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Modular curves of prime-power level
with infinitely many rational points

Andrew V. Sutherland and David Zywina

For each open subgroup G of GL2(Ẑ) containing −I with full determinant, let
XG/Q denote the modular curve that loosely parametrizes elliptic curves whose
Galois representation, which arises from the Galois action on its torsion points,
has image contained in G. Up to conjugacy, we determine a complete list of the
248 such groups G of prime power level for which XG(Q) is infinite. For each G,
we also construct explicit maps from each XG to the j-line. This list consists
of 220 modular curves of genus 0 and 28 modular curves of genus 1. For each
prime `, these results provide an explicit classification of the possible images of
`-adic Galois representations arising from elliptic curves over Q that is complete
except for a finite set of exceptional j-invariants.

1. Introduction

Let E be an elliptic curve defined over Q and denote its j-invariant by jE . For
each positive integer N , let E[N ] denote the N -torsion subgroup of E(Q), where
Q is a fixed algebraic closure of Q. The natural action of the absolute Galois group
GalQ := Gal(Q/Q) on E[N ] ' (Z/NZ)2 induces a Galois representation

ρE,N : GalQ→ GL2(Z/NZ).

After choosing compatible bases for the torsion subgroups E[N ], these representa-
tions determine a Galois representation

ρE : GalQ→ GL2(Ẑ),

whose composition with the projection GL2(Ẑ)→GL2(Z/NZ) given by reduction
modulo N is equal to ρE,N for each N . The images of ρE,N and ρE are uniquely
determined up to conjugacy in GL2(Z/NZ) and GL2(Ẑ), respectively. If E does not
have complex multiplication (CM), then ρE(GalQ) is an open subgroup of GL2(Ẑ),
by Serre’s [1972] open image theorem, hence of finite index in GL2(Ẑ).
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Let G be an open subgroup of GL2(Ẑ) that satisfies det(G)= Ẑ× and −I ∈ G.
Let N be the least positive integer such that G is the inverse image of its image
under the reduction map GL2(Ẑ)→ GL2(Z/NZ); we call N the level of G.

Associated to G is a modular curve XG/Q; one can define XG as the generic
fiber of the smooth proper Z[1/N ]-scheme that is the coarse moduli space for
the algebraic stack MG[1/N ] in the sense of [Deligne and Rapoport 1973, §IV],
where G denotes the image of G under reduction modulo N . See Section 2 for
some background on XG and an alternate description; in particular, it is a smooth
projective geometrically integral curve defined over Q.

When G = GL2(Ẑ), the modular curve XG is the j-line P1
Q
= A1

Q
∪ {∞}. If G

and G ′ are open subgroups of GL2(Ẑ) with det(G)= det(G ′)= Ẑ× and−I ∈G,G ′

such that G ⊆ G ′, then there is a natural morphism XG→ XG ′ of degree [G ′ : G].
In particular, with G ′ = GL2(Ẑ), we have a morphism

πG : XG→ P1
Q = A1

Q ∪ {∞}

of degree [GL2(Ẑ) : G] from XG to the j-line.
The key property for our applications is that for an elliptic curve E/Q with

jE /∈{0, 1728}, the group ρE(GalQ) is conjugate in GL2(Ẑ) to a subgroup of G if and
only if jE is an element of πG(XG(Q)); see Proposition 2.7. This property requires
−I ∈G, since there is always an elliptic curve E with any given rational j -invariant
such that −I ∈ ρE(GalQ); it also requires det(G)= Ẑ×, since det(ρE(GalQ))= Ẑ×,
and that G contain an element corresponding to complex conjugation.

We are interested in those groups G for which XG has infinitely many rational
points; equivalently, for which there are infinitely many elliptic curves E/Q, with
distinct j -invariants, such that ρE(GalQ) is conjugate to a subgroup of G. We need
only consider modular curves XG of genus 0 or 1 since otherwise XG(Q) is finite
by Faltings’ theorem [1983].

In this article, we give an explicit description of all such subgroups G ⊆GL2(Ẑ)

for which the modular curve XG has infinitely many rational points in the special
case where the level N of G is a prime power; we also give an explicit model for
XG and the morphism πG . We need only describe the groups G up to conjugacy in
GL2(Ẑ). For notational simplicity, we define the genus of G to be the genus of the
corresponding curve XG .

Theorem 1.1. Up to conjugacy, there are 248 open subgroups G of GL2(Ẑ) of
prime power level satisfying −I ∈ G and det(G)= Ẑ× for which XG has infinitely
many rational points. Of these 248 groups, there are 220 of genus 0 and 28 of
genus 1.

The 220 subgroups of genus 0 in Theorem 1.1 are given in Tables 1, 2 and 3
of the online supplement. For such a group G of genus 0, we also describe the

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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morphism πG . More precisely, we give a rational function J (t) ∈Q(t) such that
the function field of XG is of the form Q(t) and the morphism from XG to the
j-line is given by the equation j = J (t). In particular, if E/Q is an elliptic curve
with jE /∈ {0, 1728}, then ρE(GalQ) is conjugate to a subgroup of G if and only if
jE = J (t0) for some t0 ∈Q∪ {∞}.

The 28 subgroups of genus 1 in Theorem 1.1 are listed in Table 4 of the online
supplement; their levels are all powers of 2 except for a group of level 11 whose
image in GL2(Z/11Z) is the normalizer of a nonsplit Cartan subgroup. For such a
group G of genus 1, we give a Weierstrass model for XG and the morphism πG to
the j-line.

Example 1.2. Up to conjugacy, there is a unique subgroup G ⊆GL2(Ẑ) of genus 0
and level 27 given by Theorem 1.1. It has label 27A0-27a in our classification,
and we may choose it so that the image of G in GL2(Z/27Z) is generated by the
matrices

( 1
0

1
1

)
,
(2

9
1
5

)
and

( 1
3

2
2

)
. Using Table 1 of the online supplement, associated

to G is the rational function

J (t)= F3
(
F2(F1(t))

)
=
(t3
+ 3)3(t9

+ 9t6
+ 27t3

+ 3)3

t3(t6+ 9t3+ 27)
,

where F1(t)= t3, F2(t)= t (t2
+9t+27) and F3(t)= (t+3)3(t+27)/t . That J (t)

is the composition of three rational functions reflects the fact that the morphism πG

factors as XG → XG ′ → XG ′′ → P1
Q

for some groups G ( G ′ ( G ′′ ( GL2(Ẑ).
The groups G ′ and G ′′ have labels 9B0-9a and 3B0-3a, respectively, and can also
be found in Table 1 of the online supplement.

Remark 1.3. In contrast to the case of prime power level, in general there are
infinitely many open subgroups G of GL2(Ẑ) satisfying −I ∈ G and det(G)= Ẑ×

for which the modular curve XG has infinitely many rational points. Let us explicitly
construct just one of several infinite families of such groups G.

Let D be the discriminant of a quadratic number field and let χD : Ẑ
×
→ {±1}

be the continuous quadratic character arising from the corresponding Dirichlet
character. Let ε : GL2(Ẑ)→ {±1} be the character obtained by composing the
reduction map GL2(Ẑ)→ GL2(Z/2Z) with the unique nontrivial homomorphism
GL2(Z/2Z)→ {±1}. Define the group

G D :=
{

A ∈ GL2(Ẑ) : ε(A)= χD(det(A))
}
;

it is an open subgroup of GL2(Ẑ) of index 2 containing −I with det(G D) = Ẑ×

whose level is |D| or 2|D|, depending on whether D ≡ 0 mod 4 or D ≡ 1 mod 4.
For D 6= D′, the groups G D and G D′ are not conjugate in GL2(Ẑ).

The modular curve XG D has genus 0 and a rational point (it has a unique, hence
rational, cusp); the function field of XG D is of the form Q(t) with the map to the j -
line given by J (t)= Dt2

+1728. Each XG D is a Q(
√

D)-twist of the modular curve

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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XG corresponding to the unique index 2 subgroup G ⊆ GL2(Ẑ) whose reduction
has index 2 in GL2(Z/2Z); it has label 2A0-2a in our classification and can be
found in Table 3 (see the online supplement), along with its map to the j-line,
which is J (t)= t2

+ 1728.
In general, if 0⊆ SL2(Z) is a fixed congruence subgroup of level N and index m

containing−I , there are infinitely many nonconjugate open subgroups G⊆GL2(Ẑ)

of index M containing −I with det(G)= Ẑ× whose reductions modulo N coincide
with that of 0 upon intersection with SL2(Z/NZ). The levels M of these groups G
may be arbitrarily large multiples of N (and divisible by arbitrarily large primes).
The corresponding modular curves XG/Q are nonisomorphic, but for each XG there
is a cyclotomic field Q(ζM) over which XG becomes isomorphic to the modular
curve X0/Q(ζN ) (the quotient of the extended upper half plane by the action of 0)
after base change; as in our example, the XG form an infinite family of twists.

1A. `-adic representations. Fix a prime `. Define the set

J` :=
⋃
G

(
πG(XG(Q))∩Q

)
of rational numbers, where G varies over the open subgroups of GL2(Ẑ) whose
level is a power of ` and satisfies −I ∈ G and det(G)= Ẑ×, and for which XG(Q)

is finite. Note that the set J` contains the 13 j-invariants of CM elliptic curves
over Q: for n ≥ 1 each CM j-invariant corresponds to points on at least one of the
modular curves X+s (`

n), X+ns(`
n), X0(`

n), and for sufficiently large n these curves
have genus at least 2, hence finitely many rational points (by Faltings’ theorem).

For an elliptic curve E/Q, let

ρE,`∞ : GalQ→ GL2(Z`)

be the representation describing the Galois action on the `-power torsion points;
it is the composition of ρE with the natural projection GL2(Ẑ)→ GL2(Z`). After
excluding a finite number of j -invariants, we will describe the possible images of the
`-adic representation arising from elliptic curves over Q. Denote by ±ρE,`∞(GalQ)
the group generated by −I and ρE,`∞(GalQ).

The following theorem describes the possibilities for ±ρE,`∞(GalQ), up to con-
jugacy, when jE is not in the (finite!) set J`.

Theorem 1.4.

(i) The set J` is finite.

(ii) If E/Q is an elliptic curve with jE /∈ J`, then ±ρE,`∞(GalQ) is conjugate in
GL2(Z`) to the `-adic projection of a unique group G from Theorem 1.1 with
`-power level. Moreover, G does not have genus 1, level 16, and index 24 in
GL2(Ẑ).

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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(iii) Let G be a group from Theorem 1.1 with `-power level that does not have
genus 1, level 16, and index 24 in GL2(Ẑ). Then there are infinitely many
elliptic curves E/Q, with distinct j-invariants, such that ±ρE,`∞(GalQ) is
conjugate in GL2(Z`) to the `-adic projection of G.

Remark 1.5. (i) Serre [1981, p. 399] has asked whether ρE,` is surjective for all
non-CM elliptic curves E/Q and all primes ` > 37. For ` > 37, this would
imply that the set J` consists of only the 13 j -invariants of CM elliptic curves
over Q.

(ii) It would be nice to explicitly know the finite sets J`; the proof that J` is
finite relies on [Zywina 2015b], which is ineffective since it applies Faltings’
theorem several times.

Theorem 1.4 describes the subgroups of GL2(Z`), up to conjugacy, that occur as
±ρE,`∞(GalQ) for infinitely many elliptic curves E/Q with distinct j-invariants.

Theorem 1.4 also allows us to determine the subgroups of GL2(Z`), up to
conjugacy, that occur as ρE,`∞(GalQ) for infinitely many elliptic curves E/Q with
distinct j -invariants. They are precisely the subgroups H of the `-adic projection G
of a group from Theorem 1.4 with `-power level such that ±H = G. Indeed if
G =±ρE,`∞(GalQ), then for any such H there is a quadratic twist of E such that
H is conjugate to ρE ′,`∞(GalQ), see [Zywina 2015a, §5.1; Sutherland 2016, §5.6];
when H is properly contained in G this quadratic twist is unique up to isomorphism
and can be explicitly determined.

Corollary 1.6. For `=2,3,5,7,11,13 there are respectively 1201,47,23,15,2,11
subgroups H of GL2(Z`) that arise as ρE,`∞(GalQ) for infinitely many elliptic
curves E/Q with distinct j-invariants. For ` > 13 the only such subgroup is
H = GL2(Z`).

A list of the groups H appearing in Corollary 1.6 can be found in electronic
form at [Sutherland and Zywina 2016].

1B. Overview. We now give a brief overview of the contents of this paper. As
already noted, the groups G from Theorem 1.1, along with the corresponding
modular curves XG and morphisms πG , can be found in the online supplement.

In Section 2, we review the background material we need concerning the modular
curves XG . If G has level N , then we can identify the function field of XG with a
subfield of the field FN of modular functions on 0(N ) whose Fourier coefficients
lie in the cyclotomic field Q(ζN ). As a working definition of XG , we define it in
terms of its function field.

In Section 3, we determine up to conjugacy the open subgroups G of GL2(Ẑ)

with genus at most 1 that satisfy det(G)= Ẑ×, −I ∈G, and contain an element that
“looks like complex conjugation”; this last condition is necessary, since otherwise

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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XG(R), and therefore XG(Q), is empty. We are left with 220 groups of genus 0 and
250 groups of genus 1 that include all the groups that appear in Theorem 1.1. These
computations make use of the tables of Cummins and Pauli [2003] of congruence
subgroups of low genus.

Let 0 be a congruence subgroup of SL2(Z) and let X0 be the smooth compact
Riemann surface obtained by taking the quotient of the complex upper-half plane
by 0 and adjoining cusps. Assume further that X0 has genus 0. In Section 4,
we describe how to explicitly construct a hauptmodul for 0; it is a meromorphic
function h on X0 that has a unique pole at the cusp at∞. We describe h in terms
of Siegel functions; its Fourier coefficients are computable and lie in the field
Q(ζN )⊆ C.

In Section 5, we prove the part of Theorem 1.1 concerning genus 0 groups.
Let G be one of the genus 0 groups from Section 3 and let J (t) ∈ Q(t) be the
corresponding rational function from the online supplement. We need to verify that
the function field Q(XG) of XG is of the form Q( f ), for some modular function f
for which J ( f ) coincides with the modular j -function. Using our work in Section 4,
we can construct an explicit modular function h such that Q(ζN )(XG)=Q(ζN )(h),
along with a rational function J ′(t)∈Q(ζN )(t) such that J ′(h)= j . The function f
must satisfy f = ψ(h) for some ψ(t) ∈ Q(ζN )(t) of degree 1, and therefore
J ′(h)= j = J ( f )= J (ψ(h)); this in turn implies that J ′(t)= J (ψ(t)). We then
directly test all the modular functions f := ψ(h), where ψ(t) ∈Q(ζN )(t) is one of
the finitely many degree 1 rational functions that satisfy J ′(t)= J (ψ(t)).

In Section 6, we prove the part of Theorem 1.1 concerning genus 1 groups.
Let G be one of the genus 1 groups from Section 3. One can show that XG has
good reduction at all primes p - N and its modular interpretation gives a way
to compute #XG(Fp) directly from the group G, without requiring an explicit
model. By computing #XG(Fp) for enough primes p - N , one can determine the
Jacobian JG of XG up to isogeny. This allows us to compute the rank of JG(Q)

which is an isogeny invariant of JG . We need only consider groups for which
JG(Q) has positive rank since otherwise XG(Q) is finite; this leaves the 28 genus 1
groups in Theorem 1.1. These 28 groups G of genus 1 and a description of their
morphisms πG already appear in the literature; our contribution lies in proving that
there are no others.

In Section 7, we complete the proof of Theorem 1.4, and in Section 8 we explain
how we found the rational functions J (t) ∈Q(t) whose verification is described in
Section 5.

The online supplement lists the 248 groups G that appear in Theorem 1.1, along
with explicit maps from XG to the j-line; for the 220 groups of genus 0 these are
rational functions J (t), and for the 28 groups of genus 1 these are morphisms J (x, y)
from an explicit Weierstrass model for XG as an elliptic curve of positive rank. One

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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can use these maps to explicitly construct infinite families of elliptic curves E/Q
with distinct j-invariants whose `-adic Galois images match the groups G listed
in Theorem 1.4 and the groups H listed in Corollary 1.6 by choosing appropriate
quadratic twists.

1C. Related results. Contemporaneous with our work, Rouse and Zureick-Brown
[2015] independently computed explicit models for all modular curves XG/Q of
2-power level that have a noncuspidal rational point, including all those for which
XG(Q) is infinite. The XG of 2-power level in our list agree with theirs, although we
generally obtain different (but isomorphic) models (note our groups are transposed
relative to theirs; in our choice of the isomorphism Aut(E[N ])' GL2(Z/NZ) we
view matrices in GL2(Z/NZ) as acting on the left, rather than the right).

Notation and terminology. For each integer n ≥ 1, we denote by ζn the n-th root
of unity e2π i/n in C, and let Kn :=Q(ζn) denote the corresponding cyclotomic field.
For any nonconstant function f ∈ K (t), where K is a field, the degree of f is its
degree as a morphism P1

K → P1
K .

For any ring R, we denote by M2(R) the ring of 2× 2 matrices with coefficients
in R. We denote by Ẑ the profinite completion of Z, and view the profinite group

GL2(Ẑ)' lim
←−−

N
GL2(Z/NZ)'

∏
`

GL2(Z`)

as a topological group in the profinite topology. If G is an open subgroup of GL2(Ẑ),
we define its level to be the least positive integer N for which G is the inverse image
of a subgroup of GL2(Z/NZ) under the natural projection GL2(Ẑ)→GL2(Z/NZ).
If G is a subgroup of GL2(Z/NZ), its level is defined to be the level of its inverse
image in GL2(Ẑ), which is necessarily a divisor of N . For convenience we may
identify the level N subgroups of GL2(Z/NZ) with their inverse images in GL2(Ẑ),
and conversely. By the genus of an open subgroup G of GL2(Ẑ) satisfying −I ∈ G
and det(G)= Ẑ×, we mean the genus of the modular curve XG defined in Section 2.

For sets S and T we use S− T to denote the set of elements that lie in S but
not T .

2. Modular functions and modular curves

In this section, we summarize the background we need concerning modular curves.

2A. Congruence subgroups. Fix a congruence subgroup 0 of SL2(Z), i.e., a sub-
group of SL2(Z) containing

0(N ) := {A ∈ SL2(Z) : A ≡ I (mod N )}

for some integer N ≥ 1. The smallest such N is the level of 0.
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The group 0 acts on the complex upper half plane H by linear fractional trans-
formations, and the quotient Y0 = 0\H is a smooth Riemann surface. By adding
cusps, we can extend Y0 to a smooth compact Riemann surface X0 . We denote by
X (N ) the Riemann surface X0(N ). The genus of 0 is the genus of the Riemann
surface X0.

2B. Cusps. Define the extended upper half plane by H∗ :=H∪P1(Q)=H∪Q∪{∞}.
The action of 0 extends to H∗ and we can identify the quotient 0\H∗ with X0 . In
particular, the cusps correspond to the 0-orbits of Q∪ {∞}.

Lemma 2.1. Let a/b and α/β be elements of Q ∪ {∞} satisfying gcd(a, b) = 1
and gcd(α, β)= 1 (where we take∞=±1/0). Then 0 · a/b = 0 ·α/β if and only
if γ

(a
b

)
≡±

(
α
β

)
(mod N ) for some γ ∈ 0.

Proof. For the case 0 = 0(N ), see [Shimura 1971, Lemma 1.42]. The general case
follows easily. �

Let ±0 be the congruence subgroup generated by −I and 0. From Lemma 2.1,
we find that the cusps of X0 correspond with the orbits of ±0 on the set of(a

b

)
∈ (Z/NZ)2 of order N . Using this, it is straightforward to find representatives

of the cusps of X0.

2C. Modular functions. A modular function for 0 is a meromorphic function
of X0; they correspond to meromorphic functions f of H that satisfy f (γ τ)= f (τ )
for all γ ∈ 0 and are meromorphic at the cusps. The function field C(X0) of X0
consists of the meromorphic functions of X0.

Let τ be a variable of the upper half plane. Let w be the width of the cusp at∞,
i.e., the smallest positive integer for which

( 1
0
w
1

)
is an element of 0; it is a divisor

of N . For any rational number m, define qm
:= e2π imτ . Then any modular function

f for 0 has a unique q-expansion

f (τ )=
∑
n∈Z

cnqn/w,

where the cn are complex numbers that are 0 for all but finitely many n < 0. We
will often refer to the cn as the coefficients of f .

2D. Field of modular functions. Fix a positive integer N . Denote by FN the field
of meromorphic functions of the Riemann surface X (N ) whose q-expansions have
coefficients in KN := Q(ζN ). For example, F1 = Q( j), where j is the modular
j-invariant.

For f ∈FN and γ ∈SL2(Z), let f |γ ∈FN denote the modular function satisfying
f |γ (τ )= f (γ τ).
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For each d ∈ (Z/NZ)×, let σd be the automorphism of KN satisfying σd(ζN )=ζ
d
N .

We extend σd to an automorphism of the field FN by defining

σd( f ) :=
∑

n

σd(cn)qn/N ,

where f has expansion
∑

n cnqn/N . We now recall some facts about the extension
FN of F1 =Q( j).

Proposition 2.2. The extension FN of Q( j) is Galois. There is a unique isomor-
phism

θN : GL2(Z/NZ)/{±I }
∼
−→ Gal(FN/Q( j))

such that the following hold for all f ∈ FN :

(a) For g ∈SL2(Z/NZ), we have θN (g) f = f |γ t , where γ is any matrix in SL2(Z)

that is congruent to g modulo N and γ t is the transpose of γ .

(b) For g =
( 1

0
0
d

)
∈ GL2(Z/NZ), we have θN (g) f = σd( f ).

Moreover, the algebraic closure of Q in FN is Q(ζN ); it corresponds to the subgroup
SL2(Z/NZ)/{±I }.

Proof. This is well known; see [Kubert and Lang 1981, Chapter 2, §2] for a summary
(where the action given is a right action obtained as above but without the transpose
in (a)). �

Throughout the rest of the paper, we let GL2(Z/NZ) act on FN via the homo-
morphism θN of Proposition 2.2. We set g∗( f ) := θN (g)( f ) for g ∈ GL2(Z/NZ)

and f ∈ FN .

Remark 2.3. There are other natural actions of GL2(Z/NZ) on FN ; for example,
one could replace γ t in condition (a) by γ−1 or just act on the right. Our choice is
motivated by Proposition 2.6 below.

2E. Modular curves. Let G be a subgroup of GL2(Z/NZ) satisfying −I ∈G and
det(G)= (Z/NZ)×. Let FG

N be the subfield of FN fixed by the action of G from
Proposition 2.2. Proposition 2.2 and the assumption det(G)= (Z/NZ)× imply that
Q is algebraically closed in FG

N .
The modular curve XG associated with G is the smooth projective curve with

function field FG
N . The curve XG is defined over Q and is geometrically irreducible.

The inclusion of fields FG
N ⊇ F1 =Q( j) gives rise to a nonconstant morphism

πG : XG→ Spec Q[ j] ∪ {∞} = P1
Q

of degree [GL2(Z/NZ) :G]. Moreover, given another group G⊆G ′⊆GL2(Z/NZ),
the inclusion FG ′

N ⊆ FG
N induces a nonconstant morphism XG → XG ′ of degree

[G ′ : G]. Composing XG→ XG ′ with πG ′ gives the morphism πG .
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Let 0 be the congruence subgroup consisting of γ ∈ SL2(Z) for which γ t

modulo N lies in G ∩SL2(Z/NZ). The level of 0 divides, but need not equal, N .

Lemma 2.4. (i) The field KN (XG), i.e., the function field of the base extension of
XG to KN , is the field consisting of f ∈ FN satisfying f |γ = f for all γ ∈ 0.

(ii) The genus of the modular curve XG is equal to the genus of 0.

Proof. Proposition 2.2 implies that KN is algebraically closed in FN and that we
have an isomorphism Gal(FN/KN ( j))

∼
−→ SL2(Z/NZ)/{±I }. Thus KN (XG) is the

subfield of FN fixed by G ∩SL2(Z/NZ). Part (i) is now clear.
Since KN is algebraically closed in FN and Q is algebraically closed in Q(XG),

we have

[C ·KN (XG) :C( j)] = [KN (XG) : KN ( j)] = [Q(XG) :Q( j)] = [GL2(Z/NZ) :G].

Since det(G)= (Z/NZ)×, we deduce that [C · KN (XG) : C( j)] = [SL2(Z) : 0].
Clearly each f ∈KN (XG) is a modular function for 0, thus C·KN (XG)⊆C(X0).

We in fact have C ·KN (XG)=C(X0), since [C ·KN (XG) :C( j)] = [SL2(Z) :0] =

[C(X0) : C( j)]. The curve XG has the same genus as the Riemann surface X0
because C(XG)= C(X0). �

Remark 2.5. Another natural congruence subgroup to study is the congruence
subgroup 0′ consisting of γ ∈SL2(Z) such that γ modulo N lies in G∩SL2(Z/NZ),
which we use later in the paper. Observe that the congruence subgroups 0 and 0′

are conjugate in SL2(Z); indeed, we have B−1γ B = (γ t)−1 for all γ ∈ SL2(Z),
where B :=

( 0
−1

1
0

)
. Thus 0 and 0′ have the same genus.

The following proposition is crucial to our application.

Proposition 2.6. Let E be an elliptic curve defined over Q with jE /∈ {0, 1728}.
Then ρE,N (GalQ) is conjugate in GL2(Z/NZ) to a subgroup of G if and only if jE

belongs to πG(XG(Q)).

Proof. See [Zywina 2015a, §3] for a proof. �

2F. Modular curves and open subgroups. Fix an open subgroup G of GL2(Ẑ)

that satisfies −I ∈ G and det(G)= Ẑ×. Let N ≥ 1 be an integer that is divisible by
the level of G. Define the modular curve

XG := XG,

where G ⊆ GL2(Z/NZ) is the image of G modulo N . Observe that the modular
curve XG and its function field do not depend on the initial choice of N .

Every (open) subgroup G ′ of GL2(Ẑ) that contains G satisfies −I ∈ G ′ and
det(G ′)= Ẑ×, and we have a morphism XG→ XG ′ . With G ′ =GL2(Ẑ), we obtain
a morphism πG : XG→ XG ′ =P1

Q
to the j -line that agrees with πG . The following

is equivalent to Proposition 2.6.
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Proposition 2.7. Let E be an elliptic curve defined over Q with jE /∈ {0, 1728}.
Then ρE(GalQ) is conjugate in GL2(Ẑ) to a subgroup of G if and only if jE belongs
to πG(XG(Q)). �

2G. Complex conjugation. Fix a subgroup G of GL2(Z/NZ) satisfying −I ∈ G
and det(G)= (Z/NZ)×. For our curve XG to have rational points, we need G to
contain an element that “looks like” complex conjugation.

Lemma 2.8. For any elliptic curve E/Q and integer N > 1, the group ρE,N (GalQ)
contains an element that is conjugate in GL2(Z/NZ) to

( 1
0

0
−1

)
or
( 1

0
1
−1

)
.

Proof. This follows from of [Zywina 2015b, Proposition 3.5] (and its proof for the
cases jE ∈ {0, 1728}). �

Note that
( 1

0
0
−1

)
and

( 1
0

1
−1

)
are conjugate to each other in GL2(Z/NZ) if N is

odd. If G does not contain an element that is conjugate in GL2(Z/NZ) to
( 1

0
0
−1

)
or
( 1

0
1
−1

)
, then XG(Q) must be empty since XG(R) is finite (by [Zywina 2015b,

Proposition 3.5]), hence empty, since XG is nonsingular.

3. Group theoretic computations

We define an admissible group to be an open subgroup G of GL2(Ẑ) for which the
following conditions hold:

• G has prime power level.

• −I ∈ G and det(G)= Ẑ×.

• G contains an element that is conjugate in GL2(Ẑ) to
( 1

0
0
−1

)
or
( 1

0
1
−1

)
.

The condition det(G)= Ẑ× is needed for Proposition 2.7 since det(ρE(GalQ))=
Ẑ×. If we were interested in elliptic curves defined over other number fields, then
we could loosen this restriction which could increase the base field of the modular
curve XG .

The condition −I ∈ G is also needed in Proposition 2.7. For an elliptic curve
E/Q, there is a quadratic twist E ′/Q, which automatically has the same j -invariant
as E , such that −I ∈ ρE(GalQ).

The last condition on G is necessary in order for XG(Q) to be nonempty, as
explained in Section 2G.

Proposition 3.1. Let G be an admissible group of genus 0. The set XG(Q) is
infinite.

Proof. We have XG(R) 6= ∅ by [Zywina 2015b, Proposition 3.5]. For primes p
not dividing its prime power level the modular curve XG has good reduction at p
and XG(Qp) 6=∅, since the reduction of XG to Fp necessarily has rational points
that can be lifted to Qp via Hensel’s lemma. Thus XG has rational points locally
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at all but at most one place of Q. The product formula for Hilbert symbols and
the Hasse–Minkowksi theorem then imply that XG has a rational point and is thus
isomorphic to P1 and has infinitely many rational points. �

Remark 3.2. As shown by Proposition 3.1, our three criteria for admissibility rule
out genus 0 curves with no rational points. There are ten groups G of 2-power level
that satisfy our first two criteria but not the third; these give rise to the ten pointless
conics XG found in [Rouse and Zureick-Brown 2015]. There are three such groups
of 3-power level, three of 5-power level, and none of higher prime-power level.

Fix an integer g ≥ 0. In this section, we explain how to enumerate all admissible
subgroups G of GL2(Ẑ), up to conjugacy, that have genus at most g. We shall
apply these methods with g = 1 to verify Theorem 3.3 below, and to find explicit
representatives of these conjugacy classes of groups; Magma [Bosma et al. 1997]
scripts that perform this enumeration can be found in [Sutherland and Zywina 2016].

Theorem 3.3.

(i) Up to conjugacy in GL2(Ẑ), there are 220 admissible subgroups of genus 0.

(ii) Up to conjugacy in GL2(Ẑ), there are 250 admissible subgroups of genus 1.

Remark 3.4. The 220 admissible subgroups G of genus 0, up to conjugacy, are
precisely those given in Tables 1–3 of the online supplement. More precisely, for
each entry of the table, we have an integer N and a set of generators that generates
the image in GL2(Z/NZ) of an admissible group of level N and genus 0.

Remark 3.5. The 28 admissible subgroups G of genus 1 that have infinitely many
rational points, up to conjugacy, are precisely those given in Table 4 of the online
supplement, of which 27 have level 16 and 1 has level 11. The levels arising among
the remaining 222 are 7, 8, 9, 11, 16, 17, 19, 27, 32, and 49.

For a fixed admissible group G of level N , let 0 be the congruence subgroup
of SL2(Z) consisting of matrices whose image modulo N lies in the image of G
mod N ; the level of 0 necessarily divides N , and 0 contains −I . By Lemma 2.4(ii)
and Remark 2.5, the modular curve XG has the same genus as 0.

The basic idea of our computation is to reverse the process above; we start with
a congruence subgroup 0 of genus at most g and prime power level, and then
enumerate the possible groups G that could produce 0.

Let Sg be the set of congruences subgroups of SL2(Z) of prime power level that
contain −I and have genus at most g. We know that the set Sg is finite from a
theorem of Dennin [1974]. When g ≤ 24, and in particular, for g = 1, we can
explicitly determine the elements of Sg from the tables of Cummins and Pauli
[2003] (their methods can also be extended to larger g).

Let Lg be the set of primes that divide the level of some congruence subgroup

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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0 ∈ Sg. The set Lg is finite, since Sg is finite, and we have L1 = {2, 3, 5, 7, 11, 13,
17, 19}. If G is an admissible group of genus at most g, then its level must be a
power of a prime ` ∈ Lg. For the rest of the section, we fix a prime ` ∈ Lg. Since
Lg is finite, it suffices to explain how to compute the admissible groups G with
genus at most g whose level is a power of `, and we need only consider levels
strictly greater than 1 since GL2(Ẑ) is the only admissible group of level 1.

Fix a prime power N := `n > 1, and consider any congruence subgroup 0 ∈ Sg

whose level divides N . By enumerating subgroups of GL2(Z/NZ) one can explicitly
determine those subgroups G N that satisfy the following conditions:

(1) G N has level N ,

(2) G N ∩SL2(Z/NZ) is equal to the image of 0 modulo N ,

(3) det(G N )= (Z/NZ)×,

(4) G N contains an element that is conjugate in GL2(Z/NZ) to
( 1

0
0
−1

)
or
( 1

0
1
−1

)
.

Let H be the image of 0 in SL2(Z/NZ). The group H = G N ∩ SL2(Z/NZ) is
normal in G N and hence G N is a subgroup of the normalizer K of H in GL2(Z/NZ).
So rather than searching for G N in K , we can work in the quotient K/H where the
image of G N is an abelian group isomorphic to (Z/NZ)×. Using Magma, we can
efficiently enumerate all abelian subgroups A of K/H of order #(Z/NZ)×. For
each such subgroup A we then test whether its inverse image G N in K satisfies
conditions (1)–(4) above.

Let G be the subgroup of GL2(Ẑ) consisting of those matrices whose image
modulo N lies in a fixed group G N satisfying the conditions (1)–(4). The group G
is admissible of level N and has genus at most g. Moreover, it is clear that every
admissible group of level N and genus at most g arises in this manner.

Fix an integer e ≥ 1. By applying the above method with 1≤ n ≤ e, we obtain
all admissible groups G of genus at most g and level dividing `e. Our algorithm
proceeds by applying this procedure to increasing values of e. In order for it to
terminate we need to know that there are only finitely many admissible groups G
of `-power level and genus at most g, and we need an explicit way to determine
when we have reached an e that is large enough to guarantee that we have found
them all. Proposition 3.6 below addresses both issues.

Proposition 3.6.

(i) There are only finitely many admissible groups G with genus at most g whose
level is a power of `.

(ii) Take any integer n ≥ 2 with n 6= 2 if `= 2. Define N := `n . Suppose that there
is no subgroup G N of GL2(Z/NZ) that satisfies conditions (1)–(4) for some
0 ∈ Sg with level dividing N. Then any admissible group G of genus at most g
with level a power of ` has level at most N .
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The remainder of this section is devoted to proving Proposition 3.6. We will
need the following basic lemma.

Lemma 3.7. Let ` be a prime and let G be an open subgroup of GL2(Z`). For each
integer m ≥ 1, let im be the index of the image of G in GL2(Z/`

mZ). If in+1 = in

for an integer n ≥ 1, with n 6= 1 if `= 2, then [GL2(Z`) : G] = in .

Proof. Since G is an open subgroup, it suffices to prove im+1 = im for all m ≥ n;
we proceed by induction on m. The base case is given, so we assume im+1 = im for
some m ≥ n; we need to show that im+2 = im+1. Let Gm denote the image of G in
GL2(Z/`

mZ). Reduction modulo `m gives exact sequences related by inclusions

1 Km+1 GL2(Z/`
m+1Z) GL2(Z/`

mZ) 1

1 Hm+1 Gm+1 Gm 1.

The inductive hypothesis im+1 = im implies that the kernels Hm+1 and Km+1

coincide; in particular, Hm+1 is as large as possible (i.e., it has order `4). It thus
suffices to show that the kernel Hm+2 of the reduction map from Gm+2 to Gm+1

also has order `4. We have |Hm+2| ≤ `
4, so it suffices to give an injective map

Hm+1→ Hm+2.
Let M be an element of G whose image in Gm+1 lies in Hm+1; then M= I+`m A

for some A ∈M2(Z`). Since m ≥ 1, with m ≥ 2 if `= 2, we have

(1+ `m A)` = 1+
(
`

1

)
`m A+

(
`

2

)
`2m A2

+ · · · ≡ 1+ `m+1 A (mod `m+2).

The `-power map thus induces an injection Hm+1→ Hm+2. �

Remark 3.8. Lemma 3.7 holds more generally. One can replace GL2(Z`) with the
unit group of any (unital associative) Z`-algebra A that is torsion-free and finitely
generated as a Z`-module (in the lemma, A=M2(Z`)); the proof is exactly the same.

Proof of Proposition 3.6(i). Let G be the set of admissible groups of genus at most
g whose level is a power of `. Note that if G ′ is a subgroup of GL2(Ẑ) containing
some G ∈ G, then G ′ ∈ G. We wish to show that G is finite.

We claim that any admissible group G has only finitely many maximal subgroups
that are also admissible and whose level is a power of `. It suffices to show that an
open subgroup H of GL2(Z`) has only finitely many open maximal subgroups. Let
8(H) be the Frattini subgroup of H ; it is the intersection of the maximal closed
proper subgroups of H . By the proposition in [Serre 1997, §10.5], 8(H) is an
open subgroup of H . This proves the claim.

Now suppose that G is infinite. The claim implies that G contains an infinite
descending chain G1 ) G2 ) G3 ) · · · (let G1 =GL2(Ẑ) ∈ G, let G2 ∈ G be one of
the finitely many maximal subgroups of G1 in G that has infinitely many subgroups
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in G, and continue in this fashion). For each i ≥ 1, let 0i be the congruence subgroup
associated to Gi (i.e., 0i consists of the matrices in SL2(Z) whose image modulo N
lies in the image modulo N of Gi , where N is the level of Gi ); then 0i ∈ Sg. Since
[GL2(Ẑ) : Gi ] = [SL2(Z) : 0i ], we have inclusions 01 ) 02 ) 03 ) · · · . This
contradicts the finiteness of Sg and the proposition follows. �

Proof of Proposition 3.6(ii). Fix an integer n ≥ 1 as in the statement of part (ii).
Suppose there is an integer m > n such that there is an admissible group G of level
`m and genus at most g.

With N := `n , let G N be the image of G in GL2(Z/NZ). The curve XG N

has genus at most g since it is dominated by XG . Therefore, conditions (2),
(3), and (4) hold for some 0 ∈ Sg with level dividing N . Our assumption on n
implies that the level of G N is a proper divisor of N . This implies that the index
in := [GL2(Z/NZ) :G N ] agrees with in−1 := [GL2(Z/`

n−1Z) :G`n−1], where G`n−1

is the image of G in GL2(Z/`
n−1Z). Since in = in−1, Lemma 3.7 implies that

[GL2(Z`) : G] = in−1. However, this means that G has level dividing `n−1 which
is impossible since, by assumption, G has level `m > `n−1. Therefore, no such
admissible group G exists. �

4. Construction of hauptmoduls

Fix a congruence subgroup 0 of genus 0 and level N . The function field of X0 is
then of the form C(h), where the function h : X0→C∪{∞} gives an isomorphism
between X0 and the Riemann sphere; in particular, h has a unique (simple) pole.

We may choose h so that its unique pole is at the cusp∞; we will call such an
h a hauptmodul of 0. Every hauptmodul of 0 is then of the form ah+ b for some
complex numbers a 6= 0 and b. For example, the familiar modular j-invariant

j (τ )= q−1
+ 744+ 196884q + 21493760q2

+ 864299970q3
+ · · ·

is a hauptmodul for SL2(Z). If h is a hauptmodul for 0, then we have an inclusion
of function fields C( j)⊆ C(h) and hence J (h)= j for a unique rational function
J (h) ∈ C(t).

The main task of Section 4 is to describe how to find an explicit hauptmodul h
of 0 in terms of Siegel functions when N is a prime power. Our h will have
coefficients in KN . In Section 4D, we explain how to compute the rational function
J (t) corresponding to h.

4A. Siegel functions. Take any pair a = (a1, a2) ∈Q2
−Z2. We define the Siegel

function ga(τ ) to be the holomorphic function H→ C× defined by the series

−q1/2B2(a1) ·e(a2(a1−1)/2)·(1−e(a2)qa1)

∞∏
n=1

(1−e(a2)qn+a1)(1−e(−a2)qn−a1),
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where e(z)= e2π i z and B2(x)= x2
− x + 1

6 .
Recall that the Dedekind eta function is the holomorphic function on H given by

η(τ) := q1/24
∞∏

n=1

(1− qn).

For each γ =
(a

c
b
d

)
∈ SL2(Z), there is a unique 12-th root of unity ε(γ ) ∈ C× such

that
η(γ τ)2 = ε(γ )(cτ + d)η(τ )2. (4-1)

We can characterize the map ε : SL2(Z)→C× by the property that it is a homomor-
phism satisfying ε

((1
0

1
1

))
= ζ12 and ε

(( 0
−1

1
0

))
= ζ4; see [Kubert and Lang 1981,

Chapter 3, §5]. Moreover, the kernel of ε is a congruence subgroup of level 12 and
agrees with the commutator subgroup of SL2(Z).

The following lemma gives several key properties of Siegel functions.

Lemma 4.1. For any γ ∈ SL2(Z), a ∈Q2
−Z2, and b ∈ Z2, the following hold:

(i) g−a =−ga ,

(ii) ga+b = (−1)b1+b2+b1b2 · e((b2a1− b1a2)/2) · ga ,

(iii) ga|γ = ε(γ ) · gaγ , where we view a as a row vector.

Proof. In [Kubert and Lang 1981, Chapter 2, §1], we see that ga(τ )= ka(τ )η(τ )
2,

where ka(τ ) is a Klein form (with W =Wτ in the notation the previous work). Part
(ii) follows directly from property K2 in [loc. cit.].

Take any γ ∈ SL2(Z) and let (c, d) be the last row of γ . From properties K0
and K1 of the above reference, we find that

ka(γ τ)= (cτ + d)−1kaγ (τ ). (4-2)

From (4-1) and (4-2), we deduce that ga(γ τ)= ε(γ )·gaγ (τ ), which proves part (iii).
Finally, part (i) follows from part (iii) with γ =−I , since ε(−I )=−1. �

For an integer N > 1, let AN be the set of pairs (a1, a2) ∈ N−1Z2
− Z2 that

satisfy one of the following conditions:

• 0< a1 <
1
2 and 0≤ a2 < 1,

• a1 = 0 and 0< a2 ≤
1
2 ,

• a1 =
1
2 and 0≤ a2 ≤

1
2 .

The set AN is chosen so that every nonzero coset of (N−1Z2)/Z2 is represented by
an element of the form a or −a for a unique a ∈AN . So for any a ∈ N−1Z2

−Z2,
we can use parts (i) and (ii) of Lemma 4.1 to show that

ga = ε · ζ · ga′
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for an explicit sign ε ∈ {±1}, N -th root of unity ζ , and pair a′ ∈AN .

4B. Siegel orbits. Now fix a congruence subgroup 0 of level N > 1. For each
a ∈AN and γ ∈ SL2(Z), let a ∗ γ be the unique element of AN such that a ∗ γ or
−a ∗ γ lies in the coset aγ +Z2. The map

AN ×SL2(Z)→AN , (a, γ ) 7→ a ∗ γ

then gives a right action of SL2(Z) on AN . In particular, this gives a right action of
0 on AN .

Fix a 0-orbit O of AN and define

gO :=
∏

a∈O
ga;

it is a holomorphic function H→ C×.

Lemma 4.2. The function g12N
O is a modular function for 0. Every pole and zero

of g12N
O on X0 is a cusp.

Proof. Take any γ ∈ 0 and a ∈ AN . By Lemma 4.1(iii), we have g12N
a |γ = g12N

aγ .
We have aγ = ε · (a ∗ γ + b) for some ε ∈ {±1} and b ∈ Z2. By parts (i) and (ii) of
Lemma 4.1, we find that g12N

a |γ = g12N
aγ is equal to g12N

a∗γ . Therefore,

g12N
O |γ =

∏
a∈O

g12N
a |γ =

∏
a∈O

g12N
a∗γ = g12N

O ,

where the last equality uses the fact that the map O→O, a 7→ a ∗ γ is a bijection
(since O is a 0-orbit). The remaining statement about the poles and zeros of g12N

O
follows immediately since each ga is holomorphic and nonzero on H. �

Let P1, . . . , Pr be the cusps of X0. Choose a representative s j ∈ Q∪ {∞} of
each cusp Pj and a matrix A j ∈ SL2(Z) satisfying A j · ∞ = s j . Let w j be the
width of the cusp Pj ; it is the smallest positive integer b such that A j

( 1
0

b
1

)
A−1

j is
an element of 0.

For a nonzero meromorphic function f of H given by a q-expansion, we define
ordq( f ) to be the smallest rational number m such that there is a nonzero term of
the form qm in the expansion of f . For each cusp Pj , define the map

vPj : C(X0)
×
→ Z, f 7→ w j · ordq( f |A j );

it is a surjective homomorphism and agrees with the valuation giving the order of
vanishing of a function at Pj . We extend ordq and vPj by setting ordq(0)=+∞
and vPj (0)=+∞.

We now give a computable expression for the divisor of g12N
O on X0.
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Lemma 4.3. With notation as above, we have

div(g12N
O )=

r∑
j=1

(
6Nw j

∑
a∈O

B2
(
〈(a A j )1〉

))
· Pj ,

where B2(x)= x2
−x+ 1

6 , (a A j )1 is the first coordinate of the row vector a A j , and
〈x〉 denotes the positive fractional part of the real number x , chosen so 0≤ 〈x〉< 1
and x −〈x〉 ∈ Z.

Proof. For any a ∈ (N−1Z2)−Z2, we have ordq(ga) =
1
2 · B2(〈a1〉); see [Kubert

and Lang 1981, p. 31]. We have

vPj (g
12N
O )=

∑
a∈O

vPj (g
12N
a )=

∑
a∈O

w j ordq(g12N
a |A j )=

∑
a∈O

w j ordq(g12N
a A j

),

where the last equality uses Lemma 4.1(iii). Therefore,

vPj (g
12N
O )=

∑
a∈O

12Nw j ordq(ga A j )= 6Nw j

∑
a∈O

B2
(
〈(a A j )1〉

)
.

Since all poles and zeros of g12N
O are cusps, we have div(g12N

O )=
r∑

i=1
vPj (g

12N
O )·Pj ,

and the lemma follows immediately. �

4C. Constructing hauptmoduls of prime power level. Fix a congruence subgroup
0 of SL2(Z) of prime power level N > 1 that has genus 0. Let P1, . . . , Pr be the
cusps of 0; we choose our cusps so that P1 is the cusp at∞.

In this section, we explain how to construct an explicit hauptmodul of 0 whose
q-expansion has coefficients in KN . Moreover, our hauptmodul will be of the form

M∑
i=1

ζ
ei
2N 2

∏
a∈AN

gma,i
a (4-3)

with integers ma,i and ei .

Case 1: multiple cusps. First assume that 0 has at least two cusps. We will use
the following lemma to construct a hauptmodul for certain genus 0 congruence
subgroups.

Let O1, . . . ,On be the distinct 0-orbits of AN . For each Oi , define the divisor
Di := div(g12N

Oi
) on X0 . By Lemma 4.3, the divisors D1, . . . , Dn are supported on

{P1, . . . , Pr } and are straightforward to compute.

Lemma 4.4. Suppose there is an n-tuple m ∈ Zn such that

n∑
i=1

mi Di =−12N · P1+ 12N · P2.
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Let 0 ≤ e < 2N 2 be the integer satisfying e ≡
∑n

i=1 mi
∑

a∈Oi
Na2(N − Na1)

(mod 2N 2). Then

h := ζ e
2N 2

n∏
i=1

gmi
Oi

is a hauptmodul for 0 whose q-expansion has coefficients in KN . On X0 , we have
div(h)=−P1+ P2.

Proof. Since X0 has genus 0, there is a meromorphic function f on X0 with
div( f )=−P1+ P2. Lemma 4.2 implies that f 12N/h12N defines a function on X0;
it has divisor

12N div( f )−
n∑

i=1

mi div(g12N
Oi

)= 12N (−P1+ P2)−

n∑
i=1

mi Di = 0,

where the last equality uses our assumption on m. Therefore, f 12N/h12N is constant.
Since f and h are meromorphic functions on the upper half-plane, we deduce that
f/h is a (nonzero) constant. In particular, h is modular for 0 and div(h)=−P1+P2.

The function h on X0 is a hauptmodul for 0 since its only pole is the simple pole
at P1, i.e., the cusp at∞.

It remains to show that the coefficients of h lie in KN . Take any a ∈AN . From
the series defining ga , we find that a equals the root of unity e

( 1
2a2(a1 − 1)

)
=

ζ
Na2(Na1−N )
2N 2 times a Laurent series in q1/(6N 2) with coefficients in KN . Set

e′ :=
n∑

i=1

mi

∑
a∈Oi

Na2(Na1− N ).

The coefficients of ζ−e′

2N 2

∏n
i=1 gmi

Oi
thus all lie in KN . The lemma follows since

e ≡−e′ (mod 2N 2). �

Using the Cummins–Pauli classification of genus 0 congruence subgroups [Cum-
mins and Pauli 2003], we have explicitly verified that the n-tuple m from Lemma 4.4
always exists. Using Lemma 4.3, the existence of m comes down to finding integral
solutions to r linear equations with integer coefficients in n variables. Using
Lemma 4.4, we can thus find an explicit hauptmodul for 0 of the form (4-3) with
M = 1 (we have ma,i = mi if a ∈Oi ).

Remark 4.5. One can also abstractly prove the existence of the n-tuple m. If N is
an odd prime power, then any modular function of level N whose zeros and poles
are all cusps can be expressed as a constant times a product of Siegel functions ga

with a ∈ N−1Z2
−Z; see [Kubert and Lang 1981, Chapter 5, Theorem 1.1(i)].

If N ≥ 4 is a power of 2, this can also be deduced from [loc. cit.]. (One needs
to be a little careful here since ga has a different definition in [Kubert and Lang
1981, Chapter 4, §1] when 2a ∈ Z. For the alternate ga from the previous work
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with 2a ∈ Z, one can express them as a constant times a product of Siegel functions
ga′ with a′ ∈A4 ⊆AN .)

The case N = 2 can be handled directly. For example, one can show that

g8
(1/2,0) · g

4
(1/2,1/2) and g12

(1/2,0) · g
12
(1/2,1/2)

are hauptmoduls for 0(2) and 00(2), respectively (note that 0ns(2) has a single
cusp and does not fall into this case; it falls into case 2 below).

Case 2: a single cusp and N 6= 11. Now assume that X0 has a single cusp and that
N 6= 11. There are no nonconstant modular functions for 0 whose zeros and poles
are only at the cusps of X0 . In particular, a hauptmodul of 0 is never be equal to a
product of Siegel functions.

Using the Cummins–Pauli classification, we find that there is a congruence
subgroup 0′ that is a proper normal subgroup of 0, also of level N and containing
−I , such that X0′ has genus 0 and has exactly [0 : 0′] cusps (this is where we use
N 6= 11).

Since X0′ has multiple cusps, we know from Case 1 how to construct a haupt-
modul h′ of 0′ with coefficients in KN that is of the form (4-3). Using that 0′ is
normal in 0, we find that h′|γ is modular for 0′ for all γ ∈ 0 and the function
depends only on the coset 0′ · γ . Define

h :=
∑

γ∈0′\0

h′|γ ;

it is a modular function for 0. Since X0 has only one cusp and X0′ has [0 :0′] cusps,
we deduce that the modular functions {h′|γ }γ∈0′\0 on X0′ each have their unique
(simple) pole at different cusps. This implies that h has a simple pole at the unique
cusp of X0 and is holomorphic elsewhere. Therefore, h is a hauptmodul for 0.

Since h′ is modular for 0(N ) and has coefficients in KN , so does h′|γ for all
γ ∈ SL2(Z); see Proposition 2.2. Therefore, the coefficients of h lie in KN .

Finally, it remains to show that h is of the form (4-3). It suffices to show that h′|γ
is of the form (4-3) for a fixed γ ∈ 0. We know that h′ is equal to some product
ζ e

2N 2

∏
a∈AN

gma
a , so

h|γ = ε(γ )bζ e
2N 2

∏
a∈AN

gma
aγ

with b :=
∑

a∈AN
ma by Lemma 4.1(iii). Recall that for each a ∈ AN , there is a

unique a ∗ γ ∈ AN such that aγ lies in the same coset of (N−1Z2)/Z2 as a ∗ γ
or −a ∗ γ . From Lemma 4.1(i) and (ii), the functions gma

aγ and gma
a∗γ agree up to a

multiplication by some computable root of unity −ζ e′
N . Therefore, h|γ is equal to

ε(γ )b times a function of the form (4-3) with M = 1.
It remains only to show that ε(γ )b is a power of a 2N 2-th root of unity. Kubert

and Lang [1981, Chapter 3, §5] give a necessary and sufficient condition for the
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product
∏

a∈AN
gma

a to be modular for 0(N ); these conditions hold since h′ is
modular for 0′ ⊇ 0(N ). If N is a power of a prime `≥ 5, then [Kubert and Lang
1981, Chapter 3, Theorem 5.2] implies that b ≡ 0 (mod 12) and hence ε(γ )b = 1.
If N is a power of 3, then [Kubert and Lang 1981, Chapter 3, Theorem 5.3] implies
that b ≡ 0 (mod 4) and hence ε(γ )b is a power of ζ3. If N is a power of 2, then
[Kubert and Lang 1981, Chapter 3, Theorem 5.3] implies that b ≡ 0 (mod 3) and
hence ε(γ )b is a power of ζ4. Therefore, ε(γ )b is indeed a power of a 2N 2-th root
of unity.

Case 3: N = 11. The remaining case is when X0 has a single cusp and N = 11.
We include this case only for completeness; we will not need it for our application.

Define the function

f (τ ) :=
∏

(a1,a2)∈B

g(a1/11, a2/11)(τ ),

where

B :=
{
(0,1), (0,2), (0,3), (1,0), (1,2), (1,5), (1,7), (2,1), (2,2),
(2,4), (2,5), (2,6), (2,7), (2,8), (2,9), (2,10), (3,0), (3,2),
(3,4), (3,5), (3,6), (3,8), (3,10), (4,0), (4,1), (4,2), (4,4),
(4,5), (4,6), (5,1), (5,4), (5,5), (5,6), (5,7), (5,8), (5,9)

}
.

One can verify that∑
(a1,a2)∈B

a2
1 ≡

∑
(a1,a2)∈B

a2
2 ≡

∑
(a1,a2)∈B

a1a2 ≡ 0 (mod 11)

and that |B| = 36≡ 0 (mod 12). Theorem 5.2 of [Kubert and Lang 1981, Chapter
3, §5] implies that f is a modular function for 0(11). Using∑

(a1,a2)∈B

1
11

a2 ·

1
11a1− 1

2
=−

60
11

and the q-expansion of Siegel functions from Section 4A, we find that all the
coefficients of f lie in K11. Therefore, f ∈ F11.

Using that 0(11) is normal in 0, we find that f |γ is modular for 0(11) for all
γ ∈ 0 and the function depends only on the coset 0(11) · γ . Define

h :=
∑

γ∈0(11)\0

f |γ ;

it is a modular function for 0. That h is of the form (4-3) follows as in the previous
case.

We claim that h is a hauptmodul for 0. From our description of h in terms of
Siegel functions, we find that h has no poles except possibly at the unique cusp
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(at∞). From [Cummins and Pauli 2003], there is a unique genus 0 congruence
subgroup of SL2(Z) of level 11 up to conjugacy in GL2(Z) (the one labeled 11A0).
We have computed all the possible 0 and shown that h has a simple pole at∞, and
is therefore a hauptmodul.

Remark 4.6. The set B comes from Section 5.3 of [Chua et al. 2004]. That
work gives methods to compute hauptmoduls for genus 0 congruence subgroups
(unfortunately, the accompanying hauptmodul tables are no longer available). The
authors use “generalized Dedekind eta functions”, which are essentially Siegel
functions.

4D. The rational function J(t). For a hauptmodul h of 0, there is a unique func-
tion J (t) ∈ C(t) such that J (h)= j ; it has degree d := [SL2(Z) : ±0].

Let us briefly explain how to compute J (t) assuming that one can compute
sufficiently many terms of the expansion of f . Let K ⊆ C be a field containing all
the coefficients of h. Consider the equation

(adhd
+ · · ·+ a1h+ a0)− j · (bdhd

+ · · ·+ b1h+ b0)= 0 (4-4)

with unknowns ai , bi ∈ K , where d := [SL2(Z) : ±0]. Computing the q-expansion
coefficients of the left-hand side of (4-4) yields a system of homogeneous linear
equations in the unknowns ai and bi . The existence and uniqueness of J ensure that
the solutions (a1, . . . , ad , b1, . . . , bd) ∈ K 2d form a one-dimensional subspace. By
computing sufficiently many coefficients of (4-4) one can find a nonzero solution
(a1, . . . , ad , b1, . . . , bd) ∈ K 2d , unique up to scaling by K×, and

J (t)=
ad td
+ · · ·+ a1t + a0

bd td + · · ·+ b1t + b0
∈ K (t)

is then the unique rational function for which J (h)= j . Note that if the hauptmodul h
is constructed as in the previous section then we have J (t) ∈ KN (t), where N is
the level of 0.

5. Modular curves of genus 0

Fix the following:

• An integer N > 1 that is a prime power.

• A subgroup G of GL2(Z/NZ) satisfying −I ∈ G and det(G)= (Z/NZ)×.

• A rational function J (t) ∈Q(t).

In this section, we explain how to determine if the function field of XG is of the
form Q( f ) for some modular function f ∈ FN satisfying J ( f )= j . We will use
this to verify the entries of Tables 1–3, found in the online supplement.

If such an f exists, then XG 'P1
Q

and the isomorphism πG : XG→P1
Q

is given

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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by the relation j = J ( f ) in their function fields. We may assume the necessary
condition that [GL2(Z/NZ) : G] = degπG agrees with the degree of J (t).

Remark 5.1. In Section 8 we explain how the J (t) listed in Tables 1–3 of the
online supplement, were actually found, which involves the use of a Monte Carlo
algorithm and assumes the generalized Riemann hypothesis (GRH). The purpose of
this section is to explain how we can unconditionally verify a given J (t), regardless
of how it was found.

5A. Construction of possible f . Let 0 be the congruence subgroup consisting of
γ ∈ SL2(Z) for which γ t modulo N lies in G (equivalently, in G ∩ SL2(Z/NZ)).
By Lemma 2.4(ii), we may assume that 0 has genus 0 since otherwise XG has
positive genus and its function field cannot be of the form Q( f ).

The group 0 acts on the right on the field FN ; let F0
N be subfield fixed by this

action. By Lemma 2.4(i), we have KN (XG)= F0
N .

In Section 4C, we described how to compute an explicit hauptmodul h for 0
such that coefficients of its q-expansion all lie in KN ′ ⊆ KN , where the level N ′ of
0 divides N . Therefore, we have

KN (XG)= F0
N = KN (h).

Moreover, we can express h in terms of Siegel functions and hence we can
compute as many of its coefficients as we desire. In Section 4D, we described how
to compute the unique rational function J ′(t) ∈ KN (t) for which j = J ′(h). The
degree of J ′(t) agrees with [SL2(Z) : 0] = [GL2(Z/NZ) : G], thus J (t) and J ′(t)
have the same degree.

Remark 5.2. The rational function J ′(t) gives a map to the j -line from X0 , which
is defined over KN =Q(ζN ), while the rational function J (t) gives a map to the
j-line from XG , which is defined over Q. We use J ′(t) in our procedure to verify
J (t), but note that J ′(t) does not determine J (t); in general there will be multiple
nonconjugate subgroups G corresponding to 0 and a different rational function
J (t) for each of the corresponding XG (in total we have 220 modular curves XG

of genus 0 corresponding to 73 modular curves X0).

Lemma 5.3. The modular functions f ∈ KN (XG) that satisfy KN (XG)= KN ( f )
and J ( f ) = j are precisely those of the form ψ(h), where ψ(t) ∈ KN (t) is a
degree 1 function satisfying J ′(t)= J (ψ(t)).

Proof. First take any ψ(t) ∈ KN (t) of degree 1 satisfying J ′(t)= J (ψ(t)). Define
f := ψ(h). We have KN ( f ) = KN (h) = KN (XG), since ψ has an inverse, and
J ( f )= J (ψ(h))= J ′(h)= j .

Now suppose that KN (XG)= KN ( f ) for some f ∈ KN (XG) satisfying J ( f )= j .
Since KN ( f )= KN (XG)= KN (h), we have f =ψ(h) for a unique ψ(t) ∈ KN (t)

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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of degree 1. We then have j = J ( f ) = J (ψ(h)) and therefore J ′(t) = J (ψ(t)),
since J ′(t) is the unique element of KN (t) that satisfies J ′(h)= j . �

5B. Finding possible f . Define 9 to be the set of ψ(t) ∈ KN (t) of degree 1 for
which J ′(t) = J (ψ(t)); these ψ arise in Lemma 5.3. We now explain how to
compute 9.

Choose three distinct elements β1, β2, β3 ∈ KN ∪{∞}. For 1≤ i ≤ 3, define the
set

Ri :=
{
α ∈ KN ∪ {∞} : J ′(βi )= J (α) and ordβi (J

′)= ordα(J )
}
,

where ordβi (J
′) is the order of vanishing of J ′(t) at t = βi . Let R be the set of

triples α = (α1, α2, α3) ∈ R1× R2× R3 such that α1, α2, and α3 are distinct. Let
ψα ∈ KN (t) be the unique rational function of degree 1 such that ψα(βi )= αi for
all 1≤ i ≤ 3.

Take any ψ ∈ 9. We have J ′(βi ) = J (ψ(βi )) and ordβ(J ′) = ordψ(β)(J ) for
each 1 ≤ i ≤ 3. Therefore, ψ(βi ) ∈ Ri for each 1 ≤ i ≤ 3 and hence ψ = ψα for
some α ∈ R. So we have

9 =
{
ψα : α ∈ R, J ′(t)= J (ψ(t))

}
.

Since R is finite, this gives us a way to compute the (finite) set 9.
By Lemma 5.3, the set

{ψ(h) : ψ ∈9}

is the set of modular functions f ∈ KN (XG) that satisfy KN (XG) = KN ( f ) and
J ( f )= j .

5C. Checking each f . Let f be one of the finite number of functions that satisfy
KN (XG)= KN ( f ) and J ( f )= j . We just saw how to compute all such f ; they are
of the form ψ(h) for a degree 1 function ψ(t) ∈ KN (t) and a modular function h
satisfying KN (XG)= KN (h) that is expressed in terms of Siegel functions. Recall
from Section 2D that each A ∈ GL2(Z/NZ) acts on FN via the isomorphism
θN : GL2(Z/NZ)/{±I }

∼
−→ Gal(FN/Q( j)) of Proposition 2.2, and for f ∈ FN we

use A∗( f ) := θN (A)( f ) to denote this action.

Lemma 5.4. (i) We have Q(XG)=Q( f ) if and only if f ∈Q(XG).

(ii) For a matrix A ∈ G, we have A∗( f ) = f if and only if ordq(A∗( f )− f ) >
2w/N ′, where w is the width of the cusp∞ of X0 and N ′ is the level of 0.

Proof. We first prove part (i); only one implication needs proof. Suppose that
f ∈Q(XG). Then Q( f )⊆Q(XG) and it suffices to show that these two fields have
the same degree over Q( j). This is true since we have been assuming that degπG

is equal to the degree of J (t).
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For part (ii), again only one implication needs proof. Suppose ordq(A∗( f )− f )>
2w/N ′. As meromorphic functions on X0, f and A∗( f ) have a unique (simple)
pole since h has this property andψ has degree 1. Therefore, the function A∗( f )− f
on X0 is zero or has at most two poles (and hence at most two zeros). Our assumption
ordq(A∗( f )− f ) > 2w/N ′ implies that A∗( f )− f has a zero of order 3 at the
cusp∞ and thus A∗( f )− f = 0. �

By Lemma 5.4(i), we have Q(XG) = Q( f ) if and only if A∗( f ) = f for all
A ∈ G in a set of generators of G; it suffices to consider A ∈ G for which det(A)
generate (Z/NZ)× since h and hence f is fixed by G ∩ SL2(Z/NZ). It remains
to describe how to determine whether A∗( f ) is equal to f . By Lemma 5.4(ii), it
suffices to compute enough terms of the q-expansion of A∗( f )− f to determine
whether ordq(A∗( f )− f ) > 2w/N ′ holds.

Finally, let us briefly explain how to compute terms in the q-expansion of
A∗( f )− f . Let d be an odd integer congruent to det(A) modulo N . Choose a
matrix γ ∈ SL2(Z) so that At

≡
( 1

0
0
d

)
γ (mod N ). We thus have

A∗( f )− f = σd( f )|γ − f = σd(ψ)(σd(h)|γ )−ψ(h), (5-1)

where σd(ψ) is the rational function with σd applied to the coefficients of its nu-
merator and denominator. Our hauptmodul h is of the form

∑M
i=1 ζ

ei
2N 2

∏
a∈AN

gma,i
a

for certain integers ei and ma,i , so

σd(h)|γ =
M∑

i=1

ζ
ei d
2N 2

∏
a∈AN

(σd(ga)|γ )
ma,i .

From the series expansion of ga , one easily checks that σd(g(a1,a2)) = g(a1,da2).
From Lemma 4.1(iii), we have σd(ga)|γ = ε(γ )g(a1,da2)γ and hence

σd(h)|γ =
M∑

i=1

ζ
ei d
2N 2 ·

∏
a∈AN

ε(γ )ma,i ·

∏
a∈AN

gma,i
(a1,da2)γ

.

Thus by computing enough terms in the q-expansion of the functions {ga}a∈AN ,
we are able to compute the q-expansion of h and σd(h)|γ to as many terms as we
desire. This allows us to compute terms in the q-expansion of A∗( f )− f via (5-1).

Remark 5.5. Suppose that X0 has at least 3 cusps. We then have A∗( f ) = f if
and only if A∗( f ) and f take the same value at any three of the cusps (as in the
proof of Lemma 5.4, this implies that A∗( f )− f has at least three zeros and hence
is the zero function). In the case of at least three cusps, our hauptmodul h was
given as a constant times a product of Siegel functions; so its value at the cusp∞ is
determined by the first term of the q-expansion of h. The value at any other cusp c
can be determined by the first term of the q-expansion of h|γ with γ ∈ SL2(Z)
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satisfying γ∞= c. This approach is quicker since fewer terms of the q-expansions
are required.

5D. Verifying the entries of our tables. We now explain how to verify the validity
of our genus 0 tables. Magma scripts that perform these verifications can be found
in [Sutherland and Zywina 2016].

In the online supplement, each row of Tables 1–3 gives a set of generators of
a subgroup G of GL2(Z/NZ) that satisfies −I ∈ G and det(G)= (Z/NZ)× for a
prime power N . We may assume that N > 1. By composing rational maps, we
obtain a corresponding rational function J (t) ∈Q(t).

Using the earlier parts of Section 5, we can construct a modular function f ∈FN

such that Q(XG) = Q( f ) and J ( f ) = j . So XG is isomorphic to P1
Q

and the
morphism πG : XG→ P1

Q
is given by the relation j = J ( f ) in their function fields.

(We also note that there is no harm in replacing G by a conjugate group; this is
useful because one can reuse the hauptmodul computations for different groups in
the tables.)

Fix a group G⊆GL2(Z/NZ) as above, and a modular function f ∈FN satisfying
Q(XG)=Q( f ) and J ( f )= j .

Now fix another group G ′ ⊆ GL2(Z/N ′Z) from our table so that N divides
N ′ and the image of G ′ in GL2(Z/NZ) is conjugate to a subgroup of G. In
the above computations, we have constructed a modular function f ′ satisfying
Q(XG ′) =Q( f ′) and J ′( f ′) = j for a rational function J ′(t) ∈Q(t) also arising
from the tables.

Take any subgroup G̃ ⊆ GL2(Z/NZ) conjugate to G ′ whose image modulo N
lies in G. Choose any A ∈ GL2(Z/N ′Z) for which G̃ := AG ′A−1 and define
f̃ := A∗( f ′). We have an inclusion of fields

Q( f̃ )=Q(X G̃)⊇Q(XG)=Q( f ).

The extension Q( f̃ )/Q( f ) has degree i := [GL2(Z/N ′Z):G ′]/[GL2(Z/NZ):G].
Therefore, ϕ( f̃ )= f for a unique ϕ(t) ∈Q(t) of degree i . We can compute ϕ(t)
using the method from Section 4D; the coefficients of f and f̃ can be computed as
in Section 5C.

The rational function ϕ is not unique, it depends on the choices of G̃, f , f ′,
and A. However, any other rational function occurring would be of the form
ψ ′(ϕ(ψ(t))), where ψ,ψ ′ ∈Q(t) are degree 1 functions satisfying J (ψ(t))= J (t)
and J ′(ψ ′(t))= J ′(t). Note that all the possible ψ and ψ ′ can be computed as in
Section 5B (with J = J ′). We have checked that the rational function relating G
and G ′ in our tables, when given, is indeed of the form ψ ′(ϕ(ψ(t))).

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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6. Modular curves of genus 1

We now consider the open subgroups G of GL2(Ẑ) with genus 1 and prime power
level N = `e that satisfy −I ∈ G and det(G)= Ẑ×. We are interested in describing
those G for which XG(Q) is infinite. There is no harm in replacing G by a conjugate.
So by Theorem 3.3(ii), there are 250 cases that need to be checked.

Let JG be the Jacobian of the curve XG . Using the methods of [Zywina 2015b],
we can compute the rank of JG(Q). From [Deligne and Rapoport 1973, §IV], we
find that the curve XG has good reduction at all primes p - N = `e. Therefore, JG

is an elliptic curve defined over Q whose conductor is a power of `. The primes `
that arise are small enough to ensure that JG is isomorphic to one of the elliptic
curves in Cremona’s [2016] tables; this gives a finite number of candidates for JG

up to isogeny.
For each prime p - 6`, we can compute #JG(Fp)= #XG(Fp) from the modular

interpretation of XG ; see [Zywina 2015b, §3.6] for details. In particular, we can
compute #JG(Fp) directly from the group G without computing a model for XG (or
its reduction modulo p). By computing several values of #JG(Fp) with p 6= `, we
can quickly distinguish the isogeny class of JG among the finite set of candidates.
We then compute the rank of JG(Q), which we note is an isogeny invariant.

Running this procedure on each of the 250 genus 1 groups G given by Theorem 3.3,
we find that JG(Q) has rank 0 for 222 groups and JG(Q) has positive rank for 28
groups; a Magma script that performs this computation can be found in [Sutherland
and Zywina 2016]. We need only consider the 28 groups G for which JG(Q) has
positive rank, since XG(Q) is finite if JG(Q) has rank 0.

Now let G be one of the 28 groups for which JG(Q) has positive rank; they are
precisely the 28 genus 1 groups in Theorem 1.1 and can be found in Table 4 of the
online supplement. For each of these groups G, if XG(Q) is nonempty then it must
be infinite, since the Abel–Jacobi map then gives a bijection from XG(Q) to JG(Q).
We initially verified that XG(Q) is nonempty by finding an elliptic curve E/Q with
ρE(GalQ)⊆ G using an extension of the algorithm in [Sutherland 2016].

For each of these 28 groups G, a model for XG and the morphism πG can already
be found in the literature (and are equivalent to the ones we give in the online
supplement). For the 27 groups G of level 16 these curves and morphisms were
constructed in [Rouse and Zureick-Brown 2015]; the models and morphisms we
give in Table 4 for these groups are slightly different (we constructed them by taking
fiber products of our genus 0 curves), but we have verified that they are isomorphic
(note that their groups are transposed relative to ours). The remaining group G
has level 11 and its image in GL2(Z/11Z) is the normalizer of a nonsplit Cartan
subgroup. An explicit model for XG = X+ns(11) and the morphism to the j -line can
be found in [Halberstadt 1998]; these are reproduced in the online supplement.

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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7. Proof of Theorem 1.4

If `≤ 13, then the set J` is finite by [Zywina 2015b, Proposition 4.8]. If ` > 13,
this follows from [Zywina 2015b, Proposition 4.9]; note that ρE,`∞ is surjective if
and only if ρE,` is surjective, since ` ≥ 5, by [Serre 1968, §IV, Lemma 3]. This
proves (i).

For a group G from Theorem 1.1, define the set

SG :=
⋃
G ′
πG ′,G(XG ′(Q)),

where G ′ varies over the proper subgroups of G that are conjugate to one of the
groups in Theorem 1.1 of `-power level and πG ′,G : XG ′ → XG is the natural
morphism induced by the inclusion G ′ ⊆ G. Note that this is a finite union.

Suppose first that G has genus 0. Then XG ' P1
Q

and SG is a thin subset
of XG(Q), in the language of [Serre 1997, §9]. The field Q is Hilbertian, and in
particular P1(Q)' XG(Q) is not thin; this implies that the complement XG(Q)−SG

cannot be thin and must be infinite.
Suppose that G has genus 1. If G does not have level 16 and index 24, then there

are no proper subgroups G ′ of G that are conjugate to a group from Theorem 1.1,
and therefore SG is empty and XG(Q)−SG is infinite.

Now suppose that G has genus 1, level 16, and index 24. There are 7 such G,
labeled

16C1-16c, 16C1-16d, 16B1-16a, 16B1-16c, 16D1-16d, 8D1-16b, 8D1-16c

and explicitly described in Table 4 of the online supplement. Each of these G
contains either two or four index 2 subgroups G ′ that are conjugate to one of the
groups in Theorem 1.1. In every case we have SG = XG(Q), so that XG(Q)−SG

is empty; see [Rouse and Zureick-Brown 2015, Example 6.11, Remark 6.3].
Let E/Q be an elliptic curve with jE /∈J`. The group±ρE,`∞(GalQ) is conjugate

in GL2(Z`) to the `-adic projection of a unique group G from Theorem 1.1 with
`-power level. Using Proposition 2.6, we can also characterize G as the unique
group from Theorem 1.1 with `-power level such that jE ∈ πG(XG(Q)−SG). Parts
(ii) and (iii) follow by noting that πG(XG(Q)−SG) is empty when G has genus 1,
level 16, and index 24, and it is infinite otherwise.

8. How the J(t) were found

Let G be one of the genus 0 subgroups of GL2(Ẑ) from Theorem 1.1; they are listed
in Tables 1–3 of the online supplement and were determined using the algorithm
described in Section 3. For each G, we also have a rational function J (t) ∈Q(t)

http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
http://msp.org/ant/2017/11-5/ant-v11-n5-x05-GroupTables.pdf
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such that the function field of XG is of the form Q( f ) and j = J ( f ), where j is
the modular j-invariant; the verification of this property is described in Section 5.

In this section, we explain how we found J (t); note that the method we used
to verify the correctness of J (t) does not depend on how it was found! None of
our theorems depend on the techniques described in this section. All that matters
is that they eventually produced functions J (t) whose correctness we could verify
using the procedure described in Section 5D.

We used an extension of the algorithm in [Sutherland 2016] to search for elliptic
curves E/Q for which ρE(GalQ) is conjugate to a subgroup of G. This was initially
done by simply checking elliptic curves in Cremona’s [2016] tables and the LMFDB
[LMFDB Collaboration 2013] (but see Remark 8.1 below). After enough searching,
we find elliptic curves E1, E2, E3 defined over Q with distinct j-invariants j1,
j2, j3 for which we believe that ρEi (GalQ) is conjugate in GL2(Ẑ) to a subgroup
of G; in particular, we expect that j1, j2, j3 ∈ πG(XG(Q)). We ran the Monte Carlo
algorithm in [Sutherland 2016] using parameters that ensure the error probability is
less than 2−100, under the GRH.

Now suppose that j1, j2, j3 are indeed elements of πG(XG(Q)). The curve XG

has genus 0 and rational points, so it is isomorphic to P1
Q

. We can choose an
isomorphism XG ' P1

Q
such that there are points P1, P2, P3 ∈ XG(Q) satisfying

πG(Pi )= ji which map to 0, 1,∞, respectively. There is thus a rational function
J (t)∈Q(t) such that J (0)= j1, J (1)= j2, J (∞)= j3 and such that Q(XG)=Q( f )
for a modular function f satisfying J ( f ) = j ; the function f is obtained by
composing our isomorphism P1

Q
' XG with πG .

We can now find all such potential J . As explained in Section 5, we can
construct a modular function h ∈ FN and a rational function J ′(t) ∈ KN (t) such
that KN (XG)= KN (h) and j = J ′(h), where N is the level of G. We thus have

J (t)= J ′(ψ(t))

for some degree 1 function ψ(t) ∈ KN (t) satisfying ψ(0) ∈ R1, ψ(1) ∈ R2, and
ψ(∞) ∈ R3, where

Ri := {α ∈ KN ∪ {∞} : J ′(α)= ji }.

Since the sets Ri are finite and disjoint, there are only finitely many ψ(t) ∈Q(t) of
degree 1 satisfying ψ(0) ∈ R1, ψ(1) ∈ R2, ψ(∞) ∈ R3. For each such ψ(t), we
check whether J ′(ψ(t)) lies in Q(t).

Consider any ψ as above for which J ′(ψ(t)) ∈Q(t). Set J (t) := J ′(ψ(t)) and
f := ψ−1(h) ∈ KN (XG). We have J ( f )= J ′(h)= j . The field Q( f ) is thus the
function field of a modular curve XG ′ , where G ′ is an open subgroup of GL2(Ẑ)

of level N satisfying det(G ′) = Ẑ× and −I ∈ G ′; it consists of matrices whose
reductions modulo N fix f . We can then check whether G is equal to G ′. Since
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[GL2(Ẑ) : G] = degπG = deg J = [GL2(Ẑ) : G ′], it suffices to determine whether
G is a subgroup of G ′; equivalently, whether G fixes f . A method for determining
whether f is fixed by G is described in Section 5C.

We will eventually find a ψ for which we have G = G ′ (provided that our
initial j-invariants ji are valid). This then proves that Q(XG)=Q( f ) for some f
satisfying J ( f )= j , where J (t) := J ′(ψ(t)) ∈Q(t).

Note this rational function J (t) is not unique since J (ϕ(t)) would also work for
any ϕ(t) ∈Q(t) of degree 1. Using similar reasoning, it is easy to determine if two
J1, J2 ∈Q(t) satisfy J2(t)= J2(ϕ(t)) for some degree 1 function ϕ ∈Q(t). We have
chosen our rational functions so that they are relatively compact when written down.

Remark 8.1. Having run this procedure to obtain functions J (t) for each of the
groups G where we were able to find suitable E1, E2, E3 in Cremona’s tables,
we then address the remaining groups G by picking a group G ′ that contains a
subgroup conjugate to G for which we already know a function J ′(t) ∈Q(t); such
a G ′ existed for every G not addressed in our initial search of Cremona’s tables.
Using the function J ′(t) we can quickly obtain a large list of elliptic curves E for
which ρE(GalQ) is a subgroup of G ′. By running the algorithm in [Sutherland
2016] on several thousand (or even millions) of these curves we are eventually able
to find E1, E2, E3 with distinct j-invariants for which it is highly probable that
ρEi (GalQ) is actually conjugate to a subgroup of the smaller group G contained
in G ′. We then proceed as above to compute the function J (t) for G.
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