq+1,1p`−q−1 =−
1
p

dq+1,1p`−q−1 .
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Now, observe the identity∑
j

(−1) j−1 p j (X)U j

j
=

∑
i

log(1+ X iU )

= log
∏

i

(1+ X iU )= log
(

1+
∞∑

m=1

em(X)U m
)
.

The coefficient of U p` on the left is ((−1)p`/p`) pp`. Expanding the log on the
right hand side as a Taylor series, only one term contributes to U p`eq+1ep`−q−1

1 .
So we obtain

(−1)p`−1

p`
pp`(X)=

(−1)p`−q−1

p`−q

( p`−q
1

)
eq+1(X)e

p`−q−1
1 (X)+ · · · ,

where the ellipses denote a sum of eλ other than eq+1(X)e
p`−q−1
1 (X). So

dq+1,1p`−q−1 = (−1)q p` and cq+1,1ps−1 = (−1)q−1`.

Plugging into our previous formula, and using that (−1)q−1
≡ 1 mod p,∑

P∈P1

Gp(1/Pk)= `
(T q
− T )q+1

(T q2
− T q)(T q2

− T )
.

This concludes the proof of Theorem 1.7. �

We conclude by verifying one of Thakur’s conjectures which goes beyond the
range `≤ 2q/p. Let p = q = 2. Thakur conjectures∑

P∈P1

1
P3− 1

=
1

T 4+ T 2 .

We begin by computing

p3(X)= e1(X)3+ 3e3(X)− 3e2(X)e1(X),

p3(X)2 = e1(X)6+ 6e1(X)3e3(X)+ 9e3(X)2+ · · · .

Here and in the following equations, the ellipses denote eλ terms where λ contains
a part other than 1 and 3. (Note that (23

− 1)/(2− 1)= 7, too large to contribute to
a symmetric polynomial of degree 6.) Similarly,

p6(X)= e1(X)6+ 6e1(X)3e3(X)+ 3e3(X)2+ · · · .

So
g2(X3

1, X3
2, . . .)=

1
2

(
p3(X)2− p6(X)

)
= 3e3(X)2+ · · ·

and (recall that we are working modulo 2)

g2(1/A3)A∈A1 = (e3(1/A)A∈A1)
2
=
π6

D2
2
=

π6

(T 4−T 2)2(T 4−T )2
.
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Similarly,

p6(1/A)A∈A1 = (e1(1/A)A∈A1)
6
+ (e3(1/A)A∈A1)

2

=

(
π

D1

)6
+

(π3

D2

)2

= π6
(( 1

T 2−T

)6
+

( 1
(T 4−T 2)(T 4−T )

)2)
.

We verify Thakur’s claim:∑
P∈P1

1
P3− 1

=
1/
(
(T 4
− T 2)2(T 4

− T )2
)

1/(T 2− T )6+ 1/
(
(T 4− T 2)2(T 4− T )2

) = 1
T 4+ T 2 .
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