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André’s celebrated theorem of 1998 implies that each complex straight line
Ax + By+C = 0 (apart from obvious exceptions) contains at most finitely many
points ( j (τ ), j (τ ′)), where τ, τ ′∈H are algebraic of degree 2. We show that there
are only a finite number of such lines which contain more than two such points.
As there is a line through any two complex points, this is the best possible result.
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1. Introduction

André [1998] proved that a nonspecial irreducible plane curve in C2 may have
at most finitely many CM-points. Here a plane curve is a curve defined by an
irreducible equation F(x, y)=0, where F is a polynomial with complex coefficients,
and a CM-point (called also a special point) in C2 is a point whose coordinates are
both singular moduli. Recall that a singular modulus is the invariant of an elliptic
curve with complex multiplication; in other words, it is an algebraic number of the
form j (τ ), where j denotes the standard j-function on the upper half-plane H and
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τ ∈H is an algebraic number of degree 2. Thus, a CM-point is a point of the form
( j (τ ), j (τ ′)) with τ, τ ′ ∈ H algebraic of degree 2.

Special curves are those of the following types:
• “vertical lines” x = j (τ ) and “horizontal lines” y = j (τ ), where j (τ ) is a

singular modulus, and

• modular curves Y0(N ), realized as the plane curves 8N (x, y)= 0, where 8N

is the modular polynomial of level N .

Recall that the polynomial 8N (X, Y ) ∈ C[X, Y ] is the X -monic C-irreducible
polynomial satisfying 8N ( j (z), j (N z))= 0. It is known that actually 8N (X, Y ) ∈
Z[X, Y ]; this and other properties of 8N can be found, for instance, in [Cox 1989,
Theorem 11.18].

Clearly, each special curve contains infinitely many CM-points, and André proved
that special curves are characterized by this property.

André’s result was the first nontrivial contribution to the celebrated André–Oort
conjecture on the special subvarieties of Shimura varieties; see [Pila 2011] and the
references therein.

Several other proofs (some conditional on the GRH) of André’s theorem were
suggested [Bilu et al. 2013; Breuer 2001; Edixhoven 1998; Kühne 2012; 2013; Pila
2009]. We specifically mention the argument of Pila [2009], based on an idea of
Pila and Zannier [2008]. Pila [2011] extended it to higher dimensions, proving
the André–Oort conjecture for subvarieties of Cn . To state this result, one needs
to introduce the notion of “special variety”; then Pila’s theorem asserts that an
algebraic subvariety of Cn has at most finitely many maximal special subvarieties.
See Section 2 and Theorem 2.4 for the details.

Besides general results, some particular curves were considered. For instance,
Kühne [2013, Theorem 5] proved that the straight line x+ y= 1 has no CM-points,1

and a similar result for the hyperbola xy = 1 was obtained in [Bilu et al. 2013].
The same conclusion was obtained in [Habegger et al. 2017] for the quartic curve

x3 y− 2x2 y2
+ xy3

− 1728x3
+ 1216x2 y+ 1216xy2

− 1728y3
+ 3538944x2

−2752512xy+3538944y2
−2415919104x−2415919104y+549755813888= 0;

this is equivalent to the fact that there are no complex t 6= 0, 1,−1 for which the
two elliptic curves Y 2

= X (X − 1)(X − t) and Y 2
= X (X − 1)(X + t) both have

complex multiplication.
One can ask about CM-points on general straight lines Ax+By+C = 0. One has

to exclude from consideration the special straight lines: x = j (τ ), y = j (τ ) (where
j (τ ) is a singular modulus) and x = y, the latter being nothing else than the modular

1The same result was independently obtained in an earlier version of [Bilu et al. 2013] but did not
appear in the final version.
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curve Y0(1) (the modular polynomial 81 is X − Y ). According to the theorem of
André, these are the only straight lines containing infinitely many CM-points.

In [Allombert et al. 2015] all CM-points lying on nonspecial straight lines defined
over Q are listed. More generally, Kühne [2013, p. 5] remarks that, given a positive
integer ν, at most finitely many CM-points belong to the union of all nonspecial
straight lines defined over a number field of degree ν; moreover, for a fixed ν all
these points can, in principle, be listed explicitly, though the implied calculation
does not seem to be feasible.

Here we take a different point of view: instead of restricting the degree of field
of definition, we study the (nonspecial) straight lines passing through at least three
CM-points.

Such lines do exist [Allombert et al. 2015, Remark 5.3]: since

det
[

1728 −884736000
287496 −147197952000

]
= 0,

the three points (0, 0), (1728, 287496) and (−884736000,−147197952000) be-
long to the same straight line 1331x = 8y, and just as well for the points (0, 0),
(1728,−884736000) and (287496,−147197952000) on 512000x =−y. Here

j
(
−1+

√
−3

2

)
= 0, j (

√
−1)= 1728, j (2

√
−1)= 287496,

j
(
−1+

√
−43

2

)
=−884736000, j

(
−1+

√
−67

2

)
=−147197952000.

Call an (unordered) triple {P1, P2, P3} of CM-points collinear if P1, P2, P3 are
pairwise distinct and belong to a nonspecial straight line.

In this paper we prove the following:

Theorem 1.1. There exist at most finitely many collinear triples of CM-points.

In particular, there exist at most finitely many nonspecial straight lines passing
through three or more CM-points. This latter consequence looks formally weaker
than Theorem 1.1, but in fact it is equivalent to it, due to the theorem of André.

Remark 1.2. The referee drew our attention to the phenomenon of automatic
uniformity, discovered by Scanlon [2004]. Combining Theorem 4.2 from [Scanlon
2004] with Pila’s Theorem 2.4 stated in the next section, one obtains the following
“uniform” version of the theorem of André: there is a (noneffective) uniform upper
bound cd on the number of CM-points on an arbitrary nonspecial curve of geometric
degree d (with an arbitrary field of definition). For every d, it is a widely open
question what the optimal cd actually is; moreover, even obtaining an effective upper
bound for cd seems to be quite difficult. It might be an easier question to ask for an
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optimal bound c∗d such that all but finitely many nonspecial curves of degree d contain
at most c∗d special points. In this language our Theorem 1.1 simply asserts that c∗1=2.

The idea of the proof of Theorem 1.1 is simple. Three points (xi , yi ) lie on a
line if and only if ∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣= 0. (1-1)

This defines a variety in C6 to which we can apply Pila’s André–Oort result. This
guarantees finiteness outside the special subvarieties of positive dimension. One
easily detects “obvious” positive-dimensional special subvarieties: they correspond
to the line being special in two dimensions or the three points not being distinct.
The main difficulty is showing that there are no other positive-dimensional special
subvarieties: this is the content of the “main lemma”, whose proof occupies the
overwhelming part of the article. Along the way we have to solve some auxiliary
problems not only of André–Oort type but also of “mixed type” involving roots of
unity.

It could be mentioned that, while the main lemma is completely effective,
Theorem 1.1 is not because its deduction from the main lemma relies on Pila’s
Theorem 2.4, which is noneffective.

For analogous Diophantine assertions about lines proved also using “determinant
varieties”, the reader can consult the articles of Evertse, Győry, Stewart and Tijdeman
[Evertse et al. 1988] about S-units or of Schlickewei and Wirsing [1997] about
heights. In these papers, one is actually in the multiplicative group G2

m and the
appropriate special varieties are much easier to describe.

Plan of the article. In Section 2 we recall the general notion of special variety and
state the already mentioned theorem of Pila, proving the André–Oort conjecture for
subvarieties of Cn .

In Section 3 we present the main lemma, which lists all maximal positive-
dimensional special subvarieties of the “determinant variety” defined by (1-1), and
we deduce Theorem 1.1 from the theorem of Pila and the main lemma.

In Sections 4, 5, 6 and 7 we obtain various auxiliary results used in the sequel.
The proof of the main lemma occupies Sections 8 to 12. In Section 8 we collect
some preliminary material and show how the proof of the main lemma splits into
four cases. These cases are treated in Sections 9 to 12.

2. Special varieties and the theorem of Pila

We recall the definition of special varieties from [Pila 2011]. The referee pointed
out that this is not the definition used in the standard formulation of the André–Oort
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conjecture, and some work is required to show that the two are equivalent. However,
this presents no issues for our purposes since the main result that we need, Pila’s
Theorem 2.4, proved in [Pila 2011], is stated therein in terms of this definition.

To begin, we define sets M in Cm (where m ≥ 1) as follows. If m = 1, then
M = C, while if m ≥ 2, then M is given by modular equations

8N (i)(x1, xi )= 0 (i = 2, . . . ,m). (2-1)

More generally for Cn (where n≥ 1), one takes a partition n= l0+m1+· · ·+md

(where d ≥ 0) with l0 ≥ 0 and with m1 ≥ 1, . . . ,md ≥ 1 (when d ≥ 1) and defines
sets K in Cn

=Cl0×Cm1×· · ·×Cmd as L0×M1×· · ·×Md , where L0 (if l0 ≥ 1)
is a single point whose coordinates are singular moduli and M1, . . . ,Md (if d ≥ 1)
are as M above. Then any irreducible component K̃ of K , which necessarily has
the form

K̃ = L0× M̃1× · · ·× M̃d (2-2)

with irreducible components M̃1, . . . , M̃d of M1, . . . ,Md , is an example of a special
variety in the sense of Pila; and one gets all examples by permuting the coordinates.
The dimension is d .

When n = 2 and d = 1, this agrees with the notion of special curve introduced
in Section 1 because the polynomials 8N are irreducible.

The following property of special varieties is certainly known, but we could not
find a suitable reference.

Proposition 2.1. Let 0 ≤ e ≤ d ≤ n. Then every special variety of dimension d
contains a Zariski-dense union of special varieties of dimension e.

Proof. If d = 0, there is nothing to prove. Otherwise, by induction, it suffices to
treat the case e = d − 1, with the special variety (2-2).

If m1 = 1, then M̃1 = C and for each singular modulus ξ the variety L0×{ξ}×

M̃2× · · ·× M̃d is special of dimension d − 1. As there are infinitely many singular
moduli, the union is Zariski-dense in K̃ .

If m1 ≥ 2 (call it m), we note from (2-1) that x1 is nonconstant on M̃1. Thus,
the corresponding projection of M̃1 to C is dominant. We can therefore find
infinitely many singular moduli ξ1 for which some (ξ1, ξ2, . . . , ξm) lies in M̃1. As
8N (i)(ξ1, ξi ) = 0 for i = 2, . . . ,m, it is clear that ξ2, . . . , ξm are also singular
moduli, and now the corresponding

L0×{(ξ1, ξ2, . . . , ξm)}× M̃2× · · ·× M̃d

do the trick. �

Special points are exactly those of the form (ξ1, . . . , ξn), where each ξi is a
singular modulus. To characterize the special curves in a similar way, it will be
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convenient to use the language of “ j-maps”. A map f : H→ C will be called a
j -map if either f (z) = j (γ z) for some γ ∈ GL+2 (Q) (a nonconstant j-map) or
f (z)= j (τ ) with τ ∈H algebraic of degree 2 (a constant j-map). Here GL+2 (Q)
is the subgroup of GL2(Q) consisting of matrices with positive determinants. We
define a j -set to be of the form {( f1(z), . . . , fn(z)) : z ∈ H}, where each fk is a
j-map and at least one of them is nonconstant.

Remark 2.2. It is worth noting that every j-map is 0(N )-automorphic2 for some
positive integer N . This is trivially true for constant j-maps, and a nonconstant
j-map f = j ◦ γ is γ−10(1)γ -automorphic. So it remains to note that γ−10(1)γ
contains 0(N ) for a suitable N . Indeed, write A ∈ 0(N ) as I + N B, where
I is the identity matrix and B is a matrix with entries in Z. Then the matrix
γ Aγ−1

= I + Nγ Bγ−1 has entries in Z if N is divisible by the product of the
denominators of the entries of γ and γ−1.

It seems to be known (and even used in several places) that every special curve
is a j-set and that the converse is also true. As we could not find a convincing
reference, we provide here an argument. We thank the referee for many explanations
on this topic.

Proposition 2.3. (1) Any j-set is a Zariski-closed irreducible algebraic subset
of Cn .

(2) A subset of Cn is a j-set if and only if it is a special curve.

Proof. In the proof of Part (1), we may restrict to the case when all f1, . . . , fn

are nonconstant j-maps. Denote by Z ⊂ Cn the j-set defined by these maps.
According to Remark 2.2, the maps f1, . . . , fn are 0(N )-automorphic for some
positive integer N . Hence, each fi induces a regular map, also denoted by fi , of
the affine modular curve Y (N )=0(N )\H to C, and our Z is the image of the map
( f1, . . . , fn) : Y (N )→ Cn .

Furthermore, each fi extends to a regular map f i : X (N )→ P1(C) of projec-
tive curves, where X (N ) is the standard compactification of Y (N ), as explained,
for instance, in [Diamond and Shurman 2005, §2.4]. The image Z of the map
( f 1, . . . , f n) : X (N )→P1(C)n is Zariski-closed in P1(C)n and irreducible (being
the image of an irreducible projective curve under a regular map). But for x ∈ X (N ),
we have f i (x)=∞ if and only if x ∈ X (N ) \ Y (N ) (we write P1(C)= C∪ {∞}

in the obvious sense). Hence, Z = Z ∩Cn , which shows that Z is Zariski-closed
in Cn and irreducible. This proves Part (1).

2Recall that 0(N ) is the kernel of the mod N reduction map SL2(Z)→ SL2(Z/NZ), and “the
function f is 0(N )-automorphic” means f ◦ η = f for any η ∈ 0(N ).
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Part (2) is an easy consequence of Part (1). If f and g are two nonconstant
j-maps, then there exists N such that 8N ( f, g)= 0. It follows that, up to coordi-
nate permutations, any j-set is contained in L0×M , where L0 is a point whose
coordinates are singular moduli and M ⊆ Cm is defined as in (2-1). Since our j -set
is irreducible and Zariski-closed, it must be an irreducible component of L0×M ,
that is, a special curve. In particular, a j-set is an irreducible one-dimensional
algebraic set defined over Q.

Conversely, every special curve has (up to coordinate permutations) the shape
L0× M̃ , where M̃ is an irreducible component of a set M ⊂Cm defined as in (2-1).
Recall that two complex numbers x, y satisfy 8N (x, y)= 0 if and only if x and y
are j-invariants of two elliptic curves linked by a cyclic N -isogeny. Now let
(ξ1, . . . , ξm) be a transcendental point3 of M̃ . Then the numbers ξ1, . . . , ξm are
j-invariants of isogenous elliptic curves. Hence, if we write ξ1 = j (z) with some
z ∈H, then there exist γ2, . . . , γm ∈GL+2 (Q) such that ξi = j (γi z) for i = 2, . . . ,m.

Thus, M̃ shares a transcendental point with the j-set defined by the j-maps
j, j ◦ γ2, . . . , j ◦ γm . Since both are Zariski-closed irreducible one-dimensional
algebraic sets defined over Q, they must coincide. �

A similar “parametric” description can be given for higher dimensional special
varieties. We do not go into this because we will not need it.

Pila [2011] generalized the theorem of André by proving the following:

Theorem 2.4 (Pila). An algebraic set in Cn contains at most finitely many maximal
special subvarieties.

“Maximal” is understood here in the set-theoretic sense: let V be an algebraic
set in Cn and M ⊆ V a special variety; we call M a maximal special subvariety
of V if for any special variety M ′ such that M ⊆ M ′ ⊆ V we have M = M ′.

If an algebraic curve is not special, then its only special subvarieties are special
points, and we recover the theorem of André.

3. Main lemma and proof of Theorem 1.1

Theorem 1.1 is an easy consequence of Pila’s Theorem 2.4 and the following lemma.

Lemma 3.1 (main lemma). Let f1, f2, f3, g1, g2, g3 be j-maps, not all constant.
Assume that the determinant

det

 1 1 1
f1 f2 f3

g1 g2 g3

 (3-1)

is identically 0. Then at least one of the following holds:

3“Transcendental” means here that the coordinates of this point are not all algebraic over Q.
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• f1 = f2 = f3,

• g1 = g2 = g3,

• for some distinct k, ` ∈ {1, 2, 3} we have fk = f` and gk = g`,

• fk = gk for k = 1, 2, 3.

In this section we prove Theorem 1.1 assuming the validity of the main lemma.
Lemma 3.1 itself will be proved in the subsequent sections.

Consider the algebraic set in C6 consisting of the points (x1, x2, x3, y1, y2, y3)

satisfying ∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣= 0. (3-2)

Then Lemma 3.1 has the following consequence.

Corollary 3.2. The algebraic set (3-2) has exactly six maximal special subvarieties
of positive dimension:

• the subvariety Rx , defined in C6 by x1 = x2 = x3,

• the subvariety Ry , defined in C6 by y1 = y2 = y3,

• the three subvarieties Sk,`, defined in C6 by xk = x` and yk = y`, where
k, ` ∈ {1, 2, 3} are distinct, and

• the subvariety T , defined in C6 by xk = yk for k = 1, 2, 3.

Proof. Let K̃ be a special variety in (3-2) of positive dimension. By Proposition 2.1 it
contains a Zariski-dense union of special curves. By Proposition 2.3 each such curve
is a j-set. By the main lemma, each j-set is contained in one of the subvarieties
above. The latter are clearly irreducible and also special; for example with Rx we
have n = 6, d = 4, and the partition with

l0 = 0, m1 = 3, m2 = m3 = m4 = 1.

Taking closures we see that K̃ itself is also contained in one of them. �

Now we are ready to prove Theorem 1.1. Let

Pk = (xk, yk) (k = 1, 2, 3)

be three special points forming a collinear triple. Then the point Q = (x1, x2, x3,

y1, y2, y3) belongs to the algebraic set (3-2). Moreover, since our points are pairwise
distinct, Q does not belong to any of Sk,`, and since the straight line passing through
our points is not special, Q does not belong to any of Rx , Ry, T .

This shows that {Q} is a zero-dimensional maximal special subvariety of the
algebraic set (3-2), and we complete the proof by applying Theorem 2.4. �
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The main lemma will be proved in Sections 8–12, after some preparations made
in Sections 4–7.

4. Roots of unity

In this section we collect some facts about roots of unity used in the proof of the
main lemma.

Lemma 4.1. Let α be a sum of k roots of unity and N a nonzero integer. Assume
that N | α (in the ring of algebraic integers). Then either α = 0 or k ≥ |N |.

Proof. Assume α 6= 0, and write α = Nβ, where β is a nonzero algebraic integer.
Then there exists an embedding Q(α)

σ
−→ C such that |βσ | ≥ 1. It follows that

|N | ≤ |ασ |. But since α is a sum of k roots of unity, we have |ασ | ≤ k. �

Lemma 4.2. Let a, b be nonzero rational numbers and η, θ roots of unity. Assume
that α = aη + bθ is of degree 1 or 2 over Q. Then Q(α) is one of the fields
Q,Q(i),Q(

√
−2),Q(

√
−3),Q(

√
2),Q(

√
3),Q(

√
5), and after a possible swap-

ping of aη and bθ , and possible replacing of (a, η) by (−a,−η) and/or (b, θ) by
(−b,−θ), we have the following:

(1) If Q(α)=Q, then

(a) either both η and θ are ±1 or
(b) η is a primitive cubic root of unity, θ = η−1, and a = b, or
(c) θ =−η and a = b.

(2) If Q(α)=Q(i), then

(a) either η = i and θ ∈ {1, i} or
(b) η is a primitive 12th root of unity, θ =−η−1, and a = b.

(3) If Q(α)=Q(
√
−3), then η is a primitive cubic root of unity, and θ is a cubic

root of unity (primitive or not).

(4) If Q(α)=Q(
√
−2), then η is a primitive 8th root of unity, θ =−η−1, and a=b.

(5) If Q(α)=Q(
√

2), then η is a primitive 8th root of unity, θ = η−1, and a = b.

(6) If Q(α)=Q(
√

3), then η is a primitive 12th root of unity, and

(a) either θ = η−1 and a = b or
(b) θ =−η3(=±i) and a = 2b.

(7) If Q(α)=Q(
√

5), then η is a primitive 5th root of unity, θ = η−1, and a = b.

Proof. Without loss of generality, we may assume that a and b are coprime integers.
Let N be the order of the multiplicative group generated by η and θ , and L=Q(η, θ);
then [L :Q] = ϕ(N ), where ϕ is Euler’s totient function.

If ϕ(N ) ≤ 2, then N ∈ {1, 2, 3, 4, 6}, and we have one of the options (1), (2a),
or (3). If α = 0, then we have option (1c).
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From now on we assume that ϕ(N ) > 2 and α 6= 0. Since ϕ(N ) > 2, there exists
σ ∈ Gal(L/Q) such that (ησ , θσ ) 6= (η, θ), but ασ = α. We obtain

a(η− ησ )= b(θσ − θ). (4-1)

By our choice of σ , both sides of (4-1) are nonzero. Since a and b are coprime
integers, we have a | (θσ − θ), whence |a| ≤ 2 by Lemma 4.1. Similarly, |b| ≤ 2. It
follows that (a, b) ∈ {(±1,±1), (±1,±2), (±2,±1)}. Swapping (if necessary) aη
and bθ , and replacing (if necessary) (a, η) by (−a,−η) and/or (b, θ) by (−b,−θ),
we may assume that a ∈ {1, 2} and b= 1. The rest of the proof splits into two cases.

The case a = 2 and b = 1. In this case (4-1) becomes 2(η − ησ ) = θσ − θ . We
must have θσ =−θ ; otherwise all the conjugates of the nonzero algebraic integer
(θσ − θ)/2 would be of absolute value strictly smaller than 1. Thus, we obtain
η− ησ + θ = 0. Three roots of unity may sum up to 0 only if they are proportional
to (1, ζ3, ζ

−1
3 ), where ζ3 is a primitive cubic of unity. We obtain θ/η = ζ−1

3 , and
η = α(a+ bζ−1

3 )−1 is of degree at most 4 over Q. Since θ = ησ − η ∈ Q(η), we
obtain L =Q(η); in particular, η is a primitive N -th root of unity.

Thus, ϕ(N )= [Q(η) :Q] ≤ 4, and in fact ϕ(N )= 4 because ϕ(N ) > 2. Since
−ησ/η= ζ3, we must have 3 | N . Together with ϕ(N )= 4, this implies that N = 12
and η is a primitive 12th root of unity. Hence, we have the option (6b).

The case a = b = 1. In this case η− ησ + θ − θσ = 0. Four roots of unity may
sum up to 0 only if two of them sum up to 0 (and the other two sum up to 0 as
well). Since η 6= ησ and η 6= −θ (because α 6= 0), we have η = θσ and ησ = θ .
This implies that L =Q(η)=Q(θ), both η and θ are primitive N -th roots of unity,
and σ 2

= 1.
We claim that the subgroup H ={1, σ } is the stabilizer of Q(α) in G=Gal(L/Q).

Thus, let ς ∈ G satisfy ας = α. Since η+ ησ − ης − ησς = 0 and η+ ησ 6= 0, we
must have either η = ης or η = ησς . Since L = Q(η), in the first case we have
ς = 1 and in the second case ς = σ−1

= σ .
Thus, H is the stabilizer of Q(α). Since |H | = 2 and [G : H ] = [Q(α) :Q] = 2,

we obtain ϕ(N )= |G| = 4, which implies that N ∈ {5, 8, 10, 12}.
Now if N = 5, then we have option (7). If N = 10, then replacing (a, η) by

(−a,−η) and (b, θ) by (−b,−θ), we obtain option (7) as well. If N = 8, then
we have one of the options (4) or (5). Finally, if N = 12, then we have one of the
options (2b) or (6a). �

5. Singular moduli

In this section we collect miscellaneous properties of singular moduli used in the
sequel. We start by recalling the notion of the discriminant of a singular modulus.
Let τ ∈H be algebraic of degree 2; the endomorphism ring of the lattice Zτ+Z is an
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1 −3 −4 −7 −8 −11 −12 −16 −19 −27
j 0 1728 −3375 8000 −32768 54000 287496 −884736 −12288000
1 −28 −43 −67 −163
j 16581375 −884736000 −147197952000 −262537412640768000

Table 1. Discriminants 1 with h(1) = 1 and the corresponding
singular moduli.

order in the imaginary quadratic field Q(τ ); the discriminant 1=1τ of this order
will be called the discriminant of the singular modulus j (τ ). This discriminant is a
negative integer satisfying 1≡ 0, 1 mod 4.

It is well-known (see, for instance, [Cox 1989, §11]) that

• any singular modulus of discriminant 1 is an algebraic integer of degree equal
to the class number of 1, denoted h(1), and

• the singular moduli of discriminant 1 are all conjugate over Q; moreover, they
form a complete set of Q-conjugates.

A full description of singular moduli of given discriminant 1 is well-known as
well. Denote by T = T1 the set of triples of integers (a, b, c) such that

gcd(a, b, c)= 1, 1= b2
− 4ac, either −a < b ≤ a < c or 0≤ b ≤ a = c.

Then the map

(a, b, c) 7→ j
(

b+
√
1

2a

)
(5-1)

defines a bijection from T1 onto the set of singular moduli of discriminant 1. In
particular, h(1)= |T1|. The proof of this is a compilation of several classical facts,
some of which go back to Gauss; see, for instance, [Bilu et al. 2016, §2.2] and the
references therein.

It is crucial for us that the set T1 has only one triple (a, b, c) with a = 1. The
corresponding singular modulus will be called the principal singular modulus of
discriminant 1. Note that the principal singular modulus is a real number; in
particular,

any singular modulus has a real Q-conjugate. (5-2)

There exist exactly 13 discriminants 1 with h(1) = 1. The corresponding
singular moduli (and only they) are rational integers. The full list of the 13 rational
singular moduli is well-known and reproduced in Table 1.

Finally, we use the inequality

|| j (τ )| − e2π Im τ
| ≤ 2079, (5-3)
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which holds for every τ ∈H satisfying Im τ ≥
√

3/2 [Bilu et al. 2013, Lemma 1].
In particular, if (a, b, c) ∈ T1, then the number

τ(a, b, c)=
b+
√
1

2a

satisfies Im τ(a, b, c)≥
√

3/2 [Bilu et al. 2016, p. 403, (8)]. Hence, (5-3) applies
with τ = τ(a, b, c).

All the facts listed above will be repeatedly used in this section, sometimes
without a special reference.

Lemma 5.1. Let x be a singular modulus, and let x ′ be the principal singular
modulus of the same discriminant. Then either x = x ′ or |x ′|> |x | + 180000.

Proof. Let 1 be the common discriminant of x and x ′. We may assume that
|1| ≥ 15; otherwise, h(1)= 1 and there is nothing to prove. We assume that x 6= x ′

and will use (5-3) to estimate |x | from above and |x ′| from below.
We have x = j (τ ) and x ′ = j (τ ′), where τ = τ(a, b, c) and τ ′ = τ(a′, b′, c′) for

some (a, b, c), (a′, b′, c′) ∈ T1. Since x ′ is principal, and x is not, we have a′ = 1
and a ≥ 2. Hence,

Im τ ′ = π |1|1/2, Im τ =
π |1|1/2

a
≤
π |1|1/2

2
.

We obtain
|x ′| ≥ eπ |1|

1/2
− 2079, |x | ≤ eπ |1|

1/2/2
+ 2079,

which implies

|x ′| − |x | ≥ eπ |1|
1/2
− eπ |1|

1/2/2
− 4158≥ eπ

√
15
− eπ

√
15/2
− 4158> 180000,

as wanted. �

Lemma 5.2. Let x, y be singular moduli, and let a, b ∈ Z be such that |a|, |b| ≤
90000. Assume that y 6= b and that (x − a)/(y − b) is a root of unity. Then
either x = y or x, y ∈ Z. In particular, if x/y is a root of unity (with y 6= 0) or if
(x − 744)/(y− 744) is a root of unity, then x = y.

Proof. Let x ′ and y′ be the principal singular moduli of the same discriminants as x
and y. We may assume that |x ′| ≥ |y′|. We may further assume, by conjugating,
that x = x ′. Then y = y′ as well since otherwise |y|< |y′|−180000 by Lemma 5.1,
and we obtain

|y|+90000≥|y−b|= |x−a|= |x ′−a|≥ |x ′|−90000≥|y′|−90000> |y|+90000,

a contradiction. Thus, both x and y are principal singular moduli. In particular,
both are real, which implies x − a =±(y− b).

Now Theorem 1.2 of [Allombert et al. 2015] implies one of the following options:
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(1) x = y and a = b,

(2) x, y ∈ Z, or

(3) x and y are distinct and of degree 2 over Q.

We have to rule out option (3). Thus, assume that to be the case and let f (T )=
T 2
+ AT +C and g(T )= T 2

+ BT +D be the Q-minimal polynomials of x and y.
Since x and y are both principal and distinct, they are not Q-conjugate, which
means that the polynomials F and G are distinct. We have either x + y = a+ b or
x − y = a− b. Taking Q-traces, we obtain A+ B = 2(a+ b) or A− B = 2(a− b).
In particular, we have either |A+ B| ≤ 360000 or |A− B| ≤ 360000.

However, our F and G are among the 29 Hilbert class polynomials associated to
the imaginary quadratic orders of class number 2. The full list of such polynomials
can be found in Table 2 of [Bilu et al. 2016]. A quick inspection of this table shows
that, if A and B are middle coefficients of two distinct polynomials from this table,
then |A+ B| > 360000 and |A− B| > 360000. Hence, option (3) is impossible.
This proves the first statement of the lemma.

In the special cases a = b = 0 or a = b = 744, we must have either x = y or

x, y ∈ Z, x 6= y, x + y ∈ {0, 1488}. (5-4)

Inspecting Table 1, we find out that (5-4) is impossible. The lemma is proved. �

Lemma 5.3. Let x and y be distinct principal singular moduli. Then ||x | − |y||>
1600.

Proof. Denote by 1x and 1y the discriminants of x and y, respectively. We will
assume that |1x |> |1y|. If |1x | ≤ 12, then h(1x)= 1, and the statement follows
by inspection of Table 1. And if |1x | ≥ 15, then

|x | − |y| ≥ (eπ |1x |
1/2
− 2079)− (eπ |1y |

1/2
+ 2079)

≥ eπ |1x |
1/2
− eπ |1x−1|1/2

− 4158

≥ eπ
√

15
− eπ

√
14
− 4158

> 60000,

which is much stronger than needed. The lemma is proved. �

Lemma 5.4. Let x be a singular modulus, and assume that the number field Q(x)
is a Galois extension of Q. Then the Galois group of Q(x)/Q is 2-elementary, that
is, isomorphic to (Z/2Z)k for some k.

Proof. This is well-known; see, for instance, Corollary 3.3 from [Allombert et al.
2015]. �

Lemma 5.5. Let x, y be singular moduli and ε, η roots of unity. Then ε(x−744)+
η(y− 744) is not a root of unity.
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Proof. We will assume that

ε(x − 744)+ η(y− 744)= 1

and derive a contradiction. We clearly have

||y| − |x || ≤ 1489. (5-5)

We follow the same strategy as in the proof of Lemma 5.2. We denote by x ′ and y′

the principal moduli of the same discriminants as x and y, respectively, and we
may assume that |x ′| ≥ |y′| and x = x ′. We claim that y = y′ as well. Indeed, if
y 6= y′, then Lemma 5.1 implies that

|y| + 1489≥ |x | = |x ′| ≥ |y′|> |y| + 180000,

a contradiction.
Thus, we may assume that both x and y are principal singular moduli. Lemma 5.3

and inequality (5-5) imply that x = y. Thus,

(ε+ η)(x − 744)= 1.

In particular 0 6= ε+ η ∈ R, which implies η = ε−1.
Lemma 5.4 implies that the Galois group of the number field Q(x)=Q(ε+ε−1)

is 2-elementary. Since Q(ε+ ε−1) is a subfield of degree at most 2 in Q(ε), the
Galois group of Q(ε)/Q is either 2-elementary or Z/4Z times a 2-elementary group.
But this group is (Z/nZ)×, where n is the order of the root of unity ε. Using the well-
known structure of the multiplicative group (Z/nZ)× (see, for instance, [Ireland and
Rosen 1990, Theorem 3 in §4.1]), one easily finds out that any integer n with the
property “the group (Z/nZ)× is either 2-elementary or Z/4Z times a 2-elementary
group” divides either 48 or 120. It follows that |ε+ ε−1

| ≥ 2 sin(π/60) (recall that
ε+ ε−1

= ε+ η 6= 0). Hence,

|x − 744| ≤
1

2 sin(π/60)
< 10.

No principal singular modulus satisfies the latter inequality. �

Lemma 5.6. The numbers 744, 744±1, 744±2, 744±196884, 744±1±196884,
744± 2 · 196884 are not singular moduli.

Proof. The proof is just by inspection of Table 1. �

Lemma 5.7. Let θ be a root of unity. Then 744+ θ and 744+ 196884θ are not
singular moduli.

Proof. If 744+θ or 744+196884θ is a singular modulus, then the cyclotomic field
Q(θ) has a real embedding by (5-2), which is possible only if θ =±1. Now apply
Lemma 5.6. �
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Lemma 5.8. Assume that a singular modulus of discriminant 1 is a sum of k roots
of unity. Then

|1| ≤ π−2(log(k+ 2079))2.

Proof. We may assume that our modulus (denote it by x) is principal and, as in the
proof of Lemma 5.1, deduce from this that it satisfies |x | ≥ eπ |1|

1/2
− 2079. On

the other hand, since x is a sum of k roots of unity, we have |x | ≤ k, whence the
result. �

Lemma 5.9. Let η, θ be roots of unity, x a singular modulus, and a, b, c ∈ Z.
Assume that

x = aη+ bθ + c, a, b 6= 0, |a| + |b| + |c| ≤ 3400000.

Then one of the following options holds:

• We have x ∈ Z.

• After possible replacing of (a, η) by (−a,−η) and/or (b, θ) by (−b,−θ), we
have the following: η is a primitive 5th root of unity, θ = η−1, a = b, and

(a, c) ∈
{
(85995,−52515), (−85995,−138510),

(565760, 914880), (−565760, 349120)
}
. (5-6)

Proof. Let 1 be the discriminant of the singular modulus x . Lemma 5.8 implies
that

|1| ≤ π−2(log(3400000+ 2079))2 < 22.92. (5-7)

Assume that x /∈ Z; then h(1) > 1. Among negative quadratic discriminants
satisfying (5-7), all but two have class number 1; these two are 1 = −15 and
1=−20. In both cases h(1)= 2 and Q(x)=Q(

√
5), so option (7) of Lemma 4.2

applies in both cases. After possible replacing of (a, η) by (−a,−η) and/or (b, θ)
by (−b,−θ), we obtain the following: η is a primitive 5th root of unity, θ = η−1,
and a = b, so we have x = a(η+ η−1)+ c.

The two singular moduli of discriminant 1=−15 are

−191025± 85995
√

5
2

=−
191025

2
± 85995( 1

2 + η+ η
−1)

=

{
either 85995(η+ η−1)− 52515,
or −85995(η+ η−1)− 138510,

which gives us the first two options in (5-6)
Similarly, the two singular moduli of discriminant 1 = −20 are 632000 ±

282880
√

5, which gives the other two options. �
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6. Rational matrices

In this section we obtain some elementary properties of Q-matrices, which will be
used in our study of j-maps in Section 7.

Recall that we denote by GL+2 (Q) the subgroup of GL2(Q) consisting of matrices
of positive determinant. Unless the contrary is stated explicitly, in this section matrix
refers to an element in GL+2 (Q). We call two matrices A and A′ equivalent (denoted
A∼ A′) if there exists a matrix B ∈SL2(Z) and a scalar λ∈Q× such that A′=λB A.

For a, b∈Q we define gcd(a, b) as the nonnegative δ∈Q such that aZ+bZ= δZ.
Given a matrix A =

[a
c

b
d

]
, we define the normalized left content of A by

nlc(A)=
gcd(a, c)2

det A
.

Clearly, nlc(A)= nlc(A′) if A ∼ A′.

Proposition 6.1. Every matrix A is equivalent to an upper-triangular matrix of the
form

[a
0

b
1

]
with a > 0, where a = nlc(A). We have

[a
0

b
1

]
∼
[a′

0
b′
1

]
if and only if

a = a′ and b ≡ b′ mod Z.

Proof. It suffices to show that A is equivalent to an upper-triangular matrix; the rest
is easy. Let

( x
y

)
be the left column of A and δ = gcd(x, y). Then x/δ, y/δ ∈ Z, and

there exist u, v ∈ Z such that ux + vy = δ. Multiplying A on the left by the matrix[ u
−y/δ

v
x/δ

]
∈ SL2(Z), we obtain an upper-triangular matrix. �

Proposition 6.2. Let A1, A2 be nonequivalent matrices. Then there exists a matrix
B such that nlc(A1 B) 6= nlc(A2 B).

Proof. We may assume that nlc(A1)= nlc(A2) (otherwise there is nothing to prove).
Multiplying on the right by A−1

1 , we may assume that A1 =
[ 1

0
0
1

]
. We may further

assume that A2 =
[a

0
b
1

]
. Since a = nlc(A2) = nlc(A1) = 1, we have A2 =

[ 1
0

b
1

]
,

where b /∈ Z since A2 � A1.
Now B =

[ 1
−b−1

0
1

]
would do. Indeed,

nlc(A1 B)= nlc(B)= gcd(−b−1, 1)2, nlc(A2 B)= nlc
[

0 b
−b−1 1

]
= b−2,

and we have to prove that gcd(−b−1, 1) 6= |b|−1. This is equivalent to gcd(1, b) 6= 1,
which is true because b /∈ Z. �

One may wonder if the same statement holds true for more than two matrices:
given pairwise nonequivalent matrices A1, . . . , An , does there exist a matrix B ∈
GL+2 (Q) such that nlc(A1 B), . . . , nlc(An B) are pairwise distinct? The proof of the
main lemma could have been drastically simplified if it were the case. Unfortunately,
the answer is “no” already for three matrices, as the following example shows.
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Example 6.3. Let

A1 =

[
1 0
0 1

]
, A2 =

[
1 1/2
0 1

]
, A3 =

[
4 0
0 1

]
.

We claim that, for any matrix B, at least two of the numbers

nlc(A1 B), nlc(A2 B), nlc(A3 B)

are equal. Indeed, write B =
[a

c
b
d

]
. After multiplying by a suitable scalar, we may

assume that c = 2. Now

nlc(A1 B)=
gcd(a, 2)2

det B
, nlc(A2 B)=

gcd(a+ 1, 2)2

det B
, nlc(A3 B)=

gcd(4a, 2)2

4 det B
,

and we must show that among the three numbers

gcd(a, 2), gcd(a+ 1, 2), 1
2 gcd(4a, 2)

there are two equal. And this is indeed the case:

• if ord2(a) > 0, then gcd(a+ 1, 2)= 1
2 gcd(4a, 2),

• if ord2(a)= 0, then gcd(a, 2)= 1
2 gcd(4a, 2), and

• if ord2(a) < 0, then gcd(a, 2)= gcd(a+ 1, 2).

Still, it is possible to prove something.

Proposition 6.4. Let A1, A2, A3 be pairwise nonequivalent matrices. Then there
exists a matrix B such that among the numbers nlc(A1 B), nlc(A2 B), nlc(A3 B) one
is strictly bigger than the two others.

Proof. We may assume that Ak =
[ak

0
∗

1

]
for k = 1, 2, 3. If the numbers ak are

pairwise distinct, then there is nothing to prove. Hence, we may assume that a1= a2.
Multiplying on the right by A−1

3 and afterwards by a suitable diagonal matrix, we
may assume that

A1 =

[
1 b1

0 1

]
, A2 =

[
1 b2

0 1

]
, A3 =

[
a−1 0

0 1

]
,

where a > 0. Since A1 � A2, we have b1 6≡ b2 mod Z, and we may assume b1 /∈ Z.
Set B =

[ 1
−b−1

1

0
1

]
. Then

nlc(A1 B)= b−2
1 ,

nlc(A2 B)= gcd(1− b−1
1 b2, b−1

1 )2,

nlc(A3 B)= a gcd(a−1, b−1
1 )2.

(6-1)
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Multiplying numbers (6-1) by ab2
1, we must show that among the three numbers

a, a gcd(b1− b2, 1)2, gcd(b1, a)2 (6-2)

one is strictly bigger than the others.
If the numbers in (6-2) are pairwise distinct, then there is nothing to prove. Now

assume that two of them are equal. Since b1 6≡ b2 mod Z, then gcd(b1−b2, 1) < 1,
and in particular, the first two of them are distinct.

Further, the equality a = gcd(b1, a)2 is not possible either. Indeed, in this case
for any prime number p we would have

ordp(a)= 2 min{ordp(a), ordp(b1)},

which implies that either ordp(a)= 2 ordp(b1) > 0 or ordp(b1)≥ ordp(a)= 0. In
particular, ordp(b1)≥ 0 for any p, contradicting our assumption b1 /∈ Z.

Thus, the only possibility is a gcd(b1− b2, 1)2 = gcd(b1, a)2, and we obtain

a > a gcd(b1− b2, 1)2 = gcd(b1, a)2. �

7. Level, twist, and q-expansion of a j -map

In this section we collect some properties of j-maps used in the sequel.
Given γ, γ ′ ∈ GL+2 (Q), we have j (γ z) = j (γ ′z) if and only if the matrices γ

and γ ′ are equivalent in the sense of Section 6. Combined with Proposition 6.1,
this gives the following:

Proposition 7.1. Let f be a nonconstant j -map. Then there exist a unique positive
number m ∈Q and a unique modulo 1 number µ ∈Q such that f (z)= j (mz+µ).

Note that m = nlc(γ ) for any γ ∈ GL+2 (Q) such that f (z)= j (γ z).
Setting q = e2π i z and ε = e2π iµ, the map f (z) = j (mz + µ) admits the “q-

expansion”

f (z)= ε−1q−m
+ 744+ 196884εqm

+ 21493760ε2q2m
+ o(q2m), (7-1)

where here and below we accept the following convention:

• O(q`) means “terms of q-degree ` or higher” and

• o(q`) means “terms of q-degree strictly higher than `”.

We call m and ε the level and the twist of the nonconstant j-map f . For a
constant j-map, we set its level to be 0 and its twist undefined. The following
property will be routinely used, usually without special reference:

two nonconstant j-maps coincide if and only if their levels and twists coincide.
(7-2)



Collinear CM-points 1065

We will denote in the sequel A = 196884 and B = 21493760 so that (7-1) reads

f (z)= ε−1q−m
+ 744+ Aεqm

+ Bε2q2m
+ O(q2m). (7-3)

The following lemma will play an important role in Section 8.

Lemma 7.2. Let f1, f2, f3 be pairwise distinct j-maps, not all constant. Then
there exists γ ∈ GL+2 (Q) such that one of the maps f1 ◦ γ, f2 ◦ γ, f3 ◦ γ has level
strictly bigger than the two others.

Proof. If only one of the maps fk is nonconstant, then there is nothing to prove. If
exactly two of them, say f1 and f2, are nonconstant, then Proposition 6.2 implies
the existence of γ ∈ GL+2 (Q) such that f1 ◦ γ and f2 ◦ γ have distinct levels,
and we are done. Finally, if all the three are nonconstant, the result follows from
Proposition 6.4. �

We conclude this section with a linear-independence property of nonconstant
j-maps.

Lemma 7.3. Let f, g be nonconstant j -maps satisfying a nontrivial linear relation
a f + bg+ c = 0, where (a, b, c) ∈ C3 and (a, b, c) 6= (0, 0, 0). Then f = g and
a+ b = c = 0.

Proof. Any two nonconstant j-maps parametrize the modular curve Y0(N ) of a
certain level N ; in other words, we have 8N ( f, g)= 0, where 8N (x, y) is the N -th
modular polynomial. If we also have a f +bg+c=0, then the polynomial8N (x, y),
being irreducible, must divide the linear polynomial ax + by+ c. It follows that
N = 1 since 81(x, y)= x − y is the only modular polynomial of degree 1. �

8. Initializing the proof of the main lemma

In this section we start the proof of the main lemma. Thus, from now on, let
f1, f2, f3, g1, g2, g3 be j-maps, not all constant and satisfying∣∣∣∣∣∣

1 1 1
f1 f2 f3

g1 g2 g3

∣∣∣∣∣∣= 0. (8-1)

This can be rewritten as

( f1− f2)(g2− g3)= ( f2− f3)(g1− g2). (8-2)

If say f1= f2, then we find from (8-2) that either f2= f3, in which case f1= f2= f3,
or g1 = g2, in which case f1 = f2 and g1 = g2. Hence, we may assume in the
sequel that

f1, f2, f3 are pairwise distinct, and so are g1, g2, g3. (8-3)
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We will show that under this assumption

fk = gk (k = 1, 2, 3). (8-4)

Let mk, nk be the levels of fk, gk , respectively, for k = 1, 2, 3. If fk and/or gk is
not constant, we denote the corresponding twists by εk = e2π iµk and/or ηk = e2π iνk ,
respectively.

8A. Some relations for the levels. Since not all of our six maps are constant, we
may assume that the three maps fk are not all constant. Lemma 7.2 implies now
that, after a suitable variable change, one of the numbers m1,m2,m3 is strictly
bigger than the others. After renumbering, we may assume that

m1 > m2,m3.

We claim that

n1 > n2, n3 (8-5)

as well, and moreover,

m1−max{m2,m3} = n1−max{n2, n3}. (8-6)

Indeed, assume that, say, n2 ≥ n1, n3. Then the leading terms of the q-expansion on
the left and on the right of (8-2) are of the forms cq−(m1+n2) and c′q−(max{m2,m3}+n2)

with some nonzero c and c′. (Precisely,

c =


ε−1

1 η−1
2 , n2 > n3,

ε−1
1 (η−1

2 − η
−1
3 ), n2 = n3 > 0,

ε−1
1 (g2− g3), n2 = n3 = 0,

and it follows from (8-3) that c 6=0; in a similar way one shows that c′ 6=0.) And this
is impossible because m1+n2>max{m2,m3}+n2. This proves that n1> n2, n3. In
particular the three maps gk are also not all constant. Again comparing the leading
terms of the q-expansion on the left and on the right of (8-2), we obtain (8-6).

Swapping, if necessary, the functions fk and gk , we may assume that

m1 ≥ n1, (8-7)

and after renumbering, we may assume that

m1 > m2 ≥ m3. (8-8)

Equation (8-6) now becomes

m1−m2 = n1−max{n2, n3}. (8-9)
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8B. One more lemma. Here is a less obvious property, which will be used in the
proof several times.

Lemma 8.1. In the above setup we cannot simultaneously have f2= g3 and g2= f3.

Proof. If f2 = g3 and g2 = f3, then

0=

∣∣∣∣∣∣
1 1 1
f1 f2 f3

g1 f3 f2

∣∣∣∣∣∣= ( f3− f2)( f1+ g1− f2− f3).

Since f2 6= f3, this implies

f1+ g1 = f2+ f3. (8-10)

We will see that this leads to a contradiction.
Observe first of all that m2 > 0. Indeed, if m2 = 0, then m3 = 0 as well by (8-8).

Hence, both f2 and f3 are constant, and (8-10) contradicts Lemma 7.3.
Next, we have m3 > 0 as well. Indeed, if f3 is constant, then comparing the

constant terms in (8-10), we find f3 = 744, contradicting Lemma 5.6.
Thus, we have m1 ≥ n1 > n3 = m2 ≥ m3 > 0. Comparing the q-expansions

f1+ g1 =


ε−1

1 q−m1 + η−1
1 q−n1 + O(1), m1 > n1,

(ε−1
1 + η

−1
1 )q−m1 + O(1), m1 = n1, ε1 6= −η1,

1488+ 2Bε2
1q2m1 + o(q2m1), m1 = n1, ε1 =−η1,

f2+ f3 =


ε−1

2 q−m2 + ε−1
3 q−m3 + O(1), m2 > m3,

(ε−1
2 + ε

−1
3 )q−m2 + O(1), m2 = m3, ε2 6= −ε3,

1488+ 2Bε2
2q2m2 + o(q2m2), m2 = m3, ε2 =−ε3,

we immediately derive a contradiction. �

8C. The determinant D(q). We will study in the sequel a slightly modified version
of the determinant from (8-1):

D(q)=

∣∣∣∣∣∣
1 1 1

qm1 f1 qm1 f2 qm1 f3

qn1 g1 qn1 g2 qn1 g3

∣∣∣∣∣∣ .
The advantage is that it has no negative powers of q . Equation (8-1) simply means
that D(q) vanishes as a formal power series in q. It will be useful to write

D(q)=

∣∣∣∣∣∣
1 1 1

qm1( f1− 744) qm1( f2− 744) qm1( f3− 744)
qn1(g1− 744) qn1(g2− 744) qn1(g3− 744)

∣∣∣∣∣∣ . (8-11)

This would allow us to eliminate the constant terms in the q-expansions of fk and gk .
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It will be convenient to use the notation

f̃k =

{
ε−1

k , mk > 0,
fk − 744, mk = 0,

g̃k =

{
η−1

k , nk > 0,
gk − 744, nk = 0

(8-12)

so that

qm1( fk − 744)= f̃kqm1−mk + o(qm1), qn1(gk − 744)= g̃kqn1−nk + o(qn1).

Lemma 5.6 implies that

f̃k, g̃k 6= 0 (k = 1, 2, 3), (8-13)

which will be frequently used, usually without special references.

8D. The four cases. According to (8-5) and (8-8), there are four possible cases:

m2 = m3,

m2 > m3, n2 > n3,

m2 > m3, n2 = n3,

m2 > m3, n3 > n2.

They are treated in the four subsequent sections, respectively. We will show that in
the first two cases we have (8-4) and that the last two cases are impossible. The
proofs in the four cases are similar in strategy but differ in technical details.

Most of our arguments are nothing more than careful manipulations with q-
expansions. Still, they are quite technical, and to facilitate reading, we split proofs
of each of the cases it into short logically complete steps.

9. The case m2 = m3

In this section we assume that

m1 > m2 = m3.

We want to prove that in this case we have fk = gk for k = 1, 2, 3.
Let us briefly describe the strategy of the proof. We already have (8-5), and after

renumbering we may assume that

n1 > n2 ≥ n3.

Equation (8-9) now becomes

m1−m2 = m1−m3 = n1− n2. (9-1)
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We start by proving that n2 = n3; see Section 9A. With this done, setting m2 =

m3 = m and n2 = n3 = n, we rewrite (9-1) as

m1−m = n1− n. (9-2)

The next step is proving (see Section 9B) that m1 = n1. In view of (9-2) this would
imply that m = n as well. In particular, fk and gk are of the same level for every
k = 1, 2, 3. After this, we will be ready to prove that fk = gk for k = 1, 2, 3; see
Section 9C.

9A. Proof of n2 = n3. In this subsection we prove that n2 = n3. Set

m1−m2 = m1−m3 = n1− n2 = λ, n1− n3 = λ
′
≥ λ.

We want to show that λ′ = λ.
Assume that λ′ > λ. Then by (8-7) all the mk and nk except perhaps n3 are

positive. We consider separately the cases n3 = 0 and n3 > 0.

The subcase n3 = 0. If n3 = 0, then using notation (8-12), we write g̃3 = g3− 744
and

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ

η−1
1 η−1

2 qλ g̃3qλ
′

∣∣∣∣∣∣+ o(qn1)

= (ε−1
1 η−1

2 − ε
−1
2 η−1

1 + ε
−1
3 η−1

1 )qλ+ ε−1
3 η−1

2 q2λ
+ ε−1

1 g̃3qλ
′

+o(qn1)+O(qλ+λ
′

).

The term with qλ
′

can be eliminated only if λ′ = 2λ and ε−1
1 g̃3 = ε

−1
3 η−1

2 , that is,
g3 = 744+ ε1ε

−1
3 η−1

2 , contradicting Lemma 5.7.

The subcase n3 > 0. If n3 > 0, then

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ

η−1
1 η−1

2 qλ η−1
3 qλ

′

+ Aη3qn1+n3

∣∣∣∣∣∣+ o(qn1+n3)

= (ε−1
1 η−1

2 − ε
−1
2 η−1

1 + ε
−1
3 η−1

1 )qλ− ε−1
3 η−1

2 q2λ
− ε−1

1 η−1
3 qλ

′

+ ε−1
2 η−1

3 qλ+λ
′

− Aε−1
1 η3qn1+n3 + o(qn1+n3).

As n1+ n3 > λ
′, the term with qn1+n3 can be eliminated only if either

λ < λ′ < 2λ= n1+ n3 < λ+ λ
′, ε−1

3 η−1
2 =−Aε−1

1 η3,

which is impossible because A is not a root of unity, or

λ < λ′, 2λ < n1+ n3 = λ+ λ
′, ε−1

2 η−1
3 = Aε−1

1 η3,

which is again impossible by the same reason.
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Conclusion. Thus, we have proved that n2 = n3. Setting m = m2 = m3 and
n = n2 = n3, we can summarize our knowledge as

m1 > m2 = m3 = m, m1−m = n1− n = λ > 0,

n1 > n2 = n3 = n, m1− n1 = m− n ≥ 0.

Together with (8-3) this implies that

f̃2 6= f̃3, g̃2 6= g̃3. (9-3)

9B. Proof of m1 = n1. Now we want to prove that

m1 = n1. (9-4)

Thus, assume that m1 > n1, in which case we also have m > n. We consider
separately the subcases n > 0 and n = 0.

The subcase n > 0. If n > 0, then

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ

η−1
1 η−1

2 qλ+ Aη2qn1+n η−1
3 qλ+ Aη3qn1+n

∣∣∣∣∣∣+ o(qn1+n)

=

∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣ qλ+
∣∣∣∣ε−1

2 ε−1
3

η−1
2 η−1

3

∣∣∣∣ q2λ
+Aε−1

1 (η2−η3)qn1+n
+o(qn1+n)+o(q2λ).

Here the coefficient of qλ must vanish. If 2λ > n1 + n, then that of qn1+n must
vanish too, but that would contradict (9-3). If 2λ < n1 + n, then the coefficient
of q2λ must vanish and then that of qn1+n . It follows that 2λ= n1+ n and∣∣∣∣ε−1

2 ε−1
3

η−1
2 η−1

3

∣∣∣∣= Aε−1
1 (η3− η2). (9-5)

As noted, both sides of (9-5) are nonzero. Since the left-hand side is a sum of two
roots of unity, Lemma 4.1 implies that 196884 = |A| ≤ 2, a contradiction. This
completes the proof of (9-4) in the case n > 0.

The subcase n = 0. If n = 0, then g2 and g3 are distinct constants, and the other
functions are nonconstant. Also, we have λ= n1, and so

m1 = m+ n1. (9-6)
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Now, using notation (8-12), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qn1 + Aε2qm1+m ε−1

3 qn1 + Aε3qm1+m

η−1
1 + Aη1q2n1 g̃2qn1 g̃3qn1

∣∣∣∣∣∣
+ o(qm1+m)+ o(q2n1)

=

∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 g̃2− g̃3

∣∣∣∣ qn1 +

∣∣∣∣ε−1
2 ε−1

3
g̃2 g̃3

∣∣∣∣ q2n1 + Aη−1
1 (ε3− ε2)qm1+m

+ o(qm1+m)+ o(q2n1).

As ε3 6= ε2, the coefficient of qm1+m is nonzero; by Lemma 5.2 so is the coefficient
of q2n1 . This shows that 2n1 = m1+m. Together with (9-6) this implies m1 = 3m
and n1 = 2m; rescaling z, we may assume

m = 1, n1 = 2, m1 = 3.

Hence,

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 q2
+Aε2q4

+Bε2
2q5 ε−1

3 q2
+Aε3q4

+Bε2
3q5

η−1
1 +Aη1q4 g̃2q2 g̃3q2

∣∣∣∣∣∣+ O(q6)

=

∣∣∣∣ε−1
1 ε−1

2 −ε
−1
3

η−1
1 g̃2−g̃3

∣∣∣∣ q2
+

(∣∣∣∣ε−1
2 ε−1

3
g̃2 g̃3

∣∣∣∣+Aη−1
1 (ε3−ε2)

)
q4
+Bη−1

1 (ε2
3−ε

2
2)q

5
+O(q6).

Equating to 0 the coefficient of q5, we obtain ε3 = ±ε2, and (9-3) implies that
ε3 =−ε2. Using this, and equating to 0 the coefficients of q2 and q4, we obtain

ε−1
1 (g̃2− g̃3)= 2ε−1

2 η−1
1 , ε−1

2 (g̃2+ g̃3)= 2Aη−1
1 ε2,

from which we deduce g2 = g̃2+ 744= ε1ε
−1
2 η−1

1 + Aη−1
1 ε2

2 + 744.
Now Lemma 5.9 implies that g2 ∈ Z, from which we deduce, using Lemma 4.2,

that both roots of unity ε1ε
−1
2 η−1

1 and η−1
1 ε2

2 must be ±1. Hence, g2 is one of the
four numbers 744± 1± A, contradicting Lemma 5.6.

9C. Proof of fk = gk for k = 1, 2, 3. In the previous subsection we proved that

m1 = n1 > m = n. (9-7)

We want to now prove that

fk = gk (k = 1, 2, 3). (9-8)

We again distinguish the subcases m = n > 0 and m = n = 0. As before, we set
λ= m1−m = n1− n.
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The subcase m = n > 0. If m = n > 0 then

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ+ Aε2qλ+2m ε−1

3 qλ+ Aε3qλ+2m

η−1
1 η−1

2 qλ+ Aη2qλ+2m η−1
3 qλ+ Aη3qλ+2m

∣∣∣∣∣∣+ o(qλ+2m)

=

∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣qλ+∣∣∣∣ε−1
2 ε−1

3
η−1

2 η−1
3

∣∣∣∣q2λ
+A

∣∣∣∣ε−1
1 ε2− ε3

η−1
1 η2− η3

∣∣∣∣qλ+2m
+o(qλ+2m). (9-9)

This implies the equations∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣= 0,
∣∣∣∣ε−1

2 ε−1
3

η−1
2 η−1

3

∣∣∣∣= 0,
∣∣∣∣ε−1

1 ε2− ε3

η−1
1 η2− η3

∣∣∣∣= 0 (9-10)

if 2λ 6= λ+ 2m and the equations∣∣∣∣ε−1
1 ε−1

2 − ε
−1
3

η−1
1 η−1

2 − η
−1
3

∣∣∣∣= 0,∣∣∣∣ε−1
2 ε−1

3
η−1

2 η−1
3

∣∣∣∣=−A
∣∣∣∣ε−1

1 ε2− ε3

η−1
1 η2− η3

∣∣∣∣ (9-11)

if 2λ = λ + 2m. If both sides of (9-11) are nonzero, then Lemma 4.1 implies
196884= |A| ≤ 2, a contradiction. Hence, in any case we have (9-10).

Resolving the first two equations from (9-10) in η−1
1 , η−1

2 , η−1
3 and using (9-3),

we obtain
(η1, η2, η3)= θ(ε1, ε2, ε3)

for some θ ∈ C. Substituting this into the third equation in (9-10) and again using
(9-3), we find θ =±1. If θ =−1, then we get for D(q) the value∣∣∣∣∣∣∣

1 1 1
ε−1

1 +Aε1q2λ+2m ε−1
2 qλ+Aε2qλ+2m

+Bε2
2qλ+3m ε−1

3 qλ+Aε3qλ+2m
+Bε2

3qλ+3m

−ε−1
1 −Aε1q2λ+2m

−ε−1
2 qλ−Aε2qλ+2m

+Bε2
2qλ+3m

−ε−1
3 qλ−Aε3qλ+2m

+Bε2
3qλ+3m

∣∣∣∣∣∣∣
+ o(qλ+3m)

=

∣∣∣∣∣∣∣
1 1 1

ε−1
1 +Aε1q2λ+2m ε−1

2 qλ+Aε2qλ+2m
+Bε2

2qλ+3m ε−1
3 qλ+Aε3qλ+2m

+Bε2
3qλ+3m

0 2Bε2
2qλ+3m 2Bε2

3qλ+3m

∣∣∣∣∣∣∣
+ o(qλ+3m)

= 2Bε−1
1 (ε2

2−ε
2
3)q

λ+3m
+ o(qλ+3m),

which gives ε2=±ε3, and ε2=−ε3 by (9-3). Thus, we have ε2= η3=−ε3=−η2,
which implies that f2 = g3 and g2 = f3, contradicting Lemma 8.1.

The only remaining option is θ = 1, which, together with (9-7), proves (9-8).
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The subcase m= n= 0. This case can be easily settled using Lemma 7.3. Indeed, in
the case m = n = 0 the functions f1, g1 are nonconstant, f2, f3, g2, g3 are constant,
and

0=

∣∣∣∣∣∣
1 1 1
f1 f2 f3

g1 g2 g3

∣∣∣∣∣∣= (g2− g3) f1− ( f2− f3)g1+

∣∣∣∣ f2 f3

g2 g3

∣∣∣∣
is a nontrivial linear relation for f1, g1 (recall that f2 6= f3 and g2 6= g3 by (8-3)).
By Lemma 7.3

f1 = g1, f2− f3 = g2− g3,

∣∣∣∣ f2 f3

g2 g3

∣∣∣∣= 0.

From the last two equations, one easily deduces that f2 = g2 and f3 = g3, proving
(9-8).

10. The case m2 > m3 and n2 > n3

In this section we assume that

m1 > m2 > m3, n1 > n2 > n3. (10-1)

As in the previous section, we will prove that in this case fk = gk for k = 1, 2, 3.
The strategy of the proof is similar to that of the previous section. Equation (8-9)

now reads
m1−m2 = n1− n2. (10-2)

We start with proving that

m1−m3 = n1− n3; (10-3)

see Section 10A. Then we prove, in Section 10B, that m1 = n1. Since, by this time,
we will already know (10-2) and (10-3), this will imply that mk = nk for every
k = 1, 2, 3. After this, we prove that fk = gk for k = 1, 2, 3 in Section 10C.

We set m1−m2 = n1− n2 = λ. We also have m1 ≥ n1 by (8-7). Let us collect
our knowledge:

m1>m2>m3, n1>n2>n3, m1−m2=n1−n2=λ>0, m1−n1=m2−n2≥0.

10A. Proof of m1 − m3 = n1 − n3. Now let us prove that m1 − m3 = n1 − n3.
Using notation (8-12), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 η−1

2 qλ g̃3qn1−n3

∣∣∣∣∣∣+ o(qn1)

=

∣∣∣∣ε−1
1 ε−1

2
η−1

1 η−1
2

∣∣∣∣ qλ+ f̃3η
−1
1 qm1−m3 − ε−1

1 g̃3qn1−n3 + o(qm1−m3)+ o(qn1−n3).
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If m1−m3 6= n1− n3, then we have one of the options

λ < m1−m3 < n1− n3, λ < n1− n3 < m1−m3.

In the first case qm1−m3 cannot be eliminated, and in the second case qn1−n3 cannot
be eliminated. This proves that m1−m3 = n1− n3.

We set m1−m3 = n1− n3 = λ
′. Thus,

m1 > m2 > m3, n1 > n2 > n3,

m1−m2 = n1− n2 = λ > 0, m1−m3 = n1− n3 = λ
′ > λ > 0, (10-4)

m1− n1 = m2− n2 = m3− n3 ≥ 0.

In addition to this, from

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qλ

′

η−1
1 η−1

2 qλ g̃3qλ
′

∣∣∣∣∣∣+ o(qn1)=

∣∣∣∣ε−1
1 ε−1

2
η−1

1 η−1
2

∣∣∣∣ qλ−
∣∣∣∣ε−1

1 f̃3

η−1
1 g̃3

∣∣∣∣ qλ
′

+ o(qλ
′

),

we deduce that ∣∣∣∣ε−1
1 ε−1

2
η−1

1 η−1
2

∣∣∣∣= ∣∣∣∣ε−1
1 f̃3

η−1
1 g̃3

∣∣∣∣= 0, (10-5)

which means that

(η−1
1 , η−1

2 , g̃3)= θ(ε
−1
1 , ε−1

2 , f̃3) (10-6)

with some root of unity θ .

10B. Proof of m1 = n1. In this subsection we show that m1 = n1. Thus, assume

m1 > n1, (10-7)

in which case we also have

m2 > n2, m3 > n3. (10-8)

We should also have

n3 > 0. (10-9)

Indeed, if m3>n3=0, then the second equation in (10-5) reads g3=744+ε1ε
−1
3 η−1

1 ,
which is impossible by Lemma 5.7.
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Using (10-6), (10-7), (10-8), and (10-9), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

η−1
1 η−1

2 qλ η−1
3 qλ

′

+ Aη3qn1+n3

∣∣∣∣∣∣+ o(qn1+n3)

=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

0 0 Aη3qn1+n3

∣∣∣∣∣∣+ o(qn1+n3)

=−Aε−1
1 η3qn1+n3 + o(qn1+n3),

a contradiction.
This proves that

mk = nk (k = 1, 2, 3). (10-10)

10C. Proof of fk = gk for k = 1, 2, 3. To prove that fk = gk for k = 1, 2, 3, we
only need to show that

θ = 1,

where θ is from (10-6). If m3 = n3 = 0, then rewriting the equality g̃3 = θ f̃3 as
(g3− 744)= θ( f3− 744), we deduce θ = 1 from Lemma 5.2.

Now assume that m3 = n3 > 0. In this case

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

+ Aε3qm1+m3

η−1
1 η−1

2 qλ η−1
3 qλ

′

+ Aη3qm1+m3

∣∣∣∣∣∣+ o(qm1+m3)

=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

+ Aε3qm1+m3

0 0 Aε3(θ
−1
− θ)qm1+m3

∣∣∣∣∣∣+ o(qm1+m3)

=−Aε−1
1 ε3(θ

−1
− θ)qm1+m3 + o(qm1+m3),

which implies θ =±1. If θ =−1, then we get for D(q) the value∣∣∣∣∣∣
1 1 1

ε−1
1 + Aε1q2m1 ε−1

2 qλ+ Aε2qm1+m2 ε−1
3 qλ

′

+ Aε3qm1+m3 + Bε2
3qm1+2m3

−ε−1
1 − Aε1q2m1 −ε−1

2 qλ− Aε2qm1+m2 −ε−1
3 qλ

′

− Aε3qm1+m3 + Bε2
3qm1+2m3

∣∣∣∣∣∣
+ o(qm1+2m3)

=

∣∣∣∣∣∣
1 1 1

ε−1
1 + Aε1q2m1 ε−1

2 qλ+ Aε2qm1+m2 ε−1
3 qλ

′

+ Aε3qm1+m3

0 0 2Bε2
3qm1+2m3

∣∣∣∣∣∣+ o(qm1+2m3)

=−2Bε−1
1 ε2

3qm1+2m3 + o(qm1+2m3),

a contradiction.
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Thus, in any case we have θ = 1 in (10-6). Together with (10-10), this proves
that fk = gk for k = 1, 2, 3.

11. The case m2 > m3 and n2 = n3

In this section we assume that

m1 > m2 > m3, n1 > n2 = n3 (11-1)

and will show that this is impossible.
Relation (8-9) now becomes m1−m2 = n1− n2 = n1− n3. We set

m1−m2 = n1− n2 = n1− n3 = λ. (11-2)

Fist of all, let us rule out the case n2 = n3 = 0. In this case n1 = λ < m1−m3.
Using notation (8-12), we write in this case

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ 0

η−1
1 g̃2qλ g̃3qλ

∣∣∣∣∣∣+ o(qλ)= (ε−1
1 g̃2− ε

−1
1 g̃3− ε

−1
2 η−1

1 )qλ+ o(qλ).

We obtain ε−1
1 g̃2− ε

−1
1 g̃3− ε

−1
2 η−1

1 = 0, which contradicts Lemma 5.5.
Thus, we may assume in the sequel that

n2 = n3 > 0. (11-3)

Since n2 = n3, we have
η2 6= η3, (11-4)

which will be systematically used, sometimes without special reference.
Our principal objective will be to show that m3 = m1− 2λ and n1 = m1− λ/2.

The first of these two relations is proved already in Section 11A. The second one is
more delicate and will be established in Section 11D, after some preparatory work
done in the previous subsections. On the way, we will also prove certain inequalities
relating the numbers mk , nk , and λ and certain relations for the twists. After all this
is done, obtaining a contradiction will be relatively easy; see Section 11E.

11A. Proof of 2λ= m1−m3 ≤ n1+ n2. Using notation (8-12), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 η−1

2 qλ+ Aη2qn1+n2 η−1
3 qλ+ Aη3qn1+n2

∣∣∣∣∣∣+ o(qm1)+ o(qn1+n2)

= (ε−1
1 η−1

2 − ε
−1
1 η−1

3 − ε
−1
2 η−1

1 )qλ+ ε−1
2 η−1

3 q2λ
+ η−1

1 f̃3qm1−m3

+ Aε−1
1 (η2− η3)qn1+n2 + o(qm1−m3)+ o(qn1+n2). (11-5)
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First of all, this gives

ε−1
1 η−1

2 − ε
−1
1 η−1

3 − ε
−1
2 η−1

1 = 0. (11-6)

A sum of three roots of unity can vanish only if they are proportional to the three
distinct cubic roots of unity. In particular,

η2/η3 is a primitive 6th root of unity. (11-7)

We have m1−m3 ≥ 2λ. Indeed, if 2λ > m1−m3, then we must have

m1−m3 = n1+ n2, η−1
1 f̃3 =−Aε−1

1 (η2− η3). (11-8)

If m3 > 0, this gives η−1
1 ε−1

3 = −Aε−1
1 (η2− η3), which is impossible because A

does not divide a root of unity. And if m3 = 0, then f3 = 744− Aε−1
1 η1(η2− η3).

Lemma 5.9 now implies that f3 ∈ Z, and we obtain f3 ∈ {744± 196884, 744±
2 · 196884}, contradicting Lemma 5.6.

We have m1−m3 ≤ 2λ. Indeed, if 2λ < m1−m3, then the term with q2λ cancels
either a term in o(qn1+n2) or the term with qn1+n2 . In the first situation the terms
with qm1−m3 and qn1+n2 must cancel each other, and we are back to (11-8). In the
second situation we must have

2λ= n1+ n2, ε−1
2 η−1

3 =−Aε−1
1 (η2− η3),

which is impossible because A = 196884 does not divide a root of unity.
Thus, we proved that m1−m3 = 2λ.

We have n1+ n2 ≥ 2λ. Indeed, if n1+ n2 < 2λ=m1−m3, then the nonzero term
Aε−1

1 (η2− η3)qn1+n2 cannot be eliminated. (It is nonzero because of (11-4).)

Thus, we proved that

2λ= m1−m3 ≤ n1+ n2. (11-9)

11B. Proof of n1+n2 > 2λ. We want to show now that the inequality in (11-9) is
strict. Thus, assume the contrary, that is,

2λ= m1−m3 = n1+ n2. (11-10)

Then (11-5) implies that

ε−1
2 η−1

3 + η
−1
1 f̃3+ Aε−1

1 (η2− η3)= 0. (11-11)

This implies that m3 = 0. Indeed, if m3 > 0, then (11-11) can be rewritten as

ε−1
2 η−1

3 + η
−1
1 ε−1

3 =−Aε−1
1 (η2− η3). (11-12)
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Both sides in (11-12) are nonzero by (11-4), and Lemma 4.1 implies that 2≥ |A|,
a contradiction. Thus, we have m3 = 0, which, together with (11-2) and (11-10),
implies that

m1 = 2λ, m2 = λ, n1 =
3
2λ, n2 = n3 =

1
2λ.

Rescaling, we may assume that λ= 2, which gives

m1 = 4, m2 = 2, m3 = 0, n1 = 3, n2 = n3 = 1.

Using (11-6) and (11-11), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 q2 f̃3q4

η−1
1 η−1

2 q2
+ Aη2q4

+ Bη2
2q5 η−1

3 q2
+ Aη3q4

+ Bη2
3q5

∣∣∣∣∣∣+ O(q6)

= Bε−1
1 (η2

2− η
2
3)q

5
+ O(q6),

which gives η2 =±η3, contradicting (11-7).
This proves that

2λ= m1−m3 < n1+ n2. (11-13)

11C. Proof of m3 > 0. In addition to this, we have m3 > 0. Indeed, equating to 0
the coefficient of q2λ in (11-5), we obtain

ε−1
2 η−1

3 + η
−1
1 f̃3 = 0. (11-14)

If m3 = 0, then this gives f3 = 744− ε−1
2 η−1

3 η1, contradicting Lemma 5.7. This
proves that

m3 > 0, (11-15)
and (11-14) becomes

ε−1
2 η−1

3 =−ε
−1
3 η−1

1 . (11-16)

11D. Proof of m1+m3 = n1+n2 < 3λ. Our next step is showing that m1+m3 =

n1+ n2 < 3λ. Using (11-6) and (11-16), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3

η−1
1 η−1

2 qλ+ Aη2qn1+n2 η−1
3 qλ+ Aη3qn1+n2

∣∣∣∣∣∣+o(qm1+m3)+o(qn1+n2)

= Aε3η
−1
1 qm1+m3 + Aε−1

1 (η2− η3)qn1+n2 − ε−1
3 η−1

2 q3λ

+ o(qm1+m3)+ o(qn1+n2). (11-17)

We have m1+m3 ≥ n1+ n2. Indeed, if m1 +m3 < n1 + n2, then we must have
m1+m3 = 3λ and Aε3η

−1
1 = ε

−1
3 η−1

2 , which is impossible because A is not a root
of unity.
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We have m1+m3 ≤ n1+ n2. Similarly, if m1+m3 > n1+ n2, then we must have
n1+ n2 = 3λ and Aε−1

1 (η2− η3)= ε
−1
3 η−1

2 , which is impossible because A does
not divide a root of unity.

We have m1+m3 = n1+ n2 < 3λ. Indeed, if m1+m3= n1+n2> 3λ, then the q3λ

cannot be eliminated. And if m1+m3=n1+n2=3λ, then Aε3η
−1
1 +Aε−1

1 (η2−η3)=

ε−1
3 η−1

2 , which is impossible because A does not divide a root of unity.

Thus, we proved that

m1+m3 = n1+ n2 < 3λ. (11-18)

Since n2 = n1− λ and m3 = m1− 2λ (see (11-2) and (11-13)), this implies that

n1 = m1−
1
2λ. (11-19)

Also, comparing the coefficients in (11-17), we obtain

ε3η
−1
1 + ε

−1
1 η2− ε

−1
1 η3 = 0. (11-20)

11E. Conclusion. We are almost done. Let us summarize the relations between the
levels we already obtained. We deduce from (11-2), (11-15), (11-18), and (11-19)

m2=m1−λ, m3=m1−2λ, n1=m1−
1
2λ, n2= n3=m1−

3
2λ, 2λ<m1<

5
2λ.

This implies the inequalities

2m1>m1+m2=m1+m3+λ=n1+n2+λ>3λ, 2n1>3λ, n1+2n2>m1+2m3.

It follows that

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3 + Bε2

3qm1+2m3

η−1
1 η−1

2 qλ+ Aη2qn1+n2 η−1
3 qλ+ Aη3qn1+n2

∣∣∣∣∣∣
+ o(qm1+2m3)+ o(q3λ)

=−ε−1
3 η−1

2 q3λ
+ Bε2

3η
−1
1 qm1+2m3 + o(qm1+2m3)+ o(q3λ).

We obtain 3λ=m1+2m3 and ε−1
3 η−1

2 = Bε2
3η
−1
1 . But the last equation is impossible

because B is not a root of unity. This proves that (11-1) is impossible in case (11-3).

12. The case m2 > m3 and n3 > n2

In this section we assume that

m1 > m2 > m3, n1 > n3 > n2 (12-1)

(as usual with m1 ≥ n1) and will, eventually, arrive at a contradiction. This is the
nastiest case, and we beg for the reader’s patience.
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Relation (8-9) now becomes m1−m2 = n1−n3. We set m1−m2 = n1−n3 = λ.
Using notation (8-12), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 g̃2qn1−n2 η−1

3 qλ

∣∣∣∣∣∣+ o(qn1)

=

∣∣∣∣ε−1
1 ε−1

2
η−1

1 −η−1
3

∣∣∣∣ qλ+ f̃3η
−1
1 qm1−m3 + ε−1

1 g̃2qn1−n2 + ε−1
2 η−1

3 q2λ

− f̃3g̃2qm1−m3+n1−n2 + o(qn1). (12-2)

Since 0< λ < m1−m3, n1− n2, this implies that∣∣∣∣ε−1
1 ε−1

2
η−1

1 −η−1
3

∣∣∣∣= 0. (12-3)

12A. Proof of m1−m3 = n1− n2. Let us start by proving that

m1−m3 = n1− n2. (12-4)

Indeed, assume that m1−m3 6= n1− n2. Then qn1−n2 in (12-2) can be eliminated
only if

n1− n2 = 2λ, ε−1
1 g̃2 =−ε

−1
2 η−1

3 . (12-5)

This implies also that n2 > 0. Indeed, if n2 = 0, then the second equality in (12-5)
gives g2 = 744− ε1ε

−1
2 η−1

3 , contradicting Lemma 5.7.
Using (12-3) and (12-5), we can now write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ f̃3qm1−m3

η−1
1 η−1

2 q2λ
+ Aη2qn1+n2 η−1

3 qλ

∣∣∣∣∣∣+ o(qm1)+ o(qn1+n2)

= f̃3η
−1
1 qm1−m3 + Aε−1

1 η2qn1+n2 + o(qm1−m3)+ o(qn1+n2).

Here the term with qm1−m3 cannot be eliminated by o(qn1+n2) since then m1−m3>

n1+ n2 and after elimination qn1+n2 would still be standing. So

m1−m3 = n1+ n2, f̃3η
−1
1 =−Aε−1

1 η2. (12-6)

However, the second equality in (12-6) is impossible. Indeed, if m3 > 0, then it
becomes ε−1

3 η−1
1 = −Aε−1

1 η2, which is clearly impossible because A = 196884
is not a root of unity. And if m3 = 0, then it becomes f3 = 744 − Aε−1

1 η1η2,
contradicting Lemma 5.7.
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This proves (12-4). We set m1−m3 = n1−n2 = λ
′. Since m1 ≥ n1 by (8-7), we

may summarize our present knowledge as

m1 > m2 > m3, n1 > n3 > n2,

m1−m2 = n1− n3 = λ > 0, m1−m3 = n1− n2 = λ
′ > λ,

m1− n1 = m2− n3 = m3− n2 ≥ 0.

12B. Proof of m3 > 0. In this subsection we prove that m3 > 0. We will assume
that m3 = 0 and will arrive at a contradiction.

If m3 = 0, then

m1 = n1 = λ
′, m2 = n3, m3 = n2 = 0. (12-7)

Using (12-3), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ+ Aε2qm1+m2 f̃3qm1

η−1
1 g̃2qm1 η−1

3 qλ+ Aη3qm1+m2

∣∣∣∣∣∣+ o(qm1+m2)

=

∣∣∣∣ ε−1
1 f̃3

−η−1
1 g̃2

∣∣∣∣ qm1+ε−1
2 η−1

3 q2λ
+A

∣∣∣∣ε−1
1 ε2

η−1
1 −η3

∣∣∣∣ qm1+m2+o(qm1+m2). (12-8)

The term with qm1+m2 can be eliminated if either∣∣∣∣ε−1
1 ε2

η−1
1 −η3

∣∣∣∣= 0, (12-9)

or m1+m2 = 2λ and

A
∣∣∣∣ε−1

1 ε2

η−1
1 −η3

∣∣∣∣=−ε−1
2 η−1

3 . (12-10)

However, (12-10) is impossible because A does not divide a root of unity. Hence,
we have (12-9). Together with (12-3), this implies that

(ε1, ε2)= θ(η1,−η3), θ =±1. (12-11)

The rest of this subsection splits into three cases depending on the relation
between m2 and λ.

The case m2 > λ. In this case m1 > 2λ and q2λ in (12-8) cannot be eliminated.

The case m2 < λ. In this case m1 < 2λ, and qm1 in (12-8) can be eliminated only if
ε−1

1 g̃2+ η
−1
1 f̃3 = 0, which, combined with (12-11), gives g̃2 =−θ f̃3. Lemma 5.2

implies that θ =−1 and f̃3 = g̃2, that is, f3 = g2. Also, since θ =−1, we obtain
ε2 = η3, which, together with m2 = n3 (see (12-7)), implies that f2 = g3. This
contradicts Lemma 8.1.
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The case m2 = λ. In this case m1=2λ<m1+m2 and ε−1
1 g̃2+η

−1
1 f̃3+ε

−1
2 η−1

3 =0,
which contradicts Lemma 5.5.

This completes the proof of impossibility of m3 = 0.

12C. Proof of n2 > 0. Thus, we have m3 > 0. Let us now prove that n2 > 0 as
well. Indeed, if n2 = 0, then

m1 > n1 = λ
′, m2 > n3, m3 > n2 = 0. (12-12)

Using (12-3), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qn1

η−1
1 g̃2qn1 η−1

3 qλ

∣∣∣∣∣∣+ o(qn1)

= (ε−1
1 g̃2+ ε

−1
3 η−1

1 )qn1 + ε−1
2 η−1

3 q2λ
+ o(qn1).

Now to eliminate qn1 we need to have one of the following:

ε−1
1 g̃2+ ε

−1
3 η−1

1 = 0, (12-13)

ε−1
1 g̃2+ ε

−1
3 η−1

1 + ε
−1
2 η−1

3 = 0. (12-14)

However, since g̃2 = g2 − 744, (12-13) contradicts Lemma 5.7. Furthermore,
applying Lemma 5.9 to (12-14), we obtain g2∈{744, 744±1, 744±2}, contradicting
Lemma 5.6.

This proves that n2 > 0. Let us summarize our present knowledge as

m1 > m2 > m3 > 0, n1 > n3 > n2 > 0,

m1−m2 = n1− n3 = λ > 0, m1−m3 = n1− n2 = λ
′ > λ,

m1− n1 = m2− n3 = m3− n2 ≥ 0.

12D. Proof of m1 = n1. Next, we show that m1 = n1. Thus, assume that m1 > n1.
Then we also have m2 > n3 and m3 > n2. Using (12-3), we write

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

η−1
1 η−1

2 qλ
′

+ Aη2qn1+n2 η−1
3 qλ

∣∣∣∣∣∣+ o(qn1+n2)

=

∣∣∣∣ ε−1
1 ε−1

3
−η−1

1 η−1
2

∣∣∣∣ qλ
′

+ ε−1
2 η−1

3 q2λ
− ε−1

3 η−1
2 q2λ′

+ Aε−1
1 η2qn1+n2

+ o(qn1+n2). (12-15)
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To eliminate qn1+n2 we need one of the following to hold:

2λ= n1+ n2, ε−1
2 η−1

3 =−Aε−1
1 η2, (12-16)

2λ′ = n1+ n2, ε−1
3 η−1

2 = Aε−1
1 η2. (12-17)

However, the second equations in both (12-16) and (12-17) cannot be true because
A is not a root of unity.

This proves that m1 = n1. Moreover,

m1 = n1 > m2 = n3 > m3 = n2 > 0, (12-18)

m1−m2 = n1− n3 = λ > 0, m1−m3 = n1− n2 = λ
′ > λ.

12E. Proof of λ′ = 2λ. Our next quest is proving that λ′ = 2λ. Using (12-3) and
(12-18), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

η−1
1 η−1

2 qλ
′

η−1
3 qλ

∣∣∣∣∣∣+o(qm1)=−

∣∣∣∣ε−1
1 ε−1

3
η−1

1 −η−1
2

∣∣∣∣ qλ
′

+ε−1
2 η−1

3 q2λ
+o(qλ

′

).

This already implies that λ′ ≤ 2λ; otherwise q2λ cannot be eliminated.
The proof of the opposite inequality λ′ ≥ 2λ is much more involved. Thus,

assume that λ′ < 2λ. Then we must have∣∣∣∣ε−1
1 ε−1

3
η−1

1 −η−1
2

∣∣∣∣= 0.

Together with (12-3) this implies that

(η1,−η3,−η2)= θ(ε1, ε2, ε3), (12-19)

where θ is some root of unity. We obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 qλ
′

+ Aε3qm1+m3

θ−1ε−1
1 −θ−1ε−1

3 qλ
′

− Aθε3qm1+m3 −θ−1ε−1
2 qλ

∣∣∣∣∣∣+o(qm1+m3)

=−θ−1ε−2
2 q2λ

+ θ−1ε−2
3 q2λ′

+ Aε3ε
−1
1 (θ−1

− θ)qm1+m3+o(qm1+m3).

To eliminate qm1+m3 one of the following should be satisfied:

Aε3ε
−1
1 (θ−1

−θ)= θ−1ε−2
2 , Aε3ε

−1
1 (θ−1

−θ)=−θ−1ε−2
3 , Aε3ε

−1
1 (θ−1

−θ)=0.

Since A does not divide a root of unity, only the third equation is possible, which
implies θ =±1. If θ =−1, then (12-18) and (12-19) imply that f2= g3 and f3= g2,
contradicting Lemma 8.1. Thus, θ = 1 and

(η1,−η3,−η2)= (ε1, ε2, ε3),
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which gives us the relations

qm1(g1− 744)= qm1( f1− 744),

qm1(g3− 744)=−qm1( f2− 744)+ O(qm1+2m2),

qm1(g2− 744)=−qm1( f3− 744)+ 2Bε2
3qm1+2m3 + o(qm1+2m3).

Using this, and the identity∣∣∣∣∣∣
1 1 1
a b c
a −c+ x −b

∣∣∣∣∣∣= c2
− b2
+ x(a− c),

we obtain

D(q)=

∣∣∣∣∣∣
1 1 1

qm1( f1− 744) qm1( f2− 744) qm1( f3− 744)
qm1( f1− 744) −qm1( f3− 744)+ 2Bε2

3qm1+2m3 −qm1( f2− 744)

∣∣∣∣∣∣
+ o(qm1+2m3)

= 2Bε−1
1 ε2

3qm1+2m3 + (ε−1
3 qm1−m3 + Aε3qm1+m3)2

− (ε−1
2 qm1−m2 + Aε2qm1+m2)2+ o(qm1+2m3)

=−ε−2
2 q2λ

+ ε−2
3 q2λ′

+ 2Bε−1
1 ε2

3qm1+2m3 + o(qm1+2m3)

(recall that λ= m1−m2 and λ′ = m1−m3). We see that to eliminate qm1+2m3 we
need to have either 2Bε−1

1 ε2
3= ε

−2
2 or 2Bε−1

1 ε2
3=−ε

−2
3 ; both are clearly impossible.

This proves that λ′ = 2λ. Thus,

m1 = n1, m2 = n3 = m1− λ, m3 = n2 = m1− 2λ > 0. (12-20)

12F. Proof of 2λ < m1 < 3λ. Now it is not difficult to show that

2λ < m1 < 3λ. (12-21)

In fact, m1 > 2λ is already in (12-20). Next, using (12-3), we obtain

D(q)=

∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3

η−1
1 η−1

2 q2λ
+ Aη2qm1+m3 η−1

3 qλ

∣∣∣∣∣∣+ o(qm1+m3)

= (ε−1
1 η−1

2 + ε
−1
3 η−1

1 + ε
−1
2 η−1

3 )q2λ
− ε−1

3 η−1
2 q4λ

− A
∣∣∣∣ε−1

1 ε3

η−1
1 −η2

∣∣∣∣ qm1+m3

+ o(qm1+m3).

Since m1 > 2λ, this gives

ε−1
1 η−1

2 + ε
−1
3 η−1

1 + ε
−1
2 η−1

3 = 0. (12-22)
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Further, if 4λ<m1+m3, then q4λ cannot be eliminated. And if 4λ=m1+m3, then

−ε−1
3 η−1

2 = A
∣∣∣∣ε−1

1 ε3

η−1
1 −η2

∣∣∣∣ ,
which is impossible because A does not divide a root of unity.

Thus, we have 4λ > m1+m3 = 2m1− 2λ, that is, m1 < 3λ, proving (12-21). In
addition to this, to eliminate qm1+m3 we need to have∣∣∣∣ε−1

1 ε3

η−1
1 −η2

∣∣∣∣= 0.

Together with (12-3) this implies that

(η−1
1 ,−η−1

3 ,−η2)= θ(ε
−1
1 , ε−1

2 , ε3) (12-23)

for some root of unity θ .

12G. Conclusion. It follows from (12-21) that m3 < λ, whence

m1+ 2m3 < m1+m3+ λ= m1+m2 < 2m1.

Using this, (12-3), (12-22), and (12-23), we obtain for D(q) the value∣∣∣∣∣∣
1 1 1
ε−1

1 ε−1
2 qλ ε−1

3 q2λ
+ Aε3qm1+m3 + Bε2

3qm1+2m3

η−1
1 η−1

2 q2λ
+ Aη2qm1+m3 + Bη2

2qm1+2m3 η−1
3 qλ

∣∣∣∣∣∣
+ o(qm1+2m3)

=−ε−1
3 η−1

2 q4λ
− B

∣∣∣∣ε−1
1 ε2

3
η−1

1 −η2
2

∣∣∣∣ qm1+2m3 + o(qm1+2m3).

Arguing as in Section 12F, we obtain from this 4λ > m1+ 2m3 and∣∣∣∣ε−1
1 ε2

3
η−1

1 −η2
2

∣∣∣∣= 0,

which, together with (12-23), implies that θ = −1. It follows that η2 = ε3 and
η3 = ε2; together with (12-18) this implies g2 = f3 and g3 = f2, contradicting
Lemma 8.1.

This completes the proof of impossibility of (12-1). The main lemma is now
fully proved.
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[Evertse et al. 1988] J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, “On S-unit equations
in two unknowns”, Invent. Math. 92:3 (1988), 461–477. MR Zbl

[Habegger et al. 2017] P. Habegger, G. Jones, and D. Masser, “Six unlikely intersection problems in
search of effectivity”, Math. Proc. Cambridge Philos. Soc. 162:3 (2017), 447–477. MR

[Ireland and Rosen 1990] K. Ireland and M. Rosen, A classical introduction to modern number theory,
2nd ed., Graduate Texts in Mathematics 84, Springer, 1990. MR Zbl

[Kühne 2012] L. Kühne, “An effective result of André–Oort type”, Ann. of Math. (2) 176:1 (2012),
651–671. MR Zbl

[Kühne 2013] L. Kühne, “An effective result of André–Oort type, II”, Acta Arith. 161 (2013), 1–19.
MR Zbl

[Pila 2009] J. Pila, “Rational points of definable sets and results of André–Oort–Manin–Mumford
type”, Int. Math. Res. Not. 2009:13 (2009), 2476–2507. MR Zbl

[Pila 2011] J. Pila, “O-minimality and the André–Oort conjecture for Cn”, Ann. of Math. (2) 173:3
(2011), 1779–1840. MR Zbl

[Pila and Zannier 2008] J. Pila and U. Zannier, “Rational points in periodic analytic sets and the
Manin–Mumford conjecture”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19:2 (2008), 149–162.
MR Zbl

[Scanlon 2004] T. Scanlon, “Automatic uniformity”, Int. Math. Res. Not. 2004:62 (2004), 3317–3326.
MR Zbl

[Schlickewei and Wirsing 1997] H. P. Schlickewei and E. Wirsing, “Lower bounds for the heights of
solutions of linear equations”, Invent. Math. 129:1 (1997), 1–10. MR Zbl

Communicated by Jonathan Pila
Received 2016-01-02 Revised 2016-11-27 Accepted 2017-03-31

http://dx.doi.org/10.1007/978-3-319-22240-0_1
http://dx.doi.org/10.1007/978-3-319-22240-0_1
http://msp.org/idx/mr/3467387
http://msp.org/idx/zbl/06569769
http://dx.doi.org/10.1515/crll.1998.118
http://dx.doi.org/10.1515/crll.1998.118
http://msp.org/idx/mr/1662256
http://msp.org/idx/zbl/0918.14010
http://dx.doi.org/10.1017/S0305004112000461
http://dx.doi.org/10.1017/S0305004112000461
http://msp.org/idx/mr/3002589
http://msp.org/idx/zbl/1263.14028
http://dx.doi.org/10.1016/j.jnt.2015.07.004
http://msp.org/idx/mr/3393559
http://msp.org/idx/zbl/06479858
http://dx.doi.org/10.1023/A:1012982812988
http://msp.org/idx/mr/1876703
http://msp.org/idx/zbl/1021.11022
http://msp.org/idx/mr/1028322
http://msp.org/idx/zbl/0701.11001
http://dx.doi.org/10.1007/978-0-387-27226-9
http://msp.org/idx/mr/2112196
http://msp.org/idx/zbl/1062.11022
http://dx.doi.org/10.1023/A:1000539721162
http://msp.org/idx/mr/1665772
http://msp.org/idx/zbl/0928.14019
http://dx.doi.org/10.1007/BF01393743
http://dx.doi.org/10.1007/BF01393743
http://msp.org/idx/mr/939471
http://msp.org/idx/zbl/0662.10012
http://dx.doi.org/10.1017/S0305004116000682
http://dx.doi.org/10.1017/S0305004116000682
http://msp.org/idx/mr/3628201
http://dx.doi.org/10.1007/978-1-4757-2103-4
http://msp.org/idx/mr/1070716
http://msp.org/idx/zbl/0712.11001
http://dx.doi.org/10.4007/annals.2012.176.1.13
http://msp.org/idx/mr/2925393
http://msp.org/idx/zbl/1341.11035
http://dx.doi.org/10.4064/aa161-1-1
http://msp.org/idx/mr/3125148
http://msp.org/idx/zbl/1341.11036
http://dx.doi.org/10.1093/imrn/rnp022
http://dx.doi.org/10.1093/imrn/rnp022
http://msp.org/idx/mr/2520786
http://msp.org/idx/zbl/1243.14021
http://dx.doi.org/10.4007/annals.2011.173.3.11
http://msp.org/idx/mr/2800724
http://msp.org/idx/zbl/1243.14022
http://dx.doi.org/10.4171/RLM/514
http://dx.doi.org/10.4171/RLM/514
http://msp.org/idx/mr/2411018
http://msp.org/idx/zbl/1164.11029
http://dx.doi.org/10.1155/S1073792804140816
http://msp.org/idx/mr/2097105
http://msp.org/idx/zbl/1069.03027
http://dx.doi.org/10.1007/s002220050155
http://dx.doi.org/10.1007/s002220050155
http://msp.org/idx/mr/1464863
http://msp.org/idx/zbl/0883.11013


Collinear CM-points 1087

yuri@math.u-bordeaux.fr Institut de Mathématiques de Bordeaux,
Université de Bordeaux et CNRS, Talence, France

florian.luca@wits.ac.za School of Mathematics,
University of the Witwatersrand, Johannesburg, South Africa

Max Planck Institute for Mathematics, Bonn, Germany

david.masser@unibas.ch Mathematisches Institut, Universität Basel, Basel, Switzerland

mathematical sciences publishers msp

mailto:yuri@math.u-bordeaux.fr
mailto:florian.luca@wits.ac.za
mailto:david.masser@unibas.ch
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 11 No. 5 2017

1009Hybrid sup-norm bounds for Maass newforms of powerful level
ABHISHEK SAHA

1047Collinear CM-points
YURI BILU, FLORIAN LUCA and DAVID MASSER

1089A uniform classification of discrete series representations of affine Hecke algebras
DAN CIUBOTARU and ERIC OPDAM

1135An explicit bound for the least prime ideal in the Chebotarev density theorem
JESSE THORNER and ASIF ZAMAN

1199Modular curves of prime-power level with infinitely many rational points
ANDREW V. SUTHERLAND and DAVID ZYWINA

1231Some sums over irreducible polynomials
DAVID E. SPEYER

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.5

http://dx.doi.org/10.2140/ant.2017.11.1009
http://dx.doi.org/10.2140/ant.2017.11.1047
http://dx.doi.org/10.2140/ant.2017.11.1089
http://dx.doi.org/10.2140/ant.2017.11.1135
http://dx.doi.org/10.2140/ant.2017.11.1199
http://dx.doi.org/10.2140/ant.2017.11.1231

	1. Introduction
	2. Special varieties and the theorem of Pila
	3. Main lemma and proof of Theorem 1.1
	4. Roots of unity
	5. Singular moduli
	6. Rational matrices
	7. Level, twist, and q-expansion of a j-map
	8. Initializing the proof of the main lemma
	8A. Some relations for the levels
	8B. One more lemma
	8C. The determinant D(q)
	8D. The four cases

	9. The case m2=m3
	9A. Proof of n2=n3
	9B. Proof of m1=n1
	9C. Proof of fk=gk for k=1,2,3

	10. The case m2>m3 and n2> n3
	10A. Proof of m1-m3=n1-n3
	10B. Proof of m1=n1
	10C. Proof of fk=gk for k=1,2,3

	11. The case m2>m3 and n2=n3
	11A. Proof of 2=m1-m3n1+n2
	11B. Proof of n1+n2>2
	11C. Proof of m3>0
	11D. Proof of m1+m3=n1+n2<3
	11E. Conclusion

	12. The case m2>m3 and n3>n2
	12A. Proof of m1-m3=n1-n2
	12B. Proof of m3>0
	12C. Proof of n2>0
	12D. Proof of m1=n1
	12E. Proof of '=2
	12F. Proof of 2<m1<3
	12G. Conclusion

	Acknowledgments
	References
	
	

