Vol. 11, No. 5, 2017

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Hybrid sup-norm bounds for Maass newforms of powerful level

Abhishek Saha

Vol. 11 (2017), No. 5, 1009–1045
Abstract

Let f be an L2-normalized Hecke–Maass cuspidal newform of level N, character χ and Laplace eigenvalue λ. Let N1 denote the smallest integer such that N|N12 and N0 denote the largest integer such that N02|N. Let M denote the conductor of χ and define M1 = Mgcd(M,N1). We prove the bound fεN016+εN113+εM112λ524+ε, which generalizes and strengthens previously known upper bounds for f.

This is the first time a hybrid bound (i.e., involving both N and λ) has been established for f in the case of nonsquarefree N. The only previously known bound in the nonsquarefree case was in the N-aspect; it had been shown by the author that fλ,εN512+ε provided M = 1. The present result significantly improves the exponent of N in the above case. If N is a squarefree integer, our bound reduces to fεN13+ελ524+ε, which was previously proved by Templier.

The key new feature of the present work is a systematic use of p-adic representation theoretic techniques and in particular a detailed study of Whittaker newforms and matrix coefficients for GL2(F) where F is a local field.

Keywords
Maass form, sup-norm, automorphic form, newform, amplification
Mathematical Subject Classification 2010
Primary: 11F03
Secondary: 11F41, 11F60, 11F72, 11F85, 35P20
Milestones
Received: 13 October 2015
Revised: 25 October 2016
Accepted: 16 December 2016
Published: 12 July 2017
Authors
Abhishek Saha
Department of Mathematics
University of Bristol
Bristol
BS81SN
United Kingdom