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An explicit bound for the least prime ideal
in the Chebotarev density theorem

Jesse Thorner and Asif Zaman

We prove an explicit version of Weiss’ bound on the least norm of a prime
ideal in the Chebotarev density theorem, which is a significant improvement
on the work of Lagarias, Montgomery, and Odlyzko. As an application, we
prove the first explicit, nontrivial, and unconditional upper bound for the least
prime represented by a positive-definite primitive binary quadratic form. We
also consider applications to elliptic curves and congruences for the Fourier
coefficients of holomorphic cuspidal modular forms.

1. Introduction and statement of results

In 1837, Dirichlet proved that if a; q 2Z and gcd.a; q/D 1, then there are infinitely
many primes p � a .mod q/. In light of this result, it is natural to ask how big the
first such prime, say P.a; q/, is. Assuming the generalized Riemann hypothesis
(GRH) for Dirichlet L-functions, Lamzouri, Li, and Soundararajan [Lamzouri et al.
2015] proved that for all q � 4,

P.a; q/� .'.q/ log q/2; (1-1)

where ' is Euler’s totient function. Nontrivial, unconditional upper bounds are
significantly harder to prove. The first such bound on P.a; q/ is due to Linnik
[1944a; 1944b], who proved that for some absolute constant c1 > 0,

P.a; q/� qc1 (1-2)

with an absolute and computable implied constant. Admissible values of c1 are now
known explicitly. Building on the work of Heath-Brown [1992], Xylouris [2011]
proved that one may take c1 D 5:2 unconditionally. (Xylouris improved this to
c1 D 5 in his Ph.D. thesis.) For a detailed history of the unconditional progress
toward (1-1), see [Heath-Brown 1992, Section 1].
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A broad generalization of (1-2) lies in the context of the Chebotarev density
theorem. Let L=F be a Galois extension of number fields with Galois group G.
To each prime ideal p of F which is unramified in L, there corresponds a certain
conjugacy class of automorphisms in G which are attached to the prime ideals of
L lying above p. We denote this conjugacy class using the Artin symbol

�L=F
p

�
.

For a conjugacy class C �G, let

�C .x; L=F / WD #
n
p W p is unramified in L,

h
L=F

p

i
D C , NF=Q p� x

o
:

The Chebotarev density theorem asserts that

�C .x; L=F /�
jC j

jGj

Z x

2

dt

log t
:

In analogy with (1-2), it is natural to bound the quantity

P.C;L=F / WDmin
n
NF=Q p W p unramified in L,h

L=F

p

i
D C , NF=Q p a rational prime

o
: (1-3)

Under GRH for Hecke L-functions, Lagarias and Odlyzko [1977] proved a bound
for P.C;L=F /; Bach and Sorenson [1996] made this bound explicit, proving that

P.C;L=F /� .4 logDLC 2:5ŒL WQ�C 5/2; (1-4)

where DL D jdisc.L=Q/j. (This can be improved assuming Artin’s conjecture; see
work of V. K. Murty [1994, Equation 2].) We note that if LDQ.e2�i=q/ for some
integer q � 1 and F DQ, then one recovers a bound of the same analytic quality
as (1-1), though the constants are slightly larger.

The first nontrivial, unconditional bound on P.C;L=F / is due to Lagarias,
Montgomery, and Odlyzko [Lagarias et al. 1979]; they proved P.C;L=F /� 2Dc2L
for some absolute constant c2 > 0. Recently, Zaman [2017b] explicitly bounded c2,
proving that1

P.C;L=F /�D40L : (1-5)

The bound (1-5), up to quality of the exponent, is commensurate with the best
known bounds when L is a quadratic extension of F D Q, which reduces to the
problem of bounding the least quadratic nonresidue. We observe, however, that if q
is prime, LDQ.e2�i=q/, and F DQ, then (1-5) states that P.a; q/� q40.q�2/,
which is much worse than (1-2).

Weiss [1983] significantly improved the results in [Lagarias et al. 1979]. Let A
be any abelian subgroup of G such that A\C is nonempty, let yA be the character

1Unless mentioned otherwise, all implied constants in all asymptotic inequalities f � g or
f DO.g/ are absolute and computable.
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group of A, and let K D LA be the subfield of L fixed by A. Let the K-integral
ideal f� be the conductor of a character � 2 yA, and let

Q.L=K/DmaxfNK=Q f� W � 2 yAg: (1-6)

Weiss proved that for certain absolute constants c3 > 0 and c4 > 0,

P.C;L=F /� 2ŒK WQ�c3ŒKWQ�.DKQ.L=K//c4 : (1-7)

To see how (1-7) compares to (1-5), we observe that if A is a cyclic subgroup of G,
then

D
1=jAj
L �DKQ.L=K/�D1='.jAj/L :

(See [Bach and Sorenson 1996, Lemma 4.2] for a proof of the upper bound; the
lower bound holds for all A and follows from the conductor-discriminant formula.)
Furthermore, if F DQ andLDQ.e2�i=q/, then one may take yA to be the full group
of Dirichlet characters modulo q, in which case K D F D Q and Q.L=K/ D q.
Thus Weiss proves a bound on P.C;L=F /, which provides a “continuous transition”
from (1-2) to (1-5). In particular, (1-2) follows from (1-7).

In this paper, we prove the following bound on P.C;L=F /, which makes (1-7)
explicit.

Theorem 1.1. LetL=F be a Galois extension of number fields with Galois groupG,
let C �G be a conjugacy class, and let P.C;L=F / be defined by (1-3). Let A�G
be an abelian subgroup such that A\C is nonempty, K D LA be the fixed field
of A, and QDQ.L=K/ be defined by (1-6). Then

P.C;L=F /�D694K Q521CD232K Q367ŒK WQ�290ŒKWQ�:

Remarks. � Theorem 1.1 immediately implies that P.a; q/� q521. For his-
torical context, this is slightly better than Jutila’s bound [1970] on P.a; q/,
which was over 25 years after Linnik’s original theorem.

� The bound we obtain on P.C;L=F / follows immediately from the effective
lower bound on �C .x; L=F / given by (3-2), which is of independent interest.
See [Zaman 2017a, Theorem 1.3.1] for a related lower bound.

� If ŒK W Q� � 2.logDK/= log logDK , then P.C;L=F /� D694K Q521. Situa-
tions where ŒK W Q� > 2.logDK/= log logDK are rare; the largest class of
known examples involve infinite p-class tower extensions, which were first
studied by Golod and Šafarevič [1964].

� If L=K is unramified, then QD 1 and DK DD
1=jAj
L . Thus

P.C;L=F /�D
694=jAj
L CD

232=jAj
L ŒK WQ�290ŒKWQ�:

If ŒK WQ�� 2.logDK/= log logDK , this improves (1-5) when jAj � 18.
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We now consider some specific applications of Theorem 1.1, the first of which
is a bound on the least prime represented by a positive-definite primitive binary
quadratic form Q.x; y/ 2 ZŒx; y� of discriminant D. It follows from (1-7) that the
least such prime p satisfies p� jDjc5 for some positive absolute constant c5; see
Kowalski and Michel [2002] for a similar observation. Ditchen [2013] proved, on
average over D 6� 0 .mod 8/, that p�� jDj

20=3C�, and Zaman [2016b] showed
p�� jDj

9:5C� in an exceptional case. However, a nontrivial unconditional explicit
bound on the least prime represented by Q for all such quadratic forms has not
been calculated before now. Such a bound follows immediately from Theorem 1.1.

Theorem 1.2. Let Q.x; y/ 2 ZŒx; y� be a positive-definite primitive binary qua-
dratic form of discriminant D. There exists a prime p −D represented by Q.x; y/
such that p� jDj694. In particular, if n is a fixed positive integer, there exists a
prime p − n represented by x2Cny2 such that p� n694.

We now consider applications to the study of the group of points on an elliptic
curve over a finite field. LetE=Q be an elliptic curve without complex multiplication
(CM), and let NE be the conductor of E. The order and group structure of E.Fp/,
the group of Fp-rational points on E, frequently appears when doing arithmetic
over E. Thus we are interested in understanding the distribution of values and
divisibility properties of #E.Fp/.

V. K. Murty [1994] and Li [2012] proved unconditional and GRH-conditional
bounds on the least prime that does not split completely in a number field. This yields
bounds on the least prime p − `NE such that ` − #E.Fp/, where `� 11 is prime.
As an application of Theorem 1.1, we prove a complementary result on the least
p − `NE such that ` j #E.Fp/. To state the result, we define !.NE /D #fp Wp jNE g
and rad.NE /D

Q
pjNE

p.

Theorem 1.3. LetE=Q be a non-CM elliptic curve of conductorNE , and let `�11
be prime. There exists a prime p − `NE such that

p� `.5300C1600!.NE//`
2

rad.NE /1900`
2

and ` j #E.Fp/:

Remark. The proof is easily adapted to allow for elliptic curves over other number
fields; we omit further discussion for brevity.

One of the first significant results in the study of the distribution of values of
#E.Fp/ is due to Hasse, who proved that if p −NE , then jpC1�#E.Fp/j< 2

p
p.

For a prime `, the distribution of the primes p such that #E.Fp/� pC 1 .mod `/
can also be studied using the mod ` Galois representations associated to E.

Theorem 1.4. Let E=Q be a non-CM elliptic curve of squarefree conductor NE ,
and let `� 11 be prime. There exists a prime p − `NE such that

#E.Fp/� pC 1 .mod `/ and p� `.4600C1200!.NE//`N 2100`
E :
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Theorem 1.4 will follow from a more general result on congruences for the
Fourier coefficients of certain holomorphic cuspidal modular forms. Let

f .z/D

1X
nD1

af .n/e
2�inz

be a cusp form of integral weight kf �2, levelNf �1, and nebentypus �f . Suppose
further that f is a normalized eigenform for the Hecke operators. We call such a
cusp form f a newform; for each newform f , the map n 7! af .n/ is multiplicative.
Suppose af .n/2Z for all n�1. In this case, �f is trivial when f does not have CM,
and �f is a nontrivial real character when f does have CM. Moreover, when kf D 2,
f is the newform associated to an isogeny class of elliptic curves E=Q. In this
case, Nf DNE , and for any prime p −NE , we have that af .p/D pC1�#E.Fp/.

Theorem 1.5. Let f .z/D
P1
nD1 af .n/e

2�inz 2 ZŒŒe2�iz�� be a non-CM newform
of even integral weight kf � 2, level Nf , and trivial nebentypus. Let ` � 3 be a
prime such that (12-1) holds and gcd.kf � 1; `� 1/D 1. For any residue class a
modulo `, there exists a prime p − `Nf such that

af .p/� a .mod `/ and p� `.4600C1200!.Nf //` rad.Nf /
2100`:

Remarks. � Equation (12-1) is a fairly mild condition regarding whether the
modulo ` reduction of a certain representation is surjective. This condition is
satisfied by all but finitely many choices of `. See Section 12 for further details.

� The proofs of Theorems 1.3–1.5 are easily adapted to allow composite moduli
` as well as elliptic curves and modular forms with CM. Moreover, the proofs
can be easily modified to study the mod ` distribution of the trace of Frobenius
for elliptic curves over number fields other than Q. We omit further discussion
for brevity.

� Using (1-5), the least prime p such that af .p/� a .mod `/ satisfies the bound
p� `120`

3.1C!.Nf // rad.Nf /40.`
3�1/ for any choice of a. Thus Theorem 1.5

constitutes an improvement over (1-5) for `� 11.

� If r24.n/ is the number of representations of n as a sum of 24 squares, then
691r24.p/D 16.p

11C 1/C 33152�.p/, where Ramanujan’s function �.n/ is
the n-th Fourier coefficient of �.z/, the unique non-CM newform of weight
12 and level 1. If ` … f2; 3; 5; 7; 23; 691g is such that `¥ 1 .mod 11/, then by
Theorem 1.5, there exists p ¤ ` such that

691r24.p/� 16.p
11
C 1/ .mod `/ and p� `4600`:

2. Notation and auxiliary estimates

2A. Notation. We use the following notation throughout the paper.
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� K is a number field.

� OK is the ring of integers of K.

� nK D ŒK WQ� is the degree of K=Q.

� DK is the absolute value of the discriminant of K.

� ND NK=Q is the absolute field norm of K.

� �K.s/ is the Dedekind zeta function of K.

� q is an integral ideal of K.

� Cl.q/D I.q/=Pq is the narrow ray class group of K modulo q.

� �, or � .mod q/, is a character of Cl.q/, referred to as a Hecke character or
ray class character of K.

� ı.�/ is the indicator function of the trivial character.

� f� is the conductor of �; that is, it is the maximal integral ideal such that � is
induced from a primitive character �� .mod f�/.

� D� DDKNf�.

� L.s; �/ is the Hecke L-function associated to �.

� H , or H .mod q/, is a subgroup of Cl.q/, or equivalently of I.q/, contain-
ing Pq. The group H is referred to as a congruence class group of K.

� � .modH/ is a character � .mod q/ satisfying �.H/D 1.

� QDQH DmaxfNf� W � .modH/g is the maximum conductor of H .

� fH D lcmff� W � .modH/g is the conductor of H .

� H� .mod fH / is the primitive congruence class group inducing H .

� hH D ŒI.q/ WH�.

We also adhere to the convention that all implied constants in all asymptotic inequali-
ties f �g or f DO.g/ are absolute with respect toH andK. If an implied constant
depends on a parameter, such as �, then we use�� andO� to denote that the implied
constant depends at most on �. All implied constants will be effectively computable.
Finally, all sums over integral ideals of K will be over nonzero integral ideals.

2B. Hecke L-functions. For a more detailed reference on Hecke L-functions, see
[Lagarias et al. 1979]. Strictly speaking, a Hecke character � is a function on Cl.q/
but, by pulling back the domain of � and extending it by zero, we regard � as a
function on integral ideals of K. We use this convention throughout the paper.

The Hecke L-function of �, denoted L.s; �/, is defined as

L.s; �/D
X
n

�.n/Nn�s D
Y
p

�
1�

�.p/

Nps

��1
(2-1)
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for Refsg> 1, where the sum is over integral ideals n of K and the product is over
prime ideals p of K. Recall that the Dedekind zeta function �K.s/ is the primitive
Hecke L-function associated to the trivial character �0; that is,

�K.s/D
X
n

.Nn/�s D
Y
p

�
1�

1

Nps

��1
(2-2)

for Refsg> 1. Returning to L.s; �/, assume that � is primitive for the remainder of
this subsection, unless otherwise specified. Define the completed Hecke L-function
�.s; �/ by

�.s; �/D Œs.s� 1/�ı.�/Ds=2� 
�.s/L.s; �/; (2-3)

where D� D DKNf�, ı.�/ is the indicator function of the trivial character, and

�.s/ is the gamma factor of � defined by


�.s/D
h
��s=2�

�
s

2

�ia.�/
�

h
��.sC1/=2�

�
sC1

2

�ib.�/
: (2-4)

Here a.�/ and b.�/ are certain nonnegative integers satisfying

a.�/C b.�/D nK : (2-5)

It is a classical fact that �.s; �/ is entire of order 1 and satisfies the functional
equation

�.s; �/D w.�/�.1� s; �/; (2-6)

where w.�/2C is the root number of � satisfying jw.�/j D 1. The zeros of �.s; �/
are the nontrivial zeros � of L.s; �/ and are known to satisfy 0 < Ref�g< 1. The
trivial zeros ! of L.s; �/ are given by

ord
sD!

L.s; �/D

8<:
a.�/� ı.�/ if ! D 0;
b.�/ if ! D�1;�3;�5; : : : ;
a.�/ if ! D�2;�4;�6; : : : ;

(2-7)

and arise as poles of the gamma factor of L.s; �/. Since �.s; �/ is entire of order 1,
it admits a Hadamard product factorization given by

�.s; �/D eA.�/CB.�/s
Y
�

�
1�

s

�

�
es=�: (2-8)

Lemma 2.1. Let � be a primitive Hecke character. Then

�Re
n
L0

L
.s; �/

o
D
1

2
logD�CRe

�
ı.�/

s� 1
C
ı.�/

s

�
�

X
�

Re
n
1

s��

o
CRe

�

 0�


�
.s/

�
;

where the sum is over all nontrivial zeros � of L.s; �/.

Proof. See [Lagarias and Odlyzko 1977, Lemma 5.1], for example. �
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By similar arguments, there exists an explicit formula for higher derivatives
of �L

0

L
.s; �/.

Lemma 2.2. Let � be a Hecke character (not necessarily primitive) and k � 1 be a
positive integer. Then

.� 1/kC1
dk

dsk
L0

L
.s; �/D

X
p

1X
mD1

.log Np/�.p/
.log Npm/k

.Npm/s

D
ı.�/kŠ

.s� 1/kC1
�

X
!

kŠ

.s�!/kC1

for Refsg> 1, where the first sum is over prime ideals p of K and the second sum
is over all zeros ! of L.s; �/, including trivial ones, counted with multiplicity.

Proof. By standard arguments, this follows from the Hadamard product (2-8) of
�.s; �/ and the Euler product of L.s; �/. See [Lagarias et al. 1979, (5.2) and (5.3)],
for example. �

2C. Explicit L-function estimates. In order to obtain explicit results, we must
have explicit bounds on a few important quantities. First, we record a bound for
L.s; �/ in the critical strip 0 < Refsg< 1 via a Phragmén–Lindelöf type convexity
estimate due to Rademacher.

Lemma 2.3 [Rademacher 1959]. Let � be a primitive Hecke character and take
� 2

�
0; 1
2

�
. Then for s D � C it ,

jL.s; �/j �
ˇ̌̌
1Cs

1�s

ˇ̌̌ı.�/
�Q.1C �/

nK

�
D�

.2�/nK
.3Cjt j/nK

�.1C���/=2
uniformly in the strip ��� � � 1C �.

Next, we record an explicit bound on the digamma function and 
 0�

�
.s/.

Lemma 2.4. Let sD �C it with � > 1 and t 2R. Then Re
˚
� 0

�
.s/
	
� log jsjC��1

and, for any Hecke character �,

Re
�

 0�


�
.s/

�
�
nK

2
.log.jsjC 1/C ��1� log�/:

In particular, for 1 < � � 6:2 and jt j � 1, we have Re
˚
 0�

�
.s/
	
� 0.

Proof. The first estimate follows from [Ono and Soundararajan 1997, Lemma 4].
The second estimate is a straightforward consequence of the first combined with
the definition of 
�.s/ in (2-4). The third estimate is contained in [Ahn and Kwon
2014, Lemma 3]. �

Next, we establish some bounds on the number of zeros of L.s; �/ in a circle.
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Lemma 2.5. Let � be a Hecke character. Let s D � C it with � > 1 and t 2 R. For
r > 0, denote

N�.r I s/ WD #f�D ˇC i
 W 0 < ˇ < 1; L.�; �/D 0; js� �j � rg: (2-9)

If 0 < r � 1, then

N�.r I s/� f4 logDKC2 log Nf�C2nK log.jt jC3/C4C4ı.�/g � rC4C4ı.�/:

Proof. Without loss, we may assume � is primitive. Observe that

N�.r I s/�N�.r I 1C it/�N�.2r I 1C r C it/;

so it suffices to bound the latter quantity. Now, if s0 D 1C r C it , notice

N�.2r I s0/� 4r
X

js0��j�2r

Re
n

1

s0��

o
� 4r

X
�

Re
n

1

s0��

o
:

Applying Lemmas 2.1 and 2.4 twice and noting Re
˚
L0

L
.s0; �/

	
� �

� 0K
�K
.1C r/ via

their respective Euler products, the above is

� 4r

�
Re
n
L0

L
.s0; �/

o
C
1

2
logD�CRe

�

 0�


�
.s0/

�
C ı.�/Re

n
1

s0
C

1

s0�1

o�
� f4 logDK C 2 log Nf�C 2nK log.jt jC 3/C 4C 4ı.�/g � r C 4C 4ı.�/

as D� DDKNf�. For details on estimating � �
0
K

�K
.1C r/, see Lemma 2.10. �

To improve the bound in Lemma 2.5, we exhibit an explicit inequality involv-
ing the logarithmic derivative of L.s; �/ comparable with [Kadiri and Ng 2012,
Theorem 2] for the Dedekind zeta function.

Proposition 2.6. Let 0 < � < 1
4

, T � 1, and s D � C it . For a primitive Hecke
character �, define a multiset of nontrivial zeros of L.s; �/ by

Zr;t D f�D ˇC i
 W L.�; �/D 0; j1C it � �j � rg:

Then, for 0 < r < �,

�Re
n
L0

L
.s; �/

o
�

�
1

4
C
�

�
C 5�10

�
L�C .4�2C 80�10/L0�

C ı.�/Re
n
1

s�1

o
�

X
�2Zr;t

Re
n
1

s��

o
CO�.nK/ (2-10)

and

�Re
n
L0

L
.s; �/

o
�

�
1

4
C
�

�
C 5�10

�
L�C ı.�/Re

n
1

s�1

o
CO�.nK/ (2-11)

uniformly in the region 1<��1C� and jt j�T , where L�D logD�CnK log.TC3/
and L0� D logDK CL�.
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Proof. This result is a modified version of [Zaman 2016a, Lemma 4.3] which is
motivated by [Heath-Brown 1992, Lemma 3.1]. The main improvements are the
valid range of � and t . Consequently, we sketch the argument found in [Zaman
2016a] highlighting the necessary modifications. Assume � is nontrivial. Apply
[Heath-Brown 1992, Lemma 3.2] with f .z/ D L.z; �/, a D s, and R D 1 � �,
where �D �s;� 2

�
0; 1
10

�
is chosen sufficiently small so that L.w; �/ has no zeros

on the circle jw� sj DR. Then

�Re
n
L0

L
.s; �/

o
D�

X
js��j<R

Re
n
1

s��
�
s��

R2

o
�J; (2-12)

where
J WD

Z 2�

0

cos �
�R
� log jL.sCRei� ; �/j d�:

To bound J from below, write

J D

Z �=2

0

C

Z 3�=2

�=2

C

Z 2�

3�=2

D J1CJ2CJ3;

say, so we may consider each contribution separately. For J1, notice by [Zaman
2016a, Lemma 2.5],

log jL.sCRei� ; �/j � log �K.� CR cos �/� nK log
�

1

��1CR cos �

�
:

Write
�
0; �
2

�
D
�
0; �
2
� .� � 1/

�
[
�
�
2
� .� � 1/; �

2

�
D I1[ I2, say. Then

J1 D

Z
I1

C

Z
I2

� nK

Z
I1

cos � log
�

1

cos �

�
d� CnK log

�
1

��1

� Z
I2

cos � d� �� nK :

A similar argument holds for J3 so J1CJ3�� nK . For J2, consider � 2
�
�
2
; 3�
2

�
.

As 1<� �1C� andR<1, we have 0<�CR cos � �1C�. Hence, by Lemma 2.3,

log jL.sCRei� ; �/j � 1
2
L�.�R cos � C �/CO�.nK/:

Thus,

J2 �
L�
2�R

Z 3�=2

�=2

.�R cos2 � C � cos �/ d� CO�.nK/;

yielding overall
J � �

�
1

4
C

�

�R

�
L�CO�.nK/: (2-13)

For the sum over zeros in (2-12), observe that the terms are nonnegative, so (2-11)
follows immediately from (2-12) and (2-13) after taking �!0, which impliesR!1.
To prove (2-10), consider 0 < r < �. By the same observation, we may restrict our
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sum over zeros from js� �j<R to a smaller circle within it: j1C it � �j � r . As
r < � < 1

4
by assumption, we discard the zeros outside this smaller circle. For such

zeros � satisfying j1C it � �j � r , notice Refs � �g D � �ˇ � �C r < 2�. This
implies, by Lemma 2.5, that

X
j1Cit��j�r

Re
ns� �
R2

o
�
2�

R2
� f.2L0�C 8/r C 8g �

4�2

R2
L0�CO.1/: (2-14)

Thus, (2-10) immediately follows2 upon combining (2-12), (2-13), and (2-14), and
taking �! 0, which implies R! 1. This completes the proof for � nontrivial.

For �D �0 trivial, similarly proceed with [Heath-Brown 1992, Lemma 3.2] with
f .z/D ..z�1/=.zC1//�K.z/ and aD z, but the choice of R is different due to the
simple pole of the Dedekind zeta function. Observe that the circles jw� 1j D �10

and jw� sj DR are disjoint for at least one of the following:

(i) all R 2 .1� �10; 1/, or

(ii) all R 2 .1� 5�10; 1� 4�10/.

In the case of (i), choose RD 1� � for �D �s;� sufficiently small so that L.w; �/
has no zeros on the circle jw� sj DR. Similarly for (ii), take RD 1� 4�10� �.

Continuing with the same arguments, the only difference occurs when bounding
J1 and similarly J3, in which case one must estimateZ �=2

0

cos �
�R

log
ˇ̌̌
s�1CRei�

sC1CRei�

ˇ̌̌
d�:

By our choice of R, the quantity in the logarithm is �� 1, and hence the above
is O�.1/. The remainder of the argument is the same, except at the final step one
must take R! 1 in case (i) and R! 1� 4�10 in case (ii). The latter case yields
the additional �10 terms appearing in (2-10). �

Lemma 2.7. Let � be a Hecke character and 0 < r < � < 1
4

. If s D � C it with
1 < � < 1C � and N�.r I s/ by (2-9), then, letting � D 1C 4

�
�C 16�2C 340�10,

N�.r I s/� �
�
2 logDK C log Nf�CnK log.jt jC 3/CO�.nK/

�
� r C 4C 4ı.�/:

Proof. This is analogous to Lemma 2.5 except that we bound N�.r I 1C it/ instead
of N�.2r I 1CrC it/, and further, we apply Proposition 2.6 in place of Lemmas 2.1
and 2.4. �

2One actually obtains (2-10) without the extra �10 terms.
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2D. Arithmetic sums. We estimate various sums over integral ideals of K, which
requires some additional notation. It is well-known that the Dedekind zeta function
�K.s/, defined by (2-2), has a simple pole at s D 1. Thus, we may define

�K WD Res
sD1

�K.s/ and 
K WD �
�1
K lim

s!1

�
�K.s/�

�K

s� 1

�
(2-15)

so the Laurent expansion of �K.s/ at s D 1 is given by

�K.s/D
�K

s� 1
C �K
K COK.js� 1j/:

We refer to 
K as the Euler–Kronecker constant of K. (See [Ihara 2006] for details
on 
K .)

Lemma 2.8. For x > 0 and 0 < � < 1
2

,ˇ̌̌̌ X
Nn<x

1

Nn

�
1�

Nn
x

�nK
� �K

�
log x�

nKX
jD1

1

j

�
� �K
K

ˇ̌̌̌
�� .n

nK
K DK/

1=4C�x�1=2:

Proof. The quantity we wish to bound equals

1

2�i

Z � 1
2
Ci1

� 1
2
�i1

�K.sC 1/
xs

s

nK ŠQnK
jD1.sC j /

ds

D
nK Š

2�i

Z � 1
2
Ci1

� 1
2
�i1

�K.sC 1/
�.s/

�.nK C 1C s/
xs ds:

Applying Lemma 2.3, Stirling’s formula, and �Q.1C �/
nK � eO�.nK/, the result

follows. �

Corollary 2.9. Let � > 0 be arbitrary. If x � 3.nnKK DK/
1=2C�, thenX

Nn<x

1

Nn
�

n
1�

1

1C2�
CO�

�
1

log x

�o
� �K log x:

Proof. It suffices to assume that �K � 1= log x. From Lemma 2.8, it follows that

1

�K

X
Nn<x

1

Nn
� log x�

nKX
jD1

1

j
C 
K CO�.x

��=8 log x/;

by our assumption on x. By [Ihara 2006, Proposition 3],


K � �
1

2
logDK C


QC log 2�
2

�nK � 1;
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where 
Q D 0:5772 : : : is Euler’s constant. Since
P
1�j�nK

j�1 � lognK C 1,

1

�K

X
Nn<x

1

Nn

� .log x/f1CO�.x��=8/g�
1

2
logDK C


QC log 2�
2

�nK � lognK � 2

� .log x/
n
1�

1

1C2�
CO�..log x/�1/

o
;

by our assumption on x. �

Taking the logarithmic derivative of �K.s/ yields in the usual way

�
�0K
�K
.s/D

X
n�OK

ƒK.n/

.Nn/s
(2-16)

for Refsg> 1, where ƒK. � / is the von Mangoldt ƒ-function of the field K defined
by

ƒK.n/D

�
log Np if n is a power of a prime ideal p,
0 otherwise.

(2-17)

Using this identity, we prove an elementary lemma.

Lemma 2.10. For y � 3 and 0 < r < 1,

(i) �
�0K
�K
.1C r/D

X
n

ƒK.n/

Nn1Cr
�
1

2
logDK C

1

r
C 1, and

(ii)
X

Nn�y

ƒK.n/

Nn
� e log.eD1=2K y/.

Proof. Part (i) follows from Lemmas 2.1 and 2.4, (2-16), and Ref.1Cr��/�1g � 0.
Part (ii) follows from (i) by taking r D .logy/�1. �

Finally, we end this section with a bound for hH in terms of nK , DK , and
QDQH , and a comparison between Q and NfH .

Lemma 2.11. Let H be a congruence class group of K. For � > 0,

hH � e
O�.nK/D

1=2C�
K Q1C�:

Proof. Observe, by the definitions of Q and fH in Section 2A, that for a Hecke
character � .modH/ we have f� j fH and Nf� �Q. Hence,

hH D
X

� .modH/

1�
X

Nf�Q
f j fH

X
� .mod f/

1D
X

Nf�Q
f j fH

#Cl.f/:

Recall the classical bound #Cl.f/� 2nKhKNf, where hK is the (broad) class number
of K. (See [Milne 2013, Theorem 1.7], for example.) Bounding the class number
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using Minkowski’s bound (see [Weiss 1983, Lemma 1.12], for example), we deduce
that

hH �
X

Nf�Q
f j fH

eO�.nK/D
1=2C�
K Nf� eO�.nK/D

1=2C�
K Q1C�

X
f j fH

1

.Nf/�
:

For the remaining sum, notice
P

f j fH
.Nf/�� �

Q
p j fH

.1�Np��/�1 � eO.!.fH //,
where !.fH / is the number of prime ideals p dividing fH . From [Weiss 1983,
Lemma 1.13], we have !.fH / � O�.nK/ C � log.DKQ/, whence the desired
estimate follows after rescaling �. �
Remark. Weiss [1983, Lemma 1.16] achieves a comparable bound with Q1C�

replaced by NfH . This seemingly minor difference will in fact improve the range
of T in Theorem 3.2.

Lemma 2.12. Let H be a congruence class group of K. Then Q � NfH �Q
2.

Remark. The lower bound is achieved when H D PfH . We did not investigate the
tightness of the upper bound, as this estimate is sufficient for our purposes.

Proof. The arguments here are motivated by [Weiss 1983, Lemma 1.13]. Without
loss, we may assumeH is primitive. SinceQDQH DmaxfNf� W� .modH/g and
fH D lcmff� W� .modH/g, the lower bound is immediate. For the upper bound, we
apply arguments similar to [Weiss 1983, Lemma 1.13]. Consider any m j fH . Let
Hm denote the image of H under the map I.fH /=PfH ! I.m/=Pm. This induces
a map I.fH /=H ! I.m/=Hm, which, since H is primitive, must have nontrivial
kernel. Hence, characters of I.m/=Hm induce characters of I.fH /=H .

Now, for p j fH , choose eD ep � 1 maximal so that pe j fH . Define mp WD fHp�1

and consider the induced map I.fH /=H ! I.mp/=Hmp with kernel Vp. Since H is
primitive, Vp must be nontrivial and hence #Vp � 2. Observe that the characters �
of I.fH /=H such that pe − f� are exactly those which are trivial on Vp and hence
are hH=#Vp in number. For a given p, this yields

hH

2
� hH

�
1�

1

#Vp

�
D

X
� .modH/
pep k f�

1:

Multiplying both sides by log.Npep/ and summing over p j fH , we have

1

2
hH log NfH D

hH
2

X
p j fH

log.Npep/�
X
p j fH

X
� .modH/
pep k f�

log Npep

�

X
� .modH/

log Nf� � hH logQ:

Comparing both sides, we deduce NfH �Q
2 as desired. �
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Lemma 2.13. Let H be a congruence subgroup of K and � > 0 be arbitrary. ThenX
p j fH

log Np

Np
� .2�/�1nK C � logQ:

Proof. This follows from [Zaman 2016a, Lemma 2.4] and Lemma 2.12. �

3. Proof of Theorem 1.1 and Linnik’s three principles

3A. Proof of Theorem 1.1. The primary goal in this paper is to prove the following
result, from which Theorem 1.1 follows.

Theorem 3.1. Let K be a number field, let H .mod q/ be a congruence class
group of K, and let fH be the conductor of H . Let I.q/ be the group of fractional
ideals of K which are coprime to q and let C 2 I.q/=H be arbitrary. Let �
.modH/ be a character of I.q/=H of conductor f�. Finally, let hH D ŒI.q/ WH�,
QDmaxfNK=Qf� W � .modH/g, and m be the product of prime ideals dividing q

but not fH . If

x �D694K Q521CD232K Q367n
290nK
K C .DKQn

nK
K /1=1000NK=Qm; (3-1)

and DKQŒK WQ�ŒKWQ� is sufficiently large, then

#fp 2 C W deg.p/D 1; NK=Q p� xg � .DKQn
nK
K /�5

x

hH log x
:

Assuming Theorem 3.1, we now prove Theorem 1.1.

Proof of Theorem 1.1. The proof proceeds exactly as in [Weiss 1983, Theorem 6.1].
Let L=F be a finite Galois extension of number fields with Galois group G, and
let C � G be a given conjugacy class. Let A � G be an abelian subgroup such
that A \ C is nonempty, and let K D LA be the fixed field of A. Let fL=K be
the conductor of L=K, and let m be the product of prime ideals P in K which
are unramified in L but such that the prime p of F lying under P is ramified
in L. If

�L=K
P

�
denotes the Artin symbol, then the Artin map P 7!

�L=K
P

�
induces

a group homomorphism I.mfL=K/! A because the conjugacy classes in A are
singletons; thus if H is the kernel of the homomorphism, then the canonical map
! W I.mfL=K/=H ! A is an isomorphism. Moreover, H is a congruence class
group modulo the ideal mfL=K of K with fH D fL=K .

Choose �0 2 C \A. Using !, �0 determines a coset of I.mfH /=H ; thus by
Theorem 3.1, if (3-1) holds and DKQn

nK
K is sufficiently large, then

#
n
NK=QP� x W deg.P/D 1;

h
L=K

P

i
D f�0g

o
� .DKQn

nK
K /�5

x

hH log x
:

Let p be a prime ideal of F lying under P. By the definition of m, p is unramified in
L and NK=QPD NF=Q p because deg.P/D 1. Furthermore, ŒL=F; p�D C . Thus
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if x satisfies (3-1),

#
n
p W deg.p/D 1;

h
L=F

p

i
D C; NF=Q p� x

o
� .DKQn

nK
K /�5

x

hH log x
:

As in [Weiss 1983, Theorem 6.1], NK=Qm � DK and hH D ŒL W K�. By the
definition of Q and the definition of H , we have that QDQ, so

�C .x; L=F /� .DKQnnKK /�5
x

ŒL WK� log x
(3-2)

wheneverDKQn
nK
K is sufficiently large and x�D694K Q521CD232K Q367n290nKK C

DKQnnKK . Since DKQnnKK � DLn
nL
L and there are only finitely many number

fields L with DLn
nL
L not sufficiently large, we may enlarge the implied constant in

Theorem 1.1 to allow for those exceptions and complete the proof. �

3B. The key ingredients. To outline our proof of Theorem 3.1, we recall the
modern approach to proving Linnik’s bound on the least prime in an arithmetic
progression. In order to obtain small explicit values of c1 in (1-2), one typically
requires three principles, explicit versions of which are recorded in [Heath-Brown
1992, Section 1]:

� A zero-free region for Dirichlet L-functions: if q is sufficiently large, then the
product

Q
� .mod q/L.s; �/ has at most one zero in the region

s D � C it; � � 1�
0:10367

log.q.2Cjt j//
: (3-3)

If such a zero exists, it is real and simple and its associated character is also
real.

� A “log-free” zero density estimate: if q is sufficiently large, � > 0, and we
define N.�; T; �/D #f�D ˇC i
 W L.�; �/D 0; j
 j � T; ˇ � �g, thenX

� .mod q/

N.�; T; �/�� .qT /
.12=5C�/.1��/; T � 1: (3-4)

� The zero repulsion phenomenon: if q is sufficiently large, � > 0 is sufficiently
small, � > 0, and the exceptional zero in the region (3-3) exists and equals
1��= log q, then

Q
� .mod q/L.s; �/ has no other zeros in the region

� � 1�

�
2
3
� �
�
.log��1/

log.q.2Cjt j//
: (3-5)

If such an exceptional zero exists, then it is real and simple and it corresponds
with a nontrivial real character �.

Number field variants of these principles were proved by Fogels [1962a; 1962b],
but his proof did not maintain the necessary field uniformity. To prove (1-7), Weiss
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developed variants of these principles with effective number field dependence; the
effective field dependence is critical for the proof of (1-7). To prove Theorem 3.1,
we make Weiss’ field-uniform results explicit.

3C. The zero density estimate. In Sections 4–6, we prove an explicit version of
Weiss’ variant of (3-4) for Hecke characters using the power sum method. Assume
the notation in the previous section, and define

N.�; T; �/ WD #f�D ˇC i
 W L.�; �/D 0; � < ˇ < 1; j
 j � T g;

where the nontrivial zeros � of L.s; �/ are counted with multiplicity. Weiss [1983,
Corollary 4.4] proved that there exists an absolute constant c6 > 0 such that if
1
2
� � < 1 and T � n2Kh

1=nK
H , thenX

� .modH/

N.�; T; �/� .eO.nK/D2KQT
nK /c6 : (3-6)

We prove the following.

Theorem 3.2. LetH be a congruence class group of a number fieldK. If 1
2
�� <1

and T �maxfn5=6K .D
4=3
K Q

4=9
/�1=nK ; 1g, thenX

� .modH/

N.�; T; �/� feO.nK/D2KQT
nKC2g

81.1��/: (3-7)

If 1� 10�3 � � < 1, then one may replace 81 with 73.5.

Remarks. � Theorem 3.2 noticeably improves Weiss’ density estimate (3-6) in
the range of T . If nK � 2.logDK/= log logDK , then Theorem 3.2 holds for
T � 1. Thus we may take T � 1 for most choices of K.

� We see from Minkowski’s lower bound for DK and the valid range of T that
the eO.nK/ factor is always negligible, regardless of how nK compares to
.logDK/= log logDK .

It is instructive to compare the two primary methods for proving log-free zero
density estimates. The basic idea behind the proof of (3-4) (the so-called mollifier
method) is to construct a Dirichlet polynomial which detects zeros by assuming
large values at the zeros of a Dirichlet L-function. The optimal Dirichlet polynomial
for this task looks like a smoothed version of �.n/, where

�.n/D

�
.�1/r if n is squarefree with r prime factors;
0 otherwise;

is the usual Möbius function. In order to efficiently sum the large values contributed
by each of the detected zeros, one relies on the fact that the partial sums of �.n/
exhibit significant cancellation. To see why this is true, observe that the prime
number theorem (with the error term of Hadamard and de la Vallée Poussin) is
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equivalent to the statement that there exists an absolute constant c7 > 0 such that if
x is sufficiently large, thenX

n�x

�.n/� x exp.�c7.log x/1=2/: (3-8)

The fact that (3-8) is a part of the proofs of the log-free zero density estimates in
[Graham 1977; Heath-Brown 1992; Iwaniec and Kowalski 2004; Jutila 1977] may
not be immediately obvious. After summing the mollified Dirichlet polynomials
over all characters � .mod q/ and applying duality, one must ultimately minimize
the quadratic form

S.x/D
X
n�x

�X
d jn

�d

�2
subject to the constraint

�d D

8<:�.d/min
�
1;

log.z2=d/
log.z2=z1/

�
if 1� d � z2;

0 if d > z2;

where 1<z1<z2 are given real numbers. (For example, see [Iwaniec and Kowalski
2004, pp. 430–431].) Each of [Graham 1977; Heath-Brown 1992; Iwaniec and
Kowalski 2004; Jutila 1977] uses the work of Graham [1978] to estimate S.x/ with
this choice of �d ; Graham proved that

S.x/�
x

log.z2=z1/

�
1CO

�
1

log.z2=z1/

��
: (3-9)

At several points in the proof, Graham uses the asymptotic prime number theorem
in the form (3-8).

For a number field K, let �K.n/ be the extension of the Möbius function to
the prime ideals of K. For the sake of simplicity, suppose that the Dedekind zeta
function �K.s/ has no Landau–Siegel zero. The effective form of the prime ideal
theorem proven in [Lagarias and Odlyzko 1977] is equivalent to the statement that
there exists an absolute constant c8 > 0 such that if log x� nK.logDK/2, thenX

Nn�x

�K.n/� x exp
�
�c8

� log x
nK

�1=2 �
:

Therefore, to generalize (3-9) to the Möbius function ofK, x needs to be larger than
any polynomial in DK before the partial sums of �K.n/ up to x begin to exhibit
cancellation. Thus if one extends the preceding arguments to prove an analogue of
(3-4) for the Hecke characters of K, then the ensuing log-free zero density estimate
will not have the K-uniformity which is necessary to prove Theorem 3.1.

Turán developed an alternative formulation of log-free zero density estimates. The
idea is to take high derivatives of L0=L.s; �/. This produces a large sum of complex
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numbers involving zeros of L.s; �/, which can be bounded below by the Turán
power sum method (see Proposition 5.1). The integral of a certain zero-detecting
polynomial (which is not defined in terms of the Möbius function) gives an upper
bound for these high derivatives. Thus, when a certain zero-detecting polynomial
(which is not defined in terms of the Möbius function) encounters a zero of L.s; �/,
its integral will be bounded away from zero because of the lower bound given by
the power sum method. The contributions from the detected zeros up to height T
are summed efficiently using a particular large sieve inequality (see Section 4).

The advantage of using the power sum method in our proofs lies in the fact that
Turán’s lower bound for power sums is a purely Diophantine result, independent of
the number fields in our proofs; this allows for noticeably better field uniformity
than the mollifier method. The disadvantage is that the lower bound in the power
sum method is quite small, which, for example, would inflate the constant 12

5
in

(3-4). To our knowledge, the power sum method is the only tool available that
produces a K-uniform log-free zero density estimate of the form (3-4) which is
strong enough to deduce a conclusion as strong as Theorem 1.1. Limitations to the
power sum method indicate a genuine obstacle to any substantive improvements in
the constants in Theorem 1.1 when using these methods.

To prove the large sieve inequality (4-4) used in the proof of Theorem 3.2, we use
bounds in Section 2 for certain sums over integral ideals, which require smoothing
with a kernel that is nK times differentiable. Unfortunately, the smoothing intro-
duces the powers of nKnK (see the comments immediately preceding [Weiss 1983,
Section 1]). As mentioned after Theorem 1.1, the factor of nKnK is negligible if
nK is small compared to .logDK/= log logDK , which is expected to be the case
in most applications.

3D. Zero repulsion. In Section 7, we prove an explicit variant of the zero repul-
sion phenomenon for Hecke L-functions, also known as the Deuring–Heilbronn
phenomenon.

Theorem 3.3. Let H be a congruence class group of K. Let  .modH/ be a real
Hecke character and suppose L.s;  / has a real zero ˇ1. Let T � 1 be arbitrary,
� .modH/ an arbitrary Hecke character, and �0 D ˇ0 C i
 0 a zero of L.s; �/
satisfying 1

2
� ˇ0 < 1 and j
 0j � T . Then, for � > 0 arbitrary,

ˇ0 � 1�

log
� c�

.1�ˇ1/ log.DK �Q �T nKeO�.nK//

�
b1 logDK C b2 logQC b3nK logT CO�.nK/

for some absolute, effective constant c� > 0 and

.b1; b2; b3/D

�
.48C �; 60C �; 24C �/ if  is quadratic;
.24C �; 12C �; 12C �/ if  is trivial.



1154 Jesse Thorner and Asif Zaman

Remark. Other versions of the zero repulsion phenomenon by Kadiri and Ng [2012]
and Zaman [2016a] apply for an asymptotically smaller range of ˇ0 and j
 0j � 1.

In Section 8, we collect all existing results and our new theorems on the dis-
tribution of zeros of Hecke L-functions and package them into versions required
for the proof of Theorem 3.1. The necessary explicit zero-free regions for Hecke
L-functions have already been established in previous work of Zaman [2016a;
2017a], which improved on [Ahn and Kwon 2014; Kadiri 2012], and are valid in a
certain neighborhood of s D 1. In Sections 9–11, we use Theorems 3.2 and 3.3,
along with the aforementioned work of Zaman, to prove Theorem 3.1. In Section 12,
we prove Theorems 1.2–1.5 using Theorem 1.1.

4. Mean values of Dirichlet polynomials

Gallagher [1970] proved the following mean value results for Dirichlet polynomials.

Theorem. Let fang be a sequence of complex numbers such that
P
n�1 njanj

2<1.

(1) If T � 1, thenX
� .mod q/

Z T

�T

ˇ̌̌ 1X
nD1

an�.n/n
it
ˇ̌̌2
dt �

1X
nD1

.qT Cn/janj
2: (4-1)

(2) Let R � 2, and assume an D 0 if n has any prime factor less than R. If T � 1,
thenX
q�R

log R
q

X�

� .mod q/

Z T

�T

ˇ̌̌ 1X
nD1

an�.n/n
it
ˇ̌̌2
dt �

1X
nD1

.R2T Cn/janj
2: (4-2)

Here,
P� denotes the restriction to primitive characters � .mod q/.

In (4-2), the log.R=q/ weighting on the left-hand side (which arises from the
support of an) turns out to be decisive in some applications, such as the proof of
(1-2). To prove Theorem 3.2, we need a K-uniform analogue of (4-1) when an is
supported as in (4-2). Weiss used the Selberg sieve to prove such a result in his
Ph.D. thesis [1980, Theorem 30, p. 98].

Theorem (Weiss). Let b. � / be a complex-valued function on the integral ideals n
of K, and suppose that

P
n.Nn/jb.n/j2 <1. Let T � 1. Suppose that b.n/D 0

when n has a prime ideal factor p with Np � z, and define V.z/D
P

Nn�z Nn�1.
If 0 < � < 1

2
, thenX

�.H/D1

Z T

�T

ˇ̌̌X
n

b.n/�.n/Nn�it
ˇ̌̌2
dt

�

X
n

jb.n/j2
� �K
V.z/

NnC c.�/.nnKK DKQT
nKz4/1=2C�hHT

�
for some constant c.�/ > 0 depending only on �.
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Remark. Assuming the Lindelöf hypothesis for Hecke L-functions, the upper
bound improves to

�

X
n

jb.n/j2
� �K
V.z/

NnC c.�/.DKQ/
�hHT

1C�nKz2C�
�
:

This appears to be optimal when using the Selberg sieve, considering that when
K DQ, the second term is roughly .qT z2/1C�. For related unconditional results,
see [Duke 1989, Section 1].

This result is interesting in its own right, but to make the result more practical for
the applications at hand, Weiss chose b.n/ to be supported on the prime ideals p such
that y <Np�yc9 . Then, Weiss set zDy1=3 and chose logy� c10 log.DKQT nK /
and � D 1

3
. By Corollary 2.9 and taking c9 and c10 to be sufficiently large, Weiss’

result reduces toX
�.H/D1

Z T

�T

ˇ̌̌ X
y<Np�yc9

b.p/�.n/Nn�it
ˇ̌̌2
dt �

1

logy

X
y<p�yc9

jb.p/j2Np:

Weiss [1983, Corollary 3.8] recast this estimate with more generality.

Corollary 4.1 (Weiss). Let b. � / be a complex-valued function on the prime ideals
p of K such that

P
p.Np/jb.p/j2 <1 and b.p/D 0 whenever Np� y. Let H be a

primitive congruence class group of K. If y � .hHn
2nK
K DKQT

2nK /8, thenX
�.H/D1

Z T

�T

ˇ̌̌X
p

b.p/�.n/Nn�it
ˇ̌̌2
dt �

1

logy

X
p

jb.p/j2Np:

The exponent 8 in the range of y in Corollary 4.1 is large enough to influence the
value of c6 in (3-6), which affects c3 and c4 in (1-7). In this section, we improve
Corollary 4.1 so that it does not influence the exponents in Theorem 3.2.

Theorem 4.2. Let � � � > 0 be arbitrary. Let b. � / be a complex-valued function
on the prime ideals p of K such that

P
p.Np/jb.p/j2 <1 and b.p/D 0 whenever

Np� y. Let H be a primitive congruence class group of K. If T � 1 and

y � C�fhHn
.5=4C�/nK
K D

3=2C�
K Q1=2T nK=2C1g1C� (4-3)

for some sufficiently large C� > 0, thenX
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�

�
5�
˚
1� 1

1C�

	�1
1
1C�

log
� y
hH

�
�L0
CO�.y

��=2/

�X
p

Npjb.p/j2; (4-4)

where L0 D 1
2

logDK C 1
2

logQC 1
4
nK lognK C

�
1
2
nK C 1

�
logT CO�.1/.



1156 Jesse Thorner and Asif Zaman

Remark. Taking � D � and using Lemma 2.11, we improve the range of y in
Corollary 4.1 to

y� eO�.nK/fn
5=4nK
K D2KQ

3=2T nK=2C1g1C�:

4A. Preparing for the Selberg sieve. To apply the Selberg sieve, we require several
weighted estimates involving Hecke characters. Before we begin, we highlight the
necessary properties of our weight ‰.

Lemma 4.3. For T � 1, let AD T
p
2nK . Define

b‰.s/D hsinh.s=A/
s=A

i2nK
and let

‰.x/D
1

2�i

Z 2Ci1

2�i1

b‰.s/x�s ds
be the inverse Mellin transform of b‰.s/. Then:

(i) 0�‰.x/�A=2 and‰.x/ is a compactly supported function vanishing outside
the interval e�2nK=A � x � e2nK=A.

(ii) b‰.s/ is an entire function.

(iii) For all complex s D � C it , jb‰.s/j � .A=jsj/2nKej� j=A.

(iv) For jsj � A, jb‰.s/j � .1Cjsj2=.5A2//2nK .

(v) Uniformly for j� j � A=
p
2nK , jb‰.s/j � 1.

(vi) Let fbmgm�1 be a sequence of complex numbers with
P
m jbmj<1. ThenZ T

�T

ˇ̌̌X
m

bmm
�it
ˇ̌̌2
dt �

5�

2

Z 1
0

ˇ̌̌X
m

bm‰
�
x

m

�ˇ̌̌2 dx
x
:

Proof. For (i)–(v), see [Weiss 1983, Lemma 3.2]; in his notation, ‰.x/DH2nK .x/
with parameter ADT

p
2nK . Statement (vi) follows easily from the proof of [Weiss

1983, Corollary 3.3]. �

For the remainder of this section, assume:

� H .mod q/ is an arbitrary primitive congruence class group of K.

� 0 < � < 1
2

and T � 1 is arbitrary.

� ‰ is the weight function of Lemma 4.3.

Next, we establish improved analogues of [Weiss 1983, Lemmas 3.4 and 3.6 and
Corollary 3.5].
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Lemma 4.4. Let � .modH/ be a Hecke character. For x > 0,ˇ̌̌X
n

�.n/

Nn
�‰
� x

Nn

�
� ı.�/

'.q/

Nq
�K

ˇ̌̌
�� fn

nK=4
K D

1=2
K Q1=2T nK=2C1g1C�:

Proof. The quantity we wish to bound equals

1

2�i

Z �1Ci1
�1�i1

L.sC 1; �/b‰.s/xs ds: (4-5)

If � .mod q/ is induced by the primitive character �� .mod f�/, then

L.s; �/D L.s; ��/
Y

pjq; p−f�

.1���.p/Np�s/:

Thus jL.it; �/j � 2!.q/jL.it; ��/j, where !.q/ is the number of distinct prime ideal
divisors of q. Since H .mod q/ is primitive, !.q/ � 6e4=�nK C �

2
log.DKQ/ by

[Weiss 1983, Lemma 1.13]. So, for Refsg D �1,

jL.sC 1; �/j � eO�.nK/.DKQ/
�=2
jL.sC 1; ��/j:

Thus, by Lemma 2.3, (4-5) is

� eO�.nK/.DKQ/
1=2C�x�1

Z 1
0

.1Cjt j/.1=2C�/nK jb‰.�1C it/j dt
as D� �DKQ. By Lemma 4.3(iii) and (iv), this integral is

�

Z A=2

0

.1Cjt j/.1=2C�/nK jb‰.�1Cit/j dtCZ 1
A=2

.1Cjt j/.1=2C�/nK jb‰.�1Cit/j dt;
which is � eO.nK/A.1=2C�/nKC1. Collecting the above estimates, the claimed
bound, up to a factor of �, follows upon recalling A D T

p
2nK and noting

eO.nK/�� .n
nK
K /�. �

Corollary 4.5. Let C be a coset of H , and let d be an integral ideal coprime to q.
For all x > 0, we haveˇ̌̌ X

n2C; djn

1

Nn
‰
� x

Nn

�
�
'.q/

Nq

�K

hH
�
1

Nd

ˇ̌̌
�� fn

nK=4
K D

1=2
K Q1=2T nK=2C1g1C� �

1

x
:

Proof. The proof is essentially the same as that of [Weiss 1983, Corollary 3.5],
except for the fact that we have an improved bound in Lemma 4.4. �

We now apply the Selberg sieve. For z � 1, define

Sz D fn W p j n) Np> zg and V.z/D
X

Nn�z

1

Nn
: (4-6)
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Lemma 4.6. Let C be a coset of H . For x > 0 and z � 1,

X
n2C\Sz

1

Nn
‰
� x

Nn

�
�

�K

hHV.z/
CO�

�
fn
nK=4
K D

1=2
K Q1=2T nK=2C1g1C�z2C2�

x

�
:

Proof. The proof is essentially the same as that of [Weiss 1983, Lemma 3.6], except
for the fact that we have an improved bound in Lemma 4.4. �

4B. Proof of Theorem 4.2. Let z be a parameter satisfying 1� z � y, which we
will specify later. Extend b.n/ to all integral ideals n of K by zero. Applying
Lemma 4.3 and writing

bm D
X

NnDm

b.n/�.n/;

for each Hecke character � .modH/, it follows that

X
� .modH/

Z T

�T

ˇ̌̌X
n

b.n/�.n/Nn�it
ˇ̌̌2
dt

�
5�

2

Z 1
0

X
� .modH/

ˇ̌̌X
n

b.n/�.n/‰
� x

Nn

�ˇ̌̌2 dx
x
: (4-7)

By the orthogonality of characters and the Cauchy–Schwarz inequality,X
� .modH/

ˇ̌̌X
n

b.n/�.n/‰
� x

Nn

�ˇ̌̌2
� hH

X
C2I.q/=H

�X
n2C

Nnjb.n/j2‰
� x

Nn

�� X
n2C\Sz

‰.x=Nn/

Nn

since z � y and b.n/ is supported on prime ideals with norm greater than y. For
ı D ı.�/ > 0 sufficiently small and Bı > 0 sufficiently large, denote

M 0ı DMız
2C2ı and Mı D Bıfn

nK=4
K D

1=2
K Q1=2T nK=2C1g1Cı :

By Lemma 4.6, the right-hand side of the preceding inequality is therefore at most

X
C2I.q/=H

X
n2C

Nnjb.n/j2‰
� x

Nn

�� �K
V.z/

C
hHM

0
ı

x

�
�

X
n

Nnjb.n/j2‰
� x

Nn

�� �K
V.z/

C
hHM

0
ı

x

�
;

By Lemma 4.3(v), if we insert the above estimates into (4-7), then we obtain the
bound
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X
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�
5�

2

X
n

Nnjb.n/j2
�
�K

V.z/

Z 1
0

‰
� x

Nn

� dx
x
C hHM

0
ı

Z 1
0

1

x
‰
� x

Nn

� dx
x

�
�
5�

2

X
n

Nnjb.n/j2
� �K
V.z/

jb‰.0/jC hHM 0ı
Nn

jb‰.1/j�:
Since b.n/ is supported on prime ideals whose norm is greater than y, the last line
of the previous display is

�
5�

2

� �K
V.z/

CO.hHMız
2C2ıy�1/

�X
p

Npjb.p/j2:

Now, select z satisfying

z D

�
y.1Cı/=.1C�/

hHMı

�1=.2C2ı/
; (4-8)

so 1� z � y and hence

X
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�
5�

2

� �K
V.z/

CO�.y
��=2/

�X
p

Npjb.p/j2 (4-9)

for ıD ı.�/ > 0 sufficiently small. If C� in (4-3) is sufficiently large, then (4-3) and
(4-8) imply z � 3.nnKK DK/

1=2C�=2. Applying Corollary 2.9 to (4-9), it follows
thatX
� .modH/

Z T

�T

ˇ̌̌X
p

b.p/�.p/Np�it
ˇ̌̌2
dt

�

�
5��

2f1C�g log zCO�.1/
CO�.y

��=2/
�X

p

Npjb.p/j2

since � � � > 0. Finally, by (4-3) and (4-8),

2 log z � 1

1C�
log
�
y

hH

�
�
1

2

n
logDK C logQC 1

2
nK lognK C .nK C 2/ logT CO�.1/

o
:

Putting this estimate into the previous inequality gives the conclusion. �
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5. Detecting the zeros of Hecke L-functions

5A. Notation. We first specify some additional notation to be used throughout this
section.

Arbitrary quantities.

� Let H .mod q/ be a primitive congruence class group.

� Let � 2
�
0; 1
8

�
and � D 1C 4

�
�C 16�2C 340�10.

� Let T � 1. Define QDQH and

LD LT;� WD logDK C 1
2

logQC
�
1
2
nK C 1

�
log.T C 3/C‚nK ; (5-1)

where ‚D‚.�/� 1 is sufficiently large depending on �.

� Let �0 > 1
20

. Suppose � 2 R and � > 0 satisfy

�0 � ��
1
16

L and j� j � T: (5-2)

Furthermore, let r D �
L .

Fixed quantities.

� Let ˛; �; ! 2 .0; 1/ be fixed.

� Define A� 1, so that A1 D
p
A2C 1 satisfies

A1 D 2
�
4e
�
1C

1

˛

��˛
.1C �/: (5-3)

� Let x D eXL and y D eYL with X; Y > 0 given by

Y D Y� D
1

eA1
�
1

˛

n
2�AC

8

�

o
;

X DX� D
2 log

�
2A1
1�!

�
.1�!/

�
1C˛

˛

n
2�AC

8

�

o
;

(5-4)

and ˛; �; ! chosen so that 2 < Y < X . Notice X D X� and Y D Y� depend
on the arbitrary quantities � and �, but they are uniformly bounded above and
below in terms of ˛, �, and !, i.e., X � 1 and Y � 1. For this reason, while
X and Y are technically not fixed quantities, they may be treated as such.

5B. Statement of results.

Detecting zeros. The first goal of this section is to prove the following proposition.

Proposition 5.1. Let � .modH/ be a Hecke character. Suppose L.s; �/ has a
nontrivial zero � satisfying

j1C i� � �j � r D
�

L : (5-5)



A bound for the least prime ideal in the Chebotarev density theorem 1161

Further assume

J.�/ WD
W1�CW2

A1.1C �/k0
< 1; (5-6)

where

X D X�; Y D Y�;

k0 D k0.�/ D ˛
�1.2�A�C 8/;

W1 DW1.�/D 8A1
�
1C 1

k0

�
C 2eA1

�
Y C 1

2
Cf2X C 1ge�!�X

�
CO.�/;

W2 DW2.�/D 2e!
�1A1e

�!�X
C 18CO.�/:

If � < �
A1

L and 2 < Y < X , then

r4 log
�
x

y

�Z x

y

ˇ̌̌ X
y�Np<u

�.p/ log Np

Np1Ci�

ˇ̌̌2 du
u
C ı.�/1fj� j<Arg.�/

�

�˛=.1C˛/
8e21=˛

�4�A�C16 .1�J.�//2
4

:

Remark. Note that Wj .�/� 1 for j D 1; 2.

The proof of Proposition 5.1 is divided into two main steps, with the final
arguments culminating in Section 5E. The method critically hinges on the following
power sum estimate due to Kolesnik and Straus.

Theorem 5.2 [Kolesnik and Straus 1983]. For any integer M � 0 and complex
numbers z1; : : : ; zN , there is an integer k with M C 1� k �M CN such that

jzk1 C � � �C z
k
N j � 1:007

�
N

4e.MCN/

�N
jz1j

k :

Makai [1964] showed that the constant 4e is essentially optimal.

Explicit zero density estimate. Using Theorem 4.2 and Proposition 5.1, the second
and primary goal of this section is to establish an explicit log-free zero density
estimate. Recall, for a Hecke character �,

N.�; T; �/D #f� W L.�; �/D 0; � < Ref�g< 1; jIm.�/j � T g; (5-7)

where � 2 .0; 1/ and T � 1.

Theorem 5.3. Let � 2 .1;1/ and � 2
�
0; 1
10

�
be fixed and set � D 1� �L . Suppose

�0 � � <
�

�A1
L; X > Y > 4:6;

and T �max
˚
n
5=6
K

�
D
4=3
K Q4=9

��1=nK ; 1	; (5-8)

where X DX�� and Y D Y��. ThenX
� .modH/

N.�; T; �/�
4�p
�2� 1

�.C4�
4
CC3�

3
CC1�CC0/e

B1�CB2 �f1�J.��/g�2;
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where J. � / is defined by (5-6) satisfying J.��/ < 1, and

B1 D 4�A� log.4e˛�1.1C˛/2.1C˛/=˛/;

B2 D 16 log.4e˛�1.1C˛/2.1C˛/=˛/;

C4 D
5�e�X.X �Y /2.X CY C 1C �/�4

.1� 1
1C�

/
�
1
1C�

Y � 4
� ;

C3 D
4

��
C4; C1 D 4�A�; C0 D 16AC �:

(5-9)

Remark. � In Sections 6 and 8E, we will employ Theorem 5.3 with various
choices of parameters ˛, �, � , �, !, and � depending on the range of � .
Consequently, this result is written without any explicit choice of the fixed or
arbitrary quantities found in Section 5A.

� The quantities C4 and C3 are technically not constants with respect to � or �,
but one can see that both are bounded absolutely according to the definitions
in Section 5A.

Sections 5C and 5D are dedicated to preparing for the proof of Proposition 5.1
which is contained in Section 5E. The proof of Theorem 5.3 is finalized in Section 5F.

5C. A large derivative. Suppose � .modH/ is induced from the primitive char-
acter ��. Define F.s/ WD L0

L
.s; ��/ and z WD 1C r C i� . Using Theorem 5.2, the

goal of this subsection is to show F.s/ has a large high-order derivative, which we
establish in the following lemma.

Lemma 5.4. Keep the above notation and suppose L.s; �/ has a zero � satisfying
(5-5). If � < �

A1
L and 1S is the indicator function of a set S , then

ı.�/1fj� j<Arg.�/C
ˇ̌̌
rkC1

kŠ
F .k/.z/

ˇ̌̌
�

�
˛

4e.1C˛/

�2�A�C8
2kC1

�
1�

˚
8
�
1C 1

k

�
A1CO.�/

	
�C 18

A1.1C �/k

�
for some integer k in the range 1

˛
� .2�A�C 8/� k � 1C˛

˛
� .2�A�C 8/.

Proof. By [Weiss 1983, Lemma 1.10],

F.s/C
ı.�/

s� 1
D

X
j1Ci���j<1=2

1

s� �
CG.s/

uniformly in the region j1Ci��sj< 1
2

, whereG.s/ is analytic and jG.s/j�L in this
region. Differentiating the above formula k times and evaluating at z D 1C r C i� ,
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we deduce

.�1/k

kŠ
�F .k/.z/C

ı.�/

.z� 1/kC1
D

X
j1Ci���j<1=2

1

.z� �/kC1
CO.4kL/

since r D �
L <

1
16

by assumption (5-2). The error term arises from boundingG.k/.z/
using Cauchy’s integral formula with a circle of radius 1

4
. For zeros � that satisfy

Ar < j1C i� � �j< 1
2

, notice

.A2C 1/r2 < r2Cj1C i� � �j2 � jz� �j2 � .rCj1C i� � �j/2 �
�
rC 1

2

�2
< 1:

Recalling A1 D
p
A2C 1, it follows by partial summation thatX

Ar<j1Ci���j<1=2

1

jz� �jkC1
�

Z 1

A1r

u�k�1 dN�.uI z/

D .kC 1/

Z 1

A1r

N�.uI z/

ukC2
duCO.L/;

where we bounded N�.1I z/� L using [Lagarias et al. 1979, Lemma 2.2]. By
Lemma 2.5, the above is therefore

� .kC 1/

Z 1
A1r

4uLC 8
ukC2

duCO.L/�
4
˚
1C 1

k

	
A1rLC 8

.A1r/kC1
CO.L/:

By considering cases, one may bound the ı.�/-term as follows:

rkC1 �
ˇ̌̌ ı.�/

.z� 1/kC1

ˇ̌̌
� ı.�/ � 1fj� j<Arg.�/C

1

AkC11

: (5-10)

The above results now yield

ı.�/1fj� j<Arg.�/C
ˇ̌̌rkC1F .k/.z/

kŠ

ˇ̌̌
�

ˇ̌̌ X
j1Ci���j�Ar

rkC1

.z� �/kC1

ˇ̌̌
�

�
4
˚
1C 1

k

	
A1rLC 9

AkC11

CO..4r/kC1L/
�
: (5-11)

To bound the remaining sum over zeros from below, we wish to apply Theorem 5.2.
Let

N DN�.Ar I 1C i�/D #f� W L.�; �/D 0; j1C i� � �j � Arg:

Since � < �
A1

L< �
A
L and � < 1

8
, Lemma 2.7 and (5-1) imply that N � 2�A�C 8.

Define M WD b.2�A�C 8/=˛c. Thus, from Theorem 5.2 and assumption (5-5),ˇ̌̌ X
j1Ci���j�Ar

1

.z� �/kC1

ˇ̌̌
�

� ˛

4e.1C˛/

�2�A�C8 1

.2r/kC1
(5-12)
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for some M C 1� k �M CN. To simplify the right-hand side of (5-11), observe
that

.4r/kC1L� 4�.4r/k� �.4�/kA�k1 � ��A�k1 ; (5-13)

since
r D

�

L <
�

A1
<

1

4A1

by assumption. Moreover, our choice of A1 in (5-3) implies

A
�.kC1/
1 D

� ˛

4e.1C˛/

�˛k 1
2k
�

1

A1.1C �/k

�

� ˛

4e.1C˛/

�2�A�C8 1

2kC1
�

2

A1.1C �/k
; (5-14)

since ˛k � ˛.M C 1/� 2�A�C 8. Incorporating (5-12)–(5-14) into (5-11) yields
the desired result. The range of k in Lemma 5.4 is determined by the above choice
of M and N. �

5D. Short sum over prime ideals. Continuing with the discussion and notation of
Section 5C, from the Euler product for L.s; ��/, we have

F.s/D
L0

L
.s; ��/D�

X
n

��.n/ƒK.n/.Nn/�s

for Refsg > 1 and where ƒK. � / is given by (2-17). Differentiating the above
formula k times, we deduce

.�1/kC1rkC1

kŠ
�F .k/.z/D

X
n

ƒK.n/�
�.n/

Nn1CrCi�
� rEk.r log Nn/ (5-15)

for any integer k � 1, where z D 1C r C i� and Ek.u/D uk=kŠ. From Stirling’s
bound (see [DLM 2010]) in the form

kke�k
p
2�k � kŠ� kke�k

p
2�ke1=12k;

one can verify

Ek.u/�

8<:A
�k
1 eu if u� k

eA1
;

A�k1 e.1�!/u if u� 2

1�!
log
�
2A1
1�!

�
k;

(5-16)

for any k � 1 and A1 > 1; ! 2 .0; 1/ defined in Section 5A. The goal of this
subsection is to bound the infinite sum in (5-15) by an integral average of short
sums over prime ideals.
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Lemma 5.5. Suppose the integer k is in the range given in Lemma 5.4. If �< �
A1

L
thenˇ̌̌X

n

��.n/ƒK.n/

Nn1CrCi�
� rEk.r log Nn/

ˇ̌̌
� r2

Z x

y

ˇ̌̌ X
y�Np<u

��.p/ log Np

Np1Ci�

ˇ̌̌ du
u

C

�
e
h
Y C

1

2
Cf2X C 1ge�!�X CO.�/

i
�C

e1�!�X

!

�
A�k1 ;

where x D eXL and y D eYL with X DX� and Y D Y� defined by (5-4).

Proof. First, divide the sum on the left-hand side into four sums:X
n

D

X
Np<y

C

X
y�Np<x

C

X
Np�x

C

X
n not prime

D S1CS2CS3CS4:

Observe that (5-4) and (5-16), along with the range of k in Lemma 5.4, imply that

Ek.r log Nn/�

�
A�k1 .Nn/r if Nn� y;

A�k1 .Nn/.1�!/r if Nn� x:
(5-17)

Hence, for S1, it follows by Lemma 2.10 that

jS1j � rA
�k
1

X
Np<y

log Np

Np

� rA�k1 � e log.eD1=2K y/� e
�
�Y C

�

2
C �

�
A�k1 ;

since r D �
L < �, logDK � L, and y D eYL. Similarly, for S3, apply partial

summation using Lemma 2.10 to deduce

jS3j � rA
�k
1

X
Np�x

log Np

.Np/1C!r

� rA�k1

Z 1
x

!re log.eD1=2K t /

t1C!r
dt �

�˚
X C 1

2

	
�C!�1C �

�e1�!�X
Ak1

:

For S4, since uk

kŠ
� eu for u > 0, observe

Ek.r log Nn/D 1
kŠ
.2r/k

�
1
2

log Nn
�k
� .2r/k.Nn/1=2:
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Thus, by Lemma 2.10,

jS4j � r
X
p

X
m�2

log Np

.Npm/1Cr
Ek.r log Npm/

� .2r/kr
X
p

X
m�2

log Np

.Npm/1=2Cr

� .2r/kr
X
p

log Np

Np1C2r
� ��A�k1 ;

since logDK � L and L�1� r D �
L <

�
A1

. Also note that � 2
�
0; 1
8

�
implies

.2�/k� �. Finally, for the main term S2, define

W.u/DW�.uI �/ WD
X

y�Np<u

�.p/ log Np

Np1Ci�
;

so by partial summation,

S2 D rW.x/x
�rEk.r log x/� r2

Z x

y

W.u/
d

dt
Œe�tEk.t/�

ˇ̌̌
tDr logu

du

u
(5-18)

as W.y/D 0. Similar to S1, S3, and S4, from (5-17) and Lemma 2.10 it follows

jrW.x/x�rEk.r log x/j � rA�k1 x�!r
X

y�Np<x

ƒK.n/

Nn

� e
�˚
X C 1

2

	
�C �

�
e�!�XA�k1 :

Observeˇ̌̌
d

dt
.e�tEk.t//

ˇ̌̌
D je�tEk�1.t/� e

�tEk.t/j � e
�t ŒEk�1.t/CEk.t/�� 1

from the definition of Ek.t/ and since
P1
kD0Ek.t/D e

t . Hence,

jS2j � r
2

Z x

y

jW.u/j
du

u
C e

�n
X C

1

2

o
�C �

�
e�!�XA�k1 :

Collecting all of our estimates, we conclude the desired result as �� �0� 1. �

5E. Proof of Proposition 5.1. If ı.�/1fj� j<Arg.�/ D 1, then the inequality in
Proposition 5.1 holds trivially, as the right-hand side is certainly less than 1. Thus,
we may assume otherwise.

Combining Lemmas 5.4 and 5.5 via (5-15), it follows that

r2
Z x

y

ˇ̌̌ X
y�Np<u

��.p/ log Np

Np1Ci�

ˇ̌̌
du

u
�

� ˛

4e.1C˛/

�2�A�C8
�
1

2kC1
f1�J.�/g; (5-19)
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after bounding A�k1 as in (5-14) and noting k � k0 in the range of Lemma 5.4. By
assumption, J.�/ < 1 and hence the right-hand side of (5-19) is positive. Therefore,
squaring both sides and applying Cauchy–Schwarz to the left-hand side gives

r4 log
�
x

y

�Z x

y

ˇ̌̌ X
y�Np<u

��.p/ log Np

Np1Ci�

ˇ̌̌2 du
u

�

� ˛

4e.1C˛/

�4�A�C16
�

1

22kC2

˚
1�J.�/

	2
:

By assumption, yDeYL>e2L�Nf�, so it follows that ��.p/D�.p/ for y�Np<x.
So we may replace �� with � in the above sum over prime ideals. Finally, we note
k � 1C˛

˛
.2�A�C 8/ since k is in the range of Lemma 5.4, yielding the desired

result. �

5F. Proof of Theorem 5.3. For � .modH/, consider zeros �D ˇC i
 of L.s; �/
such that

1�
�

L � ˇ < 1; j
 j � T: (5-20)

Let �? D �� and r? D �?

L D �.1� �/, so by (5-8) we have r? < �
A1

. For any zero
� D ˇC i
 of L.s; �/, define ˆ�;�.�/ WD 1fj1Ci���j�r?g.�/. If � satisfies (5-20)
then one can verify by elementary arguments that

1

r?

Z T

�T

ˆ�;�.�/ d� �

p
�2� 1

�
:

Applying Proposition 5.1 to such zeros �, it follows thatZ T

�T

1

r?
ˆ�;�.�/

�

h
.r?/4 log

�
x

y

�Z x

y

ˇ̌̌ X
y�Np<u

�.p/ log Np

Np1Ci�

ˇ̌̌2 du
u
C ı.�/1fj� j<Ar?g.�/

i
d�

�

p
�2� 1

4�

� ˛

4e.1C˛/2.1C˛/=˛

�2�A��C16
f1�J.��/g DW w.�/:

Note x D eXL and y D eYL, where X D X�? and Y D Y�? . Summing over all
zeros � of L.s; �/ satisfying (5-20), we have that

w.�/N.�; T; �/

� .X �Y /.2�r?LC 8/.r?/3L
Z x

y

�Z T

�T

ˇ̌̌ X
y�Np<u

�.p/ log Np

Np1Ci�

ˇ̌̌2
d�

�
du

u

C ı.�/.4�Ar?LC 16A/ (5-21)
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since, for j� j � T and r? < �,X
� WL.�;�/D0

ˆ�;�.�/DN�.r
?
I 1C i�/� 2�r?LC 8

by Lemma 2.7. From the conditions on Y and T in (5-8) and the definition of L in
(5-1), observe that, for � D �.�/ > 0 sufficiently small, Lemma 2.11 implies

y D eYL � C�fhHn
.5=4C2�/nK
K D

3=2C2�
K Q1=2T nK=2C1g1C�

since � � 1
10

and ‚D‚.�/� 1 is sufficiently large. Therefore, we may sum (5-21)
over � .modH/ and apply Theorem 4.2 with b.p/D .log Np/=Np for y �Np< u

to deduce

w.�/
X

� .modH/

N.�; T; �/

�

�
C 0.2�r?LC 8/.r?/3CO�

�.r?/4L2
e�YL=2

�� Z x

y

X
y�Np<u

.log Np/2

Np

du

u

C 4A�r?LC 16A; (5-22)

where
C 0 D 5�.X �Y /

�
1�

1

1C�

��1� 1

1C�
Y � 4

��1
:

To calculate C 0, we replaced L0 (as found in Theorem 4.2) by observing from
Lemma 2.11 that L0C 1

1C�
log hH �4L (since T �maxfn5=6K .D

4=3
K Q4=9/�1=nK ; 1g

and ‚D‚.�/ is sufficiently large). For the remaining integral in (5-22), notice by
Lemma 2.10 thatZ x

y

X
y�Np<u

.log Np/2

Np

du

u
� log x

Z x

y

e log.eD1=2K u/
du

u

�
e

2
X.X �Y /

�
X CY C 1C

2

L

�
L3:

Substituting this estimate in (5-22) and recalling r? D �?

L D
��
L , we have shown

w.�/
X

� .modH/

N.�; T; �/

� 2�C 00�4 ��4C 8C 00�3 ��3C 4�A� ��C 16ACO�.�
3Le��L/;

where
C 00 D

e

2
X.X �Y /

�
X CY C 1C

2

L

�
C 0:

Since L�‚ and ‚ is sufficiently large depending on �, the big-O error term above
and the quantity 2

L in C 00 may both be bounded by �. This completes the proof of
Theorem 5.3. �
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6. Log-free zero density estimate

Having established Theorem 5.3, in this section we prove Theorem 3.2.

Proof of Theorem 3.2: Without loss, we may assume H .mod q/ is primitive
because QDQH DQH 0 ; hH D hH 0 andX

� .modH/

N.�; T; �/ D
X

� .modH 0/

N.�; T; �/

if H 0 induces H . Suppose 1
2
� � � 1� 0:05

4
. By a naive application of [Lagarias

et al. 1979, Lemma 2.1], one can verify that for T � 1,X
� .modH/

N.�; T; �/� hHT log.DKQT nK /

� .eO.nK/D2KQT
nKC2/81.1��/ (6-1)

after bounding hH with Lemma 2.11.
Now, let � 2

�
0; 1
8

�
be fixed and define L as in (5-1). Suppose 1� �

4
< � < 1.

Let R � 1 be fixed and sufficiently large. By applying the bound in Lemma 2.11 to
[Weiss 1983, Theorem 4.3], we deduce that for T � 1,X

� .modH/

N
�
1�

R

L ; T; �
�
� 1; (6-2)

so it suffices to bound
P
�.H/D1N.�; T; �/ in the range

1�
�

4
< � < 1�

R

L ; (6-3)

or equivalently, if � D 1� �
L , in the range

R < � <
�

4
L:

According to Theorem 5.3 and the notation defined in Section 5A, select

� D 1C 10�5; � D 10�5; �D 10�5; ! D 10�5; and ˛ D 0:15:

It follows that the constants B2; C0; C1; C3; C4 in Theorem 5.3 are bounded abso-
lutely,

X > Y > 4:6; B1 � 146:15�; and �A1 < 4;

where � D 1C 4
�
�C 16�2C 340�10. Moreover, since � > R,

J.��/�
�

.1C10�5/�
�

R

.1C10�5/R
;
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and therefore J.��/ < 1
2

for R sufficiently large. Thus, by Theorem 5.3,X
� .modH/

N.�; T; �/� �4e146:15��� e146:2�� D e146:2�.1��/L (6-4)

for � satisfying (6-3) and T � maxfn5=6K D
�4=3nK
K Q�4=9nK ; 1g. To complete

the proof of Theorem 3.2, it remains to choose � in (6-4). If � D 0:05 then
146:2� < 162D 2 � 81, yielding the desired result when combined with (6-1). If
� D 10�3 then 146:2� < 147D 2 � 73:5 as claimed. �

7. Zero repulsion: the Deuring–Heilbronn phenomenon

In this section, we prove Theorem 3.3 and establish the Deuring–Heilbronn phe-
nomenon for L-functions of Hecke characters � .modH/ where H .mod q/ is
a (not necessarily primitive) congruence class group. We will critically use the
following power sum inequality.

Theorem 7.1 (Lagarias–Montgomery–Odlyzko). Let � > 0 and a sequence of
complex numbers fzngn be given. Suppose that jznj � jz1j for all n � 1. Define
M WD 1

jz1j

P
n jznj. Then there exists m0 with 1�m0 � .12C �/M such that

Re
� 1X
nD1

zm0n

�
�

�

48C5�
jz1j

m0 :

Proof. This is a modified version of [Lagarias et al. 1979, Theorem 4.2]; see [Zaman
2017b, Theorem 2.3] for details. �

We prepare for the application of this result by establishing a few preliminary
estimates and then end this section with the proof of Theorem 3.3.

7A. Preliminaries.

Lemma 7.2. Let � .mod q/ be a Hecke character. For � � 2 and t 2 R,

�Re
n
L0

L
.� C it; �/

o
� �Re

n
L0

L
.� C it; ��/

o
C

1

2��1
.nK C log Nq/;

where �� is the primitive character inducing �.

Proof. By definition,

L.s; �/D P.s; �/L.s; ��/; where P.s; �/ D
Y

pjq; p−f�

�
1�

��.p/

Nps

�
;
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so it suffices to show
ˇ̌
P 0

P
.s; �/

ˇ̌
�

1
2��1

.nK C log Nq/. Observe, by elementary
arguments, ˇ̌̌

P 0

P
.s; �/

ˇ̌̌
D

ˇ̌̌̌ X
pjq; p−f�

1X
kD1

��.pk/ log Npk

k.Npk/s

ˇ̌̌̌

�

X
pjq

log Np

Np� � 1
�

1

1� 2��
�
1

2��1

X
pjq

log Np

Np
:

From [Zaman 2016a, Lemma 2.4],X
pjq

log Np

Np
�
p
nK log Nq�

nK

2
C

log Nq

2
:

Combining this fact with the previous inequality gives the desired estimate. �

Lemma 7.3. Let � .mod q/ be a Hecke character. For � > 1 and t 2 R,

X
! trivial

1

j�Cit�!j2
�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
1

2�
C

1

�2

�
�nK if � is primitive,�

1

2�
C

1

�2

�
�nK

C

�
1

2�
C

2

�2 log 2

�
� log Nq

unconditionally;

where the sum is over all trivial zeros ! of L.s; �/ counted with multiplicity.

Proof. Suppose � .mod q/ is induced by the primitive character �� .mod f�/. Then

L.s; �/D P.s; �/L.s; ��/; where P.s; �/ D
Y

pjq; p−f�

�
1�

��.p/

Nps

�
;

for all s 2 C. Thus, the trivial zeros of L.s; �/ are either zeros of the finite Euler
product P.s; �/ or trivial zeros of L.s; ��/. We consider each separately. From
(2-7) and (2-5), observe

X
! trivial

L.!;��/D0

1

j�Cit�!j2
� a.�/

1X
kD0

1

.�C2k/2Ct2
C b.�/

1X
kD0

1

.�C2kC1/2Ct2

� nK

1X
kD0

1

.�C2k/2
�

�
1

2�
C

1

�2

�
nK :

Now, if � is primitive then P.s; �/� 1 and hence never vanishes. Otherwise, notice
the zeros of each p-factor in the Euler product of P.s; �/ are totally imaginary and
are given by a�.p/iC2�iZ=log Np for some 0� a�.p/ < 2�= log Np. Translating
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these zeros ! 7! !C it amounts to choosing another representative 0� b�.pI t / <
2�= log Np. Therefore,X

! trivial
P.!;�/D0

1

j�Cit�!j2
� 2

X
pjq; p−f�

1X
kD0

1

�2C.2�k= log Np/2

�

�
1

2�
C

2

�2 log 2

�
log Nq;

as required. �

Lemma 7.4. Let H .mod q/ be a congruence class group of K. Suppose  
.modH/ is real and � .modH/ is arbitrary. For � D ˛ C 1 with ˛ � 1 and
t 2 R,X

�
�K.�/D0

1

j���j2
C

X
�

L.�; /D0

1

j���j2
C

X
�

L.�;�/D0

1

j�Cit��j2
C

X
�

L.�; �/D0

1

j�Cit��j2

�
1

˛
�

h
1

2
log.D3KQ

2D /C
�

log.˛C 2/C 2

˛C1
C

1

2˛C1�1
� 2 log�

�
nK

CnK log.˛C 2Cjt j/C 2

2˛C1�1
logQC 4

˛
C

4

˛C1

i
;

where the sums are over all nontrivial zeros of the corresponding L-functions.

Remark. If  is trivial, notice that the left-hand side equals

2

� X
�

�K.�/D0

1

j���j2
C

X
�

L.�;�/D0

1

j�Cit��j2

�
:

This additional factor of 2 will be useful to us later.

Proof. Suppose  and � are induced from the primitive characters  � and ��,
respectively. From the identity 0� .1C �.n//.1CRef��.n/.Nn/�itg/, it follows
that

0� �Re
�
�0K
�K
.�/C

L0

L
.�; �/C

L0

L
.� C it; ��/C

L0

L
.� C it;  ���/

�
: (7-1)

The first three L-functions are primitive, but � WD  ��� is a character modulo
Œf�; f �, the least common multiple of f and f�, and hence is not necessarily
primitive. Thus, by Lemma 7.2, we deduce

0� �Re
�
�0K
�K
.�/C

L0

L
.�; �/C

L0

L
.� C it; ��/C

L0

L
.� C it; ��/

�
C
nKClog NŒf�; f �

2��1
:
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Note NŒf�; f ��Q2 since  and � are both characters trivial on the congruence
subgroup H , and therefore the norms of their respective conductors are bounded
by Q. Using this bound, we apply Lemmas 2.1 and 2.4 to each of the primitive
L-function terms, yielding

0�
1

2
log.DKD D�D�/C

2

2��1
logQCnK log.� C 1Cjt j/CA�nK

�Re
� X

�
�K.�/D0

1

���
C

X
�

L.�; /D0

1

���
C

X
�

L.�;�/D0

1

�Cit��
C

X
�

L.�; �/D0

1

�Cit��

�

C
1C ı. /

˛
C
1C ı. /

˛C 1
CRe

�
ı.�/C ı.� /

˛C it
C
ı.�/C ı.� /

˛C 1C it

�
; (7-2)

where A� D log.� C 1/C 2
�
C

1
2��1

� 2 log� . Since 0 < ˇ < 1, we notice

Re
n

1

�Cit��

o
�

˛

j�Cit��j2
and Re

n
1

˛Cit
C

1

˛C1Cit

o
�
1

˛
C

1

˛C1
:

Further, D� and D� are both � DKQ, since � D  ��� induces the character
 � .mod q/, which is trivial on H . Rearranging (7-2) and employing all of the
subsequent observations gives the desired conclusion. �

7B. Proof of Theorem 3.3. If zH .mod m/ induces H .mod q/, then a character
� .modH/ is induced by a character Q� .mod zH/. It follows that

L.s; �/D L.s; Q�/
Y

pjq; p−m

�
1�
Q�.p/

Nps

�

for all s 2C. This implies that the nontrivial zeros of L.s; �/ are the same nontrivial
zeros of L.s; Q�/. Therefore, without loss of generality, we may assume H .mod q/

is primitive.
We divide the proof according to whether  is quadratic or trivial. The arguments

in each case are similar but require some minor differences.

Case 1:  is quadratic. Let m be a positive integer, ˛ � 1, and � D ˛C 1. From
the inequality 0 � .1C  �.n//.1C Ref��.n/.Nn/�i


0

g/ and Lemma 2.2 with
s D � C i
 0, it follows that

Re
� 1X
nD1

zmn

�
�

1

˛m
�

1

.˛C 1�ˇ1/2m

CRe
�
ı.�/C ı. �/

.˛C i
 0/2m
�

ı.�/C ı. �/

.˛C 1C i
 0�ˇ1/2m

�
; (7-3)
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where zn D zn.
 0/ satisfies jz1j � jz2j � � � � and runs over the multisets

f.� �!/�2 W ! is any zero of �K.s/g;

f.� �!/�2 W ! ¤ ˇ1 is any zero of L.s;  �/g;

f.� C i
 0�!/�2 W ! ¤ ˇ1 is any zero of L.s; ��/g;

f.� C i
 0�!/�2 W ! ¤ ˇ1 is any zero of L.s;  ���/g:

(7-4)

Note that the multisets include trivial zeros of the corresponding L-functions, and
 ��� is a Hecke character (not necessarily primitive) modulo the least common
multiple of f� and f . With this choice, it follows that�

˛C 1
2

��2
� .˛C 1�ˇ0/�2 � jz1j � ˛

�2: (7-5)

The right-hand side of (7-3) may be bounded via the observationˇ̌̌̌
1

.˛C it/2m
�

1

.˛C it C 1�ˇ1/2m

ˇ̌̌̌
� ˛�2m

ˇ̌̌̌
1�

1�
1C 1�ˇ1

˛Cit

�2m ˇ̌̌̌
� ˛�2m�1m.1�ˇ1/;

whence

Re
� 1X
nD1

zmn

�
� ˛�2m�1m.1�ˇ1/: (7-6)

On the other hand, by Theorem 7.1, for � > 0, there exists some m0 Dm0.�/ with
1�m0 � .12C �/M such that

Re
� 1X
nD1

zm0n

�
�
�

50
jz1j

m0�
�

50
.˛C1�ˇ0/�2m0�

�

50
˛�2m0 exp

�
�
2m0
˛
.1�ˇ0/

�
;

where M D jz1j�1
P1
nD1 jznj. Comparing with (7-6) for mDm0, it follows that

exp
�
�.24C 2�/

M

˛
.1�ˇ0/

�
��

M

˛
.1�ˇ1/: (7-7)

Therefore, it suffices to bound M
˛

and optimize over ˛ � 1.
By (7-4), M is a sum involving nontrivial and trivial zeros of certain L-functions.

For the nontrivial zeros, we employ Lemma 7.4 with D DDKNf �DKQ since
 is quadratic. For the trivial zeros, apply Lemma 7.3 in the “primitive” case for
�K.s/; L.s;  

�/; L.s; ��/ and in the “unconditional” case for L.s;  ���/. In the
latter case, we additionally observe that, asH .mod q/ is primitive, log Nq�2 logQ
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by Lemma 2.12. Combining these steps along with (7-5), it follows that

M

˛
�
.˛C1=2/2

˛2
�

h
2 logDKC

�
3

2
C

2˛

2˛C2
C

4˛

.˛C1/2 log 2
C

2

2˛C1�1

�
logQ

C

�
log.˛C 2/C log.˛C 3/C 2� 2 log� C 4˛

.˛C1/2
C

1

2˛C1�1

�
nK

CnK logT C 4

˛
C

4

˛C1

i
; (7-8)

for ˛ � 1. Note that, in applying Lemma 7.4, we used that log.˛ C 2C T / �
log.˛C 3/C logT for T � 1. Finally, select ˛ sufficiently large, depending on
� > 0, so the right-hand side of (7-8) is

�

�
2C

�

100

�
logDK C

�
2:5C

�

100

�
logQC

�
1C

�

100

�
nK logT CO�.nK/:

Incorporating the resulting bounds into (7-7) completes the proof of Theorem 3.3
for  quadratic.

Case 2:  is trivial. Begin with the inequality 0� 1CRef��.n/.Nn/�i

0

g. This
similarly implies

Re
� 1X
nD1

zmn

�
�

1

˛m
�

1

.˛C1�ˇ1/2m

CRe
�

ı.�/

.˛Ci
 0/2m
�

ı.�/

.˛C1Ci
 0�ˇ1/2m

�
(7-9)

for a new choice zn D zn.
 0/ satisfying jz1j � jz2j � � � � and which runs over the
multisets

f.� �!/�2 W ! ¤ ˇ1 is any zero of �K.s/g;

f.� C i
 0�!/�2 W ! ¤ ˇ1 is any zero of L.s; ��/g:
(7-10)

Following the same arguments as before, we may arrive at (7-7) for the new
quantity M D jz1j�1

P1
nD1 jznj. To bound the nontrivial zeros arising in M , apply

Lemma 7.4 withD DDK since  is trivial. For the trivial zeros, apply Lemma 7.3
in the “primitive” case for both �K.s/ and L.s; ��/. It follows from (7-5) that, for
˛ � 1,

M

˛
�
.˛C1=2/2

˛2
�

h
logDK C

�
1

2
C

1

2˛C1�1

�
logQ

C
1

2
nK logT C 2

˛
C

2

˛C1
C

�
1

2
log.˛C 2/C 1

2
log.˛C 3/C 1

� log� C 2˛

.˛C1/2
C

1=2

2˛C1�1

�
nK

i
: (7-11)
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Again, we select ˛ sufficiently large, depending on � > 0, so the right-hand side of
(7-11) is

�

�
1C

�

50

�
logDK C

�
0:5C

�

50

�
logQC

�
0:5C

�

50

�
nK logT CO�.nK/:

Incorporating the resulting bound into (7-7) completes the proof of Theorem 3.3. �
Remark. To obtain a more explicit version of Theorem 3.3, the only difference
in the proof is selecting an explicit value of ˛ in the final step of each case. The
possible choice of ˛ is somewhat arbitrary because the coefficients of logDK ,
logQ, and nK in (7-8) and (7-11) cannot be simultaneously minimized. Hence,
in the interest of having relatively small coefficients of comparable size for all
quantities, one could choose the value ˛ D 18.

8. Zeros in low-lying rectangles

Analogous to [Heath-Brown 1992] for the classical case, most of the key numerical
estimates we use to prove Theorem 3.1 pertain to zeros in a “low-lying” rectangle.
In this section, we record the relevant existing results and establish some new ones.
These encompass the required three principles in Section 3 and will be applied in
the final arguments for the proof of Theorem 3.1. We begin with some notation.

8A. Logarithmic quantity. Let ı0 > 0 be fixed and sufficiently small. For the
remainder of the paper, define

L WD

8̂̂̂̂
<̂
ˆ̂̂:

�
1
3
C ı0

�
logDK C

�
19
36
C ı0

�
logQ

C
�
5
12
C ı0

�
nK lognK

if n5nK=6K �D
4=3
K Q4=9,�

1C ı0
�

logDK C
�
3
4
C ı0

�
logQ

C ı0nK lognK
otherwise.

(8-1)

Notice that

L � .1C ı0/ logDK C
�
3
4
C ı0

�
logQC ı0nK lognK ;

L �
�
5
12
C ı0

�
nK lognK ;

(8-2)

unconditionally. For T? � 1 fixed,3 set T0 WD maxfn5=6K .D
4=3
K Q4=9/�1=nK ; T?g.

We compare LDLT0;ı0 given by (5-1) with L and deduce L�L for L sufficiently
large. This observation implies that

N
�
1�

�

L
; T; �

�
�N

�
1�

�

L ; T; �
�

(8-3)

for � > 0 and N.�; T; �/ defined in (5-7). We will utilize this fact in Section 8E.

3For the purposes of this paper, setting T? D 1 would suffice, but we avoid this choice to make the
results of Section 8 more widely applicable.
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8B. Low-lying zeros. Next we specify some important zeros of
Q
� .modH/L.s; �/

which will be used for the remainder of the paper. Consider the multiset of zeros
given by

Z WD
�
� 2 C W

Y
� .modH/

L.�; �/D 0; 0 < Ref�g< 1; jIm.�/j � T?

�
: (8-4)

We select three important zeros in Z as follows:

� Choose �1 2 Z such that Ref�1g is maximal. Let �1 be its associated Hecke
character, so L.�1; �1/D 0. Let

�1 D ˇ1C i
1 D
�
1�

�1

L

�
C i

�1

L
;

where ˇ1 D Ref�1g, 
1 D Imf�1g, �1 > 0, and �1 2 R.

� Choose �02Znf�1; �1g satisfyingL.�0; �1/D0 such that Ref�0g is maximal.4

Similarly, let

�0 D ˇ0C i
 0 D
�
1�

�0

L

�
C i

�0

L
:

� Let Z1 be the multiset of zeros of L.s; �1/ contained in Z . Choose �2 2ZnZ1
such that Ref�2g is maximal. Let �2 be its associated Hecke character, so
L.�2; �2/D 0. Similarly, let

�2 D ˇ2C i
2 D
�
1�

�2

L

�
C i

�2

L
:

8C. Zero-free regions. With the above notation, we may introduce the first of
three principles. We record the current best-known existing explicit result regarding
zero-free regions of Hecke L-functions.

Theorem 8.1 (Zaman). For L sufficiently large, we have minf�0; �2g> 0:2866. If
�1 < 0:0875 then �1 is a simple real zero of

Q
� .modH/L.s; �/ and is associated

with a real character �1.

Proof. When T?D 1 andH DPq, in which caseQDNq, this is implied by [Zaman
2016a, Theorems 1.1 and 1.3] since L satisfies (8-2). For general congruence
subgroups H and any fixed T? � 1, the argument, which occurs in [Zaman 2017a],
is achieved by modifying [Zaman 2016a] as follows:

� Assume H .mod q/ is primitive, i.e., fH D q.

� Restrict to characters � .mod q/ satisfying �.H/D 1 throughout.

� Redefine L and L� in [Zaman 2016a, (3.2)] to replace log Nq with logQ.

4If �1 is real then �0 2 Z n f�1g instead with the other conditions remaining the same.
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� Substitute applications of [Zaman 2016a, Lemma 2.4] with Lemma 2.13 since
q D fH . When estimating certain sums, this allows one to transfer from
imprimitive characters � .modH/ to primitive ones.

� Modify [Zaman 2016a, Lemma 3.2] so that the special value T0.q/, in that
lemma’s notation, instead satisfies T? � T0.q/� 1

10
T?T ; one can achieve this

by analogously supposing, for a contradiction, that each region ˛ � � � 1
and T?10j � jt j � T?10jC1 for 0� j < J with J D Œlog T =log 10� contains
at least one zero of

Q
� .modH/L.s; �/. After applying [Zaman 2016a, (3.4)]

with T D T?T , the rest of the argument follows similarly. �

8D. Zero repulsion. Here we record two explicit estimates for zero repulsion when
an exceptional zero exists.

Theorem 8.2 (Zaman). If �1 < 0:0875 then unconditionally, for L sufficiently
large, minf�0; �2g > 0:44. If � � �1 < 0:0875 then, for L sufficiently large
depending on � > 0, minf�0; �2g> 0:2103 log.1=�1/.

Proof. When T?D 1 and H DPq, this is contained in [Zaman 2016a, Theorem 1.4]
since L satisfies (8-2). Similarly to the proof of Theorem 8.1, one may modify
[Zaman 2016a] to deduce the same theorem for general congruence subgroups H
and any fixed T? � 1. �

Theorem 8.2 is not equipped to deal with exceptional zeros �1 extremely close
to 1 due to the requirement �1 � �. Thus, we require a more widely applicable
version of zero repulsion; this is precisely the purpose of Theorem 3.3, which we
restate here in the current notation.

Theorem 8.3. Let T � 1 be arbitrary. Suppose �1 is a real character and �1 is a
real zero. For � .modH/, let � ¤ �1 be any nontrivial zero of L.s; �/ satisfying
1
2
� Ref�g D 1 � �

L
< 1 and jImf�gj � T . For L sufficiently large depending

on � > 0 and T , we have � > log.c�=�1/=.80C �/, where c� > 0 is an effective
constant depending only on �.

Proof. This follows immediately from Theorem 3.3 since

.48C �/ logDK C .60C �/ logQC .24C �/nK logT CO�.nK/� .80C 2�/L

for L sufficiently large depending on � and T . �

The repulsion constant 1
80C�

� 0:0125 in Theorem 8.3 is much smaller than
0:2103 in Theorem 8.2. This deficiency follows from using power sum arguments;
see the remarks following Theorem 3.3. We now quantify how close an exceptional
zero �1 can be to 1.

Theorem 8.4 [Stark 1974]. Unconditionally, �1� e�24L =5.
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Proof. This follows from (8-1), (8-2), and the proof of [Stark 1974, Theorem 10,
p. 148]. �

8E. Log-free zero density estimates. First, we restate a slightly weaker form of
Theorem 3.2 in the current notation.

Theorem 8.5. Let T � 1 be arbitrary. If 0 < � <L thenX
� .modH/

N
�
1�

�

L
; T; �

�
� e162�

provided L is sufficiently large depending on T .

Proof. This follows from (8-1) and Theorem 3.2. �
In addition to Theorem 8.5, we require a completely explicit zero density estimate

for “low-lying” zeros. Define5

N .�/DNH .�/ WD
X

� .modH/

N
�
1�

�

L
; T?; �

�
D

X
� .modH/

#
n
� W L.�; �/D 0; 1�

�

L
< Ref�g< 1; jImf�gj � T?

o
: (8-5)

By Theorem 8.1, observe that N .0:0875/ � 1 and N .0:2866/ � 2. In light of
these bounds, we exhibit explicit numerical estimates for N .�/ in the range with
0:287� �� 1. For each fixed value of �, we apply Theorem 5.3 with � D 0:1 and
� 2 .0; 10�5/ assumed to be fixed and sufficiently small, and obtain a bound for
N .�L =L/. By (8-3), the same bound holds for N .�/. By performing numerical
experimentation over the remaining parameters .˛; �; !; �/ using MATLAB, we
roughly optimize the bound in Theorem 5.3 and generate Table 1. Note that we
have verified J.��/ < 1 and X�� > Y�� > 4:6 in each case.

Based on Table 1, we may also establish an explicit estimate for N .�/ by
specifying parameters in Theorem 5.3.

Theorem 8.6. Let �0 > 0 be fixed and sufficiently small. If 0 < � < �0L then
N .�/� e162�C188 for L sufficiently large. If 0<�� 1 then N .�/ is also bounded
as in Table 1.

Proof. For �� 0:2866, the result is immediate as N .0:2866/� 2 by Theorem 8.1.
For 0:2866 � � � 1, one can directly verify the desired bound by using Table 1.
Now, consider �� 1. Apply Theorem 5.3 with

T D T0; �0 D 1; ˛ D 0:1549; �D 0:05722;

� D 10�5; � D 0:1; � D 1:0030; ! D 0:02074:

5Note N .�/ defined here is not the same as N.�/ as defined in [Zaman 2016a]. Instead, one has
N.�/�N .�/.
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� logN.�/� ˛ � ! � J.��/ Y�� X��

0.287 198.1 0.3448 0.09955 0.03466 1.0082 0.46 5.8 993
0.288 198.3 0.3444 0.09943 0.03462 1.0082 0.46 5.8 991
0.289 198.5 0.3441 0.09931 0.03458 1.0082 0.46 5.8 988
0.290 198.7 0.3437 0.09918 0.03454 1.0082 0.46 5.8 986
0.291 198.9 0.3433 0.09906 0.03450 1.0082 0.46 5.8 984
0.292 199.1 0.3429 0.09894 0.03446 1.0081 0.46 5.8 982
0.293 199.3 0.3426 0.09882 0.03442 1.0081 0.46 5.8 979
0.294 199.5 0.3422 0.09870 0.03439 1.0081 0.46 5.8 977
0.295 199.8 0.3418 0.09859 0.03435 1.0081 0.46 5.8 975
0.296 200.0 0.3415 0.09847 0.03431 1.0081 0.46 5.8 973
0.297 200.2 0.3411 0.09835 0.03427 1.0080 0.46 5.8 970
0.298 200.4 0.3408 0.09823 0.03423 1.0080 0.46 5.8 968
0.299 200.6 0.3404 0.09811 0.03420 1.0080 0.46 5.8 966
0.300 200.8 0.3400 0.09800 0.03416 1.0080 0.46 5.8 964
0.325 205.9 0.3316 0.09518 0.03326 1.0075 0.47 5.8 914
0.350 211.0 0.3240 0.09257 0.03242 1.0071 0.47 5.7 871
0.375 216.0 0.3171 0.09014 0.03163 1.0067 0.47 5.7 833
0.400 220.9 0.3108 0.08787 0.03090 1.0064 0.48 5.7 800
0.425 225.7 0.3054 0.08678 0.02878 1.0061 0.46 5.6 769
0.450 230.4 0.2998 0.08373 0.02956 1.0059 0.48 5.6 744
0.475 235.1 0.2948 0.08184 0.02895 1.0056 0.48 5.6 720
0.500 239.8 0.2903 0.08006 0.02837 1.0054 0.49 5.6 699
0.550 249.0 0.2821 0.07677 0.02729 1.0050 0.49 5.5 661
0.600 258.0 0.2748 0.07379 0.02631 1.0046 0.50 5.5 629
0.650 266.9 0.2684 0.07109 0.02542 1.0043 0.50 5.4 602
0.700 275.6 0.2627 0.06862 0.02460 1.0041 0.50 5.4 579
0.750 284.3 0.2576 0.06634 0.02383 1.0039 0.51 5.4 559
0.800 292.9 0.2529 0.06424 0.02313 1.0037 0.51 5.4 541
0.850 301.4 0.2486 0.06230 0.02247 1.0035 0.51 5.3 525
0.900 309.8 0.2447 0.06049 0.02186 1.0033 0.51 5.3 510
0.950 318.2 0.2412 0.05880 0.02128 1.0032 0.52 5.3 497
1.000 326.5 0.2378 0.05722 0.02074 1.0030 0.52 5.3 486

Table 1. Bounds for N .�/ using Theorem 5.3 with � D 0:1 and � 2 .0; 10�5�.

This choice of values is motivated by the last row of Table 1, but with a more
suitable choice for ˛. With this selection, one can check that for any �� 1,

4:61� Y�� � 9:2; 264�X�� � 526; J.��/� 0:272:

These inequalities can be verified by elementary arguments involving the definitions
in Section 5A and (5-6). In particular, for any ��1, the assumptions of Theorem 5.3
are satisfied for all 1� � < �0L .
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Now with these estimates, we may deduce upper bounds for C4, C3, C1, C0, B2,
and B1 in Theorem 5.3 as follows:

C4 D C4.�/� 6:0� 10
13; C1 � 17; B2 � 154;

C3 D C3.�/� 2:4� 10
14; C0 � 65; B1 � 156;

for �� 1. Thus, by Theorem 5.3, for 1� �� �0L ,

N.�/� 52.6:0� 1013 ��4C 2:4� 1014 ��3C 17 ��C 65/e156�C154:

To simplify the expression on the right-hand side, we crudely observe that the above
is

� 52 � 65
�
6:0� 1013 �

24

64 �65
�
.6�/4

4Š

C 2:4� 1014 �
6

63 �65
�
.6�/3

3Š
C 6�C 1

�
e156�C154

� 52 � 6:7� 1012 �
�
.6�/4

4Š
C
.6�/3

3Š
C 6�C 1

�
e156�C154 � e162�C188;

as desired. �

9. Proof of Theorem 3.1: preliminaries

We may finally begin the proof of Theorem 3.1. The arguments below are motivated
by [Heath-Brown 1992, Section 10] and mostly follow the structure of [Zaman
2017b, Section 4]. Recall that we retain the notation introduced in Section 8 for the
remainder of the paper.

9A. Choice of weight. We define a weight function (see [Zaman 2017b, Lemmas
2.6 and 2.7]) and describe its properties.

Lemma 9.1. For real numbers A;B > 0 and a positive integer ` � 1 satisfying
B > 2`A, define

F.z/D F`.zIB;A/D e
�.B�2`A/z

�
1�e�Az

Az

�2`
; (9-1)

and let f .t/ be the inverse Laplace transform of F.z/. Then:

(i) 0� f .t/� A�1 for all t 2 R.

(ii) The support of f is contained in ŒB � 2`A;B�.

(iii) For x > 0 and y 2 R,

jF.xC iy/j � e�.B�2`A/x
�
1�e�Ax

Ax

�2`
� e�.B�2`A/x :



1182 Jesse Thorner and Asif Zaman

For the entirety of this section, select real numbers A;B > 0 and an integer `� 1
satisfying B > 2`A, and let F. � /D F`. � IB;A/. The inverse Laplace transform of
F.z/ is written as f .t/, so that F.z/D

R1
0 f .t/e�zt dt . To motivate our choice

of f , we note that the parameter ` is chosen to be of size O.nK/, so that f .t/ is
O.nK/-times differentiable and hence F.xC iy/ decays like jyj�O.nK/ for fixed
x > 0 and as jyj !1. This decay rate is necessary when applying log-free zero
density estimates such as Theorem 3.2 to bound the contribution of zeros which are
high in the critical strip.

9B. A weighted sum of prime ideals. For the congruence class group H .mod q/,
let C be an element of the class group of H ; that is, C 2 I.q/=H . Using the
compactly supported weight f , define

S WD
X

p− qDK
Np is a rational prime

log Np

Np
f
� log Np

L

�
� 1C.p/; (9-2)

where 1C. � / is an indicator function for the coset C, DK is the different of K, and
the sum is over degree 1 prime ideals p of K not dividing qDK . We reduce the
proof of Theorem 3.1 to verifying the following lemma.

Lemma 9.2. Let �> 0 be sufficiently small and let m be the product of prime ideals
dividing q but not fH . If hHL �1S �� minf1; �1g for

B �max
n
693:5;

log Nm

L
C 8�

o
; AD

4

L
; `D b�L c (9-3)

and L is sufficiently large then Theorem 3.1 holds.

Proof. Select B D .log x/=L with AD 4=L and `D b�L c. From the definition
(8-1) of L and the condition on x in (3-1), one can verify that B satisfies (9-3).
Now, since f is supported in ŒB � 2`A;B� and jf j � A�1 �L by Lemma 9.1,

S �L e8�L x�1 log x #fp W Np� x; deg.p/D 1; p 2 Cg:

Multiplying both sides by hHL �1 and noting B satisfies (9-3), we conclude

#fp W Np� x; deg.p/D 1; p 2 Cg � 4S
L
�
xe�8�L

log x
�� e

�5L
�

x

hH log x
:

by Theorems 8.1 and 8.4. Fixing � and noting L � log.DKQn
nK
K / yields the

conclusion of Theorem 3.1. �
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Now, by orthogonality of characters,

S D
1

hH

X
� .modH/

�.C/S�;

where S� WD
X

p− qDK
Np is a rational prime

log Np

Np
�.p/f

� log Np

L

�
: (9-4)

We wish to write S� as a contour integral involving a logarithmic derivative of a
primitive Hecke L-function. Before doing so, we define

mD
Y

p j q; p− fH

p: (9-5)

Lemma 9.3. If B � 2`A >maxf1; .log Nm/=L g then

L �1S� D
1

2�i

Z 2Ci1

2�i1

�
L0

L
.s; ��/F..1� s/L / dsCO.A�1e�.B�2`A/L =2/;

where �� is the primitive Hecke character inducing � .modH/.

Proof. Observe

1

2�i

Z 2Ci1

2�i1

�
L0

L
.s; ��/F..1� s/L / ds

DL �1
X
n

ƒ.n/

Nn
��.n/f

� log Nn

L

�
DL �1 zS�;

say. Thus, we must show zS� equals S� up to a negligible contribution from prime
ideal powers, prime ideals whose norms are not rational primes, and prime ideals
dividing qDK . For simplicity, denote X D e.B�2`A/L .

Prime ideal powers. By Lemma 9.1, the contribution of such ideals in zS� is bounded
by X

p

X
m�2

log Np

Npm
f
� log Npm

L

�
� A�1

X
p

X
m�2

Npm�X

log Np

Npm
:

Since a rational prime p splits into at most nK prime ideals in K, the right-hand
side is

�A�1
X

p rational

X
.p/�p

X
m�2

Npm�X

log Np

Npm
�A�1

X
p rational
p�X1=2

1

p2

X
.p/�p

log Np�A�1LX�1=2

by partial summation and noting nK �L from Minkowski’s bound.
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Prime ideals with norm not equal to a rational prime. By Lemma 9.1,

X
p

Np not a rational prime

1X
mD1

log Np

Npm
f
� log Npm

L

�
� A�1

X
Np�X

Np not a rational prime

log Np

Np
:

For p appearing in the right-hand sum and lying above the rational prime p, notice
Np� p2. Thus, arguing as in the previous case, we deduce

� A�1
X

p�X1=2

p rational prime

1

p2

X
.p/�p

log Np� A�1LX�1=2:

Prime ideals dividing qDK . AsB�2`A>maxf1; .log Nm/=L g, NDK�DK�e
L

by (8-2), and f is supported in ŒB � 2`A;B�, we have f ..log Np/=L / D 0 for
p jmDK . As �.p/D ��.p/ for all p −m, this implies that

�.p/f
� log Np

L

�
D ��.p/f

� log Np

L

�
for all prime ideals p. Combining all of these contributions to compare S� with zS�
yields the desired result. �

Applying Lemma 9.3 to (9-4), we deduce

L �1S D
1

hH

X
� .modH/

1

2�i

Z 2Ci1

2�i1

�
L0

L
.s; ��/F..1� s/L / ds

CO.A�1e�.B�2`A/L =2/; (9-6)

provided B � 2`A >maxf1; .log Nm/=L g.

9C. A sum over low-lying zeros. The next step is to shift the contour in (9-6) and
pick up the arising poles. Our objective in this subsection is to reduce the analysis
to the “low-lying” zeros of Hecke L-functions.

Lemma 9.4. Let T? � 1 be fixed, and let �1 and �1 be as in Section 8B. If the
inequalitiesB�2`A>maxf162; .log Nm/=L g, `>.81nKC162/=4, andA>1=L
hold and L is sufficiently large, thenˇ̌
hHL �1S �F.0/C�1.C/F..1� �1/L /

ˇ̌
�

X
� .modH/

X0

�

jF..1� �/L /jCO
��

2

AT?L

�2`
T
40:5nK
? C e�78L

�
;

where the sum
P0 indicates a restriction to nontrivial zeros � ¤ �1 of L.s; �/,

counted with multiplicity, satisfying 0 < Ref�g< 1 and jImf�gj � T?.
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Proof. Shift the contour in (9-6) to the line Refsg D �1
2

. For each primitive
character ��, this picks up the nontrivial zeros of L.s; �/, the simple pole at s D 1
when � is trivial, and the trivial zero at s D 0 of L.s; �/ of order r.�/. To bound
the remaining contour, by [Lagarias et al. 1979, Lemma 2.2] and Lemma 9.1(iii)
with [Zaman 2017b, Lemma 2.7], for Refsg D �1

2
we have

�
L0

L
.s; ��/�L CnK log.jsjC2/ and jF..1�s/L /j� e�

3
2
.B�2`A/L

� jsj�2

since A > 1=L . It follows that

1

2�i

Z � 1
2
Ci1

� 1
2
�i1

�
L0

L
.s; ��/F..1� s/L / ds�L e�

3
2
.B�2`A/L :

Overall, (9-6) becomes

hHS

L
�F.0/C

X
� .modH/

�.C/
X
�

F..1� �/L /

�

X
� .modH/

r.�/F.L /C
L

e.B�2`A/L =2
; (9-7)

where the inner sum over � is over all nontrivial zeros of L.s; �/. From (2-5) and
(2-7), notice r.�/� nK . Thus, by Lemma 9.1 and Minkowski’s bound nK �L ,

1

hH

X
� .modH/

r.�/F.L /�L e�.B�2`A/L :

Since hH � e2L by Lemma 2.11 and (8-2), it follows from (9-7) that

hHL �1S D F.0/�
X

� .modH/

�.C/
X
�

F..1� �/L /CO.L e�.B�2`A�4/L =2/:

The error term is bounded by O.e�78L / as B � 2`A > 162. Therefore, it suffices
to show

Z WD
X

� .modH/

1X
kD0

X
�

2kT?�Imf�g<2kC1T?

jF..1� �/L /j �
�

2

AT?L

�2`
T
40:5nK
? :

From Lemma 9.1, writing �D ˇC i
 with ˇ � 1
2

, observe

jF.�L /jC jF..1� �/L /j � 2e�.B�2`A/.1�ˇ/L
�

2

Aj
 jL

�2`
;

and moreover, from Theorem 3.2,

zN.�/ WD
X

� .modH/

N.�; 2T; �/� .e162L T 81nKC162/.1��/
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for 1
2
� � � 1, T � 1, and L sufficiently large. Thus, by partial summation,X

� .modH/

X
�

T�jImf�gj�2T

jF..1� �/L /j �
�

2

ATL

�2`Z 1=2

1

e�.B�2`A/.1��/L d zN.�/

�

�
2

AL

�2`
T 40:5nKC81�2`

since B > 2`AC 162. Note we have used that the zeros of
Q
� .modH/L.s; �/ are

symmetric across the critical line Refsg D 1
2

. Overall, we deduce

Z�
�
2

AL

�2`
T
40:5nKC81�2`
?

1X
kD0

.2k/40:5nKC81�2`�
�

2

AT?L

�2`
T
40:5nK
? ;

since ` > 1
4
.81nK C 162/ and T? is fixed, as desired. �

We further restrict the sum over zeros in Lemma 9.4 to zeros � close to the line
Refsg D 1. To simplify the statement, we also select parameters ` and A for the
weight function.

Lemma 9.5. Let T? � 1 and � 2 .0; 1/ be fixed and 1 � R � L be arbitrary.
Suppose

B � 2`A >max
n
162;

log Nm

L

o
; AD

4

L
; `D b�L c: (9-8)

If L is sufficiently large thenˇ̌
hHL �1S �F.0/C�1.C/F..1� �1/L /

ˇ̌
�

X
� .modH/

X?

�

jF..1��/L /jCO.e�.B�2`A�162/RC.2T?/
�2�L e�L

Ce�78L /

where the marked sum
P? runs over zeros � ¤ �1 of L.s; �/, counting with

multiplicity, satisfying 1�R=L < Ref�g< 1 and jImf�gj � T?.

Proof. For L sufficiently large depending on � and �, the quantities B , A, and `
satisfy the assumptions of Lemma 9.4. Denote B 0 DB � 2`A. We claim it suffices
to show X

� .modH/

X0

Ref�g�1�R=L

jF..1� �/L /j � e�.B
0�162/R; (9-9)

where
P0 is defined in Lemma 9.4. To see the claim, we need only show that the

error term in Lemma 9.4 is absorbed by that of Lemma 9.5. For L sufficiently
large, notice T 40:5nK? � e�L as nK logT? D o.L /; hence, for our choices of A
and `, we have �

2

AT?L

�2`
T
40:5nK
? �

�
1

2T?

�2�L

e�L :
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This proves the claim. Now, to establish (9-9), define the multiset of zeros

Rm.�/ WD
n
� W L.�; �/D 0; 1�

mC1

L
� Ref�g � 1� m

L
; jIm.�gj � T?

o
for 1�m�L . By Theorem 8.5 and Lemma 9.1, it follows thatX

� .modH/

X
�2Rm.�/

jF..1� �/L /j � e�B
0m

X
� .modH/

#Rm.�/� e�.B
0�162/m

for L sufficiently large. Summing over m�R yields the desired conclusion. �

10. Proof of Theorem 3.1: exceptional case

For this section, we assume �1 < 0:0875. By Theorem 8.1, �1 is a simple real zero
and �1 is a real Hecke character. For fixed � 2 .0; 10�3/ sufficiently small, assume
L is sufficiently large and that

B �max
n
163;

log Nm
L

C 8�
o
; `D b�L c; and AD

4

L
:

Thus B; `, andA satisfy (9-8) and B 0 WDB�2`A>162. For the moment, we do not
make any additional assumptions on the minimum size of B and hence B 0. To prove
Theorem 3.1 when �1 is an exceptional zero, it suffices to show, by Lemma 9.2, that
hHL �1S�minf1; �1g for B �maxf593; .log Nm/=L C8�g and L sufficiently
large.

For a nontrivial zero � of a Hecke L-function, write �D ˇC i
 D
�
1� �

L

�
C i
 ,

so that by Lemma 9.1, jF..1� �/L /j � e�B
0�. From Lemma 9.5, with T? � 1

fixed and 1�R �L arbitrary, it follows that if we define

�D

8̂̂<̂
:̂
�

if T? D 1
and RDR.�/ is sufficiently large,

O.e�.B
0�162/RC e�78L /

if T? D T?.�/ is sufficiently large
and 1�R �L ,

(10-1)

then

hHL �1S � 1��1.C/e�B
0�1 �

X
� .modH/

X?

�

e�B
0�
��; (10-2)

where the restricted sum
P? is over zeros � ¤ �1, counted with multiplicity,

satisfying 0 < ��R and j
 j � T?.
Suppose the arbitrary parameter �? > 0 satisfies

� > �? for every zero � occurring in the restricted sum of (10-2). (10-3)

It remains for us to divide into cases according to the range of �1 and value of
�1.C/ 2 f˙1g. In each case, we make a suitable choice for �?.
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10A. Moderate exceptional zero .� � �1 < 0:0875 or �1.C/ D �1/. For the
moment, we do not make any assumptions on the size of �1 other than that
0<�1<0:0875. Select T?D 1 andRDR.�/ sufficiently large so�D � according
to (10-1). By partial summation, our choice of �? in (10-2), and Theorem 8.6,X

� .modH/

X?

�

e�B
0�
�

Z R

�?
e�B

0� dN .�/

� e�.B
0�162/RC188

C

Z 1
�?
B 0e�.B

0�162/�C188 d�:

As RDR.�/ is sufficiently large and B 0 > 162, the above is

�

�
1�

162

B 0

��1
e188�.B

0�162/�?
C �:

Comparing with (10-2), we have

hHL �1S � 1��1.C/e�B
0�1 �

�
1�

162

B 0

��1
e�.B

0�162/�?C188
� 2�: (10-4)

Finally, we further subdivide into cases according to the size of �1 and value of
�1.C/ 2 f˙1g. Recall � > 0 is sufficiently small.

Case 1: �1 medium .10�3 � �1 < 0:0875/. Here we also assume B � 593, in
which case B 0 � 592. Select �? D 0:44, which, by Theorem 8.2, satisfies (10-3)
for the specified range of �1. Incorporating this estimate into (10-4) and noting
j�1.C/j � 1, we deduce

hHL �1S � 1� e�592�10
�3

�
592
430
e�430�0:44C188� 2�� 0:032� 2�

for � 2 Œ10�3; 0:0875�. Hence, for � sufficiently small, hHL �1S � 1 in this
subcase, as desired.

Case 2: �1 small .�� �1 < 10�3/. Here we also assume B � 297, in which case
B 0� 296:5. Select �?D 0:2103 log.1=�1/, which, by Theorem 8.2, satisfies (10-3).
For � < 10�3, this implies �? > 1:45. Applying both of these facts in (10-4) and
noting j�1.C/j � 1, we see

hHL �1S � 1� e�296:5�1 � 296
134
e�.134:5�188=1:45/�

?

� 2�

� 1� e�296:5�1 � 296
134
�1� 2�

since 4:84� 0:2103D 1:017 � � �> 1. As 1� e�x � x� x2

2
for x � 0, the above is

� 296:5�1�
.296:5/2

2
�21�

296
134
�1� 2�� 294:2�1.1� 150�1/� 2�� 250�

because � � �1 < 10�3. Therefore, hHL �1S � 1, completing the proof of this
subcase.
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Case 3: �1 very small .�1 < �/ and �1.C/D�1. Here we also assume B � 163,
in which case B 0 > 162:5. From (10-4), it follows that

hHL �1S � 1C e�162:5�1 � 325e�0:5�
?C188

� 2�� 2�O.e�0:5�
?

C �C�1/:

By Theorem 8.3, the choice �?D 1
81

log.c11=�1/ satisfies (10-3) for some absolute
constant c11 > 0. Since �1 < �, the above is therefore

� 2�O.�0:5=81C �/� 2�O.�1=162/:

As � is fixed and sufficiently small, we conclude hHL �1S � 1 as desired. This
completes the proof for a “moderate” exceptional zero.

10B. Truly exceptional zero .�1 < � and �1.C/DC1/. Select T? D T?.�/ suf-
ficiently large and let RD 1

80:1
log.c12=�1/, where c12 > 0 is a sufficiently small

absolute constant. By Theorem 8.3, it follows that the restricted sum over zeros �
in (10-2) is empty and therefore, by (10-2) and (10-1),

hHL �1S � 1� e�B
0�1 �O.�

.B 0�162/=80:1
1 C e�78L /

as �1.C/ D 1. Additionally assuming B � 243, in which case B 0 � 242:2, and
noting 1� e�x � x� x2

2
for x � 0, we conclude that

hHL �1S � 242:2�1�O.�
2
1C�

80:2=80:1
1 C e�78L /

� �1.242:2�O.�
0:001
1 C e�73L //

since �1� e�4:8L by Theorem 8.4. As �1 � � for fixed � > 0 sufficiently small,
we conclude hHL �1S � �1 as desired.

Comparing all cases, we see that the most stringent condition is B � 593, thus
completing the proof of Theorem 3.1 in the exceptional case. �

Remark. WhenH .mod q/ is primitive, the “truly exceptional” subcase considered
in Section 10B is implied by a numerically much stronger result of Zaman [2016b,
Theorem 1.1] using entirely different methods.

11. Proof of Theorem 3.1: nonexceptional case

For this section, we assume �1 � 0:0875. Thus, we no longer have any additional
information as to whether �1 is real or not, or whether �1 is real or not. We
proceed in a similar fashion as the exceptional case, but require a slightly more
refined analysis due to the absence of the Deuring–Heilbronn phenomenon. Assume
�? > 0 satisfies �? <minf�0; �2g, where �0 and �2 are defined in Section 8B. For
0 < �� 10�3 fixed, suppose B �maxf693:5; .log Nm/=L C 8�g, `D b�L c, and
A D 4=L . Thus B; `, and A satisfy (9-8). By Lemma 9.2, it suffices to show
hHL �1S � 1. For simplicity, denote B 0 D B � 2`A� 693. For a nontrivial zero
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� of a Hecke L-function, as usual, write �D ˇC i
 D .1��=L /C i�=L . From
Lemma 9.5, as F.0/D 1, it follows that

hHL �1S � 1� jF.�1C i�1/j � jF.�1� i�1/j �
X

� .modH/

X�

�

jF.�C i�/j � �;

where the marked sum
P� runs over nontrivial zeros �¤ �1 (or �¤ �1; �1 if �1 is

complex) of L.s; �/, counted with multiplicity, satisfying �? � ��R and j
 j � 1
for some RDR.�/� 1 sufficiently large. By Lemma 9.1, this implies

hHL �1S � 1� 2e�B
0�1 �

X
� .modH/

X
�?���R
j
 j�1

e�B
0�
� �: (11-1)

Let ƒ> 0 be a fixed parameter to be specified later. To bound the remaining sum
over zeros, we apply partial summation using the quantity N .�/, defined in (8-5),
over two different ranges: (i) �? � ��ƒ and (ii) ƒ< ��R.

For (i), partition the interval Œ�?; ƒ� into M subintervals with sample points

�? Dƒ0 <ƒ1 <ƒ2 < � � �<ƒM Dƒ:

By partial summation, we see

Z1 WD
X

� .modH/

X
�?<��ƒ
j
 j�1

e�B
0�
D

MX
jD1

X
� .modH/

X
ƒj�1<��ƒj

e�B
0�

� e�B
0ƒM�1N .ƒM /C

M�1X
jD1

.e�B
0ƒj�1 � e�B

0ƒj /N .ƒj /:

By Theorem 8.1, we may choose �? D 0:2866. Furthermore, we select

ƒD 1; M D 32; ƒr D

8<:
0:286C 0:001r; 1� r � 14;

0:300C 0:025.r � 14/; 15� r � 22;

0:5C 0:05.r � 22/; 23� r � 32;

and incorporate the estimates from Table 1 to bound N . � /, yielding Z1 � 0:9926.
For (ii), apply partial summation along with Theorem 8.6. Since B 0 � 693> 162

and RDR.�/ is sufficiently large, it follows that

Z2 WD
X

� .modH/

X
ƒ<��R
j
 j�1

e�B
0�
� e188�.B

0�162/R
CB 0

Z 1
ƒ

e188�.B
0�162/� d�

for L sufficiently large depending on �. Evaluating the right-hand side with
B 0 � 693 and ƒD 1, we deduce Z2 � 10�400.
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Incorporating (i) and (ii) into (11-1), we conclude

hHL �1S � 1� 2e�B
0�1 � 0:9926� 10�400� 2�� 0:0073� 2�

as �1 > 0:0875 and B 0 � 693. Since � 2 .0; 10�3� is fixed and sufficiently small,
we conclude hHL �1S � 1. This completes the proof of Theorem 3.1. �

12. Proofs of Theorems 1.2–1.5

Proof of Theorem 1.2. Let Q.x; y/ 2 ZŒx; y� be a positive-definite primitive binary
quadratic form of discriminantD. LetKDQ.

p
D/, and letL be the ring class field

of the order of discriminant D in K. By Theorem 9.12 of [Cox 1989], the rational
primes p −D represented byQ are the primes which split inK that satisfy a certain
Chebotarev condition in L. We have that DKQ� jDj. The result follows. �

We now state a slightly weaker version of (3-2) and Theorem 1.1 which will be
convenient for the remaining proofs. For positive integers n, let !.n/D #fp W p j ng
and rad.n/D

Q
pjn p.

Theorem 12.1. Let L=F be a Galois extension of number fields with Galois group
G and L ¤ Q, and let C be any conjugacy class of G. Let H be an abelian
subgroup of G such that H \C is nonempty, and let K ¤Q be the subfield of L
fixed by H . Define

M.L=K/ WD ŒL WK�3=2n
!.DL/
K rad.DL/5=2:

If .M.L=K/nK/nK is sufficiently large and

x� ŒL WK�nK rad.DL/nK�694M.L=K/694nK ;
then

�C .x; L=F /�
.M.L=K/nK/

�15nK=2

ŒL WK�

x

log x
:

Consequently, for all L=F , we have that

P.C;L=F /� ŒL WK�nK rad.DL/nK�694M.L=K/694nK :

Proof. Let P.L=K/ be the set of rational primes p such that there is a prime
ideal p of K such that p j p and p ramifies in L. By [Serre 1981, Proposition 6],
DK � .nK/

nK!.DK/ rad.DK/nK�1. Since L=K is abelian, we have by [Murty
et al. 1988, Proposition 2.5] that

Q�
�
ŒL WK�

Y
p2P.L=K/

p

�2nK
:

The primes in P.L=K/ and the primes dividing DK all divide DL. Since K ¤Q,
we have !.DK/� 1 and nK � 2. Thus the result follows from Theorem 1.1, and
in particular (3-2). �
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Remark. For comparison, if one uses [Serre 1981, Proposition 6] to bound DL,
then (1-5) implies that P.C;L=F /� .n

!.DL/
L rad.DL//40nL . We can replace

!.DL/ with 1 if L=Q is Galois.

12A. GL2 extensions. We now review some facts about GL2 extensions of Q and
class functions to prove Theorems 1.3–1.5. Let

f .z/D

1X
nD1

af .n/e
2�inz

2 ZŒŒe2�iz��

be a non-CM newform of even weight k � 2 and level N � 1. Let ` be a prime,
and let F` be the finite field of ` elements. By [Deligne 1971], there exists a
representation

�f;` W Gal.Q=Q/! GL2.F`/

with the property that if p − `N and �p is a Frobenius element at p in Gal.Q=Q/,
then �f;` is unramified at p, tr �f;`.�p/� af .p/ .mod `/, and det �f;`.�p/� pk�1

.mod `/. Let L D Lf;` be the subfield of Q fixed by the kernel of �f;`. Then
L=Q is a Galois extension unramified outside `N whose Galois group Gal.L=Q/

is isomorphic to a subgroup of

G DGk;` D fA 2 GL2.F`/ W detA is a .k�1/-th power in F�` g:

If ` is sufficiently large, then the representation is surjective, in which case

Gal.L=Q/ŠG: (12-1)

When k D 2 and the level is N, f is necessarily the newform of a non-CM elliptic
curve E=Q of conductor N. In this case, we write �f;` D �E;`, and L is the `-
division field Q.EŒ`�/. It is conjectured that Gal.L=Q/Š GL2.F`/ for all ` > 37.
When E=Q is non-CM and has squarefree level, it follows from the work of Mazur
[1978] that ker Q�E;` Š GL2.F`/ for all `� 11.

Lemma 12.2. Let L=Q be a GL2.F`/ extension which is unramified outside of `N
for some N � 1. Let C � GL2.F`/ be a conjugacy class intersecting the subgroup
D of diagonal matrices. There exists a prime p − `N such that

p� `.5209C1542!.N//`
2

rad.N /1737`.`C1/ and
hL=Q

p

i
D C:

Proof. If K D LD is the subfield of L fixed by D, then ŒL W K� D .` � 1/2

and ŒK W Q� D `.`C 1/. Moreover, rad.DL/ j ` rad.N /. The result now follows
immediately from Theorem 12.1. �

Proof of Theorem 1.3. It follows from the proof of [Murty 1994, Theorem 4] and
Mazur’s torsion theorem [1978] that it suffices to consider `� 11. Let LDQ.EŒ`�/
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be the `-division field of E=Q. For p − `NE , we have that E.Fp/ has an element
of order ` if and only if

tr �`;E .�p/� det �`;E .�p/C 1 .mod `/; (12-2)

where �p is a Frobenius automorphism at p in Gal.Q=Q/. If Gal.L=Q/ŠGL2.F`/,
then the �`;E .�p/2GL2.F`/ which satisfy (12-2) form a union of conjugacy classes
in GL2.F`/ which includes the identity element. The subgroup D of diagonal
matrices is a maximal abelian subgroup of GL2.F`/. Thus �fidg.x; L=Q/ is a
lower bound for the function that counts the primes p � x such that p − `NE and
` j #E.Fp/. Since rad.DL/ j ` rad.N /, Lemma 12.2 implies the claimed result.

Suppose now that Gal.L=Q/ is not isomorphic to GL2.F`/. The possible cases
are described in the proof of [Murty 1994, Theorem 4]. Applying similar analysis
to all of these cases, one sees that the above case gives the largest upper bound for
the least prime p such that ` j #E.Fp/. �

We require some basic results on class functions (see [Serre 1981]) for the proof
of Theorem 1.5. Let L=F be a Galois extension of number fields with Galois
group G, and let � WG!C be a class function. For each prime ideal p of F , choose
any prime ideal P of L dividing p. LetDP and IP be the decomposition and inertia
subgroups of G at p, respectively. We then have a distinguished Frobenius element
�P 2DP=IP. For each m� 1, let

�.Frobmp /D
1

jIPj

X
g2DP

gIPD�
m
P 2DP=IP

�.g/:

Note that �.Frobmp / is independent of the aforementioned choice of P. If p is
unramified in L, this definition agrees with the value of � on the conjugacy class
Frobmp of G. For x � 2, we define

��.x/ D
X

p unramified in L
NF=Q p�x

�.Frobp/; Q��.x/ D
X

p unramified in L
NF=Q pm�x

1

m
�.Frobmp /:

Let C � G be stable under conjugation, and let 1C W G ! f0; 1g be the class
function given by the indicator function of C . Now, define �C .x; L=F /D �1C .x/

and Q�C .x; L=F /D Q�1C .x/. Serre [1981, Proposition 7] proved that if x � 2, then

j�C .x; L=F /� Q�C .x; L=F /j � 4nF ..logDL/=nLC
p
x/: (12-3)

By arguments similar to the proof of Theorem 1.1, we have that if A is an abelian
subgroup ofG such thatA\C is nonempty, then Q�C .x; L=F /D Q�IndGAC

.x; L=LA/.
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Proof of Theorem 1.5. Let ` be an odd prime such that (12-1) is satisfied. Assuming
gcd.k� 1; `� 1/D 1, we have G Š GL2.F`/. To prove the theorem, we consider

�f .xI `; a/ WD #
˚
p � x W p − `N; af .p/� a .mod `/;

` splits in Q..af .p/
2
� 4pk�1/1=2/

	
:

Note that for p − `N, af .p/2� 4pk�1 D tr.�f;`.�p//� 4 det.�f;`.�p//2, where �p
is Frobenius at p in Gal.Q=Q/. The subset C �G given by

C D fA 2G W tr.A/� a .mod `/; tr.A/2� 4 det.A/ is a square in F�` g

is a conjugacy-invariant subset of G, so we bound Q�C .x; L=Q/. Let B �G denote
the subgroup of upper triangular matrices; the condition that tr.A/2� 4 det.A/ is
a square in F�

`
means that �p is conjugate to an element in B . If � is a maximal

set of elements 
 2 B which are nonconjugate in G with tr.
/� a .mod q/, then
C D

F

2� CG.
/, where CG.
/ denotes the conjugacy class of 
 in G. Since B

is a subgroup of G with the property that every element of C is conjugate to an
element of B , it follows from [Zywina 2015, Lemma 2.6] that

Q�C .x; L=Q/D
X

2�

Q�CB.
/.x; L=L
B/

ŒCentG.
/ W CentB.
/�
;

where CentG.
/ denotes the centralizer of 
 in G (and similarly for B). If
C1D

F

 2 � nonscalar CB.
/, then it follows that Q�C .xIL=Q/� 1

jGj
Q�C1.x; L=L

B/

for all x � 2.

Case 1: `N sufficiently large, a 6� 0 .mod `/. Let U be the normal subgroup of
B consisting of the matrices whose diagonal entries are both 1. We observe that
U � C1 � C1; therefore, using arguments from [Zywina 2015, Lemma 2.6], we
have that Q�C1.x; L=L

B/D Q�C2.x; L
U =LB/ for x � 2, where C2 is the image of

C1\B in B=U . It follows from (12-3) and Theorem 12.1 that if `N is sufficiently
large and x is bounded below as in Theorem 12.1, then

Q�C2.x; L
U =LB/ > 0 if and only if �C2.x; L

U =LB/ > 0: (12-4)

It is straightforward to compute nLB D `C 1 and ŒLU W LB � D .`� 1/2. Since
LU =LB is abelian and all of the ramified primes divide `N, the theorem now
follows from Theorem 12.1.

Case 2: `N sufficiently large, a� 0 .mod `/. Let H be the normal subgroup of B
consisting of matrices whose eigenvalues are both equal. We have that H �C1 �C1
since multiplying a trace zero matrix by a scalar does not change the trace. Let
C3 be the image of C1 \B in B=H . The arguments are now the same as in the
previous case, with LH replacing LU . In fact, since B=H Š F�

`
is abelian of order
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`� 1 and C3 is a singleton, we obtain a slightly better exponent than what is stated
in Theorem 1.5 when a� 0 .mod `/.

Case 3: `N not sufficiently large. Let A2 D U and A3 D H . The lower bound
for �Ci .x; L

Ai=LB/ (i D 2 or 3) given by Theorem 12.1 only holds when `N is
sufficiently large. Therefore, when `N is not sufficiently large, we cannot verify
(12-4) using Theorem 12.1. For these finitely many exceptional cases, we use
Weiss’ lower bound on �Ci .x; L

Ai=LB/ that follows from [Weiss 1983, Theorem
5.2], which holds uniformly for all choices of N and `. Continuing the proof as
in Case 1 (this requires us to take c10 sufficiently small and c11 to be sufficiently
large in [Weiss 1983, Theorem 5.2]), we see that the least prime p − `N such that
af .p/� a .mod `/ is absolutely bounded in all of the finitely many exceptional
cases. This proves the theorem. �
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